2016-2017学年人教版数学七年级上册第二章整式的加减单元测试卷

合集下载

人教版数学七年级上册第二章整式的加减单元综合检测卷带答案

人教版数学七年级上册第二章整式的加减单元综合检测卷带答案

第二章整式的加减测试卷第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是()A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是52.下列各组单项式中,是同类项的是()A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有()A. 2个B. 3个C. 4个D. 5个4.化简a﹣(b﹣c)正确的是()A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c5.多项式4xy2﹣3xy+12的次数为()A. 3B. 4C. 6D. 76.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+67.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A. 6B. 8C. 9D. 128.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则”?”位置的数字可表示为()A. m+1B. m+5C. m+6D. m+79.下列各项去括号正确的是()A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+410.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是()A. 2B. 3C. 4D. 5二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.12.单项式﹣π2x2y的系数是_____,次数是_____.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.16.若,,则的值为______________.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用”>”、”<”、”=“填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y 任意取值代入时,结果总是同一个定值,为什么?20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.21.已知A=3a2b﹣2ab2+abc,小明同学错将”2A﹣B”看成”2A+B”,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?答案与解析第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是()A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是5【答案】C【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】A、单项式3πx2y3的系数是3π,故此选项错误;B、单项式-6x2y的系数是-6,故此选项错误;C、单项式-xy2的次数是3,正确;D、单项式x3y2z的次数是6,故此选项错误;故选C.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.2.下列各组单项式中,是同类项的是()A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、与-x2y,是同类项,符合题意;B、2a2b与2ab2,不是同类项,不合题意;C、a与1,不是同类项,不合题意;D、2xy与2xyz,不是同类项,不合题意;故选A.【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】直接利用多项式的定义分析得出答案.【详解】ab,,ab2+b+1,-9,x3+x2-3中,多项式有:,ab2+b+1,x3+x2-3共3个.故选B.【点睛】此题主要考查了多项式,正确把握多项式定义是解题关键.4.化简a﹣(b﹣c)正确的是()A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c【答案】A【解析】【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】a-(b-c)=a-b+c.故选A.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+”,去括号后,括号里的各项都不改变符号;括号前是”-”,去括号后,括号里的各项都改变符号.顺序为先大后小.5.多项式4xy2﹣3xy+12的次数为()A. 3B. 4C. 6D. 7【答案】A【解析】【分析】直接利用多项式的次数确定方法是解题关键.【详解】多项式4xy2-3xy+12的次数为,最高此项4xy2的次数为:3.故选A.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.6.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+6【答案】C【解析】【分析】先根据题意列出算式,再去掉括号合并同类项即可.【详解】根据题意得:这个多项式为(3a2+a+1)-(-2a+7)=3a2+a+1+2a-7=3a2+3a-6,故选C.【点睛】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键.7.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A. 6B. 8C. 9D. 12【答案】D【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个长方形面积的差.【详解】设重叠部分的面积为c,则a-b=(a+c)-(b+c)=35-23=12,故选D.【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.8.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则”?”位置的数字可表示为()A. m+1B. m+5C. m+6D. m+7【答案】C【解析】【分析】由日历中数字可得答案.【详解】由于在日历中一行为七天,所以m正下面一个数为m+7,所以?为m+7-1m+6,所以答案选择C项.【点睛】本题考查了用已知数表示未知数,了解一行为七天是解决本题的关键.9.下列各项去括号正确的是()A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【答案】B【解析】【分析】根据去括号法则逐个判断即可.【详解】A、-3(m+n)-mn=-3m-3n-mn,错误,故本选项不符合题意;B、-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2,正确,故本选项符合题意;C、ab-5(-a+3)=ab+5a-15,错误,故本选项不符合题意;D、x2-2(2x-y+2)=x2-4x+2y-4,错误,故本选项不符合题意;故选B.【点睛】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.10.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是()A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x3y2m与-3x n y2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.【答案】四【解析】【分析】直接利用多项式的次数确定方法分析得出答案.【详解】-3xy-x3+xy3是四次多项式.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.12.单项式﹣π2x2y的系数是_____,次数是_____.【答案】(1). ﹣π2(2). 3【解析】【分析】由于单项式中数字因数叫做单项式的系数,所有字母的指数和是单项式的次数,由此即可求解.【详解】由单项式的系数及其次数的定义可知,单项式﹣π2x2y的系数是﹣π2,次数是3.故答案为:﹣π2,3.【点睛】此题主要考查了单项式的系数及其次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x2y2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x2y2,故答案为:x2y2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.【答案】3【解析】【分析】根据同类项的定义直接可得到m、n的值.【详解】因为两个单项式-3x m y2与-xy n的和仍然是单项式,所以m=1,n=2,所以这个和的次数是1+2=3,【点睛】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.【答案】1【解析】【分析】不含三次项,则三次项的系数为0,从而可得出m和n的值,代入即可得出答案.【详解】∵代数式mx3-3nxy2+2x3-xy2+y中不含三次项,∴m=-2,-3n=1,解得:m=-2,n=-,∴(m-3n)2018=1.故答案为:1.【点睛】此题考查了多项式的知识,要求我们掌握多项式的次数、系数指的是哪一部分,难度一般.16.若,,则的值为______________.【答案】【解析】试题解析:m2+mn=-5①,n2-3mn=10②,①-②得:m2+mn-n2+3mn=m2+4mn-n2=-5-10=-15.故答案为:-15.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)【答案】(1)﹣a+2b;(2)﹣11x+5y.【解析】【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【详解】(1)原式=﹣a+2b;(2)原式=7y﹣5x﹣2y﹣6x=﹣11x+5y.【点睛】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用”>”、”<”、”=“填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.【答案】(1)>;=;<;(2)A<B.【解析】【分析】(1)根据题意,利用整式的加减法法则判断即可;(2)利用做差法判断即可.【详解】(1)如果a﹣b>0,则a>b;如果a﹣b=0,则a=b;如果a﹣b<0,则a<b;故答案为:>;=;<;(2)∵A﹣B=5m2﹣4(m﹣)﹣(7m2﹣7m+3)=﹣2m2﹣1<0,∴A<B.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y 任意取值代入时,结果总是同一个定值,为什么?【答案】结果是定值,与x、y取值无关.【解析】【分析】原式去括号、合并同类项得出其结果,从而得出结论.【详解】(x2y+5xy2+5)-[(3x2y2+x2y)-(3x2y2-5xy2-2)]=x2y+5xy2+5-(3x2y2+x2y-3x2y2+5xy2+2)=x2y+5xy2+5-3x2y2-x2y+3x2y2-5xy2-2=(x2y-x2y)+(5xy2-5xy2)+(-3x2y2+3x2y2)+(5-2)=3,∴结果是定值,与x、y取值无关.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.【答案】6a2﹣6b2,.【解析】【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=8a2﹣10ab+2b2﹣2a2+10ab﹣8b2=6a2﹣6b2,当a=,b=﹣时,原式=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.已知A=3a2b﹣2ab2+abc,小明同学错将”2A﹣B”看成”2A+B”,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.【答案】(1)﹣2a2b+ab2+2abc; (2)8a2b﹣5ab2;(3)0.【解析】【分析】(1)由2A+B=C得B=C-2A,将C、A代入后,再去括号后合并同类项化为最简即可;(2)将A、B代入2A-B,,再去括号后合并同类项化为最简即可;(3)由化简后的代数式中无字母c可知其值与c无关,将a、b的值代入计算即可.【详解】(1)∵2A+B=C,∴B=C-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc.(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2.(3)对,与c无关,将a=,b=代入,得8a2b-5ab2=8××-5××=0.【点睛】本题考查了整式加减的应用,整式的加减实质上是去括号后合并同类项.熟知去括号法则和合并同类项法则是解题的关键.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x【答案】21x+3y【解析】整体分析:根据定义a△b=3a+2b,先小括号,后中括号依次化简[(x+y)△(x-y)]△3x.解:原式=[3(x+y)+2(x-y)]△3x=(3x+3y+2x-2y)△3x=(5x+y)△3x=3(5x+y)+6x=15x+3y+6x=21x+3y.23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?【答案】(1)(4x+2y)人;(2)(5x+6y)人【解析】【分析】(1)将途中两次上车人数相加,计算即可求解;(2)将(1)中所求结果加上车上原有人数、减去下去的人数即可.【详解】(1)根据题意知,途中两次共上车2x﹣y+2x+3y=4x+2y(人);(2)6x+2y+4x+2y﹣(5x﹣2y)=10x+4y﹣5x+2y=5x+6y,故到终点站E地时,车上共有(5x+6y)人.【点睛】本题考查了整式的加减、去括号法则两个考点.能够根据题意正确列式是解题的关键.。

人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案

人教版数学七年级上册第二章整式的加减《单元综合测试卷》含答案

人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列说法中,正确的是( ) A. 24m n 不是整式 B. ﹣32abc 的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式 2.下列每组单项式中是同类项的是( )A. 2xy 与﹣13yx B. 3x 2y 与﹣2xy 2 C. 12x -与﹣2xy D. xy 与yz 3.下列各式合并同类项结果正确的是( )A. 3x 2﹣x 2=3B. 3x 2+5x 3=8x 3C. 3a 2﹣a 2=aD. 3a 2﹣a 2=2a 2 4.下列说法正确的是 ( )A. x 系数是0B. y 不是单项式C. 0.5是单项式D. -5a 的系数是5 5.单项式2a 3b 的次数是( )A 2B. 3C. 4D. 5 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 9.多项式()1472m x m x --+是关于x 四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-410.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2二.填空题(共6小题) 11.225ab π-系数是________,次数是_______次; 12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 18.若2x m y 2﹣(n ﹣3)x+1是关于x 、y 的三次二项式,求m 、n 的值.19.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n)2017的值.20.已知单项式﹣25m 2x ﹣1n 9和25m 5n 3y 是同类项,求代数式12x ﹣5y 的值. 21.某村小麦种植面积是a 公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?22.当x=-12,y=-3时,求代数式 3(x 2﹣2xy)﹣[3x 2﹣2y+2(xy+y)]的值. 23.定义:若a b 2+=,则称a 与b 是关于1平衡数.(1)3与______是关于1的平衡数,5x -与______是关于1的平衡数.(用含x 的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.答案与解析一.选择题(共10小题)1.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C【解析】【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc的系数是﹣32,次数是3;多项式2x2y﹣xy是三次二项式;故选择C.2.下列每组单项式中是同类项是( )A. 2xy与﹣13yx B. 3x2y与﹣2xy2C.12x与﹣2xy D. xy与yz【答案】A【解析】【分析】根据同类项的概念(所含字母相同,并且相同字母的指数也相同)进行判断.【详解】A选项:2xy与﹣13yx含字母相同,并且相同字母指数也相同,所以是同类项,故是正确的;B选项:3x2y与-2xy2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的;C选项:-12x与﹣2xy所含字母不同,所以不是同类项,故是错误的;D选项:xy与yz所含字母不同,所以不是同类项,故是错误的;故选A.【点睛】考查同类项,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同是解题的关键.3.下列各式合并同类项结果正确的是( )A. 3x2﹣x2=3B. 3x2+5x3=8x3C. 3a2﹣a2=aD. 3a2﹣a2=2a2【答案】D【解析】【分析】所含字母相同且相同字母的指数也相同的项为同类项,只有同类项才能合并,合并时各同类项系数相加减,字母及其指数不变.【详解】解:A,原式=2x2,故错误;B,原式已是最简式,无法再进行合并,故错误;C,原式=2a2,故错误;D,原式=2a2,故正确;故选D.【点睛】本题考查了合并同类项的概念.4.下列说法正确的是 ( )A. x的系数是0B. y不是单项式C. 0.5是单项式D. -5a的系数是5【答案】C【解析】A选项,∵的系数是1,∴A选项说法错误;B选项,∵单独的一个数或字母都是单项式,∴B选项说法错误;C选项,∵单独的一个数或字母都是单项式,∴C选项说法正确;D选项,∵5a 的系数是,∴D选项说法错误;故选C.5.单项式2a3b的次数是( )A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C .点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型. 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A. 6B. 5C. 4D. 3 【答案】D【解析】【分析】根据单项式的概念判断即可.【详解】代数式a+b ,37x 2,5a ,﹣m ,0,3a b a b +-,32x y -中单项式有:37x 2,5a ,﹣m ,0,共计3个. 故选D.【点睛】考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式. 7.对于式子:22x y +,2a b ,12,3x 2+5x -2,abc,0,2x y x +,m ,下列说法正确的是( ) A. 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式 【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案. 详解:22x y +,2a b ,12,3x 2+5x ﹣2,abc,0,2x y x +,m 中:有4个单项式:12,abc,0,m ; 2个多项式:22x y +,3x 2+5x-2. 故选C .点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.8.若代数式2x a y 3z c 与4212b x y z -是同类项,则( ) A. a=4,b=2,c=3B. a=4,b=4,c=3C. a=4,b=3,c=2D. a=4,b=3,c=4 【答案】C【解析】根据同类项的概念,含有相同的字母,相同字母的指数相同,故可由代数式2x a y 3z c 与4212b x y z -是同类项,求得a=4,b=3,c=2,故选C .9.多项式()1472m x m x --+是关于x 的四次三项式,则m 的值是( ) A. 4 B. -2 C. -4 D. 4或-4【答案】C【解析】 ∵多项式()1472m x m x --+是关于x 的四次三项式, ∴|m|=4,且m-4≠0,∴m=-4,故选C.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.10.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A. ﹣2x 2+y 2B. 2x 2﹣y 2C. x 2﹣2y 2D. ﹣x 2+2y 2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x 2﹣2y 2+(x 2+y 2),=(1+1)x 2+(﹣2+1)y 2,=2x 2﹣y 2,故选B .【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键. 二.填空题(共6小题) 11.225ab π-的系数是________,次数是_______次; 【答案】 (1). 25π-(2). 3 【解析】 单项式225ab π-的系数是-25π,次数是3. 点睛:单项式的定义:不含加减号的代数式(数与字母的积的代数式),一个单独的数或字母也叫单项式.单项式中的数字因数叫做这个单项式的系数.所有字母的指数和叫做这个单项式的次数.12.把a ﹣b 当作一个因式,则3(a ﹣b)+4(a ﹣b)2﹣2(a ﹣b)﹣3(a ﹣b)2﹣(a ﹣b)2=_____.【答案】a ﹣b【解析】【分析】把a-b 看作是一个整体.合并同类项时系数相加减,字母与字母的指数不变.【详解】3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=(3-2)(a-b)+(4-3-1)(a-b)2=a-b .【点睛】利用整体思想,且灵活运用合并同类项法则是解题关键.13.如果单项式a 13x y +与3b 2x y 是同类项,那么b a =____.【答案】8【解析】【分析】根据同类项的定义可知,相同字母的次数相同,据此列出方程即可求出a 、b 的值.【详解】∵单项式a 13x y +与3b 2x y 是同类项,∴a 13{b 3+==, 解得a 2{b 3==. ∴b 3a 2=8=.故答案为8.14.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 【答案】13. 【解析】 ∵单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式, ∴m ﹣2=n,2m ﹣3n=3,解得:m=3,n=1,∴m ﹣n =3﹣1=13; 故答案为13. 15.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式.【答案】 (1). 四 (2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x 3﹣x 2y 2﹣3xy+x ﹣1是四次五项式.故答案为四,五.16.一个多项式与单项式﹣4x 的差等于3x 2﹣2x ﹣1,那么这个多项式为_____.【答案】3x 2﹣6x ﹣1【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】根据题意得:(3x 2-2x-1)+(-4x)=3x 2-2x-1-4x=3x 2-6x-1,故答案是:3x 2-6x-1【点睛】考查了整式的加减,熟练掌握运算法则是解本题的关键.三.解答题(共7小题)17.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1. 【答案】x 2+2y 2,94. 【解析】【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可. 【详解】()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦ =2x 2﹣[﹣x 2+2xy +2y 2]﹣2x 2+2xy +4y 2=2x 2+x 2﹣2xy ﹣2y 2﹣2x 2+2xy +4y 2=x 2+2y 2,当x=12,y=﹣1时,原式=14+2=94.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.若2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,求m、n的值.【答案】m=1,n=3【解析】【分析】根据题意,由三次二项式的定义得出m+2=3,n-3=0,然后解得m,n,即可求得答案.【详解】∵2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,∴m+2=3,n﹣3=0,解得m=1,n=3.【点睛】考查学生对多项式的理解和掌握,要求学生对多项式的概念有正确深入的理解.19.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.【答案】-1【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.20.已知单项式﹣25m2x﹣1n9和25m5n3y是同类项,求代数式12x﹣5y的值.【答案】-13.5. 【解析】分析】首先根据同类项的定义求出x和y的值,然后代入代数式得出答案.【详解】解:∵单项式﹣25m2x﹣1n9和25m5n3y是同类项,∴2x﹣1=5,3y=9, ∴x=3,y=3,∴12x﹣5y=12×3﹣5×3=﹣13.5.【点睛】本题主要考查的是同类项的定义以及代数式的求值问题,属于基础题型.理解同类项的定义是解题的关键.21.某村小麦种植面积是a公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积多多少公顷?【答案】a+30公顷.【解析】试题分析:根据题意可得水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,求出水稻种植面积与玉米种植面积的差即可得出结果.试题解析:水稻种植面积为(2a+25)公顷,玉米种植面积为(a﹣5)公顷,则水稻种植面积比玉米种植面积大(2a+25)﹣(a﹣5)=2a+25﹣a+5=a+30(公顷).考点:整式的加减.22.当x=-12,y=-3时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.【答案】﹣12【解析】试题分析:本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把x的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:原式=3x2﹣6xy﹣3x2+2y﹣2xy﹣2y=﹣8xy,当x=,y=﹣3时,原式=﹣12.考点:整式的加减—化简求值.23.定义:若a b2+=,则称a与b是关于1的平衡数.(1)3与______是关于1的平衡数,5x-与______是关于1的平衡数.(用含x的代数式表示)(2)若()22a 2x 3x x 4=-++,()2b 2x 3x 4x x 2⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1 的平衡数,并说明理由.【答案】(1)﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数【解析】【分析】(1)由平衡数的定义即可求得答案;(2)计算a+b 是否等于1即可.【详解】(1)设3的关于1的平衡数为a ,则3+a=2,解得a=﹣1, ∴3与﹣1是关于1的平衡数,设5﹣x 的关于1的平衡数为b ,则5﹣x+b=2,解得b=2﹣(5﹣x )=x ﹣3, ∴5﹣x 与x ﹣3是关于1的平衡数,故答案﹣1;x ﹣3;(2)a 与b 不是关于1的平衡数,理由如下:∵a=2x 2﹣3(x 2+x )+4,b=2x ﹣[3x ﹣(4x+x 2)﹣2],∴a+b=2x 2﹣3(x 2+x )+4+2x ﹣[3x ﹣(4x+x 2)﹣2]=2x 2﹣3x 2﹣3x+4+2x ﹣3x+4x+x 2+2=6≠2, ∴a 与b 不是关于1的平衡数.。

