高考复习函数测试题
高考考点完全题数学(理)考点通关练习题 第二章 函数、导数及其应用 7 word版含答案
考点测试7 函数的奇偶性与周期性一、基础小题1.函数f (x )=1x-x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称答案 C解析 f (x )=1x-x 是奇函数,所以图象关于原点对称.2.下列函数中,在其定义域内是偶函数又在(-∞,0)上单调递增的是( ) A .f (x )=x 2B .f (x )=2|x |C .f (x )=log 21|x |D .f (x )=sin x答案 C解析 f (x )=x 2和f (x )=2|x |是偶函数,但在(-∞,0)上单调递减,f (x )=sin x 为奇函数,f (x )=log 21|x |是偶函数,且在(-∞,0)上单调递增,故选C.3.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为( )A .-14B .14C .12D .-12答案 B解析 解法一:设x <0,则-x >0,所以f (-x )=x 2+x ,又函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎪⎫x +122+14,所以当x <0时,函数f (x )的最大值为14.故选B.解法二:当x >0时,f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.故选B.4.已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f x,若f (x )在上是减函数,那么f (x )在上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数答案 A解析 由题意知f (x +2)=1fx +1=f (x ),所以f (x )的周期为2,又函数f (x )是定义域为R 的偶函数,且f (x )在上是减函数,则f (x )在上是增函数,所以f (x )在上是增函数,故选A.5.已知函数f (x )=-x +log 21-x 1+x +1,则f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12的值为( ) A .2 B .-2 C .0 D .2log 213答案 A解析 由题意知,f (x )-1=-x +log 21-x 1+x ,f (-x )-1=x +log 21+x 1-x =x -log 21-x1+x=-(f (x )-1),所以f (x )-1为奇函数,则f ⎝ ⎛⎭⎪⎫12-1+f ⎝ ⎛⎭⎪⎫-12-1=0,所以f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12=2. 6.已知f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)答案 A解析 ∵f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,∴f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫21+x +a +lg⎝ ⎛⎭⎪⎫21-x +a =0,解得a =-1,即f (x )=lg 1+x 1-x ,由f (x )=lg 1+x 1-x <0,得0<1+x 1-x <1,解得-1<x <0,故选A.7.已知偶函数f (x )在区间∪∪∪∪∪下列函数中,既不是奇函数,也不是偶函数的是( )A .y =1+x 2B .y =x +1xC .y =2x+12xD .y =x +e x答案 D解析 选项A 中的函数是偶函数;选项B 中的函数是奇函数;选项C 中的函数是偶函数;只有选项D 中的函数既不是奇函数也不是偶函数.14.设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数答案 C解析 由题意可知f (-x )=-f (x ),g (-x )=g (x ),对于选项A ,f (-x )·g (-x )=-f (x )·g (x ),所以f (x )·g (x )是奇函数,故A 项错误;对于选项B ,|f (-x )|·g (-x )=|-f (x )|g (x )=|f (x )|g (x ),所以|f (x )|·g (x )是偶函数,故B 项错误;对于选项C ,f (-x )|g (-x )|=-f (x )|g (x )|,所以f (x )|g (x )|是奇函数,故C 项正确;对于选项D ,|f (-x )g (-x )|=|-f (x )g (x )|=|f (x )g (x )|,所以|f (x )g (x )|是偶函数,故D 项错误,选C.15.已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A .-2B .-1C .0D .2答案 D解析 当x >12时,由f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,可得f (x )=f (x +1),所以f (6)=f (1),而f (1)=-f (-1),f (-1)=(-1)3-1=-2,所以f (6)=f (1)=2,故选D.16.若函数f (x )=x ln (x +a +x 2)为偶函数,则a =________. 答案 1解析 由已知得f (-x )=f (x ),即-x ln (a +x 2-x )=x ln (x +a +x 2),则ln (x +a +x 2)+ln (a +x 2-x )=0,∴ln =0,得ln a =0, ∴a =1.17.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.答案 -2解析 ∵f (x )是定义在R 上的奇函数,∴f (x )=-f (-x ).又∵f (x )的周期为2,∴f (x +2)=f (x ), ∴f (x +2)=-f (-x ),即f (x +2)+f (-x )=0,令x =-1, 得f (1)+f (1)=0,∴f (1)=0.又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2, ∴f ⎝ ⎛⎭⎪⎫-52+f (1)=-2.18.设f (x )是定义在R 上且周期为2的函数,在区间下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1答案 C解析 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求.20.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的( ) A .必要不充分条件 B .充要条件C .充分不必要条件D .既不充分也不必要条件答案 A解析 f (x )在R 上为奇函数⇒f (0)=0;f (0)=0⇒/f (x )在R 上为奇函数,如f (x )=x 2,故选A.21.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2 答案 A解析 ∵f (x +1)为偶函数,f (x )是奇函数, ∴f (-x +1)=f (x +1),f (x )=-f (-x ),f (0)=0, ∴f (x +1)=f (-x +1)=-f (x -1),∴f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ),则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A.22.