高一数学必修1期末试卷及答案
高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)
高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0B .1C .2D .32.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y =B .3y x =C .cos y x =D .||y ln x =3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( )A .()0,2B .[]0,2C .(1+D .1⎡⎣6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .807.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .810.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)941451log log 3log 5log 272⋅--+. 19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值. (2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0 B .1C .2D .3【答案】B 【解析】{}1013M =-,,,,{}13N =-,{}1M N ∴⋂=故选:B2.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y = B .3y x =C .cos y x =D .||y ln x =【答案】D 【解析】根据题意,依次分析选项:对于A ,2x y =,为指数函数,其定义域为R ,不是偶函数,不符合题意; 对于B ,3y x =,为幂函数,是奇函数,不符合题意;对于C ,cos y x =,为偶函数,在(0,)+∞不是增函数,不符合题意; 对于D ,,0(),0lnx x y ln x ln x x ⎧==⎨-<⎩,为偶函数,且当0x >时,y lnx =,为增函数,符合题意;故选:D .3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -【答案】B 【解析】0((1))(0)1f f f e ===,故选:B4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .【答案】B 【解析】lg lg 0,lg 0a b ab +=∴=,即1ab =.∵函数()f x 为指数函数且()f x 的定义域为R ,函数()g x 为对数函数且()g x 的定义域为()0,∞+,A 中,没有函数的定义域为()0,∞+,∴A 错误;B 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递增,即01b <<,ab 可能为1,∴B 正确;C 中,由图象知指数函数()f x 单调递减,即01a <<,()g x 单调递增,即01b <<,ab 不可能为1,∴C 错误;D 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递减,即1b >,ab 不可能为1,∴D 错误. 故选:B.5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( ) A .()0,2B .[]0,2C .(12,12+D .12,12⎡⎤⎣⎦【答案】C 【解析】()11x f x e =->-,所以,()221g b b b =-+>-,整理得2210b b --<,解得1212b <故选:C.6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .80【答案】B 【解析】设此矩形面向河的一边的边长为x ,相邻的一边设为y , 由题意得200xy =, 设围栏总长为l 米,则240l x y =+≥=, 当且仅当2x y =时取等号, 此时20,10x y ==; 则围栏总长最小需要40米; 故选:B.7.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】||y x =为偶函数,y x =为奇函数 ()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数 又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>==故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立, 即当[,2]x t t ∈+时,不等式22x t x +>恒成立 即2x t <恒成立 即22t t +< 解得2t >故实数t 的取值范围是(2,)+∞ 故选:A8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要【答案】A 【解析】∵1log log log log a b a a b a b b+=+,又1,1a b >>,∴log 0a b >,即1log 2log a a b b +≥=当且仅当a b =时等号成立, 而11,28a b ==时有110log log log 2log 3a b a a b a b b +=+=>,显然1,1a b >>不一定成立; 综上,所以有1,1a b >>是log log 2a b b a +≥充分不必要条件. 故选:A9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .8【答案】B 【解析】∵集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭, 集合{2,4,6}S =,|1,{0,1,2}2k T x x k S ⎧⎫==-∈=⎨⎬⎩⎭, ∴{}1,2,3,4,6ST =, ∴{}0,1,2,3,4,6ST T=. ∴集合STT ⋃元素的个数为6个.故选:B.10.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦【答案】D 【解析】 由t π=,可得2=2ππωω=⇒因为3y f x π⎛⎫=-⎪⎝⎭是奇函数 所以sin 23x πϕ⎛⎫+- ⎪⎝⎭是奇函数,即,3k k z πϕπ-=∈又因为()06f f π⎛⎫<⎪⎝⎭,即()2sin sin 3k k ππππ⎛⎫+<+⎪⎝⎭所以k 是奇数,取k=1,此时43πϕ= 所以函数()5sin 2sin 233f x x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭因为()f x 在[)0,t 上没有最小值,此时2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭所以此时432,332t πππ⎛⎤-∈ ⎥⎝⎦解得511,612t ππ⎛⎤∈ ⎥⎝⎦. 故选D.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.【答案】(,2)-∞ 【解析】由题设有20x ->,解得2x <,故函数的定义域为(),2-∞,填(),2-∞. 12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______. 【答案】2 【解析】()g x 的零点即为()0g x =的解.当1x ≤时,令322x -=,解得12x =,符合;当1x >,令22x =,解得x =()g x 的零点个数为2.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.【答案】10【解析】 由tan 1tan()241tan πααα--==+,解得tan 3α=-,因为22sin(2)2cos 2)(2sin cos cos sin )422πααααααα-=-=-+2222222sin cos cos sin 2tan 1tan 2cos sin 21tan ααααααααα-+-+=⨯=++222(3)1(3)21(3)10⨯--+-==+-. 14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.【答案】6,10000 【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA ﹣lgA 0=lg1000﹣lg0.001=3﹣(﹣3)=6. 设9级地震的最大的振幅是x ,5级地震最大振幅是y , 9=lgx+3,5=lgy+3,解得x=106,y=102,∴62101000010x y ==. 故答案耿:6,10000.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 【答案】2 9 【解析】因为34a =,所以3log 4a =,又2log 3b =, 因此32lg 4lg3log 4log 32lg3lg 2ab =⋅=⋅=;222log 32log 3log 944229b ====. 故答案为:2;9.16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 【答案】121- 【解析】根据题意,得3212A B A B ⎧-=⎪⎪⎨⎪+=-⎪⎩,解得1,12A B ==-.故答案为:1,12- 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.【答案】35247【解析】由已知得3cos 5α==-,所以445tan 335α==--,242243tan 27413α⎛⎫⨯- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭. 故答案为:35;247. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; (2)941451log log 3log 5log 272⋅--+. 【答案】(1)3;(2)174. 【解析】(1)根据指数幂的运算法则,可得()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭222333333(24441399)1[()]22--⎛⎫=--+ -⎪⎝-+⎭==.(2)根据对数的运算法则,可得941451log log 3log 5log 272⋅--+ 325211111log 2log log 5log 2414224341722=-⨯+-+=-+-+=.19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.【答案】(1)奇函数,证明见解析;(2)()0,1. 【解析】()1要使函数有意义,则{1010x x +>->,即{11x x >-<,即11x -<<, 即函数的定义域为()1,1-,则()()()()()()log 1log 1log 1log 1a a a a f x x x x x f x ⎡⎤-=-+-+=-+--=-⎣⎦, 则函数()f x 是奇函数.()2若1a >,则由()0.f x >得()()log 1log 10a a x x +-->,即()()log 1log 1a a x x +>-, 即11x x +>-,则0x >, 定义域为()1,1-,01x ∴<<,即不等式的解集为()0,1.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值.(2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 【答案】(1)12sin 13α=,12tan 5α=-(2)3πβ=【解析】 (1)55cos 132x α==-⇒=-, ∴5,62P ⎛⎫- ⎪⎝⎭∴12sin 13α==,612tan 552α==--;(2)由1cos 7α=,02πα<<,得sin 7α=, 由13cos()14αβ-=,02πβα<<<,得02παβ<-<,得sin()αβ-=所以cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+-11317142=⨯=, 又02πβ<<,∴3πβ=.21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.