沁水县一中2018-2019学年上学期高二数学12月月考试题含解析
沁水县实验中学2018-2019学年上学期高二数学12月月考试题含解析
沁水县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 4213532,4,25a b c ===,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b << 2. 一个几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .3. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .π B .2πC .4πD .π4. 如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )A .B .C .D .5. 命题“若a >b ,则a ﹣8>b ﹣8”的逆否命题是( )A .若a <b ,则a ﹣8<b ﹣8B .若a ﹣8>b ﹣8,则a >bC .若a ≤b ,则a ﹣8≤b ﹣8D .若a ﹣8≤b ﹣8,则a ≤b6. 已知点P (1,﹣),则它的极坐标是( )A .B .C .D .7. 设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-1 8. 集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个 A.4 B. 5 C.6 D.79. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =10.已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣211.已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .312.12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-2二、填空题13.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 14.已知关于 的不等式在上恒成立,则实数的取值范围是__________15.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .16.设变量x ,y 满足约束条件,则的最小值为 .17.已知实数x ,y 满足约束条,则z=的最小值为 .18.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.三、解答题19.已知函数f (x )=log a (1+x )﹣log a (1﹣x )(a >0,a ≠1).(Ⅰ)判断f (x )奇偶性,并证明;(Ⅱ)当0<a <1时,解不等式f (x )>0.20.在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (0,4);B (﹣3,0),C (1,1) (1)求点C 到直线AB 的距离; (2)求AB 边的高所在直线的方程.21.计算: (1)8+(﹣)0﹣;(2)lg25+lg2﹣log 29×log 32.22.(本题满分13分)已知函数x x ax x f ln 221)(2-+=.(1)当0 a 时,求)(x f 的极值;(2)若)(x f 在区间]2,31[上是增函数,求实数a 的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.23.已知定义域为R 的函数是奇函数.(1)求f (x );(2)判断函数f (x )的单调性(不必证明); (3)解不等式f (|x|+1)+f (x )<0.24.(本小题满分12分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒 成立.(1)求cos C 的取值范围;(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的 形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.沁水县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】试题分析:2223534,4,5a b c===,由于4xy=为增函数,所以a b>.应为23y x=为增函数,所以c a>,故b a c<<.考点:比较大小.2.【答案】B【解析】解:三视图复原的几何体是一个半圆锥和圆柱的组合体,它们的底面直径均为2,故底面半径为1,圆柱的高为1,半圆锥的高为2,故圆柱的体积为:π×12×1=π,半圆锥的体积为:×=,故该几何体的体积V=π+=,故选:B3.【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为:=4π故选:C.4.【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=,∵a2=b2+c2,∴c=,∴椭圆的离心率为:e==.故选:A.【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.5. 【答案】D【解析】解:根据逆否命题和原命题之间的关系可得命题“若a >b ,则a ﹣8>b ﹣8”的逆否命题是:若a ﹣8≤b ﹣8,则a ≤b . 故选D .【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系.比较基础.6. 【答案】C【解析】解:∵点P 的直角坐标为,∴ρ==2.再由1=ρcos θ,﹣=ρsin θ,可得,结合所给的选项,可取θ=﹣,即点P 的极坐标为 (2,),故选 C .【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.7. 【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质. 8. 【答案】C 【解析】试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。
沁县一中2018-2019学年上学期高二数学12月月考试题含解析
沁县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1D .a <﹣3或a >﹣12. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个 3. 设P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .134. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0; ④; ⑤.A .①③B .①③④C .②④D .②⑤5. 将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中的任意两个数a 、b (a >b )的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )A .B .C .2D .36. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 7. 设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D .8. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A .B .C .D .9. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( ) A .B .C .D .10.设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)11.如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④12.定义运算,例如.若已知,则=( )A .B .C .D .二、填空题13.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .14.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.15.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=u u u r u u u u r ,若12PF F ∆31-,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.16.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .17.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 .18.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 .三、解答题19.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2ABD π∠=,22AD =22AB DC ==,F为PA 的中点.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ; (Ⅱ)若6PA PB PD ===P BDF -的体积.ABCDPF20.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.21.斜率为2的直线l 经过抛物线的y 2=8x 的焦点,且与抛物线相交于A ,B 两点,求线段AB 的长.22.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos 3)cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.23.解不等式|2x ﹣1|<|x|+1.24.(本小题满分12分)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,(sin ,5sin 5sin )m B A C =+u r,(5sin 6sin ,sin sin )n B C C A =--r垂直.(1)求sin A 的值;(2)若a =ABC ∆的面积S 的最大值.沁县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】解:∵S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R , ∴,解得:﹣3<a <﹣1.故选:A .2. 【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 3. 【答案】A【解析】解:∵P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,|PF 1|等于4,∴|PF 2|=2×13﹣|PF 1|=26﹣4=22.故选:A .【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.4. 【答案】 D【解析】解:由导函数的图象可知,导函数f ′(x )的图象在x 轴下方,即f ′(x )<0,故原函数为减函数, 并且是,递减的速度是先快后慢.所以f (x )的图象如图所示. f (x )<0恒成立,没有依据,故①不正确;②表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]异号,即f (x )为减函数.故②正确; ③表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]同号,即f (x )为增函数.故③不正确, ④⑤左边边的式子意义为x 1,x 2中点对应的函数值,即图中点B 的纵坐标值, 右边式子代表的是函数值得平均值,即图中点A 的纵坐标值,显然有左边小于右边, 故④不正确,⑤正确,综上,正确的结论为②⑤. 故选D .5. 【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为; 当1、3同行或同列时,这个数表的特征值分别为或; 当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为.故选:B .【点评】题考查类比推理和归纳推理,属基础题.6. 【答案】B 【解析】试题分析:设从青年人抽取的人数为800,,2050600600800x x x ∴=∴=++,故选B . 考点:分层抽样. 7. 【答案】A 【解析】考点:二元一次不等式所表示的平面区域.8.【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C.【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.9.【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.10.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.11.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D12.【答案】D【解析】解:由新定义可得,====.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.二、填空题13.【答案】【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:BC==海里,则这时船与灯塔的距离为海里.故答案为.14.【答案】120o【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键. 15.【答案】31+ 【解析】16.【答案】 6,12,2,n n a n n n n *=⎧⎪=+⎨≥∈⎪⎩N【解析】【解析】()()12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅11:6n a ==;()()()123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅故22:n n n a n+≥=17.【答案】.【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.18.【答案】.【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P==故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.三、解答题19.【答案】(本小题满分13分)解:(Ⅰ)当E 为PB 的中点时,//CE 平面PAD . (1分) 连结EF 、EC ,那么//EF AB ,12EF AB =. ∵//DC AB ,12DC AB =,∴//EF DC ,EF DC =,∴//EC FD . (3分) 又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分) (Ⅱ)设O 为AD 的中点,连结OP 、OB ,∵PA PD =,∴OP AD ⊥,在直角三角形ABD 中,12OB AD OA ==, 又∵PA PB =,∴PAO PBO ∆≅∆,∴POA POB ∠=∠,∴OP OB ⊥,∴OP ⊥平面ABD . (10分)2222(6)(2)2PO PA AO =-=-=,222BD AD AB =-=∴三棱锥P BDF -的体积1112222233P BDF P ABD V V --==⨯⨯⨯=. (13分)20.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+,∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2) ∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3), ∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0ABCDPOE F△>0可得0<t 2<12, ∴x=3﹣∈(﹣3,3),∴点B 横坐标的取值范围是(﹣3,3).【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.21.【答案】 【解析】解:设直线l 的倾斜解为α,则l 与y 轴的夹角θ=90°﹣α,cot θ=tan α=2, ∴sin θ=, |AB|==40.线段AB 的长为40.【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用.22.【答案】(1)3B π=;(2)[1,2).【解析】23.【答案】【解析】解:根据题意,对x 分3种情况讨论:①当x <0时,原不等式可化为﹣2x+1<﹣x+1, 解得x >0,又x <0,则x 不存在, 此时,不等式的解集为∅. ②当时,原不等式可化为﹣2x+1<x+1,解得x >0,又, 此时其解集为{x|}.③当时,原不等式可化为2x ﹣1<x+1,解得,又由,此时其解集为{x|},∅∪{x|}∪{x|}={x|0<x <2};综上,原不等式的解集为{x|0<x <2}.【点评】本题考查绝对值不等式的解法,涉及分类讨论的数学思想,关键是用分段讨论法去掉绝对值,化为与之等价的不等式来解.24.【答案】(1)45;(2)4. 【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得cos A ,由同角关系得sin A ;(2)由于已知边及角A ,因此在(1)中等式22265bc b c a +-=中由基本不等式可求得10bc ≤,从而由公式 1sin 2S bc A =可得面积的最大值.试题解析:(1)∵(sin ,5sin 5sin )m B A C =+u r ,(5sin 6sin ,sin sin )n B C C A =--r垂直, ∴2225sin 6sin sin 5sin 5sin 0m n B B C C A •=-+-=u r r ,考点:向量的数量积,正弦定理,余弦定理,基本不等式.111]。
沁县高中2018-2019学年上学期高二数学12月月考试题含解析