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f x 1-f x 2x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3) 答案 A解析 ∵对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有f x 1-f x 2x 1-x 2<0,∴f (x )在(-∞,0)上是减函数.又∵f (x )是R 上的偶函数,∴f (x )在(0,+∞)上是增函数.∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A.23.已知f (x )是奇函数,g (x )=2+f xf x,若g (2)=3,则g (-2)=________.答案 -1解析 ∵g (2)=2+f 2f 2=3,∴f (2)=1.又f (-x )=-f (x ),∴f (-2)=-1,∴g (-2)=2+f -2f -2=2-1-1=-1.24.已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (-1)=2,则f (2017)=________.答案 2解析 由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数.由f (x +4)=-f (x )+22,得f (x +4+4)=-f (x +4)+22=f (x ),∴f (x )是周期T =8的偶函数,∴f (2017)=f (1+252×8)=f (1)=f (-1)=2.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x . (1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积. 解 (1)由f (x +2)=-f (x ), 得f (x +4)=f =-f (x +2)=f (x ), ∴f (x )是以4为周期的周期函数. ∴f (π)=f (-1×4+π)=f (π-4) =-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数与f (x +2)=-f (x ), 得f =-f (x -1)=f , 即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.2.已知函数f (x ) =⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].3.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称. (1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈时,函数f (x )的解析式.解 (1)证明:由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数, 故有f (-x )=-f (x ),故f (x +2)=-f (x ). 从而f (x +4)=-f (x +2)=f (x ), 即f (x )是周期为4的周期函数.(2)由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈,f (x )=-f (-x )=--x ,故x ∈时,f (x )=--x .x ∈时,x +4∈,f (x )=f (x +4)=--x -4.从而,x ∈时,f (x )=--x -4.4.已知函数f (x )的定义域是满足x ≠0的一切实数,对定义域内的任意x 1,x 2都有f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.求证:(1)f (x )是偶函数;(2)f (x )在(0,+∞)上是增函数.证明 (1)令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.令x 1=x 2=-1,得f (1)=2f (-1),∴f (-1)=0, 令x 1=-1,x 2=x ,得f (-x )=f (-1·x )=f (-1)+f (x )=f (x ), ∴f (x )是偶函数.(2)设x 2>x 1>0,则f (x 2)-f (x 1)=f ⎝⎛⎭⎪⎫x 1·x 2x 1-f (x 1)=f (x 1)+f ⎝ ⎛⎭⎪⎫x 2x 1-f (x 1)=f ⎝ ⎛⎭⎪⎫x 2x 1. ∵x 2>x 1>0,∴x 2x 1>1,∴f ⎝ ⎛⎭⎪⎫x 2x 1>0,即f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.。
高三数学高考知识点相等函数复习题(最新整理)
A. ①④ B. ②③ C. ③④ D. ①②
4.下列哪组中的两个函数是同一函数 ( )
2
A. y x 与 y x
3
B. y 3 x 与 y x
2
2
C. y x 与 y x
D.
y
3
x
3
与y
x2
x
5.下列函数中哪个与函数 y x 相等
2
A. y x
B. y= 3 x3
2
x 的定义域不同,故不是同一函数;对于 D ,
y 3 x3 与 y x2 的
x
定义域不同,故不是同一函数,故选 B.
【方法点睛】本题通过判断几组函数是否为同一函数,主要考查函数的定义域、值域以及对
应法则,属于中档题.判断函数是否为同一函数,能综合考查学生对函数定义的理解,是单
元测试卷经常出现的题型,要解答这类问题,关键是看两个函数的三要素:定义域、值域、
都相同,三者有一个不同,两个函数就不是同一函数.
7.A
【解析】 B 选项 f x 定义域为 R , g x 定义域 x 1 ,故不是相同函数. C 选项值域
不同, D 选项定义域不同,故选 A .
8.C 【解析】分析:由题意结合函数的定义考查函数的定义域和对应关系即可求得最终结果. 详解:逐一考查所给的选项:
对于 C:
,定义域为{x|x≥0},它们定义域不相同,∴不是同一函数;
对于 D:
,定义域为 R,对于关系也相同,∴是同一函数;
故选:D.
点睛:本题通过判断函数是否为同一函数主要考查函数的定义域、值域以及对应法则,属于
中档题. 判断函数是否为同一函数,能综合考查学生对函数定义的理解,是单元测试卷经常
高考考点完全题数学(理)考点通关练习题 第二章 函数、导数及其应用 11 word版含答案
考点测试11 函数的图象一、基础小题1.已知函数f (x )=2x-2,则函数y =|f (x )|的图象可能是( )答案 B解析 函数y =|f (x )|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x,x <1,故y =|f (x )|在(-∞,1)上为减函数,在(1,+∞)上为增函数,排除A 、C 、D.2.为了得到函数y =lgx +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 答案 C 解析 y =lgx +310=lg (x +3)-1可由y =lg x 的图象向左平移3个单位长度,向下平移1个单位长度而得到.3.函数f (x )=x +|x |x的图象是( )答案 C解析 化简f (x )=⎩⎪⎨⎪⎧x +1x >0,x -1x <0,作出图象可知选C.4.已知a >0,b >0且ab =1,则函数f (x )=a x与函数g (x )=-log b x 的图象可能是( )答案 B解析 ∵ab =1,且a >0,b >0,∴a =1b,又g (x )=-log b x =-log 1ax =log a x ,所以f (x )与g (x )的底数相同,单调性相同,且两图象关于直线y =x 对称,故选B.5.