【答案】(1)T π=;单调递增区间为[,]63k k ππππ-+,k Z ∈;单调递减区间为5[,]36k k ππππ++ ,k Z ∈; (2)6x k ππ=+或2x k π=+π,k Z ∈.【解析】(1)2()cos cos f x x x x -cos 21222x x +=-1sin 262x π⎛⎫=-- ⎪⎝⎭,即()1sin 262f x x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期22T ππ==. 因为sin y x =的单调增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,令222262k x k πππππ-≤-≤+,解得63k xk ππππ,k Z ∈.因为sin y x =的单调减区间为32,222k k ππππ⎡⎤+⎢⎥⎣⎦+,k Z ∈,令3222262k x k πππππ-++≤≤, 解得536k x k ππππ++≤≤,k Z ∈. 所以()f x 的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)函数1()sin 262f x x π⎛⎫=-- ⎪⎝⎭的零点, 令1sin(2)062x π--=,即1sin(2)62x π-=.2266x k πππ-=+或52266x k πππ-=+,k Z ∈ 解得6x k ππ=+或2x k π=+π,k Z ∈所以()f x 的零点为6x k ππ=+或2x k π=+π,k Z ∈22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.【答案】(1)±1;(2)1,5⎛⎫-∞- ⎪⎝⎭. 【解析】(1)由函数2()21x xaf x a -=⋅+为奇函数,可得()()f x f x -=-, 代入可得:222121x x x xa aa a ----=⋅+⋅++, 整理可得:2222(2)1(2)x a a x -=-,所以21a =, 解得:1a =±;(2)若0a >,由(1)知1a =,所以212()12121x x xf x -==-++, 由2x 为增函数,21x u =+为增函数且210x u =+>, 又因为2u 为减函数,所以2u-为增函数, 所以()f x 为增函数, 又因为()f x 为奇函数,由()(())20xf f x f t +⋅<可得:()20x f x t +⋅<,即21+2021x x x t -⋅<+在[1,1]x ∈-上恒成立, 若0t ≥,1x =时不成立,故0t <, 令2x s =,则1(,2)2s ∈, 整理可得:2(1)10t s t s ⋅++-<, 令2()(1)1g s t s t s =⋅++-,若1122t t +-≤或122t t +-≥ 需131()0242g t =-<,(2)610g t =+<,可得1156t -≤<-或12t ≤-,若11222t t +<-<,需1()02t g t+-<, 解得1125t -<<-,综上可得:实数t 的取值范围为1,5⎛⎫-∞- ⎪⎝⎭.。
人教版高一数学必修1必修4期末测试卷附答案
人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。
)。
A。
4.B。
8.C。
16.D。
322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。
)。
A。
(-∞,-1)。
B。
(1,+∞)。
C。
(-1,1)U(1,+∞)。
D。
(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。
)。
A。
a<b<c。
B。
b<c<a。
C。
c<a<b。
D。
c<b<a4.函数y=-x^2+4x+5的单调增区间是(。
)。
A。
(-∞,2]。
B。
[-1,2]。
C。
[2,+∞)。
D。
[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。
)。
A。
a≤2.B。
-2≤a≤2.C。
a≤-2.D。
a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。
)。
A。
y=x-2.B。
y=x-1.C。
y=x^2.D。
y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。
)。
A。
1/2.B。
2/3.C。
3/4.D。
1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。
)。
A。
1/5.B。
-1/5.C。
5.D。
-59.若tanα=3,则sinαcosα=(。
)。
A。
3.B。
3/2.C。
3/4.D。
9/410.sin600°的值为(。
)。
A。
3/2.B。
-3/2.C。
-1/2.D。
1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。
)。
A。
1.B。
-1.C。
5/8.D。
-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。
人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)
人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。
(完整版)高一数学必修一试卷及答案
高一数学必修一试卷及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中)1.已知全集{}{}{}()====N M C 。
N M U U 则3,2,2.1,0,4,3,2,1,0A. B. C. D. {}2{}3{}432。
{}43210。
2.下列各组两个集合A 和B,表示同一集合的是A.A=,B=B. A=,B={}π{}14159.3{}3,2{})32(。
C. A=,B=D. A=,B={}π,3,1{}3,1,-π{}N x x x ∈≤<-,11{}13. 函数的单调递增区间为2x y -=A . B . C .D .]0,(-∞),0[+∞),0(+∞),(+∞-∞4. 下列函数是偶函数的是A. B.C.D. x y =322-=x y 21-=xy ]1,0[,2∈=x x y 5.已知函数f(2) =()则。
x x x x x f ⎩⎨⎧>+-≤+=1,31,1A.3B,2C.1D.06.当时,在同一坐标系中,函数的图象是10<<a x y a y a xlog ==-与 A BCD7.如果二次函数有两个不同的零点,则m 的取值范围是)3(2+++=m mx x y A.(-2,6)B.[-2,6]C. D.{}6,2-()()∞+-∞-.62, 8. 若函数 在区间上的最大值是最小值的2倍,则的值为(()log (01)a f x x a =<<[],2a a a )A B C 、D 、14129.三个数之间的大小关系是3.0222,3.0log ,3.0===c b a A . B. C. D.b c a <<c b a <<c a b <<a c b <<10. 已知奇函数在时的图象如图所示,则不等式的解集为()f x 0x ≥()0xf x <A. B.(1,2)(2,1)--C. D.(2,1)(1,2)-- (1,1)-11.设,用二分法求方程内近似解的过程中得()833-+=x x f x()2,10833∈=-+x x x在则方程的根落在区间()()(),025.1,05.1,01<><f f f A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定12.计算机成本不断降低,若每隔三年计算机价格降低,则现在价格为8100元的计算机9年31后价格可降为A.2400元B.900元C.300元D.3600元二、填空题(每小题4分,共16分.)13.若幂函数y =的图象经过点(9,), 则f(25)的值是_________-()x f 1314. 函数的定义域是()()1log 143++--=x x xx f 15. 给出下列结论(1)2)2(44±=-(2)331log 12log 22-=21 (3) 函数y=2x-1, x [1,4]的反函数的定义域为[1,7 ]∈(4)函数y=的值域为(0,+)x12∞其中正确的命题序号为16. 定义运算 则函数的最大值为.()() ,.a ab a b b a b ≤⎧⎪*=⎨>⎪⎩()12x f x =*三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤)17. (12分)已知集合,, 全集,求:{|240}A x x =-<{|05}B x x =<<U R =(Ⅰ);(Ⅱ).A B ()U C A B 18. 计算:(每小题6分,共12分)(1) 36231232⨯⨯19.(12分)已知函数,(Ⅰ) 证明在上是增函数;1()f x x x=+()f x [1,)+∞(Ⅱ) 求在上的最大值及最小值.()f x [1,4]20. 已知A 、B 两地相距150千米,某人开车以60千米/小时的速度从A 地到B 地,在B 地停留一小时后,再以50千米/小时的速度返回A 地.把汽车与A 地的距离y (千米)表示为时间t (小时)的函数(从A 地出发时开始),并画出函数图象. (14分).18lg 7lg 37lg 214lg )2(-+-21.(本小题满分12分)二次函数f (x )满足且f (0)=1.(1) 求f (x )的解析式;(2) 在区间上,y=f(x)的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.22.已知函数对一切实数都有成立,且()f x ,x y R ∈()()f x y f y +-=(21)x x y ++. (Ⅰ)求的值;(Ⅱ)求的解析式;(1)0f =(0)f ()f x (Ⅲ)已知,设:当时,不等式 恒成立;a R ∈P 102x <<()32f x x a +<+Q :当时,是单调函数。
(完整版)高一数学必修1试题附答案详解
1.已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数2.如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z},则集合A ,B 的关系3.设A ={x ∈Z||x |≤2},B ={y |y =x 2+1,x ∈A },则B 的元素个数是4.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆ (P ∩Q )成立的所 有实数a 的取值范围为5.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b ,若4和10的原象分别对应是6和9, 则19在f 作用下的象为6.函数f (x )=3x -12-x (x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元素是7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为8.下列各组函数中,表示同一函数的是 A.f (x )=1,g (x )=x 0B.f (x )=x +2,g (x )=x 2-4x -2C.f (x )=|x |,g (x )=⎩⎨⎧x x ≥0-x x <0D.f (x )=x ,g (x )=(x )29. f (x )=⎩⎪⎨⎪⎧x 2 x >0π x =00 x <0 ,则f {f [f (-3)]}等于10.已知2lg(x -2y )=lg x +lg y ,则xy的11.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则a 取值范围是12.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数 A.5 B.7 C.9 D.112.如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z},则A.A BB.B AC.A =BD.A ∩B =∅3.