沁县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .2. 复数满足2+2z 1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i3. 设D 为△ABC 所在平面内一点,,则( )A .B .C .D .4. 若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( )A .1B .2C .3D .45. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )A. B. C. D.6. 已知是虚数单位,若复数)(3i a i +-(R a ∈)的实部与虚部相等,则=a ( )A .1-B .2-C .D .7. 已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等. 8. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .99. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4 B.1[8 C .31[,)162 D .3[,3)810.一个几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .11.下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A .(ln y x =B .2y x =C .tan y x =D .xy e = 12.记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y xy =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.二、填空题13.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).14.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .15.已知f (x )=x (e x +a e -x )为偶函数,则a =________.16.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .17.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .18.等比数列{a n}的公比q=﹣,a6=1,则S6=.三、解答题19.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.20.已知数列{a n}的前n项和为S n,且S n=a n﹣,数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0上.(1)求数列{a n},{b n}的通项a n和b n;(2)设c n=a n•b n,求数列{c n}的前n项和T n.21.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.22.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.23.定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),则(1)求f(0);(2)证明:f(x)为奇函数;(3)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.24.已知定义域为R的函数是奇函数.(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)<0.沁县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:根据选项可知a ≤0a 变动时,函数y=2|x|的定义域为[a ,b],值域为[1,16],∴2|b|=16,b=4故选B .【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.2. 【答案】【解析】解析:选D.法一:由2+2z1-i =i z 得2+2z =i z +z , 即(1-i )z =-2,∴z =-21-i =-2(1+i )2=-1-i.法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,∴⎩⎪⎨⎪⎧2+2a =a -b2b =a +b, ∴a =b =-1,故z =-1-i. 3. 【答案】A【解析】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.4.【答案】A【解析】解:∵f(x)=acosx,g(x)=x2+bx+1,∴f′(x)=﹣asinx,g′(x)=2x+b,∵曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,即a=1,b=0.∴a+b=1.故选:A.【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.5.【答案】A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.对照选项知,只有A符合此要求.故选A.【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.6. 【答案】A考点:复数运算. 7. 【答案】C【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.8. 【答案】C【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f (x )=sin ωx+cos ωx=2sin (ωx+).再根据f ()=2sin (+)=﹣2,可得+=2k π+,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7, 则ω的可能值为7, 故选:C .【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.9. 【答案】C 【解析】试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则314t <<,由1324x +=,可得14x =,由213x =,可得x =(负舍),即有12111,422x x ≤<≤≤221143x ≤≤,则()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭.故本题答案选C.考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.10.【答案】 B【解析】解:三视图复原的几何体是一个半圆锥和圆柱的组合体, 它们的底面直径均为2,故底面半径为1, 圆柱的高为1,半圆锥的高为2,故圆柱的体积为:π×12×1=π,半圆锥的体积为:×=,故该几何体的体积V=π+=,故选:B11.【答案】A 【解析】试题分析:()()f x f x -=-所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与()f x 不相同,D 为非奇非偶函数,故选A.考点:函数的单调性与奇偶性. 12.【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D 及其内部,由几何概型得点M 落在区域Ω2内的概率为112P ==p 2p,故选A.二、填空题13.【答案】②【解析】解:由MP ,OM 分别为角的正弦线、余弦线,如图,∵,∴OM <0<MP . 故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.14.【答案】.【解析】解:∵数列{a n}为等差数列,且a3=,∴a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3×=,∴cos(a1+a2+a6)=cos=.故答案是:.15.【答案】【解析】解析:∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(-x)(e-x+a e x)=x(e x+a e-x),∴a(e x+e-x)=-(e x+e-x),∴a=-1.答案:-116.【答案】[0,2].【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).∵q是p的充分不必要条件,∴q⊊p,∴,解得0≤a≤2,则实数a的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题17.【答案】.【解析】解:设大小正方形的边长分别为x,y,(x,y>0).则+x+y+=3+,化为:x+y=3.则x2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.18.【答案】﹣21.【解析】解:∵等比数列{a n}的公比q=﹣,a6=1,∴a1(﹣)5=1,解得a1=﹣32,∴S6==﹣21故答案为:﹣21三、解答题19.【答案】【解析】解:如图,设所截等腰三角形的底边边长为xcm,在Rt△EOF中,,∴,∴依题意函数的定义域为{x|0<x<10}【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.20.【答案】【解析】解:(1)∵S n=a n﹣,∴当n≥2时,a n=S n﹣S n﹣1=a n﹣﹣,即a n=3a n﹣1,.∵a1=S1=﹣,∴a1=3.∴数列{a n}是等比数列,∴a n=3n.∵点P(b n,b n+1)在直线x﹣y+2=0上,∴b n+1﹣b n=2,即数列{b n}是等差数列,又b1=1,∴b n=2n﹣1.(2)∵c n=a n•b n=(2n﹣1)•3n,∵T n=1×3+3×32+5×33+…+(2n﹣3)3n﹣1+(2n﹣1)3n,∴3T n=1×32+3×33+5×34+…+(2n﹣3)3n+(2n﹣1)3n+1,两式相减得:﹣2T n=3+2×(32+33+34+…+3n)﹣(2n﹣1)3n+1,=﹣6﹣2(n﹣1)3n+1,∴T n=3+(n﹣1)3n+1.21.【答案】【解析】解:(1)当时,,;对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,∵1)若,令p′(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,从而p(x)在区间(1,+∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足,所以≤a≤.又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,h(x)<h(1)=+2a≤0,所以a≤综合可知a的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.22.【答案】【解析】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S△ABC==1.23.【答案】【解析】解:(1)在f(x+y)=f(x)+f(y)中,令x=y=0可得,f(0)=f(0)+f(0),则f(0)=0,(2)令y=﹣x,得f(x﹣x)=f(x)+f(﹣x),又f(0)=0,则有0=f(x)+f(﹣x),即可证得f(x)为奇函数;(3)因为f(x)在R上是增函数,又由(2)知f(x)是奇函数,f(k•3x)<﹣f(3x﹣9x﹣2)=f(﹣3x+9x+2),即有k•3x<﹣3x+9x+2,得,又有,即有最小值2﹣1,所以要使f(k•3x)+f(3x﹣9x﹣2)<0恒成立,只要使即可,故k的取值范围是(﹣∞,2﹣1).24.【答案】【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;…经检验,符合题意;…(2)由(1)知,f(x)==﹣+;由y=2x的单调性可推知f(x)在R上为减函数;…(3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)<0等价于f(1+|x|)<﹣f(x),即f(1+|x|)<f(﹣x);…又因f(x)是R上的减函数,由上式推得1+|x|>﹣x,…解得x∈R.…。
沁水县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
沁水县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣22. 若cos (﹣α)=,则cos (+α)的值是( )A .B .﹣C .D .﹣3. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .4. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( ) A .1 B .2C .3D .45. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )A .B .C .2D .36. 等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( )A .6B .5C .3D .47. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80B .40C .60D .208. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5 C .9 D .279. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2]10.半径R 的半圆卷成一个圆锥,则它的体积为( )A .πR 3B .πR 3C .πR 3D .πR 311.已知全集U R =,{|239}x A x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .A B B = C .()R A B ≠∅ð D .()R A B R =ð12.函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}二、填空题13.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .14.用“<”或“>”号填空:30.8 30.7.15.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .16.已知i 是虚数单位,复数的模为 .17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .18.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是三、解答题19.求下列各式的值(不使用计算器):(1);(2)lg2+lg5﹣log 21+log 39.20.已知函数xx x f ---=713)(的定义域为集合A ,{x |210}B x =<<,{x |21}C a x a =<<+(1)求A B ,B A C R ⋂)(;(2)若B C B =,求实数a 的取值范围.21.如图,已知边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=2,M 为BC 的中点(Ⅰ)试在棱AD 上找一点N ,使得CN ∥平面AMP ,并证明你的结论. (Ⅱ)证明:AM ⊥PM .22.设函数f (x )=|x ﹣a|﹣2|x ﹣1|. (Ⅰ)当a=3时,解不等式f (x )≥1;(Ⅱ)若f (x )﹣|2x ﹣5|≤0对任意的x ∈[1,2]恒成立,求实数a 的取值范围.23.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?24.已知函数f(x)=x3+x.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))沁水县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.2.【答案】B【解析】解:∵cos(﹣α)=,∴cos(+α)=﹣cos=﹣cos(﹣α)=﹣.故选:B.3.【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx﹣2,即kx﹣y﹣2=0,若过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d≤1,即≤1,即k2﹣3≥0,解得k≤﹣或k≥,即≤α≤且α≠,综上所述,≤α≤,故选:A.4.【答案】B【解析】解:∵①若m∥l,m⊥α,则由直线与平面垂直的判定定理,得l⊥α,故①正确;②若m∥l,m∥α,则l∥α或l⊂α,故②错误;③如图,在正方体ABCD﹣A1B1C1D1中,平面ABB1A1∩平面ABCD=AB,平面ABB1A1∩平面BCC1B1=BB1,平面ABCD∩平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,得n∥m,同理n∥l,故m∥l,故命题④正确.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.5.【答案】D【解析】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.6.【答案】D【解析】解:∵等比数列{a n}中a4=2,a5=5,∴a4•a5=2×5=10,∴数列{lga n}的前8项和S=lga1+lga2+…+lga8=lg(a1•a2…a8)=lg(a4•a5)4=4lg(a4•a5)=4lg10=4故选:D.【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B .【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.8. 【答案】C【解析】解:令log 2(x 2+1)=0,得x=0, 令log 2(x 2+1)=1,得x 2+1=2,x=±1, 令log2(x 2+1)=2,得x 2+1=4,x=.则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣ },{0,﹣1, },{0,1,﹣},{0,1, },{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C .【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.9. 【答案】D【解析】解:由A 中不等式变形得:﹣2≤2x ≤4,即﹣1≤x ≤2, ∴A=[﹣1,2],由B 中y=lg (x ﹣1),得到x ﹣1>0,即x >1, ∴B=(1,+∞), 则A ∩B=(1,2], 故选:D .10.【答案】A【解析】解:2πr=πR ,所以r=,则h=,所以V=故选A11.【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A .【解析】解:要使函数有意义,只须,即,解得1<x≤4且x≠2,∴函数f(x)的定义域为{x|1<x≤4且x≠2}.故选B二、填空题13.【答案】.【解析】解:∵x2﹣4ax+3a2<0(a<0),∴(x﹣a)(x﹣3a)<0,则3a<x<a,(a<0),由x2﹣x﹣6≤0得﹣2≤x≤3,∵¬p是¬q的必要非充分条件,∴q是p的必要非充分条件,即,即≤a<0,故答案为:14.【答案】>【解析】解:∵y=3x是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.15.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.16.【答案】.【解析】解:∵复数==i ﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.17.【答案】 4 .【解析】解:∵sinA ,sinB ,sinC 依次成等比数列,∴sin 2B=sinAsinC ,由正弦定理可得:b 2=ac ,∵c=2a ,可得:b=a ,∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S△ABC =acsinB==4.故答案为:4.18.【答案】(],1-∞ 【解析】试题分析:函数(){}2min 2,f x x x =-的图象如下图:观察上图可知:()f x 的取值范围是(],1-∞。
沁县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
考 点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理. 【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平
面向 量问题中, 向量的线性运算和数量积是高频考点,当出 现线性运算问题时,注意两个向量的差 OA OB BA ,这是一个易错点, 两个 向量的和 OA OB 2OD ( D 点是 AB 的中点),另外,要选好基底 向量,如本题就要灵活使用向量 AB, AC ,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几
【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能
力.
2
17.已知向量 a,b 满足 a 4 ,| b | 2 , (a b) (3a b) 4 ,则 a 与 b 的夹角为
.
【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.
B.若直线 l⊥平面 α,直线 l⊥平面 β,则 α∥β.
C.若直线 l1,l2 与平面 α 所成的角相等,则 l1∥l2
D.若直线 l 上两个不同的点 A,B 到平面 α 的距离相等,则 l∥α
6. 在ABC 中,角 A,B , C 的对边分别是,,, BH 为 AC 边上的高, BH 5 ,若 20aBC 15bCA 12c AB 0 ,则 H 到 AB 边的距离为( )
第 5 页,共 16 页
24.设锐角三角形 ABC 的内角 A, B,C 所对的边分别为 a,b, c a 2b sin A . (1)求角 B 的大小; (2)若 a 3 3 , c 5 ,求.