已知函数f (x )=1lnx +1-x,则y =f (x )的图象大致为( )答案 B解析 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近0时,y 趋向于-∞,排除C ,选B.6.若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )答案 A解析 由函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上是奇函数,得k =2,又f (x )是减函数,得0<a <1,则g (x )=log a (x +k )=log a (x +2),定义域是(-2,+∞),且单调递减,故图象是A.7.已知函数y =f (x )(-2≤x ≤2)的图象如图所示,则函数y =f (|x |)(-2≤x ≤2)的图象是( )答案 B解析 解法一:由题意可得f (x )=⎩⎪⎨⎪⎧-12x -1,-2≤x <0,-x -12+1,0≤x ≤2,所以y =f (|x |)=⎩⎪⎨⎪⎧-x +12+1,-2≤x <0,-x -12+1,0≤x ≤2,可知选B.解法二:由函数f (x )的图象可知,函数在y 轴右侧的图象在x 轴上方,函数在y 轴左侧的图象在x 轴下方,而y =f (|x |)在x >0时的图象保持不变,因此排除C 、D ,由于y =f (|x |)是偶函数,函数y =f (|x |)在y 轴右侧的图象与在y 轴左侧的图象关于y 轴对称,故选B.8.若对任意的x ∈R ,y =1-a |x |均有意义,则函数y =log a ⎪⎪⎪⎪⎪⎪1x 的大致图象是( )答案 B解析 由题意得1-a |x |≥0,即a |x |≤1=a 0恒成立,由于|x |≥0,故0<a <1.y =log a ⎪⎪⎪⎪⎪⎪1x=-log a |x |是偶函数,且在(0,+∞)上是单调递增函数,故选B.9.函数f (x )=⎩⎪⎨⎪⎧ax +b x ≤0,log c ⎝ ⎛⎭⎪⎫x +19x >0的图象如图所示,则a +b +c =( )A .43B .73C .4D .133答案 D解析 由题图知,可将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133,选D.10.如图,虚线是四个象限的角平分线,实线是函数y =f (x )的部分图象,则f (x )可能是( )A .x sin xB .x cos xC .x 2cos x D .x 2sin x答案 A解析 由题图知f (x )是偶函数,排除B 、D.当x ≥0时,-x ≤f (x )≤x .故选A. 11.把函数f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是________.答案 y =(x -1)2+3解析 把函数f (x )=(x -2)2+2的图象向左平移1个单位,得y =2+2=(x -1)2+2,再向上平移1个单位,所得图象对应的函数解析式为y =(x -1)2+2+1=(x -1)2+3.12.已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.答案(2,8]f(x)有意义,由函数f(x)的图象知满足f(x)>0解析当f(x)>0时,函数g(x)=log2的x∈(2,8].二、高考小题13.函数y=2x2-e|x|在的图象大致为( )答案 D解析当x∈(0,2]时,y=f(x)=2x2-e x,f′(x)=4x-e x.f′(x)在(0,2)上只有一个零点x0,且当0<x<x0时,f′(x)<0;当x0<x≤2时,f′(x)>0.故f(x)在(0,2]上先减后增,又f(2)-1=7-e2<0,所以f(2)<1.故选D.14.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是( )A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1}D .{x |-1<x ≤2} 答案 C解析 作出函数y =log 2(x +1)的图象,如图所示:其中函数f (x )与y =log 2(x +1)的图象的交点为D (1,1),结合图象可知f (x )≥log 2(x +1)的解集为{x |-1<x ≤1},故选C.15.函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0答案 C解析 函数f (x )的定义域为{x |x ≠-c },由题中图象可知-c =x P >0,即c <0,排除B ;令f (x )=0,可得x =-b a ,则x N =-b a ,又x N >0,则b a<0,所以a ,b 异号,排除A ,D.故选C.16.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -22,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A .⎝ ⎛⎭⎪⎫74,+∞B .⎝⎛⎭⎪⎫-∞,74 C .⎝ ⎛⎭⎪⎫0,74 D .⎝ ⎛⎭⎪⎫74,2答案 D解析 记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y=x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎪⎨⎪⎧y =x +b ′,y =x -22,解得b ′=-94,-94-(-4)=74,所以曲线h (x )向上平移74个单位后,所得图象与f (x )的图象有四个公共点,平移2个单位后,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有四个不同的交点,即y =f (x )-g (x )恰有4个零点.选D.17.已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )=( )A .0B .mC .2mD .4m答案 B解析 由f (-x )=2-f (x )可知f (x )的图象关于点(0,1)对称,又易知y =x +1x =1+1x的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,则x 1+x m =x 2+x m -1=…=0,y 1+y m =y 2+y m -1=…=2,∴∑mi =1(x i +y i )=0×m 2+2×m2=m .故选B.18.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B解析 当点P 与C 、D 重合时,易求得PA +PB =1+5;当点P 为DC 的中点时,有OP ⊥AB ,则x =π2,易求得PA +PB =2PA =2 2.显然1+5>22,故当x =π2时,f (x )没有取到最大值,则C 、D 选项错误.当x ∈⎣⎢⎡⎭⎪⎫0,π4时,f (x )=tan x +4+tan 2x ,不是一次函数,排除A ,故选B.三、模拟小题19.已知函数f (x )=4-x 2,函数g (x )(x ∈R 且x ≠0)是奇函数,当x >0时,g (x )=log 2x ,则函数f (x )·g (x )的大致图象为( )答案 D解析 因为函数f (x )=4-x 2为偶函数,g (x )是奇函数,所以函数f (x )·g (x )为奇函数,其图象关于原点对称,排除A 、B.又当x >0时,g (x )=log 2x ,当x >1时,g (x )>0,当0<x <1时,g (x )<0;f (x )=4-x 2,当x >2时,f (x )<0,当0<x <2时,f (x )>0,所以C 错误,故选D.20.