2011年100份全国中考数学真题汇编:第41章方案设计
2011年全国各地100份中考数学试卷分类汇编(46专题)(含答案)-46
第16章 频数与频率1. (2011浙江金华,6,3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( )A .0.1B .0.15C .0.25D .0.3【答案】D2. (2011四川南充市,4,3分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( )(A )0.1 (B )0.17 (C )0.33 (D )0.4次数(次)人数(人)3530252015512103O【答案】D3. (2011浙江温州,7,4分)为了支援地震灾区同学,某校开展捐书活动,九 (1)班40名同学积极 参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5. 5~6.5组别的频率是( ) A .0.1 B .0.2 C .0.3 D .0.4组别其他舞蹈绘画书法人数1412108642812119【答案】B4. (2011浙江丽水,6,3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( ) A .0.1 B .0.15 C .0.25 D .0.3【答案】D5. (2011四川内江,13,5分)“Welcome to Senior High School .”(欢迎进入高中),在这段句子的所有英文字母中,字母O 出现的频率是 . 【答案】156. (2011广东东莞,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每 组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比组别其他舞蹈绘画书法人数1412108642812119是多少?【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体. (2)补全图形,如图所示:(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50, 5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.7. (2011广东广州市,22,12分)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图(图6),根据图中信息回答下列问题: (1)求a 的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.图6 【答案】(1)a =50―6―25―3―2=14(2)设上网时间为6~8小时的三个学生为A 1,A 2,A 3,上网时间为8~10个小时的2名学频数 (学生人数)0 2 4 6 8 10 时间/小时6a 2532生为B1,B2,则共有A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2A3B1,A3B2B1B210种可能,其中至少1人上网时间在8~10小时的共有7种可能,故P(至少1人的上网时间在8~10小时)=0.78. (2011广东汕头,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体.(2)补全图形,如图所示:(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.9. (2011 浙江湖州,21,8) 班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1) .(1) 请根据图1,回答下列问题:①这个班共有名学生,发言次数是5次的男生有人、女生有人;②男、女生发言次数的中位数分别是次和次.(2) 通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数..的扇形统计图如图2所示.求第二天发言次数增加3次的学生人数和全班增加的发言总次数.【答案】解:(1)①40;2;5 ②4;5.(2)发言次数增加3次的学生人数为:40(120%30%40%)4()⨯---=人.全班增加的发言总次数为40%40130%4024316241252⨯⨯+⨯⨯+⨯=++=(次).10. (2011浙江义乌,20,8分)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :50分;B :49-45分;C :44-40分;D :39-30分;E :29-0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ▲ ,b 的值为 ▲ ,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? ▲ (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?【答案】解:(1) 60 , 0.15 (图略) (2) C(3)0.8×10440=8352(名)答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.11. (2011山东聊城,19,8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水分数段 人数(人) 频率A 48 0.2B a 0.25C 84 0.35D 36 bE 12 0.05 学业考试体育成绩(分数段)统计图12243648607284人数分数段A B CD E 0 学业考试体育成绩(分数段)统计表量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线图和频数、频率分布表如下:注:x 表示50户居民月总用水量(m 3)(1)表中的a =________;d =___________. (2)这50户居民每月总用水量超过550m3的月份占全年月份的百分率是多少(精确到1%)?(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?【答案】(1)3,61;(2)这50户居民月总用水量超过550m 3的月份有5个,占全年月份的百分率为(5÷12)×100%=42%(3)(378+641+456+543+550+667+693+600+574+526+423)÷50÷12=109m 3 12. (2011广东省,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每 组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体. (2)补全图形,如图所示:组 别 频 数 频 率350<x≤400 1112 400<x≤450 1 112 450<x≤500 2 16500<x≤550 a b550<x≤600 c d 600<x≤650 1 112650<x≤700 2 16(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.13.(2011山东临沂,20,6分)某中学为了解学生的课外阅读情况.就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:类别频数(人数)频率文学m 0.42艺术22 0.11科普66 n其他28合计 1下面是自首届以来各届动漫产品成交金额统计图表(部分未完成):(1)表中m=_________,n=__________;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多? 最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?【解】(1)84,0.33;…………………………………………………………………(2分)(2)喜爱阅读文学类的学生最多(84人),喜爱阅读艺术类的学生最少(22人);…………………………………………………………………(4分)(3)1200×0.33=396(人).………………………………………………………(6分)14. (2011浙江省,20,8分)据媒体报道:某市四月份空气质量优良,高举全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们高举国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1-4月份中30天空气综合污染指数,统计数据如下:表I:空气质量级别表空气污染指数0~50 51~100 101~150 151~200 201~250 251~300 大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)空气综合污染指数30,32,40,42,45,45,77,83,85,87,90,113,127,153,16738,45,48,53,57,64,66,77,92,98,130,184,201,235,243请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1) 填写频率分布表中未完成的空格;分组频数统计频数频率0~50 0.3051~100 12 0.40101~150151~200 3 0.10201~250 3 0.10合计30 30 1.00(2) 写出统计数据中的中位数、众数;(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.【答案】(1)分组频数统计频数频率0~50 9 0.3051~100 12 0.40101~150 3 0.10151~200 3 0.10201~250 3 0.10合计30 30 1.00(2) 中位数是80 、众数是45 。
2011年中考数学方案设计问题及其答案
2011年中考数学方案设计问题及其答案1、(2011年浙江省杭州市模拟23)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.2、(2011年浙江省杭州市中考数学模拟22)2011年我国云南盈江发生地震,某地民政局迅速地组织了30吨饮用水和13吨粮食的救灾物资,准备租用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装饮用水5吨和粮食1吨,乙型货车每辆可装饮用水3吨和粮食2吨.已知可租用的甲种型号货车不超过4辆。
