最新10.数学归纳法,数列极限

合集下载

求数列极限的十五种解法

求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。

高中数学中的数列极限求解知识点总结

高中数学中的数列极限求解知识点总结

高中数学中的数列极限求解知识点总结数列极限是高中数学中的重要内容,它是数学分析的基础,也是数学发展的重要方向之一。

掌握数列极限的求解方法和相关知识点,对于高中生提高数学学习水平具有重要的意义。

下面将对高中数学中的数列极限求解知识点进行总结与归纳。

一、数列极限的概念及性质数列极限指的是当数列中的项数趋于无穷大时,数列中的项的极限值。

数列极限的概念基于数列的收敛性,即当数列趋于某个确定的值时,其极限存在。

1.1 数列极限的定义数列{an}的极限为a,记作lim(n→∞) an = a,当且仅当对于任意给定的正数ε,总存在一个正整数N,使得当n>N时,对应的数列项an 与极限a之间的差值小于ε,即|an - a| < ε。

1.2 数列极限的性质(1)唯一性:如果数列的极限存在,则极限值唯一。

(2)有界性:如果数列的极限存在,则数列必定有界。

(3)保序性:如果数列{an}的极限为a,且数列{bn}的极限为b,则当n足够大时,对于数列中的任意项an与bn,都有an ≤ bn。

二、常见数列极限求解方法2.1 基本数列的极限(1)常数数列的极限:对于常数数列{an} = a,其中a为常数,则该常数数列的极限为a,即lim(n→∞)a = a。

(2)等差数列的极限:对于等差数列{an} = a1 + (n - 1)d,其中a1为首项,d为公差,则当公差d≠0时,该等差数列的极限为±∞(取决于公差d的正负性),若公差d=0,则该等差数列的极限为a1。

2.2 数列极限的四则运算法则(1)加减法则:如果数列{an}的极限为a,数列{bn}的极限为b,则数列{an ± bn}的极限为a ± b。

(2)乘法法则:如果数列{an}的极限为a,数列{bn}的极限为b,则数列{an × bn}的极限为a × b。

(3)除法法则:如果数列{an}的极限为a,数列{bn}的极限为b且b≠0,则数列{an ÷ bn}的极限为a ÷ b。

求数列极限的十五种解法

求数列极限的十五种解法

1

0
0 n1
n1
1 x
1 x (1 x)2
而 S(x) x f (x) x ;因此,原式= S(a1) a1 .
(1 x)2
(1 a1 )2
9.利用级数收敛性判断极限存在 由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此
数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.
求数列极限的十五种方法
求数列极限的十五种方法
1.定义法
N 定义:设{an} 为数列, a 为定数,若对任给的正数 ,总存在正数 N ,使得当 n N 时,

an
a
,则称数列
{an
பைடு நூலகம்
}
收敛于
a
;记作:
lim
n
an
a
,否则称{an} 为发散数列.
1
例 1.求证: lim an 1,其中 a 0 . n
列以外的数 a ,只需根据数列本身的特征就可鉴别其敛散性.
3.运用单调有界定理
单调有界定理:在实数系中,有界的单调数列必有极限.
例 5.证明:数列 xn a a a ( n 个根式, a 0 , n 1, 2,
证:由假设知 xn a xn1 ;① 用数学归纳法可证: xn1 xn , k N ;② 此即证 {xn} 是单调递增的.
n0
n0
n
令 Sn
xk1 xk
xn1
x0
,∵
lim
n
Sn
存在,∴
lim
n
xn1
x0
lim
n
Sn
l
(存在);
k 0
对式子:

数学归纳法与数列的极限

数学归纳法与数列的极限

第十二讲:数学归纳法与数列的极限知识小结:1,,,(1)(12,);()(2)(1,2,),1;()(3)(1)(2)*,.n n n k k n k n N ===≥=+∈、数学归纳法用于证明一些与正整数有关的命题即通过对有限个正整数证明命题成立推广到对一切正整数命题都成立的思想方法主要步骤为证明起始命题成立即或命题成立这是证明的基础假设时命题成立由假设条件推出当时命题成立这是递推的关键由、可知对于命题均成立注意数学归纳法的证明格式!数学归纳法的原理2(2),,1.3,.,,.n k n k ==+就像多米勒骨牌!、证题的关键在于用好归纳假设在一般的情况下,由假设时命题成立为出发点推出命题成立即可、数学归纳法在证明过程中要用到许多数学知识综合性较强有时在解决问题时需要先通过归纳得出结论再用数学归纳法证明那么要求能正确地归纳4.数列的极限:一般地,在无限增大的变化过程中,如果无穷数列{}n a 中的项无限趋近于一个常数A ,那么A 叫做数列{}n a 的极限,或叫做数列{}n a 收敛于A ,记作lim n n a A →∞=。

注意点:1)只有无穷数列,当n 趋近于无穷大时,n a 无限趋近于某一常数;2)对于数列{}n a ,当n 无穷增大时,n a 无限趋近于某一定值时c ,是通过n a c -无限趋近于零来描述的。

这里n a c -无限趋近于零,是指不论取一个值多么小的正数(可以任意给定),总可以通过取n 充分大以后,使n a c -充分接近于零,如果这个任意小的正数用ε来表示,那么当n 充分大时,总有n a c ε-<。