第 6 页,共 16 页
沁水县第一中学校2018-2019学年上学期高二数学12月月考试题含解析
沁水县第一中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知角的终边经过点,则的值为( )α(sin15,cos15)-2cosαA .B . C. D .012+12342. 若直线:圆:交于两点,则弦长L 047)1()12(=--+++m y m x m C 25)2()1(22=-+-y x B A ,的最小值为( )||AB A .B .C .D .58545253. 函数f (x )=lnx ﹣+1的图象大致为( )A .B .C .D .4. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >05. 正方体的内切球与外接球的半径之比为()A .B .C .D .6. 已知双曲线的左、右焦点分别为,过的直线交双曲线于两点且)0,0(12222>>=-b a by a x 21F F 、2F Q P ,,若,,则双曲线离心率的取值范围为( ).1PF PQ ⊥||||1PF PQ λ=34125≤≤λe A. B. C. D. ]210,1(]537,1(210,537[),210[+∞第Ⅱ卷(非选择题,共100分)7. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )=C .f (x )=ln e x 与g (x )=e lnxD .f (x )=(x ﹣1)0与g (x )=8. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为()A. B. C. D. 4π5π2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.9. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣310.函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是()A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)11.设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是()A .2B .8C .﹣2或8D .2或812.如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是()A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}二、填空题13.若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-1212||z z z +()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.14.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 . 15.(sinx+1)dx 的值为 .16.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .17.方程(x+y﹣1)=0所表示的曲线是 .18.利用计算机产生1到6之间取整数值的随机数a和b,在a+b为偶数的条件下,|a﹣b|>2发生的概率是 .三、解答题19.已知等差数列{a n}的前n项和为S n,公差d≠0,S2=4,且a2,a5,a14成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)从数列{a n}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{b n},记该数列的前n项和为T n,求T n的表达式.20.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)21..(1)求证:(2),若.22.双曲线C:x2﹣y2=2右支上的弦AB过右焦点F.(1)求弦AB的中点M的轨迹方程(2)是否存在以AB为直径的圆过原点O?若存在,求出直线AB的斜率K的值.若不存在,则说明理由.23.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.24.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.沁水县第一中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B 【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.2. 【答案】B 【解析】试题分析:直线,直线过定点,解得定点,当点:L ()()0472=-++-+y x y x m ⎩⎨⎧=-+=-+04072y x y x ()1,3(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长AB ()()5123122=-+-=d ,故选B.545252=-=AB 考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R 是圆的半径,d 是圆心到直线的距离.222d R l -=1111]3. 【答案】A【解析】解:∵f (x )=lnx ﹣+1,∴f ′(x )=﹣=,∴f (x )在(0,4)上单调递增,在(4,+∞)上单调递减;且f (4)=ln4﹣2+1=ln4﹣1>0;故选A .【点评】本题考查了导数的综合应用及函数的图象的应用. 4. 【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x >0,使得x 2﹣x <0,故选:C .【点评】本题主要考查含有量词的命题 的否定,比较基础. 5. 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为: a ,所以,正方体的内切球与外接球的半径之比为:故选C 6. 【答案】C【解析】如图,由双曲线的定义知,,,两式相加得a PF PF 2||||21=-a QF QF 2||||21=- ,又,,, a PQ QF PF 4||||||11=-+||||1PF PQ λ=1PF PQ ⊥||1||121PF QF λ+=∴ ,①, a PF PQ QF PF 4||)11(||||||1211=-++=-+∴λλλλ-++=21114||aPF②,在中,,将①②代入得λλλλ-+++-+=∴22211)11(2||a PF 12PF F ∆2212221||||||F F PF PF =+ ,化简得:+-++22)114(λλa2222411)11(2(c a =-+++-+λλλλ+-++22)11(4λλ,令,易知在上单调递减,故22222)11()11(e =-+++-+λλλλt =-++λλ211λλ-++=211y ]34,125[,,,故答案 选35,34[∈t 22222284)2(4t t t t t t e +-=-+=∴25,2537[21411(82∈+-=t 210,537[∈e C.7. 【答案】D【解析】解:对于A :f (x )=|x ﹣1|,g (x )=x ﹣1,表达式不同,不是相同函数;对于B :f (x )的定义域是:{x|x ≥1或x ≤﹣1},g (x )的定义域是{x}x ≥1},定义域不同,不是相同函数;对于C :f (x )的定义域是R ,g (x )的定义域是{x|x >0},定义域不同,不是相同函数;对于D :f (x )=1,g (x )=1,定义域都是{x|x ≠1},是相同函数;故选:D.【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题.8.【答案】B9.【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f′(x)=0的两个根,∵f(x)=ax3+bx2+cx+d,∴f′(x)=3ax2+2bx+c,由f′(x)=3ax2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a,2b=﹣3a,即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.10.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C11.【答案】D【解析】解:由题意可得3∈A,|a﹣5|=3,∴a=2,或a=8,故选D.12.【答案】C【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,∵全集U=R,M={x|x>2},N={0,1,2,3},∴∁M={x|x≤2},∴∁M∩N={0,1,2},故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.二、填空题13.【答案】D【解析】14.【答案】 ﹣3<a<﹣1或1<a<3 .【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.15.【答案】 2 .【解析】解:所求的值为(x﹣cosx)|﹣11=(1﹣cos1)﹣(﹣1﹣cos(﹣1))=2﹣cos1+cos1=2.故答案为:2.16.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.17.【答案】 两条射线和一个圆 .【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.18.【答案】 .【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P==故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.三、解答题19.【答案】【解析】解:(Ⅰ)依题意得:,解得.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.即a n=2n﹣1;(Ⅱ)由已知得,.∴T n=b1+b2+…+b n=(22﹣1)+(23﹣1)+…+(2n+1﹣1)=(22+23+…+2n+1)﹣n=.【点评】本题主要考查等比数列和等差数列的性质,考查了等比数列的前n项和的求法,考查了化归与转化思想方法,是中档题.20.【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.21.【答案】【解析】解:(1)∵,∴a n+1=f(a n)=,则,∴{}是首项为1,公差为3的等差数列;(2)由(1)得,=3n﹣2,∵{b n}的前n项和为,∴当n≥2时,b n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,而b1=S1=1,也满足上式,则b n=2n﹣1,∴==(3n﹣2)2n﹣1,∴=20+4•21+7•22+…+(3n﹣2)2n﹣1,①则2T n=21+4•22+7•23+…+(3n﹣2)2n,②①﹣②得:﹣T n=1+3•21+3•22+3•23+…+3•2n﹣1﹣(3n﹣2)2n,∴T n=(3n﹣5)2n+5.22.【答案】【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12﹣y12=2,x22﹣y22=2,两式相减可得(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,∴2x(x1﹣x2)﹣2y(y1﹣y2)=0,∴=,∵双曲线C:x2﹣y2=2右支上的弦AB过右焦点F(2,0),∴,化简可得x2﹣2x﹣y2=0,(x≥2)﹣﹣﹣﹣﹣﹣﹣(2)假设存在,设A(x1,y1),B(x2,y2),l AB:y=k(x﹣2)由已知OA⊥OB得:x1x2+y1y2=0,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①,所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②联立①②得:k2+1=0无解所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣23.【答案】【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,﹣7),半径长r=5.…因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为.…因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2x﹣y+b=0.所以圆心到直线l的距离为,…因此,解得b=﹣2,或b=﹣12.…所以,所求直线l的方程为y=2x﹣2,或y=2x﹣12.即2x﹣y﹣2=0,或2x﹣y﹣12=0.…【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.24.【答案】【解析】解:(1)依题意,知f(x)的定义域为(0,+∞).…当a=2,b=1时,f(x)=lnx﹣x2﹣x,f′(x)=﹣2x﹣1=﹣.令f′(x)=0,解得x=.…当0<x<时,f′(x)>0,此时f(x)单调递增;当x>时,f′(x)<0,此时f(x)单调递减.所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…(2)F(x)=lnx+,x∈[2,3],所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…所以a≥(﹣x02+x0)max,x0∈[2,3]…当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…(3)当a=0,b=﹣1时,f(x)=lnx+x,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴m=1+,…设g(x)=1+,则g′(x)=.…令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…所以m=1+,或1≤m<1+.…。
沁水县一中2018-2019学年高二上学期第二次月考试卷数学
沁水县一中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a2.已知函数f(x)=x3+mx2+(2m+3)x(m∈R)存在两个极值点x1,x2,直线l经过点A(x1,x12),B(x2,x22),记圆(x+1)2+y2=上的点到直线l的最短距离为g(m),则g(m)的取值范围是()A.[0,2] B.[0,3] C.[0,)D.[0,)3.若A(3,﹣6),B(﹣5,2),C(6,y)三点共线,则y=()A.13 B.﹣13 C.9 D.﹣94.若集合M={y|y=2x,x≤1},N={x|≤0},则N∩M()A.(1﹣1,] B.(0,1] C.[﹣1,1] D.(﹣1,2]5.某程序框图如图所示,该程序运行后输出的S的值是()A.﹣3 B.﹣C.D.26.满足条件{0,1}∪A={0,1}的所有集合A的个数是()A.1个B.2个C.3个D.4个7.曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°8. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)9. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧qC .p ∧¬qD .¬p ∧¬q10.已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A .B .C .D .11.A={x|x <1},B={x|x <﹣2或x >0},则A ∩B=( )A .(0,1)B .(﹣∞,﹣2)C .(﹣2,0)D .(﹣∞,﹣2)∪(0,1)12.已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.二、填空题13.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 14.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则 OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.15.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______. 16.若的展开式中含有常数项,则n 的最小值等于 .17.某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况.在这段时间内,该车每100千米平均耗油量为 升.18.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .三、解答题19.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立 平面直角坐标系,直线的参数方程是243x ty t=-+⎧⎨=⎩(为参数).(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.20.在极坐标系内,已知曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,以极点为原点,极轴方向为x 正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为(t 为参数).(Ⅰ)求曲线C 1的直角坐标方程以及曲线C 2的普通方程;(Ⅱ)设点P 为曲线C 2上的动点,过点P 作曲线C 1的切线,求这条切线长的最小值.21.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.226(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.23.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.24.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.沁水县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.2.【答案】C【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f′(x)=x2+2mx+2m+3,由题意可得,判别式△>0,即有4m2﹣4(2m+3)>0,解得m>3或m<﹣1,又x1+x2=﹣2m,x1x2=2m+3,直线l经过点A(x1,x12),B(x2,x22),即有斜率k==x1+x2=﹣2m,则有直线AB:y﹣x12=﹣2m(x﹣x1),即为2mx+y﹣2mx1﹣x12=0,圆(x+1)2+y2=的圆心为(﹣1,0),半径r为.则g(m)=d﹣r=﹣,由于f′(x1)=x12+2mx1+2m+3=0,则g(m)=﹣,又m>3或m<﹣1,即有m2>1.则g(m)<﹣=,则有0≤g(m)<.故选C.【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题.3.【答案】D【解析】解:由题意,=(﹣8,8),=(3,y+6).∵∥,∴﹣8(y+6)﹣24=0,∴y=﹣9,故选D.【点评】本题考查三点共线,考查向量知识的运用,三点共线转化为具有公共点的向量共线是关键.4.【答案】B【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x≤1,即N=(﹣1,1],则M∩N=(0,1],故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.5.【答案】B【解析】解:由程序框图得:第一次运行S==﹣3,i=2;第二次运行S==﹣,i=3;第三次运行S==,i=4;第四次运行S==2,i=5;第五次运行S==﹣3,i=6,…S的值是成周期变化的,且周期为4,当i=2015时,程序运行了2014次,2014=4×503+2,∴输出S=﹣.故选:B.【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S值的周期性变化规律是关键.6.【答案】D【解析】解:由{0,1}∪A={0,1}易知:集合A⊆{0,1}而集合{0,1}的子集个数为22=4故选D【点评】本题考查两个集合并集时的包含关系,以及求n个元素的集合的子集个数为2n个这个知识点,为基础题.7.【答案】B【解析】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.8.【答案】A【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)<0成立,即当x>0时,g′(x)<0,∴当x>0时,函数g(x)为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是增函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)<g(2),解得:0<x<2,x<0时,由f(x)>0,得:g(x)>g(﹣2),解得:x<﹣2,∴f(x)>0成立的x的取值范围是:(﹣∞,﹣2)∪(0,2).故选:A.9.【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.10.【答案】C【解析】解:设g(x)=xe x,y=mx﹣m,由题设原不等式有唯一整数解,即g(x)=xe x在直线y=mx﹣m下方,g′(x)=(x+1)e x,g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),结合函数图象得K PA≤m<K PB,即≤m<,,故选:C.【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.11.【答案】D【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),∴A∩B=(﹣∞,﹣2)∪(0,1),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.【答案】D-的体积最大,且此时OC为球的半径.设球的半径为R,【解析】当OC⊥平面AOB平面时,三棱锥O ABC则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 二、填空题13.【答案】12-考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.14.【解析】15.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。
沁水县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
面 CB1D1 .其中正确结论的个数是(
)
A. B.
C.
