专题四 数列、极限、数学归纳法

合集下载

数列的极限知识点归纳总结

数列的极限知识点归纳总结

数列的极限知识点归纳总结数列的极限是高中数学中重要的概念之一,它在解析几何、微积分等数学领域中起着重要的作用。

本文将对数列的极限进行知识点归纳总结,帮助读者更好地理解和掌握这一概念。

一、定义和概念1. 数列的定义:数列是按照一定顺序排列的一组数的集合。

数列可以用公式表示,常用的表示方式为{an}或{an}∞n=1。

2. 数列的极限定义:对于数列{an},如果存在一个实数a,对于任意给定的正数ε,都存在正整数N,使得当n>N时,有|an - a| < ε,那么称数列{an}的极限为a。

3. 数列的收敛和发散:如果数列{an}存在极限,称该数列收敛;否则,称该数列发散。

二、极限的性质1. 极限唯一性:如果数列{an}收敛,那么它的极限是唯一的。

2. 有界性:对于收敛数列{an},存在一个正数M,使得对于任意的n,有|an| ≤ M。

3. 夹逼定理:如果{an} ≤ {bn} ≤ {cn},并且lim an = lim cn = a,那么lim bn = a。

4. 四则运算法则:若数列{an}和{bn}收敛,并且lim an = a,lim bn = b,则有以下运算结果:- lim(an ± bn) = a ± b- lim(an · bn) = a · b- lim(an / bn) = a / b (b ≠ 0)三、重要的数列极限1. 常数数列:对于常数c,数列{an} = c(n为正整数)的极限为c。

2. 等差数列:对于等差数列{an} = a1 + (n - 1)d,其中a1为首项,d为公差,极限为lim an = a1。

3. 等比数列:对于等比数列{an} = a1 · q^(n - 1),其中a1为首项,q为公比,当|q| < 1时,极限为lim an = 0;当|q| > 1时,极限不存在。

4. 幂函数数列:对于幂函数数列{an} = n^p,其中p为实数,当p >0时,极限为正无穷大;当p < 0时,极限为0。

第四章数列极限数学归纳法

第四章数列极限数学归纳法

第四章 数列、极限、数学归纳法一、数列知识梳理:1、数列的概念: (1) 叫做数列, 叫做这个数列的项。

按一定次序排列的一列数 数列中的每一个数(2)数列的本质,数列可以看作 的函数f(n),当自变量n 一个定义在正整数N 或它的有限子集{}1,2,,n 上从1开始一次去正整数时所对应的一列函数值f(1),f(2),,f(n),通常用n a 代替f(n),于是数列的一般形式为12,,,,n a a a 简记{n a },其中n a 是数列{n a }的第n 项。

(3)数列的分类:①按项数是有限还是无限分 有穷数列、无穷数列。

②按项与项之间的大小分 , , , 。

递增数列、递减数列、摆动数列、常数数列。

2、数列的通项公式:(1) 叫做数列的通项。

数列的第n 项n a如果通项 这个公式叫做数列的 n a 与项数n 之间的对应关系可以用一个公式来表示 通项公式,不是所有的数列都有通项公式。

注意n a 与{n a }的区别。

(2)数列通项公式求法:① 观察归纳法:先观察哪些因素随项为n 的变化而变化,哪些因素不变;分析符号、数字、与项数n 在变化过程中的联系,初步归纳出公式,再取n 的特殊值进行检验是否正确。

② 公式法:利用等差等比的通项公式 ③ 逐差法; ④ 递推关系法;⑤ 利用n S 与n a 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩⑥ 归纳猜想。

4、数列的递推公式:(1) 这种表示数列的式子叫数列的 给出数列第一项(或前几项)并给出每一项与它前一项(或前若干项)关系式 递推公式,由递推公式给出的数列叫递推数列。

(2)等差数列的递推公式 ; 1a a =,1n n a a d +=+ (n N ∈)等比数列的递推公式 ;1(0)a b b =≠,1n n a a q += (0,q n N ≠∈)(3)几类简单递推数列通项公式的求法:①1()n n a a f n +=+型,累加法; 1()n n a a g n +=⋅型,累乘法; ②1(0,1)n n a pa q p q p p +=+≠≠、为常数,且型,待定系数法;③21n n n a pa qa ++=+(p 、q 为常数,且p+q=1)以p=1-q 代入构造新数列11n n n b a a ++=-;④11n n n n a a ba a -+=+,倒数法; ⑤归纳法。