3)极限值只有一个值,如趋近于两个值一定没有极限。

5.极限的运算性质性质:lim ,lim ,(1)lim()lim lim .(2)lim()lim lim .lim (3)lim (0,0).lim n n n x n n n n n n x n n n n n n x n n n n n nn x a A b B a b a b A B a b a b A B a a A B b b b B →∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞==±=±=±⋅=⋅=⋅==≠≠1)如果则注意:我们只研究极限存在的运算。

数列、数列的极限与数学归纳法

数列、数列的极限与数学归纳法

一、复习策略本章内容是中学数学的重点之一,它既具有相对的独立性,又具有一定的综合性和灵活性,也是初等数学与高等数学的一个重要的衔接点,因而历来是高考的重点.高考对本章考查比较全面,等差、等比数列,数列的极限的考查几乎每年都不会遗漏.就近五年高考试卷平均计算,本章内容在文史类中分数占13%,理工类卷中分数占11%,由此可以看出数列这一章的重要性.本章在高考中常见的试题类型及命题趋势:(1)数列中与的关系一直是高考的热点,求数列的通项公式是最为常见的题目,要切实注意与的关系.关于递推公式,在《考试说明》中的考试要求是:“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,近几年命题严格按照《考试说明》,不要求较复杂由递推公式求通项问题.(2)探索性问题在数列中考查较多,试题没有给出结论,需要考生猜出或自己找出结论,然后给以证明.探索性问题对分析问题解决问题的能力有较高的要求.(3)等差、等比数列的基本知识必考.这类考题既有选择题,填空题,又有解答题;有容易题、中等题,也有难题.(4)求和问题也是常见的试题,等差数列、等比数列及可以转化为等差、等比数列求和问题应掌握,还应该掌握一些特殊数列的求和.(5)将数列应用题转化为等差、等比数列问题也是高考中的重点和热点,从本章在高考中所占的分值来看,一年比一年多,而且多注重能力的考查.通过上述分析,在学习中应着眼于教材的基本知识和方法,不要盲目扩大,应着重做好以下几方面:理解概念,熟练运算巧用性质,灵活自如二、典例剖析考点一:数列的通项与它的前n项和例1、只能被1和它本身整除的自然数(不包括1)叫做质数.41,43,47,53,61,71,83,97是一个由8个质数组成的数列,小王正确地写出了它的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数.试写出一个数P满足小王得出的通项公式,但它不是质数,则P=__________.解析:,.显然当时有因数41,此时.答案:1681点评:本题主要考查了根据数列的前n项写数列的通项的能力.体现了根据数列的前n项写通项只能是满足前n项但不一定满足其所有的性质的特点.例2、已知等差数列中,,前10项之和是15,又记.(1)求的通项公式;(2)求;(3)求的最大值.(参考数据:ln2=0.6931)解析:(1)由,得,.(2).(3)法一:,,由ln2=0.6931,计算>0,<0,所以极大值点满足,但,所以只需比较与的大小:,.法二:数列的通项,令,.点评:求时,也可先求出,这要正确理解“”,其中应处在的表达式中的位置.例3、已知数列的首项,前项和为,且.(1)证明数列是等比数列;(2)令,求函数在点处的导数,并比较与的大小.解析:(1)由已知时,.两式相减,得,即,从而.当时,.又.从而.故总有.又.从而.即是以为首项,2为公比的等比数列.(2)由(1)知,.当n=1时,(*)式=0,;当n=2时,(*)式=-12<0,;当n≥3时,n-1>0.又,,即(*)式>0,从而.考点二:等差数列与等比数列例4、有n2(n≥4)个正数,排成n×n矩阵(n行n列的数表,如下图).其中每一行的数成等差数列,每一列的数成等比数列,并且所有的公比都相等,且满足:a24=1,a42=,a43=,(1)求公比q;(2)用k表示a4k;(3)求a11+a22+a33+…+a nn的值.分析:解答本题的关键首先是阅读理解,熟悉矩阵的排列规律,其次是灵活应用等差、等比数列的相关知识求解.