多面体外接球半径内切球半径的常见几种求法

合集下载

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.多面体几何性质法例1 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16π B.20π C.24π D.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法 例2,则其外接球的表面积是 . 解正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =寻求轴截面圆半径法例3 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上. ∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=. ∴ASC AC ∆∆是以为斜边的Rt .∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,CDAB SO 1图3于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.公式法例4 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为A.12512πB.1259πC.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. 小结:巩固练习: 1.三棱锥中,平面,则该三棱锥外接球的表面积为( )A .B .C .D .2.在三棱柱111ABC A B C -中,已知1AA ABC ⊥平面,12,2AA BC BAC π==∠=,此三棱柱各个顶点都在一个球面上,则球的体积为( )A O DB图4A.323πB.16π C.253πD.312π3.四面体ABCD中,已知AB=CD=29,AC=BD=34,AD=BC=37,则四面体ABCD的外接球的表面积()A.25π B.45π C.50π D.100π4.已知正四面体的棱长为2,则它的外接球的表面积的值为.5.已知正三棱锥P-ABC,点P,A,B,C都在半径为的求面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为________。

多面体外接球半径常见的5种求法(推荐文档)

多面体外接球半径常见的5种求法(推荐文档)

多面体外接球半径常见的5种求法文/郭军平如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧面两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =.寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. CD A B S O 1图3A O D B 图4。

多面体的外接球和内切球(解析版)

多面体的外接球和内切球(解析版)

多面体的外接球和内切球一、结论1、球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。

定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。

球的内切问题(等体积法)例如:在四棱锥P -ABCD 中,内切球为球O ,求球半径r .方法如下:V P -ABCD =V O -ABCD +V O -PBC +V O -PCD +V O -PAD +V O -PAB即:V P -ABCD =13S ABCD ⋅r +13S PBC ⋅r +13S PCD ⋅r +13S PAD ⋅r +13S PAB ⋅r ,可求出r .球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB =CD ,AD =BC ,AC =BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P-ABC中,选中底面ΔABC,确定其外接圆圆心O1(正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2r=asin A);②过外心O1做(找)底面ΔABC的垂线,如图中PO1⊥面ABC,则球心一定在直线(注意不一定在线段PO1上)PO1上;③计算求半径R:在直线PO1上任取一点O如图:则OP=OA=R,利用公式OA2=O1A2+OO12可计算出球半径R.4.双面定球心法(两次单面定球心)如图:在三棱锥P-ABC中:①选定底面ΔABC,定ΔABC外接圆圆心O1②选定面ΔPAB,定ΔPAB外接圆圆心O2③分别过O1做面ABC的垂线,和O2做面PAB的垂线,两垂线交点即为外接球球心O.二、典型例题1(2023春·湖南湘潭·高二统考期末)棱长为1的正方体的外接球的表面积为()A.3π4B.3πC.12πD.16π【答案】B【详解】解:易知,正方体的体对角线是其外接球的直径,设外接球的半径为R,则2R=12+12+12=3,故R=3 2.所以S=4πR2=4π×322=3π.故选:B.【反思】本例属于正方体外接球问题,其外接球半径公式可直接记忆.2(2023春·湖南长沙·高三长沙一中校考阶段练习)在四面体PABC中,PA⊥AB,PA⊥AC,∠BAC= 120°,AB=AC=AP=2,则该四面体的外接球的表面积为()A.12πB.16πC.18πD.20π【答案】D【详解】因为PA⊥AB,PA⊥AC,AB∩AC=A,AB,AC⊂平面ABC,所以PA⊥平面ABC.设底面△ABC的外心为G,外接球的球心为O,则OG⊥平面ABC,所以PA⎳OG.设D为PA的中点,因为OP=OA,所以DO⊥PA.因为PA⊥平面ABC,AG⊂平面ABC,所以PA⊥AG,所以OD⎳AG.因此四边形ODAG为平行四边形,所以OG=AD=12PA=1.因为∠BAC=120°,AB=AC=2,所以BC=AB2+AC2-2AB⋅AC cos∠BAC=4+4-2×2×2×-1 2=23,由正弦定理,得2AG=2332=4⇒AG=2.所以该外接球的半径R满足R2=OG2+AG2=5,故该外接球的表面积为S=4πR2=20π.故选:D.【反思】本例属于单面定球心问题①用正弦定理求出ΔABC外心G;②过G做平面ABC的垂线,则外接球球心O在此垂线上;③通过计算算出半径.3(2023秋·湖南娄底·高三校联考期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD 是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50π C.100π D.500π3【答案】B【详解】因PA⊥平面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,则PA⊥AB,PA⊥AD,又因四边形ABCD为矩形,则AB⊥AD.则阳马的外接球与以PA,AB,AD为长宽高的长方体的外接球相同.又PA=5,AB=3,AD=BC=4.则外接球的直径为长方体体对角线,故外接球半径为:R=PA 2+AB 2+AD 22=32+42+522=522,则外接球的表面积为:S =4πR 2=4π⋅504=50π.故选:B【反思】本例属于墙角型模型,通过补形,将原图形补成长方体模型,借助长方体模型求外接球半径.4(2023·全国·高三专题练习)已知菱形ABCD 的各边长为2,∠D =60°.如图所示,将ΔACD 沿AC 折起,使得点D 到达点S 的位置,连接SB ,得到三棱锥S -ABC ,此时SB =3.E 是线段SA 的中点,点F 在三棱锥S -ABC 的外接球上运动,且始终保持EF ⊥AC ,则点F 的轨迹的周长为()A.233π B.433π C.533π D.2213π【答案】C【详解】取AC 中点M ,则AC ⊥BM ,AC ⊥SM ,BM ∩SM =M ,∴AC ⊥平面SMB ,SM =MB =3,又SB =3,∴∠SBM =∠MSB =30°,作EH ⊥AC 于H ,设点F 轨迹所在平面为α,则平面α经过点H 且AC ⊥α,设三棱锥S -ABC 外接球的球心为O ,△SAC ,△BAC 的中心分别为O 1,O 2,易知OO 1⊥平面SAC ,OO 2⊥平面BAC ,且O ,O 1,O 2,M 四点共面,由题可得∠OMO 1=12∠O 1MO 2=60°,O 1M =13SM =33,解Rt △OO 1M ,得OO 1=3O 1M =1,又O 1S =23SM =233,则三棱锥S -ABC 外接球半径r =OO 21+O 1S 2=73,易知O 到平面α的距离d =MH =12,故平面α截外接球所得截面圆的半径为r 1=r 2-d 2=73-14=536,∴截面圆的周长为l =2πr 1=533π,即点F 轨迹的周长为533π.故选:C 【反思】此题典型的双面定球心。