数列、数列的极限与数学归纳法

数列、数列的极限与数学归纳法

一、复习策略本章内容是中学数学的重点之一,它既具有相对的独立性,又具有一定的综合性和灵活性,也是初等数学与高等数学的一个重要的衔接点,因而历来是高考的重点.高考对本章考查比较全面,等差、等比数列,数列的极限的考查几乎每年都不会遗漏.就近五年高考试卷平均计算,本章内容在文史类中分数占13%,理工类卷中分数占11%,由此可以看出数列这一章的重要性.本章在高考中常见的试题类型及命题趋势:(1)数列中与的关系一直是高考的热点,求数列的通项公式是最为常见的题目,要切实注意与的关系.关于递推公式,在《考试说明》中的考试要求是:“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,近几年命题严格按照《考试说明》,不要求较复杂由递推公式求通项问题.(2)探索性问题在数列中考查较多,试题没有给出结论,需要考生猜出或自己找出结论,然后给以证明.探索性问题对分析问题解决问题的能力有较高的要求.(3)等差、等比数列的基本知识必考.这类考题既有选择题,填空题,又有解答题;有容易题、中等题,也有难题.(4)求和问题也是常见的试题,等差数列、等比数列及可以转化为等差、等比数列求和问题应掌握,还应该掌握一些特殊数列的求和.(5)将数列应用题转化为等差、等比数列问题也是高考中的重点和热点,从本章在高考中所占的分值来看,一年比一年多,而且多注重能力的考查.通过上述分析,在学习中应着眼于教材的基本知识和方法,不要盲目扩大,应着重做好以下几方面:理解概念,熟练运算巧用性质,灵活自如二、典例剖析考点一:数列的通项与它的前n项和例1、只能被1和它本身整除的自然数(不包括1)叫做质数.41,43,47,53,61,71,83,97是一个由8个质数组成的数列,小王正确地写出了它的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数.试写出一个数P满足小王得出的通项公式,但它不是质数,则P=__________.解析:,.显然当时有因数41,此时.答案:1681点评:本题主要考查了根据数列的前n项写数列的通项的能力.体现了根据数列的前n项写通项只能是满足前n项但不一定满足其所有的性质的特点.例2、已知等差数列中,,前10项之和是15,又记.(1)求的通项公式;(2)求;(3)求的最大值.(参考数据:ln2=0.6931)解析:(1)由,得,.(2).(3)法一:,,由ln2=0.6931,计算>0,<0,所以极大值点满足,但,所以只需比较与的大小:,.法二:数列的通项,令,.点评:求时,也可先求出,这要正确理解“”,其中应处在的表达式中的位置.例3、已知数列的首项,前项和为,且.(1)证明数列是等比数列;(2)令,求函数在点处的导数,并比较与的大小.解析:(1)由已知时,.两式相减,得,即,从而.当时,.又.从而.故总有.又.从而.即是以为首项,2为公比的等比数列.(2)由(1)知,.当n=1时,(*)式=0,;当n=2时,(*)式=-12<0,;当n≥3时,n-1>0.又,,即(*)式>0,从而.考点二:等差数列与等比数列例4、有n2(n≥4)个正数,排成n×n矩阵(n行n列的数表,如下图).其中每一行的数成等差数列,每一列的数成等比数列,并且所有的公比都相等,且满足:a24=1,a42=,a43=,(1)求公比q;(2)用k表示a4k;(3)求a11+a22+a33+…+a nn的值.分析:解答本题的关键首先是阅读理解,熟悉矩阵的排列规律,其次是灵活应用等差、等比数列的相关知识求解.解:(1)∵每一行的数列成等差数列,∴a42,a43,a44成等差数列,∴2a43= a42+a44,a44=;又每一列的数成等比数列,a44=a24·q2,a24=1,∴q2=,且a n>0,∴q=.(2)a4k= a42+(k-2)d=+(k-2)( a43-a42)=.(3)∵第k列的数成等比数列,∴a kk= a4k·q k-4=·()k-4= k·()k (k=1,2,…,n).记a11+a22+a33+…+a nn=S n,则S n=+2·()2+3·()2+…+n·()n,S n=()2+2·()3+…+(n-1) ()n+n()n+1,两式相减,得S n=+()2+…+()n-n()n+1=1-,∴S n=2-,即a11+a22+a33+…+a nn=2-.例5、已知分别是轴,轴方向上的单位向量,且(n=2,3,4,…),在射线上从下到上依次有点,且=(n=2,3,4,…).(1)求;(2)求;(3)求四边形面积的最大值.解析:(1)由已知,得,(2)由(1)知,.且均在射线上,..(3)四边形的面积为.又的底边上的高为.又到直线的距离为.,而,.点评:本题将向量、解析几何与等差、等比数列有机的结合,体现了在知识交汇点设题的命题原则.其中割补法是解决四边形面积的常用方法.考点三:数列的极限例6、给定抛物线,过原点作斜率为1的直线交抛物线于点,其次过作斜率为的直线与抛物线交于.过作斜率为的直线与抛物线交于,由此方法确定:一般地说,过作斜率为的直线与抛物线交于点.设的坐标为,试求,再试问:点,…向哪一点无限接近?解析:∵、都位于抛物线上,从而它们的坐标分别为,∴直线的斜率为,于是,即,.因此,数列是首项为,公比的等比数列.又,,因此点列向点无限接近.点评:本例考查极限的计算在几何图形变化中的应用,求解问题的关键是要利用图形的变化发现点运动的规律,从而便于求出极限值来.例7、已知点满足:对任意的,.又已知.(1)求过点的直线的方程;(2)证明点在直线上;(3)求点的极限位置.解析:(1),,则.化简得,即直线的方程为.(2)已知在直线上,假设在直线上,则有,此时,也在直线上.∴点在直线上.(3),即构成等差数列,公差,首项,,故...故的极限位置为(0,1).考点四:数学归纳法例8、设是满足不等式的自然数的个数.(1)求的解析式;(2)设,求的解析式;(3),试比较与的大小.解析:先由条件解关于的不等式,从而求出.(1)即得.(2).(3).n=1时,21-12>0;=2时,22-22=0;n=3时,23-32<0;n=4时,24-42=0;n=5时,25-52>0;n=6时,26-62>0.猜想:n≥5时,,下面对n≥5时2n>n2用数学归纳法证明:(i)当n=5时,已证25>52.(ii)假设时,,那么..,即当时不等式也成立.根据(i)和(ii)时,对,n≥5,2n>n2,即.综上,n=1或n≥5时,n=2或n=4时时.点评:这是一道较好的难度不太大的题,它考查了对数、不等式的解法,数列求和及数学归纳法等知识.对培养学生综合分析问题的能力有一定作用.例9、已知数列中,,.(1)求的通项公式;(2)若数列中,,,证明:,.解:(1)由题设:,.所以,数列是首项为,公比为的等比数列,,即的通项公式为,.(2)用数学归纳法证明.(ⅰ)当时,因,,所以,结论成立.(ⅱ)假设当时,结论成立,即,也即.当时,,又,所以.也就是说,当时,结论成立.根据(ⅰ)和(ⅱ)知,.考点五:数列的应用例10、李先生因病到医院求医,医生给他开了处方药(片剂),要求每12小时服一片,已知该药片每片220毫克,他的肾脏每12小时排出这种药的60%,并且如果这种药在体内残留量超过386毫克,将会产生副作用,请问:李先生第一天上午8时第一次服药,则第二天早上8时服完药时,药在他体内的残留量是多少毫克?如果李先生坚持长期服用此药,会不会产生副作用?为什么?解:(1)设第次服药后,药在他体内残留量为毫克,依题意,故第二天早上8时第三次服完药时,药在他体内的残留量是343.2毫克.(2)由,,.故长期服用此药不会产生副作用.例11、(07安徽高考)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n 年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以T n表示到第n年末所累计的储备金总额。

SXA277高考数学必修_数列、极限和数学归纳法

SXA277高考数学必修_数列、极限和数学归纳法

数列、极限和数学归纳法一、基础篇一、考试内容1.数列,等差数列及其通项公式,等差数列前n项和公式;等比数列及其通项公式,等比数列前n项和公式。

对数列的考查,客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式,对基本的计算技能要求比较高,解答题大多以考查数列,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.数列推理题是新出现的命题热点.2.数列的极限及其四则运算。

数列极限是高等数学在高考中的应用,高考命题对其要求不高,仅要求会利用四则运算法则求得极限即可.3.数学归纳法及其应用。

数学归纳法作为一种重要的推理方法,是高考重点考查内容.极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具.二、考试要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项和。

2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能够应用这些知识解决一些问题。

3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些问题。

4.了解数列极限的定义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n项和的极限。

5.了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题。

三、考点简析1.数列及相关知识关系表2.内容与意义分析(1)数列是函数概念的继续和延伸,对于等差数列而言,可以把它看作自然数n的“一次函数”,前n 项和是自然数n 的“二次函数”。

等比数列可看作自然数n 的“指数函数”。

应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的.(2)数列的极限这部分知识的学习,教给了学生“求极限”这一数学思路,为学习高等数学作好准备。