D.
7. 设 F1,F2 是双曲线
的两个焦点,P 是双曲线上的一点,且 3|PF1|=4|PF2|,则△PF1F2 的面积等于
() A. B. C.24 D.48 8. 高一新生军训时,经过两天的打靶训练,甲每射击 10 次可以击中 9 次,乙每射击 9 次可以击中 8 次.甲、 乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )
A.必要而不充分条件 B.充分而不必要条件
C.充分必要条件 D.既不充分也不必要条件
第 2 页,共 17 页
11.如图,一个底面半径为 R 的圆柱被与其底面所成角是 30°的平面所截,截面是一个椭圆,则该椭圆的离心 率是( )
A. B. C. D. 12.若复数 z=2﹣i ( i 为虚数单位),则 =( )
6. 【答案】 D
【解析】
考 点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系. 【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平 行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线, 可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明 面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直. 7. 【答案】C 【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,
【解析】解:根据几何体的三视图,得该几何体是圆锥被轴截面截去一半所得的几何体,
底面圆的半径为 1,高为 2,
所以该几何体的体积为 V 几何体= × π•12×2= .
沁水县第二中学2018-2019学年上学期高二数学12月月考试题含解析
沁水县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位2. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .3. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .64. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )B.2C.D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.5. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是( )A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④6. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )A .4320B .﹣4320C .20D .﹣207. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .8. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 39. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1C .2D .310.如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .11.已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111] A .)22,0( B .)33,0( C .)55,0( D .)66,0(12.函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A. B. C.D.二、填空题13.数据﹣2,﹣1,0,1,2的方差是 .14.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为cm 3.15.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx﹣2)+f (x )<0恒成立,则x 的取值范围为_____.17.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 .18()23k x =-+有两个不等实根,则的取值范围是 .三、解答题19.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,PA =1AB =,求三棱锥A QCD -的体积.20.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围.21.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.22.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.23.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.24.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率. 参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力沁水县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】试题分析:函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数 ()cos 3f x x π⎛⎫=+ ⎪⎝⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,故选B.考点:函数()sin y A x ωϕ=+的图象变换. 2. 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O ,A ,B 三点能构成三角形,则O ,A ,B 三点不共线。
沁水县外国语学校2018-2019学年上学期高二数学12月月考试题含解析
沁水县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.与命题“若x∈A,则y∉A”等价的命题是()A.若x∉A,则y∉A B.若y∉A,则x∈A C.若x∉A,则y∈A D.若y∈A,则x∉A2.α是第四象限角,,则sinα=()A.B.C.D.3.已知等差数列的公差且成等比数列,则()A.B.C.D.4.设a∈R,且(a﹣i)•2i(i为虚数单位)为正实数,则a等于()A.1 B.0 C.﹣1 D.0或﹣15.=()A.2 B.4 C.πD.2π6.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()A.6B.9C.12D .187. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对8. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 9. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2 D .2 510.已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}11.正方体的内切球与外接球的半径之比为( )A .B .C .D .12.抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=二、填空题13.已知平面上两点M (﹣5,0)和N (5,0),若直线上存在点P 使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:①y=x+1 ②y=2 ③y=x ④y=2x+1是“单曲型直线”的是 .14.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b a c+的最大值为__________. 15.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .16.若函数f (x )=,则f (7)+f (log 36)= .17.已知实数x,y满足约束条,则z=的最小值为.18.抛物线y=x2的焦点坐标为()A.(0,)B.(,0)C.(0,4) D.(0,2)三、解答题19.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.20.已知等差数列{a n},等比数列{b n}满足:a1=b1=1,a2=b2,2a3﹣b3=1.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=a n b n,求数列{c n}的前n项和S n.21.在四棱锥E﹣ABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE.22.设f(x)=ax2﹣(a+1)x+1(1)解关于x的不等式f(x)>0;(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.23.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.24.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.(1)求证:BD1∥平面A1DE;(2)求证:A1D⊥平面ABD1.沁水县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.故选D.2.【答案】B【解析】解:∵α是第四象限角,∴sinα=,故选B.【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.3.【答案】A【解析】由已知,,成等比数列,所以,即所以,故选A答案:A4.【答案】B【解析】解:∵(a﹣i)•2i=2ai+2为正实数,∴2a=0,解得a=0.故选:B.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.5.【答案】A【解析】解:∵(﹣cosx﹣sinx)′=sinx﹣cosx,∴==2.故选A .6. 【答案】【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a =18,选D.法二:a =6 102,b =2 016,r =54, a =2 016,b =54,r =18, a =54,b =18,r =0. ∴输出a =18,故选D. 7. 【答案】A【解析】解:∵线段AB 在平面α内, ∴直线AB 上所有的点都在平面α内, ∴直线AB 与平面α的位置关系: 直线在平面α内,用符号表示为:AB ⊂α故选A .【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.8. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题.9. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0). 由题意得⎩⎪⎨⎪⎧2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r2,解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9, 令y =0得,x =-1±5,∴|MN |=|(-1+5)-(-1-5)|=25,选D.10.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A 中,但不在集合B 中.由韦恩图可知阴影部分表示的集合为(C U B )∩A ,又A={1,2,3,4,5},B={x ∈R|x ≥3},∵C U B={x|x <3},∴(C U B )∩A={1,2}.则图中阴影部分表示的集合是:{1,2}. 故选B . 【点评】本小题主要考查Venn 图表达集合的关系及运算、Venn 图的应用等基础知识,考查数形结合思想.属于基础题.11.【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a,半径为: a ,所以,正方体的内切球与外接球的半径之比为:故选C12.【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x , 可得准线方程为x=.故选:D .二、填空题13.【答案】 ①② .【解析】解:∵|PM|﹣|PN|=6∴点P 在以M 、N为焦点的双曲线的右支上,即,(x >0).对于①,联立,消y 得7x 2﹣18x ﹣153=0,∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.对于②,联立,消y 得x 2=,∴y=2是“单曲型直线”.对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.对于④,联立,消y 得20x 2+36x+153=0,∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.故符合题意的有①②. 故答案为:①②.【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.14.【答案】2【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()220ax b a x c b +-+-≥在R上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:222222241441c b ac a a a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭,令1,(0)c t t a =->,24422222t y t t t t==≤=++++,故222b a c +的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 15.【答案】 3x ﹣y ﹣11=0 .【解析】解:设过点P(4,1)的直线与抛物线的交点为A(x1,y1),B(x2,y2),即有y12=6x1,y22=6x2,相减可得,(y1﹣y2)(y1+y2)=6(x1﹣x2),即有k AB====3,则直线方程为y﹣1=3(x﹣4),即为3x﹣y﹣11=0.将直线y=3x﹣11代入抛物线的方程,可得9x2﹣72x+121=0,判别式为722﹣4×9×121>0,故所求直线为3x﹣y﹣11=0.故答案为:3x﹣y﹣11=0.16.【答案】5.【解析】解:∵f(x)=,∴f(7)=log39=2,f(log36)=+1=,∴f(7)+f(log36)=2+3=5.故答案为:5.17.【答案】.【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.18.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.三、解答题19.【答案】【解析】解:(I)证明:∵平面PAD⊥平面ABCD,AB⊥AD,∴AB⊥平面PAD,∵E、F为PA、PB的中点,∴EF∥AB,∴EF⊥平面PAD;(II)解:过P作AD的垂线,垂足为O,∵平面PAD⊥平面ABCD,则PO⊥平面ABCD.取AO中点M,连OG,EO,EM,∵EF∥AB∥OG,∴OG即为面EFG与面ABCD的交线又EM∥OP,则EM⊥平面ABCD.且OG⊥AO,故OG⊥EO∴∠EOM 即为所求在RT△EOM中,EM=OM=1∴tan∠EOM=,故∠EOM=60°∴平面EFG与平面ABCD所成锐二面角的大小是60°.【点评】本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.20.【答案】【解析】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q:∵a1=b1=1,a2=b2,2a3﹣b3=1.∴1+d=q,2(1+2d)﹣q2=1,解得或.∴a n=1,b n=1;或a n=1+2(n﹣1)=2n﹣1,b n=3n﹣1.(II)当时,c n=a n b n=1,S n=n.当时,c n=a n b n=(2n﹣1)3n﹣1,∴S n=1+3×3+5×32+…+(2n﹣1)3n﹣1,3S n=3+3×32+…+(2n﹣3)3n﹣1+(2n﹣1)3n,∴﹣2S n=1+2(3+32+…+3n﹣1)﹣(2n﹣1)3n=﹣1﹣(2n﹣1)3n=(2﹣2n)3n﹣2,∴S n=(n﹣1)3n+1.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.21.【答案】【解析】【分析】(Ⅰ)连接FO,则OF为△BDE的中位线,从而DE∥OF,由此能证明DE∥平面ACF.(Ⅱ)推导出BD⊥AC,EC⊥BD,从而BD⊥平面ACE,由此能证明BD⊥AE.【解答】证明:(Ⅰ)连接FO,∵底面ABCD是正方形,且O为对角线AC和BD交点,∴O为BD的中点,又∵F为BE中点,∴OF为△BDE的中位线,即DE∥OF,又OF⊂平面ACF,DE⊄平面ACF,∴DE∥平面ACF.(Ⅱ)∵底面ABCD为正方形,∴BD⊥AC,∵EC⊥平面ABCD,∴EC⊥BD,∴BD⊥平面ACE,∴BD⊥AE.22.【答案】【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,即有(ax﹣1)(x﹣1)>0,当a=0时,即有1﹣x>0,解得x<1;当a<0时,即有(x﹣1)(x﹣)<0,由1>可得<x<1;当a=1时,(x﹣1)2>0,即有x∈R,x≠1;当a>1时,1>,可得x>1或x<;当0<a<1时,1<,可得x<1或x>.综上可得,a=0时,解集为{x|x<1};a<0时,解集为{x|<x<1};a=1时,解集为{x|x∈R,x≠1};a>1时,解集为{x|x>1或x<};0<a<1时,解集为{x|x<1或x>}.(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,即为ax2﹣(a+1)x+1>0,即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].则g(﹣1)>0,且g(1)>0,即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,即(x﹣1)(x+2)<0,且x(x﹣1)>0,解得﹣2<x<1,且x>1或x<0.可得﹣2<x<0.故x的取值范围是(﹣2,0).23.【答案】【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(Ⅱ)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.24.【答案】【解析】证明:(1)连结A1D,AD1,A1D∩AD1=O,连结OE,∵长方体ABCD﹣A1B1C1D1中,ADD1A1是矩形,∴O是AD1的中点,∴OE∥BD1,∵OE∥BD1,OE⊂平面ABD1,BD1⊄平面ABD1,∴BD1∥平面A1DE.(2)∵长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,∴ADD1A1是正方形,∴A1D⊥AD1,∵长方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,∴A1D⊥AB,又AB∩AD1=A,∴A1D⊥平面ABD1.。
沁水县高中2018-2019学年上学期高二数学12月月考试题含解析