(1)若一共租用了9辆货车,且使救灾物资一次性地运往灾区,共有哪几种运货方案?(2)若甲、乙两种货车的租车费用每辆分别为4000元、3500元,在(1)的方案中,哪种方案费用最低?最低是多少?(3) 若甲、乙两种货车的租车费用不变,在保证救灾物资一次性运往灾区的情况下,还有没有费用更低的方案?若有,请直接写出该方案和最低费用,若没有,说明理由。
(租车数量不限)4、(2011年北京四中模拟28)据悉,上海市发改委拟于今年4月27日举行居民用水价格调整听证会,届时将有两个方案提供听证。
如图(1),射线OA、射线OB分别表示现行的、方案一的每户每月的用水费y(元)与每户每月的用水量x (立方米)之间的函数关系,已知方案一的用水价比现行的用水价每立方米多0.96元;方案二如图(2)表格所示,每月的每立方米用水价格由该月的用水量决定,且第一、二、三级的用水价格之比为1︰1.5︰2(精确到0.01元后).(1) 写出现行的用水价是每立方米多少元?(2) 求图(1)中m 的值和射线OB 所对应的函数解析式,并写出定义域;(3) 若小明家某月的用水量是a 立方米,请分别写出三种情况下(现行的、方案一和方案二)该月的水费b (用a 的代数式表示);(4) 小明家最近10个月来的每月用水量的频数分布直方图如图(3)所示,估计小明会赞同采用哪个方案?请说明理由。
2011年全国各地100份中考数学试卷分类汇编(含答案)
方程的应用一、选择题A 组1、(2011年北京四中中考模拟20)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A 、256)x 1(2892=-B 、289)x 1(2562=-C 、256)x 21(289=-D 、289)x 21(256=-答案A2.(2011年浙江仙居)近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( )A .()212000x +=B .()2200013600x +=C .()()3600200013600x -+=D .()()23600200013600x -+=答案:D3.(浙江省杭州市党山镇中2011年中考数学模拟试卷)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( )(A ) 18%)201(160400160=+-+x x (B )18%)201(400160=++xx (C ) 18%20160400160=-+xx (D )18%)201(160400400=+-+x x 答案:AB 组1. (2011浙江慈吉 模拟)2010年元旦的到来, 宁波市各大商厦纷纷推出各种优惠以答谢顾客, 其中银泰百货贴出的优惠标语是: 买200元物品, 送100元购物券, 买400元物品送200购物券,……依次类推; 于是小红陪着她的妈妈一起来到大厦买东西, 没过多少时间小红就看中了一件衣服, 一问价钱需要600元. 她心想贵是贵了点,但是能送300元的购物券还是挺划算的, 于是就花600元把这件衣服买了, 同时也得到了300元购物券. 后来小红又用这300元购物券恰好买了一双鞋子, 这时就没有购物券送了. 则下列优惠中, 与小红在这次购物活动中所享受的优惠最接近的是( )A. 5折B. 6折C. 7折D. 8折 答案:C2.(2011湖北省崇阳县城关中学模拟)一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ▲ )A. 甲或乙或丙B. 乙C. 丙D. 乙或丙答案:B3.(2011湖北武汉调考模拟二)黄陂木兰旅游产业发展良好,2008年为640万元,2010年为1000万元,2011年增长率与2008至2010年年平均增长率相同,则2011年旅游收入为( )A.1200万元B.1250万元C.1500万元D.1000万元答案:B4. (2011湖北武汉调考一模)某县为发展教育事业,加强了对教育经费的投入,2 0019年投入3 000万元,预计2011年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A.3000( l+x )2=5000B.3000x 2=5000C.3000( l+x ﹪ )2=5000D.3000(l+x)+3000( l+x)2=5000答案:A5. (2011年杭州市模拟)如图,矩形的长与宽分别为a 和b ,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a 和b 要满足的数量关系是 A.121+=πb a B.122+=πb a C.221+=πb a D.12+=πb a 答案:D6.(2011灌南县新集中学一模)某超市一月份的营业额为200万元,已知第一季度....的总营业第5题额共1000万元, 如果平均每月增长率为x,则由题意列方程应为【 】A .200(1+x)2=1000 B .200+200×2x=1000C .200+200×3x=1000D .200[1+(1+x)+(1+x)2]=1000答案:D二、填空题 A 组1、(2011重庆市纂江县赶水镇)含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重 40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再 将每种饮料所倒出的部分与另一种饮料余下的部分混合,如果混合后的两种饮料所含的果蔬 浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克.答案:242、(重庆一中初2011级10—11学年度下期3月月考)某公司生产一种饮料是由A 、B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是__________.答案:50%3、(2011年北京四中三模)某商场销售一批电视机,一月份每台毛利润是售出价的20% (毛利润=售出价-买入价),二月份该商场将每台售出价调低10%(买入价不变),结 果销售台数比一月份增加120%,那么二月份的毛利润总额与一月份毛利润总额的比 是 .答案:11:124.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 .答案:100)1(1202=-x5、(2011浙江杭州模拟16)由于人民生活水平的不断提高,购买理财产品成为一个热门话题。
2011年全国各地100份中考数学试卷分类汇编(46专题)(含答案)-44
第46章 综合型问题一 选择题1. (2011 浙江湖州,10,3)如图,已知A 、B 是反比例面数k y x= (k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C (图中“→”所示路线)匀速运动,终点为C .过P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N .设四边形0MPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为【答案】A2. (2011台湾全区,19)坐标平面上,二次函数362+-=x x y 的图形与下列哪一个方程式的图形没 有交点?A . x =50B . x =-50C . y =50D . y =-50【答案】D3. (2011广东株洲,8,3分)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米【答案】D4. (2011山东聊城,12,3分)某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m【答案】C5. (2011河北,8,3分)一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( ) A .1米 B .5米 C .6米 D .7米【答案】C二、填空题1. (2011湖南怀化,16,3分)出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. (2011江苏扬州,17,3分)如图,已知函数xy 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-33.4.5.三、解答题1. (2011山东滨州,25,12分)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。
2011年全国各地100份中考数学试卷分类汇编(46专题)(含答案)-41
第6章 不等式(组)一、选择题1. (2011湖南永州,15,3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为( )A .6.0元B .7.0元C .8.0元D .9.0元【答案】B .二、填空题1. (2011山东临沂,17,3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料中20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料.【答案】422. (2011湖北襄阳,15,3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5 分.小明参加本次竞赛得分要超过100分,他至少要答对 道题.【答案】143.三、解答题1. (2011广东广州市,21,12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?【答案】(1)120×0.95=114(元)所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算.2. (2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米. ⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 A x 14B 14总计 15 13 28⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)调入地 水量/万吨调出地【答案】⑴(从左至右,从上至下)14-x 15-x x -1⑵y=50x+(14-x )30+60(15-x )+(x -1)45=5x+1275解不等式1≤x ≤14所以x=1时y 取得最小值y min =12803. (2011 浙江湖州,23,10)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元? (收益=销售额-成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg ,桂鱼每亩需要饲料700kg .