人教版七年级数学上册第二章整式的加减单元测试(含答案)

人教版七年级数学上册第二章整式的加减单元测试(含答案)

人教版七年级数学上册第二章整式的加减单元测试(含答案)一、单选题1.下列各式中,代数式有( )个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x +;(5) s = πr 2;(6) -6k A .2 B .3 C .4 D .52.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )23.下列各式中,不是整式的是( ).A .3aB .2x = 1C .0D .xy4.23-x yz 的系数和次数分别是( )A .系数是0,次数是5B .系数是1,次数是6C .系数是-1,次数是5D .系数是-1,次数是65.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%a B .20%a - C .(120%)a - D .(120%)a + 6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米 7.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( )A .k =-1B .k =-2C .k=3D .k = 18.若2y m +5x n +2与﹣3x 4y 5是同类项,则m +n =( )A .1B .2C .﹣1D .﹣39.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,图1中面积为1的正方形有9个,图2中面积为1的正方形有14个,⋯,按此规律,图12中面积为1的正方形的个数为( )A.64B.60C.54D.5010.下列选项正确的是( )A .xy +x +1是二次三项式B .﹣25xy 的系数是﹣5 C .单项式x 的系数是1,次数是0D .﹣22xyz 2的次数是611.一列数123,,,,n a a a a ,其中112a =,111n n a a -=-(n≥2的整数),则2019a =( ) A .12B .2C .-1D .-2 12.设23A a =+,27B a a =-+,则A 与B 的大小关系是( )A .AB >B .A B <C .A B ≥D .A B ≤二、填空题13.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 14.多项式3m 2-5m 3+2-m 是________次_______项式.15.多项式2239x xy π++中,次数最高的项的系数是_______.16.找规律填数:﹣1,2,﹣4,8,________三、解答题17.观察下列算式1=1=121+3=4=221+3+5=9=321+3+5+7=16=42…按规律填空:(1)1+3+5+7+9=______.(2)1+3+5+…+2005=_______.(3)1+3+5+7+9+…+_____=n².(4)根据以上规律计算 101+103+105+ (499)18.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -(E )0 (F )3y x -+ (G )223a ab b =+ (H )2xy a(I )223x y + (1)单项式集合__________;(2)多项式集合____________;(3)整式集合____________;(4)二项式集合___________;(5)三次多项式集合__________;(6)非整式集合__________.19.化简.(1)(5x +4y )+2(2x ﹣3y );(2)2a ﹣4(a +1)+3a .20.如图,在一块长为2x 米,宽为y (y <2x )米的长方形铁皮的四个角上,分别截去半径为y 2米的圆的14.(1)求剩余铁皮的面积(即阴影部分的面积).(2)当x =6,y =8时,剩余铁皮的面积是多少?21.先列式,再计算(1)﹣1减去﹣23再减去35所得的差是多少? (2)已知多项式A =2x 2﹣x +5,多项式A 与多项式B 的和为4x 2﹣6x ﹣3,求多项式B ?答案1.C2.A3.B4.D5.C6.B7.A8.B9.A10.A11.C12.B13.(10x+50y)分.14.三四15.16.﹣1617.(1)1+3+5+7+9=25=52;(2)1+3+5+…+2005=10032;(3)1+3+5+7+9+…+(2n−1)=n2;(4)101+103+105+…+497+499=(101+499)×200÷2=60000. 18.解:(1)单项式集合(D),(E);(2)多项式集合(A),(B),(C),(F),(G);(3)整式集合(A),(B),(C),(D),(E),(F),(G);(4)二项式集合(A),(C),(F);(5)三次多项式集合(A),(G);(6)非整式集合(H),(I)19.解:(1)(54)2(23)x y x y ++-5446x y x y =++-92x y =-;(2)24(1)3a a a -++2443a a a =--+4a =-.20解:(1)由已知得:剩余铁皮的面积=长方形铁皮面积-截去半径为y 2米的圆的面积144⨯ 212424y xy π⎛⎫=- ⎪⎝⎭, 2124xy y π=-(平方米);(2)当6x =,8y =时,原式2126884π=⨯⨯- (9616)π=-(平方米) 答:剩余铁皮的面积是(9616)π-平方米.21.(1)根据题意,得:[(﹣1)﹣(﹣23)]﹣35 =﹣1+23﹣35 =﹣1415; (2)根据题意,得B =4x 2﹣6x ﹣3﹣(2x 2﹣x+5)=4x 2﹣6x ﹣3﹣2x 2+x ﹣5=2x 2﹣5x ﹣8图 1 图2人教版初中数学七年级上册第2章《整式加减》单元测试卷 及答案一、选择题(每小题3分,共30分)1.建军的作业本中有四道列代数式的题目,其中错误的是( ).A .减去5等于x 的数是x +5B .4与a 的积的平方为4a 2C .m 与n 的和的倒数为1m n+ D .比x 的立方的2倍小5的数是2x 3-5 2.下列说法中,正确的是( ).A .15x +是多项式B .213x π-的系数是13- C .2x 2-1的项是2x 2和1 D .3xy 2-y 2+6是三次三项式3.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( ).A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元4.敏敏手中的纸条上写着多项式a 3+a x +1b -2a 2b 2,慧慧手中的纸条上写着单项式-a 3 b 4 c ,若这两个式子的次数相等,则x 的值为( ).A .5B .6C .7D .85.若多项式m 3+m x +1n -2m 2n 2与单项式-a 3 b 4 c 的次数相等,则x 的值为( ).A .5B .6C .7D .85.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为( ).A .7B .9C .-7D .-96.友龙在电脑中设置了一个运算程序:输入数a ,加“⊗”键,再输入数b ,得到运算a ⊗b =2ab 2+a 2b . 若a =-2,b=3,则输出的值为( ).A .-9B .-12C .-24D .67.有一个三位数,它的百位上的数字是a ,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是( ).A .2的倍数B .3的倍数C .5的倍数D .9的倍数8.已知y=x -1,则(x -y)2+(y -x)+1的值为( ).A .-1B .0C .1D .29.已知有理数a 、b 、c 在数轴上的位置如图1所示,且a 与b 互为相反数,那么| a -c |-| b +c |的值为( ).A .0B .1C .a +bD .2c 10.如图2,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”的图案,再将剪下的两个小长方形拼成一个新长方形,则新长方形的周长为( ).A .2a -3bB .4a -8bC .2a -4bD .4a -10b二、填空题(每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电若不超过100度,每度按a 元收费;若超过100度,那么超过部分每度按b 元收费. 某户居民在图3图4 一个月内用电160度,那么该户居民这个月应缴纳电费____________元.12.已知单项式2a 3b n +1与单项式-3a m -2b 2的和仍是单项式,则3m -4n=_________.13.如图3,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如图所示. 则打包带的长至少要____________.(用含x 、y 、z 的代数式表示)14.已知(a +6)2+|b 2-2b -3 |=0,则2b 2-4b -a 的值为_________.15.已知关于x 的多项式(a +b )x 4+(b -2)x 3-2 (a +1)x 2+2ax -15中,不含x 3项和x 2项,则当x =-2时,这个多项式的值为__________.16.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第100个单项式是________.17.已知x=34-12,y=32,求-x +(px -y 2)-2(x -y 2)的值,龙龙在做题时,把x 的值看成x=34,但最后也算出了正确的结果,若计算过程无误,由此可判定p 的值为_______. 18.出租车收费的标准因地而异,A 市的标准为:起步价10元,3千米后每千米为1.2元;B 市的标准为:起步价8元,3千米后每千米为1.4元. 则在A 市乘坐出租车x(x >3)千米比在B 市乘坐相同路程的出租车多花___________元.三、解答题(共66分)19.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若x =-6,求所捂二次三项式的值.20.(8分)如图4,一只蚂蚁从点A 沿数轴向右爬2个单位到达点B. 若点A 表示的数a为32-,设点B 所表示的数为b . (1)求b 的值;(2)先化简223(2)[322()]a ab a b ab b ---++,再求值.21.(8分)已知A=-6x 2+4x ,B=-x 2-3x ,C=5x 2-7x +4,小明和小金在计算时对x 分别取了不同的数值,并进行了多次计算,但所得A -B +C 的结果却是一样的,你认为这可能吗?说明你的理由. 222(3)51x x x --=-+22.(10分)张、王、李三家合办一个股份制企业,总股数为(5a2-3a+3),每股20元,张家持有(2a2+1)股,王家比张家少(a-1)股.(1)求王家和李家分别持有的股数.(2)若年终按持有股15%的比例支付股利,当a=300时,问李家能获得多少钱?23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:第1个第2个第3个第4个(1)填写下表:(2)归纳猜测第n个图形棋子的个数(用含n的代数式表示);(3)建军认为第671个图形有2016颗黑色棋子,你同意他的说法吗?请说明理由.24.(10分)观察代数式x-3x2+5x3-7x4+……并回答下列问题:(1)它的第100项是什么?(2)它的第n(n为正整数)项是什么?(3)当x=1时,求它的前2016项的和.参考答案一、选择题1.B.提示:列代数式表示“a与4的积的平方”为(4a)2.2.D .提示:选项A 分母中含有字母,故不是多项式,选项B 的系数是13π-,选项C 的项是2x 2和-1.3.A .提示:由于2月份产值是(1-10%)x 万元,故3月份产值是在(1-10%)x 万元的基础上增加了15%,即为(1-10%)(1+15%)x 万元.4.B .提示:由于-a 3 b 4 c 的次数为8,则a 3+a x +1b -2a 2b 2的次数x +1+1=8,故x=6.5.D .提示:根据“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,所以2×1-3=x ,故x=-1;又因为2x -7=y ,即2×(-1)-7=y ,故y=-9.6.C .提示:当a =-2,b=3时,2ab 2+a 2b =2×(-2)×32+(-2)2×3=-24.7.B .提示:根据题意得100a +10(a +1)+(a -1)=111a +9=3(37a +3),故为3的倍数.8.C .提示:由y=x -1,得y -x=-1或x -y=1,整体代入得,原式=12+(-1)+1=1.9.A .提示:因为a 与b 互为相反数,所以a +b=0;根据数轴得a -c <0,b +c >0,故原式=-(a -c)-(b +c)=-a +c -b -c=-(a +b)=0.10.B .提示:根据示意图知,剪下的两个小长方形拼成的新长方形的长为(a -b),宽为(a-3b),所以新长方形的周长为2(a -b)+2(a -3b) =2a -2b +2a -6b=4a -8b.二、填空题11.(100a +60b). 提示:前100度按每度a 元收费,故可收100a 元;超过100度的部分有60度,可收60b 元.12.11.提示:根据题意,两个单项式是同类项,所以m -2=3,n +1=2,故m =5,n =1. 13.2x +4y +6z. 提示:根据打包方式知,包带等于“长”的有2x ,包带等于“宽”的有4y ,包带等于“高”的有6z ,所以总长为2x +4y +6z.14.2.提示:由题意得a +6=0,b 2-2b -3=0,故a =-6,b 2-2b =3. 所以2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.15.5.提示:根据题意,得a =-1,b =2,所以这个多项式为x 4-2x -15. 当x =-2时,x 4-2x -15=(-2)4-2×(-2)-15=5.16.199x 100. 提示:由于x 的指数是连续自然数,而系数是连续奇数,即系数为(2n -1),故第100个单项式的系数为2×100-1=199. 所以这个单项式为199x 100.17.3.提示:-x +(px -y 2)-2(x -y 2)=-x +px -y 2-2x +2y 2=(p -3)x +y 2,因为把x 的值看错,但结果仍正确,所以x 的系数p -3=0,故p=3.18.(2.6-0.2x). 提示:在A 、B 两市乘车的费用分别为 [10+1.2(x -3)]元和[8+1.4(x -3)]元,故A 市比B 市乘坐相同路程需多花[10+1.2(x -3)]-[8+1.4(x -3)]= (2.6-0.2x)元.三、解答题19.(1)设所捂的二次三项式为A ,则有A -2(x 2-3)=x 2-5x +1.所以A=(x 2-5x +1)+2(x 2-3)= x 2-5x +1+2x 2-6= 3x 2-5x -5.(2)当x=-2时,3x 2-5x -5=3×(-2)2-5×(-2)-5=17. 20.(1)由于31222-+=,所以12b =. (2)原式22(36)(3222)a ab a b ab b =---++2236328a ab a ab ab =---=-. 当32a =-,b =12时,原式=-8×(32-)×12=6. 21.可能. 理由如下:A -B +C=(-6x 2+4x)-(-x 2-3x)+(5x 2-7x +4)=-6x 2+4x +x 2+3x +5x 2-7x +4=4.由于化简后的结果中不含有字母x,所以无论x取何数值,其结果都是4. 22.(1)王家持股:(2a2+1)-(a-1)=2a2-a+2.李家持股:(5a2-3a+3)-(2a2+1)-(2a2-a+2)=a2-2a.(2)当a=300时,a2-2a=3002-2×300=89400.所以李家能获得的钱数为:89400×15%×20=268200(元).23.(1)填表如下:(2)3(n+1);(3)同意建军的说法. 理由如下:当n=671时,3(n+1)= 3×(671+1)=2016. 所以第670个图形有2016颗黑色棋子. 24.(1)第100项是-199x100;(2)第n(n为正整数)项是(-1)n+1(2n-1)x n;(3)当x=1时,原式=1-3+5-7+…+4029-4031=(1-3)+(5-7)+…+(4029-4031)=-2×1008=-2016.人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分)1.下列说法正确的是( )A.a 的系数是0B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( )A.a 2b 与-6ab 2B.-5x 3y 与934yx 3 C.2πR 与π2R D.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3)6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( )A.与x ,y 都无关B.只与x 有关C.只与y 有关D.与x ,y 都有关二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a―b)]=___.16.的结果是___.17.小颖在计算a+N时,误将“+”看成“―”,结果得3a,则a+N=___.18.数学家发明了一个魔术盒,当任意实数对...(a,b)进入其中时,•会得到一个新的实数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:请写出剩油量A与行驶路程n与耗油量Q之间的关系式,并计算当n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10a+b;第三步:10b+a-(10a+b)=10b+a -10a-b=9b-9a=9(b-a).24. 解:(1)甲超市:300+0.8×(x﹣300)=0.8x+60(元)乙超市:200+0.85×(x﹣200)=0.85x+30(元)(2)甲超市:300+0.8×(500﹣300)=460(元)乙超市:200+0.85×(500﹣200)=455(元)∵460>455∴当顾客累计购物500元时,在乙超市购物合算.25.(1)甲方案:m×30×810=24m;乙方案:(m+5)×30×7.510=22.5(m+5).(2)当m=70时,甲方案所需费用为:24m=24×70=1680(元),乙方案所需费用为:22.5(m+5)=22.5(70+5)=1687.5(元),所以采用甲方案优惠;当m=100时,甲方案所需费用为:24m =24×100=2400(元),乙方案所需费用为:22.5(m+5)=22.5(100+5)=2362.5(元),所以采用乙方案优惠.26.(1)依题意,得这个无盖长方体的容积为x(16-2x)2.(2)当x的值为3cm时,它的容积为300cm3;当x的值为3.5cm时,它的容积为283.5cm3;因此,当x的值为3cm时,这个无盖长方体的容积较大.。

人教版七年级数学上册第二章《整式的加减》单元测试卷含答案

人教版七年级数学上册第二章《整式的加减》单元测试卷含答案

精心整理人教版七年级数学上册第二章《整式的加减》单元测试卷一、选择题(共6小题,每小题4分,满分24分)1、整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A、2个B、3个C、4个D、5个2、在下列运算正确的是()A、2a+3b=5abB、2a﹣3b=﹣1C、2a2b﹣2ab2=0D、2ab﹣2ab=03、若代数式是五次二项式,则a的值为()A、2B、±2C、3D、±34、下列各组代数式中,是同类项的是()A、5x2y与xyB、﹣5x2y与yx2C、5ax2与yx2D、83与x35、下列各组中的两个单项式能合并的是()A、4和4xB、3x 2y3和﹣y2x3C、2ab2和100ab2cD、6、某商品原价为100元,现有下列四种调价方案,其中0<n<m <100,则调价后该商品价格最低的方案是()A 、先涨价m%,再降价n% B、先涨价n%,再降价m%C、行涨价%,再降价%D、先涨价%,再降价%二、填空题(共8小题,每小题4分,满分32分)7、﹣πx2y的系数是.8、去括号填空:3x﹣(a﹣b+c)= .9、多项式A:4xy2﹣5x3y4+(m﹣5)x5y3﹣2与多项式B:﹣2x n y4+6xy ﹣3x﹣7的次数相同,且最高次项的系数也相同,则5m﹣2n= .10、一个长方形的一边为3a+4b,另一边为a+b,那么这个长方形的周长为.11、任写一个与是同类项的单项式:.12、设a﹣3b=5,则2(a﹣3b)2+3b﹣a﹣15的值是.﹣+3x+)[8a2];[7x2x,.18、(1)用代数式表示图中阴影部分的面积(2)请你求出当19、一艘轮船顺水航行3小时,逆水航行2小时,(1)已知轮船在静水中前进的速度是m千米/时,水流的速度是a 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?一、选择题(共6小题,每小题4分,满分24分)1、整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A、2个B、3个C、4个D、5个考点:单项式。

