新人教版有理数复习

合集下载

人教版七年级上册期末复习第一章有理数:有理数及其运算学案

人教版七年级上册期末复习第一章有理数:有理数及其运算学案
3.下列说法中,正确的是().
A.任何数都不等于它的相反数
B.互为相反数的两个数的立方相等
C.如果a大于b,那么a的倒数一定大于b的倒数
D.a与b两数和的平方一定是非负数
4.如果 ,则 的取值范围是()
A. B. C. D.
5.若 ,则 的值为()
A. B. C. D.
6.四个互不相等的整数的积为4,那么这四个数的和是()
则1+3+5+7+9+ … +13=;
1+3+5+7+9+ … +(2n-1)+(2n+1)=;
41+43+45+ …… +77+79=.
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。5.古代埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数.我们注意到,某些真分数恰好可以写成两个埃及分数的和,例如: = + .

人教版七年级上册数学《有理数》培优说课教学复习课件

人教版七年级上册数学《有理数》培优说课教学复习课件
我们以前学过的数,
像1,2,3……称为正整数;
2 4 1
, , ……称为正分数.
3 5 4
那么在以上这些数的前面添上“-”号后,还有小数呢?
-1,-2,-3……称为负整数;
2 4 1
, , ……称为负Байду номын сангаас数.
3 5 4
特别提示:零既不是正数,也不是负数!
分类的时候
别丢了0哦
正整数、零和负整数统称整数.
第一章 有理数
有理数
课件
学习目标
1.掌握有理数的概念.(重点)
2.会对有理数按一定的标准进行分类,培养分类能力.(难点)
引入
下表是某日《信息早报》上刊登的几支股票的涨跌情况.
代码
股票名称
昨收盘
今收盘
涨跌(%)
600828
A集团
8.83
9.71
+9.97
600829
B股份
10.43
10.65
+2.11
(2)自然数一定是整数.( √ )
(3)0一定是正整数.( × )
(4)整数一定是自然数.( × )
课堂检测
4.填空:
负整数和0
(1)有理数中,是整数而不是正数的是___________;
负整数
是负数而不是分数的是__________.
整数
正数
有理数
(2)零是_________,还是______,但不是_____,也不
链接中考
1.下列四个数中,是正整数的是( D )
A.-1
B.0
1
C.
2
D.1
2. 四个数-3, 0, 1, 2,其中负数是( A )
A. -3

人教版七年级数学上册第一章《有理数》复习PPT课件

人教版七年级数学上册第一章《有理数》复习PPT课件

2/ 3 化简(1)-|-2/3|=___ ;
1/
由绝对值求数
3. 若|a|=3,则a=____ -1 ±3 ;|a+1|=0,则a=____ 若|a+1|=3,则a=____ 2,-4
1 4、已知a>0,ab<0,化简|a-b+4|-|b-a-3|=_____ 。
5、若
a a
> ,若 =1,则a____0
×
×
考点二:有理数的分类
一、按整数、分数分类:
整数
正整数 0 负整数 正分数 负分数
二、按正数、负数分类:
正有理数
正整数
正分数
有 理 数
有 理 数
0 负有理数
分数
负整数 负分数
1、0和正数 叫非负数 2、0和负数 叫非正数
3、0和负整数 叫非正整数
4、0和正整数叫非负整数 也叫自然数
分数 。 5、有限小数和无限循环小数属于_____
下列各式中用了哪条运算律?如何用字母表示? 1、(-4) × 8=8 ×(-4) ab=ba 乘法交换律: 2、[(-8)+5]+(-4)=(-8)+[5+(-4)] 加法结合律:( a+b)+c=a+(b+c) 2 1 2 1 3、 (6) [ ( )] (6) (6) ( ) 3 2 3 2 分配律: a(b+c)=ab+bc 4、[29×(-5/6)] ×(-12)=29×[(-5/6) ×(-12)] 乘法结合律:(ab)c=a(bc) 5、(-8)+(-9)=(-9)+(-8) 加法交换律: a+b=b+a
乘法三结合 1、积为整数结合 解 题 技 能