设A ={x ∈Z||x |≤2},B ={y |y =x 2+1,x ∈A },则B 的元素个数是 A.5 B.4 C.3 D.2 4.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆ (P ∩Q )成立的所有实数a 的取值范围为 A.(1,9) B.[1,9] C.[6,9)D.(6,9]5.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =a x +b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为 A.18B.30C. 272D.286.函数f (x )=3x -12-x (x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元素是 A.2 B.-2 C.-1 D.-3 7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为 A.3x -2 B.3x +2 C.2x +3 D.2x -3 8.下列各组函数中,表示同一函数的是 A.f (x )=1,g (x )=x 0B.f (x )=x +2,g (x )=x 2-4x -2C.f (x )=|x |,g (x )=⎩⎨⎧x x ≥0-x x <0D.f (x )=x ,g (x )=(x )29. f (x )=⎩⎪⎨⎪⎧x 2 x >0π x =00 x <0 ,则f {f [f (-3)]}等于A.0B.πC.π2D.910.已知2lg(x -2y )=lg x +lg y ,则xy 的值为A.1B.4C.1或4D. 14或4 11.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则 A.a ≥1 B.a >1 C.0<a ≤1 D.a <112.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是A.(0,12 )B.(0,⎥⎦⎤21C.( 12,+∞)D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)13.若不等式x 2+ax +a -2>0的解集为R ,则a 可取值的集合为__________. 14.函数y =x 2+x +1 的定义域是______,值域为__ ____.15.若不等式3ax x 22->(13)x +1对一切实数x 恒成立,则实数a 的取值范围为___ ___.16. f (x )=]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为_____ _. 17.函数y =12x +1的值域是__________. 18.方程log 2(2-2x )+x +99=0的两个解的和是______.三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤) 19.全集U =R ,A ={x ||x |≥1},B ={x |x 2-2x -3>0},求(C U A )∩(C U B ).20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1. (1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.23.已知函数f (x )=a a 2-2 (a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.答案1、由题知A ∪B={0,1},所以A=∅或{0 }或{1}或{0,1};对应的集合B 可为{0,1}或{1},{0,1}或{0},{0,1}或∅,{0},{1},{0,1}2、解:当k 为偶数即k=2m,时A ={x |x =4m π+π,m ∈Z},为奇数即k=2m+1,时A ={x |x =4m π+2π,m ∈Z},故.B A ;注意m , k 都是整数,虽字母不同但意义相同3、解:A ={-2,-1, 0,1,2},则B ={5,2, 1}4、解:由Q ⊆ (P ∩Q )知Q ⊆ P ,故 53122253312-<+≤->+a a a a 得6<a ≤95、解:由题知ba b a +=+=91064得a =2 b=-8,19×2-8=286、解:令y=3x -12-x 得x=yy ++312,当y=-3时x 不存在,故-3是不属于N 的元素 7、解:设f (x )= a x +b ,则2(2a+b) -3(a+b) =5, 2(0a+b)-[(-1)a+b] =1,解得a =3 b=-2 故f (x )= 3x -28、解:A. f (x )定义域为R ,g (x )定义域为x ≠0 B. f (x )定义域为R ,g (x )定义域为x ≠2 C f (x )去绝对值即为g (x ),为同一函数 D f (x )定义域为R ,g (x )定义域为x ≥29、解:-3<0,则f (-3)=0,f (0)=π,π>0,f (π)=π2,f {f [f (-3)]}=π2 10、解(x -2y ) 2=xy ,得(x -y ) (x -4y ) =0,x =y 或,x =4y 即x y =14或411、解:要使a <lg(|x -3|+|x +7|)恒成立,须a 小于lg(|x -3|+|x +7|)的最小值,由于y =lg x 是增函数,只需求|x -3|+|x +7|的最小值,去绝对值符号得|x -3|+|x +7|= 10)3(42)37(1010772最小值为最小值为)(>+≤<--≤--x x x x x 故lg(|x -3|+|x +7|)的最小值为lg 10=1,所以.a <112、解:由x ∉(-1,0),得x +1∉(0,1),要使f (x )>0,由函数y =log a x 的图像知0<2a <1, 得0<a <121、由题知A ∪B={0,1},所以A=∅或{0 }或{1}或{0,1};对应的集合B 可为{0,1}或{1},{0,1}或{0},{0,1}或∅,{0},{1},{0,1}2、解:当k 为偶数即k=2m,时A ={x |x =4m π+π,m ∈Z},为奇数即k=2m+1,时A ={x |x =4m π+2π,m ∈Z},故.B A ;注意m , k 都是整数,虽字母不同但意义相同3、解:A ={-2,-1, 0,1,2},则B ={5,2, 1}4、解:由Q ⊆ (P ∩Q )知Q ⊆ P ,故 53122253312-<+≤->+a a a a 得6<a ≤95、解:由题知ba ba +=+=91064得a =2 b=-8,19×2-8=286、解:令y=3x -12-x 得x=yy ++312,当y=-3时x 不存在,故-3是不属于N 的元素 7、解:设f (x )= a x +b ,则2(2a+b) -3(a+b) =5, 2(0a+b)-[(-1)a+b] =1,解得a =3 b=-2 故f (x )= 3x -28、解:A. f (x )定义域为R ,g (x )定义域为x ≠0 B. f (x )定义域为R ,g (x )定义域为x ≠2 C f (x )去绝对值即为g (x ),为同一函数 D f (x )定义域为R ,g (x )定义域为x ≥29、解:-3<0,则f (-3)=0,f (0)=π,π>0,f (π)=π2,f {f [f (-3)]}=π2 10、解(x -2y ) 2=xy ,得(x -y ) (x -4y ) =0,x =y 或,x =4y 即x y =14或411、解:要使a <lg(|x -3|+|x +7|)恒成立,须a 小于lg(|x -3|+|x +7|)的最小值,由于y =lg x 是增函数,只需求|x -3|+|x +7|的最小值,去绝对值符号得|x -3|+|x +7|= 10)3(42)37(1010772最小值为最小值为)(>+≤<--≤--x x x x x 故lg(|x -3|+|x +7|)的最小值为lg 10=1,所以.a <112、解:由x ∉(-1,0),得x +1∉(0,1),要使f (x )>0,由函数y =log a x 的图像知0<2a <1, 得0<a <1213、解:要不等式的解集为R ,则△<0,即a 2-4a +a <0,解得a ∈∅14、要使x 2+x +1 由意义,须x 2+x+1≥0, 解得x ∈R , 由x 2+x+1=(x+12 )2+43≥43,所以函数定义域为R 值域为[32,+∞) 15、解:原不等式可化为3axx22->3-(x+1)对一切实数x 恒成立,须x 2-2ax >-(x +1) 对一切实数x 恒成立,即 x 2-(2a -1)x +1> 0对一切实数x 恒成立,须△<0得-12 < a < 3216、解:因3x-1-2=3x 31•是增函数,当x ≤1时0<3x <3,-2<3x-1-2≤-1,而31-x -2=3·3-x 是减函数,当x >1时0<3-x <31,-2<31-x -2<-1,故原函数值域为(-2,-1]17、解:∵ 2x >0, ∴2x+1>1 ∴0<12x +1 <1 函数值域为(0,1)19.解:全集U =R ,A ={x ||x |≥1},∴C U A ={x |x <1} ,B ={x |x 2-2x -3>0}={x | x ≤-1或x ≥3},∴C U B ={x |-1<x <3} ∴(C U A )∩(C U B )={x |-1<x <1}20(1)【证明】 由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2) 又∵f (2)=1 ∴f (8)=3(2)【解】 不等式化为f (x )>f (x -2)+3∵f (8)=3 ∴f (x )>f (x -2)+f (8)=f (8x -16)∵f (x )是(0,+∞)上的增函数∴⎩⎨⎧->>-)2(80)2(8x x x 解得2<x <16721.【解】 (1)当每辆车月租金为3600元时,未租出的车辆数为 3600-300050=12,所以这时租出了88辆.(2)设每辆车的月租金定为x 元,则公司月收益为f (x )=(100-x -300050 )(x -150)-x -300050×50整理得:f (x )=-x 250 +162x -2100=-150 (x -4050)2+307050∴当x =4050时,f (x )最大,最大值为f (4050)=307050 元22.【解】 令t =log 41x ∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412, ∴t ∈[-1,-12 ]∴f (t )=t 2-t +5=(t -12 )2+194,t ∈[-1,-12 ]∴当t =-12 时,f (x )取最小值 234 当t =-1时,f (x )取最大值7.23.【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2则f (x 2)-f (x 1)= aa 2-2 (a 2x -a 2x --a 1x +a 1x -)=aa 2-2 (a 2x -a 1x )(1+211x x a a ⋅) 由于a >0,且a ≠1,∴1+211x x aa >0 ∵f (x )为增函数,则(a 2-2)( a 2x -a 1x )>0 于是有⎪⎩⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-02002121222x x x x a a a a a a 或, 解得a > 2 或0<a <1。
济南市高一数学第一学期期末考试试卷(必修1与必修2)及参考答案
绝密★启用并使用完毕前济南市高一数学第一学期期末考试试卷(必修1与必修2)(2018.1.10)说明:本试卷为发展卷,采用长卷出题、自主选择、分层计分的方式,试卷满分150分,考生每一大题的题目都要有所选择,至少选作120分的题目,多选不限。
试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
考试时间120分钟。
温馨提示:生命的意义在于不断迎接挑战,做完120分基础题再挑战一下发展题吧,你一定能够成功!第I卷(选择题,共60分)一、选择题(本题包括15个小题,每题4分,其中基础题48分,发展题12分。