沁水县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 计算log 25log 53log 32的值为( )A .1B .2C .4D .82. 执行如图所示的程序框图,则输出的S 等于( )A .19B .42C .47D .893. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .B .y=x 2C .y=﹣x|x|D .y=x ﹣24. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .5. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( )A .{1}-B .{1}C .{-D . 6. 曲线y=x 3﹣3x 2+1在点(1,﹣1)处的切线方程为( )A .y=3x ﹣4B .y=﹣3x+2C .y=﹣4x+3D .y=4x ﹣57. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位 8. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )A .6B .9C .12D .189. 已知集合A={x|x 2﹣x ﹣2<0},B={x|﹣1<x <1},则( ) A .A ⊊B B .B ⊊A C .A=B D .A ∩B=∅10.若直线:1l y kx =-与曲线C :1()1ex f x x =-+没有公共点,则实数k 的最大值为( )A .-1B .12C .1D 【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.11.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+B .12+23πC .12+24πD .12+π12.“m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题13.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 14.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.15.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .16.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.17.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xxe xf e (其 中为自然对数的底数)的解集为 .18.在(x 2﹣)9的二项展开式中,常数项的值为 .三、解答题19.已知数列{a n }的前n 项和为S n ,首项为b ,若存在非零常数a ,使得(1﹣a )S n =b ﹣a n+1对一切n ∈N *都成立.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)问是否存在一组非零常数a ,b ,使得{S n }成等比数列?若存在,求出常数a ,b 的值,若不存在,请说明理由.20.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.21.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O为AD的中点,且CD⊥A1O(Ⅰ)求证:A1O⊥平面ABCD;(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由.22.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.23.设点P的坐标为(x﹣3,y﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率.24.已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}(1)若A∩B=[0,3],求实数m的值;(2)若p是¬q的充分条件,求实数m的取值范围.沁水县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:log25log53log32==1.故选:A.【点评】本题考查对数的运算法则的应用,考查计算能力.2.【答案】B【解析】解:模拟执行程序框图,可得k=1S=1满足条件k<5,S=3,k=2满足条件k<5,S=8,k=3满足条件k<5,S=19,k=4满足条件k<5,S=42,k=5不满足条件k<5,退出循环,输出S的值为42.故选:B.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,k的值是解题的关键,属于基础题.3.【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;函数y=﹣x|x|为奇函数,不满足条件;函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.4.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.5.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算6.【答案】B【解析】解:∵点(1,﹣1)在曲线上,y′=3x2﹣6x,∴y′|x=1=﹣3,即切线斜率为﹣3.∴利用点斜式,切线方程为y+1=﹣3(x﹣1),即y=﹣3x+2.故选B.【点评】考查导数的几何意义,该题比较容易.7.【答案】C【解析】试题分析:()2222==+=+,故向上平移个单位.g x x x xlog2log2log1log考点:图象平移.8.【答案】【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a=18,选D.法二:a=6 102,b=2 016,r=54,a=2 016,b=54,r=18,a =54,b =18,r =0. ∴输出a =18,故选D.9. 【答案】B【解析】解:由题意可得,A={x|﹣1<x <2}, ∵B={x|﹣1<x <1},在集合B 中的元素都属于集合A ,但是在集合A 中的元素不一定在集合B 中,例如x= ∴B ⊊A . 故选B .10.【答案】C【解析】令()()()()111ex g x f x kx k x =--=-+,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1111101e k g k -⎛⎫=-+< ⎪-⎝⎭.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10e xg x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C .11.【答案】C【解析】解:根据几何体的三视图,得; 该几何体是一半圆台中间被挖掉一半圆柱, 其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π. 故选:C .【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.12.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x ﹣1=0,2x ﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y ﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.二、填空题13.【答案】1 2 -考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.14.【答案】[]1,1-【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.15.【答案】m>1.【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则命题“∀x∈R,x2﹣2x+m>0”是真命题,即判别式△=4﹣4m<0,解得m>1,故答案为:m>116.【答案】3,0(17.【答案】)【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以x e ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.118.【答案】 84 .【解析】解:(x 2﹣)9的二项展开式的通项公式为 T r+1=•(﹣1)r •x 18﹣3r ,令18﹣3r=0,求得r=6,可得常数项的值为T 7===84,故答案为:84. 【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)∵数列{a n }的前n 项和为S n ,首项为b ,存在非零常数a ,使得(1﹣a )S n =b ﹣a n+1对一切n ∈N *都成立,由题意得当n=1时,(1﹣a )b=b ﹣a 2,∴a 2=ab=aa 1,当n ≥2时,(1﹣a )S n =b ﹣a n+1,(1﹣a )S n+1=b ﹣a n+1,两式作差,得:a n+2=a •a n+1,n ≥2,∴{a n }是首项为b ,公比为a 的等比数列,∴.(Ⅱ)当a=1时,S n =na 1=nb ,不合题意,当a ≠1时,,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a ,b ,使得{S n }成等比数列.【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.20.【答案】(1) 7a =;(2) 310P =. 【解析】试题分析: (1)由平均值相等很容易求得的值;(2)成绩高于86分的学生共五人,写出基本事件共10个,可得恰有两名为女生的基本事件的个数,则其比值为所求.其中恰有2名学生是女生的结果是(96,93,87),(96,91,87),(96,90,87)共3种情况.所以从成绩高于86分的学生中抽取了3名学生恰有2名是女生的概率310P =.1 考点:平均数;古典概型.【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好.21.【答案】【解析】满分(13分).(Ⅰ)证明:∵∠A 1AD=,且AA 1=2,AO=1,∴A 1O==,…(2分)∴+AD 2=AA 12,∴A1O⊥AD.…(3分)又A1O⊥CD,且CD∩AD=D,∴A1O⊥平面ABCD.…(5分)(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),则A(0,﹣1,0),A(0,0,),…(6分)1设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),∵=,=(1,m+1,0),且取z=1,得=.…(8分)又A1O⊥平面ABCD,A1O⊂平面A1ADD1∴平面A1ADD1⊥平面ABCD.又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,∴CD⊥平面A1ADD1.不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)由题意得==,…(12分)解得m=1或m=﹣3(舍去).∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.22.【答案】【解析】解:(1)依题意,知f(x)的定义域为(0,+∞).…当a=2,b=1时,f(x)=lnx﹣x2﹣x,f′(x)=﹣2x﹣1=﹣.令f′(x)=0,解得x=.…当0<x<时,f′(x)>0,此时f(x)单调递增;当x>时,f′(x)<0,此时f(x)单调递减.所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…(2)F(x)=lnx+,x∈[2,3],所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…所以a≥(﹣x02+x0)max,x0∈[2,3]…当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…(3)当a=0,b=﹣1时,f(x)=lnx+x,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴m=1+,…设g(x)=1+,则g′(x)=.…令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…所以m=1+,或1≤m<1+.…23.【答案】【解析】解:(1)由已知得,基本事件(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣1,﹣1),(﹣1,0),(﹣1,1),(0,﹣1),(0,0)(0,1)共9种…4(分)设“点P在第二象限”为事件A,事件A有(﹣2,1),(﹣1,1)共2种则P(A)=…6(分)(2)设“点P在第三象限”为事件B,则事件B满足…8(分)∴,作出不等式组对应的平面区域如图:则P(B)==…12(分)24.【答案】【解析】解:由已知得:A={x|﹣1≤x≤3},B={x|m﹣2≤x≤m+2}.(1)∵A∩B=[0,3]∴∴,∴m=2;(2)∵p是¬q的充分条件,∴A⊆∁R B,而C R B={x|x<m﹣2,或x>m+2}∴m﹣2>3,或m+2<﹣1,∴m>5,或m<﹣3.。
沁水县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
沁水县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.已知e为自然对数的底数,若对任意的1[,1]xe∈,总存在唯一的[1,1]y∈-,使得2ln1yx x a y e-++=成立,则实数a的取值范围是()A.1[,]eeB.2(,]eeC.2(,)e+∞ D.21(,)ee e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.2.执行如图所示的程序框图,如果输入的t=10,则输出的i=()A.4 B.5C.6 D.73.已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()A.2对B.3对C.4对D.5对4.已知命题1:0,2p x xx∀>+≥,则p⌝为()A.10,2x xx∀>+<B.10,2x xx∀≤+<C .10,2x x x ∃≤+< D .10,2x x x∃>+< 5. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)6. 函数2(44)xy a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .17. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°8. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A .1B.C.D.9. 下列各组函数为同一函数的是( ) A .f (x )=1;g (x )= B .f (x )=x ﹣2;g (x )= C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=10.已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)11.在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力. 12.如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .二、填空题13.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.14.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .15.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件 (4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p:.其中叙述正确的是 .(填上所有正确命题的序号)16.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 17.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且26121a a a =∙,则数列12n n S -⎧⎫⎨⎬⎩⎭项中 的最大值为_________.18.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n=,则循环小数0.的分数形式是 .三、解答题19.如图所示,在正方体1111ABCD A B C D 中. (1)求11A C 与1B C 所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求11A C 与EF 所成角的大小.20.如图,菱形ABCD 的边长为2,现将△ACD 沿对角线AC 折起至△ACP 位置,并使平面PAC ⊥平面ABC .(Ⅰ)求证:AC ⊥PB ;(Ⅱ)在菱形ABCD 中,若∠ABC=60°,求直线AB 与平面PBC 所成角的正弦值; (Ⅲ)求四面体PABC 体积的最大值.21.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x 的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.22.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角 的正弦值; (2)证明:B 1F ∥平面A 1BE .A 1B 1C 1D D 1 CBA E F23.(本小题满分12分)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直.(1)求sin A 的值;(2)若a =ABC ∆的面积S 的最大值.24.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)沁水县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1.【答案】B【解析】2.【答案】【解析】解析:选B.程序运行次序为第一次t=5,i=2;第二次t=16,i=3;第三次t=8,i=4;第四次t=4,i=5,故输出的i=5.3.【答案】D【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,∴面PDA⊥面ABCD,面PDC⊥面ABCD,又∵四边形ABCD为矩形∴BC⊥CD,CD⊥AD∵PD⊥矩形ABCD所在的平面∴PD⊥BC,PD⊥CD∵PD∩AD=D,PD∩CD=D∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD综上相互垂直的平面有5对故答案选D4.【答案】D【解析】考点:全称命题的否定.5.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C6.【答案】C【解析】考点:指数函数的概念.7.【答案】A【解析】解:根据余弦定理可知cosA=∵a2=b2+bc+c2,∴bc=﹣(b2+c2﹣a2)∴cosA=﹣∴A=120°故选A8.【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选C.【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.9.【答案】C【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠0},定义域不同,故不是相同函数;B、函数f(x)的定义域为R,g(x)的定义域为{x|x≠﹣2},定义域不同,故不是相同函数;C、因为,故两函数相同;D、函数f(x)的定义域为{x|x≥1},函数g(x)的定义域为{x|x≤1或x≥1},定义域不同,故不是相同函数.综上可得,C项正确.故选:C.10.【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf(x)<0的解为:或解得:x∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D.11.【答案】A【解析】12.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。
沁水县民族中学2018-2019学年上学期高二数学12月月考试题含解析
