高二数学-96空间向量的坐标运算(B版)

合集下载

北师大版高中数学选择性必修第一册 第三章 3.2 空间向量运算的坐标表示及应用

北师大版高中数学选择性必修第一册 第三章 3.2 空间向量运算的坐标表示及应用
(方法2)p+q=(-5,5,14),p-q=(3,-5,4),
所以(p+q)(p-q)=-15-25+56=16.
反思感悟 空间向量的坐标运算注意以下几点:
(1)一个向量的坐标等于这个向量的终点坐标减去起点坐标.
(2)空间向量的坐标运算法则类似于平面向量的坐标运算,牢记运算公式是
应用的关键.
(3)运用公式可以简化运算:(a±b)2=a2±2a·
=-=-(1 + 1 )=-
1
1 + ( + )
2
1
1
=-1 − 2 − 2 =-2i-j-4k,
故的坐标为(-2,-1,-4).
1 = − 1 = -( + 1 )
= − − 1 =-4i+2j-4k,
故1 的坐标为(-4,2,-4).
·
(2)cos<a,b>=||||
=
1 2 +1 2 +1 2
12 +12 +12 22 +22 +22
(a≠0,b≠0).
微练习
已知 a=(- 2,2, 3),b=(3 2,6,0),则|a|=

.
答案 3
,a 与 b 夹角的余弦值等
6
9
解析 |a|= · =
= − =(x2-x1,y2-y1,z2-z1).
也就是说,一个向量在空间直角坐标系中的坐标等于表示这个向量的有向
线段的终点的坐标减去起点的坐标.
3.空间向量运算的坐标表示
设向量a=(x1,y1,z1),b=(x2,y2,z2),根据空间向量的运算法则,不难得到:
(1)a+b=(x1+x2,y1+y2,z1+z2);

高二数学空间向量的坐标运算

高二数学空间向量的坐标运算

空间向量的坐标运算一、知识回顾:1、如果空间一个基底的三个向量互相垂直 :且长都为1 :则这个基底叫做:常用 来表示。

2、在单位正交基底i :j :k 中 :与向量OA 对应的有序实数组),,(z y x 叫做 :其中x 叫做:y 叫做:z 叫做。

3、设),,(321a a a a = :),,(321b b b b = :则a +b =:-a b =:=a λ:=⋅b a:a ∥b ⇔:a ⊥b ⇔。

4、设),,(321a a a a = :),,(321b b b b = == :=。

5、在空间直角坐标系中 :若),,(111z y x A :),,(222z y x B :则=B A d , 。

6、如果表示向量a 的有向线段所在直线垂直于平面α :则称这个向量:向量a 叫做平面α的。

二、基础练习:1、空间直角坐标系中 :x 轴上的点的坐标为 :y 轴上的点的坐标为:z 轴上的点的坐标为 。

2、向量a =)3,0,2(与坐标平面平行 :向量b =)0,3,2(与坐标平面平行。

3、若向量a =)2,3,2(- :b =)3,5,1(- :且b a m +与b a 23+垂直 :则=m 。

4、已知点B 是点)4,7,3(-A 在xOz 平面上的射影 :则=2)(OB。

5、若向量b 与向量)2,1,2(-=a 共线 :且满足18=⋅b a :则b = 。

6、同时垂直于a =)1,2,2( :b =)3,5,4(的单位向量为。

三、典型例题:1、已知△ABC 的三顶点)2,1,0(A :)1,1,2(-B :)2,1,3(-C :求(1)△ABC 的重心坐标 :(2)BC 边上的中线长 :(3)∠A 的余弦值 :(4)△ABC 的面积。

2、已知四边形ABCD 的顶点分别是)2,1,3(-A :)1,2,1(-B :)3,1,1(--C :)3,5,3(-D 求证:四边形ABCD 是一个梯形。

3、如图 :在空间直角坐标系中 :BC=2 :O 是BC 的中点 :点A 的坐标是)0,21,23(:点D 在平面yOz 上 :且∠BDC=90º:∠DCB=30º :求(1)向量OD 的坐标 :(2)设向量AD 和BC 的夹角为θ :求θ。