根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?【答案】解:(1)2011年王大爷的收益为:20.+.⨯⨯(3-24)10(25-2)=17(万元)(2)设养殖甲鱼x 亩,则养殖桂鱼(30-x )亩.由题意得2.42(30)70,x x +-≤解得25x ≤,又设王大爷可获得收益为y 万元,则0.60.5(30)y x x =+-,即11510y x =+. ∵函数值y 随x 的增大而增大,∴当x =25,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg ,由(2)得,共需饲料为50025+700516000⨯⨯=(kg ),根据题意,得160001600022a a-=,解得4000()a kg =. 答:王大爷原定的运输车辆每次可装载饲料4000kg.4. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担任课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.【答案】7206=120÷,∴光明厂平均每天要生产120套单人课桌椅.(2)设x 人生产桌子,则(84)x -人生产椅子, 则125720,584245720,4x x ⨯⨯≥-⨯⨯≥⎧⎨⎩ 解得6060,60,8424x x x ≤≤∴=-=,∴生产桌子60人,生产椅子24人。
2011年100份全国中考数学真题汇编:第6章不等式
2011年100份全国中考数学真题汇编:第6章不等式第6章不等式(组)一、选择题1.(2011湖南永州,15,3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A.6.0元B.7.0元C.8.0元D.9.0元【答案】B.二、填空题1.(2011山东临沂,17,3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料中20kg,电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载捆材料.【答案】422. (2011湖北襄阳,15,3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5 分.小明参加本次竞赛得分要超过100分,他至少要答对道题.【答案】143.三、解答题1.(2011广东广州市,21,12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?【答案】(1)120×0.95=114(元)所以实际应支付114元.(2)设购买商品的价格为x元,由题意得:0.8x +168<0.95x 解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算.2. (2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米.⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 A x 14 B14 总计15[来源:学#科#网Z#X#X#K]1328⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x 15-x x -1⑵y=50x+(14-x )30+60(15-x )+(x -1)45=5x+1275 解不等式1≤x ≤14 所以x=1时y 取得最小值 y min =12803. (2011 浙江湖州,23,10)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元? (收益=销售额-成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?调入地水量/万调出地(3) 已知甲鱼每亩需要饲料500kg ,桂鱼每亩需要饲料700kg .根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg? 【答案】解:(1)2011年王大爷的收益为:20.+.⨯⨯(3-24)10(25-2)=17(万元)(2)设养殖甲鱼x 亩,则养殖桂鱼(30-x )亩. 由题意得2.42(30)70,x x +-≤解得25x ≤,又设王大爷可获得收益为y 万元,则0.60.5(30)y x x =+-,即11510y x =+. ∵函数值y 随x 的增大而增大,∴当x =25,可获得最大收益. 答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg ,由(2)得,共需饲料为50025+700516000⨯⨯=(kg ),根据题意,得160001600022a a-=,解得4000()a kg =. 答:王大爷原定的运输车辆每次可装载饲料4000kg.4. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担任课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.【答案】7206=120÷ ,∴光明厂平均每天要生产120套单人课桌椅.(2)设x 人生产桌子,则(84)x -人生产椅子,则125720,584245720,4xx ⨯⨯≥-⨯⨯≥⎧⎨⎩ 解得6060,60,8424x x x ≤≤∴=-=,∴生产桌子60人,生产椅子24人。
2011年全国各地中考数学题分类汇编 压轴题(含答案)
2011年全国各地数学中考题汇编——压轴题整理人:徐金勇(仪征市大仪中学)2011.7.6(黄冈市2011)24.(14分)如图所示,过点F (0,1)的直线y =kx +b 与抛物线214y x =交于M (x 1,y 1)和N (x 2,y 2)两点(其中x 1<0,x 2<0).⑴求b 的值. ⑵求x 1•x 2的值⑶分别过M 、N 作直线l :y =-1的垂线,垂足分别是M 1、N 1,判断△M 1FN 1的形状,并证明你的结论.⑷对于过点F 的任意直线MN ,是否存在一条定直线m ,使m 与以MN 为直径的圆相切.如果有,请法度出这条直线m 的解析式;如果没有,请说明理由.答案:24.解:⑴b =1⑵显然11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩是方程组2114y kx y x =+⎧⎪⎨=⎪⎩的两组解,解方程组消元得21104x kx --=,依据“根与系数关系”得12x x =-4 ⑶△M 1FN 1是直角三角形是直角三角形,理由如下:由题知M 1的横坐标为x 1,N 1的横坐标为x 2,设M 1N 1交y 轴于F 1,则F 1M 1•F 1N 1=-x 1•x 2=4,而FF 1=2,所以F 1M 1•F 1N 1=F 1F 2,另有∠M 1F 1F =∠FF 1N 1=90°,易证Rt △M 1FF 1∽Rt △N 1FF 1,得∠M 1FF 1=∠FN 1F 1,故∠M 1FN 1=∠M 1FF 1+∠F 1FN 1=∠FN 1F 1+∠F 1FN 1=90°,所以△M 1FN 1是直角三角形.⑷存在,该直线为y =-1.理由如下: 直线y =-1即为直线M 1N 1. 如图,设N 点横坐标为m ,则第22题图第22题解答用图(黄石市2011年)24.(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合),直线CB 与⊙1O 交于另一点D 。
2011年中考数学考试试题答案
1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。
2011年全国各地100份中考数学试卷分类汇编(46专题)(含答案)-31
第44章动态问题一、选择题1.(2011安徽,10,4分)如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形状是()D.【答案】C2. (2011山东威海,12,3分)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()【答案】B3. (2011甘肃兰州,14,4分)如图,正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为S,AE为x,则S关于x的函数图象大致是A .B .C .D .【答案】B 4.二、填空题1. 2. 3. 4. 5.三、解答题1. (2011浙江省舟山,24,12分)已知直线3+=kx y (k <0)分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.(1)当1-=k 时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图1). ① 直接写出t =1秒时C 、Q 两点的坐标;② 若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值. (2)当43-=k 时,设以C 为顶点的抛物线n m x y ++=2)(与直线AB 的另一交点为D (如图2), ① 求CD 的长;② 设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?【答案】(1)①C (1,2),Q (2,0).A BCDEFGHxy -1O1x y1 O 1 x yO1 xy1 O 11BAOPCxy11D(第24题图2)(第24题图1) BAOP CQxy11②由题意得:P (t ,0),C (t ,-t+3),Q (3-t ,0), 分两种情形讨论:情形一:当△AQC ∽△AOB 时,∠AQC=∠AOB =90°,∴CQ ⊥OA , ∵CP ⊥OA ,∴点P 与点Q 重合,OQ =OP ,即3-t =t ,∴t=1.5.情形二:当△ACQ ∽△AOB 时,∠ACQ=∠AOB =90°,∵O A=O B=3,∴△AOB 是等腰直角三角形,∴△ACQ 是等腰直角三角形,∵CQ ⊥OA ,∴AQ=2CP ,即t =2(-t +3),∴t=2.∴满足条件的t 的值是1.5秒或2秒.(2) ①由题意得:C (t ,-34t +3),∴以C 为顶点的抛物线解析式是23()34y x t t =--+,由233()3344x t t x --+=-+,解得x 1=t ,x 2=t 34-;过点D 作DE ⊥CP 于点E ,则∠DEC=∠AOB =90°,DE ∥OA ,∴∠EDC=∠OAB ,∴△DEC ∽△AOB ,∴DE CDAO BA=, ∵AO =4,AB =5,DE =t -(t-34)=34.