第2章有理数的运算小结与复习同步练习2024-2025学年人教版七年级数学上册

第2章有理数的运算小结与复习同步练习2024-2025学年人教版七年级数学上册

有理数的运算小结与复习知识体系构建考点讲练考点一 有理数的加减例1 计算下列各题:(1) |9|48)12(3--+---- (2) 34.06501.1613265.2+++--解:原式= 解:原式=针对训练1.计算下列各题:(1) )9(|4|)10()8(---+-++ (2) 5131537523115-+--+-考点二 有理数的乘除 针对训练例2 计算:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⨯-÷73132245)875.0(2 2.计算:43141254721)5(÷⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-÷- 解:原式=考点三 有理数的混合运算例3 计算下列各题:(1) 22)2(8212-÷+⎪⎭⎫ ⎝⎛-⨯- (2) 695.345.163611876597⨯+⨯-÷⎪⎭⎫ ⎝⎛+- 解:原式= 解:原式=针对训练3.计算下列各题:(1)163|3|)1(4102÷-⨯--- (2))60(65524131-⨯⎪⎭⎫ ⎝⎛-+-考点四 非负数的性质及应用例4 已知(m -3)2+|n -1|=0,求m 2+n 2的值.针对训练4.已知|a +3|+|b -2|=0,求ab 的值.考点五 科学记数法与近似数例5 小明拿出6张写着不同数值的卡片,请你按要求抽出卡片,完成下列问题:(1)从中取出非负数的卡片,从大到小排列,组成一个较大数,用科学记数法表示这个数: ;(2)从中取出正数的卡片,组成的一个数刚好是小明的身高(1.63米),将数1.63精确到0.1的结果是 1.6 . 针对训练5.新时代十年来,我国建成世界上规模最大的社会保障体系. 其中基本医疗保险的参保人数由5.4亿增加到13.6亿,参保率稳定在95%. 将数据13.6亿用科学记数法表示为1.36×10n ”的形式,则n 的值是 .6.近似数1.20是由数a 四舍五入得到的,那么数a 的取值范围是( )A.1.15<a <1.25B.1.15≤a <1.25C.1.195<a <1.205D.1.195≤a <1.205能力提升1.数轴上表示数-3的点与原点的距离可记作|-3-0|=|-3|=3;表示数-3的点与表示数2的点的距离可记作|-3-2|=|-5|=5.也就是说,在数轴上,如果A 点表示的数记为a ,B 点表示的数记为b ,则A ,B 两点间的距离就可记作|a -b |.回答下列问题:(1)数轴上表示3和7的两点之间的距离是 ,数轴上表示2和-5的两点之间的距离是 ;(2)数轴上表示x 与-2的两点A 和B 之间的距离为5,那x = ;(3)①找出所有使得|x +1|+|x -1|=2的整数x = ;②若|x +1|+|x -1|=4,则x = ;③|x +5|+|x -8|的最小值为 .2.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7-6|=7-6;|6-7|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:① |7+21|= ; ② |8.021|+-= ;③ |328.22.3|--= ; (2)用简便方法计算:)3312(|2014||20123319|+---++- 解:原式=(3)计算:2024120251415131412131-+⋯+-+-+- 解:原式=3.根据以下素材,探索完成任务:问题解决问题1 若刘老师通过电话订购方式购买这46杯奶茶,则需花费多少元?解:问题2 若刘老师通过某外卖APP 分六次下单这46杯奶茶,并将红包全部使用,则需花费多少元? 解:问题3 请帮助刘老师设计一个奶茶订购方案,使得订购总费用不超过625元.①确定订购方式与数量:电话订购 杯,送 杯;外卖APP 订购 杯.②计算订购方案的总费用.解:乘法运算巧“结、提、分、拆”练习一、结1、互为倒数的两数结合例1、-3×(-57)×(-31)×74 解:原式==2.能互相约分的两数结合例2、-23×(-78)×415×52×(-89)×1511 解:原式===2、能凑成整数、十、百等两数结合例3、-125×(-25)×(-5)×2×(-4)×(-8) 解:原式===提 逆用乘法的分配律把公因数提出例4、3.59×(-74)+2.41×(-74)-6×(-74) 解:原式==== 分 (1)一个和或差与一个数相乘,且和或差中的分母是这个数的约数。