9.6 空间向量的坐标运算 第二课时 夹角和距离公式

9.6 空间向量的坐标运算 第二课时 夹角和距离公式
3.下面坐标是平面 xOy 的一个法向量的是 . 的一个法向量的是( (A)(1,1,0) (B)(1,0,1) (C)(1,0,0) (D)(0,0,- ,-4) ,- D )
解析:由法向量的定义, 内的任一向量为(a, 解析:由法向量的定义,设平面 xOy 内的任一向量为 , b,0),其中 ab≠0,则能与向 , ≠ , 垂直的向量只有(0,0,- ,故应选 D. ,-4), 量 (a, b,0)垂直的向量只有 , 垂直的向量只有 ,-
以d为原点建立如图所示的空间直角坐标系dxyz则aa00由定比分点坐标公式得m2a首页首页上一页下一页瞻前顾后瞻前顾后要点突破要点突破演练广场演练广场ab461ac432则平面abc的单位法向量4x6yz04x3y2z01213首页首页上一页下一页瞻前顾后瞻前顾后要点突破要点突破演练广场演练广场12131213121312131213首页首页上一页下一页瞻前顾后瞻前顾后要点突破要点突破演练广场演练广场5
瞻前顾后
要点突破
典例精析
演练广场
第二课时
夹角和距离公式
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
想一想: 想一想: 1.空间两直线的夹角公式 . 设 a=(a1, a2, a3),b=(b1, b2, b3),则 = , = , |a|= a·a= a2+ a2+ a2, = = 1 2 3 |b|= b·b= b2+ b2 + b2, = = 1 2 3 a·b=a1b1+ a2b2+ a3b3, = a1b1+ a2b2+ a3b3 cos 〈 a,b〉= 2 2 (a=(x1, y1, z1),b=(x2, y2, z2)). , 〉= = , = . 2 2 2 2 a1+ a2+ a3 · b 1+ b2+ b3 2.空间两点间的距离公式 . 在空间直角坐标系中, 在空间直角坐标系中 ,已知 A(x1, y1, z1),B(x2, y2, z2),则 , , |AB―→ |= AB― ·AB―→ ― = ― → ― = ( x2- x1) 2+( y2- y1)2+( z2- z1)2, 或 dA, B= ( x2- x1) 2+( y2- y1)2+( z2- z1)2, 两点间的距离,这就是空间两点间的距离公式. 其中 dA, B 表示 A 与 B 两点间的距离,这就是空间两点间的距离公式 . 3.平面的法向量 . 如果表示向量 a 的有向线段所在直线垂直于平面 α,则称 这个向量垂直于平面 α,记作 ,则称这个向量垂直于平面 , a⊥α. ⊥ 法向量. 如果 a⊥α,那么向量 a 叫做平面 α 的法向量. ⊥ , 末页 首页 下一页 上一页

人教版高中数学B版目录

人教版高中数学B版目录

人教版高中数学B版目录第一篇:人教版高中数学B版目录人教版高中数学B版必修第一章1.1 集合集合与集合的表示方法必修一必修二必修三必修四第二章第三章第一章第二章第一章第二章第三章第一章第二章1.2 集合之间的关系与运算函数2.1 函数2.2 一次函数和二次函数 2.3 函数的应用(Ⅰ)2.4 函数与方程基本初等函数(Ⅰ)3.1 指数与指数函数 3.2 对数与对数函数 3.3 幂函数3.4 函数的应用(Ⅱ)立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系平面解析几何初步2.1平面真角坐标系中的基本公式2.2 直线方程 2.3 圆的方程2.4 空间直角坐标系算法初步1.1 算法与程序框图 1.2 基本算法语句1.3 中国古代数学中的算法案例统计2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性概率3.1 随机现象 3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用基本初等函(Ⅱ)1.1 任意角的概念与弧度制 1.2 任意角的三角函数 1.3三角函数的图象与性质平面向量2.1 向量的线性运算必修五第三章第一章第二章第三章2.2 向量的分解与向量的坐标运算 2.3平面向量的数量积 2.4 向量的应用三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积解直角三角形1.1 正弦定理和余弦定理 1.2 应用举例数列2.1 数列 2.2 等差数列 2.3 等比数列不等式3.1 不等关系与不等式 3.2 均值不等式3.3 一元二次不等式及其解法 3.4 不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题人教版高中数学B版选修常用逻辑用语命题与量词第一章1.1 选修1-1 选修1-2 选修4-5 第二章第三章第一章第二章第三章第四章第一章第二章第三章1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线导数及其应用3.1 导数3.2 导数的运算 3.3导数的应用统计案例推理与证明数系的扩充与复数的引入框图不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型数学归纳法与贝努利不等式 3.1 数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式第二篇:高中数学目录必修1第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图信息技术应用用word2002绘制流程图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一 n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探索与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例第三篇:高中数学目录【人教版】高中数学教材总目录必修一第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象实习作业小结第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何小结复习参考题第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修四第一章三角函数.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修五第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2 第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图选修2—1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用 3.2 立体几何中的向量方法选修2—2 第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3 第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合。