人教版数学七年级上册第二章整式的加减《单元测试卷》含答案

人教版数学七年级上册第二章整式的加减《单元测试卷》含答案

人教版数学七年级上学期第二章整式的加减测试一.选择题(每小题4分,共20分)1.列式表示“比m 的平方的3倍大1的数”是( )A. (3m)2+1B. 3m 2+1 C 3(m +1)2D. (3m +1)22.多项式3x k y – x 是三次二项式,那么k 的值是( )A. 3B. 2C. 1D. 0 3.下列各项中,去括号正确的是( )A. x 2-2(2x -y +2)=x 2-4x -2y +4B. -3(m +n)-mn =-3m +3n -mnC. -(5x -3y)+4(2xy -y 2)=-5x +3y +8xy -4y 2D. ab -5(-a +3)=ab +5a -34.下列说法正确的是:( ).A. 单项式m 的次数是0B. 单项式5×105t 的系数是5C. 单项式223x π-系数是23- D. -2 010是单项式 5.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A ()x 15x - B. ()x 30x - C. ()x 302x - D. ()x 15x +二.填空题(每小题4分,共20分)6.单项式-4xy 的系数为____________ .7.写出6xy 的一个同类项_____________.8.已知15mn 和-29mn 是同类项,则∣2-4x ∣+∣4x -1∣的值为_______ . 9.我校有三个年级,其中初三年级有(2x+3y )名学生,初二年级有(4x+2y )名学生,初一年级有(x+4y )名学生, 请你算一算,我校共有_______________名学生.10.观察下列单项式:x,-3x 2,5x 3,-7x 4,9x 5,…按此规律,可以得到第2010个单项式是______.第n 个单项式怎样表示________.三.解答题(共60分)11计算:(1) 32a b -3(2a b -a 2b )-3a 2b ; (2) -xy -(4z -2xy )-(3xy -4z ).12.计算:已知222232,23m x xy y n x xy y =-+=+-,求:(1) m+n; (2) m-3n.13.(1)给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.(2)先化简,再求值:()22532234x x x x ⎡⎤----⎣⎦,其中12x =- 14.把3个长为a ,宽为b(a>b )的长方形如图放置,恰好拼成一个大长方形,(1)大长方形的面积S=____________(用含字母a 、b 的代数式表示);(2)a 、b 之间的等量关系是:__________________;(3)当b=2时,面积S=?b=3时,周长C=?15已知|a -2|+|b+1|+|2c+3|=0.(1)求代数式2a +2 b +2 c +2ab +2ac +2bc 的值;(2)求代数式()2a b c ++的值;(3)从中你发现上述两式的什么关系?由此你得出了什么结论?答案与解析一.选择题(每小题4分,共20分)1.列式表示“比m 的平方的3倍大1的数”是( )A. (3m)2+1B. 3m 2+1C. 3(m +1)2D. (3m +1)2 【答案】B【解析】试题解析:比的平方的倍大的数为:23 1.m +故选B.2.多项式3x k y – x 是三次二项式,那么k 的值是( )A. 3B. 2C. 1D. 0【答案】B【解析】由多项式3x k y – x 三次二项式,可得k+1=3,解得k=2,故选B.3.下列各项中,去括号正确的是( )A. x 2-2(2x -y +2)=x 2-4x -2y +4B. -3(m +n)-mn =-3m +3n -mnC. -(5x -3y)+4(2xy -y 2)=-5x +3y +8xy -4y 2D. ab -5(-a +3)=ab +5a -3【答案】C【解析】试题解析:A. 222(22)42 4.x x y x x y --+=-+-故错误. B 3()33.m n mn m n mn -+-=---故错误.C. 22(53)4(2)5384.x y xy y x y xy y --+-=-++-故正确.D.5(3)515.ab a ab a --+=+-故错误. 故选C.4.下列说法正确的是:( ).A. 单项式m 的次数是0B. 单项式5×105t 的系数是5C. 单项式223x π-的系数是23- D. -2 010是单项式【答案】D【解析】 A. 单项式m 的次数是1,故A 选项错误;B. 单项式5×105t 的系数是5×105,故B 选项错误;C. 单项式223x π-的系数是23-π,故C 选项错误;D. -2 010是单项式,正确, 故选D. 5.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A. ()x 15x -B. ()x 30x -C. ()x 302x -D. ()x 15x +【答案】A【解析】∵长方形的周长是30,∴相邻两边和是15,∵一边是x,∴另一边是15-x,∴面积是:x(15-x),故选A.【点睛】本题考查了列代数式,用到的知识点是矩形的周长和面积公式,关键是根据矩形的周长和一边的长,求出另一边的长. 二.填空题(每小题4分,共20分)6.单项式-4xy 的系数为____________ .【答案】-4【解析】根据单项式系数的定义,单项式-4πxy 3 的系数是-4π,故答案为-4π.7.写出6xy 的一个同类项_____________.【答案】5xy 等【解析】根据同类项的定义,同类项是指所含字母相同,相同字母的指数也相同的项,因此与6x 3y 2是同类项的项可以是5x3y2(答案不唯一).8.已知15mn和-29mn是同类项,则∣2-4x∣+∣4x-1∣的值为_______ .【答案】13【解析】由题意可得:x=2,所以∣2-4x∣+∣4x-1∣=∣2-4×2∣+∣4×2-1∣=6+7=13,故答案为13.9.我校有三个年级,其中初三年级有(2x+3y)名学生,初二年级有(4x+2y)名学生,初一年级有(x+4y)名学生, 请你算一算,我校共有_______________名学生.【答案】7x+9y【解析】(2x+3y)+(4x+2y)+(x+4y)=2x+3y+4x+2y+x+4y=7x+9y(名),即我校共有(7x+9y)名学生,故答案为7x+9y.10.观察下列单项式:x,-3x2,5x3,-7x4,9x5,…按此规律,可以得到第2010个单项式是______.第n个单项式怎样表示________.【答案】(1). -4019 x2010(2). (-1)(n+1)(2n-1)n【解析】观察下列单项式:x,-3x2,5x3,-7x4,9x5,…得出第n项的系数可以表示为(-1)n-1(2n-1),指数表示为n,即第n项表示为(-1)n-1(2n-1)x n,第2008个单项式是-4015x2008,故答案为-4015x2008;(-1)n-1(2n-1)x n.【点睛】本题考查根据规律写单项式,通过仔细观察写出第n个单项式是解此题关键.三.解答题(共60分)11.计算:(1) 32a b-3(2a b-a2b)-3a2b; (2) -xy-(4z-2xy)-(3xy-4z).【答案】(1)0; (2)-2xy【解析】试题分析:(1)先去括号,然后再合并同类项即可;(2)先去括号,然后再合并同类项即可试题解析:(1)原式=3a2b-3a2b+3ab2-3ab2= 0;(2)原式=-xy -4z+2xy -3xy+4z =-2xy12.计算:已知222232,23m x xy y n x xy y =-+=+-,求:(1) m+n; (2) m-3n.【答案】(1) 2252x xy y --; (2) 223510x xy y --+【解析】【分析】把22223223m x xy y n x xy y =-+=+-,,分别代入所求的式子中,然后去括号,合并同类项即可得.【详解】解:(1)m+n=()22223223x xy y x xy y-+++- =22223223x xy y x xy y -+++-=2252x xy y --;(2)m-3n=()222232323x xy y x xy y-+-+- =222232639x xy y x xy y -+--+=223510x xy y --+.13.(1)给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.(2)先化简,再求值:()22532234x x x x ⎡⎤----⎣⎦,其中12x =- 【答案】(1)6(答案不唯一);(2)174-【解析】 试题分析:(1)答案不唯一,任意选取两个多项式进行加法或减法运算,通过去括号,合并同类项进行化简后再代入数值进行求值即可;(2)先去小括号,再去中括号,然后合并同类项,最后代入数值进行求值即可.试题解析:(1)(212x x +)+(2132x y +)=23x x y ++ 当12x y =-=,,原式=()()211326-+-+⨯= 或者(212x x +)-(2132x y +)=3x y - 当12x y =-=,,原式=()1327--⨯=- (212x x +)+(2113x +)=255166x x ++=(212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-= (2)()225x 3x 22x 34x ⎡⎤----⎣⎦=225x 3x 4x 64x --+-=225x x 64x +-+=29x x 6+-当1x 2=- 时,原式=174-. 14.把3个长为a ,宽为b(a>b )的长方形如图放置,恰好拼成一个大长方形,(1)大长方形的面积S=____________(用含字母a 、b 的代数式表示);(2)a 、b 之间的等量关系是:__________________;(3)当b=2时,面积S=?b=3时,周长C=?【答案】(1)3ab ;(2)a=2b ;(3)S=24; C=30;【解析】试题分析:(1)根据大长方形的面积等于3个小长方形的面积之和即可得;(2)根据图示即可得;(3)由(2)中a 与b 的关系,根据b 的值可得到a 的值,根据长方形的面积公式以及周长即可得. 试题解析:(1)大长方形的面积=3ab,故答案为3ab ;(2)根据图示可知小长方形的长等于小长方形的宽的2倍,故a=2b ;(3)由a=2b,b=2可得a=4,所以大长方形的面积S=3×4×2=24;由b=3,a=2b 可得a=6,所以大长方形的周长C=2×(6+6+3)=30. 15.已知|a -2|+|b+1|+|2c+3|=0.(1)求代数式2a +2 b +2 c +2ab +2ac +2bc 的值;(2)求代数式()2a b c ++的值;(3)从中你发现上述两式的什么关系?由此你得出了什么结论?【答案】(1)14;(2)14;(3)两式相等,结论是(a+b+c)=a+b+c+2ab+2ac+2bc【解析】试题分析:先根据绝对值的非负性,根据已知所给的等式,分别求出a、b、c的值,然后再分别代入(1)、(2)中进行求值即可;(3)根据(1)、(2)中的结果进行观察即可得.试题解析:(1)由题意得,a=2,b=-1, c=-32,所以,原式=22+(-1)2+32⎛⎫-⎪⎝⎭2+2×2×(-1)+2×2×32⎛⎫-⎪⎝⎭+2×(-1)×32⎛⎫-⎪⎝⎭=4+1+94-4-6+3 =14;(2)(a+b+c)2=(2-1-32)2 =14;(3)两式相等,结论是(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.【点睛】本题考查了绝对值非负性,代数式求值等知识,解题的关键是先根据绝对值的非负性求出a、b、c 的值.。

新人教版数学七年级上第二章整式加减单元测试题(附答案)

新人教版数学七年级上第二章整式加减单元测试题(附答案)

第二章《整式的加减》达标检测题一、选择题(每题4分,共28分)1.计算a+(-a )的结果是( )A.2aB.0C.-a 2D.-2a2.下列判断中正确的是( )A.3a 2bc 与bca 2不是同类项 B .5n m 2不是整式 C.单项式-x 3y 2的系数是-1 D.3x 2-y+5xy 2是二次三项式3.已知5a 3-x b 与127a 5y 5b 的和是单项式,则|x+y|等于( ) A.-5 B.4 C.3 D.54.化简a-[-2a-(a-b)]等于( )A.-2aB.2aC.4a-bD.2a-2b5.化简5(2x-3)-4(3-2x )可得( )A.2x-27B.8x-15C.12x-15D.18x-276.已知多项式ax 5+bx 3+cx ,当x=1是值为5,那么当x=-1时,该多项式的值为( )A.-5B.5C.1D.无法求出7.使(ax 2-2xy+y 2)-(-x 2+bxy+2y 2)=5x 2-9xy+cy 2成立abc 的值依次是( )A.4,-7,-1B.-4,-7,-1C.4,7,-1D.4,7,1二、填空题(每题4分,共20分)8.多项式_____与m 2+m-2的和是m 2-2m9.有四个偶数,其中最小的一个是2n ,其余三个是________________,这四个连续偶数的和是______________.10.一个两位数的个位上的数为a ,十位上的数为b ,将8插入这两位数的中间,则得到的三位数可表示为__________________.11.(x+2y-3c )(x-2y+3c )= [x+( )] [x-( )]12.有一个一个简单的数值运算程序:“先输入x ,然后乘以(-1),然后-2011,再输出结果”当输入x 的值为-2时,则输出的结果为________________.三、解答题(17题12分,其余每题10分,共52分)13.求2x 211-29x+10y 与x 252+13x-5y 的2倍的差.14.先化简,在求值:4x 2-{-3x 2-[5x-x 2-(2x 2-x )]+4x},其中x=-21.15.已知三角形的周长为3a+2b ,其中第一条边长为a+b ,第二条边长比第一条边长小1,求第三条边的长.16.有这样一道题“当a=2,b=-2时,求3a 3b 3-21a 2b+b 2-(4a 3b 3-41a 2b-b 2)+(a 3b 3+41a b 2)-2b 32+的值”,马小虎做题时把a=2错抄写成a= -2,小明没抄错题,但他们做出的结果却是一样,你知道这是怎么回事吗?说明理由。

2016年人教版七年级数学上册第二章整式的加减单元测试题及答案

2016年人教版七年级数学上册第二章整式的加减单元测试题及答案
A. B.
C. D.
5.已知出租汽车行驶3千米内(包括3千米)的车费是7元,以后每行驶1千米,再加收1元,如果某人坐出租汽车行驶了 千米( 是整数,且 ),则车费是()
A.(7+ )元B.(4+ )元C.(7- )元D.(3+ )元
6.如果2 的和是单项式,则()
A. B.
C. D.
7.下列说法错误的是()
25.(10分)设
,且 的值.
26.(12分)阅读下列材料:在计算 时,我们发现,从第一个数开始,后面的每个数与它前面的一个数的差都是一个相等的常数,具有这样规律的一列数,除了直接相加外,我们还可以由厦门的公式来计算它们的和 ,即 (其中 表示数的个数, 表示第一个数, 表示最后一个数),那么 .
用上面的知识解答下面的问题.
A. B.
C.2 D.
考点:合并同类项
分析:系数相加减,字母和字母的指数不变
答案Байду номын сангаасD.
3.下列各组中的两个单项式,是同类项的是( )
A. B.3 C.0和5D.
考点:同类项
分析:同类项是字母相同,并且相同字母的指数也相同.
答案:C.
4.单项式-1减去多项式 ()
A. B.
C. D.
考点:去括号
分析:注意各项要全变号
A.4 枚B.(4 )枚C.(4 )枚D. 枚
二、填空题(每小题3分,共30分)
11.下列代数式: ,其中单项式有
个.
12.式子 与 是同类项,其中单项式有个.
13.一个多项式加上 应为.
14.一个长方形的一边长为4 ,另一边长为2 ,则这个长方形的周长为.
15.某货物以 元买入,如果在买入价的基础上增加 作为售价,货物卖不出去,只好在售价的基础上再降价 出售,则降价后的售价用式子表示出来是.

【精选6套】新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

【精选6套】新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( ) A.4,3 B.4,-3 C.6,3 D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( ) A.2(x-y )=2x-y B.-(m-n )=-m+n C.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53- B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________.14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数)创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3. 当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ; 乙每份材料收2.5元印刷费, 故答案为25,50,2.5x ;(2)对甲来说,印刷大于800份时人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y-的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ).22.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)24.、两仓库分别有水泥吨和吨,、两工地分别需要水泥吨和吨.已知从、仓库到、工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式的系数是,次数=2+1+3=6.故选:C.2.下列语句中错误的是()A.单项式﹣a的系数与次数都是1 B.12xy是二次单项式C.﹣23ab的系数是﹣23D.数字0也是单项式【答案】A解A 、单项式﹣a 的系数是﹣1,次数是1,故此选项错误,符合题意;B 、12xy 是二次单项式,正确,不合题意; C 、﹣23ab 系数是﹣23,正确,不合题意;D 、数字0也是单项式,正确,不合题意; 故选:A .3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元【答案】C解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C . 4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3 B .6C .﹣3D .0【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( ) A .33(2)6x x = B .33x x x ÷= C .325x x x ? D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误;B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误; 故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b), ∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7. 故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<,0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c , 所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0 B .1- C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++,()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,, b=1a=-3∴, ,当b=1,a=-3时 ,a+2b=-3+2=-1, 所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式 D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误; B 、P−Q人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( ) ①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( ) A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( ) A .-2x 2y 与xy 2B .x 2y 与x 2z C .3mn 与4nmD .-0.5ab 与abc2.已知苹果的单价为a 元/千克,香蕉的单价为b 元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________.12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12.原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A=5x2-5x+3,B=x2-x-1,所以2A-B=2(5x2-5x+3)-(x2-x-1)=10x2-10x+6-x2+x+1=9x2-9x+7.18.解:(1)8x+6y+5(20―x―y)=(3x+y+100)吨.答:这20辆汽人教版数学七年级上册通关宝典(9)-《整式的加减》单元检测一、选择题(共10小题;共30分)1. 下列说法正确的是A. 的系数是B. 单项式的系数为,次数为C. 的次数为D. 的系数为2. 下列说法中,正确的有①的系数是;②的次数是;③多项式的次数是;④和都是整式.A. 个B. 个C. 个D. 个3. 多项式的次数及最高次项的系数分别是A. ,B. ,C. ,D. ,4. 在如图所示的年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是星期一星期二星期三星期四星期五星期六星期日A. B. C. D.5. 化简的结果等于A. B. C. D.6. 若,则的值为A. B. C. D.7. 若与是同类项,则的值为A. B. C. D.8. 已知,当时,的值是,当时,的值是A. B. C. D. 无法确定9. 古希腊著名的毕达哥拉斯学派把,,,这样的数称为“三角形数”,而把,,,这样的数称为“正方形数”.从图形可以发现,任何一个大于的“正方形数”,都可以看作两个相邻“三角形数”之和.下列等式中符合这一规律的是A. B. C. D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定的值为A. B. C. D.二、填空题(共6小题;共18分)11. 如果,则.12. 单项式的系数是,次数是.13. 如果是五次多项式,那么.14. 填空:;.15. 若与的和是单项式,则式子的值是.16. 下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是.三、解答题(共6小题;共52分)17. 去括号,并合并同类项:(1);(2).18. 将式子,分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式的值,把它的后两项放在:①前面带有“”号的括号里;②前面带有“”号的括号里.19. 如果关于的多项式不含项和人教版数学七年级上册第二章整式的加减单元测试及答案一、单选题1.下列各式中不是整式的是()A. 3xB.C.D. x-3y2.下列各组单项式中,为同类项的是( )A. a3与a2B. a2与2a2C. 2xy与2xD. -3与a3.a+b=﹣3,c+d=2,则(c﹣b)﹣(a﹣d)的值为()A. 5B. -5C. 1D. -14.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A. ﹣x2+2x+2B. ﹣x2+x+2C. x2﹣x+2D. ﹣x2+x﹣25.下列说法正确的是()A. 0不是单项式B. x没有系数C. ﹣xy5是单项式D. 是多项式6.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A. ①②B. ①③C. ②③D. ①②③7.代数式的4x﹣4﹣(4x﹣5)+2y﹣1+3(y﹣2)值()A. 与x,y都无关B. 只与x有关C. 只与y有关D. 与x,y 都有关8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为()A. (2n+1)2B. (2n-1)2C. (n+2)2D. n29.长方形的一边长等于3x+2y ,另一边长比它长x-y ,这个长方形的周长是()A. 4x+yB. 12x+2yC. 8x+2yD. 14x+6y10.如图,按大拇指,食指,中指,无名指,小指,再无名指,中指……的顺序数数,当数到2018时,对应的手指是()A. 食指B. 中指C. 无名指D. 小指二、填空题11.单项式- x2y的系数是________.12.﹣的系数是a,次数是b,则a+b=________.13.如果(a-5)mn b+2是关于m、n的一个五次单项式,那么a=________,b=________.14.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.15.若|x﹣1|+(y+2)2=0,则(x+y)2017=________.16.计算(9a2b+6ab2)÷3ab=________.17.在计算机程序中,二叉树是一种表示数据结构的方法.如图,﹣层二叉树的结点总数为1;二层二叉树的结点的总数为3;三层二叉树的结点总数为7;四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为________.三、计算题18.计算:(1)(2)19.多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式,求a2+ +a的值.四、解答题20.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)21.七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.22.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.五、综合题23.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:(a)2+4+6+…+100的值;(b)52+54+56+…+200的值.参考答案一、单选题1. B2. B3. A4. D5. C6. A7.C8.A9.D10. A二、填空题11. -12.13.≠5;214.2;615.-116.3a+2b17. 127三、计算题18.解:(1)==(2)===19.解:∵多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式∴(a2-4)=0 ∴a=±2又∵a+2≠0∴a≠-2∴a=2∴a2+ +a=22+ +2=4+ +2=四、解答题20.解:3(2x2﹣y2)﹣2(3y2﹣2x2)=6x2﹣3y2﹣6y2+4x2=(6x2+4x2)+(﹣3y2﹣6y2)=10x2﹣9y2.21.解:∵2A+B=x2+5x﹣6,A=x2+2x﹣1,∴B=(x2+5x﹣6)﹣2(x2+2x﹣1)=x2+5x﹣6﹣2x2﹣4x+2=﹣x2+x﹣4,∴A+2B=x2+2x﹣1+2(﹣x2+x﹣4)=x2+2x﹣1﹣2x2+2x﹣8=﹣x2+4x﹣922.解:原式=a2﹣2ab+2a2﹣2b2﹣a2+2ab﹣b2=2a2﹣3b2,当a=﹣,b=1时,原式=﹣2.5五、综合题23.(1)解:S=n(n+1)(2)解:(a)2+4+6+…+100 =50×51=2550;(b)52+54+56+…+200=(2+4+6+8+...+200)﹣(2+4+6++ (50)=100×101﹣25×26=10100﹣650=9450.。