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧面两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =.练习1 (2003,四个顶点在同一球面上,则此球的表面积为( )3π B. 4πC. D. 6π2(2006年山东高考题)在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为( ).A. 27B. 2C. 8D. 243 (2008年浙江高考题)已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积等于 .4(2008年安徽高考题)已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AB =,则B 、C 两点间的球面距离是 .寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上. ∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截CDAB SO 1图3面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512πB.1259πC.1256πD.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C.外接球内切球问题1. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C . 43 D .123答案 B2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。

内切球和外接球常见解法

内切球和外接球常见解法

内切球和外接球常见解法内切球和外接球是在几何学中常用的概念,它们分别指的是一个几何体内切或外接于另一个几何体的球。

在实际问题中,内切球和外接球常常用于优化问题和几何问题的求解,其解法也有多种。

以下将介绍一些常见的解法。

1. 解法一:利用勾股定理求解。

内切球和外接球都可以利用勾股定理求解。

以内切球为例,我们可以考虑任意三角形ABC,设其内切球的半径为r,以I为内切圆心,则:AB + AC = 2r;AC + BC = 2r;AB + BC = 2r。

整理可得:r = [ABC] / (s + a + b + c),其中s为半周长,a、b、c为三角形ABC的三边长,[ABC]为三角形ABC的面积。

而外接球的半径r'则可用公式r'=[ABC] / (4S),其中S为三角形ABC的外接圆半径。

欧拉定理是内切球和外接球求解的另一个重要工具。

欧拉定理有两种形式,分别为:对于任意四面体,其四个顶点、三条棱的中点和六面体质心共九个点在同一球面上。

对于任意三角形ABC,其外接圆心、垂足交点、垂心、重心四点在同一圆上,且圆心为外接球心。

利用欧拉定理可以求得内切球半径:点O为六面体质心,点I为内切圆心,则IO等于内切球半径r。

点O为三角形外心,点H为垂心,点G为重心,则OG等于外接球半径r'。

对于一些优化问题,内切球和外接球也可以通过线性规划求解。

例如,对于一个凸多面体,求其内切球或外接球的半径最大值,可以将问题转化为线性规划问题,即:max rs.t. A_i * x <= b_i, i=1,2,...,mx_i >= 0, i=1,2,...,n其中,A_i是多面体的几何信息,b_i是多面体中某一点到各个面的距离,x是优化变量,r就是所需要求的内切球或外接球半径。