已知f (x )=ax -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y=g (x )在同一坐标系内的大致图象是( )答案 B 解析 ∵f (x )=ax -2>0恒成立,又f (4)g (-4)<0,所以g (-4)=log a |-4|=log a 4<0=log a 1,∴0<a <1.故函数y =f (x )在R 上单调递减,且过点(2,1),函数y =g (x )在(0,+∞)上单调递减,在(-∞,0)上单调递增,故B 正确.21.已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln |x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x答案 A解析 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A.22.若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________. 答案 (3,1)解析 由于函数y =f (4-x )的图象可以看作y =f (x )的图象先关于y 轴对称,再向右平移4个单位长度得到.点(1,1)关于y 轴对称的点为(-1,1),再将此点向右平移4个单位长度,可推出函数y =f (4-x )的图象过定点(3,1).23.设函数y =f (x )的图象与函数y =2x +a的图象关于直线y =-x +1对称,且f (-3)+f (-7)=1,则实数a 的值是________.答案 2解析 设函数y =f (x )的图象上任意一点的坐标为(x ,y ),其关于直线y =-x +1对称的点的坐标为(m ,n ),则点(m ,n )在函数y =2x +a的图象上,由⎩⎪⎨⎪⎧y +n 2=-x +m2+1,y -nx -m =1,得m =1-y ,n =1-x ,代入y =2x +a得1-x =21-y +a,即y =-log 2(1-x )+a +1,即函数y=f (x )=-log 2(1-x )+a +1,又f (-3)+f (-7)=1,所以-log 24+a +1-log 28+a +1=1,解得a =2.24.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.答案 (0,1)∪(1,4)解析 y =⎩⎪⎨⎪⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,函数y =kx -2恒过定点M (0,-2),k MA =0,k MB =4.当k =1时,直线y =kx -2在x >1时与直线y =x +1平行,此时有一个公共点,∴k ∈(0,1)∪(1,4),两函数图象恰有两个交点.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5].(1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值.解 (1)函数f (x )的图象如图所示. (2)由图象可知,函数f (x )的单调递增区间为,.(3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.2.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数; (3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}. 解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)∵f (x )=x |m -x |=x |4-x |=⎩⎪⎨⎪⎧x x -4,x ≥4,-x x -4,x <4.∴函数f (x )的图象如图:由图象知f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为.(4)从图象上观察可知:不等式f (x )>0的解集为:{x |0<x <4或x >4}.(5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4,∴集合M ={m |0<m <4}.3.已知函数f (x )=|x 2-4x +3|.若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.解 f (x )=⎩⎪⎨⎪⎧x -22-1,x ∈-∞,1]∪[3,+∞,-x -22+1,x ∈1,3.作出图象如图所示.原方程变形为|x 2-4x +3|=x +a .于是,设y =x +a ,在同一坐标系下再作出y =x +a 的图象.如图.则当直线y =x +a 过点(1,0)时,a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎪⎨⎪⎧y =x +a ,y =-x 2+4x -3⇒x 2-3x +a +3=0.由Δ=9-4(3+a )=0,得a =-34.由图象知当a ∈⎣⎢⎡⎦⎥⎤-1,-34时方程至少有三个不等实根. 4.设函数f (x )=x +1x(x ∈(-∞,0)∪(0,+∞))的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求函数y =g (x )的解析式,并确定其定义域;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点的坐标. 解 (1)设P (u ,v )是y =x +1x上任意一点,∴v =u +1u①.设P 关于A (2,1)对称的点为Q (x ,y ),∴⎩⎪⎨⎪⎧u +x =4,v +y =2⇒⎩⎪⎨⎪⎧u =4-x ,v =2-y .代入①得2-y =4-x +14-x ,y =x -2+1x -4,∴g (x )=x -2+1x -4(x ∈(-∞,4)∪(4,+∞)). (2)联立⎩⎪⎨⎪⎧y =b ,y =x -2+1x -4⇒x 2-(b +6)x +4b +9=0,∴Δ=(b +6)2-4×(4b +9)=b 2-4b =0,b =0或b =4. ∴当b =0时,得交点(3,0);当b =4时,得交点(5,4).。
2023年高考备考二次函数(选拔卷)(含答案含解析)九年级数学上册单元测试
第二十二章 二次函数 选拔卷〔考试时间:90分钟 卷子总分值:120分〕一、选择题:此题共10个小题,每题3分,共30分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.〔2023·山东东营市·中考试题〕一次函数与二次函数在同()0y ax b a =+≠()20y ax bx c a =++≠一平面直角坐标系中的图象可能是〔 〕A .B .C .D .(答案)C(分析)逐一分析四个选项,依据二次函数图象的开口方向以及对称轴与y 轴的位置关系,即可得出a 、b 的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.(详解)A. ∵二次函数图象开口向下,对称轴在y 轴左侧,∴a <0,b <0,∴一次函数图象应该过第二、三、四象限,故本选项错误;B. ∵二次函数图象开口向上,对称轴在y 轴右侧,∴a >0,b <0,∴一次函数图象应该过第—、三、四象限,故本选项错误;C. ∵二次函数图象开口向下,对称轴在y 轴左侧,∴a <0,b <0,∴一次函数图象应该过第二、三、四象限,故本选项正确;D. ∵二次函数图象开口向下,对称轴在y 轴左侧,∴a <0,b <0,∴一次函数图象应该过第二、三、四象限,故本选项错误.应选C .