每题只有一个选项符合题意)1.若全集{}1,2,3,4U=,集合{}{}Μ=1,2,Ν=2,3,则()UC M N =()A.{}1,2,3B.{}2C.{}1,3,4D.{}42.有以下六个关系式:①{}a⊆φ②{}aa⊆③{}{}aa⊆④{}{}b aa,∈⑤{}c b aa,,∈⑥{}b a,∈φ,其中正确的是()A.①②③④B.③⑤⑥C.①④⑤D.①③⑤3.下列函数中,定义域为R的是()A.y B.2logy x=C.3y x= D.1yx=4.,下列各组函数中表示同一个函数的是()A.1,y y x== B.2,xy x yx==C.,ln xy x y e==D.2,y x y==5.下列函数中,既是奇函数又是增函数的是()A.3y x= B.1yx=C.3logy x=D.1()2xy=6.函数()23f x x =-的零点为 ( )A.3(,0)2B.3(0,)2 C.32 D.23 7.在同一坐标系中,函数1()f x ax a =+与2()g x ax =的图象可能是 ( )A. B. C. D.8.2132)),a a a +-<11若((则实数的取值范围是22( )A.12a <B. 12a >C. 1a <D.1a >9.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34x e + 10.设20.320.3,2,log 0.3a b c ===,则,,a b c 的大小关系为( )A .c a b << B..c b a << C .a b c << D .a c b << 11.已知平面α和直线,,a b c ,具备下列哪一个条件时//a b ( ) A.//,//a b αα B.,a c b c ⊥⊥ C. ,,//a c c b αα⊥⊥ D .,a b αα⊥⊥12.某长方体的主视图、左视图如图所示,则该长方体的俯视图的面积是( ) A.6 B.8C. 12D .1613.若过原点的直线l 的倾斜角为3π,则直线l 的方程是( )0y +=B. 0x =0y -= D.0x =14.若一个棱长为a 的正方体的各顶点都在半径为R 的球面上,则a 与R 的关系是( )A.R a =B.2R a=C. 2R a = D.R =15.某几何体中的线段AB,在其三视图中对应线段的长分别为2、4、4,则在原几何体中线段AB 的长度为( )A.B.主视图 左视图第Ⅱ卷(非选择题,共90分)注意事项:1.第Ⅱ卷所有题目的答案考生须用黑色签字笔、钢笔或圆珠笔在试题卷上答题,考试结束后将答题卡和第Ⅱ卷一并上交。
(完整版)高一数学必修一期末试题及答案解析
一、选择题。
(共10小题,每题4分) 1、设集合A={x ∈Q|x>-1},则( )A 、A ∅∉B 、2A ∉C 、2A ∈D 、{}2 ⊆A2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5} 3、函数21)(--=x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞)4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )5、三个数70。
3,0。
37,,㏑0.3,的大小顺序是( )A 、 70。
3,0.37,,㏑0.3,B 、70。
3,,㏑0.3, 0.37C 、 0.37, , 70。
3,,㏑0.3,D 、㏑0.3, 70。
3,0.37,6、若函数f(x)=x 3+x 2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984 f(1.375)=-0.260 f(1.438)=0.165f(1.4065)=-0.052那么方程x 3+x 2-2x-2=0的一个近似根(精确到0.1)为( ) A 、1.2 B 、1.3 C 、1.4 D 、1.57、函数2,02,0x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( )8、设()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( )A 、f(xy)=f(x)f(y)B 、f(xy)=f(x)+f(y)C 、f(x+y)=f(x)f(y)D 、f(x+y)=f(x)+f(y)9、函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定 10、某企业近几年的年产值如图,则年增长率最高的是 ( )(年增长率=年增长值/年产值)A 、97年B 、98年C 、99年D 、00年二、填空题(共4题,每题4分)11、f(x)的图像如下图,则f(x)的值域为 ;12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为 ;13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;14、老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数;②定义域为{|0}x R x ∈≠; ③在(0,)+∞上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确。
高一必修一数学期末试卷及答案
高一必修一数学期末试卷及答案第一部分:选择题(共80分)1.解下列各方程:5x+8=3x+12. A. x=3B. x=2C. x=−3D. x=13.若x+3=2x−1,则x= A. 2B. 4C. -4D. -24.已知a=2,当x=3时,y=ax2的值是: A. 18B. 54C. 36D. 125.若f(x)=3x+4,则f(−2)= A. -2B. -6C. -2D. -10第二部分:填空题(共20分)1.已知直线y=2x+3与y=−x+1的交点坐标为(a,b),则a=(填入具体数字)2.设x是保证2x+5>3x成立的x的取值范围,x的范围是(m,n),则m=(填入具体数字),n=(填入具体数字)第三部分:计算题(共60分)1.已知a+b=5,a−b=1,求a与b的值。
2.计算$\\frac{3}{5} \\div \\frac{4}{9}$的结果。
3.若y=x2−3x+2,求当x=2时,y=?第四部分:简答题(共40分)1.简述解一元一次方程的基本步骤。
2.什么是函数?函数的概念及符号表示是什么?高一必修一数学期末试卷参考答案第一部分:选择题答案1. A. x=32. B. 43. C. 364. B. -2第二部分:填空题答案1.$(\\frac{2}{3}, \\frac{7}{3})$2.$(5, \\infty)$第三部分:计算题答案1.a=3,b=22.$\\frac{27}{20}$3.y=0第四部分:简答题答案1.解一元一次方程的基本步骤包括化简方程、移项、合并同类项、求解等。
2.函数是自变量和因变量之间的对应关系,通常用f(x)表示。
高一数学必修1试题附答案详解
高一年级第一学期期末过关测试卷数学试题(本卷满分100分,考试时间100分钟)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集 U ={x ∈Z ∣-1≤x ≤5},A={1,2,5}, B = {x ∈N ∣-1≤x ≤4}, 则B ∩(C U A )=( ) .A .{3} B.{0,4} C.{0,3} D.{0,3,4}2.设A ={x ∈Z||x|≤2},B ={y|y =x 2+1,x ∈A},则B 的元素个数是( ).A.5B.4C.3D.23.下列各组函数中,表示同一函数的是( )A.f(x)=1,g(x)=x 0B.f(x)=x +2,g(x)=x 2-4x -2C.f(x)=|x|,g(x)=⎩⎪⎨⎪⎧x x ≥0-x x <0D.f(x)=x ,g(x)=(x )24.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为( )A.3x -2B.3x +2C.2x +3D.2x -35.已知向量(3,4),(sin ,cos ),a b αα== 且//a b,则tan α=( ).A.34B. 34-C. 43D. 43-6.已知a 、b 均为单位向量,它们的夹角为60°,那么|3|a b +=( ).A B C D .47.同时具有以下性质:“①最小正周期是π;②图象关于直线x =π3对称;③在[-π6,π3]上是增函数”的一个函数是 ( )A. y =sin(x 2+π6)B. y =cos(2x +π3)C. y =sin(2x -π6) D. y =cos(2x -π6)8、要得到函数y=sin(2x-3π)的图象,只要将函数y=sin2x 的图象( ) A.向左平行移动3π个单位 B.向左平行移动6π个单位C.向右平行移动3π个单位D.向右平行移动6π个单位9.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( ) A .1 B.2C. 0D.2-10、函数y=Asin(ωx+φ)(A >0,ω>0)的部分图象如图3所示,则f(1)+f(2)+f(3)+…+f(11)的值等于()A.2B.22+C.222+D.222--二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上) 11、设扇形的周长为8cm,面积为4cm 2,则扇形的圆心角的弧度数_________.12、知tanx=6,那么21sin 2x+31cos 2x=_______________.13、数])32,6[)(8cos(πππ∈-=x x y 的最小值是 .14、数y =x 2+x +1 的定义域是 _________ ,值域为__ ____.15、=2e 1+k e 2,=e 1+3e 2,=2e 1-e 2,若A 、B 、D 三点共线,则k=____________.三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U =R ,A ={x||x|≥1},B ={x|x 2-2x -3>0},求(C U A)∩(C U B).20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1. (1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.23.已知函数f (x )=a a 2-2(a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.高一数学综合训练(一)答案一、选择题二、填空题13. ∅ 14. R [32,+∞) 15. -12 < a < 3216. (-2,-1] 17. (0,1) 18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤) 19.全集U =R ,A ={x ||x |≥1},B ={x |x 2-2x -3>0},求(C U A )∩(C U B ).(C U A )∩(C U B )={x |-1<x <1}20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1. (1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集. 考查函数对应法则及单调性的应用. (1)【证明】 由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2) 又∵f (2)=1 ∴f (8)=3(2)【解】 不等式化为f (x )>f (x -2)+3∵f (8)=3 ∴f (x )>f (x -2)+f (8)=f (8x -16) ∵f (x )是(0,+∞)上的增函数∴⎩⎨⎧->>-)2(80)2(8x x x 解得2<x <16721.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 考查函数的应用及分析解决实际问题能力.【解】 (1)当每辆车月租金为3600元时,未租出的车辆数为 3600-300050=12,所以这时租出了88辆.(2)设每辆车的月租金定为x 元,则公司月收益为f (x )=(100-x -300050 )(x -150)-x -300050×50 整理得:f (x )=-x 250 +162x -2100=-150 (x -4050)2+307050∴当x =4050时,f (x )最大,最大值为f (4050)=307050 元22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.考查函数最值及对数函数性质.【解】 令t =log 41x ∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412, ∴t ∈[-1,-12]∴f (t )=t 2-t +5=(t -12 )2+194 ,t ∈[-1,-12 ]∴当t =-12 时,f (x )取最小值 234当t =-1时,f (x )取最大值7. 23.已知函数f (x )=a a 2-2(a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围. 考查指数函数性质.【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2 则f (x 2)-f (x 1)= aa 2-2(a 2x -a 2x --a 1x +a 1x -) =a a 2-2 (a 2x -a 1x )(1+211x x a a ⋅) 由于a >0,且a ≠1,∴1+211x x a a >0 ∵f (x )为增函数,则(a 2-2)( a 2x -a 1x )>0于是有⎪⎩⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-02002121222x x x x a a a a a a 或, 解得a > 2 或0<a <1. . .。