解:(1)∵每一行的数列成等差数列,∴a42,a43,a44成等差数列,∴2a43= a42+a44,a44=;又每一列的数成等比数列,a44=a24·q2,a24=1,∴q2=,且a n>0,∴q=.(2)a4k= a42+(k-2)d=+(k-2)( a43-a42)=.(3)∵第k列的数成等比数列,∴a kk= a4k·q k-4=·()k-4= k·()k (k=1,2,…,n).记a11+a22+a33+…+a nn=S n,则S n=+2·()2+3·()2+…+n·()n,S n=()2+2·()3+…+(n-1) ()n+n()n+1,两式相减,得S n=+()2+…+()n-n()n+1=1-,∴S n=2-,即a11+a22+a33+…+a nn=2-.例5、已知分别是轴,轴方向上的单位向量,且(n=2,3,4,…),在射线上从下到上依次有点,且=(n=2,3,4,…).(1)求;(2)求;(3)求四边形面积的最大值.解析:(1)由已知,得,(2)由(1)知,.且均在射线上,..(3)四边形的面积为.又的底边上的高为.又到直线的距离为.,而,.点评:本题将向量、解析几何与等差、等比数列有机的结合,体现了在知识交汇点设题的命题原则.其中割补法是解决四边形面积的常用方法.考点三:数列的极限例6、给定抛物线,过原点作斜率为1的直线交抛物线于点,其次过作斜率为的直线与抛物线交于.过作斜率为的直线与抛物线交于,由此方法确定:一般地说,过作斜率为的直线与抛物线交于点.设的坐标为,试求,再试问:点,…向哪一点无限接近?解析:∵、都位于抛物线上,从而它们的坐标分别为,∴直线的斜率为,于是,即,.因此,数列是首项为,公比的等比数列.又,,因此点列向点无限接近.点评:本例考查极限的计算在几何图形变化中的应用,求解问题的关键是要利用图形的变化发现点运动的规律,从而便于求出极限值来.例7、已知点满足:对任意的,.又已知.(1)求过点的直线的方程;(2)证明点在直线上;(3)求点的极限位置.解析:(1),,则.化简得,即直线的方程为.(2)已知在直线上,假设在直线上,则有,此时,也在直线上.∴点在直线上.(3),即构成等差数列,公差,首项,,故...故的极限位置为(0,1).考点四:数学归纳法例8、设是满足不等式的自然数的个数.(1)求的解析式;(2)设,求的解析式;(3),试比较与的大小.解析:先由条件解关于的不等式,从而求出.(1)即得.(2).(3).n=1时,21-12>0;=2时,22-22=0;n=3时,23-32<0;n=4时,24-42=0;n=5时,25-52>0;n=6时,26-62>0.猜想:n≥5时,,下面对n≥5时2n>n2用数学归纳法证明:(i)当n=5时,已证25>52.(ii)假设时,,那么..,即当时不等式也成立.根据(i)和(ii)时,对,n≥5,2n>n2,即.综上,n=1或n≥5时,n=2或n=4时时.点评:这是一道较好的难度不太大的题,它考查了对数、不等式的解法,数列求和及数学归纳法等知识.对培养学生综合分析问题的能力有一定作用.例9、已知数列中,,.(1)求的通项公式;(2)若数列中,,,证明:,.解:(1)由题设:,.所以,数列是首项为,公比为的等比数列,,即的通项公式为,.(2)用数学归纳法证明.(ⅰ)当时,因,,所以,结论成立.(ⅱ)假设当时,结论成立,即,也即.当时,,又,所以.也就是说,当时,结论成立.根据(ⅰ)和(ⅱ)知,.考点五:数列的应用例10、李先生因病到医院求医,医生给他开了处方药(片剂),要求每12小时服一片,已知该药片每片220毫克,他的肾脏每12小时排出这种药的60%,并且如果这种药在体内残留量超过386毫克,将会产生副作用,请问:李先生第一天上午8时第一次服药,则第二天早上8时服完药时,药在他体内的残留量是多少毫克?如果李先生坚持长期服用此药,会不会产生副作用?为什么?解:(1)设第次服药后,药在他体内残留量为毫克,依题意,故第二天早上8时第三次服完药时,药在他体内的残留量是343.2毫克.(2)由,,.故长期服用此药不会产生副作用.例11、(07安徽高考)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n 年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以T n表示到第n年末所累计的储备金总额。