(3)数学归纳法是一种数学论证方法,同时又是一种数学思想。

数列、极限、数学归纳法 求数列的极限 教案

数列、极限、数学归纳法 求数列的极限 教案

数列、极限、数学归纳法·求数列的极限·教案教学目标1.熟练运用极限的四则运算法则,求数列的极限.2.理解和掌握三个常用极限及其使用条件.培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力.3.正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想.教学重点与难点使用极限四则运算法则及3个常用极限时的条件.教学过程设计(一)运用极限的四则运算法则求数列的极限师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个常用极限:例1 求下列极限:师:(1)中的式子如何转化才能求出极限.生:可以分子、分母同除以n3,就能够求出极限.师:(2)中含有幂型数,应该怎样转化?师:分子、分母同时除以3n-1结果如何?生:结果应该一样.师:分子、分母同时除以2n或2n-1,能否求出极限?(二)先求和再求极限例2 求下列极限:由学生自己先做,教师巡视.判断正误.生:因为极限的四则运算法则只适用于有限个数列加、减、乘、除的情况.此题当n→∞,和式成了无限项的和,不能使用运算法则,所以解法1是错的.师:解法2先用等差数列的求和公式,求出分子的和,满足了极限四则运算法则的条件,从而求出了极限.第(2)题应该怎样做?生:用等比数列的求和公式先求出分母的和.=12.师:例2告诉我们不能把处理有限项和问题的思路及方法随意地搬到无限项和的问题中去,要特别注意极限四则运算法则的适用条件.例3求下列极限:师:本例也应该先求出数列的解析式,然后再求极限,请同学观察所给数列的特点,想出对策.生:(1)题是连乘积的形式,可以进行约分变形.生:(2)题是分数和的形式,可以用“裂项法”变形.例4设首项为1,公比为q(q>0)的等比数列的前n项和为Sn,师:等比数列的前n项和Sn怎样表示?师:看来此题要分情况讨论了.师:综合两位同学的讨论结果,解法如下:师:本例重点体现了分类讨论思想的运用能够使复杂问题条理化.同(三)公比绝对值小于1的无穷等比数列前n项和的极限师:利用无穷等比数列所有各项和的概念以及求极限的知识,我们已经得到了公比的绝对值小于1的无穷等比数列各项和的公式:例5计算:题目不难,可由学生自己做.师:(1)中的数列有什么特点?师:(2)中求所有奇数项的和实质是求什么?(1)所给数列是等比数列;(2)公比的绝对值小于1;(四)利用极限的概念求数的取值范围师:(1)中a在一个等式中,如何求出它的值.生:只要得到一个含有a的方程就可以求出来了.师:同学能够想到用方程的思想解决问题非常好,怎样得到这个方程?生:先求极限.师:(2)中要求m的取值范围,如何利用所给的等式?|q|<1,正好能得到一个含有m的不等式,解不等式就能求出m的范围.解得0<m<4.师:请同学归纳一下本课中求极限有哪些类型?生:主要有三种类型:(1)利用极限运算法则和三个常用极限,求数列的极限;(2)先求数列的前n项和,再求数列的极限;(3)求公比绝对值小于1的无穷等比数列的极限.师:求数列极限应注意的问题是什么?生甲:要注意公式使用的条件.生乙:要注意有限项和与无限项和的区别与联系.上述问答,教师应根据学生回答的情况,及时进行引导和必要的补充.(五)布置作业1.填空题:2.选择题:则x的取值范围是[ ].的值是[ ].A.2 B.-2 C.1 D.-1作业答案或提示(7)a.2.选择题:(2)由于所给两个极限存在,所以an与bn的极限必存在,得方程以上习题教师可以根据学生的状况,酌情选用.课堂教学设计说明1.掌握常用方法,深化学生思维.数学中对解题的要求,首先是学生能够按部就班地进行逻辑推理,寻找最常见的解题思路,当问题解决以后,教师要引导学生立即反思,为什么要这么做?对常用方法只停留在会用是不够的,应该对常用方法所体现的思维方式进行深入探讨,内化为自身的认知结构,然后把这种思维方式加以运用.例1的设计就是以此为目的的.2.展示典型错误,培养严谨思维.求数列极限的基本方法,学生并不难掌握,因此,例2采取让学生自己做的方式,有针对性地展示出此类题目在解题中容易出现的典型错误,让学生从正确与谬误的对比中,辨明是非、正误,强化求极限时应注意的条件,培养思维的严谨性.这种做法,会给学生留下难忘的印象,收到较好的教学效果.3.贯穿数学思想,提高解题能力.本课从始至终贯穿着转化的思想.而例4中的分类讨论思想,例6中的方程思想的应用,都对问题的解决,起到了决定性的作用,使复杂问题条理化,隐藏的问题明朗化.因此,只有培养学生良好的思维品质,在教学过程中不断渗透和深化数学思想方法,才能达到系统概括知识内容,沟通各类知识的纵横联系,提高解题能力的要求.。

数列、极限、数学归纳法·用数学归纳法证明不等式8页word文档

数列、极限、数学归纳法·用数学归纳法证明不等式8页word文档

数列、极限、数学归纳法·用数学归纳法证明不等式教学目标1.牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程.2.通过事例,学生掌握运用数学归纳法证明不等式的思想方法.3.培养学生的逻辑思维能力,运算能力,和分析问题、解决问题的能力.教学重点与难点重点:巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握利用数学归纳法证明不等式的基本思路.难点:应用数学归纳法证明的不同方法的选择及解题技巧.教学过程设计(一)复习回顾师:上次课我们已经学习了数学归纳法以及运用数学归纳法解题的步骤,请同学们联想“多米诺骨牌”游戏,说出数学归纳法的步骤?生:数学归纳法是用于证明某些与自然数有关的命题的一种方法.设要证命题为P(n).(1)证明当n取第一个值n0时,结论正确,即验证P(n0)正确;(2)假设n=k(k∈N且k≥n0)时结论正确,证明当n=k+1时,结论也正确,即由P(k)正确推出P(k+1)正确,根据(1),(2),就可以判定命题P(n)对于从n0开始的所有自然数n都正确.师:演示小黑板或运用投影仪讲评作业.(讲评作业的目的是从错误中进一步强调恰当地运用归纳假设是数学归纳法的关键)作业中用数学归纳法证明:2+4+6+8+…+2n=n(n+1).如采用下面的证法,对吗?证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即2+4+6+…+2k=k(k+1).当n=k+1时,2+4+6+…+2k+(k+1)所以n=k+1时,等式也成立.根据(1)(2)可知,对于任意自然数n,原等式都能成立.生甲:证明过程正确.生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设.师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)(二)讲授新课师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx.师:首先验证n=2时的情况.(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x ≠0获得,为下面证明做铺垫)(2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx.师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑.生:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当n=k+1时.应构造出归纳假设适应的条件.所以有:(1+x)k+1=(1+x)k (1+x),因为x>-1(已知),所以1+x>0于是(1+x)k(1+x)>(1+kx)(1+x).师:现将命题转化成如何证明不等式(1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x.提问:证明不等式的基本方法有哪些?生甲:证明不等式的基本方法有比较法、综合法、分析法.(提问的目的是使学生明确在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用)生乙:证明不等式(1+kx)(1+x)>1+(k+1)x,可采用作差比较法.(1+kx)(1+x)-[1+(k+1)x]=1+x+kx+kx2-1-kx-x=kx2>0(因x≠0,则x2>0).所以,(1+kx)(1+x)>1+(k+1)x.生丙:也可采用综合法的放缩技巧.(1+kx)(1+x)=1+kx+x+lx2=1+(k+1)x+kx2.因为kx2>0,所以1+(k+1)x+kx2>1+(k+1)x,即(1+kx)(1+x)>1+(1+k)x成立.生丁:……(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.(板书)将例1的格式完整规范.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+lx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k+1时也成立.根据(1)和(2),原不等式对任何不小于2的自然数n都成立.(通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)师:下面再举例子,来说明合理放缩的重要性.(板书)例2证明:2n+2>n2,n∈N+.师:(1)当 n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立.(2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2.现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立.生:利用归纳假设2k+1+2=2.2k+2=2(2k+2)-2>2·k2-2.师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立.生:因为k2-2k-3=(k-3)(k+1),而k∈N,故k+1>0,但k-3≥0成立的条件是k≥3,所以当k∈N时,k-3≥0未必成立.师:不成立的条件是什么?生:当k=1,2时,不等式k-3≥0不成立.师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证?生:n=3需要验证,这是因为数学归纳法中的第一步验证是第二步归纳假设的基础,而第二步中对于k是大于或等于3才成立,故在验证时,应验证n=3时,命题成立.师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书)(2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k+2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0)≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立.师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证n=1.扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,达到目标.(板书)例3求证:当n≥2时,(由学生自行完成第一步的验证;第二步中的假设,教师应重点讲解n=k到n=k+1命题的转化过程)师:当n=k+1时,不等式的左边表达式是怎样的?生:当n=k+1时,k项,应是第2k项,数列各项分母是连续的自然数,最后一项是以3k在3k后面还有3k+1、3k+2.最后才为3k+3即3(k+1),所以正确(在这里,学生极易出现错误,错误的思维定势认为从n=k到n=k+1时,只增加一项,求和式中最后一项即为第几项的通项,教师在这里要着重分析,化解难点.)运算,应针对问题的特点,巧妙合理地利用“放缩技巧”,使问题获得简捷的证明:(板书略)师:设S(n)表示原式左边,f(n)表示原式右边,则由上面的证法可知,从n=k到n=k+1命题的转化途径是:要注意:这里 S′(k)不一定是一项,应根据题目情况确定.(三)课堂小结1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.3.数学归纳法也不是万能的,也有不能解决的问题.错误解法:(2)假设n=k时,不等式成立,即当n=k+1时,则n=k+1时,不等式也成立.根据(1)(2),原不等式对n∈N+都成立.(四)课后作业1.课本P121:5,P122:6.2.证明不等式:(提示:(1)当n=1时,不等式成立.(2)假设n=k时,不等式成立,即那么,这就是说,n=k+1时,不等式也成立.根据(1)(2)可知不等式对n∈N+都成立.)3.对于任意大于1的自然数n,求证:(提示:(2)假设n=k时,不等式成立,即这就是说,n=k+1时,原不等式成立.根据(1),(2)可知,对任意大于1的自然数n,原不等式都成立.)用数学归纳法证明①式:(1)当n=3时,①式成立.(2)假设 n=k(k≥3,k∈N)时,①式成立,即2k>2k+1.那么2k+1=2k·2>2(2k+1)=2(k+1)+1+(2k-1)>2(k+1)+1(因k≥3,则2k-1≥5>0).这就是说,当n=k+1时,①式也成立.根据(1)(2)可知,对一切n∈N,n≥3①式都成立,即f课堂教学设计说明1.数归法是以皮亚诺的归纳公理作为依据,把归纳法与演绎法结合起来的一种完全归纳法.数学归纳法证明中的两个步骤体现了递推思想.在教学中应使学生明确这两个步骤的关系:第一步是递推的基础;第二步是递推的依据,缺一不可,否则就会导致错误.为了取得良好的教学效果,不妨利用“多米诺骨牌”游戏来加深这两步骤之间的关系的理解,在演示时,应分三种情况:(1)推倒第一张,接着依次倒下直至最后一张;(2)推倒第一张,中途某处停止,最后一张不倒;(3)第一张不倒,后面不管能否推倒,都不会全部倒下.通过具体生动的模型,帮助学生理解数学归纳法的实质.2.用数学归纳法证明不等式,宜先比较n=k与n=k+1这两个不等式间的差异,以决定n=k时不等式做何种变形,一般地只能变出n=k+1等式的一边,然后再利用比较、分析、综合、放缩及不等式的传递性来完成由n=k成立推出n=k+1不等式成立的证明.3.要注意:在证明的第二步中,必须利用“n=k时命题成立”这一归纳假设,并且由f(k)到 f(k+1),并不总是仅增加一项,如例2,4.要教会学生思维,离开研究解答问题的思维过程几乎是不可能的,因此在日常教学中,尤其是解题教学中,必须把教学集中在问题解答者解答问题的整个过程上,培养学生构作问题解答过程的框图,因为用文字、符号或图表简明地表达解答过程或结果的能力,叙述表达自己解题思路的能力,这也是问题解答所必需的.。