人教版高一数学必修1测试题(含答案)
人教版数学必修I 测试题(含答案)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B =( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合MN ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同 ③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x===+= ( )A 、1个B 、2个C 、3个D 、4个6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+B 、23x x --C 、259x x +-D 、21x x -+ 7、若方程0x a x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅ 8、若21025x =,则10x -等于 ( )A 、15-B 、15C 、150D 、16259、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a <<C 、102a <<D 、1a >10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103 二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A B ,则a 的取值范围是;14、函数y =的定义域为 ; 15、若2x <,则3x -的值是; 16、100lg 20log 25+=。
高中数学必修一期末试卷(附答案)
一、选择题1.设()31xf x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( ) A .102⎛⎫ ⎪⎝⎭, B .()0,2 C .()0,1 D .(]0,12.设函数3,()log ,x x a f x x x a⎧≤=⎨>⎩()0a >, 若函数()2y f x =-有且仅有两个零点,则a的取值范围是( ) A .. ()0,2B .()0,9C .()9,+∞D .()()0,29,⋃+∞3.已知函数()22,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩若a b c <<,且满足()()()f a f b f c ==,则abc 的取值范围为( ) A .(],0-∞B .(],1-∞-C .[]2,0-D .[]4,0-4.下列等式成立的是( ) A .222log (35)log 3log 5+=+ B .2221log 3log 32-= C .222log 3log 5log (35)⋅=+D .231log 3log 2= 5.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier ,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现. 比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=( ) A .134217728B .268435356C .536870912D .5137658026.若函数112xy m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是( )A .1m ≤-B .10m -≤<C .m 1≥D .01m <≤7.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,48.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .39.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞10.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉11.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,312.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-二、填空题13.已知函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩,若函数()()g x f x m =-与x 轴有3个交点,则实数m 的取值范围是_________.14.若y a x =的图象与直线y x a =+(0a >)有两个不同交点,则a 的取值范围是__________.15.方程()()122log 44log 23xx x ++=+-的解为____;16.已知函数2,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥恒成立,则a 的取值范围是________.17.关于函数()11f x x =+-的性质描述,正确的是_________.①()f x 的定义域为[-1,0)∪(0,1]; ②()f x 的值域为R ; ③在定义域上是减函数; ④()f x 的图象关于原点对称.18.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.19.已知集合2|230A x x x ,{}|0B x x a =-=,若B A ≠⊂,则实数a 的值为______.20.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =.三、解答题21.新冠肺炎疫情发生后,某公司生产A 型抗疫商品,第一个月是为国内生产,当地政府决定对该型商品免税,该型商品出厂价为每件20元,月销售量为12万件;后来国内疫情得到有效控制,从第二个月开始,该公司为国外生产该型抗疫商品,当地政府开始对该型抗疫商品征收税率为%p (0100p <<,即销售1元要征收100p元)的税,于是该型抗疫商品出厂价就上升到每件100202p-元,预计月销售量将减少2p 万件.(1)将第二个月政府对该商品征收的税y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二个月该公司缴纳的税额不少于1万元的前提下,又要让该公司当月获得最大销售金额,p 应为多少?22.已知函数22,01,()ln ,1x x f x x x e-≤<⎧=⎨≤≤⎩,其中e 为自然对数的底数.(1)求(f f 的值;(2)作出函数()()1F x f x =-的图象,并指出单调递减区间(无需证明) ;(3)若实数0x 满足00(())f f x x =,则称0x 为()f x 的二阶不动点,求函数()f x 的二阶不动点的个数.23.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.24.已知函数()f x ()()4log 41xkx k R =++∈的图象关于y 轴对称.(1)求实数k 的值(2)设函数()g x 12421f x xx m +=+⋅-(),[]20log 3x ∈,,是否存在实数m , 使得()g x 的最小值为0?若存在, 求出m 的值,若不存在说明理由.25.对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=-,则称()f x 为“M 类函数”(1)已知函数()23f x cos x π⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”,并说明理由;(2)设()1423xx f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围26.已知集合{|A x y ==,{}22|60B x x ax a =--<,其中0a ≥.(1)当1a =时,求集合A B ⋃,()R C A B ⋂; (2)若()R C A B B ⋂=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围. 【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解, ∴()f x t =必须有两解, 由图象知01t <<. 故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.D解析:D 【分析】函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,数形结合即可求出a 的取值范围. 【详解】令2x =可得12x =-,22x =;令3log 2x =得39x =函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,作3,()log ,x x a f x x x a ⎧≤=⎨>⎩()0a >图象如图:当02a <<时,()y f x =与2y =两个函数图象有且仅有两个交点,交点横坐标为12x =-,39x =,符合题意;当29a ≤≤时,()y f x =与2y =两个函数图象有且仅有3个交点,交点横坐标为12x =-,22x =,39x =,不符合题意;当9a >时,()y f x =与2y =两个函数图象有且仅有2个交点,交点横坐标为12x =-,22x =,不符合题意;所以a 的取值范围是:()()0,29,⋃+∞, 故选:D 【点睛】本题主要考查了已知函数的零点个数求参数的范围,函数的零点转化为对应方程的根,转化为函数图象的交点,属于中档题.3.A解析:A 【分析】画出()f x 的图象结合图象,求得1bc =、求得a 的取值范围,由此求得abc 的取值范围. 【详解】由函数()f x 的图象(如图),可知1022a b c ≤<≤<≤,由22log log b c =得22log log b c -=,所以1bc =,所以(],0abc a =∈-∞.故选:A【点睛】本小题主要考查分段函数的图象与性质,属于中档题.4.D解析:D 【分析】根据对数的运算法则和换底公式判断. 【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误;222log 3log 5log (35)⋅≠+,C 错误; 3233log 31log 3log 2log 2==,D 正确. 故选:D . 【点睛】关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n≠. 5.C解析:C 【分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可. 【详解】由已知可知,要计算16384×32768,先查第一行的对应数字: 16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912, 所以有:16384×32768=536870912, 故选C. 