数列极限的知识点总结

数列极限的知识点总结

数列极限的知识点总结一、数列极限的定义1.1 数列首先要了解数列的概念。

数列是由一系列按照一定顺序排列的数所组成的有序集合。

数列通常用符号{an}表示,其中an代表数列的第n个元素。

数列是数学中一种基本的数学概念,它在许多数学问题中都起着重要的作用。

1.2 数列极限接着要了解数列的极限。

数列{an}的极限是指当n趋向于无穷大时,数列中的元素an的值趋近于一个常数L,即lim(an) = L。

如果这样一个数L存在,那么我们就说数列{an}收敛,并且把L称为数列的极限,记作lim(an) = L。

如果这样一个数L不存在,那么我们就说数列{an}发散。

1.3 数列极限的形式化定义对于给定的数ε,如果存在一个正整数N,使得当n大于N时,|an - L| < ε恒成立,那么称L是数列{an}的极限。

这样的N存在的话,就称这N是数L和ε的函数。

1.4 无穷大数列如果数列{an}中的元素an当n趋向于无穷大时,它的绝对值|an|趋向于无穷大,那么就称数列{an}是无穷大的。

对于无穷大数列,我们通常用符号lim(an) = ±∞来表示。

1.5 注意事项在讨论数列极限的问题时,需要注意以下几点:1) 数列的极限可能是一个有限的常数,也可能是无穷大。

2) 一般来说,数列的极限不一定存在,也可能有多个极限(一般在不同n的取值范围内)。

3) 要特别注意当n趋于无穷大时,数列中的元素an的绝对值的行为,关系到数列是否是无穷大数列。

以上是数列极限的基本概念和定义,下面我们将介绍数列极限的相关性质。

二、数列极限的相关性质2.1 唯一性如果数列{an}收敛,那么它的极限是唯一的。

换句话说,如果lim(an) = L1和lim(an) = L2,那么L1 = L2。

2.2 有界性如果数列{an}收敛,那么它一定是有界的,即存在一个正实数M,使得|an| < M(n∈N)。

2.3 保号性如果数列{an}收敛到一个有限的极限L,那么当n充分大时,数列{an}的元素和L有相同的正负号。

数列的极限与数学归纳法_教师

数列的极限与数学归纳法_教师

数 列 的 极 限1、数列极限的运算性质如果n n a ∞→lim =A ,n n b ∞→lim =B ,那么(1))(lim n n n b a ±∞→=n n a ∞→lim ±n n b ∞→lim = A ±B ;(2))(lim n n n b a ⋅∞→=n n a ∞→lim •n n b ∞→lim = A•B ;(3)nn n b a ∞→lim = n n n n b a ∞→∞→lim lim =B A (B ≠0,b n ≠0) 2、几个常用数列极限(1) C C n =∞→lim (C 为常数);(2)nn 1lim∞→=0; (3)n n q ∞→lim =0 (||q <1)(4)n n n)11(lim +∞→=e3、数列极限运算的几种基本类型:(1) 关于n 的分式型 (2) 关于n 的指数型 (3) 无穷多项的和与积 (4) 无穷递缩等比数列例1.求下列数列的极限:(1) 22326lim 579n n n n n →∞-+++ (2) 11(2)3lim (2)3n n n n n ++→∞-+-- (3) 22221111lim(1)(1)(1)(1)234n n→∞---- (4) 234212121212lim()555555n n n -→∞++++++ (5) 11111lim[(1)]39273n n n -→∞-+++-⋅ (6) n (7) 2111333lim 3n n n n a --→∞+++++ (8)123lim[]2!3!4!(1)!n nn →∞+++++ (9) 1lim n n n n a a b +→∞+(a,b>0) 分析:求数列的极限首先应判断属于哪一种基本类型,然后考虑如何转化哪一种基本数列的极限解决问题。

解: (1) lim ∞→n =+++-97562322n n n n lim ∞→n 5397562322=+++-n n n n (2) lim ∞→n 113)2(32++--+-n n nn )(=lim ∞→n 313)32(21)32(-=--⋅-+-n n .(3)lim ∞→n )11()411)(311)(211(2222n ----=lim ∞→n )]11)(11()411)(411)(311)(311)(211)(211[(n n +-+-+-+- =lim ∞→n )]1)(1(454334322321[n n n n +-⋅⋅⋅⋅⋅ =lim ∞→n 21121=+⋅n n (4) lim ∞→n )525152515251(212432n n ++++++- =lim ∞→n )]515151(2)515151[(242123n n +++++++- =lim ∞→n 247]511)511(512511)511(51[22222=--⋅+--n n 或另解:原式=lim ∞→n ]5151(2)515151[(22123nn ++++++- 24751151251151222=-⋅+-= (5) 分析:应能够很快地由数列的通项n n 31)1(1⋅--可识别出此数列为公比为(-31)的无穷递缩等比数列。

高中数学中的数列极限知识点总结

高中数学中的数列极限知识点总结

高中数学中的数列极限知识点总结数列是高中数学中的重要概念,而数列的极限是数学分析的核心内容之一。

我们在学习数列时,需要理解和掌握数列极限的相关概念和性质,以提升数学思维和解题能力。

本文将对高中数学中的数列极限知识点进行总结,并提供一些例题进行讲解。

1. 数列与数列极限的基本概念数列是由一列数按照一定规律排列而成的,可以用数学公式表示为 {an},其中n表示序号,an表示第n项。

对于数列来说,我们常常关注的是数列的极限。

数列极限是指数列在无限项情况下逐渐接近的数值,可以用极限符号lim表示。

当数列的极限存在时,我们可以通过计算极限值来求解相关问题。

2. 数列极限的性质数列极限具有以下性质:(1) 唯一性:数列的极限值唯一,即一个数列只有唯一一个极限值。

(2) 有界性:如果数列有极限,那么它一定是有界的,即数列的项在某一范围内。

(3) 保号性:如果数列的极限值大于0(或小于0),那么数列的部分项也大于0(或小于0),反之亦然。

(4) 夹逼性:如果数列的每一项都被两个趋于相同极限的数列夹逼,那么它们的极限也相同。

3. 数列极限的计算方法在实际运用中,我们常常需要计算数列的极限。

对于一些简单的数列,我们可以通过常用的计算方法求解。

(1) 常数数列的极限等于该数列的常数项。

例如:数列 {an} = {2, 2, 2, ...} 的极限等于2。

(2) 等差数列的极限等于首项(a1)。

例如:数列 {an} = {1, 3, 5, ...} 的极限等于1。

(3) 等比数列的极限在一定条件下存在,存在时等于首项乘以公比( |r| < 1)。

例如:数列 {an} = {2, 1, 0.5, ...} 的极限等于0。

4. 数列极限的收敛与发散数列极限可以分为收敛和发散两种情况。

(1) 收敛:如果数列的极限存在,我们称数列是收敛的。

(2) 发散:如果数列的极限不存在,我们称数列是发散的。

例如:数列 {an} = {1, -1, 1, -1, ...} 是发散的,因为其极限不存在。

数列、极限、数学归纳法(上)

数列、极限、数学归纳法(上)