数列、极限、数学归纳法(上)

数列、极限、数学归纳法(上)

【考点梳理】一、考试内容1.数列,等差数列及其通项公式,等差数列前n项和公式。

2.等比数列及其通项公式,等比数列前n项和公式。

3.数列的极限及其四则运算。

4.数学归纳法及其应用。

二、考试要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项和。

2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能够应用这些知识解决一些问题。

3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些问题。

4.了解数列极限的定义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n项和的极限。

5.了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题。

三、考点简析1.数列及相关知识关系表2.作用地位(1)数列是函数概念的继续和延伸,是定义在自然集或它的子集{1,2,…,n}上的函数。

对于等差数列而言,可以把它看作自然数n的“一次函数”,前n项和是自然数n的“二次函数”。

等比数列可看作自然数n的“指数函数”。

因此,学过数列后,一方面对函数概念加深了了解,拓宽了学生的知识范围;另一方面也为今后学习高等数学中的有关级数的知识和解决现实生活中的一些实际问题打下了基础。

(2)数列的极限这部分知识的学习,教给了学生“求极限”这一数学思路,为学习高等数学作好准备。

另一方面,从数学方法来看,它是一种与以前学习的数学方法有所不同的全新方法,它有着现代数学思想,它把辩证唯物主义的思想引进了数学领域,因而,学习这部分知识不仅能接受一种新的数学思想方法,同时对培养学生唯物主义的世界观也起了一定的作用。

(3)数学归纳法是一种数学论证方法,学生学习了这部分知识后,又掌握了一种新的数学论证方法,开拓了知识领域,学会了新的技能;同时通过这部分知识的学习又学到一种数学思想。

学好这部分知识,对培养学生逻辑思维的能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有很好的效果。

数列的数学归纳法与证明总结

数列的数学归纳法与证明总结

数列的数学归纳法与证明总结在数学中,数列是一系列按照特定规律排列的数字。

数学归纳法是一种证明数学命题的常用方法之一,尤其在涉及到数列时起到重要作用。

本文将对数列的数学归纳法以及相关证明方法进行总结。

一、数学归纳法的基本原理数学归纳法是一种通过证明第一个命题为真,且若某一命题为真,则下一个命题也为真的方法,用于证明涉及正整数的命题。

它包含以下两个步骤:1. 基础步骤:证明当n取某个特定值时命题成立,通常是证明n=1时为真;2. 归纳步骤:假设当n=k时命题成立,证明当n=k+1时命题也成立。

通过以上两个步骤的迭代,可以得出结论:对于任意正整数n,命题都成立。

二、数列的数学归纳法证明当我们处理数列时,常常需要证明其中一些性质是否成立。

数学归纳法可以帮助我们进行这样的证明。

以斐波那契数列为例,我们将展示如何使用数学归纳法进行证明。

斐波那契数列是一个以0和1开始,后续每个数都是前两个数之和的数列。

即:F(1) = 0,F(2) = 1F(n) = F(n-1) + F(n-2),其中n>2现在我们使用数学归纳法证明斐波那契数列的性质:F(n)的值大于等于n。