(点睛)此题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键.x的二次函数43的函数值C.c的图象关于直线错误;3的函数值,即.y轴交于点5A标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.,x,);代入原抛物线解析式可得:方法等.,当1 1C象的顶点坐标,从而知该二次函数的单调区间.,∴该二次函数的开口方向是向上; .度为〔 〕米3B 代入可求解., ,∵32x 50,〕3625+,∴顶点为25,∴+想解答..nD或a 函数 当∴,0的关键.7.〔2023·天津九年级二模〕二次函数,当且时,y 的最小值为2(1)5y x =--+m x n ≤≤0mn <,最大值为,则的值为〔 〕5m 5n m n +A .0B .C .D .1-2-3-(答案)D(分析)由且可得,依据题意画出函数图像,依据图像分情况商量;m x n ≤≤0mn <0m n <<当时,y 随x 的增大而增大,可得当时y 有最小值,当时y 有最大值,代入1m n <<x m =x n =并验证;当时分两种情况:当时y 有最小值,当时y 有最大值,或当1m n <≤x m =1x =1x =时y 有最大值,当时y 有最小值,得出符合情况的值即可得出答案.x n =(详解)解:如图,二次函数的大致图像如下: 2(1)5y x =--+且时,,m x n ≤≤ 0mn <0m n ∴<<①当时,y 随x 的增大而增大,1m n <<当时y 有最小值,即:,解得:或〔舍去〕;∴x m =()2155m m --+=4m =-1m =当时y 有最大值,即:,解得:或〔均不符合题意,舍x n =()2155n n --+=4n =-1n =去〕;②当时,当时y 有最小值,即:,解得:或〔舍1m n <≤x m =()2155m m --+=4m =-1m =去〕; 当时y 有最大值,即:,解得:,1x =()21155n --+=1n =或:当时y 有最大值,即:,解得:,1x =()21155n --+=1n =当时y 有最小值,即:,将代入解得:, x n =()2155n m --+=1n =5m =∴m最大值及最小值在哪里取得,再代入求解;熟练掌握分析函数最值的方法是此题解题关键.论的个数是〔 〕个C,进而得出④正确,即可得出结论.误;正确;,,故③错误;,,,..A出发沿B C DD三段,分别求出函数表达式即可求解.AAPQ如图,同理可得:y=×PE×AD= 该函数为一次函数;12()148162,2t t ⨯-=-时,如图,同理可得:y=×PE×CQ= 12()()2118121048.22t t t t --=-+-该函数为开口向下的抛物线, 应选:D .楚不同时间段,图象和图形的对应关系,进而求解.1向左平移得到2A .32m -≤<-B .412-< D m 与抛物线, . m 过m与抛物线5m与正确地画出图形,利用数形结合进行解题,此题有肯定的难度.分。
完整word版,高考数学复习二次函数测试题
高考数学复习二次函数测试题1.解析式、待定系数法若()2f x x bx c =++,且()10f =,()30f =,求()1f -的值.变式1:若二次函数()2f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为(0,11),则A .1,4,11a b c ==-=-B .3,12,11a b c ===C .3,6,11a b c ==-=D .3,12,11a b c ==-=变式2:若()()223,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______.变式3:若二次函数()2f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且2212269x x +=,试问该二次函数的图像由()()231f x x =--的图像向上平移几个单位得到?2.图像特征将函数()2361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像.变式1:已知二次函数()2f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则122x x f +⎛⎫= ⎪⎝⎭A .2b a -B .ba- C . c D .244ac b a -变式2:函数()2f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、()1f 的大小关系是A .()()()110f f f <-<B .()()()011f f f <-<C .()()()101f f f <<-D .()()()101f f f -<< 变式3:已知函数()2f x ax bx c =++的图像如右图所示,请至少写出三个与系数a 、b 、c 有关的正确命题_________.3.单调性xyO已知函数()22f x x x =-,()()22[2,4]g x x x x =-∈.(1)求()f x ,()g x 的单调区间;(2) 求()f x ,()g x 的最小值.变式1:已知函数()242f x x ax =++在区间(),6-∞内单调递减,则a 的取值范围是A .3a ≥B .3a ≤C .3a <-D .3a ≤- 变式2:已知函数()()215f x x a x =--+在区间(12 ,1)上为增函数,那么()2f 的取值范围是_________.变式3:已知函数()2f x x kx =-+在[2,4]上是单调函数,求实数k 的取值范围.4.最值已知函数()22f x x x =-,()()22[2,4]g x x x x =-∈.(1)求()f x ,()g x 的单调区间;(2) 求()f x ,()g x 的最小值.变式1:已知函数()223f x x x =-+在区间[0,m ]上有最大值3,最小值2,则m 的取值范围是A .[)1,+∞B .[]0,2C .[]1,2D .(),2-∞变式2:若函数y =M ,最小值为m ,则M + m 的值等于________. 变式3:已知函数()224422f x x ax a a =-+-+在区间[0,2]上的最小值为3,求a 的值.5.奇偶性已知函数()f x 是定义在R 上的奇函数,当x ≥0时,()()1f x x x =+.画出函数()f x 的图像,并求出函数的解析式.变式1:若函数()()()22111f x m x m x =-+-+是偶函数,则在区间(],0-∞上()f x 是楠楠A .增函数B .减函数C .常数D .可能是增函数,也可能是常数 变式2:若函数()()2312f x ax bx a b a x a =+++-≤≤是偶函数,则点(),a b 的坐标是________.变式3:设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈.(I)讨论)(x f 的奇偶性;(II)求)(x f 的最小值.6.图像变换已知2243,30()33,0165,16x x x f x x x x x x ⎧++-≤<⎪=-+≤<⎨⎪-+-≤≤⎩.(1)画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值和最小值. 变式1:指出函数223y x x =-++的单调区间. 变式2:已知函数)(|2|)(2R x b ax x x f ∈+-=.给下列命题:①)(x f 必是偶函数;② 当)2()0(f f =时,)(x f 的图像必关于直线x =1对称; ③ 若02≤-b a ,则)(x f 在区间[a ,+∞)上是增函数; ④)(x f 有最大值||2b a -.其中正确的序号是________.