【考点梳理】一、考试内容1.数列,等差数列及其通项公式,等差数列前n项和公式。

2.等比数列及其通项公式,等比数列前n项和公式。

3.数列的极限及其四则运算。

4.数学归纳法及其应用。

二、考试要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项和。

2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能够应用这些知识解决一些问题。

3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些问题。

4.了解数列极限的定义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n项和的极限。

5.了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题。

三、考点简析1.数列及相关知识关系表2.作用地位(1)数列是函数概念的继续和延伸,是定义在自然集或它的子集{1,2,…,n}上的函数。

对于等差数列而言,可以把它看作自然数n的“一次函数”,前n项和是自然数n的“二次函数”。

等比数列可看作自然数n的“指数函数”。

因此,学过数列后,一方面对函数概念加深了了解,拓宽了学生的知识范围;另一方面也为今后学习高等数学中的有关级数的知识和解决现实生活中的一些实际问题打下了基础。

(2)数列的极限这部分知识的学习,教给了学生“求极限”这一数学思路,为学习高等数学作好准备。

另一方面,从数学方法来看,它是一种与以前学习的数学方法有所不同的全新方法,它有着现代数学思想,它把辩证唯物主义的思想引进了数学领域,因而,学习这部分知识不仅能接受一种新的数学思想方法,同时对培养学生唯物主义的世界观也起了一定的作用。

(3)数学归纳法是一种数学论证方法,学生学习了这部分知识后,又掌握了一种新的数学论证方法,开拓了知识领域,学会了新的技能;同时通过这部分知识的学习又学到一种数学思想。

学好这部分知识,对培养学生逻辑思维的能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有很好的效果。

数列的数学归纳法与证明总结

数列的数学归纳法与证明总结

数列的数学归纳法与证明总结在数学中,数列是一系列按照特定规律排列的数字。

数学归纳法是一种证明数学命题的常用方法之一,尤其在涉及到数列时起到重要作用。

本文将对数列的数学归纳法以及相关证明方法进行总结。

一、数学归纳法的基本原理数学归纳法是一种通过证明第一个命题为真,且若某一命题为真,则下一个命题也为真的方法,用于证明涉及正整数的命题。

它包含以下两个步骤:1. 基础步骤:证明当n取某个特定值时命题成立,通常是证明n=1时为真;2. 归纳步骤:假设当n=k时命题成立,证明当n=k+1时命题也成立。

通过以上两个步骤的迭代,可以得出结论:对于任意正整数n,命题都成立。

二、数列的数学归纳法证明当我们处理数列时,常常需要证明其中一些性质是否成立。

数学归纳法可以帮助我们进行这样的证明。

以斐波那契数列为例,我们将展示如何使用数学归纳法进行证明。

斐波那契数列是一个以0和1开始,后续每个数都是前两个数之和的数列。

即:F(1) = 0,F(2) = 1F(n) = F(n-1) + F(n-2),其中n>2现在我们使用数学归纳法证明斐波那契数列的性质:F(n)的值大于等于n。

我们按照数学归纳法的步骤来进行证明。

1. 基础步骤:当n=1时,F(1)=0,而0大于等于1不成立。

所以我们需要验证n=2时,F(2)的值是否大于等于2。

经计算可知F(2)=1,显然1小于2。

因此基础步骤不成立。

2. 归纳步骤:假设当n=k时,F(k) >= k 成立。

我们需要证明当n=k+1时,F(k+1) >= k+1也成立。

根据斐波那契数列的定义,有F(k+1) = F(k) + F(k-1)。

由归纳假设,F(k) >= k,而F(k-1) >= k-1。

因此有F(k+1) = F(k) + F(k-1) >= k + k-1 = 2k-1。

下一步我们可以尝试使用数学归纳法证明2k-1 >= k+1,其中k为正整数。

数列极限的17种典型种方法

数列极限的17种典型种方法

求数列极限的一些典型方法在数学分析的学习过程中, 极限的思想和方法起着基础性的作用,极限的基本思想自始至终对解决分析学中面临的问题起关键作用,而数列极限又是极限的基础.涉及到数列极限的问题有很多,包括数列极限的求法、给定数列极限存在性的证明等.数列极限的证明和求解是较为常见的一种题型,数列极限反应的是数列变化的趋势,其证明和求解也是数学分析题中的重点,主要原因是其证法与求法没有固定的程序可循,方法多样,技巧性强,涉及知识面较广,因此在数学刊物上常可看到这类文章,但大多是对某一些或某一类数列极限的证明或求解,很少系统地探索数列极限证法和求法的基本技巧和方法.随着社会的快速发展及数学本身的发展,迫切地需要对这些方法进行归纳. 当前,有不少文献对数列极限求解方法做了一些探讨,如文献[1]-[10],但是方法的应用举例较少,不全面. 在高等数学竞赛及研究生入学考试中, 数列极限求解方法是经常出现的一种题型. 这些都说明: 数列极限求解方法是一个重要的研究课题. 本文作者将对有关数列极限求解的方法做比较全面系统的归纳,同时举例进行说明.本文归纳了17种方法.1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a .记作:lim n n a a →∞=.否则称{}n a 为发散数列.例1.求证1lim 1,nn a →∞=其中0a >.证:当1a =时,结论显然成立.当1a >时,记11na α=-,则0α>,由()1111(1)nna n n ααα=+≥+=+-得111na a n --≤,任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11n a ε-<即1lim 1,nn a →∞=当1111101,1,lim 1,lim 1lim n n n n nn a b b b a ab→∞→∞→∞<<=>=∴==时,令则由上易知综上,1lim 1,nn a →∞=0a >例2.求7lim!nn n →∞解:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅≤=-7777717177100,,0!6!6!!6!n n N n N n n n n εε⎡⎤∴-≤∴∀>∃=>-≤⎢⎥⎣⎦则当时,有<ε 7lim 0!nn n →∞∴= 用定义求数列极限有几种模式:(1)0>∀ε,作差a an-,解方程ε<-a a n ,解出()εf n >,则取()εf N =或() ,1+=εf N(2)将a an-适当放大,解出()εf n >;(3)作适当变形,找出所需N 的要求。