人教版数学七年级上册第二章整式的加减《单元测试题》含答案

人教版数学七年级上册第二章整式的加减《单元测试题》含答案

D. a+b+c
A. 3 B. 4 C. 6 D. 7 6.一个多项式加上﹣2a+7 等于 3a2+a+1,则这个多项式是( ) A. 3a2﹣a﹣6 B. 3a2+3a+8 C. 3a2+3a﹣6 D. ﹣3a2﹣3a+6 7.如图,两个面积分别为 35,23 的图形叠放在一起,两个阴影部分的面积分别为 a,b(a>b),则 a﹣b 的值为 ()
A. 6 B. 8 C. 9 D. 12 【答案】D 【解析】 【分析】 设重叠部分面积为 c,(a-b)可理解为(a+c)-(b+c),即两个长方形面积的差. 【详解】设重叠部分的面积为 c, 则 a-b=(a+c)-(b+c)=35-23=12, 故选 D. 【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键. 8.如图 1 为 2018 年 5 月份的日历表,某同学任意框出了其中的四个数字,如图 2,若用 m 表示框图中相应位置 的数字,则“?”位置的数字可表示为( )
ቤተ መጻሕፍቲ ባይዱ
15.若关于 x、y 的代数式 mx3﹣3nxy2+2x3﹣xy2+y 中不含三次项,则(m﹣3n)2018=_____.
16.若
,
,则
的值为______________.
三.解答题(共 7 小题)
17.化简:
(1)2a﹣4b﹣3a+6b
(2)(7y﹣5x)﹣2(y+3x)
18.通常用作差法可以比较两个数或者两个式子的大小.
故选 A. 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运 用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符 号.顺序为先大后小. 5.多项式 4xy2﹣3xy+12 的次数为( ) A. 3 B. 4 C. 6 D. 7 【答案】A 【解析】 【分析】 直接利用多项式的次数确定方法是解题关键. 【详解】多项式 4xy2-3xy+12 的次数为,最高此项 4xy2 的次数为:3. 故选 A. 【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键. 6.一个多项式加上﹣2a+7 等于 3a2+a+1,则这个多项式是( ) A. 3a2﹣a﹣6 B. 3a2+3a+8 C. 3a2+3a﹣6 D. ﹣3a2﹣3a+6 【答案】C 【解析】 【分析】 先根据题意列出算式,再去掉括号合并同类项即可. 【详解】根据题意得:这个多项式为(3a2+a+1)-(-2a+7)=3a2+a+1+2a-7=3a2+3a-6, 故选 C. 【点睛】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键. 7.如图,两个面积分别为 35,23 的图形叠放在一起,两个阴影部分的面积分别为 a,b(a>b),则 a﹣b 的值为 ()

七年级数学上册《第二章 整式的加减》单元检测卷带答案-人教版

七年级数学上册《第二章 整式的加减》单元检测卷带答案-人教版

七年级数学上册《第二章整式的加减》单元检测卷带答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.若数m增加它的x%后得到数n,则n等于( )A.m·x%B.m(1+x%)C.m+x%D.m(1+x)%2.单项式-ab2c3的系数和次数分别是 ( )A.-1、5B.-1、6C.1、5D.1、63.多项式1-x3+x2是( )A.二次三项式B.三次三项式C.三次二项式D.五次三项式4.整式x2-3x的值是4,则3x2-9x+8的值是( )A.20B.4C.16D.-45.在下列单项式中,与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x6.下列各式从左到右的变形中,正确的是( )A.a-(b-c)=a-b-cB.7ab+6ab=13a2b2C.32a2b-12a2b=a2b D.3a2b+4b2a=7a2b7.在等式1﹣a2+2ab﹣b2=1﹣( )中,括号里应填( )A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b28.化简5(2x﹣3)+4(3﹣2x)结果为( )A.2x﹣3B.2x+9C.8x﹣3D.18x﹣39.已知-4x a y+x2y b=-3x2y,则a+b的值为( )A.1B.2C.3D.410.下列各组代数式中,互为相反数的有()①a-b与-a-b;②a+b与-a-b;③a+1与1-a;④-a+b 与a-b.A.①②④B.②④C.①③D.③④11.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A.甲B.乙C.丙D.一样12.下列图形都是由同样大小的长方形按一定的规律组成的,其中第①个图形的面积为2cm2,第②个图形的面积为8cm2,第③个图形的面积为18cm2……则第⑩个图形的面积为( )A.196cm2B.200cm2C.216cm2D.256cm2二、填空题13.﹣2xy2的次数为 .14.若代数式-4x6y与x2n y是同类项,则常数n的值为_______.15.已知2a﹣3b2=5,则10﹣2a+3b2的值是 .16.多项式xy2﹣9xy+5x2y﹣25的二次项系数是 .17.{-[-(a+b)])-{-[-(a-b)])去掉括号得_______.18.下图是某同学一次旅游时在沙滩上用石子摆成的小房子.观察图形的变化规律,写出第n个小房子用了块石子.三、解答题19.化简:2(3a2+4b)+3(﹣6a2﹣5b)20.化简:2(m2+2n2)﹣3(3m2﹣n2)21.化简:(8xy﹣x2+y2)﹣3(﹣x2+y2+5xy)22.化简:﹣3(2x2﹣xy)+4(x2+xy﹣6).23.如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆.(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少?(π取3.14)24.阅读下面例题的解题过程,再解答后面的题目.例题:已知代数式9﹣6y﹣4y2=7,求2y2+3y+7的值.解:由9﹣6y﹣4y2=7得﹣6y﹣4y2=7﹣9即6y+4y2=2因此2y2+3y=1,所以2y2+3y+7=8.问题:已知代数式14x﹣21x2=﹣14,求9x2﹣6x﹣5的值.25.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.26.小明做一道数学题:“已知两个多项式A,B,A=……,B=x2+3x﹣2,计算2A+B 的值.”小明误把“2A+B”看成“A+2B”,求得的结果为5x2﹣2x+3,请求出2A+B的正确结果.27.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):①买一套西装送一条领带;②西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x套西装,y条领带(y>x).(1)该客户选择两种不同的方案所需总费用分别是多少元?(用含x、y的式子表示并化简)(2)若该客户需要购买10套西装,22条领带,则他选择哪种方案更划算?(3)若该客户需要购买15套西装,40条领带,则他选择哪种方案更划算?答案1.B.2.B3.B.4.A5.C6.C7.A8.A9.C10.B11.C12.B13.答案为:314.答案为:315.答案为:5.16.答案为:﹣917.答案为:2b18.答案为:(n2+4n).19.解:原式=6a2+8b﹣18a2﹣15b=﹣12a2﹣7b.20.解:原式=2m2+4n2﹣9m2+3n2=7n2﹣7m2.21.解:原式=8xy﹣x2+y2+3x2﹣3y2﹣15xy=2x2﹣2y2﹣7xy.22.解:﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣24.23.解:(1)长方形的面积为:a×2b=2ab两个半圆的面积为:π×b2=πb2∴阴影部分面积为:2ab﹣πb2(2)当a=4,b=1时∴2ab﹣πb2=2×4×1﹣3.14×1=4.8624.解:由14x﹣21x2=﹣14得到21x2﹣14x=14即3x2﹣2x=2则原式=3(3x2﹣2x)﹣5=6﹣5=1.25.解:根据数轴上点的位置得:c<b<0<a,且|a|<|b|<|c|∴b﹣c>0,a﹣b>0,a+c<0则原式=b﹣a﹣a+b﹣a﹣c=2b﹣3a﹣c.26.解:由题意,得A=(5x2﹣2x+3)﹣2(x2+3x﹣2)=5x2﹣2x+3﹣2x2﹣6x+4=3x2﹣8x+7.所以2A+B=2(3x2﹣8x+7)+(x2+3x﹣2)=6x2﹣16x+14+x2+3x﹣2=7x2﹣13x+12.27.解:(1)按方案①购买,需付款:200x+(y﹣x)×40=(40y+160x)元;该客户按方案②购买,需付款:200x•90%+40y•80%=(180x+32y)(元);(2)当x=10,y=22时,按方案①购买,需付款:40×22+160×10=2480(元);该客户按方案②购买,需付款:180×10+32×22=2504(元);∵2480<2504∴按方案①更划算;(3)当x=15,y=40时,按方案①购买,需付款:40×40+160×15=4000(元);该客户按方案②购买,需付款:180×15+32×40=3980(元);∵4000>3980∴按方案②更划算.。

【人教版】数学七年级上册第二章整式的加减《单元测试题》含答案

【人教版】数学七年级上册第二章整式的加减《单元测试题》含答案

第二章整式的加减综合测试一、选择题(本大题共10小题,每小题3分,共30分)1.用式子表示a 与5的差的2倍,下列正确的是( ) A. a-(-5)×2 B. a+(-5)×2 C. 2(a-5)D. 2(a+5)2.计算a +(-a )的结果是 ( ) A. 2aB. 0C. -a 2D. -2a3.下面说法正确的是( ) A.213x π的系数是13B.212xy 的系数是12x C. ﹣5x 2的系数是5D. 3x 2的系数是34.下列运算中,正确的是( ). A. 325a b ab +=B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=5.下列各组中,不是同类项的是( ) A. 5225与B. ab ba -与C. 2210.25a b a b -与 D. 2332a b a b -与6.在式子0,-3x ,n-m ,3x ,-1,t 2,a2中,单项式的个数是p ,多项式的个数是q ,则p+q 的值为( ) A. 6B. 5C. 4D. 37.若m=-1,则整式m 2-2m-1的值是( ) A 4B. 2C. -1D. -48.按某种标准把多项式进行分类时,3x 3﹣4和a 2b +ab 2+1属于同一类,则下列哪一个多项式也属于此类( ) A. abc ﹣1B. x 2﹣2C. 3x 2+2xy 4D. m 2+2mn +n 29.某种商品进价为a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为( ) A. a 元B. 0.8a 元C. 0.92a 元D. 1.04a 元10.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a+b|-|c-b|的结果是( )A -2c B. 2a+2b C. -2a-2c D. 2a-b二、填空题(本大题共6小题,每小题3分,共18分)11.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式. 12.若单项式3a 5b m+1与-2a n b 2是同类项,则m-n=__________. 13.若2x ﹣3y ﹣1=0,则5﹣4x+6y 的值为 .14.若多项式3x 2+kx-2x+1(k 为常数)中不含有x 的一次项,则k=__________.15.小明在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个一次二项式,如图所示,所捂的一次二项式为___________.16.在图所示的运算流程中,若输出的数y=3,则输入的数x=______.三、解答题(本大题共6小题,共52分)17.先简化,再求值:(4a 2﹣3a)﹣(2a+a ﹣1)+(2﹣a 2﹣4a),其中a =﹣2. 18.计算: (1)-4a -(12a -2); (2)3(2x 2-y 2)-2(3y 2-2x 2). 19.2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同()1求m ,n 的值()2求多项式的常数项以及各项的系数和.20.小黄做一道题:“已知两个多项式A ,B ,计算A -B ”.小黄误将A -B 看作A +B ,求得结果是2927x x -+.若B =232+-x x ,请你帮助小黄求出A -B 的正确答案.21.如图所示,某长方形广场四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米.(1)请列式表示广场空地面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).22.已知图所示的计算程序.根据计算程序回答下列问题:(1)填写表内空格:输入x 3 2 -2 13…输出答案0 …(2)你发现的规律是.(3)用简要过程说明你发现的规律的正确性.附加题(共20分,不计入总分)23.如果x-2y=3,m+2n=2,则(x+m)-2(y-n)的值是_________.24.一般情况下a2323b a b++=+不成立,但有些数可以使得它成立,例如a=b=0.我们称使得a2323b a b++=+成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)若(m,n)是“相伴数对”,求整式26m+4n-2(4m-2n)+5的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.用式子表示a 与5的差的2倍,下列正确的是( ) A. a-(-5)×2 B. a+(-5)×2 C. 2(a-5) D. 2(a+5)【答案】C 【解析】 【分析】根据题目中语句可以用代数式表示出来,本题得以解决. 【详解】a 与5的差的2倍可以表示为:2(a−5), 故选C.【点睛】本题考查的是列代数式,熟练掌握这一点是解题的关键. 2.计算a +(-a )的结果是 ( ) A. 2a B. 0C. -a 2D. -2a【答案】B 【解析】 【分析】根据加一个负数等于减去这个数进行计算即可. 【详解】a +(-a )=a -a =0 故选B.【点睛】本题考查的是整式计算方法,熟练掌握这一点是解题的关键. 3.下面说法正确的是( ) A.213x π的系数是13B.212xy 的系数是12x C. ﹣5x 2的系数是5 D. 3x 2的系数是3【答案】D 【解析】 【详解】A .13π2x 的系数是13π,错误 B .122xy 系数为12错误C .-52x 的系数是-5,错误D .32x 的系数是3,正确,故选D. 4.下列运算中,正确的是( ). A. 325a b ab += B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=【答案】C 【解析】试题分析:3a 和2b 不是同类项,不能合并,A 错误;32a 和23a 不是同类项,不能合并,B 错误;22330a b ba -=,C 正确;22254a a a -=,D 错误,故选C .考点:合并同类项.【此处有视频,请去附件查看】5.下列各组中,不是同类项的是( ) A. 5225与 B. ab ba -与C. 2210.25a b a b -与 D. 2332a b a b -与【答案】D 【解析】:根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断. 试题解析:A .B .C .是同类项;D .所含字母相同,但相同字母的质数不同,不是同类项. 故选D . 考点:同类项.【此处有视频,请去附件查看】6.在式子0,-3x ,n-m ,3x ,-1,t 2,a2中,单项式的个数是p ,多项式的个数是q ,则p+q 的值为( ) A. 6 B. 5C. 4D. 3【答案】A 【解析】试题分析:在这些代数式中,单项式有0,﹣3x ,﹣1,2t ,2a共五个,所以p=5,多项式有n ﹣m 共一个,所以q=1,所以p+q=5+1=6,故选A.考点:1.多项式;2.单项式.7.若m=-1,则整式m2-2m-1的值是()A. 4B. 2C. -1D. -4【答案】B【解析】【分析】把m=-1代入代数式m2-2m-1,即可得到结论.【详解】m2-2m-1=(-1)2-2(-1)-1=2;故选B.【点睛】本题考查的是代数式的求值,熟练掌握方法是解题的关键.8.按某种标准把多项式进行分类时,3x3﹣4和a2b+ab2+1属于同一类,则下列哪一个多项式也属于此类()A. abc﹣1B. x2﹣2C. 3x2+2xy4D. m2+2mn+n2【答案】A【解析】从多项式的次数考虑求解.解:3x3﹣4和a2b+ab2+1属于同一类,都是3次多项式,A、abc﹣1是3次多项式,故本选项正确;B、x2﹣2是2次多项式,故本选项错误;C、3x2+2xy4是5次多项式,故本选项错误;D、m2+2mn+n2是2次多项式,故本选项错误.故选A.9.某种商品进价为a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为()A. a元B. 0.8a元C. 0.92a元D. 1.04a元【答案】D【解析】【分析】先算出提价后的售价,再算打折后的售价.【详解】价格提升30%后,售价为1.3a,后又打八折销售,故售价变为0.8 1.3a=1.04a,所以选D选项. 【点睛】正确理解题意是解题的关键.10.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a+b|-|c-b|的结果是()A. -2cB. 2a+2bC. -2a-2cD. 2a-b【答案】B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a+b<0,c-b>0,∴原式=a+c+a+b-c+b=2a+2b.故选B.【点睛】本题考查的是数轴和绝对值的综合运用,熟练掌握这两点是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.多项式2x3-x2y2-3xy+x-1是__________次_________项式.【答案】(1). 四(2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x3﹣x2y2﹣3xy+x﹣1是四次五项式.故答案为四,五.12.若单项式3a5b m+1与-2a n b2是同类项,则m-n=__________.【答案】-4【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数相同即可得出答案.【详解】∵单项式3a5b m+1与-2a n b2是同类项;∴n=5,m+1=2,∴n=5,m=1;∴m-n=-4.【点睛】本题考查的是同类项定义,熟练掌握这一点是解题的关键.13.若2x﹣3y﹣1=0,则5﹣4x+6y的值为.【答案】3.【解析】试题分析:由2x﹣3y﹣1=0可得2x﹣3y=1,所以5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.考点:代数式求值.14.若多项式3x2+kx-2x+1(k为常数)中不含有x的一次项,则k=__________.【答案】2【解析】【分析】不含x这一项,利用x的系数为0求解.【详解】∵多项式3x2+kx−2x+1中不含有x的一次项,∴k−2=0,即k=2.故答案为2.【点睛】本题考查的是多项式,熟练掌握多项式是解题的关键.15.小明在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个一次二项式,如图所示,所捂的一次二项式为___________.【答案】-m+2【解析】【分析】根据整式减法的运算方法,用m2-2m减去m2-m-2,求出所捂的一次二项式即可.【详解】所捂的一次二项式与m2−m−2的和是m2−2m,(m2−2m)−(m2−m−2)=m2−2m−m2+m+2=2−m∴所捂的一次二项式为2−m.故答案为2−m.【点睛】本题考查的是整式的加减,熟练掌握这一点是解题的关键. 16.在图所示的运算流程中,若输出的数y=3,则输入的数x=______.【答案】5或6 【解析】试题解析:根据所给的图可知,若x 为偶数,则x=2y ,若x 不是偶数,则x=2y-1, 故:当x 是偶数时,有x=2×3=6, 当x 是奇数时,有x=2×3-1=5. 三、解答题(本大题共6小题,共52分)17.先简化,再求值:(4a 2﹣3a)﹣(2a+a ﹣1)+(2﹣a 2﹣4a),其中a =﹣2. 【答案】3a 2﹣10a+3;35. 【解析】 【分析】先去括号,然后合并同类项,最后把数值代入进行计算即可. 【详解】原式=4a 2﹣3a ﹣2a ﹣a+1+2﹣a 2﹣4a , =3a 2﹣10a+3,当a =﹣2时,原式=3×(﹣2)2﹣10×(﹣2)+3 =3×4+20+3, =35.【点睛】本题考查了整式的加减——化简求值,熟练掌握去括号法则及合并同类项法则是解题的关键. 18.计算:(1)-4a -(12a -2); (2)3(2x 2-y 2)-2(3y 2-2x 2). 【答案】(1)-92a +2;(2)10x 2-9y 2.【解析】【分析】(1)先去括号,进行加减运算; (2)先去括号,再合并同类项. 【详解】(1)原式=-4a -12a +2= -92a +2; (2)原式=6x 2-3y 2-6y 2+4x 2=10x 2-9y 2【点睛】本题考查的是整式的加减,熟练掌握方法是解题的关键. 19.2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同()1求m ,n 的值()2求多项式的常数项以及各项的系数和.【答案】(1)3m =,2n =;(2)系数和为:513613-+--=- 【解析】 【分析】根据多项式的概念即可求出n 与m 的值,然后根据多项式即可判断常数项与各项系数. 【详解】解:()1由题意可知:该多项式时六次多项式, ∴216m ++=, ∴3m =, ∵253nmx y-的次数也是六次,∴256n m +-=, ∴2n =∴3m =,()22n =该多项式为:2423536x y xy x -+--常数项6-,各项系数为:5-,1,3-,6-, 故系数和为:513613-+--=-【点睛】本题考查了多项式与单项式,解题的关键是熟练的掌握多项式与单项式的定义.20.小黄做一道题:“已知两个多项式A ,B ,计算A -B ”.小黄误将A -B 看作A +B ,求得结果是2927x x -+.若B =232+-x x ,请你帮助小黄求出A -B 的正确答案.【答案】A -B =7x 2-8x +11.【解析】【分析】先根据题意求出A,再计算A-B 即可.【详解】解:由题意,得:A =(A +B )-B=(2927x x -+)-(x 2+3x-2)=9x 2-2x +7-x 2-3x +2=8x 2-5x +9∴A -B =(8x 2-5x +9)-(232x x +-)=8x 2-5x +9-x 2-3x +2=7x 2-8x +11【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.21.如图所示,某长方形广场的四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米.(1)请列式表示广场空地的面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).【答案】(1)ab -πr 2;(2)60 000-100π.【解析】【分析】(1)草地面积=144⨯圆形面积;空地的面积=长方形面积-草地面积; (2)把a =300米,b =200米,圆形的半径=10米代入(1)中式子即可.【详解】(1)广场空地的面积(单位:平方米)为:ab -πr 2;(2)当a=300,b=200,r=10时,ab -πr 2=300×200-π×102=60 000-100π.所以广场空地的面积(单位:平方米)为:60 000-100π.【点睛】本题考查的是列代数式和代数式求值,熟练掌握这两点是解题的关键.22.已知图所示计算程序.根据计算程序回答下列问题:(1)填写表内空格:输入x 3 2 -2 13…输出答案0 …(2)你发现的规律是.(3)用简要过程说明你发现的规律的正确性.【答案】(1)从左到右依次填0,0,0;(2)输入任何数的结果都为0;(3)详见解析.【解析】【分析】(1)根据题目提供的运算程序,把已知数据代入进行运算,进而将所得的结果填入表格即可;(2)接下来观察表格中数据特征总结出规律;(3)根据程序可写出关于x的方程式,此方程式的值为0,所以无论x取任何值,结果都为0. 【详解】(1)从左到右依次填0,0,0.(2)输入任何数的结果都为0(3)2x2x-12x2-12x=12x2+12x-12x2-12x=0.所以无论x取任何值,结果都为0,即结果与字母x的取值无关.【点睛】本题考查的是整式的混合运算和规律的总结,熟练掌握这两点是解题的关键. 附加题(共20分,不计入总分)23.如果x-2y=3,m+2n=2,则(x+m)-2(y-n)的值是_________.【答案】5【解析】【分析】原式去括号变形后,将已知等式代入计算即可求出值.【详解】∵x-2y=3,m+2n=2,∴(x+m)-2(y-n)=x+m-2y+n=x-2y+ m+2n=5.【点睛】本题考查的整式的加减,熟练掌握这一点是解题的关键.24.一般情况下a2323b a b++=+不成立,但有些数可以使得它成立,例如a=b=0.我们称使得a2323b a b++=+成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)若(m,n)是“相伴数对”,求整式26m+4n-2(4m-2n)+5的值.【答案】(1)b=-94;(2)5.【解析】【分析】(1)结合题中所给的定义将(1,b)代入式子求解即可;(2)将(m,n)代入a2323b a b++=+,然后对代数式进行化简求解即可.【详解】(1)将a=1,代入a2323b a b++=+中,得112323b b++=+,化简求得b=-94.(2)将a=m,b=n,代入a2323b a b++=+中,得9m+4n=0.26m+4n-2(4m-2n)+5=26m+4n-8m+4n+5=18m+8n+5=2(9m+4n)+5=0+5=5. 【点睛】本题考查的是整式的加减,熟练掌握这一点是解题的关键.。