③变式3:设函数,||)(c bx x x x f ++=给出下列4个命题: ①当c =0时,)(x f y =是奇函数;②当b =0,c >0时,方程0)(=x f 只有一个实根;③)(x f y =的图象关于点(0,c )对称;④方程0)(=x f 至多有两个实根.上述命题中正确的序号为 .7.值域求二次函数2()26f x x x =-+在下列定义域上的值域: (1)定义域为{}03x Z x ∈≤≤;(2) 定义域为[]2,1-. 变式1:函数()2()2622f x x x x =-+-<<的值域是A .⎡-⎢⎣⎦ B .()20,4- C .920,2⎛⎤- ⎥⎝⎦ D .920,2⎛⎫- ⎪⎝⎭变式2:函数y =cos2x +sin x 的值域是__________.变式3:已知二次函数 f (x ) = a x 2 + bx (a 、b 为常数,且 a ≠ 0),满足条件 f (1 + x ) = f (1-x ),且方程 f (x ) = x 有等根.(1)求 f (x ) 的解析式;(2)是否存在实数 m 、n (m < n ),使 f (x ) 的定义域和值域分别为 [m ,n ] 和 [3m ,3n ],如果 存在,求出 m 、n 的值,如果不存在,说明理由.8.恒成立问题当,,a b c 具有什么关系时,二次函数()2f x ax bx c =++的函数值恒大于零?恒小于零?变式1:已知函数 f (x ) = lg (a x 2 + 2x + 1) .(I)若函数 f (x ) 的定义域为 R ,求实数 a 的取值范围; (II)若函数 f (x ) 的值域为 R ,求实数 a 的取值范围.变式2:已知函数2()3f x x ax a =++-,若[]2,2x ∈-时,有()2f x ≥恒成立,求a 的取值范围.楠楠变式3:若f (x ) = x 2 + bx + c ,不论 α、β 为何实数,恒有 f (sin α )≥0,f (2 + cos β )≤0. (I) 求证:b + c = -1; (II) 求证: c ≥3;(III) 若函数 f (sin α ) 的最大值为 8,求 b 、c 的值.9.根与系数关系右图是二次函数()2f x ax bx c =++的图像,它与x 轴交于点()1,0x 和()2,0x ,试确定,,a b c 以及12x x ,12x x +的符号.变式1:二次函数b ax y +=2与一次函数)(b a b ax y >+=在同一个直角坐标系的图像为D .C .xy OxyO OO xyxyA .B .变式2:直线3-=mx y 与抛物线x m x y C m mx x y C )12(:,45:2221-+=-+=23,m +-23:323C y x mx m =+--中至少有一条相交,则m 的取值范围是.变式3:对于函数 f (x ),若存在 x 0 ∈ R ,使 f (x 0) = x 0 成立,则称 x 0 为 f (x ) 的不动点.如果函数 f (x ) = a x 2 + bx + 1(a > 0)有两个相异的不动点 x 1、x 2.(I)若 x 1 < 1 < x 2,且 f (x ) 的图象关于直线 x = m 对称,求证m > 12 ;(II)若 | x 1 | < 2 且 | x 1-x 2 | = 2,求 b 的取值范围.10.应用绿缘商店每月按出厂价每瓶3元购进一种饮料.根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若每瓶售价每降低0.05元,则可多销售40瓶.在每月的进货量当月销售完的前提下,请你给该商店设计一个方安:销售价应定为多少元和从工厂购进多少瓶时,才可获得最大的利润?变式1:在抛物线()2f x x ax =-+与x 轴所围成图形的内接矩形(一边在x 轴上)中(如图),求周长最长的内接矩形两边之比,其中a 是正实数.楠楠变式2:某民营企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图一;B 产品的利润与投资的算术平方根成正比,其关系如图二(注:利润和投资单位:万元)(1) 分别将A 、B 两种产品的利润表示为投资的函数关系式;(2) 该企业已筹集到10万元资金,并全部投入A ,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润?其最大利润约为多少元(精确到1万元)?变式3:设a 为实数,记函数x x x a x f -+++-=111)(2的最大值为g (a ) .(Ⅰ)求g (a );(Ⅱ)试求满足)1()(ag a g =的所有实数a .。
高一基本函数综合测试题及答案解析
实用文档高一基本函数综合测试题及答案解析高二数学教师XXX提醒大家,成功不是凭梦想和希望,而是凭努力和实践过关检测。
一、选择题1.函数y=2-x+1(x>1)的反函数是:A。
y=log2(x-1),x∈(1,2)B。
y=-1og2(x-1),x∈(1,2)XXX(x-1),x∈(1,2]D。
y=-1og2(x-1),x∈(1,2]2.已知f(x)={ (3a-1)x+4a。
x1 }是(负无穷,正无穷)上的减函数,那么a的取值范围是:A。
(0,1)B。
[,1)C。
(0,)D。
[1,)实用文档3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意x1,x2(x1≠x2),只有|f(x1)-f(x2)|<|x2-x1|恒成立”的是:A。
f(x)=1/xB。
f(x)=|x|xC。
f(x)=2xD。
f(x)=6/(3x+1)+lg(3x+1)4.已知f(x)是周期为2的奇函数,当|x|<1时,f(x)=lgx。
设a=f(5/4)。
b=f(3/4)。
c=f(-1/2),则:A。
a<b<cB。
b<a<cC。
c<b<aD。
c<a<b5.函数f(x)=(x-1)/(x+1)lgx的定义域是:A。
(-∞,∞)B。
(-∞,-1)∪(0,∞)C。
(-∞,1)∪(-1,0)∪(0,1)∪(1,∞)D。
(-∞,-1)∪(1,∞)实用文档6.下列函数中,在其定义域内既是奇函数又是减函数的是:A。
y=1/x。
x∈RB。
y=-x。
x∈RC。
y=sin(x)。
x∈RD。
y=3x^3-2x。
x∈R7.函数y=f(x)的反函数y=f^-1(x)的图像与y轴交于点P(0,2),则方程f(x)=3x-1在[1,4]上的根是:A。
4B。
3C。
2D。
18.设f(x)是R上的任意函数,则下列叙述正确的是:A。
f(x)f(-x)是奇函数B。
f(x)f(-x)是偶函数C。
f(x)-f(-x)是奇函数实用文档D。
高考数学专题《函数的概念及其表示》习题含答案解析
专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩…则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24练基础【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( )A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x =的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:a =故1a =或,故答案为:1或.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( )A .t 没有最小值B .t1-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,练提升2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =时,()min 1n m -=-.