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。

2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。

3、数轴的定义:规定了________、________和________的________叫数轴。

4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。

5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。

6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。

7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。

8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。

9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。

10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。

③一个数与0相加,________。

11、有理数减法法则:减去一个数,等于____________。

12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。

13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。

人教版数学七年级上册(新)单元复习课件:第一章《有理数》

人教版数学七年级上册(新)单元复习课件:第一章《有理数》
人教版 数学 七年级 上册
第一章 有理数 小结复习
正整数 0
负整数 正分数 负分数
用点表示有理数 (点与数的对
应) 。
整数
有理数 数轴
分数
有理数在数轴上的 位置关系得出绝对 值、相反数及比较 有理数的大小。
绝对值
相反数
大小比较
数轴的建立把形和数结合起来,利用数轴能直观地理解有理数 的有关概念,比较有理数的大小,理解绝对值、相反数和直观 地研究有理数的运算。
-4
4
-2 2
-4 -3 –2 –1 0 1 2 3 4
5、绝对值: ①数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 叫做a的绝对值。 a的绝对值就是数a所表示点到原点的距离。表示成︱a︱。 (︱a︱≥0,一个数的绝对值是非负数)
a
a
a ( a 0)
-3 –2 –1 0
②绝对值的性质: | a |
正数的绝对值是它本身;
1 0
23
(a 0) a (a 0)
4
负数的绝对值是它的相反数;
0的绝对值是0. ③互为相反数的两个数的绝对值相等。
即︱a︱=︱-a︱且︱a-b︱=︱b-a︱ ④利用绝对值比较大小:两个负数,绝对值大的反而小。其步骤
如下:第一步分别求出两个负数的绝对值,第二步比较这两个绝 对值的大小,第三步根据性质比较。
有理数的意义具正有数相和反负意数义的量
有理数的分类按按性定质义分分类类((整正数数、、0分、数负的数关的系关) 系)
数轴
相反数
有理数有理数的概念倒绝对数值
近似数与有效数字
科学记数法
有理数大小的较
有理数的运算有基理本数运的算运及算法顺则序

人教版七年级数学上册第一章 《有理数》总复习教案

人教版七年级数学上册第一章 《有理数》总复习教案

人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。

第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。

二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。

本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。

三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。

四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。

其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。

在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。

另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。

一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。

2.使学生提高区分概念的能力,正确运用概念解决问题。

3、能正确比较两个有理数的大小。

二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。

三、教学难点:对绝对值概念的理解与应用。

四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。

)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。

人教版初中数学有理数知识点总复习附答案解析

人教版初中数学有理数知识点总复习附答案解析

人教版初中数学有理数知识点总复习附答案解析一、选择题1.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.2.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.3.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】 试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.4.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.5.下列四个数中,是正整数的是( )A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C .【点睛】考查正整数概念,解题主要把握既是正数还是整数两个特点.6.16的绝对值是( ) A .﹣6B .6C .﹣16D .16【答案】D【解析】【分析】 利用绝对值的定义解答即可.【详解】16的绝对值是16, 故选D .【点睛】本题考查了绝对值得定义,理解定义是解题的关键.7.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.8.已知235280x y x y +--+=则xy 的值是( )96【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵235280x y x y +-+-+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |.由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.下列各数中,最大的数是( )24【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,故选B.【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.11.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【答案】C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.12.若(x+y﹣1)2+|x﹣y+5|=0,则x=()A.﹣2 B.2 C.1 D.﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x即可.【详解】解:∵(x+y﹣1)2+|x﹣y+5|=0,∴1050 x yx y+-=⎧⎨-+=⎩,解得:23x y =-⎧⎨=⎩, 故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.13.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤【答案】D【解析】【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤.故选D .【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键.14.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n ﹣2)2互为相反数,∴|m+3|+(n ﹣2)2=0,∴m+3=0,n ﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.16.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.17.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a=-+=--+=-,545253a a=-+=--+=-,656363a a=-+=--+=-,767374a a=-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a=-,故选:D.【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.18.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.。