【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.6.B解析:B 【分析】11()+2x y m -=与x 有公共点,转化为11()2xy -=与y m =-有公共点,结合函数图象,可得结果. 【详解】11()+2x y m -=与x 有公共点,即11()2x y -=与y m =-有公共点,11()2xy -=图象如图可知0110m m <-≤⇒-≤< 故选:B 【点睛】本题考查了函数的交点问题,考查了运算求解能力和数形结合思想,属于基础题目.7.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数, 当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤, 故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.8.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.9.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.10.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xyz x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.11.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.12.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意;当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.二、填空题13.【分析】先将函数与轴有个交点转化成与的交点问题再作出分段函数的图像利用数形结合求得范围即可【详解】依题意函数与轴有个交点即与有3个交点作分段函数的图像如下由图可知的取值范围为故答案为:【点睛】方法点 解析:()0,1【分析】先将函数()()g x f x m =-与x 轴有3个交点,转化成()y f x =与y m =的交点问题,再作出分段函数()y f x =的图像,利用数形结合求得m 范围即可. 【详解】依题意,函数()()g x f x m =-与x 轴有3个交点, 即()y f x =与y m =有3个交点,作分段函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩的图像如下,由图可知,m 的取值范围为()0,1. 故答案为:()0,1. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.14.【分析】首先根据已知题意画出图形然后根据数形结合分析的取值范围需要注意为的斜率【详解】根据题意的图象如图:结合图象知要想有两个不同交点的斜率要大于的斜率的取值范围是故答案为:【点睛】本题考查函数图象 解析:()1,+∞【分析】首先根据已知题意画出图形,然后根据数形结合分析a 的取值范围,需要注意a 为y ax =的斜率. 【详解】根据题意y a x =的图象如图:()0a >,结合图象知,要想有两个不同交点y ax ∴=的斜率要大于y x a =+的斜率a ∴的取值范围是1a >.故答案为:()1,+∞ 【点睛】本题考查函数图象的交点问题,考查数形结合能力,属于中等题型.15.【分析】直接利用对数的运算法则化简求解即可【详解】解:可得即:解得(舍去)可得经检验是方程的解故答案为:【点睛】本题考查方程的解的求法对数的运算法则的应用考查计算能力 解析:2【分析】直接利用对数的运算法则化简求解即可. 【详解】 解:()()122log 44log 23x x x ++=+-()()1222log 44log log 232x x x +∴+=+-可得()()122log 44log 232x x x++=-⎡⎤⎣⎦, 即:()144232x x x++=-,()223240xx -⋅-=,解得21x =-(舍去)24x =,可得2x =.经检验2x =是方程的解. 故答案为:2. 【点睛】本题考查方程的解的求法,对数的运算法则的应用,考查计算能力.16.【分析】分两种情况讨论当时结合图象可知;当时再分两种情况讨论分离参数后化为函数的最值可解得结果【详解】当时则恒成立等价于恒成立函数的图象如图:由图可知;当时所以恒成立等价于恒成立若则若则恒成立所以综 解析:10a -≤≤【分析】分0x >,0x ≤两种情况讨论,当0x >时,结合图象可知0a ≤;当0x ≤时,再分0x =,0x <两种情况讨论,分离参数后化为函数的最值可解得结果. 【详解】当0x >时,()ln(1)0f x x =+>,则|()|f x ax ≥恒成立等价于ln(1)x ax +≥恒成立,函数ln(1)y x =+的图象如图:由图可知0a ≤;当0x ≤时,2()0f x x x =-+≤,所以|()|f x ax ≥恒成立等价于2x x ax -≥恒成立,若0x =,则a R ∈,若0x <,则1a x ≥-恒成立,所以1a ≥-, 综上所述:10a -≤≤. 故答案为:10a -≤≤ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;17.①②④【分析】求出函数的定义域值域判断①②根据单调性的定义判断③根据奇偶性的定义与性质判断④【详解】函数满足解得或故函数的定义域为故①正确当时当时所以函数值域为故②正确③虽然时函数单调递减当时函数单解析:①②④ 【分析】求出函数的定义域,值域判断①②,根据单调性的定义判断③,根据奇偶性的定义与性质判断④. 【详解】函数()f x =21011x x ⎧-⎪⎨+≠⎪⎩,解得10x -<或01x <,故函数的定义域为[1-,0)(0⋃,1].故①正确.当[1x ∈-,0)时(][)(]2211,(),00,1x f x x ∈+∞⇒===-∞∈⇒,当(0x ∈,1]时,(][)220,,111x x ∈∈⇒+∞⇒()[0f x ===,)+∞,所以函数值域为R ,故②正确.③虽然[1x ∈-,0)时,函数单调递减,当(0x ∈,1]时,函数单调递减,但在定义域上不是减函数,故③错误.④由于定义域为[1-,0)(0⋃,1],()11f x x x==+-,则()()f x f x -=-,()f x 是奇函数,其图象关于原点对称,故④正确.故答案为:①②④. 【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、值域、函数的定义域与对称性,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.18.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.19.-1或3【分析】解方程用列举法表示集合AB 由即得解【详解】集合若故a=-1或3故答案为:-1或3【点睛】本题考查了集合的包含关系考查了学生概念理解数学运算能力属于基础题解析:-1或3 【分析】解方程,用列举法表示集合A ,B ,由B A ≠⊂,即得解. 【详解】 集合2|230{1,3}Ax x x ,{}|0{}B x x a a =-==若B A ≠⊂,故a =-1或3 故答案为:-1或3 【点睛】本题考查了集合的包含关系,考查了学生概念理解,数学运算能力,属于基础题.20.①②③【分析】①根据得到方程无实根推出或;再由此判断根的个数即可判断①;②取分别判断根的个数即可判断②;③取分别判断根的个数即可判断③;④当时方程有三个根所以由此求根的个数即可判断④【详解】①当时方解析:①②③ 【分析】①根据0T =,得到方程()()()2110=+++=g x ax cx bx 无实根,推出0a =,240b c -<或0a b c ===;再由此判断()0f x =根的个数,即可判断①;②取240a b c ≠⎧⎨-<⎩,分别判断()0f x =,()0g x =根的个数,即可判断②;③取20040a c b c ≠⎧⎪≠⎨⎪-=⎩分别判断()0f x =,()0g x =根的个数,即可判断③;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,由此求()0f x =根的个数,即可判断④.【详解】①当0T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时1S =;当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时1S =;故①成立; ②当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即1S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即1T =;存在②成立;③当20040a cbc ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-;由()()()2110=+++=g x ax cx bx 得 1x a =-或2=-x b;只需2b a ≠,即可满足2S =,2T =;故存在③成立;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根.此时()0f x =有三个根,即3T =时,必有3S =,故不可能是2S =,3T =;④错;故答案为:①②③ 【点睛】本题主要考查方程根的个数与集合的综合,会判断方程根的个数即可,属于常考题型.三、解答题21.(1)2610p p y p-=-,定义域为()0,6;(2)2p =时,公司销售金额最大.【分析】(1)由题可得第二个月该商品销量为()122p -万件,月销售收入为100(122)202p p-⋅-万元,则可得出对该商品征收的税; (2)由1y ≥可得25p ≤≤,销售收入()100(6)()2510p g p p p-=≤≤-单调递减,即可求出最值. 【详解】解:(1)依题意,第二个月该商品销量为()122p -万件, 月销售收入为100(122)202p p-⋅-万元,当地政府对该商品征收的税为100(122)(6)20210010p py p p p p=-⋅⋅=-⋅--(万元).所以所求函数为2610p p y p-=-. 由60p ->及0p >得,所求函数的定义域为()0,6.(2)由1y ≥得26110p p p-≥-化简得27100p p -+≤, 即(2)(5)0p p --≤,解得25p ≤≤, 所以当25p ≤≤,税收不少于1万元;第二个月,当税收不少于1万元时,公司的销售收入为()100(6)()2510p g p p p-=≤≤-,因为100(6)400()1001010p g p p p -==+--在区间[]2,5上是减函数,所以max ()(2)50g p g ==(万元). 所以当2p =时,公司销售金额最大.【点睛】本题考查函数的实际应用,解题的关键是正确理解题目,建立正确的函数关系式,根据函数的单调性求最值.22.(1)(())1f f e =;(2)图象见解析,递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)3【分析】(1)分段函数求值,根据x 的范围代入即可;(2)画出函数图象,结合图象求出函数单调性;(3)写出(())f f x 分段函数,根据(())f f x x =,求出解的个数 【详解】解:(1)因为1e >,所以1()2f e ln e ==,所以1(())()12f f e f ==. (2)()|()1|F x f x =-,所以函数图象如下所示:递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)根据题意,012x,(())(22)f f x ln x =-,当112x <<,(())42f f x x =-,当1x e ,(())22f f x lnx =-,当012x时,由(())(22)f f x ln x x =-=,记()(22)g x ln x x =--,则()g x 在1[0,]2上单调递减,且(0)20g ln =>,11()022g =-<, 故()g x 在1[0,]2上有唯一零点1x ,即函数()f x 在1[0,]2上有唯一的二阶不动点1x . 