3.2空间向量运算的坐标表示及应用(模与夹角)课件高二上学期数学北师大版选择性

3.2空间向量运算的坐标表示及应用(模与夹角)课件高二上学期数学北师大版选择性

例 1 如图,在直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°, 棱AA1=2,M,N分别是AA1,CB1的中点. (2)求△BMN的面积.
解答:以C为原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图.
例 2 在棱长为1的正方体ABCD-A1B1C1D1中,E,F,G分别是DD1, BD,BB1的中点. (1)求证:EF⊥CF;
向量夹角的坐标表示
一一对应
向量的运算
a+b =(x1+x2,y1+y2,z1+z2) a-b =(x1-x2,y1-y2,z1-z2) λa =(λx1,λy1,λz1)
a·b =x1x2+y1y2+z1z2
向量的平行与垂直
环节一
空间向量长度和 夹角的坐标表示
1、空间向量长度和夹角的坐标表示
回顾:在平面向量中我们如何求向量的长度?
求模先平方 求模小勾股
求模先平方 求模小勾股
1、空间向量长度和夹角的坐标表示
求向量的模首先要用坐标表示出该向量!
推广:
1、空间向量长度和夹角的坐标表示
求哪两个向量的夹角的余弦值,用哪两个向量的数量积除以 它们的模积
例 1 若向量a=(1,-1,2),b=(2,1,-3),则|a+b|=
( D)
A.
B.2
C.3
D.例2A.3源自°B.60°C.120°
C D.150°
例 3 已知向量a=(2,-3,1),b=(2,0,3),c=(0,2,2).求: (1)|a+b-2c|; (2)cos<a-b,b-c>.
环节二
空间向量 的综合应用
例 1 如图,在直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°, 棱AA1=2,M,N分别是AA1,CB1的中点. (1)求BM,BN的长;

1.1.1空间向量及其运算课件高二上学期数学人教B版选择性(1)

1.1.1空间向量及其运算课件高二上学期数学人教B版选择性(1)

.
对于任意的向量 a,b,c,都有 交换律:abba ; 结合律:a(bc) (ab)c .
空间向量加法的结合律可以借助如图所示的三棱锥 − 来 理解,其中 = , = , = ,而且 = + = + ,
= + = + ,所以 = + = ( + ) + , = + = + ( + ). 因此( + ) + = + ( + ).
2
(方法二)由图可以看出, ′在 上的投影是 ′, 而且| | = 1 ′ = 1,
2
注意到 ′与 的方向相同,所以 ′ ⋅ 等于 ′的长, 即 ′ ⋅ = | ′| = 2.
(2)由图可以看出, ′ 在 上的投影是 ′ ,
而且| | = 1 ′ = 1,
2
注意到 ′ 与 的方向相反,所以 ′ ⋅ 等于 ′ 的长的相反数,
又因为 1 = 1,
所以 + + 1 = + 1 =
.
例1说明,三个不共面的向量的和,等于以这三个向量 为邻边的平行六面体中,与这三个向量有共同始点的体对 角线所表示的向量.
在空间中任取一点 ,作 = , = ,作出向量 ,则向量 就是向量 a 与 b 的差(也称 为向量 a 与 b 的差向量),即 − = . 当 a 与 b 不共线时,向量 a,b, − 正好能构成一个三角形,因此这 种求两向量差的作图方法称为向量减法的三角形法则.
(3) (4)
, 1 1 =⟨ , ⟩=
, 1 1 = AB,BA 180
90° .
.
数量积:
两个非零向量 a 与 b 的数量积(也称为内积),定义为 a·b | a || b | cosa ,b .