新人教版七年级上册第1章:有理数复习与习题

新人教版七年级上册第1章:有理数复习与习题

第一章 有理数及其运算总复习一、【知识点归纳】(1)负数的应用,有理数的分类1、负数的意义:引入负数是我们实际的需要,我们通常用正、负来表示一对相反意义的量。

Eg1. 上升1m 表示为+1m ,则下降2m 表示为 。

生活中有很多这样的相反的量:前进-后退,向东-向西,等等。

Eg2:“某种机器零件规定其直径误差不得超过±0.8mm ”这是什么意思?2、 和 统称为有理数。

按数的符号,我们将有理数分为: 有理数 ⎪⎩⎪⎨⎧ 按有理数定义,我们将有理数分为: 有理数 ⎪⎩⎪⎨⎧ 注意:有限小数和无限循环小数都属于有理数。

例1.将下列各数填到相应的括号内:-7.2,34,-9,1.4,0,3.14,π,1245,-2.5,20% 整数集合:正分数集合:非负数集合: 分数集合:例2. a 一定是正数,-a 一定是负数吗?回答并举例:(2)数轴1、数轴的三要素: 、 、 。

在数轴上,右边的数总比左边的数大。

最小的正整数是 ,最大的负整数是 。

2、△相反数:两个数只有符号不同,我们称一个是另一个的相反数。

Eg 。

2和-2,a 和-a 。

本质:只有符号不同,其它不变。

特别的:0的相反数是 。

※ x +y 的相反数是( ),a -b 的相反数是( )。

牢记:正数的相反数是 ,负数的相反数是 ,相反数等于它本身的数是 。

3、相反数的代数意义:a>0时,-a 0; a<0时,-a 0; a =0时,-a 0.(a 可以代表任意有理数)相反数的几何意义: 表示互为相反数的两个点位于原点的 ,且到原点的 相等。

4、会进行符号的化简:例:-(-2)= ;+[-(+2)]= ;-(x +y )= ;特别提醒:相反数的学习对绝对值的化简至关重要。

一定要把握住相反数的本质。

△※(3)绝对值1、概念:在数轴上,一个数所对应的点到原点的 叫做该数的绝对值。

记作:△任何数的绝对值一定 0,即:|a| 0.0 -222、代数意义:( a>0) 正数的绝对值等于|a|= (a=0) 0的绝对值是(a<0) 负数的绝对值等于例:绝对值等于本身的数是;绝对值等于它的相反数的数是;3、几何意义:△绝对值等于正数的数有两个,它们。

第一章有理数(单元复习课件,新教材)-【大单元教学】七年级数学上册同步备课系列(人教版2024)

第一章有理数(单元复习课件,新教材)-【大单元教学】七年级数学上册同步备课系列(人教版2024)

练3
A. +(-8) 和 -(+8)
B. -(-8) 与+(+8)
C. -(-8) 与-(+8)
D. -[-(-8)] 与+(-8)
5 的相反数是____,a
的相反数是 -a .
-5
练4
若 3x + 1 是 -10 的相反数,求 x 的值.
解:由相反数的意义,得
3x + 1 = 10,
3x = 9,
则a−b一定( B )
A.大于零
B.小于零
C.等于零
D.无法确定
D.宁夏
练3
下列各数,比−1小的数是( A)
A.−2
练4
B.0
C.1
D.2
比较大于(填写“>”或“<”号)
(1)−3.1_____3
< , (2)−1.2_____0
<
(3)−
3
4
>
5
− ,(4) −10 > −13 .
6
① 0 是整数;√
③ 4.2 不是正数; ×
1
② 2 是负分数;√
3
④ 自然数一定是正数;×
⑤ 负分数一定是负有理数. √
其中正确的有
( C)
A.1 个
B.2 个 C.3 个
D.4 个
练2
把下列各数分别填入相应的集合:
22
7
+26,0,−8,π,−4.8,−17,
+26,0
自然数集:{
正有理数集:{
整数和分数统称有理数.
2. 有理数的分类
(1) 按定义分类
整数
正整数