沁水县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设等比数列{a n }的公比q=2,前n 项和为S n,则=( )A .2B .4C.D.2. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( ) A .πB.C.D.3. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.4. 已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A.(-∞ B.(-∞ C. D.)+∞ 5. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )DABCOA .B .18C .D .6. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A .B .C .D .7. 已知圆O 的半径为1,,PA PB 为该圆的两条切线,,A B 为两切点,那么PA PB ∙ 的最小值为A 、4-B 、3-C 、4-+D 、3-+8. 已知 1.50.1 1.30.2,2,0.2a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .a c b << C .c a b << D .b c a <<9. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π10.已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( ) A .1B .2C .3D .411.在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11BC 12.如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )A .B .C .D .二、填空题13.函数y=lgx的定义域为.14.台风“海马”以25km/h的速度向正北方向移动,观测站位于海上的A点,早上9点观测,台风中心位于其东南方向的B点;早上10点观测,台风中心位于其南偏东75°方向上的C点,这时观测站与台风中心的距离AC等于km.15.命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.16.已知点M(x,y)满足,当a>0,b>0时,若ax+by的最大值为12,则+的最小值是.17.若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a的取值范围为.18.以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为.三、解答题19.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.20.在平面直角坐标系xOy中.己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l 与曲线C 相交于A 、B 两点,求∠AOB 的值.21.(本小题满分12分)若二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,且()01f =.(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.22.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n (单位:台,n ∈N )的函数解析式f (n );(单位:元),求X 的分布列及数学期望.23.已知复数z=.(1)求z的共轭复数;(2)若az+b=1﹣i,求实数a,b的值.24.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值是.(1)求f(x)的解析式;(2)求函数h(x)=f(x)﹣(2t﹣3)x在区间[0,1]上的最小值,其中t∈R;(3)在区间[﹣1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.沁水县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C【解析】解:由于q=2,∴∴;故选:C .2. 【答案】D【解析】解:由函数f (x )=sin 2(ωx)﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f (x )=﹣cos2x .若将其图象沿x 轴向右平移a 个单位(a >0),可得y=﹣cos2(x ﹣a )=﹣cos (2x ﹣2a )的图象; 再根据所得图象关于原点对称,可得2a=k π+,a=+,k ∈Z .则实数a的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos (ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.3. 【答案】C【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 4. 【答案】B 【解析】试题分析:因为函数()xF x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022x xx xe ee e a--+--≥恒成立, ()2222xx x xx xx xe e e e a e e e e -----++∴≤=--()2x x x xe e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,220t e e -∴<≤-, 此时不等式2t t +≥当且仅当2t t=,即t =, 取等号,a ∴≤故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.5.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.6. 【答案】B【解析】解:∵lga+lgb=0 ∴ab=1则b=从而g (x )=﹣log b x=log a x ,f (x )=a x与∴函数f (x )与函数g (x )的单调性是在定义域内同增同减 结合选项可知选B , 故答案为B7. 【答案】D.【解析】设PO t =,向量PA 与PB 的夹角为θ,PA PB ==,1sin2t θ=,222cos 12sin 12t θθ=-=-,∴222cos (1)(1)(1)PA PB PA PB t t tθ==-->,2223(1)PA PB t t t∴=+->,依不等式PA PB ∴的最小值为3.8. 【答案】B 【解析】试题分析:函数0.2x y =在R 上单调递减,所以 1.51.30.20.2<,且 1.5 1.300.20.21<<<,而0.121>,所以a cb <<。
沁水县民族中学2018-2019学年上学期高二数学12月月考试题含解析
2
Hale Waihona Puke 1 ,扇形OAC 的面积为 ,所求概率为 P 2
4. 【答案】B 【解析】
1
1 1 . 2
试题分析:因为函数 F x e 满足 F x g x h x ,且 g x , h x 分别是 R 上的偶函数和奇函数,
第 4 页,共 14 页
精选高中模拟试卷
23.已知复数 z= (1)求 z 的共轭复数 ; (2)若 az+b=1﹣i,求实数 a,b 的值.
.
24.已知二次函数 f(x)的图象过点(0,4),对任意 x 满足 f(3﹣x)=f(x),且有最小值是 . (1)求 f(x)的解析式; (2)求函数 h(x)=f(x)﹣(2t﹣3)x 在区间[0,1]上的最小值,其中 t∈R; (3)在区间[﹣1,3]上,y=f(x)的图象恒在函数 y=2x+m 的图象上方,试确定实数 m 的范围.
三、解答题
19.在平面直角坐标系中,矩阵 M 对应的变换将平面上任意一点 P(x,y)变换为点 P(2x+y,3x). (Ⅰ)求矩阵 M 的逆矩阵 M﹣1; (Ⅱ)求曲线 4x+y﹣1=0 在矩阵 M 的变换作用后得到的曲线 C′的方程.
20.在平面直角坐标系 xOy 中.己知直线 l 的参数方程为 x 轴正半轴为极轴,建立极坐标系,曲线 C 的极坐标方程是 ρ=4. (1)写出直线 l 的普通方程与曲线 C 的直角坐标系方程;
精选高中模拟试卷
沁水县民族中学 2018-2019 学年上学期高二数学 12 月月考试题含解析 班级__________ 一、选择题
1. 设等比数列{an}的公比 q=2,前 n 项和为 Sn,则 A.2 B.4 C. D. =( )
山西省晋城市沁水中学2019年高二数学理月考试卷含解析
山西省晋城市沁水中学2019年高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 过原点的直线与函数的图象交于A,B两点,过B作轴的垂线交函数的图象于点C,若直线AC平行于轴,则点A的坐标是A. B. C. D.参考答案:B2. 直线的倾斜角是( )A.30°B. 150°C. 60°D. 120°参考答案:B3. 在边长为1的正三角形ABC中,设,,则?=( )A.﹣B.C.﹣D.参考答案:A考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据向量加法及条件便有:,,由条件可得到三向量的长度及其夹角,从而进行数量积的运算即可.解答:解:如图,根据条件:====.故选A.点评:考查向量加法的几何意义,向量的数乘运算,向量数量积的运算及计算公式,注意正确确定向量的夹角.4. 已知三棱柱的侧棱长为2,底面是边长为2的正三角形,AA1⊥面A1B1C1,主视图是边长为2的正方形,则侧视图的面积为()参考答案:B略5. 要得到的图像,只需将函数的图像()A. 向左平移个单位B. 向右平移个单位C. 向左平移个单位D. 向右平移个单位参考答案:A6. 的值等于 ( )参考答案:A略7. 在120个零件中,一级品24个,二级品36个,三极品60个,用分层抽样法从中抽取容量为20的样本,则应抽取三极品的个数为A.2 B.4C.6 D.10参考答案:D8. 已知等差数列的公差为2,若成等比数列,则等于( )A.- 4 B.- 6 C.-8 D.-10参考答案:B略9. 圆关于原点对称的圆的方程为()A. B.C. D.参考答案:A10. 有下列命题:①双曲线与椭圆有相同的焦点;②“”是“”的必要不充分条件;③若共线,则所在的直线平行;④若三向量两两共面,则三向量一定也共面;⑤如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则. 其中是真命题的个数有()A.1 B.2 C.3 D.4参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 已知数列的各项都是正整数,且若存在,当且为奇数时,恒为常数,则.参考答案:1或5略12. 若,则=.参考答案:13. 函数y=x3﹣2x2﹣4x+2的单调递增区间是.参考答案:【考点】利用导数研究函数的单调性.【分析】对函数y=x3﹣2x2﹣4x+2进行求导,然后令导函数大于0求出x的范围,即可得到答案.【解答】解:∵y=x3﹣2x2﹣4x+2∴y'=3x2﹣4x﹣4令3x2﹣4x﹣4>0,得到x>2或x<﹣故答案为:14. 已知椭圆的左右焦点分别为F1与F2,点P在直线上. 当取最大值时,比的值为 .参考答案:解析:由平面几何知,要使最大,则过,P三点的圆必定和直线l相切于P点. 设直线l交x轴于A,则,即∽,即(1)又由圆幂定理,(2)而,,A,从而有,.代入(1),(2)得15. 已知函数,则___________.参考答案:1【分析】利用导数的运算法则求得,然后代值计算可得出的值.【详解】,,因此,.故答案为:1.【点睛】本题考查导数的计算,考查了导数的运算法则,考查计算能力,属于基础题. 16. 命题“,”的否定是______.参考答案:【分析】根据全称命题的否定是特称命题的结论,即可写出命题的否定.【详解】解:全称命题的否定是特称命题,所以命题“?x∈R,|x|+x2>0”的否定是:.故答案为:.【点睛】本题主要考查全称命题的否定,注意全称命题的否定是特称命题,特称命题的否定是全称命题.17. 若方程两根都大于,则实数的取值范围是.参考答案:三、解答题:本大题共5小题,共72分。
沁水县第一中学校2018-2019学年高二上学期第二次月考试卷数学
沁水县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=( )A .B .C .D .±2. 设集合( )A .B .C .D .3. 在下列区间中,函数f (x )=()x ﹣x 的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3 )D .(3,4)4. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )=C .f (x )=ln e x 与g (x )=e lnxD .f (x )=(x ﹣1)0与g (x )=5. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1 C .x 2﹣=1 D .﹣=16. 复数i i -+3)1(2的值是( )A .i 4341+-B .i 4341-C .i 5351+-D .i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.7. 在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( ) A .x=1 B .x= C .x=﹣1 D .x=﹣8.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.159.命题“若α=,则tan α=1”的逆否命题是()A.若α≠,则tan α≠1 B.若α=,则tan α≠1C.若tan α≠1,则α≠D.若tan α≠1,则α=10.某几何体的三视图如图所示,则该几何体为()A.四棱柱B.四棱锥C.三棱台D.三棱柱11.定义某种运算S=a⊗b,运算原理如图所示,则式子+的值为()A.4 B.8 C.10 D.1312.已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()A .2对B .3对C .4对D .5对二、填空题13.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且26121a a a =∙,则数列12n n S -⎧⎫⎨⎬⎩⎭项中 的最大值为_________.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .15.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .16.若与共线,则y= .17.若函数f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,则实数a 的取值范围是 .18.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .三、解答题19.已知等比数列中,。
沁水县高级中学2018-2019学年高二上学期第一次月考试卷数学
沁水县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .4D .22. 设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤< 3. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21C .33D .414. A 是圆上固定的一定点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度大于等于半径长度的概率为( )A .B .C .D .5. 双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .36. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.7. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+=( )A .B .C .D .8.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高杂质低旧设备37 121新设备22 202根据以上数据,则()A.含杂质的高低与设备改造有关B.含杂质的高低与设备改造无关C.设备是否改造决定含杂质的高低D.以上答案都不对9.已知集合M={x|x2<1},N={x|x>0},则M∩N=()A.∅B.{x|x>0} C.{x|x<1} D.{x|0<x<1}可.10.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是()A.1个B.2个C.3个D.4个11.下列语句所表示的事件不具有相关关系的是()A.瑞雪兆丰年B.名师出高徒C.吸烟有害健康D.喜鹊叫喜12.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.二、填空题13.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_______元.14.已知复数,则1+z50+z100=.15.曲线C是平面内到直线l1:x=﹣1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:①曲线C过点(﹣1,1);②曲线C关于点(﹣1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④设p1为曲线C上任意一点,则点P1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.16.如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为cm3.17.已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.18.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是.三、解答题19.已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)若A⊆B,求实数m的取值范围;(2)若A∩B=∅,求实数m的取值范围.20.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.21.双曲线C:x2﹣y2=2右支上的弦AB过右焦点F.(1)求弦AB的中点M的轨迹方程(2)是否存在以AB为直径的圆过原点O?若存在,求出直线AB的斜率K的值.若不存在,则说明理由.22.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.23.己知函数f (x )=lnx ﹣ax+1(a >0). (1)试探究函数f (x )的零点个数;(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.24.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.沁水县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),∵点P到点F的距离等于点P到平面ABB1A1的距离,∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),∴|PE|min==2.故选:D.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.2.【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 3. 【答案】B 【解析】试题分析:()21212121101010242=⨯+⨯+⨯=,故选B. 考点:进位制4. 【答案】B【解析】解:在圆上其他位置任取一点B ,设圆半径为R , 则B 点位置所有情况对应的弧长为圆的周长2πR ,其中满足条件AB 的长度大于等于半径长度的对应的弧长为2πR ,则AB 弦的长度大于等于半径长度的概率P==.故选B .【点评】本题考查的知识点是几何概型,其中根据已知条件计算出所有基本事件对应的几何量及满足条件的基本事件对应的几何量是解答的关键.5. 【答案】B【解析】解:由题意,m 2﹣4<0且m ≠0,∵m ∈Z ,∴m=1∵双曲线的方程是y 2﹣x 2=1 ∴a 2=1,b 2=3, ∴c 2=a 2+b 2=4∴a=1,c=2,∴离心率为e==2.故选:B.【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b2.6.【答案】A【解析】7.【答案】D【解析】解:∵S n=n2+2n(n∈N*),∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1.∴==,∴++…+=++…+==﹣.故选:D.【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.8.【答案】A【解析】独立性检验的应用.【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表杂质高杂质低合计旧设备37 121 158新设备22 202 224合计59 323 382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.9.【答案】D【解析】解:由已知M={x|﹣1<x<1},N={x|x>0},则M∩N={x|0<x<1},故选D.【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,10.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.11.【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D.【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.12.【答案】C【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.二、填空题13.【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。
沁水县第一高级中学2018-2019学年高二上学期第二次月考试卷数学