人教版数学七年级上册第二章整式的加减《单元综合测试卷》附答案

人教版数学七年级上册第二章整式的加减《单元综合测试卷》附答案

人教版数学七年级上学期第二章整式的加减测试第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1. 下列式子中,不是整式的是( )A. B. +b C. D. 4y2. 关于单项式-xy3z2,下列说法正确的是( )A. 系数是1,次数是5B. 系数是-1,次数是6C. 系数是1,次数是6D. 系数是-1,次数是53. 多项式a3-4a2b2+3ab-1的项数与次数分别是( )A. 3和4B. 4和4C. 3和3D. 4和34. 已知-6a9b4和5a4n b4是同类项,则12n-10的值是( )A. 17B. 37C. -17D. 985. 用式子表示“x的2倍与y的和的平方”是( )A. (2x+y)2B. 2x+y2C. 2x2+y2D. x(2+y)26. 整式x2-3x的值是4,则3x2-9x+8的值是( )A. 20B. 4C. 16D. -47. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-48. 某教学楼阶梯教室,第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排的座位数是( )A. m+4B. m+4nC. n+4(m-1)D. m+4(n-1)9. 已知A=3a2+b2-c2,B=-2a2-b2+3c2,且A+B+C=0,则C=( )A. a2+2c2B. -a2-2c2C. 5a2+2b-4c2D. -5a2-2b2+4c210. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为( )A. 4B. 5C. 6D. 7第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11. 已知-mx n y是关于x,y的一个单项式且系数为3,次数为4,则m n=________.12. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=________.13. 把a-b看作一个整体,合并同类项:3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=________.14. 已知一列数2,8,26,80,…,按此规律,则第n(n为正整数)个数是________.(用含n的式子表示)15. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a的式子可表示为________.16. 若|a+1|+(b-)2=0,则5a2+3b2+2(a2-b2)-(5a2-3b2)的值为________.三、解答题(共52分)17. 已知12a2b2x,8a3xy,4m2nx2,60xyz3.(1)观察上述式子,请写出这四个式子都具有的两个特征;(2)请写出一个新的式子,使该式同时具有你在(1)中所写出的两个共同特征.18. 去掉下列各式中的括号:(1)8m-(3n+5);(2)n-4(3-2m);(3)2(a-2b)-3(2m-n).19. 已知关于x,y的多项式x4+(m+2)x n y-xy2+3,其中n为正整数.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?20. 有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1.”甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.21. 已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-时,求3A-2B+2的值.22. 一个四边形的周长是48 cm,已知第一条边长是a cm,第二条边比第一条边的2倍还长3 cm,第三条边长等于第一、第二两条边长的和.(1)用含a的式子表示第四条边长;(2)当a=7时,还能得到四边形吗?并说明理由.23. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠”;乙旅行社说:“所有人按全票价的六折优惠”.已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子表示甲、乙旅行社的收费;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.24. 全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务.某地区沙漠原有面积是100万平方千米,为了解该地区沙漠面积的变化情况,进行了连续3年的观察,并将每年年底的观察结果记录如下表:观察时间该地区沙漠面积(万平方千米)第一年年底100.2第二年年底100.4第三年年底100.6预计该地区沙漠的面积将继续按此趋势扩大.(1)如果不采取措施,那么到第m年年底,该地区沙漠面积将变为多少万平方千米?(2)如果第5年后采取措施,每年改造0.8万平方千米沙漠(沙漠面积的扩大趋势不变),那么到第n年(n>5)年年底该地区沙漠的面积为多少万平方千米?(3)在(2)的条件下,第90年年底,该地区沙漠面积占原有沙漠面积的多少?答案与解析第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1. 下列式子中,不是整式的是( )A. B. +b C. D. 4y【答案】C【解析】【分析】根据整式、单项式、多项式的概念进行解答即可.【详解】解:A.是多项式,是整式;B.是多项式,是整式;C.分母中含有字母,不是整式;D.是单项式,是整式.【点睛】本题考查了整式的概念,整式包含单项式和多项式,对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“-”将单项式连起来的就是多项式,不含“+”或“-”的整式绝对不是多项式,而单项式注重一个“积”字.2. 关于单项式-xy3z2,下列说法正确的是( )A. 系数是1,次数是5B. 系数是-1,次数是6C. 系数是1,次数是6D. 系数是-1,次数是5【答案】B【解析】【分析】根据单项式的系数、次数的概念进行解答即可.【详解】解:单项式-xy3z2=(-1)·xy3z2,系数为-1,次数为1+3+2=6.故选:B.【点睛】本题考查了单项式系数、次数的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或-a这样的式子的系数是1或-1,不能误以为没有系数,单项式的次数仅与单项式中字母的指数有关,而与系数中的指数无关.3. 多项式a3-4a2b2+3ab-1的项数与次数分别是( )A. 3和4B. 4和4C. 3和3D. 4和3【答案】B【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】解:多项式a3-4a2b2+3ab-1的项有:a3、-4a2b2、3ab、-1,共4项,所以项数为4;每一项的次数分别为:3、4、2、0,所以多项式的次数为4.故选:B.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.4. 已知-6a9b4和5a4n b4是同类项,则12n-10的值是( )A. 17B. 37C. -17D. 98【答案】A【解析】试题分析:已知-6a9b4和5a4n b4是同类项,根据同类项的定义可得4n=9,解得n=,则12n-10=12×-10=17.故答案选A.考点:同类项的定义.5. 用式子表示“x的2倍与y的和的平方”是( )A. (2x+y)2B. 2x+y2C. 2x2+y2D. x(2+y)2【答案】A【解析】【分析】x的2倍即为2x,与y的和表示为(2x+y),然后再将此和进行平方即可.【详解】用式子表示“x的2倍与y的和的平方”是(2x+y)2.故选:A.【点睛】本题考查了列代数式,列代数式应注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方和”与“和的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数.6. 整式x2-3x的值是4,则3x2-9x+8的值是( )A. 20B. 4C. 16D. -4【答案】A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x2-3x=4,所以3x2-9x=12,所以3x2-9x+8=12+8=20.故选:A.【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.7. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选:C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.8. 某教学楼阶梯教室,第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排的座位数是( )A. m+4B. m+4nC. n+4(m-1)D. m+4(n-1)【答案】D【解析】试题解析:由于第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排座位数为:m+4(n-1).故选D.9. 已知A=3a2+b2-c2,B=-2a2-b2+3c2,且A+B+C=0,则C=( )A. a2+2c2B. -a2-2c2C. 5a2+2b-4c2D. -5a2-2b2+4c2【答案】B【解析】【分析】由A+B+C=0知,C=-(A+B),然后把A,B的值代入即可.【详解】解:∵A+B+C=0,∴C=-(A+B)=-(3a2+b2-c2-2a2-b2+3c2)=-(a2+2c2)=-a2-2c2,故选:B.【点睛】本题考查了整式的加减,主要是去括号法则的运用.注意表示整式加减时,整式上应先添加括号.10. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为( )A. 4B. 5C. 6D. 7【答案】D【解析】【分析】直接利用已知图形得出b-a=b+空白面积-(a+空白面积)=大正六边形面积-小正六边形面积,进而得出答案.【详解】解:∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),∴b-a=b+空白面积-(a+空白面积)=大正六边形面积-小正六边形面积=16-9=7.故选:D.【点睛】此题主要考查了整式的加减运算,结合图形得出b-a与两个六边形的面积之间的关系是解决此题的关键.第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11. 已知-mx n y是关于x,y的一个单项式且系数为3,次数为4,则m n=________.【答案】-27【解析】试题解析:由题意可得:解得:故故答案为:12. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=________.【答案】1【解析】【分析】把a看成是常数,合并同类项,然后令x2项的系数为0即可求出a的值.【详解】解:4xy3-2ax2-3xy+2x2-1=4xy3+(2-2a)x2-3xy-1,因为多项式不含x2项,所以2-2a=0,解得:a=1.故答案为:1.【点睛】此题主要考查了多项式,关键是掌握合并同类项法则.即系数相加作为系数,字母和字母的指数不变.在多项式中不含某一项,即合并同类项后令这一项的系数为0.13. 把a-b看作一个整体,合并同类项:3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=________.【答案】a-b【解析】【分析】把(a-b)看作是一个字母,利用合并同类项的法则进行合并即可.【详解】解:原式=(3-2)(a-b)+(4-3-1)(a-b)2=1(a-b)= a-b.故答案为:a-b.【点睛】本题主要考查了合并同类项的法则,系数相加作为系数,字母和字母的指数不变.也考查了整体思想的应用.14. 已知一列数2,8,26,80,…,按此规律,则第n(n为正整数)个数是________.(用含n的式子表示)【答案】3n-1【解析】【分析】2,8,26,80都加1正好是3的幂的形式,据此即可发现规律.【详解】解:第1个数:2=31-1,第2个数:8=32-1,第3个数:26=33-1,第4个数:80=34-1,……第n个数:3n-1.故答案为:3n-1.【点睛】此题考查了数字的变化规律,找出数字之间的运算规律,利用规律解决问题是解答此题的关键.15. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a的式子可表示为________.【答案】15-a【解析】【分析】因为分成固定的a组,若每组5人,就有9名同学多出来,则一共有人数为(5a+9)人,如果每组6人,则最后一组的人数可以表示为:总人数-前(a-1)组的人数.【详解】解:若每组5人,就有9名同学多出来,则总人数为(5a+9),每组6人,最后一组的人数不满,则前(a-1)组的人数为6(a-1),所以最后一组的人数为:(5a+9)-6(a-1)= 5a+9-6a+6=15-a.故答案为:15-a.【点睛】本题考查了列代数式和整式的加减,根据题目中的数量关系正确的列出代数式是解决此题的关键.16. 若|a+1|+(b-)2=0,则5a2+3b2+2(a2-b2)-(5a2-3b2)的值为________.【答案】3【解析】【分析】利用非负数的性质求出a与b的值,原式去括号合并得到最简结果,代入计算即可求出值.【详解】解:∵|a+1|+(b-)=0,∴a+1=0,b-=0,即a=-1,b=,原式=5a2+3b2+2a2-2b2-5a2+3b2=2a2+4b2=2×(-1)2+4×()2=2+1=3.故答案为:3【点睛】此题考查了整式的加减-化简求值和非负数性质的应用,熟练掌握运算法则和根据非负数的性质求出a、b的值是解本题的关键.三、解答题(共52分)17. 已知12a2b2x,8a3xy,4m2nx2,60xyz3.(1)观察上述式子,请写出这四个式子都具有的两个特征;(2)请写出一个新的式子,使该式同时具有你在(1)中所写出的两个共同特征.【答案】见解析【解析】【分析】(1)根据式子的类型以及式子的次数即可写出,答案不唯一;(2)根据(1)写出的式子的特点,即可写出.【详解】本题答案不唯一.如:(1)①都是单项式;②次数都是5.(2)14ab2c2.【点睛】本题考查了代数式的定义,以及单项式的次数的定义,理解定义是关键.18. 去掉下列各式中的括号:(1)8m-(3n+5);(2)n-4(3-2m);(3)2(a-2b)-3(2m-n).【答案】(1) 8m-3n-5(2) n-12+8m(3) 2a-4b-6m+3n【解析】【分析】利用去括号法则确定各项的符号,利用乘法的分配率确定各项的绝对值即可.【详解】解:(1)8m-(3n+5)=8m-3n-5.(2)n-4(3-2m)=n-(12-8m)=n-12+8m.(3)2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【点睛】本题考查了去括号,去括号时,当括号前面为“-”时常出现错误,常常是括号内前面的项符号改变了,后面就忘记了,如:-4(3-2m)=-12-8m,应引起特别注意.19. 已知关于x,y的多项式x4+(m+2)x n y-xy2+3,其中n为正整数.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?【答案】(1) n=4,m≠-2(2) m=-2,n为任意正整数.【解析】【分析】(1)根据多项式是五次四项式可知n+1=5,m+2≠0,从而可求得m、n的取值;(2)根据多项式是四次三项式可知:m+2=0,n为任意实数.【详解】解:(1)因为多项式是五次四项式,所以n+1=5,m+2≠0,所以n=4,m≠-2.(2)因为多项式是四次三项式,所以m+2=0,n为任意正整数,所以m=-2,n为任意正整数.【点睛】本题主要考查的是多项式的定义,掌握多项式的定义是解题的关键.20. 有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1.”甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.【答案】2【解析】【分析】原式去括号合并得到结果,即可作出判断.【详解】解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.因为化简后的结果中不含x,所以原式的值与x的取值无关.当x=,y=-1时,原式=-2×(-1)3=2.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21. 已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-时,求3A-2B+2的值.【答案】(1)6a2+7(2)-2【解析】试题分析:(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把a=-代入上式计算.试题解析:解:(1)3A﹣2B+2,=3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当a=-时,3A﹣2B+2=6×(-)2+7×(-)=-2.考点:整式的加减—化简求值;整式的加减22. 一个四边形的周长是48 cm,已知第一条边长是a cm,第二条边比第一条边的2倍还长3 cm,第三条边长等于第一、第二两条边长的和.(1)用含a的式子表示第四条边长;(2)当a=7时,还能得到四边形吗?并说明理由.【答案】(1) (42-6a)cm(2)不能【解析】分析:(1)由第二、三边与第一边的关系,分别表示出第二、三边,用周长-第一边-第二边-第三边表示出第四边即可;(2)不能构成四边形,理由为:将a的值代入(1)表示出的第四边,得到其值为0,故不能构成四边形.解答:解:(1)由周长为48cm,第一边为acm,根据题意列得:第二边长为(2a+3)cm,第三边为a+(2a+3)=(3a+3)cm,则第四边长为48-[a+(2a+3)+(3a+3)]=48-(a+2a+3+3a+3)=48-(6a+6)=48-6a-6=(42-6a)cm;(2)不能构成四边形,理由为:当a=7cm时,第四边为42-6×7=0,不能构成四边形。