可以使用线性规划求解器求解其最优解。

多面体外接球半径常见的5种求法(推荐文档)

多面体外接球半径常见的5种求法(推荐文档)

多面体外接球半径常见的5种求法文/郭军平如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧面两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =.寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. CD A B S O 1图3A O D B 图4。

多面体外接球半径内切球半径的常见几种求法

多面体外接球半径内切球半径的常见几种求法

多面体外接球、内切球半径常见的5种求法 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧棱两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. 出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB解:由已知建立空间直角坐标系)000(,,A )002(,,B )200(,,D 3,, CD A B S O 1图3A O D B 图4C y设球心坐标为),,(z y x O 则DO CO BO AO ===,由空间两点间距离公式知222222)2(z y x z y x ++-=++ 222222)2(-++=++z y x z y x 222222)3()1(z y x z y x +-+-=++解得 1331===z y x 所以半径为3211331222=++=)(R 【结论】:空间两点间距离公式:221221221)()()(z z y y x x PQ -+-+-=四面体是正四面体外接球与内切球的圆心为正四面体高上的一个点,根据勾股定理知,假设正四面体的边长为a 时,它的外接球半径为a 46。

多面体外接球半径常见的五种求法

多面体外接球半径常见的五种求法
公式法
例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为 ,底面周长为3,则这个球的体积为.
解设正六棱柱的底面边长为 ,高为 ,则有
∴正六棱柱的底面圆的半径 ,球心到底面的距离 .∴外接球的半径 . .
小结本题是运用公式 求球的半径的,该公式是求球的半径的常用公式.
寻求轴截面圆半径法
例4正四棱锥 的底面边长和各侧棱长都为 ,点 都在同一球面上,则此球的体积为.
解设正四棱锥的底面中心为 ,外接球的球心为 ,如图1所示.∴由球的截面的性质,可得 .
又 ,∴球心 必在 所在的直线上.
∴ 的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.
在 中,由 ,得 .
确定球心位置法
例5在矩形 中, ,沿 将矩形 折成一Leabharlann 直二面角 ,则四面体 的外接球的体积为
A. B. C. D.
解设矩形对角线的交点为 ,则由矩形对角线互相平分,可知 .∴点 到四面体的四个顶点 的距离相等,即点 为四面体的外接球的球心,如图2所示.∴外接球的半径 .故 .选C.
∴ .
∴ 是外接圆的半径,也是外接球的半径.故 .
小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.
多面体几何性质法
例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A. B. C. D.
解设正四棱柱的底面边长为 ,外接球的半径为 ,则有 ,解得 .

多面体的外接球的半径求法

多面体的外接球的半径求法

立体几何专题:多面体外接球的半径求法引理:点O 为多边形E ABCD ⋅⋅⋅⋅⋅的外接圆的圆心,过点O 作一条直线l 垂直平面E ABCD ⋅⋅⋅⋅⋅,则l 上的任意一点P 到多边形的顶点的距离相等。

确定多面体外接球的球心方法:先确定一个三角形,找出此三角形外接圆的圆心,过圆心作此三角形所在平面的垂线1l ;再确定另一则外接球的半径h R R h r R 2)(222=⇒-+= 八、三棱锥BCD A -中,若AB =CD =a ,AC =BD =b ,AD =BC =c ,则外接球的半径R 221222c b a ++= 方法:构造长方体,c b a ,,为长方体面对角线的长,设长方体的长、宽、高分别为z y x ,,。

则)(21222222222222222c b a z y x c x z b z y a y x ++=++⇒⎪⎩⎪⎨⎧=+=+=+,∴外接球的半径R 221222c b a ++= 附:三角形ABC 的外接圆半径r 的求法: 设Cc B b A a r a BC b AC c AB sin 2sin 2sin 2,,,===⇒===(由正弦定理) S Sabc r (4=表示⊿ABC 的面积)①。