负整数
有理数
正分数

人教版七年级数学上册第一章有理数总复习课件

人教版七年级数学上册第一章有理数总复习课件
2. 一个近似数,从左边第一个不是0 的数字起到,到精确到的数位止,所 有的数字,都叫做这个数的有效数字。
一只苍蝇的腹内细菌多达2800万个, 你能用科学记数法表示吗?
2800万个=2.8×103(万个)
或 2800万个=28 000 000个=2.8×107个
1.03×106有几位整数?(1有073位0 整00数0)) 3.0×10n(n是正整数)有几位整数? (n+1位整数)
非负整数集有
• [基础练习]
• 1☆把下列各数填在相应额大括号内:
• 1,-0.1,-789,25,0,-20,-3.14,-590,6/7
• ·正整数集{
…}; ·正有理数集{ …};
• ·负有理数集{
…};·负整数集{
…};
• ·自然数集{
…}; ·正分数集{
…}
• ·负分数集{
…}
• 2☆ 某种食用油的价格随着市场经济的变化涨落,规定
• 4、蜗牛在井里距井口1米处它每天白天向 上爬30cm,晚上又下滑20cm,则蜗牛爬出井口 需要的天数为 ( )
3、| 7 |=(7 ),|- 7 |=7( ) 绝对值是7的数是(±7)
4、若|3-|+|4- |=1_______
5、已知|x|=3,|y|=2,且x<y,则x+-y1=或__-_5_ ∵|x|=3,|y|=2 ∴x=±3,y=±2 ∵ x<y ∴x不能为3 ∴x=-3,y=2 或 x=-3,y=-2 ∴x+y=-3+2=-1 或 x+y=-3-2=-5
判断:
①带“-”号的数都是负数
②-a一定是负数
③不存在既不是正数,也不是负数的数
④0℃表示没有温度

人教版2024新版七年级数学上册课件:第二章 有理数的运算 小结与复习

人教版2024新版七年级数学上册课件:第二章 有理数的运算 小结与复习

知识回顾
➢ 有理数减法法则: 减去一个数,等于加这个数的相反数.
➢ 有理数乘法法则: 1. 两数相乘,同号得正,异号得负,且积的绝对值等于乘 数的绝对值的积. 2. 任何数与0相乘,都得0.
知识回顾
➢ 有理数除法法则: 1. 除以一个不等于0的数,等于乘这个数的倒数. 2. 两数相除,同号得正,异号得负,且商的绝对值等于被 除数的绝对值除以除数的绝对值的商. 3. 0除以任何一个不等于0的数,都得0.
64 9
.
随堂练习
7.计算:
(3)
{1+[116
−(−
34)3]
×(-2)4
}
÷
(−
1 16

3 4

12);
解:(3)原式=[1+(116
+
2674)
×16]
÷
(−Βιβλιοθήκη 1 16−12 16

186)
= (1+1+ 247) ÷ (− 2116)
=
35 4
×
(

16 21
)
=

35 4
×
16 21
= − 230.
随堂练习
1.计算.
(1)150+250 =__4_0_0_; (2)-15+(-23) =_-__3_8_; (3)-5-65=_-__7_0_; (4)-26-(-15) =__-__1_1_; (5)(-6)×(-16) =___9_6__;
(6)(- 13)×27=__-__9___;(7)8÷(-16) =__-__12___;
知识回顾
➢ 有理数的混合运算顺序: 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行; 3.如有括号,先做括号内的运算,按小括号、中括号、大括号 依次进行.