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )= 2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( )A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=+,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝,由于01a <<1a ≤<.1a ≤<9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .1.(山东高考真题)设f (x )=<x <1―1),x ≥1,若f (a )=f (a +1),则=( )A .2B .4C .6D .8【答案】C【解析】由x ≥1时f (x )=2(x ―1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f (a )=f (a+1)得a =2(a +1―1),解得a =14,则=f (4)=2(4―1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .3B .32 C .33 D .0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当练真题x=32,此时旋转π6,此时满足一个x 只会对应一个y ,故选:B .3. (2018年新课标I 卷文)设函数f (x )=2―x , x ≤01 , x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (―∞ , ―1]B. (0 , +∞)C. (―1 , 0)D. (―∞ , 0)【答案】D【解析】将函数f (x )的图象画出来,观察图象可知会有2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(―∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。
高考数学函数板块测试
专题考案(1)函数板块 测试第Ⅰ卷 (选择题 共60分)一、选择题(12×5′=60′)1.下列四个函数中,在区间(0,1)上为增函数的是 ( )A.y =x 2log -B.y =sin xC.y =x⎪⎭⎫⎝⎛21 D.y =21-x2.已知f (x )=xx 22log 1)4(log +的定义域为(0,1),则f (x )有 ( )A.最小值2+22B.最大值2-22C.最小值2-22D.最大值2+223.要使函数y =122+-ax x 在[1,2]上存在反函数,则a 的取值范围是 ( ) A.a ≤1 B.a ≥2 C.a ≤1或a ≥2 D.1≤a ≤24.二次函数f (x )满足f (x +2)=f (2-x ),且f (a )≤f (0)≤f (1),则实数a 的取值范围是 ( ) A.a ≥0 B.a ≤0 C.0≤a ≤4 D.a ≤0或a ≥45.已知g (x )=1-2x ,f [g (x )]=221xx -(x ≠0),则⎪⎭⎫⎝⎛21f 等于 ( ) A.15 B.1 C.3 D.306.对于任意a ∈[-1,1],函数f (x )=a x a x 24)4(2-+-+的值总大于0,则x 的取值范围是 ( )A.{x |1<x <3}B.{x |x <1或x >3}C.{x |1<x <2}D.{x |x <1或x >2}7.设f (x )的定义域为R ,且f (-x )=-f (x ),f (x+d )<f (x )(d >0),当不等式f (a )+f (2a )<0成立时,a 的取值范围是 ( )A.(-∞,-1)∪(0,+∞)B.(-1,0)C.(-∞,0)∪(1,+∞)D.(-∞,1)∪(1,+∞)8.已知x ,y ∈R ,且x y y x --+≥+5353,则x 与y 一定满足 ( ) A.x+y ≥0 B.x+y ≤0 C.x-y ≥0 D.x-y ≤09.已知函数f (x )≠-1,且对定义域内任意x 总有关系[f (x +π)+1][f (x )+1]=2,那么下列结论中一定正确的是 ( )A.f (x )不一定有周期性B.f (x )是周期为π的函数C.f (x )是周期为2π的函数D.f (x )是周期为2π的函数 10.在区间[21,2]上,函数f (x )=q px x ++2与g (x )=2x +21x在同一点取得相同的最小值,那么f (x )在[21,2]上的最大值是 ( ) A.413 B.4 C.8 D.4511.已知函数f (x )=ax 1-(a >0且a ≠1),在同一直角坐标系中,y =)(1x f -与y =|1|-x a 的图象可能是( )12.已知函数f (x )=12-x ,g (x )=21x -,构造函数F (x )定义如下:当|F (x )|≥g (x )时,F (x )=|f (x )|;当|f (x )|<g (x )时,F (x )=-g (x ),那么F (x ) ( )A.有最大值1,无最小值B.有最小值0,无最大值C.有最小值-1,无最大值D.无最小值,也无最大值第Ⅱ卷 (非选择题 共90分)二、填空题(4×4′=16′)13.若f (x )=|x -2a |+x -1函数值恒为正,则a 的取值范围是 .14.f (x )与g (x )分别是一个奇函数和一个偶函数,若f (x )-g (x )=x⎪⎭⎫⎝⎛21,则f (-1)、g (0)、g (-2)从小到大的顺序是 .15.记号[x ]表示不超过4的最大整数,则y =[x ]的图象与直线y =x -1的图象的交点个数是 .16.设函数f (x )的反函数为h (x ),函数g (x )的反函数为h (x +1),已知f (2)=5,f (5)=-2,f (-2)=8,那么g (2)、g (5)、g (8)、g (-2)中,一定能求出具体数值的是 . 三、解答题(5×12′+14′=74′)17.已知函数f (x )=21lg(kx ),g (x )=lg(x +1). (1)求f (x )-g (x )的定义域;(2)若方程f (x )=g (x )有且仅有一个实根,求实数k 的取值范围.第11题图18.对于映射f (x )=bx ax ++2,有适合f (x )=x 的x 时,这个x 叫做f (x )的不动点. (1)求使f (x )有绝对值相等且符号相反的两个不动点时a 、b 所满足的条件.(2)在(1)的条件下,当a =3时,f (x )的两个不动点对应于函数y =f (x )图象上的两个点,记为A 、B ,C 为函数y =f (x )图象上另一点,且c y >2,求点C 到直线AB 距离的最小值及取得最小值时对应的C 点的坐标.19.已知函数f (x )=xa 11-(a >0,x >0). (1)求证:f (x )在(0,+∞)上是递增函数.(2)若f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ),求a 的取值范围并求相应的m 、n 的值. (3)若f (x )≤2x 在(0,+∞)上恒成立,求a 的取值范围.20.西部某地区因交通问题严重制约经济发展,某种土特产品只能在本地销售,每年投资x 万元,所获利润为p =-10)40(16012+-x (万元).在实施西部大开发战略中,该地区在制订经济发展十年规划时,拟开发此种土特产品.开发前后,财政预算每年均可投入专项资金60万元,要开发此产品,需先用5年时间修通公路,所需资金从60万元的预算资金中每年拿出30万元.公路修通后该土特产品在异地销售,每投资x 万元,可获利润:q =-)60(2119)60(1601592x x -+-(万元). 问从10年的总利润来看,该项目有无开发价值?21.