②例2 1 2球 3球4 A π26 B π36 C π6 D π125、三棱锥BCD A -,,5,90=︒=∠=∠AC ADC ABC 则三棱锥BCD A -外接球的体积为 。

6、三棱锥BCD A -,,2,3,90===︒=∠=∠=∠BD CB AB CBD ABD ABC 则三棱锥BCD A -外接球的表面积为 。

7、点D C B A ,,,在同一球面上,,2,2===AC BC AB 若球的表面积为425π,则四面体ABCD 体积的最大值为 。

高考数学中的内切球和外接球问题---专题复习

高考数学中的内切球和外接球问题---专题复习

高考数学中的内切球和外接球问题---专题复习高考数学:内切球和外接球问题多面体的顶点都在同一球面上时,称该多面体为球的内接多面体,该球为多面体的外接球。

多面体外接球问题是立体几何的重点,也是高考的热点,考查学生的空间想象能力和化归能力。

解决该问题需要运用多面体和球的知识,并特别注意多面体的几何元素与球的半径之间的关系。

多面体外接球半径的求法在解题中往往起到至关重要的作用。

一、直接法(公式法)1、求正方体的外接球的有关问题例1:若正方体的棱长为3且顶点都在同一球面上,求该球的表面积。

解析:要求球的表面积,只需知道球的半径。

由于正方体内接于球,所以它的体对角线正好为球的直径,因此求球的半径可转化为先求正方体的体对角线长,再计算半径。

故表面积为27π。

例2:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为多少?解析:要求球的体积,还需先求出球的半径。

由正方体表面积可求出棱长,从而求出正方体的体对角线长为3√3.因此,该球的半径为3,故该球的体积为36π。

2、求长方体的外接球的有关问题例1:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1、2、3,则该球的表面积为多少?解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。

长方体体对角线长为√14,故球的表面积为14π。

例2:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则该球的表面积为多少?解析:正四棱柱也是长方体。

由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2、2、4.故该球的表面积为24π。

3、求多面体的外接球的有关问题例:一个底面为正六边形的六棱柱,侧棱垂直于底面,已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为8,底面周长为3,则该球的体积为多少?解析:设正六棱柱的底面边长为x,高为h。

由底面周长可得x=3/6=1/2,由体积可得h=4/3.因此,正六棱柱的底面圆的半径为√3/2,外接球的半径为√13/2.故该球的体积为(52/3)π。

多面体外接球半径常见的5种求法111

多面体外接球半径常见的5种求法111

多面体外接球半径常见的5种求法一、公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 二、多面体几何性质法例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为 .解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为27π.例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为 .解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线,因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是.故该球的体积为.例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 .解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。

长方体体对角线长为14π.例4、(2006年全国卷I ) 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 三、补形法例5 (2008接球的表面积是 .例3,则其外接球的表面积是 . 解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.例 6 (2003,四个顶点在同一球面上,则此球的表面积为( )A. 3πB. 4πC. D. 6π解析:一般解法,需设出球心,作出高线,构造直角三角形,再计算球的半径.在此,由图1图2于所有棱长都相等,我们联想只有正方体中有这么多相等的线段,所以构造一个正方体,再寻找棱长相等的四面体,如图2,四面体A BDE -满足条件,即AB=AD=AE=BD=DE BE ==1,从而外接球的直径也为 A. (如图2)例7(2006年山东高考题)在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,则三棱锥P-DCE 的外接球的体积为( ).A.B.C.D. 解析:(如图3) 因为AE=EB=DC=1,0DAB=CBE=DEA=60∠∠∠,所以AE=EB=BC=DC=DE=CE=1AD =,即三棱锥P-DCE 为正四面体,至此,这与例6就完全相同了,故选C.例8 (2008年浙江高考题)已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积等于 .解析:本题同样用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC ⊥,联想长方体中的相应线段关系,构造如图4所示的长方体,又因为CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.(如图4)CDCE图3例9(2008年安徽高考题)已知点A 、B 、C 、D 在同一个球面上,B BCD A ⊥平面,BC DC ⊥,若6,AB =,则B 、C 两点间的球面距离是 .解析:首先可联想到例8,构造下面的长方体,于是AD 为球的直径,O 为球心,OB=OC=4为半径,要求B 、C 两点间的球面距离,只要求出BOC ∠即可,在Rt ABC ∆中,求出=4BC ,所以0C=60BO ∠,故B 、C 两点间的球面距离是43π.(如图5)小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R =. 四、寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.S图4C图5∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径. 在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=. ∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习. 五、确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. C A O DB图4。