当112x <<时,由(())42f f x x x =-=,得到方程的根为223x =,即函数()f x 在1(,1)2上有唯一的二阶不动点223x =. 当1x e 时,由(())22f f x lnx x =-=,记()22h x lnx x =--,则()h x 在[1,]e 上单调递减,且()110h =>, ()0h e e =-<,故()h x 在[1,]e 上有唯一零点3x ,即函数()f x 在[1,]e 上有唯一的二阶不动点3x . 综上所述,函数()f x 的二阶不动点有3个. 【点睛】(1)这是分段函数求值,基础题;(2)含绝对值的函数单调性的判断,比较容易;(3)这道题难点是要写出(())f f x 分段函数,根据(())f f x x =,求出解的个数,一定注意x 的范围.23.(1)(5,5)- (2)奇函数,见解析 【分析】(1)若()f x 有意义,则需满足505xx->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可. 【详解】 (1)由题,则505xx->+,解得55x -<<,故定义域为()5,5- (2)奇函数,证明:由(1),()f x 的定义域关于原点对称, 因为()()33355log log log 1055x xf x f x x x+--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数 【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明. 24.(1)12-;(2)1-. 【分析】(1)根据()()()4log 41xf x kx k R =++∈的图象关于y 轴对称.得到()()f x f x -=,再利用待定系数法法求解.(2)由(1)知()42=+⋅xx g x m ,[]20log 3x ∈,,令2x t =,[]13t ∈,得到2=+⋅y t m t ,然后利用二次函数的图象和性质求解.【详解】 (1)()()()4log 41x f x kx k R =++∈的图象关于y 轴对称.∴函数()f x 是偶函数.()()f x f x ∴-=,即()()44log 41log 41xx kx kx -+-=++,即()()()44log 411log 41xxk x kx +-+=++,即210k +=,12k ∴=-;(2)()1242142()+=+⋅-=+⋅f x xx x x g x m m ,[]20log 3x ∈,,设2x t =,则[]13t ∈,, 2∴=+⋅y t m t 在[]13t ∈,上最小值为0,又22()24m m y t =+-,[]13t ∈,,当12m-≤ 即2m ≥-时,1t =时10min y m =+=, 1m ∴=-,符合,当132m -<-< 即62m -<<-时,2m t =-时,204min m y =-=,0m ∴= 不符合,当32m-≥ 即6m ≤-时,3t =时,930min y m =+=, 3m ∴=-,不符合, 综上所述m 的值为1-. 【点睛】本题主要考查偶函数的应用,对数运算以及二次函数的图象和性质的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题. 25.(1)是;答案见解析;(2)1m -. 【分析】(1)特殊值验证使得()()f x f x -=-即可;(2)因为函数满足新定义,则问题由存在问题转化为求函数值域问题,进而可以求解.【详解】解:(1)因为()2cos()2cos()2(22323f πππππ-=--=+=⨯=()2cos()2223f πππ=-==()()22f f ππ-=-, 所以存在02=x π使得函数()f x 为“M 类函数”;(2)由已知函数1()423x x f x m +=--满足:()()f x f x -=-,则化简可得:442(22)60x x x x m --+-+-=⋯①令222x x t -=+,则2442x x t -+=-,所以①可化为:2280t mt --=在区间[2,)+∞上有解可使得函数()f x 为“M 类函数”, 即18()2m t t=-在[2,)+∞有解, 而函数18()2t t -在[2,)+∞上单调递增,所以当2t =时,有最小值为18(2)122-=-, 所以1m -,故实数m 的取值范围为:[1-,)+∞.【点睛】本题考查了新定义的函数问题以及函数的有解问题,涉及到求函数的值域问题. 求函数最值和值域的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. 26.()[)()13,3,()1,3R A B C A B ⋃=-⋂= ()20a =【分析】(1)先求集合B,再根据交集、并集以及补集得定义求结果,(2)先根据条件化为集合关系,再结合数轴求实数a 的取值范围.【详解】(1){()(){}[]||3103,1A x y x x x ===+-≥=-当1a =时,{}{}()222|60|602,3B x x ax a x x x =--<=--<=-, 所以[)3,3,A B ⋃=-因为()()(),31,R C A =-∞-⋃+∞,所以()()1,3R C A B ⋂=(2)因为()R C A B B ⋂=,所以R B C A ⊆,当B =∅时,0a =,满足条件,{}()220|602,3a B x x ax a a a >=--<=-当时,不满足条件,因此0a =.【点睛】防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.。
(必修一必修二)高一数学期末试卷及答案新人教A版
新泰一中北区2012数学必修一,二自测试卷第Ⅰ卷选择题(5 分×12=60分)1.已知U 为全集,集合M 、N 是U 的子集,若M ∩N=N ,则( ) A 、u u C M C N ⊇ B 、u M C N ⊆ C 、u u C M C N ⊆ D 、u M C N ⊇ 2、.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上递减,则a 的取值范围是A.[-3,+∞]B.(-∞,-3)C.(-∞,5]D.[3,+∞)3、向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是( ).4、下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确的个数有( ).A 、1B 、2C 、3D 、4 5、已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤46、若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 7、木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )倍.A、60 B、120 C、3060 D、301208、若函数()012233a x a x a x a x f +++=是奇函数,则=+2220a a ( )A. 0B. 1C. 2D. 4 9、在正方体1111ABCD A B C D -中,下列几种说法正确的是( )A 、11AC AD⊥ B 、11D C AB⊥ C 、1AC 与DC 成45o角D 、11AC 与1B C成60o角10下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、22log 1y x =-C 、21log y x = D 、22log (45)y x x =-+ 11、如果定义在),0()0,(+∞-∞Y 上的奇函数f(x),在(0,+∞)内是减函数,又有f(3)=0,则0)(<⋅x f x 的解集为 ( )A.{x|-3<x<0或x>3}B. {x|x<-3或0<x<3}C. {x|-3<x<0或0<x<3}D. {x|x<-3或x>3}12、如图,三棱柱A 1B 1C 1—ABC 中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E是BC 中点,则下列叙述正确的是( ).A .CC 1与B 1E 是异面直线 B .AC ⊥平面A 1B 1BAC .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E第Ⅱ卷二、填空题(每小题4分,共16分;请将答案填在答卷纸的横线上)13、函数)1(log 2120++-+=x x x y 的定义域14、一个正方体的六个面上分别标有字母A、B、C、D、E、 F,如右图所示 是此正方体的两种不同放置,则与D面相 对的面上的字母是 。
高一数学必修一试卷与答案
高一数学必修一试卷与答案高一数学必修一试卷与答案第一部分:选择题(共20小题,每小题4分,共80分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其对应的字母填入题前括号内。
1.若sin A = 3/5,求cos A的值。
(A) -5/3 (B) 4/5 (C) -4/5 (D) 5/3答案:(C)2.已知直线l的斜率为2,且经过点(1,3),则直线l的方程为:(A) y = 2x (B) y = 2x + 1 (C) y = 2x - 1 (D) y = 2x + 3答案:(B)3.已知函数f(x) = -2x + 5,g(x) = x^2 - 3x,则f(g(2))的值为:(A) -3 (B) -7 (C) -13 (D) -19答案:(C)4.在等差数列an中,已知a1 = 3,d = 2,an = 11,则n的值为:(A) 3 (B) 4 (C) 5 (D) 6答案:(B)5.已知函数f(x) = 2x - 1,g(x) = x^2,则f(g(-1))的值为:(A) -3 (B) -1 (C) 1 (D) 36.已知三角形ABC中,AB = 5,AC = 12,BC = 13,则该三角形为:(A) 直角三角形 (B) 等腰三角形 (C) 锐角三角形 (D) 钝角三角形答案:(A)7.已知三角形ABC中,AB = 4,BC = 6,角B = 60°,则三角形ABC的面积为:(A) 8 (B) 8√3 (C) 12 (D) 12√3答案:(B)8.已知log2x = log4(3x - 1),则x的值为:(A) 0 (B) 1/2 (C) 1 (D) 2答案:(C)9.已知函数f(x) = 2x + 1,g(x) = x^2 + 2,则f(g(-1))的值为:(A) -1 (B) 1 (C) 3 (D) 5答案:(D)10.已知等腰三角形ABC中,AB = AC = 5,角B = 60°,则三角形ABC的周长为:(A) 10 (B) 15 (C) 20 (D) 25答案:(B)11.将2√2写成带有根号的最简形式是:(A) √2 (B) √8 (C) √16 (D) √32答案:(B)12.已知三角形ABC中,角A = 40°,角B = 80°,则角C的度数为:(A) 20° (B) 50° (C) 100° (D) 140°13.已知函数f(x) = 3x + 2,g(x) = x^2 - 1,则f(g(0))的值为:(A) 1 (B) 2 (C) 3 (D) 4答案:(A)14.在等比数列an中,已知a1 = 2,q = 3,an = 486,则n的值为:(A) 3 (B) 4 (C) 5 (D) 6答案:(D)15.已知直线l的斜率为-1/2,且经过点(3,5),则直线l 的方程为:(A) y = -2x (B) y = -2x + 1 (C) y = -2x - 1 (D) y = -2x + 3答案:(C)16.已知sin A = 3/5,求tan A的值。
(完整版)高中数学必修一试卷及答案
高中数学必修一考试试卷姓名: 班别: 座位号:注意事项:⒈本试卷分为选择题、填空题和简答题三部分,共计150分,时间90分钟。
⒉答题时,请将答案填在答题卡中。