我们按照数学归纳法的步骤来进行证明。

1. 基础步骤:当n=1时,F(1)=0,而0大于等于1不成立。

所以我们需要验证n=2时,F(2)的值是否大于等于2。

经计算可知F(2)=1,显然1小于2。

因此基础步骤不成立。

2. 归纳步骤:假设当n=k时,F(k) >= k 成立。

我们需要证明当n=k+1时,F(k+1) >= k+1也成立。

根据斐波那契数列的定义,有F(k+1) = F(k) + F(k-1)。

由归纳假设,F(k) >= k,而F(k-1) >= k-1。

因此有F(k+1) = F(k) + F(k-1) >= k + k-1 = 2k-1。

下一步我们可以尝试使用数学归纳法证明2k-1 >= k+1,其中k为正整数。

2022年高考数学一轮复习必备 极限-数列的极限、数学归纳法

2022年高考数学一轮复习必备 极限-数列的极限、数学归纳法

第92-93课时:第十二章 极限——数列的极限、数学归纳法课题:数列的极限、数学归纳法一知识要点(一) 数列的极限1定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数,都能在数列中找到一项a N ,使得当n>N 时,|an-A|A a n n =∞→lim lim nn a →∞lim nn b →∞lim()lim lim n n n nn n n a b a b →∞→∞→∞±=±lim()lim lim n n n nn n n a b a b →∞→∞→∞⋅=⋅)0lim (lim lim lim ≠=∞→∞→∞→∞→n n n n nn n n n b b a b aS=⎪⎩⎪⎨⎧-=>=<=∞→)11()1(1)1(0lim a a a a a n n 或不存在数分别是0n =112322+++n n n nnn b ∞→lim122limnn na a a nb →∞+++na +222221lim()111n n n n n →∞-++++++)2(lim 2n n n n -+∞→nnn a a a a a a 24221lim ++++++∞→ 1)11(lim 2=--++∞→b an n n n lim()n n n A S n →∞-1(1,2,)n n S n S +=nn T ∞→lim n )31(1A 2A||||lim11n n n n n A A A A -+∞→)1,(,12131211>∈<-++++n N n n n 12)1(+n n n 131211++++ n 2131211++++ 22+n na a a a ,,,,321 nb b b b ,,,,321 nn n n b b b b B a a a a A ++++== 321321,2)(1n a a n +b b b b 112101145=+++=,…a b n a n =+⎛⎝ ⎫⎭⎪log 11131log a n b +nn S ∞→lim )]211()511)(411)(311([lim +----∞→n n n nn n a 1S lim =∞→122321222)2221(lim -∞→+++++++n nn n n n C C C nn n S S 1lim+∞→⎪⎪⎭⎫⎝⎛++⋯++++∞→32323221lim n n n n n n n n nn n S nalim ∞→nn n1i 1i i nS lim 则,a a 1∞→=+∑=nn a ∞→lim 9423lim=+-∞→nn n a a nn a ∞→lim 11)2(3)2(3lim+-∞→-+-+n n n n n )1n 2n1n 31n 21n 1(lim 2222n ++++++++∞→ n876n 321n a a a a a a a a lim ++++++++∞→ n n nnn a a a a --∞→+-lim ••8100.0••810000.0nn n21)1(21211212121122⋅-+-+-++++nb)(11+:1212=1,与M 交于点A 、B ,L 与φ交于点C 、D ,求22||||lim CD AB n ∞→1)n(n 3221n +++⋅+⋅= n =1,2,3……,b 1)n(n a nn+= n =1,2,3……,用极限定义证明21lim =∞→n n b 85年练习(数学归纳法)1.由归纳原理分别探求:1凸n 边形的内角和fn= ; 2凸n 边形的对角线条数fn= ;3平面内n 个圆,其中每两个圆都相交于两点,且任意三个圆不相交于同一点,则该n 个圆分平面区域数fn=2.平面上有n 条直线,且任何两条不平行,任何三条不过同一点,该n 条直线把平面分成fn 个区域,则fn1=fn3.当n 为正奇数时,求证nn被整除,当第二步假设n=2─1时命题为真,进而需验证n= ,命题为真。

最新专题复习数列、数列的极限、数学归纳法 人教版

最新专题复习数列、数列的极限、数学归纳法 人教版

专题复习数列、数列的极限、数学归纳法人教版专题复习数列、数列的极限、数学归纳法一. 本周教学内容:1. 复习内容:专题复习“数列”、“数列的极限”、“数学归纳法”。

重点是:①数列的通项公式、前n项和公式的关系;用递推关系式表示数列;②两种基本数列——等差数列与等比数列的定义,通项公式、前n 项和公式、性质;③极限的运算法则,公比q的绝对值小于1的无穷等比数列的所有项的和的定义以及计算公式;④数学归纳法的涵义及其运用。

2. 要点综述:①数列与极限是初等数学与高等数学衔接和联系最紧密的内容之一,有关极限的概念及方法是微积分的重要工具。

因此,数列的极限就成为进一步学习高等数学的基础。

②两种基本数列——等差数列、等比数列,是高考中的必考内容,要熟练掌握这两种数列的定义,通项公式、前n项和公式以及其性质。

③数列的极限的思想方法要认真体会,为进一步学好高等数学作好充分的准备。

高考试题中对极限的考查逐渐由单一地求数列的极限,向结合等差、等比数列的计算求极限转化逐渐向结合数列求和方法求极限转化。

④数学归纳法作为一种证明方法,在证明某些与自然数n有关的命题时,有其他证明方法所不具有的独特性和优越性,是一种非常重要的证明方法,应认真体会其要义并能正确使用它,在高考试题中,经常作为解答中的一个环节来考查,比如,给出一个数列的递推关系式,先求出其前三项,进而推测通项公式,最后再用数学归纳予以证明。

这其中,体现了数学中“归纳——猜想——证明”的由特殊到一般的思维方法。

3. 复习建议:①认真复习以下概念——等差、等比数列的定义,数列极限的定义,认真体会其内涵。

②掌握几个重要公式——数列的前n项和Sn 与通项an的关系式;等差数列、等比数列的通项公式,前n项和公式;无穷等比递缩数列的所有和S的计算公式。

③掌握一个重要性质——设m、n、p、q∈N,且m+n=p+q,«Skip Record If...»«Skip Record If...»④掌握数列求和的几个方法——裂项求和法,错位相减求和法,以及公式法。

数列、极限、数学归纳法

数列、极限、数学归纳法

数列、极限、数学归纳法考纲透析 考试大纲:数学归纳法,数列的极限,函数的极限,极限的四则运算,函数的连续性。

数学归纳法,数列的极限 1专题知识整合1.无穷递缩等比数列(q ≠0,|q |<1)各项和11a S q=- 2.归纳法证猜想的结论,用数学归纳法证等式和不等式。

3.含有n的无理式,如limn →∞需分子有理化,转化为0n =4.指数型,如111lim n n n n n a b a b+++→∞-+,分子、分母同除以|a|n +1或|b|n +1转化为求lim n n q →∞2.新题型分类例析 热点题型1:数列与极限 样题1:已知{a n }是各项均为正数的等差数列,lga 1、lga 2、lga 4成等差数列.又21nn b a =,n=1,2,3,…. (Ⅰ)证明{b n }为等比数列;(Ⅱ)如果无穷等比数列{b n }各项的和13S =,求数列{a n }的首项a 1和公差d . (注:无穷数列各项的和即当n →∞时数列前n 项和的极限)解:(Ⅰ)设数列{a n }的公差为d ,依题意,由 2142lg lg lg a a a =+ 得2214a a a =即)3()(1121d a a d a +=+,得d =0 或 d =a 1 因1221+=+n n a a b b n n ∴ 当d =0时,{a n }为正的常数列 就有11221==++n n a a b b n n 当d =a 1时,1112112)12(,)12(1a a a a a a n nn n -+=-+=++,就有1221+=+n n a a b b n n 21= 于是数列{b n }是公比为1或21的等比数列 (Ⅱ)如果无穷等比数列{b n }的公比q =1,则当n →∞时其前n 项和的极限不存在。

因而d =a 1≠0,这时公比q =21,112b d = 这样{b n }的前n 项和为11[1()]22112n n dS -=- 则S=11[1()]122lim lim 112n n n n dS d →+∞→+∞-==-由13S =,得公差d =3,首项a 1=d =3变式题型1设数列{a n }是等差数列,a 1=1,其前n 项和为S n ,数列{b n }是等比数列,b 2=4,其前n 项和为T n . 又已知lim n →∞T n =16,S 5=2T 2+1.求数列{a n }、{b n }的通项公式。

推荐-数列、数列的极限、数学归纳法 精品

推荐-数列、数列的极限、数学归纳法 精品

数列、数列的极限、数学归纳法知识要点:一、数列的一般概念1、数列通项公式, 其中n是自然数集或是自然数集的子集。

2、表示数列的方法有: 列表法, 图象法, 解析法和用递推形式表示数列。

3、数列的前n项项之间的关系。

在用计算中, 这时成立, 务必再检验一下n = 1时与所有的关系, 看能否将用统一的表示式表示, 这一点在解题时常出错。

4、数列求和问题, 除转化为等比数列、等差数列求和外, 还要注意以下两点:(1)通项公式是项数n的一次、二次、三次多项式时, 经常转化为自然数列、自然数的平方数列、立方数列进行求和, 利用下列公式:1 +2 +3 +4 + ……+ n = ,,.(2)利用裂项法进行求和。

二、等差数列和等比数列2、在等差数列中涉及五个量, 在等比数列中涉及五个量, 在五个量中“知三求二”是基本运算, 运算时要注意灵活运用有关性质和变形, 探求简便的解法。