多面体外接球半径常见的几种求法

多面体外接球半径常见的几种求法

多面体外接球半径常见的几种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 此题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的外表积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的外表积是2424R ππ=.选C.小结 此题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 假设三棱锥的三个侧面两两垂直,则其外接球的外表积是 .解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥的外接球.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的外表积249S R ππ==.小结 一般地,假设一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -的底面边长和各侧棱长CD ABSO 1图3S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=. ∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =43V π=球.小结 根据题意,我们可以选择最正确角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.此题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为A.12512π B. 1259π C. 1256π D. 1253π解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C.出现两个垂直关系,利用直角三角形结论【原理】:直角三角形斜边中线等于斜边一半。

立体几何内切球求法

立体几何内切球求法

立体几何内切球求法
立体几何内切球是指一个球体与一个立体图形相切于一个点,且球心
在该点上。

求解立体几何内切球的方法有以下几种:
1. 利用欧拉公式求解
对于任意一个简单多面体(如正方体、正八面体等),都可以通过欧
拉公式求出其内切球的半径。

欧拉公式:V - E + F = 2,其中 V 表示顶点数,E 表示边数,F 表示
面数。

对于一个简单多面体,其内切球的半径 r 满足以下关系式:r = d / 2s,其中 d 表示该多面体的外接球直径,s 表示该多面体表面上任意一条
边的长度。

2. 利用向量法求解
对于任意一个平滑曲面(如圆柱、圆锥等),可以通过向量法求出其
内切球的半径。

设该平滑曲面方程为 F(x,y,z)=0,则该曲面在点 P(x0,y0,z0) 处的法向量为∇F(x0,y0,z0)。

则该平滑曲面内切球的半径 r 等于点 P 到该平滑曲面的距离 d,即:
r = d = |F(x0,y0,z0)| / |∇F(x0,y0,z0)|
3. 利用重心法求解
对于一个任意形状的立体图形,可以通过重心法求出其内切球的半径。

设该立体图形的重心为 G,则内切球的半径 r 等于 G 到该立体图形表
面上任意一点 P 的距离 d,即:
r = d = 2V / (S + L),其中 V 表示该立体图形的体积,S 表示该立体
图形表面积,L 表示 G 到 P 的距离。

以上三种方法均可用于求解立体几何内切球,具体选择哪种方法取决
于所给定的问题和数据。

多面体与球的内切和外接常见类型归纳

多面体与球的内切和外接常见类型归纳

多面体与球的内切和外接常见类型归纳在平常教学中,立体几何的多面体与球的位置关系,是培养学生的立体感,空间想象能力的好教材。

可是学生在两个几何体的组合后,往往感到无从下手。

针对这种情况,笔者把日常教学中有关这方面的习题加以总结和归类如下:一.正四面体与球如图所示,设正四面体的棱长为a ,r 为内切球的半径,R 为外接球的半径。

则高SE=32a,斜高SD=43a ,OE=r=SE-SO ,又SD=BD,BD=SE-OE,则在 r=a 126。

R=SO=OB=a 46 特征分析:1. 由于正四面体是一个中心对成图形,所以它的内切球与外接球的球心为同一个。

2. R=3r. r=a 126 R=a 46。

此结论可以记忆。

例题一。

1、一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) 分析:借助结论,R=a 46=462=23,所以S=42R π=3π。