∴CD =35154416DE BA AO ⨯⨯==.②∵CD =1516,CD 边上的高=341255⨯=.∴S △COD =11512921658⨯⨯=.∴S △COD 为定值; 要使OC 边上的高h 的值最大,只要OC 最短. 因为当OC ⊥AB 时OC 最短,此时OC 的长为125,∠BCO =90°,∵∠AOB =90°,∴∠COP =90°-∠BOC =∠OBA ,又∵CP ⊥OA ,∴Rt △PCO ∽Rt △OAB ,∴OP OC BO BA =,OP =123365525OC BO BA ⨯⨯==,即t =3625,∴当t 为3625秒时,h 的值最大. 2. (2011广东东莞,22,9分)如图,抛物线2517144y x x =-++与y 轴交于点A ,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0). (1)求直线AB 的函数关系式;(2)动点P 在线段OC 上,从原点O 出发以每钞一个单位的速度向C 移动,过点P 作⊥x 轴,交直线AB 于点M ,抛物线于点N ,设点P 移动的时间为t 秒,MN 的长为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设(2)的条件下(不考虑点P 与点O ,点G 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平等四边形?问对于所求的t 的值,平行四边形BCMN 是否为菱形?说明理由.【解】(1)把x=0代入2517144y x x =-++,得1y = 把x=3代入2517144y x x =-++,得52y =, ∴A 、B 两点的坐标分别(0,1)、(3,52)设直线AB 的解析式为y kx b =+,代入A 、B 的坐标,得1532b k b =⎧⎪⎨+=⎪⎩,解得112b k =⎧⎪⎨=⎪⎩所以,112y x =+ (2)把x=t 分别代入到112y x =+和2517144y x x =-++ 分别得到点M 、N 的纵坐标为112t +和2517144t t -++ ∴MN=2517144t t -++-(112t +)=251544t t -+ 即251544s t t =-+∵点P 在线段OC 上移动,∴0≤t ≤3.(3)在四边形BCMN 中,∵BC ∥MN∴当BC=MN 时,四边形BCMN 即为平行四边形 由25155442t t -+=,得121,2t t ==即当12t =或时,四边形BCMN 为平行四边形 当1t =时,PC=2,PM=32,PN=4,由勾股定理求得CM=BN=52, 此时BC=CM=MN=BN ,平行四边形BCMN 为菱形; 当2t =时,PC=1,PM=2,由勾股定理求得CM=5,此时BC ≠CM ,平行四边形BCMN 不是菱形;所以,当1t =时,平行四边形BCMN 为菱形.3. (2011江苏扬州,28,12分)如图,在Rt △ABC 中,∠BAC=90º,AB<AC ,M 是BC 边的中点,MN ⊥BC 交AC 于点N ,动点P 从点B 出发沿射线BA 以每秒3厘米的速度运动。
初中数学精品试题:中考方案设计问题的分类
中考方案设计问题的分类方案设计型题通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作寻求恰当的解决.它包括作图方案设计、测量方案设计和经济类方案设计.作图方案设计题,它摆脱了传统的简单作图,它把作图的技能考查放在一个实际生活的大背景下、考查学生的综合创新能力,它给同学们的创造性思维提供广阔的空间与平台.此类题常以某些规则的图形,如等腰三角形,菱形、矩形、正方形、圆等通过某些辅助线,将面积分割或作出符合某些条件的图形.测量方案设计题,一般限定条件、限定测量工具、让同学们设计一个可行的方案,对某一物体的长度进行测量并计算,大多数以距离直角三角形模型进行求解,要注意的是,设计出来的方案要有可操作性.经济类方案设计题,一般有较多种供选择的解决问题的方案,但在实施中要考虑到经济因素,此类问题类似与要求最大值或最小值的问题,但涉及的方法较多.方案设计问题属于过程开放题, 是近年兴起的一种新题型,在近几年各地的中考中出现的频率增大, 此种题型考查考生的数学应用意识强,命题的背景广泛,考生自由施展才华的空间大,因此倍受命题者的青睐.应该引起同学们的重视.本文精选了全国各地2007年的方案设计型问题供同学们复习时参考.一、图案设计: 1、(2007四川乐山)认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________; 特征2:_________________________________________________.(2)请在图(2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征2、(2007福建福州)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图 形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图 案.提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种.图(1) 图(2) ① ② ③ ④ ⑤二、解直角三角形中的方案设计 3、(2007湖北潜江)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的 宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开 始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB .(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.三、统计知识中的方案设计 4、(2007江西)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择 合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数. 方案3 所有评委所给分的中位数. 方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1) 分别按上述4个方案计算这个同学演讲 最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分. 四、方程、函数中的方案设计 5、(2007山东济宁)某小区有一长100m ,宽80cm 的空地,现将其建成花园广场,设计图案如下,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m ,不大于60m .预计活动区每平方米造价60元,绿化区每平方米造价50元. (1)设一块绿化区的长边为xm ,写出工程总造价y 与x 的函数关系式(写出x 的取值范围);(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x 为整数的所有工程方案;若不能,请说明理由.(参考值:732.13≈) 6、(2007广东梅州)梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学 生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方出现 故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车 的平均速度是60km/h ,人步行的速度是5km/h (上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止 进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通 过计算说明方案的可行性. 五、不等式中的方案设计7、(2007山东青岛)某饮料厂开发了A 、B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙 的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A 、B 两种饮料共100瓶.设 生产A 种饮料x 瓶,解答下列问题:(1)有几种符合题意的生产方案?写出解答过程;(2)如果A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低?8、(2007重庆)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20( (2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值. 9、(2007湖南怀化)2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和 2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种 花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案 有几种?请你帮助设计出来.(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种 方案成本最低?最低成本是多少元? 10、(2007南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)11、(2007四川眉山)某县响应“建设环保节约型社会”的号召,决定资助部分付镇修建一 批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费共需费用y万元.(1)求y与x之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.12、(2007山东临沂)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:(1)(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产可以获得最大利润?