3、等差数列、等比数列的有关性质数列是等差数列的充要条件是, 其中a、b是常数, 且a是公差;数列是等差数列的充要条件是, 其中a、b是常数, 且。

在等差数列中, 若k、l、m、且k+ l= m+ n, 则, 特别有。

在等比数列中, 若k、l、m、且k+ l= m+ n, 则, 特别有。

三个非零实数a, b, c成等比数列的充要条件是b2 = ac, 零不可能是等比数列的某一项。

三个实数a, b, c成等差数列的充要条件是2b = a + c。

三、数列的极限1、理解数列的极限“”定义并会应用。

2、数列极限的四则运算如果,那么,(C是常数)。

对上述法则可以推广到有限个数列的和的极限, 等于它们的极限的和。

但是对于无穷多个数列的和, 这个性质不成立。

3、无穷等比数列当时, 各项和。

换言之, 在无穷等比数列中, 存在的充要条件, 一定注意公式的含义及适用范围。

4、常用的基本极限在极值的求值运算时, 经常用到下列极限。

(C是常数), (C是常数), 当四、数学归纳法数学归纳法是证明有关自然数n的命题的一种重要方法。

数列、极限与数学归纳法(2003年以前)

数列、极限与数学归纳法(2003年以前)

数列、极限与数学归纳法考试内容:数列。

等差数列及其通项公式、前n 项和的公式。

等比数列及其通项公式、前n 项和的公式。

数列的极限及其四则运算。

数学归纳法及其应用。

考试要求:(1)理解数列的有关概念。

了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(2)掌握等差数列与等比数列的概念、通项公式、前n 项和的公式,并能够运用这些知识解决一些问题。

(3)了解数列极限的意义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n 项和的极限。

(4)了解数学归纳法的原理,并能用数学归纳法证明一些简单问题。

一、选择题1. 给出20个数:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.它们的和是( )(86年(5)3分) (A)1789 (B)1799 (C)1879 (D)18992. 设命题甲:△ABC 的一个内角为60o ,命题乙:△ABC 的三个内角的度数成等差数列.那么( )(88年(11)3分)(A)甲是乙的充分不必要条件 (B)甲是乙的必要不充分条件 (C)甲是乙的充要条件 (D)甲不是乙的充分条件也不是乙的必要条件 3. 已知{a n }是等比数列,如果a 1+a 2+a 3=18,a 2+a 3+a 4=-9,S n =a 1+a 2+……+a n ,那么n n S ∞→lim 的值等于( )(89年(5)3分)(A)8 (B)16 (C)32 (D)484. 已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5=( )(91年(7)3分)(A)5 (B)10 (C)15 (D)205. )]211()511)(411)(311([lim +----∞→n n n 的值等于( )(91年(12)3分) (A)0 (B)1 (C)2 (D)36. 在各项均为正数的等比数列{a n }中,若a 5a 6=9,则log 3a 1+log 3a 2+……+log 3a 10=( )(93年(7)3分) (A)12 (B)10 (C)8 (D)2+log 357. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌由一个可繁殖成( )(94年(5)4分) (A)511个 (B)512个 (C)1023个 (D)1024个8. 等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若nn n n n b a lim 则,13n 2n T S ∞→+==( )(95年(12)5分) (A)1(B)36 (C)32 (D)94 9. 等比数列a n 的首项a 1=-1,前n 项和为S n ,已知n n 510S lim 则,3331S S ∞→=等于( )(96年(10)4分)(A)32 (B)-32 (C)2 (D)-210. 等差数列{a n }的前m 项和是30,前2m 项和是100,则它的前3m 项和是( )(96年(12)5分) (A)130 (B)170 (C)210 (D)260 11. 在等比数列{a n }中,a 1>1,且前n 项和S n 满足nn n a 1S lim =∞→,那么a 1的取值范围是( )(98年(15)5分) (A)(1,+∞)(B)(1,4)(C)(1,2)(D)(1,2)二、填空题1. 11)2(3)2(3lim+-∞→-+-+n nn n n =____________.(86年(14)4分)2. )1n 2n1n 31n 21n 1(lim 2222n ++++++++∞→ =____________.(87年(12)4分)3. 已知等比数列{a n }的公比q >1,a 1=b(b ≠0),则n876n321n a a a a a a a a lim ++++++++∞→ =_______.(88年(24)4分)4. 已知{a n }是公差不为0的等差数列,如果S n 是{a n }的前n 项和,那么nnn S na lim ∞→等于_______.(90年(18)3分)5. 已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则1042931a a a a a a ++++的值是_________.(92年(23)3分)6. 已知等差数列{a n }的公差d >0,首项a 1>0,S n n n1i 1i i n S lim 则,a a 1∞→=+∑==______.(93年(24)3分) 三、解答题1. 设a 1)n(n 3221n +++⋅+⋅= (n =1,2,3……),Ⅰ.证明不等式21)(n <<a 21)n(n 2n ++对所有的正整数n 都成立; Ⅱ.设b 1)n(n a n n += (n =1,2,3……),用极限定义证明21lim =∞→n n b .(85年(16)10分)2. 已知x 1>0,x 1≠1,且x 1)(3x 3)(x x 2n2n n 1n ++=+ (n =1,2,3……).试证:数列{x n }或者对任意的自然数n都满足x n <x n +1,或者对任意的自然数n 都满足x n +1<x n .(86年(22)12分) 3. 设数列a 1,a 2,……a n ,……的前项和S n 与a n 的关系是S n =-ba n +1-nb)(11+,其中b 是与n无关的常数,且b ≠-1, Ⅰ.求a n 和a n +1的关系式;Ⅱ.写出用n 和b 表示a n 的表达式;Ⅲ.当0<b <1时,求极限lim n →∞S n .(87年(20)12分)4. 是否存在常数a,b,c,使得等式1·22+2·32+……+n(n +1)2=12)1(+n n (an 2+bn +c)对一切自然数n 成立?并证明你的结论.(89年(23)10分)5. 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.(90年(21)10分) 6. 设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0,Ⅰ.求公差d 的取值范围;Ⅱ.指出S 1,S 2,……S 12中哪一个值最大,并说明理由.(92年(27)10分)7. 设{a n }是正数组成的数列,其前n 项的和为S n ,并且对所有的自然数n,a n 与2的等差中项等于S n 与2的等比中项,Ⅰ.写出数列{a n }的前3项;Ⅱ.求数列{a n }的通项公式(写出推导过程);Ⅲ.令b )a a a a (21n1n 1n nn +++=,(n ∈N),求lim n →∞(b 1+b 2+……+b n -n).(94年(25)14分)8. 设{a n }是由正数组成的等比数列,S n 是其前n 项和,Ⅰ.证明:21(lgS n +lgS n +2)<lgS n +1;Ⅱ.是否存在常数c >0,使得21[lg(S n -c)+lg(S n +2-c)]<lg(S n +1-c)成立?并证明你的结论.(95年(25)12分)9. 已知数列{a n },{b n }都是由正数组成的等比数列,公比分别为p,q,其中p >q,且p ≠1,q ≠1.设c n =a n +b n ,S n 为数列{c n }的前项和,求1n nn S S lim-∞→.(97年(21)11分)10. 已知数列{b n }是等差数列,b 1=1,b 1+b 2+……+b 10=145.①求数列{b n }的通项b n ;②设数列{a n }的通项a n =log a (1+nb 1)(其中a>0且a ≠1),记S n 是数列{a n }的前n 项和.试比较S n 与3b log 1n a +的大小,并证明你的结论.(98年(25)12分) 11. 右图为一台冷轧机的示意图,冷轧机由若干对轧辊组成,带钢从一段输入,经过各队轧辊逐步减薄后输出(1)输入带钢的厚度为α,输出带钢的厚度为β,若每对轧辊的减薄率不超过r 0,问冷轧机至少需要安装多少对轧辊?(一对轧辊减薄率=输入该对的带钢的厚度从该对输出的带钢厚度输入该对的带钢的厚度-)(2)已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600mm,若第k 对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,在冷轧机输出的带钢上,疵点的间距为L k ,为了便于检修,请计算L',L2,L3并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗)(99年是斜率为bn 的线段(其中正常数b≠1),设数列{xn}有f(xn)=n(n=1,2,…)定义(1)求x1,x2和xn的表达式;(2)求f(x)的表达式,并写出其定义域(3)证明y=f(x)的图象与y=x的图象没有横坐标大于1的交点(99年(23)14分)。