3.1.5空间向量的坐标运算

3.1.5空间向量的坐标运算
λa=_(λ_a_1_,__λ_a_2,__λ_a_3_) a·b=_a_1_b_1+__a_2_b_2_+__a_3b_3_
知识点二 空间向量的平行、垂直及模、夹角
设a=(a1,a2,a3),b=(b1,b2,b3),则
名称
向量表示形式
满足条件 坐标表示形式
a∥b
a=λb(λ∈R)
a1=λb1,a2=λb2,a3=λb3(λ∈R)
→→ EF·CG →→

|EF||CG|
1 4 3×
5=
15 15 .
22
又因为异面直线所成角的范围是(0°,90°],
所以异面直线 EF 与 CG 所成角的余弦值为 1155.
(3)求CE的长.
解 |CE|=|C→E|=
02+-12+212=
5 2.
反思感悟 通过分析几何体的结构特征,建立适当的坐标系,使尽可能多的 点落在坐标轴上,以便写点的坐标时便捷.建立坐标系后,写出相关点的坐标, 然后再写出相应向量的坐标表示,把向量坐标化,然后再利用向量的坐标运 算求解夹角和距离问题.
题型三 空间向量的夹角与长度的计算
例3 棱长为1的正方体ABCD-A1B1C1D1中,E,F,G分别是DD1,BD,BB1的 中点. (1)求证:EF⊥CF; 证明 以D为坐标原点,DA,DC,DD1所在直线分别 为x轴,y轴,z轴,建立如图所示的空间直角坐标系Dxyz, 则 D(0,0,0),E0,0,12,C(0,1,0),F12,21,0,G1,1,12. 所以E→F=12,21,-21,C→F=12,-12,0,C→G =1,0,12,C→E=0,-1,12. 因为E→F·C→F=12×12+12×-12+-12×0=0,所以E→F⊥C→F,即 EF⊥CF.

空间向量及其运算高二数学同步课堂(人教B版2019选择性必修第一册)

空间向量及其运算高二数学同步课堂(人教B版2019选择性必修第一册)
投影的数量.
可以是正数、负数或0.
a b | a || b | cos a, b (| a | cos a, b ) | b |
a b等于 a在向量 b上的投影的数量与 b的模的乘积 .
空间向量同理.
3.向量数量积的性质
例7
如图所示长方体ABCD-A’B’C’D’中,E是AA’的中点,
与向量1 1 共面.
向量1 、、不共面.
可以看出,空间中任意两个向量都是共面的,但空间中任意三个向量不一定共面.
例1
如图所示,指出下列各组向量的位置关系:
(1)1 ,1
(2)1 ,1 1
(3)1 ,1 ,1 1
(4)1 ,,1 1
答案:(1)共线
− =
− =
例4
设AB是空间中任意一条线段,O是空间中任意一点,求证:
M为AB中点的充要条件是
1
= ( + )
2
证明:因为为中点 ⇔ =
⇔ − = −
1
⇔ = ( + )
2
如图所示,如果棱锥O-ABCD的底面ABCD是一个平行四边
如图所示平行六面体ABCD-A1B1C1D1,
化简 + + 1
解: + + 1 = + 1 = 1
例3说明:三个不共面的向量的和,等于以这三个向量为邻边的平行
六面体中,与这三个向量有共同始点的体对角线所表示的向量.
三、空间向量的线性运算
向量的减法:
a b
平面向量
定义:平面内,既有大小又有方向的量称为向量(或矢量).向量
的大小也称为向量的模(或长度).
表示方法:有向线段.