(注:利润=售价-成本)13、(2007四川绵阳)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?14、(2007山东济南)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.15、(2007哈尔滨)青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价 进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3超过300元且不超过400元售价打九折 超过400元售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙 种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多 少件?(通过计算求出所有符合要求的结果)参考答案: 1、解:(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4 个单位面积;(2)满足条件的图形有很多,只要画正确一个,都可以得满分.2、解:以下为不同情形下的部分正确画法,答案不唯一.(满分8分)3、解:(1)在Rt BAC △中,68=∠ACB ,∴24848.210068tan =⨯≈⋅=AC AB (米) 答:所测之处江的宽度约为248米(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题 的,只要正确即可得分. 4、解:(1)方案1最后得分:7.7)8.94.83838.70.72.3(101=+⨯+⨯+++; 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案 5、解:(1)由题意知,出口的宽为(100-2x )m ,短边为(x-10)m 所以总造价y=50×4x (x-10)+60×[8000-4x (4x-10)]整理,得 y=-40x 2+400x+480000(20≤x ≤25)(2) -40x 2+400x+480000=469000整理,得x 2-10x-275=03105232010±=±=x (舍去负值) 32.223105≈+=x 所以投资46.9万元能完成工程任务.方案一:一块矩形绿地的长为23 m ,宽为13 m ; 方案二:一块矩形绿地的长为24m ,宽为14m ; 方案三:一块矩形绿地的长为25 m ,宽为15m ;6、解:(1)1533(h)45604⨯==(分钟),4542>, ∴不能在限定时间内到达考场.(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4 人的相遇处再载他们到考场.先将4人用车送到考场所需时间为150.25(h)1560==(分钟). 0.25小时另外4人步行了1.25km ,此时他们与考场的距离为15 1.2513.75-=(km )设汽车返回(h)t 后先步行的4人相遇, 56013.75t t +=,解得 2.7513t =. 汽车由相遇点再去考场所需时间也是2.75h 13. 所以用这一方案送这8人到考场共需424.40601375.2215<≈⨯⨯+.所以这8个个能在截止进考场的时刻前赶到.方案2:8人同时出发,4人步行,先将4人用车送到离出发点km x 的A 处,然后这4个人步行前往 考场,车回去接应后面的4人,使他们跟前面4人同时到达考场.由A 处步行前考场需15(h)5x-, 汽车从出发点到A 处需(h)60x 先步行的4人走了5(km)60x⨯,设汽车返回t (h )后与先步行的4人相遇,则有605560x t t x +=-⨯,解得11780xt =, 所以相遇点与考场的距离为112156015(km)78013x xx -+⨯=-. 由相遇点坐车到考场需1(h)4390x ⎛⎫-⎪⎝⎭. 所以先步行的4人到考场的总时间为111(h)607804390x x x ⎛⎫++-⎪⎝⎭, 先坐车的4人到考场的总时间为15(h)605x x -⎛⎫+ ⎪⎝⎭,他们同时到达,则有11115607804390605x x x x x-++-=+,解得13x =. 将13x =代入上式,可得他们赶到考场所需时间为3760)526013(=⨯+(分钟). 3742<.∴ 他们能在截止进考场的时刻前到达考场.7、解:⑴ 设生产A 种饮料x 瓶,根据题意得:2030(100)28004020(100)2800x x x x +-≤+-≤⎧⎨⎩解这个不等式组,得20≤x ≤40. 因为其中正整数解共有21个,所以符合题意的生产方案有21种. ⑵ 根据题意,得 y =2.6x +2.8(100-x). 整理,得 y =-0.2x +280. ∵k =-0.2<0,∴y 随x 的增大而减小.∴当x =40时成本总额最低.8、解:(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐 橙的车辆数为(20-x-y ),则有:()10020456=--++y x y x 整理得:202+-=x y(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、202+-x 、x ,由题意得:42204x x ⎧⎨-+⎩≥≥,解得:4≤x ≤8,因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种.方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车; 方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车; 方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车; 方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车; 方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车; (3)设利润为W (百元)则:10416)202(5126⨯+⨯+-+⨯=x x x W∵048<-=k∴W 的值随x 的增大而减小要使利润W 最大,则4=x , 故选方案一1600448+⨯-=最大W =1408(百元)=14.08(万元)答:当装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车时,获利最大,最大利润为14.08万元. 9、解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:⎩⎨⎧≤-+≤-+2950)50(90403490)50(5080x x x x解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤x 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元 ∴应选择方案③,成本最低,最低成本为42720元 10、解:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得1(100),218001500(100)161800.x x x x ⎧≥-⎪⎨⎪+-≤⎩ ,解不等式组,得 1333≤x ≤1393.即购进电视机最少34台,最多39台,商店有6种进货方案.(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000. ∵ 100>0,∴ 当x 最大时,y 的值最大. 即 当x =39时,商店获利最多为13900元. 11、解(1)y=3x+2(20-2x)=x+40 (2)由题意可得203(20)264(1)486(20)708(2)x x x x +-⎧⎨+-⎩≥≤ 解(1)得x ≥12, 解(2)得x ≤14 所以不等式的解为12≤x ≤14 因为x 是正整数,所以x 的取值为12、13、14.即有三种修建方案: (1) A 型12个,B 型8个;(2) A 型13个,B 型7个; (3) A 型14个,B 型6个; (3)因为y=x+40中, y 随x 的增加而增加,要使费用最少,则x=12 所以最少费用为y=x+40=52(万元)村民每户集资700元与政府补助共计700×264+340000=524800>520000 所以每户集资700元能满足所需要费用最少的修建方案.12、解:(1)设生产A 型挖掘机x 台,则B 型挖掘机可生产(100-x)台,由题意可得22400≤200x+240(100-x)≤22500 , 解得37.5≤x ≤40 . 因为x 取非负整数,所以x 为38,39,40.所以有三种生产方案: 方案一: A 型38台,B 型62台;方案二: A 型39台,B 型61台;方案三: A 型40台,B 型 60台.(2) 设获得利润W 万元,由题意知W=50 +60(100-x)=6000-10x 所以当x=38时, W 最大=5620万元(3) 题意知W=(50 +m)x+60(100-x)=6000+(m-10)x所以当0<m<10,则x=38时, W 最大,即A 型挖掘机38台,B 型挖掘机62台;当m=10时, m-10=0,三种生产方案获得利润相等; 当m>10时,则x=40时, W 最大, 即A 型挖掘机40台,B 型挖掘机60台.13、解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得 4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4.∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元. 14、解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥解得:56x ≤≤ 即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆; 第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为520003180015400⨯+⨯=元; 第二种租车方案的费用为620002180015600⨯+⨯=元 ∴第一种租车方案更省费用. 15、解:(1)设该商场能购进甲种商品x 件,根据题意,得1535(100)2700x x +-=40x =乙种商品:1004060-=(件)答:该商品能购进甲种商品40件,乙种商品60件.(2)设该商场购进甲种商品a 件,则购进乙种商品(100)a -件.根据题意,得(2015)(4535)(100)750(2015)(4535)(100)760a a a a -+--⎧⎨-+--⎩≥≤ 因此,不等式组的解集为4850a ≤≤根据题意,a 的值应是整数,48a ∴=或19a =或50a = ∴该商场共有三种进货方案:方案一:购进甲种商品48件,乙种商品52件, 方案二:购进甲种商品49件,乙种商品51件, 方案三:购进甲种商品50件,乙种商品50件. (3)根据题意,得第一天只购买甲种商品不享受优惠条件 2002010∴÷=(件) 第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,32490458÷÷=%(件) 情况二:购买乙种商品打八折,32480459÷÷=%(件) ∴一共可购买甲、乙两种商品10818+=(件) 或10919+=(件)答:这两天他在该商场购买甲、乙两种商品一共18件或19件.。