高考数学数列极限知识点汇总

高考数学数列极限知识点汇总

高考数学数列极限知识点汇总在高考数学中,数列极限是一个重要的知识点,也是许多同学感到头疼的部分。

为了帮助大家更好地掌握这一知识点,下面就为大家详细汇总一下数列极限的相关内容。

一、数列极限的定义如果当项数n 无限增大时,数列的通项an 无限接近于某个常数A,那么就称 A 是数列{an}的极限,记作lim(n→∞) an = A 。

这里要注意“无限接近”的含义,并不是说数列的项最终等于这个常数,而是它们之间的距离可以任意小。

二、数列极限的性质1、唯一性:如果数列{an}有极限,那么这个极限是唯一的。

2、有界性:如果数列{an}有极限,那么数列{an}一定是有界的。

3、保号性:如果lim(n→∞) an = A,且 A > 0(或 A < 0),那么存在正整数 N,当 n > N 时,an > 0(或 an < 0)。

三、常见数列的极限1、常数列:若{an}为常数列,即 an = C(C 为常数),则lim(n→∞) an = C 。

2、等差数列:若{an}为等差数列,首项为 a1,公差为 d 。

当 d =0 时,lim(n→∞) an = a1 ;当d ≠ 0 时,数列{an}没有极限。

3、等比数列:若{an}为等比数列,首项为 a1,公比为 q 。

当|q| < 1 时,lim(n→∞) an = 0 ;当 q = 1 时,lim(n→∞) an = a1 ;当|q| > 1 时,数列{an}没有极限。

四、数列极限的运算1、四则运算:如果lim(n→∞) an = A,lim(n→∞) bn = B ,那么(1)lim(n→∞)(an ± bn) = A ± B ;(2)lim(n→∞)(an · bn) = A · B ;(3)当B ≠ 0 时,lim(n→∞)(an / bn) = A / B 。