2、球的内接正四面体又有一个内切球,则大球与小球的表面积之比是( )C分析:借助R=3r ,答案为9:1。

二、特殊三棱锥与球四个面都是直角三角形的三棱锥。

SA AB BC ABC ABC ⊥⊥为直角三角形,面, 因为SA ⊥AC ,SB ⊥BC ,球心落在SC 的中点处。

所以R=2SC 。

三.正方体与球。

1.正方体的外接球即正方体的8个定点都在球面上。

关键找出截面图:ABCD 为正方体的体对角面。

设正方体的边长为a ,则AB=2a ,BD=2R ,AD=a , R=23a 。

C2. 正方体的内切球。

(1)与正方体的各面相 切。

如图:ABCD 为正方 体的平行侧面的正方形。

R=2a(2)与正方体的各棱相切。

如图:大圆是正方形ABCD的外接圆。

CBDBAAB=CD=a , R=22a 。

3. 在正方体以一个顶点为交点的三条棱组成的三棱锥,特征是:三棱锥的三条侧棱互相垂直且相等,它的外接球可把三棱锥补形成正方体的外接球,再求解。

例题:1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.
公式法
例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98
,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h
,则有263,1,296,8
4x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12
r =
,球心到底面的距离d =.
∴外接球的半径1R ==.43
V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.
多面体几何性质法
例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A.16π
B.20π
C.24π
D.32π
解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.
∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.
补形法
例3 若三棱锥的三个侧棱两两垂直,
则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,
∴把这个三棱锥可以补成一个棱长为.
设其外接球的半径为R ,则有()222229R =
++=.∴294R =. 故其外接球的表面积249S R ππ==.
小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直
径.设其外接球的半径为R ,则有2R =
寻求轴截面圆半径法
例4 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .
解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.
又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.
∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.
在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.
∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43
V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.
确定球心位置法
例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253
π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.
∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536
V R ππ==球.选C. 出现多个垂直关系时建立空间直角坐标系,利用向量知识求解
【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,
2===AC AD AB
解:由已知建立空间直角坐标系
)000(,,A )002(,,B )200(,,D
3,

设球心坐标为),,(z y x O 则DO CO BO AO ===,由空间两点间距离公式知222222)2(z y x z y x ++-=++ 222222)2(-++=++z y x z y x
222222)3()1(z y x z y x +-+-=++
解得 133
1===z y x
所以半径为3
211331222=++=)(
R 【结论】:空间两点间距离公式:221221221)()()(z z y y x x PQ -+-+-=
四面体是正四面体
外接球与内切球的圆心为正四面体高上的一个点,
根据勾股定理知,假设正四面体的边长为a 时,它的外接球半径为
a 4
6。

内切球的半径
正方体的内切球:
设正方体的棱长为a ,求(1)内切球半径;(2)外接球半径;(3)与棱相切的球半径。

(1)截面图为正方形EFGH 的内切圆,得2
a R =; (2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 2
2=。

(3) 正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面1AA 作截面
图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 2
31==。

构造
直三角
形,巧解
正棱柱
与球的组合问题正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径。

例题:已知底面边长为a 正三棱柱111C B A ABC -的六个顶点在球1O 上,又知球2O 与此正三棱柱的5个面都相切,求球1O 与球2O 的体积之比与表面积之比。

分析:先画出过球心的截面图,再来探求半径之间的关系。

解:如图6,由题意得两球心1O 、2O 是重合的,过正三棱柱的一条侧棱1AA 和它们的球心作截面,设正三棱柱底面边长为a ,则a R 6
32=,正三棱柱的高为a R h 3322=
=,由O D A Rt 11∆中,得 图3 图4 图5 图6
22
222221125633333a a a R a R =⎪⎪⎭
⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+⎪⎪⎭⎫ ⎝⎛=,a R 1251=∴ 1:5::222121==∴R R S S ,1:55:21=V V 二 棱锥的内切、外接球问题
4 .正四面体的外接球和内切球的半径是多少?
分析:运用正四面体的二心合一性质,作出截面图,通过点、线、面关系解之。

解:如图1所示,设点O 是内切球的球心,正四面体棱长为a .由图形的对称性知,点O 也是外接球的球心.设内切球半径为r ,外接球半径为R .
在BEO Rt ∆中,222EO BE BO +=,即22233r a R +⎪⎪⎭
⎫ ⎝⎛=,得a R 46=,得r R 3=
【点评】由于正四面体本身的对称性可知,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即内切球的半径为
4h ( h 为正四面体的高),且外接球的半径4
3h ,从而可以通过截面图中OBE Rt ∆建立棱长与半径之间的关系 多面体的体积为V ,表面积为S ,则内切球的半径为:3V/S
高为h ,各面面积均为S 的棱锥内任意一点到各表面距离之和为h 图1。

相关文档
最新文档