2011年100份全国中考数学真题汇编:第33章直线与圆的位置关系
2011年100份全国中考数学真题汇编:第33章直线与圆的位置关系第33章直线与圆的位置关系一、选择题1. (2011宁波市,11,3分)如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB与P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现A.3次B.5次C.6次D.7次【答案】B2. (2011浙江台州,10,4分)如图,⊙O的半径为2,点O到直线l的距离为3,点P 是直线l上的一个动点,PB切⊙O于点B,则PB的最小值是().2A.13B.5C. 3 D【答案】B3. (2011浙江温州,10,4分)如图,O是正方形ABCD的对角线BD上一点,⊙O边AB,BC都相切,点E,F分别在边AD,DC上.现将△DEF沿着EF对折,折痕EF 与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是( )慧通教育网/A.3 B.4 C.2D.【答案】C4. (2011浙江丽水,10,3分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3) B.点(2,3) C.点(5,1) D.点(6,1)【答案】C5.(2011浙江金华,10,3分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()慧通教育网/慧通教育网/A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)【答案】C6. (2011山东日照,11,4分)已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ba ab 的是( )【答案】C 7. (2011湖北鄂州,13,3分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A .30°B .45°C .60°D .67.5°【答案】D8. (2011 浙江湖州,9,3)如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC =OB ,CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是A .12B .1C .2D .3A 第13题【答案】C9. (2011台湾全区,33)如图(十五),AB为圆O的直径,在圆O上取异于A、B的一点C,并连接BC、AC.若想在AB上取一点P,使得P与直线BC的距离等于AP长,判断下列四个作法何者正确?A.作AC的中垂线,交AB于P点B.作∠ACB的角平分线,交AB于P点C.作∠ABC的角平分线,交AC于D点,过D作直线BC的并行线,交AB于P点D.过A作圆O的切线,交直线BC于D点,作∠ADC的角平分线,交于P点【答案】D10.(2011甘肃兰州,3,4分)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于A.20°B.30°C.40°D.50°【答案】C ABDOC慧通教育网/慧通教育网/11. (2011四川成都,10,3分)已知⊙O 的面积为29cm π,若点0到直线l 的距离为cm π,则直线l 与⊙O 的位置关系是C(A)相交 (B)相切 (C)相离 (D)无法确定【答案】C12. (2011重庆綦江,7,4分) 如图,PA 、PB 是⊙O 的切线,切点是A 、B ,已知∠P =60°,OA =3,那么∠AOB 所对弧的长度为( )A .6лB .5лC .3лD .2л【答案】:D13. (2011湖北黄冈,13,3分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB的延长线于D ,且CO=CD ,则∠PCA=( )[来源:学,科,网Z,X,X,K]A .30°B .45°C .60°D .67.5°【答案】DA 第13题慧通教育网/14. (2011山东东营,12,3分)如图,直线y 与x 轴、y 分别相交与A 、B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切与点O 。
全国各地100份中考数学试卷分类汇编 第41章方案设计
2011年全国各地100份中考数学试卷分类汇编第41章 方案设计三 解答题1. ( 2011重庆江津, 26,12分) 在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD 是矩形,分别以AB 、BC 、CD 、DA 边为直径向外作半圆,若整个广场的周长为628米,高矩形的边长AB=y 米,BC=x 米.(注:取π=3.14)(1)试用含x 的代数式表示y;(2)现计划在矩形ABCD 区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W 元,求W 关于x 的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由?③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64·82万元,但要求矩形的边BC 的长不超过AB 长的三分之二,且建设广场恰好用完所有资金,问:能还完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由·【答案】(1) 由题意得 πy+πx=6·28∵π=3.14 ∴3.14y+3.14x=628.∴x+y=200.则 y=200-x;(2) ①w=428xy+400π(2y )2+400π(2x )2 =428x(200-x)+400×3.14×4)200(2x -+400×3.14×42x =200x 2-40000x+12560000;②仅靠政府投入的1千万不能完成该工程的建设任务,其理由如下:由①知 w=200(x-100)2+1.056×107>107, 所以不能;③由题意得 x ≤32y, 即x ≤32 (200-x) 解之得 x ≤80 ∴0≤x ≤80. A BC D第26题又根据题意得 w=200(x-100)2+1.056×107=107+6.482×105整理得 (x-100)2=441 解之得 x 1=79, x 2=121 (不合题意舍去)∴只能取 x=79, 则y=200-79=121所以设计的方案是: AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆·2. (2011重庆綦江,25,10分)为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)【答案】:25. 解:(1)设一台甲型设备的价格为x 万元,由题54%7523=⨯+x x ,解得x =12,∵ 12×75%=9 ,∴ 一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中,购买甲型设备a 台,由题意有⎩⎨⎧≥-+≤-+1300)8(16020084)8(912a a a a ,解得:421≤≤a 由题意a 为正整数,∴a =1,2,3,4 ∴所有购买方案有四种,分别为方案一:甲型1台,乙型7台; 方案二:甲型2台,乙型6台方案三:甲型3台,乙型5台; 方案四:甲型4台,乙型4台(3)设二期工程10年用于治理污水的总费用为W 万元)8(105.1101)8(912a a a a w -⨯+⨯+-+=化简得: =w -2a +192,∵W 随a 的增大而减少 ∴当a =4时, W 最小(逐一验算也可)∴按方案四甲型购买4台,乙型购买4台的总费用最少.3. (2011四川凉山州,24,9分)我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。
2011年100份全国中考数学真题汇编 第1章有理数
2011年100份全国中考数学真题汇编:第1章有理数(16页有答案)一、选择题1. (2011某某市,1,3分)下列各数是正整数的是A .-1B .2C .0.5D . 2【答案】B2. (2011某某市,4,3分)据某某市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为A . 7.6057×105人B . 7.6057×106人C . 7.6057×107人D . 0.76057×107人【答案】B3. (2011某某某某,1,3分)-2的倒数是( ) A .2 B .-2 C .12 D .12- 【答案】D4. (2011某某某某,1,3分)某某市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超过13000元,数13000用科学记数法可以表示为( )A.31310⨯B.41.310⨯C.50.1310⨯D.213010⨯【答案】B5. (2011某某某某,2,3分)据中新社2010年l2月8日电2011年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .75.46410⨯吨B .85.46410⨯吨C .95.46410⨯吨D .105.46410⨯吨【答案】B6. (2011某某某某,2,3分)明天数学课要学“勾股定理”,小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( )A. 51.2510⨯B.61.2510⨯C. 71.2510⨯D. 81.2510⨯【答案】C7. (2011某某省,1,3分)如图,在数轴上点A 表示的数可能是( ) B.