2、指数运算:若lim(n→∞) an = A ,则lim(n→∞) an^k = A^k (k 为正整数)。

数列、极限、数学归纳法 求数列的极限 教案

数列、极限、数学归纳法 求数列的极限 教案

数列、极限、数学归纳法·求数列的极限·教案教学目标1.熟练运用极限的四则运算法则,求数列的极限.2.理解和掌握三个常用极限及其使用条件.培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力.3.正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想.教学重点与难点使用极限四则运算法则及3个常用极限时的条件.教学过程设计(一)运用极限的四则运算法则求数列的极限师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个常用极限:例1 求下列极限:师:(1)中的式子如何转化才能求出极限.生:可以分子、分母同除以n3,就能够求出极限.师:(2)中含有幂型数,应该怎样转化?师:分子、分母同时除以3n-1结果如何?生:结果应该一样.师:分子、分母同时除以2n或2n-1,能否求出极限?(二)先求和再求极限例2 求下列极限:由学生自己先做,教师巡视.判断正误.生:因为极限的四则运算法则只适用于有限个数列加、减、乘、除的情况.此题当n→∞,和式成了无限项的和,不能使用运算法则,所以解法1是错的.师:解法2先用等差数列的求和公式,求出分子的和,满足了极限四则运算法则的条件,从而求出了极限.第(2)题应该怎样做?生:用等比数列的求和公式先求出分母的和.=12.师:例2告诉我们不能把处理有限项和问题的思路及方法随意地搬到无限项和的问题中去,要特别注意极限四则运算法则的适用条件.例3求下列极限:师:本例也应该先求出数列的解析式,然后再求极限,请同学观察所给数列的特点,想出对策.生:(1)题是连乘积的形式,可以进行约分变形.生:(2)题是分数和的形式,可以用“裂项法”变形.例4设首项为1,公比为q(q>0)的等比数列的前n项和为Sn,师:等比数列的前n项和Sn怎样表示?师:看来此题要分情况讨论了.师:综合两位同学的讨论结果,解法如下:师:本例重点体现了分类讨论思想的运用能够使复杂问题条理化.同(三)公比绝对值小于1的无穷等比数列前n项和的极限师:利用无穷等比数列所有各项和的概念以及求极限的知识,我们已经得到了公比的绝对值小于1的无穷等比数列各项和的公式:例5计算:题目不难,可由学生自己做.师:(1)中的数列有什么特点?师:(2)中求所有奇数项的和实质是求什么?(1)所给数列是等比数列;(2)公比的绝对值小于1;(四)利用极限的概念求数的取值范围师:(1)中a在一个等式中,如何求出它的值.生:只要得到一个含有a的方程就可以求出来了.师:同学能够想到用方程的思想解决问题非常好,怎样得到这个方程?生:先求极限.师:(2)中要求m的取值范围,如何利用所给的等式?|q|<1,正好能得到一个含有m的不等式,解不等式就能求出m的范围.解得0<m<4.师:请同学归纳一下本课中求极限有哪些类型?生:主要有三种类型:(1)利用极限运算法则和三个常用极限,求数列的极限;(2)先求数列的前n项和,再求数列的极限;(3)求公比绝对值小于1的无穷等比数列的极限.师:求数列极限应注意的问题是什么?生甲:要注意公式使用的条件.生乙:要注意有限项和与无限项和的区别与联系.上述问答,教师应根据学生回答的情况,及时进行引导和必要的补充.(五)布置作业1.填空题:2.选择题:则x的取值范围是[ ].的值是[ ].A.2 B.-2 C.1 D.-1作业答案或提示(7)a.2.选择题:(2)由于所给两个极限存在,所以an与bn的极限必存在,得方程以上习题教师可以根据学生的状况,酌情选用.课堂教学设计说明1.掌握常用方法,深化学生思维.数学中对解题的要求,首先是学生能够按部就班地进行逻辑推理,寻找最常见的解题思路,当问题解决以后,教师要引导学生立即反思,为什么要这么做?对常用方法只停留在会用是不够的,应该对常用方法所体现的思维方式进行深入探讨,内化为自身的认知结构,然后把这种思维方式加以运用.例1的设计就是以此为目的的.2.展示典型错误,培养严谨思维.求数列极限的基本方法,学生并不难掌握,因此,例2采取让学生自己做的方式,有针对性地展示出此类题目在解题中容易出现的典型错误,让学生从正确与谬误的对比中,辨明是非、正误,强化求极限时应注意的条件,培养思维的严谨性.这种做法,会给学生留下难忘的印象,收到较好的教学效果.3.贯穿数学思想,提高解题能力.本课从始至终贯穿着转化的思想.而例4中的分类讨论思想,例6中的方程思想的应用,都对问题的解决,起到了决定性的作用,使复杂问题条理化,隐藏的问题明朗化.因此,只有培养学生良好的思维品质,在教学过程中不断渗透和深化数学思想方法,才能达到系统概括知识内容,沟通各类知识的纵横联系,提高解题能力的要求.。

数学归纳法及数列的极限

数学归纳法及数列的极限

数学归纳法及数列的极限知识精要一、数学归纳法数学归纳法的一般步骤是:(1)当n 取第一个值0n 时,命题成立;(2)假设当k n =时,命题成立,证明当1+=k n 时命题也成立。

根据(1)和(2)可以断定,命题对任何*N n ∈都成立。

二、数列的极限1.定义:一般地,在n 无限增大的变化过程中,如果无穷数列}{n a 中的n a 无限趋近于一个常数A ,那么A 叫做数列}{n a 的极限,或叫做数列}{n a 收敛于A 。

记作A a n n =∞→lim ,读作“n 趋向于无穷大时,n a 的极限等于A ”。

2.常用数列的极限:(1)当1<q 时,0lim =∞→n n q ;(2)01lim =∞→n n (3)C C n =∞→lim ,(C 为常数) 3.四则运算法则:如果B b A a n n n n ==∞→∞→lim ,lim ,那么 (1)B A b a b a n n n n n n n ±=±=±∞→∞→∞→lim lim )(lim (2)B A b a b a n n n n n n n ⋅=⋅=⋅∞→∞→∞→lim lim )(lim (3))0(,lim lim lim ≠==∞→∞→∞→B B A b a b a n n n n n n n 4.无穷等比数列的各项的和: 把1<q 的无穷等比数列的前n 项和n S 当∞→n 时的极限叫做无穷等比数列的各项的和,并用符号S 表示,即)01(,11)1(lim lim 11≠<-=--==∞→∞→q q qa q q a S S n n n n 且热身练习1.欲用数学归纳法证明“对于足够大的正整数n ,总有32n n >”则所取的第一个n 值,最小应是 。

答案:102.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( D ) A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立C.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立3.用数学归纳法证明:)12(5312)()3)(2)(1(-⋯⋅⋅⋅⋅=+⋯+++n n n n n n n , *N n ∈,从“k n =到1+=k n ”时,左边应增添的因式是( B )A.12+kB.1)22)(12(+++k k k C.112++k k D.122++k k4.计算前几项:16941,941,41,1-+-+--等各项的值,可以猜想:=-+⋯+-+-+21)1(16941n n解答:11=a ,2)12(2)21(32+-=+-=-=a ,2)13(3)321(63+=++==a 猜想:2)1()1()321()1()1(169411121+-=+⋯+++⋅-=-+⋯+-+-+++n n n n n n n 5.数列}{n a 中,2221,11000,10012n n n a n n n n⎧≤≤⎪⎪=⎨⎪≥⎪-⎩ ,则数列}{n a 的极限值( B ) A.等于0B.等于1C.等于0或1D.不存在6.计算:(1)32lim 43n n n →∞-+,(2)23(1)61lim n n n n →∞++,(3)1132lim 32n n n n n ++→∞-+。