第一章有理数复习(一)课件人教版数学七年级上册

第一章有理数复习(一)课件人教版数学七年级上册

… };
非负整数集合 {
… };
有理数集合 {
… }.
初中数学
二、例题精讲
例1 把下列各数填在相应的大括号内:
27,
1, 5
8.5,
14,
23,

0.5,
4
0, 3.14,
24
.
考查:有理数的有理数 分数
负整数 正分数 负分数
二、例题精讲
例1 把下列各数填在相应的大括号内:
例2

2

2; ②
2

1 2
;③
2

1;④ 2
2与
1; 2
以上各组数中,互为倒数的是 __③____④_____;
互为相反数的是__①________;
绝对值相同的是__________.
相反数:只有符号不同的两个数叫做互为相反数. 0的相反数是0. a的相反数为-a.
初中数学
二、例题精讲
例2

a a 0
a
a 0 a 0 a 0
二、例题精讲 例2 小结:
①一个数的倒数与原数同号; ②互为相反数的两个数绝对值一定相同; ③如果两个数的绝对值相同,
那么这两个数相等或互为相反数.
初中数学
二、例题精讲
例3 (1)比较大小(用“ > ”、“ < ”或“ = ”连接).
3 ___>____ 4
… };
负数集合
{
1
,
14,
2
3
,

0.5,
3.14

};
5
4
初中数学
二、例题精讲
例1 把下列各数填在相应的大括号内:

【课件】有理数的加、减、乘法运算(复习+提升)课件2024-2025学年人教版数学七年级上册

【课件】有理数的加、减、乘法运算(复习+提升)课件2024-2025学年人教版数学七年级上册
3.计算
(-12)×
3

4
1
1
-15×(-1 )×(+ ).
5
3


解:原式=-9-(-15× × )