-1.5 C【答案】C8. (2011某某省,3,3分)中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水,那么100万人每天浪费的水,用科学记数法表示为( )×107L ×106L ×105L ×104L【答案】C 9. (2011某某某某,1,4分)在21,0,1,-2这四个数中,最小的数是( ) A. 21 B. 0 C. 1 D. -2 【答案】D10. (2011某某义乌,1,3分)-3的绝对值是( )A .3B .-3C .- 13D .13【答案】A11. (2011某某义乌,5,3分)我市市场交易持续繁荣,市场成交额连续20年居全国各大专业市场榜首. 2011年中国小商品城成交额首次突破450亿元关口.请将数据450亿元用科学记数法表示为(单位:元) ( )A .×102 B .×103 C .×1010 D .×1011【答案】C12. (2011某某某某,1,4分)在-6,0,3,8 这四个数中,最小的数是( )A .-6B .0C .3D .8 【答案】A13. (2011某某省某某,9,4分)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )(A )2011 (B )2011 (C )2012 (D )2013【答案】D14. (2011某某某某,1,3分)下列各组数中,互为相反数的是( )A .2和-2B .-2和12C .-2和-12D .12和2 【答案】A15. (2011某某台北,10)在1~45的45个正整数中,先将45的因子全部删除,再将剩下的整数由小到大排(第9题) … …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝列,求第10个数为何?A.13 B.14 C. 16 D. 17【答案】B16.(2011某某台北,12)已知世运会、亚运会、奥运会分别于公元2009年、2011年、2012年举办。
【2011年中考数学试题】
2010—2011学年初三下学期期末数学试卷姓名分数一.选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的。
1.-5的相反数是A、5B、-511 C、D、552.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米。
将2500000用科学记数法表示应为7765A、0.25×10B、2.5×10C、2.5×10D、25×103.将图1按顺时针方向旋转90°后得到的是()4.方程x(x2) 0的根是()A x2B x0C x10,x22D x10,x225.在函数y1中,自变量x的取值范围是x3A、x≠3B、x≠0C、x>3D、x≠-36.如图,AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为A、155°B、50°C、45°D、25°7.小芸所在学习小组的同学们,响应“为祖国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷、奶奶们学习英语日常用语。
他们记录的各社区参加其中一次活动的人数如下:33,32,32,31,28,26,32,那么这组数据的众数和中位数分别是A、32,31B、32,32C、3,31D、3,328.把代数式xy2-9x分解因式,结果正确的是A、x(y29)B、x(y3)2C、x(y3)(y3)D、x(y9)(y9)9.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为A、1B、1C、1D、1634210.将如右图所示的圆心角为90°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是AO(第08题图)B二.填空题(本题共18分,每小题3分)11.若关于x得一元二次方程x2-3x+m=0有实数根,则m的取值范围是。
2011全国中考数学真题解析120考点汇编 课题研究(实践操作)
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆课题研究(实践操作)解答题1.(2011某某某某,28,12分)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形的面积之比等于这条边上的对应高之比;(2)有一个角应相等的两个三角形的面积之比等于夹这个角的两边乘积之比;…现请你根据对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2四边形P1R1R2R2=13S△ABC,请证明.问题2:若有另一块三角形纸板,可将其与问题1中的△ABC拼合成四边形ABCD,如图2,Q1,Q2四边形P1Q1Q2P2与S四边形ABCD之间的数量关系.问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4四边形ABCD=1,求S四边形P2Q2Q3P3.问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD 分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.考点:三角形的面积。
分析:问题1,图1中,连接P1R2,R2B,由三角形中线的性质得S△AP1R1=S△P1R1R2,S△P1R2P2=S△P2R2B,再由R1,R2为AC的三等分点,得S△BCR2=S△ABR2,根据图形的面积关系,得S△ABC与S四边形P1P2R2R1的数量关系,证明结论;问题2,图2中,连接AQ1,Q1P2,P2C,由三角形的中线性质,得S△AQ1P1=S△P1Q1P2,S△P2Q1Q2=S△P2Q2C,由Q1,P2为CD,AB的三等分点可知,S△ADQ1=S△AQ1C,S△BCP2=S△AP2C,得出S△ADQ1+S△BCP2与S四边形AQ1CP2的关系,再根据图形的面积关系,得S四边形ABCD与S四边形P1Q1Q2P2的等量关系;问题3,图3中,依次设四边形的面积为S1,S2,S3,S4,S5,由问题2的结论可推出2S2=S1+S3,2S3=S2+S4,2S4=S3+S5,三式相加,得S2+S4=S1+S5,利用换元法求S1+S2+S3+S4+S5与S3的数量关系,已知S四边形ABCD=1,可求S四边形P2Q2Q3P3;问题4,图4中,由问题2的结论可知,2S2=S1+S3,2S3=S2+S4,两式相加得S1,S2,S3,S4的等量关系.解答:解:问题1,证明:如图1,连接P1R2,R2B,在△AP1R2中,∵P1R为中线,∴S△AP1R1=S△P1R1R2,同理S△P1R2P2=S△P2R2B,∴S△P1R1R2+S△P1R2P2=S△ABR2=S△四边形P1P2R2R1,由R1,R2为AC的三等分点可知,S△BCR2=S△ABR2,∴S△ABC=S△BCR2+S△ABR2=S四边形P1P2R2R1+2S四边形P1P2R2R1=3S四边形P1P2R2R1,∴S四边形P1P2R2R1=S△ABC;问题2,S四边形ABCD=3S四边形P1Q1Q2P2.理由:如图2,连接AQ1,Q1P2,P2C,在△AQ1P2中,∵Q1P1为中线,∴S△AQ1P1=S△P1Q1P2,同理S△P2Q1Q2=S△P2Q2C,∴S△P1Q1P2+S△P2Q1Q2=S四边形AQ1CP2=S四边形P1Q1Q2P2,由Q1,P2为CD,AB的三等分点可知,S△ADQ1=S△AQ1C,S△BCP2=S△AP2C,∴S△ADQ1+S△BCP2=(S△AQ1C+S△AP2C)=S四边形AQ1CP2,∴S四边形ABCD=S△ADC+S△ABC=S四边形AQ1CP2+S△ADQ1+S△BCP2=3S四边形P1Q1Q2P2,即S四边形ABCD=3S四边形P1Q1Q2P2;问题3,解:如图3,由问题2的结论可知,3S2=S1+S2+S3,即2S2=S1+S3,同理得2S3=S2+S4,2S4=S3+S5,三式相加得,S2+S4=S1+S5,∴S1+S2+S3+S4+S5=2(S2+S4)+S3=2×2S3+S3=5S3,即S四边形P2Q2Q3P3=S四边形ABCD=;问题4,如图4,关系式为:S2+S3=S1+S4.点评:本题考查了三角形面积问题.关键是利用三角形的中线把三角形分为面积相等的两个三角形的性质进行推理.2.(2011某某某某,28,11分)【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为y =2(x +a x )(x >0). 【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y =x +1x(x >0)的图象和性质. ①填写下表,画出函数的图象; x … 14 13 121 2 3 4 … y … …②观察图象,写出该函数两条不同类型的性质;③在求二次函数y =ax 2+Bx +c (a ≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y =x +1x (x >0)的最小值. 【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.考点:反比例函数的性质;完全平方公式;配方法的应用;一次函数的性质;二次函数的最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年100份全国中考数学真题汇编:第41章方案设计第41章 方案设计三 解答题1. ( 2011重庆江津, 26,12分) 在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD 是矩形,分别以AB 、BC 、CD 、DA 边为直径向外作半圆,若整个广场的周长为628米,高矩形的边长AB=y 米,BC=x 米.(注:取π=3.14)(1)试用含x 的代数式表示y;(2)现计划在矩形ABCD 区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元; ①设该工程的总造价为W 元,求W 关于x 的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由?③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64·82万元,但要求矩形的边BC 的长不超过AB 长的三分之二,且建设广场恰好用完所有资金,问:能还完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由·【答案】(1) 由题意得 πy+πx=6·28∵π=3.14 ∴3.14y+3.14x=628. ∴x+y=200.