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结。

北师大版数学高二-选修2教案 2.2《空间向量及其运算》

北师大版数学高二-选修2教案 2.2《空间向量及其运算》

2.2《空间向量及其运算》教学设计【教学目标】1.了解空间向量与平面向量的联系与区别;了解向量及其运算由平面向空间推广的过程。

2.了解空间向量、共线向量、共面向量等概念;理解空间向量共线、共面的充要条件;了解空间向量的基本定理及其意义;掌握空间向量的正交分解及其坐标表示。

3 .掌握空间向量的线性运算及其性质;掌握空间向量的坐标运算。

4 .理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直。

【导入新课】复习引入1.有关平面向量的一些知识:什么叫做向量?向量是怎样表示的呢?既有大小又有方向的量叫向量.向量的表示方法有:用有向线段表示;用字母a 、b等表示;用有向线段的起点与终点字母:AB .长度相等且方向相同的向量叫相等向量.2. 向量的加减以及数乘向量运算: 向量的加法: 向量的减法: 实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下:|λa |=|λ||a| (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa=0.3. 向量的运算运算律:加法交换律:a +b =b +a新授课阶段一. 空间向量及其加减与数乘运算1. 定义:我们把空间中具有大小和方向的量叫做空间向量.向量的大小叫做向量的长度或模。

得到: 零向量、 单位向量、 相反向量的概念。

相等向量: 同向且等长的有向线段表示同一向量或相等的向量. 2. 空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:OB OA AB =+=a +b,AB OB OA =-(指向被减向量), OP =λa()R λ∈3. 空间向量的加法与数乘向量的运算律.⑴加法交换律:a +b = b + a;⑵加法结合律:(a + b ) + c =a + (b+ c );⑶数乘分配律:λ(a + b ) =λa+λb ; ⑶数乘结合律:λ(u a ) =(λu )a. 4. 推广:⑴ 12233411n n n A A A A A A A A A A -++++=;⑵ 122334110n n n A A A A A A A A A A -+++++=;⑶ 空间平行四边形法则.例1判断下列命题是否正确,若不正确,请简述理由.⑴ 向量AB 与AC 是共线向量,则A 、B 、C 、D 四点必在一条直线上;⑵ 单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形的充要条件是AB =DC ;⑤模为0是一个向量方向不确定的充要条件;⑥共线的向量,若起点不同,则终点一定不同.解 ①不正确,共线向量即平行向量,只要求两个向量方向相同或相反即可,并不要求两个向量AB,CD 在同一条直线上.②不正确,单位向量模均相等且为1,但方向并不一定相同.③不正确,零向量的相反向量仍是零向量,但零向量与零向量是相等的.④不正确,因为A 、B 、C 、D 可能共线.⑤正确.⑥不正确,如图所示,AC 与BC 共线,虽起点不同,但终点却相同.点评:解此类题主要是透彻理解概念,对向量、零向量、单位向量、平行向量(共线向量)、共面向量的概念特征及相互关系要把握好.二、空间向量的数乘运算1.定义:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作a //b。

向量的坐标运算公式

向量的坐标运算公式

向量的坐标运算公式向量的坐标运算是数学中的重要概念,它可以帮助我们描述和解决各种实际问题。

在这篇文章中,我们将深入探讨向量的坐标运算,从而更好地理解和应用它们。

让我们来了解一下什么是向量。

向量是具有大小和方向的量,通常用箭头表示。

在二维空间中,一个向量可以由它在水平轴上的坐标和垂直轴上的坐标表示。

例如,向量v可以表示为(vx, vy),其中vx 是水平方向上的坐标,vy是垂直方向上的坐标。

接下来,我们来看一下向量的加法运算。

当我们将两个向量相加时,只需要将它们对应的坐标相加即可。

例如,如果有两个向量a和b,它们的坐标分别为(ax, ay)和(bx, by),那么它们的和向量c的坐标可以表示为(cx, cy),其中cx = ax + bx,cy = ay + by。