=-9-(-6)
=-3.
练习3
4.计算:
2
3
2
7
1
3
5
7
(-13) × -0.34 × + ×(-13) - ×0.34
2
3
1
3
2
7
5
7
解:原式= -13 × + ×(-13) - ( 0.34× + ×0.34 )
人教版 七年级数学上
2.2
有理数的加、减、乘法运算
(复习+提升)
知识回顾
1.有理数加法法则:
(1)同号两数相加,和取相同的符号,且和的绝对值等于
加数的绝对值的和;
(2)绝对值不相等的异号两数相加,和取绝对值较大的加
数的符号,且和的绝对值等于加数的绝对值中较大者与较小者
的差.互为相反数的两个数相加得0;
12 6
24
(3) 999 ×(-5).
7 25
5
解:(2)(-12-6+1)×(-36)
7
5
=(- )×(-36)- ×(-36)+1×(-36)
12
6
=21+30-36
=15
达标测评
1
4.计算:(1) (-4)×(-72)×(-0.25)×(- )
36
7 5
(2)(- - +1)×(-36);
2
2
2
3
2
3
1
1
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★ ★选择题: (1)在数轴上,原点及原点左边所表示的数( D ) A整数 B负数 C非负数 D非正数 (2)下列语句中正确的是( D ) A数轴上的点只能表示整数 B数轴上的点只能表示分数 C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来 (3)在数轴上点A表示-4,如果把原点O向负方向移 动1个单位,那么在新数轴上点A表示的数是(C ) A.-5, B.-4 C.-3 D.-2
12,-3,,0 8 解:整数有:
2 2 1 1 分数有: -3.14, - , -(- ), ,5 9 2 4
非负整数集有 2 1 12,0,︱-8︱ 负分数有: -3.14,- ,5 4 2 1 非负数有: 12,0,-(- ),|-8|, 9 2
正整数有: 12,|-8|
• • • • • • • •
=8+6-4 =10
丰收园
1、计算:-1.2+3-4-0.8= -3 。
2、某运动员在东西走向的公路上练习跑步,跑 步情况记录如下:(向东为正,单位:米) 1000,-1200,1100,-800,1400 该运动员共跑的路程为( A.1500米 D.3700米
B
) C.4500米
B.5500米
丰收园
3.数 轴
规定了原点、正方向和单位长度的直线.
-3 –2 –1
0
1
2
3
4
1)在数轴上表示的两个数, 右边的数总比左边的数大; 2)正数都大于0,负数都小于0; 正数大于一切负数; 3)所有有理数都可以用数轴上 的点表示。
[练习]
-2,-1 ; ★ ①比-3大的负整数是_______ ②已知m是 -3,-2,-1,0,1,2 整数且-4<m<3,则m为_______________ 。 -1 ,最小的正整 ③有理数中,最大的负整数是__ 1 。最大的非正数是__ 0 。 ④与原点的距 数是__ 2个,他们分别表示的有 离为三个单位的点有__ -3 和__ +3 。 理数是__
12 2、若|a-3|+ |3a-4b|=0,则-2a+8b=____
3、| 7 |=( 7 ),|- 7 |=( 7 )
绝对值是7的数是( ±7 )
4、若|3|+|4|=_______ 1
5、已知|x|=3,|y|=2,且x<y,则x+y=____ -1或-5 解:∵|x|=3,|y|=2 ∴x=±3,y=±2 ∵ x<y ∴x不能为3
5、用-a表示的数一定是(D)
A .负数 B. 正数 C .正数或负数 D.正数或负数或0 6、一个数的相反数是最小的正整数,那么这个数 是(A) A .–1 B. 1 C .±1 D. 0
×) 7、①互为相反的两个数在数轴上位于原点两旁( × ) ②在一个数前面添上“-”号,它就成了一个负数( ③ 只要符号不同,这两个数就是相反数(×)
3.有理数的运算律
a+b=b+a 2)加法结合律 (a+b)+c=a+(b+c)
3)乘法交换律
1)加法交换律
ab=ba
(ab)c=a(bc) a(b+c)=ab+ac
4)乘法结合律 5)分 配 律
加法四结合
1.凑整结合法
2.同号结合法
3.两个相反数结合法
解 题 技 能
4.同分母或易通分的分数结合法
(-2)×(-3)×(-4) =-24 (-2)×3×(-4) =24
小试牛刀
1、计算: 42+(-27)+27+58
解: 原式=〔(-27)+27〕+(58 +42)
=0+100 =100
小试牛刀
1 1 1 2、计算: 24 3 4 6 1 1 1 解: 原式= 24 24 24 3 4 6
① 几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正.
② 几个数相乘,有一个因数为0, 积就为0.
有理数乘法法则应用举例:6 2×(-3)= -6
②异号相乘
(-2)×3 = -6
③数与0相乘 a为任何有理数,则 a×0= 0 ④连乘
重温这些知识,你会觉得亲切!
初一
祝同学们 取得好成绩!
一、有理数的基本概念
1.负数 2.有理数 3.数轴 4.互为相反数 5.互为倒数 6.有理数的绝对值 7.有理数大小的比较
二、有理数的运算
加、减、乘运算
一、有理数的基本概念
1.负数: 在正数前面加“—”的数;
0既不是正数,也不是负数。 判断: 1)a一定是正数; × 2)-a一定是负数; × 3)-(-a)一定大于0;× 4)0表示没有。 ×
4.相反数
只有符号不同的两个数, 其中一个是另一个的相反数。 1)数a的相反数是-a
(a是任意一个有理数);
2)0的相反数是0. 3)若a、b互为相反数,则a+b=0.
-4
-2 2 4
-4 -3 –2 –1
0
1
2
3
4
• [基础练习] • 1☆-5的相反数是 5 ;-(-8)的相反数是 -8 ; 6 - [+(-6)]=________ ;0的相反数是 0 ; a的相反数 8 是 -a ; 1 的相反数的倒数是______________ ; 8 • 2☆若a和b是互为相反数,则a+b=(C) A. –2a B .2b C. 0 D. 任意有理数 13 ; • 3★(1)如果a=-13,那么-a=______ 5.4 ; (2)如果-a=-5.4,那么a=______ (3)如果-x=-6,那么x=______ 6 ; -9 (4)-x=9,那么x=______. • 4★★已知a、b都是有理数,且|a|=a,|b|=-b,则ab是 ( C) A.负数; B.正数; C.负数或零; D.非负数
③ 一个数同0相加,仍得这个数。
有理数加法法则应用举例:
①同号相加:
(+5)+(+3)=8
②异号相加
(-5)+(-3)=-8
5+(-3)= 2 -5+(+3)= -2 若a、b互为相反数,则a+b= 0 ③与0相加
a是任一个有理数,则a+0= a
2)有理数减法法则