一、选择题:本大题10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I M N I ð等于( )A.{0,4}B.{3,4}C.{1,2}D. ∅ 2、设集合2{650}M xx x =-+=,2{50}N x x x =-=,则M N U 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5}3、计算:9823log log ⋅= ( )A 12B 10C 8D 64、函数2(01)xy a a a =+>≠且图象一定过点 ( )A (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数y = 的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x |0<x ≤1}7、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++=D 1x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4)10、若0.52a =,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >>二、填空题:本大题共4小题,每小题5分,满分20分11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫ ⎝⎛+3264=______13、函数)54(log 22++-=x x y 的值域是______14、函数122x )x (f x -+=的定义域是______三、解答题 :本大题共5小题,满分80分。
最后高一数学必修1测试题及答案详解
必修一 复习题一,选择题1.集合P={x|x 2-1=0},T ={-1,0,1},则P 与T 的关系为 ( )A. P TB. P TC. P = TD. P T 2.设A={x|20≤≤x },B={y|12≤≤y },下列图形表示集合A到集合B 的函数图形的是 ( )3.设5.205.2)21(,5.2,2===c b a ,则a,b,c 大小关系 ( ) A. a>c>b B. c>a>b C. a>b>c D.b>a>c4.下列图像表示的函数能用二分法求零点的是 ( )A B C D5.已知x x f 26log )(=,则=)8(f ( )A .34 B. 8 C. 18 D .21 6. 若f (ln x )=3x +4,则f (x )的表达式为( ) A 3ln x B 3ln x +4 C 3e x +4 D 3e x7.已知)(x f 是定义在(),0+∞上的单调增函数,若)2()(x f x f ->,则x 的范围是 ( )A x>1 B. x<1 C.0<x<2 D. 1<x<28.若函数c bx x x f ++=2)(对任意实数都有)2()2(x f x f -=+,则 ( )A )4()1()2(f f f << B. )4()2()1(f f f << C.)1()4()2(f f f << D.)1()2()4(f f f << 9设函数),在(且0)10(|,|log )(∞-≠>=a a x x f a 上单调递增,则)2()1(f a f 与+的大小关系为( )A )2()1(f a f =+B )2()1(f a f >+ C. )2()1(f a f <+ D.不确定10.函数f (x )=3x-4的零点所在区间为 ( )(A )(0,1) (B )(-1,0) (C )(2,3) (D )(1,2)11.函数 f(x)=x 2-4x+5在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是 ( )⊂≠≠⊃⊆12.设)1()2()2()1(+-⋅+--⋅-⋅=n x n x x x x A x n 则关于x的函数f(x)=10032007+X A 为 ( )A .奇函数且非偶函数 B.偶函数且非奇函数 C.既奇且偶函数 D.非奇非偶函数13.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x2+21x 和L 2=2x其中销售量(单位:辆)若该公司在两地共销售15辆,则能获得的最大利润为______万元 ( )A .90 B.60 C.120 D.120.2514.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数 ( )(A )x=60t (B )x=60t+50t(C )x=⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t t (D )x=⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t 15.函数y =( ) A [1,)+∞ B 2(,)3+∞ C 2[,1]3 D 2(,1]316.已知x 1是方程x +lg x =3的根,x 2是方程x +10x =3的根,那么x 1+x 2的值为 ( )A .1B . 2C . 3D .4二、填空题:17.判断函数lg(y x =18.幂函数()f x 的图象过点(,则()f x 的解析式是_____________ 19.函数y =lg x +lg (x -1)的定义域为A ,y =lg (x 2-x )的定义域为B ,则A 、B 关系是 .20.如果指数函数xa x f )1()(-=是R 上的减函数,则a的取值范围是 ___________. 21.已知函数{22,0,,0.x x x x f ≥<(x )=则[(2)]f f -= . 22.若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围为 . 23.设(){}1,,lg A y xy =, {}0,,B x y =,且A =B ,则x =;y 24. 已知log 7[log 3(log 2x)]=0,那么x 21-等于___________.25.若集合A {2,3,7},且A 中至多有1个奇数,则这样的集合共有__________. 三、解答题:26、已知全集U=}60|{≤<∈x N x ,集合A={}51|<<∈x N x ,集合B ={}62|<<∈x N x求(1)B A ⋂ (2) (A C U )B ⋃ (3) )()(B C A C U U ⋂⊂≠27、将进货单价40元的商品按50元一个出售时能卖出500个,若每涨价1元,其销售量就减少10个,为赚得最大利润,则销售价应为多少?28.已知函数),(1222)(R x a a x f x x ∈+-+⋅若f(x)满足f(-x)=-f(x) (1) 求实数a 的值;(2) 判断病症明函数f (x )的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修一期末试卷 答案
题 1 2 3 4 5 6 7 8 9 10 11 12
号
答CADABACC B B A A
案
二、 填空题
13、[-4,3] 14、{x/x>=4} 15、(-∞,0).
8,+∞).
三、解答题
17、 解: CR (A B) {x | x 2或x 10}
lg(25 4) 2
= log3
1
34
lg 10 2
2
19、略
= 1 2 2 15
4
4
20、解:A={-4,0}.∵A∩B=B,∴B⊆A. 关于 x 的一元二次方程 x2+2(a+1)x+a2-1=0 的根的判别式
Δ=4(a+1)2-4(a2-1)=8a+8,
当Δ=8a+8<0,即 a<-1 时,B=⌀,符合 B⊆A; 当Δ=8a+8=0,即 a=-1 时,B={0},符合 B⊆A; 当Δ=8a+8>0,即 a>-1 时,B 中有两个元素,而 B⊆A={-4,0}, ∴B={-4,0}.由根与系数的关系,得解得 a=1.
中画出 f (x) 的图象;(2)
若 f(t)=3,求t值;(3)
用单调性定义证明在
高一数学试卷 第 4页 (共 5 页)
2, 时单调递增。
20 、 (12 分 ) 设 A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}, 其 中 x∈R,如果 A∩B=B,求实数 a 的取值范围.
C、[1,2)
D、[1,+∞)
5、设集合 M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图
形,其中能表示以集合 M 为定义域,N 为值域的函数关系的是( )
6、三个数 70。3,0.37,㏑ 0.3,的大小顺序是( )
高一数学试卷 第 1页 (共 5 页)
A、 70。3,0.37,㏑ 0.3,
f(1.438)=0.165
f(1.4065)=-0.052
那么方程 x3+x2-2x-2=0 的一个近似根(精确到 0.1)为( )
A、1.2
B、1.3
C、1.4பைடு நூலகம்
D、1.5
8.函数 y= 16-4x 的值域是( ).
9、函数
y
2x 2
,
x
x0 ,x0
的图像为(
)
10、设 f (x) loga x (a>0,a≠1),对于任意的正实数 x,y,都 有( )
B、b=2a<0 C、b=2a>0
D、a,b 的符号不定
12、设 f(x)为定义在 R 上的奇函数.当 x≥0 时,f(x)=2x+2x+b(b
为常数),则 f(-1)等于( ).
A.-3
B.-1 C.1
D.3
二、填空题(共 4 题,每题 5 分)
13、f(x)的图像如下图,则 f(x)的
值域为
;
14 、 函 数 y = log2 x-2 的 定 义 域
B.f(x)=lg x2,g(x)=2lg x D.f(x)= x+1 · x-1 ,g(x)
3、设 A={a,b},集合 B={a+1,5},若 A∩B={2},则 A∪B=( )
A、{1,2} B、{1,5} C、{2,5} D、{1,2,5}
4、函数 f (x)
x 1 的定义域为(
x2
)
A、[1,2)∪(2,+∞) B、(1,+∞)
高一数学试卷 第 5页 (共 5 页)
21、(本题 12 分)已知函数 f(x)=㏒ a 2x 1 , (a 0, 且 a 1), (1)求 f(x)函数的定义域。 (2)求使 f(x)>0 的 x 的取
值范围。
22.(12 分)某租赁公司拥有汽车 100 辆.当每辆车的月租金为 3 000 元时,可全部租出.当每辆车的月租金每增加 50 元时,未 租出的车将会增加一辆.租出的车每辆每月需要维护费 150 元, 未租出的车每辆每月需要维护费 50 元. (1)当每辆车的月租金定为 3 600 元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大? 最大月收益是多少
高一数学试卷 第 3页 (共 5 页)
18、(本题 12 分)不用计算器求下列各式的值
⑴
2
1 4
1
2
9.6 0
3
3 8
23
1.5
2
⑵
log3
4
27 3
lg
25
lg
4
7
log7
2
x 2 (x 1)
19、(本题
12
分)设
f
(x)
x
2
(1 x 2) ,
2x
(x 2)
(1)在下列直角坐标系
高中数学必修一期末试卷
一、选择题。(共 12 小题,每题 5 分)
1、设集合 A={xQ|x>-1},则(
A、 A
B、 2 A
) C、 2 A
D、 2 A
2.下列四组函数中,表示同一函数的是( ).
A.f(x)=|x|,g(x)= x2 C.f(x)= x2-1 ,g(x)=x+1
x-1
= x2-1
是
.
15、若 f(x)=(a-2)x2+(a-1)x
+3 是偶函数,则函数 f(x)的增区间是
.
16.求满足 1 x2-8 > 4-2x 的 x 的取值集合是
.
4
三、解答题(本大题共 6 小题,满分 44 分,解答题写出必要的
文字说明、推演步骤。)
17、(本题 10 分)设全集为 R, A x | 3 x 7, B x | 2 x 10, 求CR (A B) 及 CR A B
A、f(xy)=f(x)f(y) B、f(xy)=f(x)+f(y) C、f(x+y)=f(x)f(y) D、f(x+y)=f(x)+f(y)
高一数学试卷 第 2页 (共 5 页)
11、函数 y=ax2+bx+3 在(-∞,-1]上是增函数,在[-1,+∞)上
是减函数,则( )
A、b>0 且 a<0
B、70。3,,㏑ 0.3, 0.37
C、 0.37, , 70。3,,㏑ 0.3,
D、㏑ 0.3, 70。3,0.37
7、若函数 f(x)=x3+x2-2x-2 的一个正数零点附近的函数值用二分
法逐次计算,参考数据如下表:
f(1)=-2
f(1.5)=0.625
f(1.25)=-0.984
f(1.375)=-0.260
(CR ) B {x | 2 x 3或7 x 10}
18、解(1)原式=
(
9
)
1 2
1
(
27
)
2 3
(3)2
4
8
2
=
(
3
)
2
1 2
1
(
3
)
3
2 3
(3)2
2
2
2
= 3 1 (3)2 (3)2
2
2
2
1 =2
16、(-
高一数学试卷 第 7页 (共 5 页)
3
(2)原式= log3
34 3