数列的极限数学归纳法

数列的极限数学归纳法

数列的极限、数学归纳法、知识要点 (一) 数列的极限列中找到一项 aN,使得当n>N 时,|an-A|< 恒成立,则称常数 A 为数列{a n }的极限,记作lim a n A .n2.运算法则:若lim a n 、lim b n 存在,则有lim(a n b n )lim a n lim ;lim( a n b n ) lim a n lim b nnnnnn na lim a nlim —— , (lim b n 0)nb n lim b n nn(a1)3.两种基本类型的极限<1> S= lima nn1(a 1)不存在(a诚a<2>设f (n)、g(n)分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为 a p 、0 (p q)b p 且 g( n) 0(n N),则 limng(n )(二)数学归纳法①验证命题对于第一个自然数 n n 0成立。

②假设命题对 n=k(k > n o )时成立,证明n=k+1时命题也成立 则由①②,对于一切n > n o的自然数,命题都成立。

、例题(数学的极限)1.定义:对于无穷数列{a n },若存在一个常数 A,无论预选指定多么小的正数 ,都能在数 4.无穷递缩等比数列的所有项和公式:S「q E )无穷数列{a n }的所有项和: a p- (p q) b q 不存在 (p q)S lim S n (当 lim S n 存在时)nn数学归纳法是证明与自然数 n 有关命题的一种常用方法,其证题步骤为:(4) lim( J-3Lnn 1 n 1(5) lim G. n 2 2n n)=;n例2 •将无限循环小数 0.12 ; 1.32 12 化为分数.『1例3•已知lim(an b) 1,求实数a, b 的值;nn 1例 4•数列{a n },{b n }满足 lim (2a n +b n )=1,lim (a n — 2tn)=1,试判断数列{a n },{b n }的极限是否nn存在,说明理由并求lim (a n b n )的值.n例5.设首项为a ,公差为d 的等差数列前-项的和为A,又首项为a,公比为r 的等比数列S例6.设首项为1,公比为q(q>0)的等比数列的前 -项之和为S n ,又设T n =— (n 1,2,L ),S- 1求 lim T n .n21 例7. {a n }的相邻两项a n ,a n+1是方程x —c -X +(—)n =0的两根,又a 1=2,求无穷等比C 1 ,c 2, (3)C n ,…的各项和.例8在半径为R 的圆内作内接正方形, 在这个正方形内作内切圆, 又在圆内作内接正方形,如此无限次地作下去,试分别求所有圆的面积总和与所有正方形的面积总和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.数学归纳法,数列
极限
第10讲数学归纳法、数列极限
一、知识要点
1.数学归纳法及其证明步骤
2.数列极限
3.数列极限的四则运算性质
4.无穷数列的各项和
二、经典例题
1.数学归纳法
例1.用数学归纳法证明:
(1)«Skip Record If...»
(2)设«Skip Record If...»,证明对一切«Skip Record If...»的自然数,等式
«Skip Record If...»均成立
例2.«Skip Record If...»,用数学归纳法证明:
(1)«Skip Record If...»能被13整除
(2)«Skip Record If...»能被9整除
例3.(1)数列«Skip Record If...»满足«Skip Record If...»,猜想并证明«Skip Record If...»的一个通项公式
(2)数列«Skip Record If...»的前«Skip Record If...»项和为«Skip Record If...»,
当«Skip Record If...»时,«Skip Record If...»,求«Skip Record If...»,并求证
«Skip Record If...»是等比数列
2.数列的极限
例4.求下列各个数列极限
(1)«Skip Record If...» (2)«Skip Record If...»
(3)«Skip Record If...»
例5.求下列各个数列极限
(1)«Skip Record If...» (2)«Skip Record If...»
例6.求下列各个数列极限:
(1)«Skip Record If...» (2)«Skip Record If...»
例7.计算:(1)«Skip Record If...»
(2)«Skip Record If...»
(3)«Skip Record If...»
(4)«Skip Record If...»
3.无穷等比数列各项和以及应用
例8.利用等比数列各项和,计算:
(1)«Skip Record If...»
(2)«Skip Record If...»
(3)«Skip Record If...»
«Skip Record If...»
例9.已知函数«Skip Record If...»,方程«Skip Record If...»的根«Skip Record If...»,称为函数«Skip Record If...»的不动点;若«Skip Record If...»,«Skip Record
If...»«Skip Record If...»,则称«Skip Record If...»为由函数«Skip Record If...»导
出的数列设函数
«Skip Record If...»
(1)求函数«Skip Record If...»的不动点«Skip Record If...»
(2)设«Skip Record If...»,«Skip Record If...»是由函数«Skip Record If...»导出的数列,对(1)中的两个不动点«Skip Record If...»(«Skip Record
If...»),求证:数列«Skip Record If...»是等比数列,并求«Skip
Record If...»
例10.已知«Skip Record If...»满足«Skip Record If...»,且«Skip Record If...»,是否存在实数«Skip Record If...»,使得«Skip Record If...»对于任何«Skip Record If...»都成立,证明你的结论。

相关文档
最新文档