除了加法运算,我们还可以进行向量的数乘运算。

数乘运算指的是将一个向量与一个标量相乘,即将向量的每个坐标都乘以这个标量。

例如,如果有一个向量a,它的坐标为(ax, ay),而一个标量k,那么将向量a与标量k相乘得到的新向量b的坐标可以表示为(bx, by),其中bx = k * ax,by = k * ay。

我们还可以进行向量的减法运算。

向量的减法运算可以看作是向量加法运算的逆运算。

当我们将一个向量b从另一个向量a中减去时,只需要将b的坐标的相反数加到a的坐标上即可。

例如,如果有两个向量a和b,它们的坐标分别为(ax, ay)和(bx, by),那么它们的差向量c的坐标可以表示为(cx, cy),其中cx = ax - bx,cy = ay - by。

我们来讨论一下向量的模。

向量的模表示向量的长度,可以通过勾股定理计算得到。

在二维空间中,一个向量的模等于它的坐标的平方和的平方根。

例如,如果有一个向量a,它的坐标为(ax, ay),那么它的模表示为|a| = √(ax^2 + ay^2)。

通过以上的讨论,我们对向量的坐标运算有了更深入的了解。

高二数学知识点人教b版

高二数学知识点人教b版

高二数学知识点人教b版高二数学是学生学习数学的关键时期,也是一门重要的学科。

本文将介绍高二数学知识点人教B版教材中的一些重要内容,包括函数、几何、概率与统计等方面的知识。

一、函数函数是高中数学中的核心概念之一,也是后续学习的基础。

在人教B版教材中,函数的概念以及函数的性质和运算等内容都有详细的介绍。

在函数的学习中,学生需要掌握函数的定义、函数的图像和性质、函数的运算以及函数的应用等知识。

二、三角函数三角函数是高中数学中的重要知识点之一,也是数学和物理等领域中常用的工具。

在人教B版教材中,三角函数的定义、性质、图像、周期性等内容都有详细的讲述。

此外,三角函数的图像变换、三角恒等式以及三角方程等也是高二数学中需要重点掌握的内容。

三、数列与数项数列是数学中一种重要的序列,也是高中数学的基础知识。

在人教B版教材中,数列与数项的概念、数列的通项公式、数列的性质以及数列的应用等内容都有详细的介绍。

学生需要掌握数列的递推关系、数列的极限以及数列的求和等知识。

四、平面几何平面几何是数学中的重要分支,也是高二数学中的重点内容。

人教B版教材中,平面几何的知识点包括平面直角坐标系、向量的定义与运算、直线与圆的方程以及三角形的性质等。

学生需要掌握平面几何的基本概念、性质以及解题方法。

五、空间几何空间几何是高中数学的难点之一,也是需要深入理解和掌握的内容。

在人教B版教材中,空间几何的知识点包括空间直角坐标系、空间向量的运算、平面与直线的位置关系以及空间几何体的性质等。

学生需要通过大量练习,提高对空间几何的理解和应用能力。

六、概率与统计概率与统计是高中数学中的实用内容,也是日常生活中常见的应用领域。

在人教B版教材中,概率与统计的知识点包括事件与概率、随机变量与概率分布、参数估计与假设检验等。

学生需要通过实际问题的分析和解决,提高对概率与统计的理解和应用能力。

通过对高二数学知识点人教B版教材中的内容介绍,我们可以看出这门学科的广阔与深奥。

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[分析] 应用模长公式及向量的夹角公式解决此问题.
例4 已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(2)向量a由横坐标、纵坐标、竖坐标值决定,我们需要找到三个方程,列一个方程组才能求得,依题意这是容易办到的.
点拨 在前面例2、例3解题中都通过了列方程、解方程来求得结果,我们要注意这种思路.实际上,方程的思想在解空间向量的题目中有着广泛的应用.
2.易忽略向量坐标的表达形式a=(x,y,z),在实际解题中有很多同学忽略了“=”,与点坐标(x,y,z)混淆.
解题方法、技巧培养
出题方向1 空间向量的坐标运算
例1 若a=(1,5,-1),b=(-2,3,5).
(1)若(ka+b)∥(a-3b),求k.
(2)若(ka+b)⊥(a-3b),求k.
在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指能指向z轴的正方向,则称这个坐标系为右手直角坐标系.