数学归纳法及数列的极限

数学归纳法及数列的极限

数学归纳法及数列的极限知识精要一、数学归纳法数学归纳法的一般步骤是:(1)当n 取第一个值0n 时,命题成立;(2)假设当k n =时,命题成立,证明当1+=k n 时命题也成立。

根据(1)和(2)可以断定,命题对任何*N n ∈都成立。

二、数列的极限1.定义:一般地,在n 无限增大的变化过程中,如果无穷数列}{n a 中的n a 无限趋近于一个常数A ,那么A 叫做数列}{n a 的极限,或叫做数列}{n a 收敛于A 。

记作A a n n =∞→lim ,读作“n 趋向于无穷大时,n a 的极限等于A ”。

2.常用数列的极限:(1)当1<q 时,0lim =∞→n n q ;(2)01lim =∞→n n (3)C C n =∞→lim ,(C 为常数) 3.四则运算法则:如果B b A a n n n n ==∞→∞→lim ,lim ,那么 (1)B A b a b a n n n n n n n ±=±=±∞→∞→∞→lim lim )(lim (2)B A b a b a n n n n n n n ⋅=⋅=⋅∞→∞→∞→lim lim )(lim (3))0(,lim lim lim ≠==∞→∞→∞→B B A b a b a n n n n n n n 4.无穷等比数列的各项的和: 把1<q 的无穷等比数列的前n 项和n S 当∞→n 时的极限叫做无穷等比数列的各项的和,并用符号S 表示,即)01(,11)1(lim lim 11≠<-=--==∞→∞→q q qa q q a S S n n n n 且热身练习1.欲用数学归纳法证明“对于足够大的正整数n ,总有32n n >”则所取的第一个n 值,最小应是 。

答案:102.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( D ) A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立C.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立3.用数学归纳法证明:)12(5312)()3)(2)(1(-⋯⋅⋅⋅⋅=+⋯+++n n n n n n n , *N n ∈,从“k n =到1+=k n ”时,左边应增添的因式是( B )A.12+kB.1)22)(12(+++k k k C.112++k k D.122++k k4.计算前几项:16941,941,41,1-+-+--等各项的值,可以猜想:=-+⋯+-+-+21)1(16941n n解答:11=a ,2)12(2)21(32+-=+-=-=a ,2)13(3)321(63+=++==a 猜想:2)1()1()321()1()1(169411121+-=+⋯+++⋅-=-+⋯+-+-+++n n n n n n n 5.数列}{n a 中,2221,11000,10012n n n a n n n n⎧≤≤⎪⎪=⎨⎪≥⎪-⎩ ,则数列}{n a 的极限值( B ) A.等于0B.等于1C.等于0或1D.不存在6.计算:(1)32lim 43n n n →∞-+,(2)23(1)61lim n n n n →∞++,(3)1132lim 32n n n n n ++→∞-+。

数列的极限数学归纳法

数列的极限数学归纳法

数列的极限、数学归纳法、知识要点 (一) 数列的极限列中找到一项 aN,使得当n>N 时,|an-A|< 恒成立,则称常数 A 为数列{a n }的极限,记作lim a n A .n2.运算法则:若lim a n 、lim b n 存在,则有lim(a n b n )lim a n lim ;lim( a n b n ) lim a n lim b nnnnnn na lim a nlim —— , (lim b n 0)nb n lim b n nn(a1)3.两种基本类型的极限<1> S= lima nn1(a 1)不存在(a诚a<2>设f (n)、g(n)分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为 a p 、0 (p q)b p 且 g( n) 0(n N),则 limng(n )(二)数学归纳法①验证命题对于第一个自然数 n n 0成立。

②假设命题对 n=k(k > n o )时成立,证明n=k+1时命题也成立 则由①②,对于一切n > n o的自然数,命题都成立。

、例题(数学的极限)1.定义:对于无穷数列{a n },若存在一个常数 A,无论预选指定多么小的正数 ,都能在数 4.无穷递缩等比数列的所有项和公式:S「q E )无穷数列{a n }的所有项和: a p- (p q) b q 不存在 (p q)S lim S n (当 lim S n 存在时)nn数学归纳法是证明与自然数 n 有关命题的一种常用方法,其证题步骤为:(4) lim( J-3Lnn 1 n 1(5) lim G. n 2 2n n)=;n例2 •将无限循环小数 0.12 ; 1.32 12 化为分数.『1例3•已知lim(an b) 1,求实数a, b 的值;nn 1例 4•数列{a n },{b n }满足 lim (2a n +b n )=1,lim (a n — 2tn)=1,试判断数列{a n },{b n }的极限是否nn存在,说明理由并求lim (a n b n )的值.n例5.设首项为a ,公差为d 的等差数列前-项的和为A,又首项为a,公比为r 的等比数列S例6.设首项为1,公比为q(q>0)的等比数列的前 -项之和为S n ,又设T n =— (n 1,2,L ),S- 1求 lim T n .n21 例7. {a n }的相邻两项a n ,a n+1是方程x —c -X +(—)n =0的两根,又a 1=2,求无穷等比C 1 ,c 2, (3)C n ,…的各项和.例8在半径为R 的圆内作内接正方形, 在这个正方形内作内切圆, 又在圆内作内接正方形,如此无限次地作下去,试分别求所有圆的面积总和与所有正方形的面积总和。

数列的极限与数学归纳法_教师共10页word资料

数列的极限与数学归纳法_教师共10页word资料

数 列 的 极 限1、数列极限的运算性质如果n n a ∞→lim =A ,n n b ∞→lim =B ,那么(1))(lim n n n b a ±∞→=n n a ∞→lim ±n n b ∞→lim = A ±B ;(2))(lim n n n b a ⋅∞→=n n a ∞→lim •n n b ∞→lim = A•B ;(3)nn n b a ∞→lim = n n n n b a ∞→∞→lim lim =B A (B ≠0,b n ≠0) 2、几个常用数列极限(1) C C n =∞→lim (C 为常数);(2)nn 1lim∞→=0; (3)n n q ∞→lim =0 (||q <1)(4)n n n)11(lim +∞→=e3、数列极限运算的几种基本类型:(1) 关于n 的分式型 (2) 关于n 的指数型 (3) 无穷多项的和与积 (4) 无穷递缩等比数列 例1.求下列数列的极限:(1) 22326lim 579n n n n n →∞-+++ (2) 11(2)3lim (2)3n n n n n ++→∞-+--(3) 22221111lim(1)(1)(1)(1)234n n→∞----L (4) 234212121212lim()555555n n n -→∞++++++L (5) 11111lim[(1)]39273n n n -→∞-+++-⋅L(6) n (7) 2111333lim 3n n n n a --→∞+++++L(8)123lim[]2!3!4!(1)!n nn →∞+++++L (9) 1lim n n n n a a b+→∞+(a,b>0) 分析:求数列的极限首先应判断属于哪一种基本类型,然后考虑如何转化哪一种基本数列的极限解决问题。

解: (1) lim ∞→n =+++-97562322n n n n lim ∞→n 5397562322=+++-n n n n (2) lim ∞→n 113)2(32++--+-n n n n)(=lim ∞→n 313)32(21)32(-=--⋅-+-n n . (3) lim∞→n )11()411)(311)(211(2222n----Λ=lim∞→n )]11)(11()411)(411)(311)(311)(211)(211[(n n +-+-+-+-Λ=lim∞→n )]1)(1(454334322321[n n n n +-⋅⋅⋅⋅⋅Λ=lim∞→n 21121=+⋅n n(4) lim∞→n )525152515251(212432n n ++++++-Λ=lim∞→n )]515151(2)515151[(242123n n +++++++-ΛΛ=lim ∞→n 247]511)511(512511)511(51[22222=--⋅+--n n或另解:原式=lim∞→n ]5151(2)515151[(22123n n ++++++-ΛΛ24751151251151222=-⋅+-=(5) 分析:应能够很快地由数列的通项n n 31)1(1⋅--可识别出此数列为公比为(-31)的无穷递缩等比数列。