则 y=200-x; (2) ①w=428xy+400π(2y )2+400π(2x )2ABC D 第26题=428x(200-x)+400×3.14×4)200(2x +400×3.14×42x=200x 2-40000x+12560000;②仅靠政府投入的1千万不能完成该工程的建设任务,其理由如下: 由①知 w=200(x-100)2+1.056×107>107, 所以不能; ③由题意得 x ≤32y, 即x ≤32(200-x) 解之得 x ≤80 ∴0≤x ≤80.又根据题意得 w=200(x-100)2+1.056×107=107+6.482×105整理得 (x-100)2=441 解之得 x 1=79, x 2=121 (不合题意舍去) ∴只能取 x=79, 则y=200-79=121所以设计的方案是: AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆·2. (2011重庆綦江,25,10分)为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元? (2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)【答案】:25. 解:(1)设一台甲型设备的价格为x 万元,由题54%7523=⨯+x x ,解得x =12,∵ 12×75%=9 ,∴ 一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中,购买甲型设备a 台,由题意有⎩⎨⎧≥-+≤-+1300)8(16020084)8(912a a a a ,解得:421≤≤a 由题意a 为正整数,∴a =1,2,3,4 ∴所有购买方案有四种,分别为 方案一:甲型1台,乙型7台; 方案二:甲型2台,乙型6台 方案三:甲型3台,乙型5台; 方案四:甲型4台,乙型4台 (3)设二期工程10年用于治理污水的总费用为W 万元)8(105.1101)8(912a a a a w -⨯+⨯+-+=化简得: =w -2a +192,∵W 随a 的增大而减少 ∴当a =4时, W 最小(逐一验算也可) ∴按方案四甲型购买4台,乙型购买4台的总费用最少.3. (2011四川凉山州,24,9分)我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。
现有A 型、B 型、C 型三种汽车可供选择。
已知每种型号汽车可同时装运2种土特产,且每辆车必须装满。
根据下表信息,解答问题。
苦荞茶青花椒野生蘑菇每 辆[(吨)[来源:学源:]2[来源:学科网ZXXK]2[来源:学科网][来源:Zxxk.Com]来源:学科网]汽[来源:学科网][来源:学§科§网][来源:Z x x k. C o m ]车科网] B型 4 2 C型 1 6运[来源:学|科|网] 载 量(1) 设A 型汽车安排x 辆,B 型汽车安排y 辆,求y 与x 之间的函数关系式。
(2) 如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案。
(3) 为节约运费,应采用(2)中哪种方案?并求出最少运费。
【答案】 解:⑴ 法① 根据题意得车型 A B C每辆车运费(元)150018002000()46721120x y x y ++--= 化简得:327y x =-+ 法② 根据题意得()()242212621120x y x x y y x y ++--++--= 化简得:327y x =-+⑵由44214x y x y ≥⎧⎪≥⎨⎪--≥⎩得()43274213274x x x x ⎧≥⎪-+≥⎨⎪---+≥⎩解得 2573x ≤≤ 。
∵x 为正整数,∴5,6,7x = 故车辆安排有三种方案,即:方案一:A 型车5辆,B 型车12辆,C 型车4辆方案二:A 型车6辆,B 型车9辆,C 型车6辆方案三:A 型车7辆,B 型车6辆,C 型车8辆⑶设总运费为W 元,则()()15001800327200021327W x x x x =+-++-+- 1003660x =+ ∵W 随x 的增大而增大,且5,6,7x = ∴当5x =时,37100W =最小元答:为节约运费,应采用 ⑵中方案一,最少运费为37100元。
4.(2011湖北黄冈,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米. ⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 A x 14 B 14 总计151328⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x 15-x x -1⑵y=50x+(14-x )30+60(15-x )+(x -1)45=5x+1275 解不等式1≤x ≤14 所以x=1时y 取得最小值 y min =12805. (2011湖北黄石,23,8分)今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:月用水量(吨) 单价(元/吨)不大于10吨部分 1.5大于10吨不大于m 吨部分 (20≤m≤50) 2 大于m 吨部分3调入地水量/万调出地为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该户六月份用水量为x吨,缴纳水费y元,试列出y关于x的函数式;(3)若该用户六月份用水量为40吨,缴纳消费y元的取值范围为70≤y≤90,试求m的取值范围。
各位同学,请你也认真做一做,相信聪明的你一定会顺利完成。
【答案】解:(1)10×1.5+(18-10)×2=31(2)①当x≤10时y=1.5x②当10< x≤m时y=10×1.5+(x-10)×2=2x-5③当x>m时y=10×1.5+(m-10)×2+(x-m)×3(3) ①当40吨恰好是第一档与第二档时2×40-5=75符合题意②当40吨恰好是第一档、第二档与第三档时70≤10×1.5+(m-10)×2+(40-m)×3≤9070≤-m+115≤9025 ≤m≤456. (2011内蒙古乌兰察布,23,10分),某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.(l)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?【答案】⑴设搭建A种园艺造型x个,则搭建B种园艺造型(50-x)个.根据题意得85(50)34949(50)295x xx x+-≤⎧⎨+-≤⎩解得3133x≤≤,所以共有三种方案①A :31 B:19②A :32 B:18③A :33 B:17⑵由于搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,所以搭配同样多的园艺造型A种比B种成本低,则应该搭配A种33个,B种17个.成本:33×200+17×360=12720(元)说明:也可列出成本和搭配A种造型数量x之间的函数关系,用函数的性质求解;或直接算出三种方案的成本进行比较也可.7. (2011重庆市潼南,25,10分)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:(单位:亩)说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【答案】解:(1)设A、B两类蔬菜每亩平均收入分别是x元,y元.由题意得:3125002316500x yx y+=⎧⎨+=⎩----------------3分解得:30003500 xy=⎧⎨=⎩答:A、B两类蔬菜每亩平均收入分别是3000元,3500元.----5分(2)设用来种植A类蔬菜的面积a亩,则用来种植B类蔬菜的面积为(20-a)亩.由题意得:30003500(20)6300020a aa a+-≥⎧⎨-⎩>----------7分解得:10<a≤14.∵a取整数为:11、12、13、14. ----------------------------8分∴租地方案为:---------------------------10分8. (2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米. ⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲乙 总计 A x14 B14 总计15 13 28 ⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x 15-x x -1⑵y=50x+(14-x )30+60(15-x )+(x -1)45=5x+1275解不等式1≤x ≤14所以x=1时y 取得最小值y min =12809. (2011贵州安顺,24,10分)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T 恤或一本影集作为纪念品.已知每件T 恤比每本影集贵9元,用200元恰好可以买到2件T 恤和5本影集.⑴求每件T 恤和每本影集的价格分别为多少元?⑵有几种购买T 恤和影集的方案?【答案】(1)设T 恤和影集的价格分别为x 元和y 元.则⎩⎨⎧=+=-200529y x y x解得⎩⎨⎧==2635y x 答:T 恤和影集的价格分别为35元和26元.调入地 水量/万调出地(2)设购买T 恤t 件,则购买影集 (50-t ) 本,则()15305026351500≤-+≤t t 解得92309200≤≤t ,∵t 为正整数,∴t = 23,24,25, 即有三种方案.第一种方案:购T 恤23件,影集27本;第二种方案:购T 恤24件,影集26本;第三种方案:购T 恤25件,影集25本.10. (2011山东枣庄,22,8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得⎩⎨⎧≤-+≤-+16203060501900303080)()(x x x x ……………………………………2分 解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个. …5分(2)方案一的费用是:860×18+570×12=22320(元);方案二的费用是:860×19+570×11=22610(元);方案三的费用是:860×20+570×10=22900(元).故方案一费用最低,最低费用是22320元.……………………………………8分11. (2011四川广安,27,9分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售。