人教版数学七年级上册第二章整式的加减《单元测试》(含答案)

人教版数学七年级上册第二章整式的加减《单元测试》(含答案)

人教版七年级上册整式的加减测试卷第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是( )A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是52.下列各组单项式中,是同类项的是( )A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有( )A. 2个B. 3个C. 4个D. 5个4.化简a﹣(b﹣c)正确的是( )A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c5.多项式4xy2﹣3xy+12的次数为( )A. 3B. 4C. 6D. 76.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是( )A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+67.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为( )A. 6B. 8C. 9D. 128.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为( )A. m+1B. m+5C. m+6D. m+79.下列各项去括号正确的是( )A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+410.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是( )A. 2B. 3C. 4D. 5二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.12.单项式﹣π2x2y的系数是_____,次数是_____.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.16.若,,则的值为______________.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y任意取值代入时,结果总是同一个定值,为什么?20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?答案与解析第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是( )A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是5【答案】C【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】A、单项式3πx2y3的系数是3π,故此选项错误;B、单项式-6x2y的系数是-6,故此选项错误;C、单项式-xy2的次数是3,正确;D、单项式x3y2z的次数是6,故此选项错误;故选C.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.2.下列各组单项式中,是同类项的是( )A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、与-x2y,是同类项,符合题意;B、2a2b与2ab2,不是同类项,不合题意;C、a与1,不是同类项,不合题意;D、2xy与2xyz,不是同类项,不合题意;故选A.【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】直接利用多项式的定义分析得出答案.【详解】ab,,ab2+b+1,-9,x3+x2-3中,多项式有:,ab2+b+1,x3+x2-3共3个.故选B.【点睛】此题主要考查了多项式,正确把握多项式定义是解题关键.4.化简a﹣(b﹣c)正确的是( )A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c【答案】A【解析】【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】a-(b-c)=a-b+c.故选A.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.5.多项式4xy2﹣3xy+12的次数为( )A. 3B. 4C. 6D. 7【答案】A【解析】【分析】直接利用多项式的次数确定方法是解题关键.【详解】多项式4xy2-3xy+12的次数为,最高此项4xy2的次数为:3.故选A.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.6.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是( )A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+6【答案】C【解析】【分析】先根据题意列出算式,再去掉括号合并同类项即可.【详解】根据题意得:这个多项式为(3a2+a+1)-(-2a+7)=3a2+a+1+2a-7=3a2+3a-6,故选C.【点睛】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键.7.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为( )A. 6B. 8C. 9D. 12【答案】D【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个长方形面积的差.【详解】设重叠部分的面积为c,则a-b=(a+c)-(b+c)=35-23=12,故选D.【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.8.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为( )A. m+1B. m+5C. m+6D. m+7【答案】C【解析】【分析】由日历中数字可得答案.【详解】由于在日历中一行为七天,所以m正下面一个数为m+7,所以?为m+7-1m+6,所以答案选择C项.【点睛】本题考查了用已知数表示未知数,了解一行为七天是解决本题的关键.9.下列各项去括号正确的是( )A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【答案】B【解析】【分析】根据去括号法则逐个判断即可.【详解】A、-3(m+n)-mn=-3m-3n-mn,错误,故本选项不符合题意;B、-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2,正确,故本选项符合题意;C、ab-5(-a+3)=ab+5a-15,错误,故本选项不符合题意;D、x2-2(2x-y+2)=x2-4x+2y-4,错误,故本选项不符合题意;故选B.【点睛】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.10.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是( )A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x3y2m与-3x n y2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.【答案】四【解析】【分析】直接利用多项式的次数确定方法分析得出答案.【详解】-3xy-x3+xy3是四次多项式.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.12.单项式﹣π2x2y的系数是_____,次数是_____.【答案】(1). ﹣π2(2). 3【解析】【分析】由于单项式中数字因数叫做单项式的系数,所有字母的指数和是单项式的次数,由此即可求解.【详解】由单项式的系数及其次数的定义可知,单项式﹣π2x2y的系数是﹣π2,次数是3.故答案为:﹣π2,3.【点睛】此题主要考查了单项式的系数及其次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x2y2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x2y2,故答案为:x2y2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.【答案】3【解析】【分析】根据同类项的定义直接可得到m、n的值.【详解】因为两个单项式-3x m y2与-xy n的和仍然是单项式,所以m=1,n=2,所以这个和的次数是1+2=3,【点睛】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.【答案】1【解析】【分析】不含三次项,则三次项的系数为0,从而可得出m和n的值,代入即可得出答案.【详解】∵代数式mx3-3nxy2+2x3-xy2+y中不含三次项,∴m=-2,-3n=1,解得:m=-2,n=-,∴(m-3n)2018=1.故答案为:1.【点睛】此题考查了多项式的知识,要求我们掌握多项式的次数、系数指的是哪一部分,难度一般.16.若,,则的值为______________.【答案】【解析】试题解析:m2+mn=-5①,n2-3mn=10②,①-②得:m2+mn-n2+3mn=m2+4mn-n2=-5-10=-15.故答案为:-15.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)【答案】(1)﹣a+2b;(2)﹣11x+5y.【解析】【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【详解】(1)原式=﹣a+2b;(2)原式=7y﹣5x﹣2y﹣6x=﹣11x+5y.【点睛】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.【答案】(1)>;=;<;(2)A<B.【解析】【分析】(1)根据题意,利用整式的加减法法则判断即可;(2)利用做差法判断即可.【详解】(1)如果a﹣b>0,则a>b;如果a﹣b=0,则a=b;如果a﹣b<0,则a<b;故答案为:>;=;<;(2)∵A﹣B=5m2﹣4(m﹣)﹣(7m2﹣7m+3)=﹣2m2﹣1<0,∴A<B.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y任意取值代入时,结果总是同一个定值,为什么?【答案】结果是定值,与x、y取值无关.【解析】【分析】原式去括号、合并同类项得出其结果,从而得出结论.【详解】(x2y+5xy2+5)-[(3x2y2+x2y)-(3x2y2-5xy2-2)]=x2y+5xy2+5-(3x2y2+x2y-3x2y2+5xy2+2)=x2y+5xy2+5-3x2y2-x2y+3x2y2-5xy2-2=(x2y-x2y)+(5xy2-5xy2)+(-3x2y2+3x2y2)+(5-2)=3,∴结果是定值,与x、y取值无关.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.【答案】6a2﹣6b2,.【解析】【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=8a2﹣10ab+2b2﹣2a2+10ab﹣8b2=6a2﹣6b2,当a=,b=﹣时,原式=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.【答案】(1)﹣2a2b+ab2+2abc; (2)8a2b﹣5ab2;(3)0.【解析】【分析】(1)由2A+B=C得B=C-2A,将C、A代入后,再去括号后合并同类项化为最简即可;(2)将A、B代入2A-B,,再去括号后合并同类项化为最简即可;(3)由化简后的代数式中无字母c可知其值与c无关,将a、b的值代入计算即可.【详解】(1)∵2A+B=C,∴B=C-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc.(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2.(3)对,与c无关,将a=,b=代入,得8a2b-5ab2=8××-5××=0.【点睛】本题考查了整式加减的应用,整式的加减实质上是去括号后合并同类项.熟知去括号法则和合并同类项法则是解题的关键.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x【答案】21x+3y【解析】整体分析:根据定义a△b=3a+2b,先小括号,后中括号依次化简[(x+y)△(x-y)]△3x.解:原式=[3(x+y)+2(x-y)]△3x=(3x+3y+2x-2y)△3x=(5x+y)△3x=3(5x+y)+6x=15x+3y+6x=21x+3y.23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?【答案】(1)(4x+2y)人;(2)(5x+6y)人【解析】【分析】(1)将途中两次上车人数相加,计算即可求解;(2)将(1)中所求结果加上车上原有人数、减去下去的人数即可.【详解】(1)根据题意知,途中两次共上车2x﹣y+2x+3y=4x+2y(人);(2)6x+2y+4x+2y﹣(5x﹣2y)=10x+4y﹣5x+2y=5x+6y,故到终点站E地时,车上共有(5x+6y)人.【点睛】本题考查了整式的加减、去括号法则两个考点.能够根据题意正确列式是解题的关键.。

七年级数学上册《第二章 整式的加减》单元检测卷及答案-人教版

七年级数学上册《第二章 整式的加减》单元检测卷及答案-人教版

七年级数学上册《第二章整式的加减》单元检测卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.代数式5x2﹣x,x2y和3x,x+y中是单项式的是()A.5x2﹣x B.x2y C.3xD.x+y2.在下列单项式23xy2,13πrℎ,5x,1中,次数是0的是()A.23xy2B.13πrℎC.5x D.13.在−3,0,2x,1x ,x+y7,−5x+22y,a2−3ab+b2这些代数式中,整式的个数为()A.2个B.3个C.4个D.5个4.对于多项式x2−3x+1的项数和次数,下列说法正确的是()A.项数是2,次数是2 B.项数是2,次数是3C.项数是3,次数是2 D.项数是3,次数是35.下列选项中的单项式,与−ab2是同类项的是()A.−a2b B.3ab2C.3ab D.ab2c 6.下面计算正确的是()A.3x2y−2y2x=xy B.ab−ba2=12abC.2a2+a=3a3D.m4+m4=m87.若整式−100a−m b2+100a3b n+4经过化简后结果等于4,则m n的值为()A.−8B.8 C.−9D.9 8.若x−2y=3,则2(x−2y)−x+2y−5的值是()A.−2B.2 C.4 D.−4二、填空题9.多项式3a2−6a−5中的常数项是.10.将多项式x2−2x4+3−4x按x的降幂排列:.11.关于x,y的多项式2x|m|y2+(m+2)xy+3是四次三项式,则m等于. 12.若4x2m y n+1与﹣3x4y3的和是单项式,则m+n=.13.若关于x 、y 的多项式x 2−2kxy +y 2+6xy −6中不含xy 项,则k = .三、解答题14.计算:(1)(6a ﹣b )+5a ﹣2b(2)(7mn ﹣4m 2)﹣2(﹣mn+3m 2)15.先化简,再求值:(4ab −3a 2+3)−3(ab −a 2),其中a =−1,b =2.16.当x =12,y =−3时,求代数式3(x 2−2xy)−[3x 2−2y +2(xy +y)]的值.17.已知﹣2a n b m 和8b 2a 4m ﹣2是同类项,先化简﹣5mn ﹣2(3n ﹣2mn+12m )+13(6mn ﹣2n+3m ),再求值.18.已知:A =2a 2+3ab −1,B =a 2+ab +1.(1)求A −2B 的值;(2)若(a −1)2000+|b +2|=0,求(1)中A −2B 的值.1.B2.D3.D4.C5.B6.B7.D8.A9.−510.−2x 4+x 2−4x +311.212.413.314.(1)解:原式=6a-b+5a-2b=11a-3b(2)解:原式=7mn-4m 2+2mn-6m 2=9mn-10m 215.解:原式=4ab −3a 2+3−3ab +3a 2=ab +3当a =−1,b =2时,原式=−1×2+3=116.解:原式=3x 2−6xy −3x 2+2y −2xy −2y=−8xy当x =12,y =−3时,原式=1217.解:原式=﹣5mn ﹣6n+4mn ﹣m+2mn ﹣23n+m =mn ﹣203n 由﹣2a n b m 和8b 2a 4m ﹣2是同类项,得到n =4m ﹣2,m =2 解得:m =2,n =6则原式=12﹣40=﹣28.18.(1)解:由题意可得A −2B =2a 2+3ab −1−2(a 2+ab +1)=2a 2+3ab −1−2a 2−2ab −2(2)解:∵(a−1)2000+|b+2|=0,|b+2|≥0,(a−1)2000=[(a−1)1000]2≥0∴a−1=0,|b+2|=0∴a=1,b=−2∴A−2B=ab−3=1×(−2)−3=−5.。

人教版数学七年级上册第二章、整式的加减单元检测 (含答案)

人教版数学七年级上册第二章、整式的加减单元检测 (含答案)

18.下面是一组数值转换机,写出(1)的输出结果(写在横线上),找出(2)的转换步骤(填写在框内).
19.某城市按以下规定收取每月的煤气费:用气不超过 60 立方米,
按每立方米 0.8 元收费;如果超过 60 立方米,超过部分每立方米
按 1.2 元收费.已知某户用煤气 x 立方米(x>60),则该户应交煤气
(3)因为今年的纯收入为 19800-7800=12000,所以 15000 12000 ×100%=25%,所以增长率为 25%. 12000
亲爱的用户:
1、在最软入的时候,你会想起谁。20.9.179.17.202009:5309:53:11Sep-2009:53
相识是花结成蕾。在那桃花盛开的地方,在这醉人芬
C. a 4b
D. 9a 10b
7.一台电视机成本价为 a 元,销售价比成本价增加了
精品 文档 可修改 欢迎下载
25
0 0
,因库存积压,所以就按销售价的
70
0
0
出售,那么每
台实际售价为 ( )
A. (1 25 00)(1 70 00)a 元
B. 70 00 (1 25 00)a 元
C. (1 25 00)(1 70 00)a 元
23. 解: 9a2 5a 4
24. 解: a2 4a2 ,a 15a 2
25. 解:将代数式进行化简,可得 b b2 3 .因为它不含有字母 a ,所以代数式的值与 a 的取值无关;
26. 解:根据题意,可得第一个计算器的进价为 a 5 a ,卖一个这种计算器可赚 a 5 a 3 a (元);同理,
1 60% 8
88
可得第二个计算器的进价为 a 5 a ,卖一个这种计算器亏本 5 a a 1 a (元),所以这次买卖中可赚