减去一个数,等于加上这个数的相反数.
3 2 -3 –2 –1 0 1 4 2 3 4
1)数a的绝对值记作︱a︱; 若a>0,则︱a︱= a ; 2) 若a<0,则︱a︱= -a ; 若a =0,则︱a︱= 0 ; 3) 对任何有理数a,总有︱a︱≥0.
• [基础练习] • 1☆—2的绝对值表示它离开原点的距离是 2 个单位,记作︱-2︱ . 8 ; -|-5|= -5 • 2☆ |-8|= ; 绝对值等于4的数是__________ 。 ±4 • 3☆绝对值等于其相反数的数一定是(C) A.负数 B.正数 • C.负数或零 D.正数或零 ±7 ; x 7 , 则 • 4★ x 7 ,则x=______ ±7 ; x=_______
2 3 4 5
-6 -5 -4 -3 -2 -1
0 0 1
6
绝对值小于4的所有整数的和:
(-3)+(-2)+(-1)+1+2+3+0=
0 0
绝对值小于4的所有整数的积: (-3)×(-2)×(-1)×0 × 1×2×3=
0,±1 。 1)绝对值小于2的整数有________ 零和正数 。 2)绝对值等于它本身的数有___________
a-b=a+(-b)
例:分别求出数轴上两点间的距离: ①表示2的点与表示-7的点; ②表示-3的点与表示-1的点。 解:①2-(-7)=2+7=9
(或︱-7-2︱=︱-9︱=9)
②-1-(-3)=-1+3=2
3)有理数的乘法法则
两数相乘,同号得正,异号得负, 并把绝对值相乘; 任何数同0相乘,都得0.
(2)总重量是多少千克?
解:(1)+4.5-4+2.3-3.5+2.5=1.8
(2)50×5+1.8=251.8
丰收园
6、在下列说法中,正确的个数是( B )
⑴任何一个有理数都可以用数轴上的一个点
来表示
⑵数轴上的每一个点都表示一个有理数
⑶任何有理数的绝对值都不可能是负数
⑷每个有理数都有相反数
A、 4 B、3 C 、2 D 、1
2.有理数: 整数和分数统称有理数。
整数 有理数 分数 正有理数 有理数 正整数 零 负整数 正分数 负分数 正整数 正分数 负整数 负分数 自然数
零 负有理数
2 2 1 1 例:在 -3.14, - , 12, -3, 0,-(- ),|-8|, ,- 中, 5 9 2 4 哪些是整数、分数、正整数、负分数、非负数
[基础练习] 1☆把下列各数填在相应额大括号内: 1,-0.1,-789,25,0,-20,-3.14,-590,6/7 · 正整数集{ …}; · 正有理数集{ …}; · 负有理数集{ …};· 负整数集{ …}; · 自然数集{ …}; · 正分数集{ …} · 负分数集{ …} 2☆ 某种食用油的价格随着市场经济的变化涨落,规定 上涨记为正,则-5.8元的意义是 ;如果这种 油的原价是76元,那么现在的卖价是 。
丰收园
7、下列说法正确的是( C ) A、正数与负数统称为有理数 B、带负号的数是负数 C、正数一定大于0 D、最大的负数是-1
丰收园
8、在数轴上,原点两旁与原点等距离的 B ) 两点所表示的数的关系是( A、相等 B、互为相反数 C、互为倒数 D、不能确定 9、如果一个数的相反数比它本身大, 那么这个数为( B ) A、正数 B、负数 C、非负数 D、不等于零的有理数
相关文档
最新文档