沁水县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .2. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧q C .p ∧¬q D .¬p ∧¬q3. 已知||=||=1,与夹角是90°,=2+3, =k ﹣4,与垂直,k 的值为( )A .﹣6B .6C .3D .﹣34. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.5. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限 6. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或7. 设i 是虚数单位,是复数z 的共轭复数,若z=2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i8. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A .20种B .24种C .26种D .30种9. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A.9.6 B.7.68 C.6.144 D.4.915210.已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为()A.﹣3 B.3 C.﹣1 D.111.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则与()A.互相垂直B.同向平行C.反向平行D.既不平行也不垂直12.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是()A.B.C.D.二、填空题13.求函数在区间[]上的最大值.14.定积分sintcostdt=.15.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .16.若函数63e ()()32ex x b f x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.17.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .18.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .三、解答题19.(本小题满分12分)如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使PAD θ∠=,构成四棱锥P ABCD -,且2PC CDPF CE==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为3π时,求折起的角度.20.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.21.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,计算得x i=80,y i=20,x i y i=184,x i2=720.(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.22.已知矩阵A=,向量=.求向量,使得A2=.23.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.24.已知函数2(x)1ax f x =+是定义在(-1,1)上的函数, 12()25f = (1)求a 的值并判断函数(x)f 的奇偶性(2)用定义法证明函数(x)f 在(-1,1)上是增函数;沁水县第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】A【解析】解:因为两条直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8,l 1与l 2平行.所以,解得m=﹣7.故选:A .【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.2. 【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p :∀x ∈R ,2x <3x为假命题,则¬p 为真命题.令f (x )=x 3+x 2﹣1,因为f (0)=﹣1<0,f (1)=1>0.所以函数f (x )=x 3+x 2﹣1在(0,1)上存在零点, 即命题q :∃x ∈R ,x 3=1﹣x 2为真命题.则¬p ∧q 为真命题.故选B .3. 【答案】B【解析】解:∵ =(2+3)(k ﹣4)=2k +(3k ﹣8)﹣12=0,又∵=0.∴2k ﹣12=0,k=6.故选B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的4. 【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.5. 【答案】C【解析】解:z====+i ,当1+m >0且1﹣m >0时,有解:﹣1<m <1; 当1+m >0且1﹣m <0时,有解:m >1; 当1+m <0且1﹣m >0时,有解:m <﹣1; 当1+m <0且1﹣m <0时,无解;故选:C.【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.6.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B7.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.8.【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.9.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.10.【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax+y,得y=﹣ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件.若a>0,则目标函数的斜率k=﹣a<0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时﹣a=﹣1,即a=1.若a<0,则目标函数的斜率k=﹣a>0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件.综上a=1.故选:D.【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.注意要对a进行分类讨论.11.【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.12.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.二、填空题13.【答案】.【解析】解:∵f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+.又x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1],∴sin(2x﹣)+∈[1,].即f(x)∈[1,].故f(x)在区间[,]上的最大值为.故答案为:.【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题.14.【答案】.【解析】解:0sintcostdt=0sin2td(2t)=(﹣cos2t)|=×(1+1)=.故答案为:15.【答案】(﹣1,﹣]∪[,).【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.设g (x )=ax ,则g (x )过定点(0,0), 坐标系中作出函数y=f (x )和g (x )的图象如图:当g (x )经过点A (﹣2,1),D (4,1)时有3个不同的交点,当经过点B (﹣1,1),C (3,1)时,有2个不同的交点,则OA 的斜率k=,OB 的斜率k=﹣1,OC 的斜率k=,OD 的斜率k=,故满足条件的斜率k 的取值范围是或,故答案为:(﹣1,﹣]∪[,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.16.【答案】2016【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得0063e 032e ba -=,整理,得2016ab =. 17.【答案】0 【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与GF 所成的角的余弦值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, ∵AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点, ∴A 1(1,0,2),E (0,0,1),G (0,2,1),F (1,1,0),=(﹣1,0,﹣1),=(1,﹣1,﹣1),=﹣1+0+1=0,∴A 1E ⊥GF ,∴异面直线A 1E 与GF 所成的角的余弦值为0. 故答案为:0.18.【答案】 平行 .【解析】解:∵AB 1∥C 1D ,AD 1∥BC 1,AB 1⊂平面AB 1D 1,AD 1⊂平面AB 1D 1,AB 1∩AD 1=A C 1D ⊂平面BC 1D ,BC 1⊂平面BC 1D ,C 1D ∩BC 1=C 1 由面面平行的判定理我们易得平面AB 1D 1∥平面BC 1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.三、解答题19.【答案】(1)证明见解析;(2)23πθ=. 【解析】试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,12FG CD =,又//AB CD ,12AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23πθ=.考点:点、线、面之间的位置关系的判定与性质. 20.【答案】【解析】解:(Ⅰ)由f (x )=x ﹣1+,得f ′(x )=1﹣,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,解得a=e.(Ⅱ)f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.21.【答案】【解析】解:(1)由题意,n=10,=x=8,=y i=2,i∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).22.【答案】=【解析】A 2=.设=.由A 2=,得,从而解得x =-1,y =2,所以=23.【答案】【解析】解:(1)依题意,可设椭圆C 的方程为(a >0,b >0),且可知左焦点为F (﹣2,0),从而有,解得c=2,a=4,又a 2=b 2+c 2,所以b 2=12,故椭圆C 的方程为.(2)假设存在符合题意的直线l ,其方程为y=x+t ,由得3x 2+3tx+t 2﹣12=0,因为直线l 与椭圆有公共点,所以有△=(3t )2﹣4×3(t 2﹣12)≥0,解得﹣4≤t ≤4,另一方面,由直线OA 与l 的距离4=,从而t=±2, 由于±2∉[﹣4,4],所以符合题意的直线l 不存在.【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.24.【答案】(1)1a =,()f x 为奇函数;(2)详见解析。
沁水县高中2018-2019学年高二上学期第二次月考试卷数学
沁水县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .2. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣ 3. 如图,该程序运行后输出的结果为( )A .7B .15C .31D .634. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )A .1B .2C .3D .45. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂α B .AB ⊄αC .由线段AB 的长短而定D .以上都不对6. “1<m <3”是“方程+=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1, =﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .318. 由直线与曲线所围成的封闭图形的面积为( )A B1C D9. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣10.设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111] 11.下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=12.抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .3二、填空题13.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .14.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.15.已知数列的前项和是, 则数列的通项__________16.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .17.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .18.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .三、解答题19.如图,椭圆C :+=1(a >b >0)的离心率e=,且椭圆C 的短轴长为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P ,M ,N 椭圆C 上的三个动点.(i )若直线MN 过点D (0,﹣),且P 点是椭圆C 的上顶点,求△PMN 面积的最大值;(ii )试探究:是否存在△PMN 是以O 为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.20.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.21.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.22.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?23.设集合A={x|0<x﹣m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.(1)A∩B=∅;(2)A∪B=B.24.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).(1)若首项a1=10,证明数列{a n}为递增数列;(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值.沁水县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.2.【答案】B【解析】解:当a>1时,f(x)单调递增,有f(﹣1)=+b=﹣1,f(0)=1+b=0,无解;当0<a<1时,f(x)单调递减,有f(﹣1)==0,f(0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B3.【答案】如图,该程序运行后输出的结果为()D【解析】解:因为A=1,s=1判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2;判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3;判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4;判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5;判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5.故答案为5.【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.4.【答案】B【解析】解:∵①若m∥l,m⊥α,则由直线与平面垂直的判定定理,得l⊥α,故①正确;②若m∥l,m∥α,则l∥α或l⊂α,故②错误;③如图,在正方体ABCD﹣A1B1C1D1中,平面ABB1A1∩平面ABCD=AB,平面ABB1A1∩平面BCC1B1=BB1,平面ABCD∩平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,得n∥m,同理n∥l,故m∥l,故命题④正确.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.5.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.6.【答案】B【解析】解:若方程+=1表示椭圆,则满足,即,即1<m<3且m≠2,此时1<m<3成立,即必要性成立,当m=2时,满足1<m<3,但此时方程+=1等价为为圆,不是椭圆,不满足条件.即充分性不成立故“1<m<3”是“方程+=1表示椭圆”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据椭圆的定义和方程是解决本题的关键.7.【答案】D【解析】解:由=﹣(2x n+1),得+(2x n+1)=,设,以线段P n A、P n D作出图形如图,则,∴,∴,∵,∴,则,即x n+1=2x n+1,∴x n+1+1=2(x n+1),则{x n+1}构成以2为首项,以2为公比的等比数列,∴x5+1=2•24=32,则x5=31.故选:D.【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.8.【答案】D【解析】由定积分知识可得,故选D。
沁水县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析