初一数学七年级人教版上册第2章《整式的加减》单元综合测试题答案解析

初一数学七年级人教版上册第2章《整式的加减》单元综合测试题答案解析

初一数学七年级人教版上册第2章《整式的加减》单元综合测试题一、选择题1.下列单项式中,与-3xy2是同类项的是( )A. -2x2yB. 3y2C. 5xy2D. -6x【答案】C【解析】直接利用同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.由同类项的定义可知,x的指数是1,y的指数是2.A、x的指数是2,y的指数是1,故此选项错误;B、3不含有x的项, 故此选项错误;C、x的指数是1,y的指数是2, 故此选项正确;D、-6不含有y的项,故此选项错误.所以C选项是正确的.【点评】本题主要考查同类项的定义,熟悉掌握定义是关键.2.下列说法正确的是( )A. 23a4的系数是2,次数是7B. 若-34x m y2的次数是5,则m=5C. 0不是单项式D. 若x2+mx是单项式,则m=0或x=0 【答案】D【解析】根据单项式的系数和次数的定义解答即可.A 、23a 4的系数是8,次数是4,故此选项错误.B 、若m 23x y 4的次数是5,则m=3, 故此选项错误. C 、0是单项式,故此选项错误.D 、若x 2+mx 是单项式,则m=0或x=0, 故此选项正确.所以D 选项是正确的.【点评】本题考查了单项式的定义,单项式的系数和次数,熟记概念是解题的关键.3.下列运算正确的是( )A. 3a+2a=5a 2B. 3a+3b=3abC. 2a 2bc ﹣a 2bc=a 2bcD. a 5﹣a 2=a 3 【答案】C【解析】A.3a+2a=5a ,故错误;B.3a 与3b 不是同类项,不能合并,故错误;C.2a 2bc-a 2bc=a 2bc ,正确;D.a 5与a 2不是同类项,不能合并,故错误;故选C.4.下列各式运算其中去括号不正确的有( )(1)-(-a -b )=a -b ;(2)5x -(2x -1)-x 2=5x -2x -1+x 2;(3)3xy -12(xy -y 2)=3xy -12xy +y 2;(4)(a 3+b 3)-3(2a 3-3b 3)=a 3+b 3-6a 3+9b 3 A. (1)(2)B. (1)(2)(3)C. (2)(3)(4)D. (1)(2)(3)(4) 【答案】B【解析】在去括号时,如果括号前面是负号,则去掉括号后括号里面的每一项都要变号.(1)、原式=a+b ;(2)、原式=5x -2x+1-x²;(3)、原式=3xy -12xy+12y²;(4)、正确. 【考点】去括号法则.5.下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab-3ab=-ab;(3)2ab-4ab=6ab;(4)2ab+4ab=6ab.做对一题得2分,则他共得到( )A. 2分B. 4分C. 6分D. 8分【答案】C【解析】(1)2ab+3ab=5ab ,正确;(2)2ab ﹣3ab=﹣ab ,正确;(3)∵2ab ﹣3ab=﹣ab ,∴2ab ﹣3ab=6ab 错误;(4)2ab÷3ab=23,正确.3道正确,得到6分, 故选项C 正确.故选:C.6.下列各题去括号错误的是( ) A. 113322x y x y ⎛⎫--=-+ ⎪⎝⎭ B. m+(-n+a-b)=m-n+a-b C. 12-(4x-6y+3)=-2x+3y+3 D. 112112237237a b c a b c ⎛⎫⎛⎫+--+=++- ⎪ ⎪⎝⎭⎝⎭ 【答案】C【解析】根据去括号法则依次计算各项后即可解答.选项A ,132x y ⎛⎫-- ⎪⎝⎭ =132x y -+; 选项B ,()m n a b m n a b +-+-=-+-;选项C ,()134632322x y x y --+=-+-; 选项D ,112112237237a b c a b c ⎛⎫⎛⎫+--+=++- ⎪ ⎪⎝⎭⎝⎭. 综上,只有选项C 错误,故选C.【点评】本题考查了去括号法则:1.括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变;2.括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变.7.若(3x 2-3x+2)-(-x 2+3x-3)=Ax 2-Bx+C,则A 、B 、C 的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、5【答案】D【解析】 先把等式左边的整式相加减,再分别令等式两边x 的二次项系数、一次项系数及常数项分别相等即可.∵等式的左边=3x 2-3x+2+x 2-3x+3=(3+1)x 2-(3+3)x+2+3=4x 2-6x+5,∴A=4,B=6,C=5,故选D .【点评】本题考查了整式的加减,熟知整式加减的实质就是合并同类项是解答此题的关键. 8.多项式()n 1x n 2x 72-++是关于x 的二次三项式,则n 的值是( ) A. 2B. -2C. 2或-2D. 3 【答案】A【解析】∵多项式()1272n x n x -++是关于x 的二次三项式, ∴220n n =⎧⎨+≠⎩ ,解得n=2. 故选A.9.若代数式(2x 2+ax-y+6)-(2bx 2-3x-5y-1)(a,b 为常数)的值与字母x 的取值无关,则代数式a+3b 的值为( )A. 0B. -1C. 2或-2D. 6【答案】B【解析】先将代数式进行去括号合并,然后令含x 的项系数为0,即可求出a 与b 的值,最后代入所求的式子即可求得答案.原式=2x2+ax-y+6-2bx2+3x+5y+1,=x2(2-2b)+x(a+3)+4y+7,∵代数式的值与x的取值无关,∴(2-2b)=0,(a+3)=0,∴b=1,a=-3 ,当b=1,a=-3时,a+2b=-3+2=-1,所以B选项是正确的.【点评】此题考查了学生对整式的加减和代数式求值的知识掌握情况,熟练掌握运算法则是解本题的关键;做这类习题我们必须认真和细心,搞清题意,这样问题就迎刃而解了.10.已知a,b,c是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A. 3a-cB. -2a+cC. a+cD. -2b-c【答案】C【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简即可得到结果.根据数轴得:c<b<0<a,且|a|<|b|<|c|,∴a-b>0,c-a<0,b+c<0,则原式=a-b+a-c+b+c+c-a=a+c,所以C选项是正确的.【点评】此题考查了数轴和绝对值,灵活运用解本题的关键.二、填空题11.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克____元(用含x的代数式表示). 【答案】0.8x【解析】依题意得:该苹果现价是每千克80%x=0.8x.【考点】列代数式.12.在代数式2-12a,-3xy3,0,4ab,3x2-4,7xy,n中,单项式有____个.【答案】5【解析】根据单项式的概念找出单项式的个数.单项式有:-3xy3,0,4ab,xy7,n,共5个.故答案为:5.【点评】本题主要考查单项式的概念,熟悉掌握是关键.13.若-12x m+3y与2x4y n+3是同类项,则(m+n)2 017=____.【答案】-1【解析】根据同类项中相同字母的指数相同的概念可得出关于m、n的方程,解方程求出m、n的值再代入(m+n)2017进行计算即可得.∵-12x m+3y与2x4y n+3是同类项,∴m+3=4,n+3=1,∴m=1,n=-2,∴(m+n)2017=(1-2)2017=-1,故答案为:-1.【点评】本题考查了同类项、乘方等,解答本题的关键是掌握同类项中相同字母指数相同的概念.14.若单项式-23m2n x-1和5a4b2c的次数相同,则代数式x2-2x+3的值为____.【答案】27【解析】根据单项式次数的概念求出关于x的方程,解出x,然后代入即可.∵单项式-23m2n x-1和5a4b2c 的次数相同,∴2+x-a=4+2+1 ,解得: x=6 ,则x2-2x+3=27.故答案为:27.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的次数的定义.15.已知2a﹣3b=7,则8+6b﹣4a=_____.【答案】-6【解析】∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.【考点】代数式求值;整体代入.16.下图是某月份的日历,用一个方框圈出任意3×3个数,设最中间一个数是x,则用含x的代数式表示这9个数的和是____.【答案】9x【解析】根据最中间的为x,由日历中数字的规律表示出其他8个数,求出之和即可.设最中间的一个是x,根据题意得:x−8+x−7+x−6+x−1+x+x+1+x+6+x+7+x+8=9x.故答案为:9x.【点评】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.17.若(x-1)2 +4|y-6|=0,则(5x+6y)-(4x+8y)的值为__.【答案】-11【解析】原式合并同类项得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.∵(x-1)2+4|y-6|=0,∴x-1=0,y-6=0,即x=1,y=6,则原式=x-2y=1-12=-11.故答案为:-11.【点评】本题考查的知识点是整式的加减—化简求值,非负数的性质:绝对值,解题的关键是熟练的掌握整式的加减—化简求值,非负数的性质:绝对值整式的加减—化简求值,非负数的性质:绝对值.18.小明在求一个多项式减去x2-3x+5的结果时,误认为是加上x2-3x+5,得到的结果是5x2-2x+4,则正确的结果是_______.【答案】3x2+4x-6【解析】根据题目的条件,先求出原式,再按照题目给的正确做法求出正确结果.∵误认为加上x2−3x+5,得到的答案是5x2−2x+4,∴原式=5x2−2x+4−(x2−3x+5)=4x2+x−1.(4x2+x−1)−(x2−3x+5)=4x2+x−1−x2+3x−5=3x2+4x−6.【点评】本题考查的知识点是整式的加减,解题的关键是熟练的掌握整式的加减整式的加减.19.现规定a bc d=a-b+c-d,则222-3-2--2-3-5xy x xy xx xy的值为____.【答案】-4x2+2xy+2 【解析】首先根据例题可得22 2-3-2--2-3-5xy x xy x x xy+=(xy-3x2)-(-2xy-x2)+(-2x2-3)-(-5+xy),然后再去括号,合并同类项即可.∵a bc d=a-b+c-d∴22 2-3-2--2-3-5xy x xy x x xy+=(xy-3x2)-(-2xy-x2)+(-2x2-3)-(-5+xy)=xy-3x2+2xy+x2-2x2-3+5-xy=2xy-4x2+2.故答案为:2xy-4x2+2.【点评】本题考查的知识点是整式的加减,解题的关键是熟练的掌握整式的加减.20.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.【答案】9n+3.【解析】∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…,∴第n个图中正方形和等边三角形的个数之和=9n+3.故答案为:9n+3.【考点】规律型:图形的变化类三、解答题21.化简:(1)2m-3n+[6m-(3m-n)];(2)(2a2-1+3a)-2(a+1-a2).【答案】(1)5m-2n;(2)4a2+a-3【解析】根据整式的解法步骤即可得到答案.(1)原式=2m-3n+(6m-3m+n)=2m-3n+6m-3m+n=5m-2n.(2)原式=2a2-1+3a-2a-2+2a2=4a2+a-3.【点评】本题考查的知识点是整式的加减,解题的关键是熟练的掌握整式的加减.22.已知m,x,y满足:35(x-5)2+|m-2|=0,-3a2·b y+1与a2b3是同类项,求整式(2x2-3xy+6y2)-m(3x2-xy+9y2)的值.【答案】-158.【解析】利用非负数的性质求出x与m的值,再利用同类项定义求出y的值,原式去括号合并得到最简结果,把x 与y的值代入计算即可求出值.因为35(x-5)2+|m-2|=0,所以x=5,m=2.因为-3a2b y+1与a2b3是同类项,所以y+1=3,解得y=2.所以(2x2-3xy+6y2)-m(3x2-xy+9y2)=(2x2-3xy+6y2)-2(3x2-xy+9y2)=2x2-3xy+6y2-6x2+2xy-18y2=-4x2-xy-12y2.因为x=5,y=2,所以原式=-4×52-5×2-12×22=-158.【点评】本题考查的知识点是整式的加减—化简求值,非负数的性质:绝对值,非负数的性质:偶次方,同类项,解题的关键是熟练的掌握整式的加减—化简求值,非负数的性质:绝对值,非负数的性质:偶次方,同类项.23.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求12a+☆3;(2)若2☆x=m,1x4⎛⎫⎪⎝⎭☆3=n(其中x为有理数),试比较m,n的大小.【答案】(1)8(a+1).(2)m>n. 【解析】(1)根据☆的含义,可得即可求出(2)根据☆的含义,以及m=2☆x,n=14☆3(其中x为有理数),分别求出m、n的值各是多少;然后比较大小即可.(1)12a+☆3=12a+×32+2×12a+×3+12a+=8(a+1).(2)由题意知m=2x2+2×2x+2=2x2+4x+2,n=14x×32+2×14x×3+14x=4x,所以m-n=2x2+2>0.所以m>n.【点评】本题考查的知识点是有理数的混合运算, 有理数大小比较,解题的关键是熟练的掌握有理数的混合运算, 有理数大小比较.24.合肥百货大楼开展国庆大酬宾活动,某品牌西服每套定价2000元,领带每条定价400元.在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;②买一套西装送一条领带.现某客户要购买x套西装(x≥1),领带条数比西装套数的4倍多5.(1)若该客户分别按方案①、②购买,则各需付款多少元?(用含x的代数式表示)(2)若x=10,通过计算说明按哪种方案购买较为合算.【答案】(1)按方案①购买,需付款(3 240x+1 800)元;按方案②购买,需付款(3 200x+2 000)元.(2)当买10套西装时,按方案②购买合算.【解析】(1)①需付款为:领带价钱的90%+西装价钱的90%.②需付款为:(领带条数-x)条领带价钱+西装价钱.(2)把x=10代入(1)中的两个式子即可.(1)按方案①购买,需付款[2 000x+400(4x+5)]×90%=(3 240x+1 800)元;按方案②购买,需付款2 000x+400(3x+5)=(3 200x+2 000)元.(2)当x=10时,3 240x+1 800=3 240×10+1 800=34 200(元),3 200x+2 000=3 200×10+2 000=34 000(元),而34 000<34 200,所以当买10套西装时,按方案②购买合算.【点评】本题考查的知识点是代数式求值,列代数式,解题的关键是熟练的掌握代数式求值,列代数式.25.图中的数阵是由全体正奇数排成的.(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在图中任意作一个类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由.这九个数之和能等于2 016吗?2 015,2 025呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.【答案】(1)平行四边形框内的九个数之和是中间的数的9倍.(2)这九个数之和不能为2016;这九个数之和也不能为2015;这九个数之和能为2025,中间数为225,最小的数为207.【解析】(1)、求出各数与中间数的差值,观察发现该值成对出现,此时不难得到这九个数之和与中间数的关系了;(2)、不妨设框中间的数为n,根据(1)中各数与中间数的关系,可用n表示出各数,从而得到9个数之和与中间数的关系;由上面的结果不难得到任意作一个类似(1)的平行四边形框,框中的九个数之和都是中间的数的9倍,从而判断出2015、2016、2025中可能是这九个数之和的数.注意:数阵是由全体奇数排成!最后,根据框中的最小的数比中间的数小18,即可得到九个数中最小的一个.(1)平行四边形框内的九个数之和是中间的数的9倍.(2)任意作一个类似(1)中的平行四边形框,规律仍然成立.不妨设平行四边形框中间的数为n,则这九个数按从小到大的顺序排列依次为(n-18),(n-16),(n-14),(n-2),n,(n+2),(n+14),(n+16),(n+18).显然,其和为9n,是n的9倍.这九个数之和不能为2 016.若和为2 016,则9n=2 016,n=224,是偶数,显然不在数阵中.这九个数之和也不能为2 015.因为2 015不能被9整除.这九个数之和能为2 025,中间数为225,最小的数为225-18=207【点评】本题考查的知识点是找到日历中的数字规律.。

【精选6套】新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

【精选6套】新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( ) ①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( ) A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x -是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m ,再将实数对...(m ,1)放入其中后,得到的实数是___. 三、解答题(共66分) 19.化简:(1)-0.8a 2b -6ab -3.2a 2b +5ab +a 2b . (2)5(a -b )2-3(a -b )2-7(a -b )-(a -b )2+7(a -b ). 20.先化简,再求值:(1)5a 2-4a 2+a -9a -3a 2-4+4a ,其中a =-12. (2)5ab -92a 2b +12a 2b -(114ab +a 2b +5),其中a =1,b =-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y-6x 3y +7x 3-2012=-2012.二、11.-5y 3-4xy 2+3x 2y +x 3;12.2a -6;13.这辆火车行驶了1.5小时的路程;14.10a +b ;15.2a -b ;16.m 2-m +1;17.-a ;18.66.三、19.(1)-3a 2b -ab .(2)(a -b )2.20.(1)5a 2-4a 2+a -9a -3a 2-4+4a =-2a 2-4a -4,当a =-12时,原式=-52.(2)5ab -92a 2b +12a 2b -(114ab +a 2b +5)=5ab -92a 2b +12a 2b -114ab -a 2b -5=94ab -5a 2b -5,当a =1,b =-2时,原式=12.(3)2a 2-(3ab +b 2+a 2-ab )-2b 2=2a 2-3ab -b 2-a 2+ab -2b 2=a 2-b 2-2ab ,当a 2-b 2=2,ab =-3时,原式=8.21.依题意,得A =20-Q ,A =20-0.04n ,当n =150时,A =20-0.04×150=14(升). 22.因为7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2019=2019,所以a =2020,b =-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b ,个位数字为a (b >a ),则原两位数为10b +a ;第二步:交换后的两位数为10人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( ) A .b =(1+12.5%×2)a B .b =(1+12.5%)2a C .b =(1+12.5%)×2 a D .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用. 五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,当a=1,b=2时,求A ﹣2B+3C 的值(先化简再求值).22.阅读材料:“如果代数式5a +3b 的值为-4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =-4两边同乘以2,得10a +6b =-8.仿照上面的解题方法,完成下面的问题: (1)已知a 2+a =0,求a 2+a +2019的值;(2)已知a -b =-3,求3(a -b )-a +b +5的值;(3)已知a 2+2ab =-2,ab -b 2=-4,求2a 2+5ab -b 2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.B2.D3.D4.A5.C6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b -c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A,∴A=2(a2b+ab2)+(a2b-2ab2)-ab2=3a2b-ab2,(5分)∴捂住的多项式为3a2b-ab2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版初中数学七年级上册第二章《整式的加减》单元测试一、选一选,看完四个选项再做决定! 1.下列各式:1+-x ,3+π,29>,y x y x +-,ab S 21=,其中代数式的个数是( ) A. 5B. 4C. 3D. 22. 以下代数式书写规范的是( )A. 2)(÷+b aB.y 56C. x 311D. y x +厘米3. 在下列各组的两个式子中,是同类项的是( )A. abc ab 32与B.222121mn n m 与 C. 0与21- D. 3与c4. 下列合并同类项中,正确的是( )A. xy y x 633=+B. 332532a a a =+C. 033=-nm mnD. 257=-x x5. 下列各式,正确的是( )A. 6)6(--=--x xB. )(b a b a +-=+-C. )6(530x x -=-D. 243)8(3-=-x x6. 图1的面积用代数式表示是( )A. bc ab +B. )((c a d d b c -+-C. )(d b c ad -+D. cd ab -7. 已知222653z y x A ++=,222822z y x B --=,222352y x z C --=,则C B A ++的值为( )A. 0B. 2xC. 2yD. 2z8. 当x =2时,下列代数式中与代数式12+x 的值相等的是( )A. 21x -B. 13+xC. 23x x -D. 12+x9. 已知做某件工作,每个人的工效相同,m 个人做n 天可完成,如果增加a 人,则完成工作所需天数为( ) A.am mn+B. a n -C. a nn +D. a n +10.按下面图2所示的程序计算,若开始输入的数为x =3,则最后输出的结果是( )A. 6B. 21C. 156D. 231 二、填一填,要相信自己的能力!11.今年小明m 岁,去年小明__________岁,8年后小明__________岁.12.一个长方形的宽为a cm ,长比宽的2倍少1cm ,这个长方形的长是______cm . 13.代数式x y y x -+-2312是________________________三项的和,它们的系数分别是__________________.14. 合并同类项:a a 83-=__________,a a a ---=___________.15.设x 表示一个数,用代数式表示“比这个数的平方小3的数”是_________. 16.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为________________.17.53是一两位数,个位数字是3,十位数字是5,可将53写成5×10+3. 如果一个两位数abcd图1图2的个位数字是b ,十位数字是a ,用含a 、b 的代数式表示这个两位数是______________. 18. 化简:)]2([b a ---=___________. 19. 观察下列各式:121312⨯+=⨯ 222422⨯+=⨯ 323532⨯+=⨯ ……请你将猜想到的规律用自然数n (n ≥1)表示出来__________________. 20.用黑白两种颜色的正六边形地面砖按如图3所示的规律,拼成若干个图案:第1个 第2个 第3个(1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块. 三、做一做,要注意认真审题! 21.计算:(每小题4分,共12分)(1) 233323)3()2(2a a a a a +-+-++(2) 2222224)()3(8)4(5b a b a ab ab b a ab +-+--+-+(3) )58()37(z y z y ---(4) )6(4)2(322-++--xy x xy x22.(8分)一个多项式减去6142-+x x ,小明错误的当成了加法计算,从而得到结果是322+-x x ,请问正确的结果是多少?23.(9分)某市出租车收费标准是:起步价10元,3千米后每千米2元,某乘客乘坐了x人教版七年级数学上册第二章整式的加减单元测试(含答案)一、单选题1.下列各式中,代数式有( )个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .52.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )23.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy4.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是65.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米7.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 18.若2y m +5x n +2与﹣3x 4y 5是同类项,则m +n =( ) A .1B .2C .﹣1D .﹣39.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,图1中面积为1的正方形有9个,图2中面积为1的正方形有14个,⋯,按此规律,图12中面积为1的正方形的个数为( )A.64B.60C.54D.5010.下列选项正确的是( ) A .xy +x +1是二次三项式B .﹣25xy 的系数是﹣5C .单项式x 的系数是1,次数是0D .﹣22xyz 2的次数是6 11.一列数123,,,,n a a a a ,其中112a =,111n n a a -=-(n≥2的整数),则2019a =( )A .12B .2C .-1D .-212.设23A a =+,27B a a =-+,则A 与B 的大小关系是( ) A .A B > B .A B <C .A B ≥D .A B ≤二、填空题13.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 14.多项式3m 2-5m 3+2-m 是________次_______项式.15.多项式2239x xy π++中,次数最高的项的系数是_______. 16.找规律填数:﹣1,2,﹣4,8,________ 三、解答题 17.观察下列算式 1=1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 …按规律填空:(1)1+3+5+7+9=______. (2)1+3+5+…+2005=_______. (3)1+3+5+7+9+…+_____=n².(4)根据以上规律计算 101+103+105+…+499. 18.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -(E )0(F )3y x -+ (G )223a ab b =+ (H )2xy a(I )223x y + (1)单项式集合__________; (2)多项式集合____________; (3)整式集合_____人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和三、(13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n+2-5x2-n+6是关于x的三次多项式,求代数式n3-2n+3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣2 3 8.111a +80 9.-8 10.111.2c -a -b 解析:由图可知a <c <0<b ,∴a -c <0,b -c >0,∴原式=c -a -(b -c )=c -a -b +c =2c -a -b .故答案为2c -a -b .12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题 13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分) 14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分) 15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52.22.解:(1)∵a2+a=0,∴a2+a+2017=0+2017=2017.(3分)(2)∵a-b=-3,∴3(a-b)-a+b+5=3×(-3)-(-3)+5=-1.(6分)(3)∵a2+2ab=-2,ab-b2=-4,∴2a2+5ab-b2=2a2+4ab+ab-b2=2×(-2)+(-4)=-8.(9分)。