数列、极限、数学归纳法 教案示例

数列、极限、数学归纳法 教案示例

数列、极限、数学归纳法 教案示例目标:引导同学对所做旧题进行回顾反思,使对本章知识点、方法系统及易错点有一个更清晰的线索,框架,培养学生面对陌生情景的问题时,能从运用知识点,方法体系的角度去思考分析问题的解题策略。

难点:策略意识的归纳提取及运用 范例:例1.(1)在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+……+a n =a 1+a 2+……+a 19-n (n<19, n ∈N) 成立,类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式________成立。

(2)公差不为0的等差数列中,若第k,n,p 项成等比数列,则其公比为( )。

A 、p n n k --B 、k n n p --C 、p k n k --D 、np kp --(3)等差数列{a n },{b n }的前n 项和分别为S n 和T n , 若132+=n n T S n n ,则nn n b a lim ∞→等于( )。

A 、1 B 、36C 、32D 、94解析:以上三题都考查有关等差、等比数列概念,此处知识要点是定义、公式的理解运用。

问题主要是“知三求二”类的方程计算,方法有①“基本量法”(即把问题化归到a 1,d 或q 上去,简单可行,但通常较为麻烦);②“表示技巧法”(在等差、等比数列中任两项都可互相表示;中项;若有k,l,m,n ∈N 且k+l=m+n...{a n }为AP 则a k +a l =a m +a n , {a n }为GP ,则a k ·a l =a m ·a n );③还有少数问题可联系函数去解决。

(1)a 1+a 2+……+a n =a 1+a 2+……+a 19-n ,{a n }等差,a 10=0, 此处用了:2a 10=a 9+a 11=a 8+a 12=……=a n +a 20-n . 而a 20-n 的前一项为a 19-n ,故上式成立,若{b n }等比数列,b 9=1,对于n<17, 则有:11811710829=====-n n b b b b b b b ,b 1,b 2,b 3……,b n 中,b 18-n 的前一项为b 17-n ,b 1·b 2·b 3……b n =b 1·b 2·b 3……b 17-n (n<17, n ∈N). (2)若a k , a n , a p 成等比,设公比为q ,则p k n a a a ⋅=2, 由{a n }等差,设公差为d(d ≠0) 则 a k =a n +(k-n)d, a p =a n +(p-n)d, nnp a d n p a a q )(1-+==, ∴ 222))((])()[(d n p n k a d n p d n k a a n n n --+-+-+=∴))((2n p n k pk n a d n ----=, ∴ nk pn n k p k n q --=---+=21, 选B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题四 数列、极限、数学归纳法
姓名_________
1.由公差为d 的等差数列a 1,a 2,a 3,…重新组成的数列a 1+a 4,a 2+a 5,a 3+a 6,…是 ( )
(A )公差为d 的等差数列 (B )公差为2d 的等差数列
(C )公差为3d 的等差数列 (D )非等差数列
2.在直角坐标系内,设P 1(x 1,y 1),P 2(x 2,y 2)是第一象限内的点。

若1,x 1,x 2,2依次成等差数列,1,y 1,y 2,2依次成等比数列,则P 1、P 2与射线L :y =x (x ≥0)的关系是 ( )
(A )点P 1,P 2都在L 的上方 (B )点P 1,P 2都在L 的下方
(C )点P 1,P 2都在L 上 (D )点P 1在L 的上方,点P 2在L 的下方
3.设{a n }是递增的等差数列,前三项的和为12,前三项的积为48,则它的首项为( )
(A )1 (B )2 (C )4 (D )6
4.若a ,b ,c 成等比数列,其中0<a<b<c ,n 是大于1的整数,那么log a n ,log b n ,log c n 所组成的数列是( )
(A )等差数列 (B )等比数列
(C )第二项与第三项是第一项与第二项的n 次幂 (D )每项的倒数成等差数列
5.已知f(x)=n n n x x +∞→1lim
,则函数f(x)的值域是( ) (A ){0} (B ){0,1} (C ){0,1,21} (D ){0,1,21,—1}
6.在等差数列{a n }中,a 10<0,a 11>0,a 11>|a 10|,S n 是它的前n 项和,则( )
(A )S 1,S 2,…,S 10都小于0,S 11,S 12,…,都大于0
(B )S 1,S 2,…,S 19都小于0,S 20,S 21,…,都大于0
(C )S 1,S 2,…,S 5都小于0,S 6,S 7,…,都大于0
(D )S 1,S 2,…,S 20都小于0,S 21,S 22,…,都大于0
7.若a 1,a 2,…,a n ,…,是公差不为0的等差数列,且a n >0,则下列四个数列: ① lga 1,lga 2,…,lga n ,…; ② 12a ,22a ,…,n a 2,…;
③ a 1 a 2,a 2 a 3,…,a n a n+1,…; ④ a 1+a 2,a 2+a 3,…,a n +a n+1,…;
其中是等比数列的是( )
(A )① (B )② (C )③ (D )④
8.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若去掉一项,余下的10项的平均值是4,则去掉的项是( )
(A )a 8 (B )a 9 (C )a 10
(D )a 11
9.在等比数列{a n }中,a 1>1,且前n 项的和S n 满足1
1lim a S n n =∞→,那末a 1的取值范围是( ) (A )()+∞,1 (B )()4,1 (C )(1,2) (D )(1,2)
10.甲、乙两人于同一天分别携款1万元到银行储蓄,甲存五年期定期储蓄,年利率为2.88%, 乙存一年期定期储蓄,年利率为2.25%,并在每年到期时将本息续存一年期定期储蓄,按规定
每次计息时,储户须交纳利息的20%作为利息税。

若存满五年后两人同时从银行取出存款,则甲与乙所得本息之和的差为________________元。

(假定利率五年内保持不变,结果精确到1元)
11.已知数列{a n }的前n 项的满足a 1+2a 2+3a 3+…+na n =232+n C ( n ∈N),
则数列{a n }的通项公式为________________
12.在数列{a n }中,a 1=1,且前n 项的和S n 满足3S n -4,a n ,2-12
3-n S 成等差数列(n ≥2), 则数列{a n }的通项公式为________________
13.已知数列{a n }满足a 1=b ,a n+1=ca n +d (c ,d 为常数c ≠0且c ≠1),求数列{a n }的通项公式
14.在数列{a n }中,a 1=8,a 4=2,且满足a n+2+a n =2a n+1 (n ∈N)
(1)求数列{a n }的通项公式;
(2)设S n =|a 1|+|a 2|+…+|a n |,求S n
15.{a n },{b n }都是各项都为正的数列,对任意的自然数n ,都有a n ,2n b ,a n+1成等差数列;
2n b ,a n+1,21+n b 成等比数列.
(1)求证:{b n }是等差数列;
(2)如果a 1=1,b 1=2,n
n a a a S 11121+++=
,求S n 的极限.
16.已知数列{a n }满足a 1=2,a n+1=n n a a 222+,求证122+<<n a
17.定义在(-1,1)上的函数f(x)满足:(Ⅰ)对任意的x ,y ∈(-1,1)都有:f(x)+f(y)=)1(xy
y x f ++;(Ⅱ)当x ∈(-1,0)时,有f(x)>0. (1)证明:f(x)是奇函数;
(2)证明:)31()5
51()191()111(2f n n f f f >+++++。

相关文档
最新文档