叫做点A在此空间直角坐标系中的坐标,记作A(x,y,z),其中x叫做点A的横向坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.
知识点2 向量的直角坐标运算
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.
学法导引
1.向量坐标的确定、夹角公式、距离公式的运用是本节的难点.
要确定向量坐标,就必须选取直角坐标系,为了使所得点的坐标方便计算和证明,一定要分析空间几何体的构造特征.选上面合适的点作原点,合适的线和方向作坐标轴.其次要灵活运用平面几何的知识、直线与平面的知识来找出“点”的坐标.坐标原点常选在汇集多个垂直关系的点上.
2.空间向量的坐标运算类似于平面两向量的坐标运算,牢记运算公式是应用的关键.这些公式为我们用向量的知识解决立体几何问题提供了有力的工具.
空间两向量的夹角公式类似于平面两向量的夹角公式.如果我们将一个空间几何体放入一个适当的空间直角坐标系,那么我们就可用这个公式来方便地计算几何体上的“线线”夹角了.
(1)当|c|取最小值时,求t的值;
(2)在(1)的情况下,求b和c的夹角大小.
[错解] (1)c=(-1,1,3)+t(1,0,-2)=(-1+t,1,3-2t).
[错因分析] 题设中关于x的方程有两实根,应考虑t的限制,而不是t∈R.
点拨 本例出错,在于对条件关注不够,暗自增加了条件t∈R,虽然如此之下,运算简单,但是考虑问题的严谨性却一点没有体现.事实上如果是数字不凑巧,就忽视某些条件,那么数学的真谛将难以寻觅.
[分析] 利用向量的坐标运算及向量共线和垂直的充要条件解题.
[解] (1)ka+b=(k-2,5k+3,-k+5),
a-3b=(1+3×2,5-3×3,-1-3×5)
=(7,-4,-16).
例2 已知A(1,0,0),B(0,1,0),C(0,0,2),求满足下列条件的点D的坐标:
(1)DB∥AC,DC∥AB;
(2)DB⊥AC,DC⊥AB且AD=BC.
[解] 设点D坐标为(x,y,z)
点拨 求点的坐标首先应将条件中的线或线段关系转化为向量间的关系,然后再坐标化,问题(1)中若一个向量的某坐标为零,则另一个向量的相应坐标也为零.
出题方向2 夹角与距离公式的应用
知识点3 夹角和距离公式
知识点4 向量和平面垂直
如果表示向量a的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a⊥α.
知识点5 法向量
如果a⊥α,那么向量a叫做平面α的法向量.
注意 1.本节课涉及几何量的代数运算、夹角公式和两点3.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间的距离.
知识要点精讲
知识点1 空间直角坐标系
如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常常用{i,j,k}来表示.以点O为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时就建立了一个空间直角坐标系O-xyz,点O叫做原点,向量i、j、k叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面.
出题方向3 空间直角坐标系的应用
[分析] 本题考查空间直角坐标系的建立及空间向量坐标的运算.
[解] (1)以C为原点O,建立如图9-6-1的空间直角坐标系O-xyz,则由已知得:
这种转化思想是数学上一重要思想,望同学们学会并善于应用.
易错易混点警示
本节易错易混点主要在于对题目给出的条件关注不够而出错.
综合应用创新
【综合能力升级】
空间向量的坐标运算是我们今后解答立体几何问题的常用工具,其特点是通过向量的运算解决空间图形的问题.下面我们通过一个综合题学习体会这种方法.
点拨 有关垂直、夹角、距离问题往往用向量解决,建立空间坐标系是关键,往往以多个垂直关系的公共点处为原点,以棱所在直线为坐标轴.
空间两点间距离公式是空间向量模长公式的推广,其形式类似于平面上两点的距离公式,如果知道一个空间几何体上任意两点的坐标,我们就可直接套用.
应该指明,上述两公式都与坐标原点的选取无关.因为一个确定的几何体,其“线线”夹角、“点点”距离是固定的.坐标系的建立位置不同,只不过会影响其计算的简繁而已.
相关文档
最新文档