【6套】人教版七年级数学上册第二章整式的加减单元测试(含答案).doc

【6套】人教版七年级数学上册第二章整式的加减单元测试(含答案).doc

人教版数学七年级上册第二章整式的加减单元测试及答案一、单选题1.下列各式中不是整式的是()A. 3xB.C.D. x-3y2.下列各组单项式中,为同类项的是( )A. a3与a2B. a2与2a2C. 2xy与2xD. -3与a3.a+b=﹣3,c+d=2,则(c﹣b)﹣(a﹣d)的值为()A. 5B. -5C. 1D. -14.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A. ﹣x2+2x+2B. ﹣x2+x+2C. x2﹣x+2D. ﹣x2+x﹣25.下列说法正确的是()A. 0不是单项式B. x没有系数C. ﹣xy5是单项式D. 是多项式6.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A. ①②B. ①③C. ②③D. ①②③7.代数式的4x﹣4﹣(4x﹣5)+2y﹣1+3(y﹣2)值()A. 与x,y都无关B. 只与x有关C. 只与y有关D. 与x,y 都有关8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为()A. (2n+1)2B. (2n-1)2C. (n+2)2D. n29.长方形的一边长等于3x+2y ,另一边长比它长x-y ,这个长方形的周长是()A. 4x+yB. 12x+2yC. 8x+2yD. 14x+6y10.如图,按大拇指,食指,中指,无名指,小指,再无名指,中指……的顺序数数,当数到2018时,对应的手指是()A. 食指B. 中指C. 无名指D. 小指二、填空题11.单项式- x2y的系数是________.12.﹣的系数是a,次数是b,则a+b=________.13.如果(a-5)mn b+2是关于m、n的一个五次单项式,那么a=________,b=________.14.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.15.若|x﹣1|+(y+2)2=0,则(x+y)2017=________.16.计算(9a2b+6ab2)÷3ab=________.17.在计算机程序中,二叉树是一种表示数据结构的方法.如图,﹣层二叉树的结点总数为1;二层二叉树的结点的总数为3;三层二叉树的结点总数为7;四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为________.三、计算题18.计算:(1)(2)19.多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式,求a2+ +a的值.四、解答题20.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)21.七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.22.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.五、综合题23.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:(a)2+4+6+…+100的值;(b)52+54+56+…+200的值.参考答案一、单选题1. B2. B3. A4. D5. C6. A7.C8.A9.D10. A二、填空题11. -12.13.≠5;214.2;615.-116.3a+2b17. 127三、计算题18.解:(1)==(2)===19.解:∵多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式∴(a2-4)=0 ∴a=±2又∵a+2≠0∴a≠-2∴a=2∴a2+ +a=22+ +2=4+ +2=四、解答题20.解:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2) =6x 2﹣3y 2﹣6y 2+4x 2=(6x 2+4x 2)+(﹣3y 2﹣6y 2) =10x 2﹣9y 2 .21.解:∵2A+B=x 2+5x ﹣6,A=x 2+2x ﹣1,∴B=(x 2+5x ﹣6)﹣2(x 2+2x ﹣1)=x 2+5x ﹣6﹣2x 2﹣4x+2=﹣x 2+x ﹣4,∴A+2B=x 2+2x ﹣1+2(﹣x 2+x ﹣4)=x 2+2x ﹣1﹣2x 2+2x ﹣8=﹣x 2+4x ﹣922.解:原式=a 2﹣2ab+2a 2﹣2b 2﹣a 2+2ab ﹣b 2=2a 2﹣3b 2 , 当a=﹣ ,b=1时,原式=﹣2.5 五、综合题23.(1)解:S=n (n+1) (2)解:(a )2+4+6+…+100 =50×51 =2550;(b )52+54+56+…+200=(2+4+6+8+…+200)﹣(2+4+6++…+50) =100×101﹣25×26 =10100﹣650 =9450.人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+ 3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n-是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 . 三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( ) ①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=人教版七年级数学上册第二章整式的加减单元测试(含答案)一、单选题1.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .52.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )23.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy4.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5B .系数是1,次数是6C .系数是-1,次数是5D .系数是-1,次数是65.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米7.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 18.若2y m +5x n +2与﹣3x 4y 5是同类项,则m +n =( ) A .1B .2C .﹣1D .﹣39.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,图1中面积为1的正方形有9个,图2中面积为1的正方形有14个,⋯,按此规律,图12中面积为1的正方形的个数为( )A.64B.60C.54D.5010.下列选项正确的是( ) A .xy +x +1是二次三项式B .﹣25xy 的系数是﹣5C .单项式x 的系数是1,次数是0D .﹣22xyz 2的次数是611.一列数123,,,,n a a a a ,其中112a =,111n n a a -=-(n≥2的整数),则2019a =( )A .12B .2C .-1D .-212.设23A a =+,27B a a =-+,则A 与B 的大小关系是( ) A .A B > B .A B <C .A B ≥D .A B ≤二、填空题13.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 14.多项式3m 2-5m 3+2-m 是________次_______项式.15.多项式2239x xy π++中,次数最高的项的系数是_______. 16.找规律填数:﹣1,2,﹣4,8,________ 三、解答题 17.观察下列算式 1=1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 …按规律填空:(1)1+3+5+7+9=______. (2)1+3+5+…+2005=_______. (3)1+3+5+7+9+…+_____=n².(4)根据以上规律计算 101+103+105+…+499. 18.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -(E )0(F )3y x -+(G )223a ab b =+ (H )2xy a(I )223x y +(1)单项式集合__________;(2)多项式集合____________;(3)整式集合_____人教版七年级上册第2章《整式的加减》单元检测卷一、选择题1.下列说法正确的是( )A .3不是单项式B .x 3y 2没有系数C .-18是一次一项式D .-14xy 3是单项式 2.下列说法错误的是( )A .x 是单项式B .3x 4是四次单项式C .的系数是D .x 3﹣xy 2+2y 3是三次多项式3.下列选项中的单项式,与 2xy 是同类项的是( )A. 2x 2y 2B. 2xC. xyD. 2y4.下列各式计算结果正确的是( )A. a+a=a 2B. (a ﹣1)2=a 2﹣1C. a•a=a 2D. (3a )3=9a 25.-(a 2-b 3+c 4)去括号后为( )A .-a 2-b 3+c 4B .-a 2+b 3+c 4C .-a 2-b 3-c 4D .-a 2+b 3-c 46.若﹣3x 2m y 3与2x 4y n 的和是一个单项式,则|m ﹣n |的值是( )A .0B .1C .7D .﹣17.下列说法中,正确的是( )A. 2不是单项式B. ﹣ab 2的系数是﹣1,次数是3C. 6πx 3的系数是6D. ﹣2x 2y/3的系数是﹣28.一个多项式加上3x 2y-3xy 2得x 3-3x 2y ,则这个多项式是( )A. x 3+3xy 2B. x 3-3xy 2C. x 3-6x 2y+3xy 2D. x 3-6x 2y-3x 2y9.下列各项中,去括号正确的是( )A .x 2-2(2x -y +2)=x 2-4x -2y +4B .-3(m +n )-mn =-3m +3n -mnC.-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2D.ab-5(-a+3)=ab+5a-310.将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y11.关于多项式﹣3x2y3﹣2x3y2﹣y/2 ﹣3,下列说法正确的是()A. 它是三次四项式B. 它是关于字母y的降幂排列C. 它的一次项是y/2D. 3x2y3与﹣2x3y2是同类项12.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题13.用代数式表示“a的平方的6倍与3的差”为__________.14.“x2的3倍与y的倒数的和”,用代数式表示为.15.去括号:-[a-(b-c)]=________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________ 17.设A,B,C表示整式,且A-B=3x2-2x+1,B-C=4-2x2,则C-A=__________.18.观察下列等式:(1+2)2-4×1=12+4,(2+2)2-4×2=22+4,(3+2)2-4×3=32+4,(4+2)2-4×4=42+4,…,则第n个等式是________.三、解答题19.化简:(1)2x-5y-3x+y(2)20.先化简再求值(1)-(9x3-4x2+5)-(-3-8x3+3x2),其中x=-2;(2)5xy﹣[x2+4xy﹣y2﹣(x2+2xy﹣2y2)]其中,.21.已知多项式2x2+my-12与多项式nx2-3y+6的差中不含有x,y,求m+n+mn的值.22.已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?23.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.24.某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?25.小明做一道数学题:“已知两个多项式A,B,A=……,B=x2+3x-2,计算2A+B的值.”小明误把“2A+B”看成“A+2B”,求得的结果为5x2-2x+3,请求出2A+B的正确结果.答案一、1.D.2 C.3. C. 4.C. 5.D.6 B.7. B 8. C9.C10. A.11. B 12. B二、13.6a2-3.14.33x2+.15.-a+b-c 16.x n+n217.-x2+2x-518.(n+2)2-4n=n2+4三、19.(1)解:2x-5y-3x+y =(2-3)x+(-5+1)y=-x-4y(2)解:2(a+2b)-3(a-3b) =2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b20. (1)解:原式= = .当时,原式=. -6(2)解:原式=3xy-y2 ,当x=-2, y=-3时,原式=9 .21.解:由题意得(2x2+my-12)-(nx2-3y+6)=(2-n)x2+(m+3)y-18,因为差中不含有x,y,所以2-n=0,m+3=0,所以n=2,m=-3,故m+n+mn=-3+2+(-3)×2=-7.22.(1)∵A=x2﹣2xy,B=y2+3xy,∴2A﹣3B=2(x2﹣2xy)﹣3(y2+3xy)=2x2﹣4xy﹣3y2﹣9xy=2x2﹣13xy﹣3y2;(2)∵A﹣B+C=0,∴C=B﹣A=(y2+3xy)﹣(x2﹣2xy)=y2+3xy﹣x2+2xy=y2+5xy﹣x2;(3)∵A=x2﹣2xy,B=y2+3xy,C=y2+5xy﹣x2,∴2A﹣B+C=2(x2﹣2xy)﹣(y2+3xy)+(y2+5xy﹣x2)=2x2﹣4xy﹣y2﹣3xy+y2+5xy﹣x2=x2﹣2xy,当x=﹣2,y=﹣3,原式=4﹣2×6=﹣8.23.(1)④4×6﹣52=﹣1(2)(2n ﹣1)(2n+1)﹣(2n )2=﹣1(3)解:左边=(2n ﹣1)(2n+1)﹣(2n )2=4n 2﹣1﹣4n 2=﹣1所以(2)中所写的等式一定成立24..(1)m +2(n ﹣1).(2)①当m =20,n =25时,m +2(n ﹣1)=20+2×(25﹣1)=68(个);②m +m +2+m +2×2+…+m +2×(25﹣1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).解:(1)第一排有m 个座位,后边的每一排比前一排多两个座位,第n 排有m +2(n ﹣1)=2n +m ﹣2(个);(2)当m =20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位)25.解:由题意得,A =5x 2-2x +3-2(x 2+3x -2)=5x 2-2x +3-2x 2-6x +4=3x 2-8x +7.所以2A +B =2(3x 2-8x +7)+(x 2+3x -2)=6x 2-16x +人教版初中数学七年级上册第2章《整式加减》单元测试卷一、单选题(每小题只有一个正确答案)1.下列各式:ab ,2x y -,2x ,–xy 2,0.1,1π,x 2+2xy+y 2,其中单项式有( ) A .5个 B .4个 C .3个 D .2个2.多项式x 3–2x 2y 2+3y 2每项的系数和是( )A .1B .2C .5D .63.若单项式–2335a bc 的系数、次数分别是m 、n ,则( ) A .m=−35,n=6 B .m=35,n=6 C .m=–35,n=5 D .m=35,n=5 4.下列各式中,不是整式的是( ).A .3aB .2x = 1C .0D .xy5.对[()]a b c d --+去括号后的结果是( ).A .a b c d --+B .a b c d +--C .a b c d -++D .a b c d -+- 6.单项式﹣ x 2y 的系数与次数分别是( )A.- ,3B.- ,4C.- π,3D.- π,4 7.下列各式计算正确的是( ).A .(2)2a a b b --=-B .2(3)242xy y xy xy y --=-C .233336ab a b ab +=D .3()3xy y xy y +-=8.下列各组单项式属于同类项的是( ).A .2a 与22a B .3m -与2m C .223a b 与22ab D .22a 与23a9.一个两位数,十位上的数字比个位上的数字小2,设十位上的数字为x ,则这个两位数可以表示为( ).A .22x +B .22x -C .112x -D .112x + 10.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( )A .0B .1-C .2或2-D .611.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab的结果为( )A .6a 2b +abB .﹣4a 2b +7abC .4a 2b ﹣7abD .6a 2b ﹣ab 12.一个多项式加上2325y y --得到多项式3546y y --,则原来的多项式为( )A.325321y y y ++-B.325326y y y --- C.325321y y y +--D.325321y y y ---二、填空题13.多项式2239x xy π++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章整式的加减单元测试卷
(时间:45分钟,满分:100分)
一、选择题(每小题4分,共32分)
1.下列各式中不是单项式的是()
A. B.-
C.0
D.
2.若-3x m+1y2 017与2x2 015y n是同类项,则|m-n|的值是()
A.0
B.1
C.2
D.3
3.下列运算正确的是()
A.3x3-5x3=-2x
B.6x3-2x3=3x
C.3x(x-4)=3x2-12x
D.-3(2x-4)=-6x-12
4.组成多项式6x2-2x+7的各项是()
A.6x2-2x+7
B.6x2,2x,7
C.6x2-2x,7
D.6x2,-2x,7
5.将2(x+y)+3(x+y)-4(x+y)合并同类项,得()
A.x+y
B.-x+y
C.-x-y
D.x-y
6.若多项式2x2+3y+7的值为8,则多项式6x2+9y+8的值为()
A.1
B.11
C.15
D.23
7.下列各项中的数量关系不能用式子2a+3b表示的是()
A.小红去商场买了2个单价为a元的本子和3支单价为b元的笔,她共花了多少钱?
B.全班同学都报名参加了课外活动小组,其中报2个小组的有a名同学,报3个小组的有b名同学,全班共有多少名同学?
C.小亮看书特别快,他借了一本课外书,5天就看完了,他有两天是每天看a页,有三天是每天
看b页,这本书一共有多少页?
D.为了奖励“学雷锋先进个人”,学校买了两种奖品,其中2元的笔记本a本,3元的笔记本b本,学校买这些奖品共花了多少钱?
8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n(n是正整数)的结果为()
1+8=?1+8+16=?1+8+16+24=?
A.(2n+1)2
B.(2n-1)2
C.(n+2)2
D.n2
二、填空题(每小题4分,共16分)
9.某地为了改造环境,计划从2016年开始用五年时间植树绿化荒山.如果每年植树绿化x公顷荒山,那么这五年内植树绿化荒山公顷.
10.同类项-a3b,3a3b,-a3b的和是.
11.三个连续奇数,设中间一个为2n+1,则这三个数的和是.
12.如图,它是一个程序计算器,用字母及符号把它的程序表达出来,如果输入m=3,那么输出.
三、解答题(共52分)
13.(10分)规定=a-b+c-d,试计算
---
---
.
14.(10分)先化简,再求值:
-(xy-x2)+3-+2,其中x=-2,y=.
15.(10分)用火柴棒按下列方式搭建三角形:
(1)填表:
(2)当三角形的个数为n时,火柴棒的根数为多少?
(3)当n=1 008时,火柴棒的根数是多少?
16.(10分)张华在一次测验中计算一个多项式加上5xy-3yz+2xz时,不小心看成减去5xy-3yz+2xz,计算出错误结果为2xy+6yz-4xz,试求出原题目的正确答案.
17.(12分)一辆出租车从A地出发,在一条东西走向的街道上往返行驶,每次行驶的路程(记向东为正)记录如下(9<x<26,单位:km):
(1)说出这辆出租车每次行驶的方向;
(2)这辆出租车一共行驶了多少路程?
参考答案
一、选择题
1.D
2.D由同类项的定义可知,m+1=2015,n=2017,可求得m=2014,n=2017.
3.C∵3x3-5x3=-2x3,6x3-2x3=4x3,3x(x-4)=3x2-12x,-3(2x-4)=-6x+12,
∴运算正确的是C.
4.D
5.A可把x+y看成一个整体进行合并.
6.B由2x2+3y+7=8,得2x2+3y=1,
所以6x2+9y+8=3(2x2+3y)+8=11.
7.B
8.A∵1+8=9=32,1+8+16=25=52,1+8+16+24=49=72,…,
∴1+8+16+24+…+8n=(2n+1)2.
二、填空题
9.5x
10.a3b-a3b+3a3b+-
=--a3b=a3b.
11.6n+3其余两个奇数为2n-1,2n+3,它们的和是(2n-1)+(2n+1)+(2n+3)=2n-
1+2n+1+2n+3=6n+3.
12.-1
三、解答题
13.解:
---
---
=(xy-3x2)-(-2xy-x2)+(-2x2-3)-(-5+xy)=xy-3x2+2xy+x2-2x2-3+5-xy=-
4x2+2xy+2.
14.解:原式=-xy+x2+3y2-x2+xy-y2=-x2+2y2.
当x=-2,y=时,
原式=-(-2)2+2×
=-4+=-.
15.解:(1)3,5,7,9.
(2)(2n+1)根.
(3)当n=1008时,2n+1=2017.
答:当n=1008时,火柴棒的根数是2017.
16.解:2xy+6yz-4xz+2(5xy-3yz+2xz)=2xy+6yz-4xz+10xy-6yz+4xz=12xy.
17.解:(1)第1次向东,第2次向西;第3次向东,第4次向西.
(2)因为9<x<26,
所以总路程为
|x|+-+|x-5|+|2(9-x)|
=x+x+(x-5)+2(x-9)
=x+x-5+2x-18=-km.。

相关文档
最新文档