沁水县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在数列中,,,则该数列中相邻两项的乘积为负数的项是{}n a 115a =*1332()n n a a n N +=-∈()A .和B .和C .和D .和21a 22a 22a 23a 23a 24a 24a 25a 2. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为()A .B .﹣C .2D .﹣23. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于()A .4B .2C .D .24. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c,若﹣+1=0,则角B 的度数是()A .60°B .120°C .150°D .60°或120°5. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)6. 设函数,则使得的自变量的取值范围为( )()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩()1f x ≥A . B .(][],20,10-∞- (][],20,1-∞- C . D .(][],21,10-∞- [][]2,01,10- 7. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n8. 设是等差数列的前项和,若,则( )n S {}n a 5359a a =95SS =A .1B .2C .3D .49. 在等差数列中,,公差,为的前项和.若向量,,{}n a 11a =0d ≠n S {}n a n 13(,)m a a =133(,)n a a=-且,则的最小值为( )0m n ×=2163n n Sa ++A . B . C . D .43292【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在n 考查学生的学生运算能力,观察分析,解决问题的能力.10.设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .311.若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4C.-2 D .312.已知直线与圆交于两点,为直线上任意34110m x y +-=:22(2)4C x y -+=:A B 、P 3440n x y ++=:一点,则的面积为( )PAB ∆A .B.C.D.13.“”是“A=30°”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件14.命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >015.函数y=+的定义域是()A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}二、填空题16.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .17.已知,,则的值为.1sin cos 3αα+=(0,)απ∈sin cos 7sin 12ααπ-18.设函数 则______;若,,则的大小关系是______.19.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .三、解答题20.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.21.如图所示,两个全等的矩形和所在平面相交于,,,且ABCD ABEF AB M AC ∈N FB ∈,求证:平面.AM FN =//MN BCE22.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式;(2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:.()00f x '>23.在直角坐标系中,已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨xOy (2,0)y 迹为曲线.C (1)求曲线的方程;111]C (2)过点作互相垂直的两条直线,,与曲线交于,两点与曲线交于,两点,(1,0)C A B C E F 线段,的中点分别为,,求证:直线过定点,并求出定点的坐标.AB EF M N MN P P 24.(本小题满分12分)如图,四棱柱中,侧棱底面,,1111ABCD A B C D -1A A ^ABCD //AB DC ,,,为棱的中点.AB AD ^1AD CD ==12AA AB ==E 1AA (Ⅰ)证明:面;11B C ^1CEC(II )设点在线段上,且直线与平面,求线段的长.M 1C E AM 11ADD A AM11C125.如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D 、E 分别是AC 、AB 上的点,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2.(Ⅰ)求证:平面A 1BC ⊥平面A 1DC ;(Ⅱ)若CD=2,求BD 与平面A 1BC 所成角的正弦值;(Ⅲ)当D 点在何处时,A 1B 的长度最小,并求出最小值.沁水县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】考点:等差数列的通项公式.2.【答案】A【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,∴α=,即f(x)=,故f(2)==,故选:A.3.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.4.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键. 5.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.6.【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键.7. 【答案】D【解析】解:A 选项中命题是真命题,m ⊥α,m ⊥β,可以推出α∥β;B 选项中命题是真命题,m ∥n ,m ⊥α可得出n ⊥α;C 选项中命题是真命题,m ⊥α,n ⊥α,利用线面垂直的性质得到n ∥m ;D 选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D .【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理. 8. 【答案】A 【解析】1111]试题分析:.故选A .111]199515539()9215()52a a S a a a S a +===+考点:等差数列的前项和.9. 【答案】A【解析】10.【答案】D【解析】解:设等差数列{a n }的公差为d ,则S 4=4a 1+d=﹣2,S 5=5a 1+d=0,联立解得,∴S 6=6a 1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.11.【答案】B【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算.12.【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,之间的距离为,∴C m 1d =||AB ==m n 、3d '=PAB ∆的面积为,选C .1||2AB d '⋅=13.【答案】B 【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.14.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x >0,使得x 2﹣x <0,故选:C .【点评】本题主要考查含有量词的命题的否定,比较基础.15.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题. 二、填空题16.【答案】 (x﹣1)2+(y+1)2=5 .【解析】解:设所求圆的圆心为(a,b),半径为r,∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,∴圆心(a,b)在直线x+y=0上,∴a+b=0,①且(2﹣a)2+(1﹣b)2=r2;②又直线x﹣y+1=0截圆所得的弦长为,且圆心(a,b)到直线x﹣y+1=0的距离为d==,根据垂径定理得:r2﹣d2=,即r2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x﹣1)2+(y+1)2=5.故答案为:(x﹣1)2+(y+1)2=5.17.【解析】,7sin sin sin cos cos sin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭=,sin cos 7sin 12ααπ-∴==考点:1、同角三角函数之间的关系;2、两角和的正弦公式.18.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沁水县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB2. 函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)3. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π104. 已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是( ) A .¬p B .¬p ∨qC .p ∧qD .p ∨q5. 直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ6. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆)C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力. 7. 给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距; ②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小. 其中正确的说法的个数是( ) A .1B .2C .3D .48. 已知函数(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( ) A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.9. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是( )A .B .C .D .10.已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)11.△ABC 的外接圆圆心为O ,半径为2, ++=,且||=||,在方向上的投影为( )A .﹣3B .﹣C .D .312.下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x =二、填空题13.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .14.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .15.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .16.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题. 17.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .18.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .三、解答题19.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量2K ,判断心肺疾病与性别是否有关?(参考公式:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)20.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,C 2的极坐标方程为ρ=2sin (θ+π4).(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=3π4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面积.21.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)22.已知椭圆x 2+4y 2=4,直线l :y=x+m (1)若l 与椭圆有一个公共点,求m 的值;(2)若l 与椭圆相交于P 、Q 两点,且|PQ|等于椭圆的短轴长,求m 的值.23.已知椭圆C : +=1(a >b >0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,若斜率为k (k ≠0)的直线l 与x 轴,椭圆C 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧)且∠RF 1F 2=∠PF 1Q ,求证:直线l 过定点,并求出斜率k 的取值范围.24.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.沁水县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:∵A=2B,∴sinA=sin2B,又sin2B=2sinBcosB,∴sinA=2sinBcosB,根据正弦定理==2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB.故选D2.【答案】A【解析】解:∵f(0)=﹣2<0,f(1)=1>0,∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.3.【答案】B【解析】考点:球与几何体4.【答案】D【解析】解:命题p:2≤2是真命题,方程x2+2x+2=0无实根,故命题q:∃x0∈R,使得x02+2x0+2=0是假命题,故命题¬p,¬p∨q,p∧q是假命题,命题p∨q是真命题,故选:D5. 【答案】D 【解析】考点:球的表面积和体积. 6. 【答案】D【解析】∵120PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-,2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.c =,整理,得2()4ca=+1e =,故选D. 7. 【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=,正确;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故④不正确. 故选:B .【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X ,Y 的关系,属于基础题.8. 【答案】B【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B .9. 【答案】C【解析】解:∵函数f (x )=ka x ﹣a ﹣x,(a >0,a ≠1)在(﹣∞,+∞)上是奇函数 则f (﹣x )+f (x )=0即(k ﹣1)(a x ﹣a ﹣x)=0则k=1又∵函数f (x )=ka x﹣a ﹣x,(a >0,a ≠1)在(﹣∞,+∞)上是增函数则a >1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.10.【答案】D【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a<0,由f′(x)>0得<x<0,此时函数递增,由f′(x)<0得x<或x>0,此时函数单调递减,即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若存在唯一的零点x0,且x0>0,则f()>0,即2a()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a<﹣1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.11.【答案】C【解析】解:由题意,++=,得到,又||=||=||,△OAB是等边三角形,所以四边形OCAB是边长为2的菱形,所以在方向上的投影为ACcos30°=2×=;故选C.【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC的形状,利用向量解答.12.【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B.考点:1、函数的定义域;2、函数的单调性.二、填空题13.【答案】 38 .【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y 得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A 时,直线y=﹣x+的截距最大,此时z 最大,由,解得,即A (3,8),此时z=2×3+4×8=6+32=32, 故答案为:3814.【答案】.【解析】解:如图,将AM 平移到B 1E ,NC 平移到B 1F ,则∠EB 1F 为直线AM 与CN 所成角设边长为1,则B1E=B 1F=,EF=∴cos ∠EB 1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.15.【答案】 .【解析】解:ρ==,tan θ==﹣1,且0<θ<π,∴θ=.∴点P 的极坐标为.故答案为:.16.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r r r r r rr T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.17.【答案】 (0,5) .【解析】解:∵y=a x 的图象恒过定点(0,1),而f (x )=a x +4的图象是把y=a x 的图象向上平移4个单位得到的, ∴函数f (x )=a x +4的图象恒过定点P (0,5), 故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.18.【答案】 [﹣,] .【解析】解:∵函数奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减, ∴不等式f (1﹣m )+f (1﹣2m )<0等价为f (1﹣m )<﹣f (1﹣2m )=f (2m ﹣1),即,即,得﹣≤m ≤,故答案为:[﹣,] 【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.三、解答题19.【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.20.【答案】【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数)得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9. 即C 1的普通方程为(x -1)2+(y -2)2=9,由C 2:ρ=2sin (θ+π4)得ρ(sin θ+cos θ)=2, 即x +y -2=0,即C 2的普通方程为x +y -2=0.(2)由C 1:(x -1)2+(y -2)2=9得 x 2+y 2-2x -4y -4=0,其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0, 将θ=3π4代入上式得ρ2-2ρ-4=0, ρ1+ρ2=2,ρ1ρ2=-4,∴|MN |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=3 2.C 3:θ=34π(ρ∈R )的直角坐标方程为x +y =0,∴C 2与C 3是两平行直线,其距离d =22= 2.∴△PMN 的面积为S =12|MN |×d =12×32×2=3.即△PMN 的面积为3. 21.【答案】【解析】解:证明:2()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴21122211λλλλ⎧-=⎪⎨-=⎪⎩. ∵12111111112122222222111111n n n n n n n n n na a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分)11120a a λλ-≠-,120λλ≠,∴数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列.(4分)(Ⅱ)证明:设m =()f m m =. 由112a =及111n na a +=+得223a =,335a =,∴130a a m <<<.∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *∈时,2121222n n n n a a m a a -++<<<<.①当1n =时,命题成立. (9分)②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)由①②知,对一切n N *∈命题成立,即存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.22.【答案】【解析】解:(1)把直线y=x+m 代入椭圆方程得:x 2+4(x+m )2=4,即:5x 2+8mx+4m 2﹣4=0, △=(8m )2﹣4×5×(4m 2﹣4)=﹣16m 2+80=0 解得:m=.(2)设该直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程5x 2+8mx+4m 2﹣4=0的两根, 由韦达定理可得:x1+x 2=﹣,x 1•x 2=,∴|AB|====2;∴m=±.【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.23.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F 1(﹣c ,0),F 2(c ,0),椭圆的离心率为,即有=,即a=c ,b==c ,以原点为圆心,椭圆的短半轴长为半径的圆方程为x 2+y 2=b 2,直线y=x+与圆相切,则有=1=b ,即有a=,则椭圆C 的方程为+y 2=1;(Ⅱ)证明:设Q (x 1,y 1),R (x 2,y 2),F 1(﹣1,0), 由∠RF 1F 2=∠PF 1Q ,可得直线QF 1和RF 1关于x 轴对称,即有+=0,即+=0,即有x 1y 2+y 2+x 2y 1+y 1=0,①设直线PQ :y=kx+t ,代入椭圆方程,可得(1+2k 2)x 2+4ktx+2t 2﹣2=0,判别式△=16k 2t 2﹣4(1+2k 2)(2t 2﹣2)>0, 即为t 2﹣2k 2<1②x 1+x 2=,x 1x 2=,③y 1=kx 1+t ,y 2=kx 2+t ,代入①可得,(k+t )(x 1+x 2)+2t+2kx 1x 2=0, 将③代入,化简可得t=2k ,则直线l 的方程为y=kx+2k ,即y=k (x+2). 即有直线l 恒过定点(﹣2,0). 将t=2k 代入②,可得2k 2<1,解得﹣<k <0或0<k <.则直线l 的斜率k 的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.24.【答案】(1)3B π=;(2)[1,2).【解析】。