已知二次函数1axf(a、b∈R,a>0),设方程f (x)=x的两个实数根为1x和2x.=bxx(2+)+(1)如果1x<2<2x<4,设函数f (x)的对称轴为x=0x,求证:0x>-1;(2)如果|1x|<2,|2x-1x|=2,求b的取值范围.22.设二次函数1xaxf(a>0且b≠0).)(2++=bx(1)已知|f (0)|=|f (1)|=|f (-1)|=1,求f(x)的解析式和f(x)的最小值.(2)已知f (x)的对称轴方程是x=1,当f (x)的图象在x轴上截得的弦长不小于2时,试求a、b、c满足的条件.5.(3)已知|b|≤a,|f (0)|≤1,|f (1)|≤1,|f (-1)|≤1.证明:当|x|≤1时,|f (x)|≤4函数测试参考答案1.B2.B f (x )=xx xx 2222log 2log 2log 1)4(log ++=+,由x ∈(0,1)知,0log 2<x , 则22)log 2()log (2)]log 2()log [(log 2log 222222-=-⋅--≤-+--=+xx x x x x , 故f (x )≤2-22,当且仅当xx 22log 2log -=-, 即2log 2-=x ,此时x ∈(0,1)取“=”.3.C 要使122+-=ax x y 在[1,2]上存在反函数,则函数在区间[1,2]上为单调函数,即区间[1,2]为函数单调区间的子区间,函数122+-=ax x y 的单调区间为(-∞,a ],[a ,+∞),故a ≤1或a ≥2.4.D 由f (x +2)=f (2-x )知x =2为对称轴,∴f (a )=f (4-a )又开口向下∴a ≤0或a ≥4,故选D.5.A 由g (x )=21得x =41,∴151611611=-. 6.B 设g (a )=(x -2)a +2)2(-x (x ≠2),则g (a )为关于a 的一次函数,因此g (a )在a ∈[-1,1]恒大于零的充要条件为⇒⎩⎨⎧>->0)1(0)1(g g x <1或x >3.7.A 由f (-x )=-f (x )知函数y =f (x )为奇函数;由f (x+d )<f (x )(d >0)知y =f (x )为减函数. 故f (a )+f (2a )<0⇔f (a )<f (-2a )⇔a >-2a ⇔02>+a a ,故a <-1或a >0.8.A 不等式即y y x x 5353-≥---,函数t t y --=53为关于t 的增函数.∴x ≥-y ,即x+y ≥0. 9.C f (x +π)=)(1)(111)(2x f x f x f +-=-+.由此可得f [(x +π)+π]=)(1)(1π++π+-x f x f , 代入f (x +π)=)(1)(1x f x f +-,化简得f (x +2π)=f (x ).10.B g (x )=x+x +21x ≥31332=⋅⋅x x x ,当且仅当x =21x,即x =1∈[21,2]时取“=”号.依题意,f (x )=3)1(2+-x .x ∈[21,2]时,4)2()(max ==f x f . 11.D 由题得y =1)(1+=-ax x f(a >0且a ≠1),由a ≠1可排除选项A ;令x =0,则y =1,可排除选项C;对于选项B 、D ,}1{-=x a y 的图象无多大区别,关键在于)(1x fy -=的图象,分析后可看出B选项a >1,D 选项0<a <1,故需由|1|-=x a y 来判定a 的范围,比较明显,令t =x -1,则||t a y =(t >0)为减函数,即可知0<a <1,故选D.12.C (数形结合)F (x )的图象如图实线所示,故F (x )有 最小值-1,无最大值.13.a >21 利用数形结合思想可知2a >1,∴a >21. 14.g (-2)<g (0)<f (-1) 已知f (x )-g (x )=x⎪⎭⎫⎝⎛21 ①把上式中的x 换成-x ,得-f (x )-g (x )=x 2. ② 由①②解得:f (x )=222x x--,g (x )=-222xx --, 从而 g (-2)<g (0)<f (-1).15.0 (数形结合)在坐标系作出函数y =[x ]的图象(如图所示),显然,直线y =x -1与之无交点.16.g (2)、g (5)、g (-2) 依题意)()(1x h x f=-,)()()1()1()(111x h x fx g x h x g ==-⇒+=---,于是5)2()3(,2)5()4(11=-=-==--h g h g ,2)8()7(1-==-h g , 故g (2)=4,g (5)=-3,g (-2)=7.17.解 (1)∵⎩⎨⎧>+>01,0x kx ,∴k >0时,定义域为(0,+∞);k <0时,定义域为(-1,0). (2)f (x )=g (x )⇒21lg(kx )=lg(x +1)⇒kx =x +1.在定义域范围内有且只有一个解,令kx y =1,2y =x +1.当k >0时,x >0,则kx y =1,2y =x +1的图象如图①,由方程1+=x kx ⇒01)2(2=+-+x k x ,令Δ=0得k =4或k =0(舍).∴k =4时,方程在定义域范围内有一解.又k <0时,-1<x <0.此时,kx y =1,2y =x +1的图象如图②,结合图象,k <0成立. 综上可知:k <0或k =4时,方程f (x )=g (x )有且只有一解.第12题图解第15题图解.第17题图解18.解 (1)由f (x )=0)2(22=--+⇒=++a x b x x bx ax ※ 设方程※的两根为1x ,2x .依题意021=+x x ,且1x 2x <0,从而b -2=0,-a <0. ∴a 、b 满足的条件为:b =2,a >0. (2)方法1 由(1)知,f (x )=22++x ax , ∴当a =3时,f (x )=22++x a x =2-21+x ,其图象的对称中心为(-2,2),如图所示,由c y >2知点C 在双曲线的上支上. 依题意,A 、B 所在直线方程为:y=x . 要使点C 到直线y=x 的距离d 最小, 点C (x ,y )满足⎪⎩⎪⎨⎧-=++=,,232x y x x y 解出C (-3,3),此时233322min =+=d . 方法2 设C (x ,y ),由y >2,即22232-<⇒>++x x x , 设C 到直线y=x 的距离为d ,则d =2322223222||2++-⋅=-++=-=-x x xx x x y y x ,令t =x +2,t <0,则d =234)1()(222)41(223)2(222=⎪⎪⎭⎫ ⎝⎛+-⋅-≥+--⋅=+--⋅t t t t t t , 当且仅当-t =-t 1(t <0),即t =-1时取“=”号,此时32-=-=t x c ,3232=++=c c c x x y ,即C (-3,3).19.(1)证明 设0<1x <2x <+∞,f (1x )-f (2x )=2121122111)11(11x x x x x x x a x a -=-=---, ∵0<1x <2x ,∴1x -2x <0,1x ·2x >0,∴f (1x )-f (2x )<0即f (1x )<f (2x ), ∴f (x )=xa 11-在(0,+∞)上为增函数. (2)解 ∵f (x )在(0,+∞)上为增函数,∴若f (x )在[m ,n ]上的值域为[m ,n ], 则⎩⎨⎧==n n f mm f )()(,则m 、n 为方程f (x )=x 的两相异实根.由0112=+-⇒=-a x ax x x a ,则Δ=1-42a >0⇒-2121<<a , 又a >0,∴0<a <21.第18题图解(3)f (x )≤2x ,即x a 11-≤2x ,即a 1≤2x +x1, ∵2x +x 1≥2x x 12⋅=22,(x =22时取“=”), ∴要使a 1≤2x +x 1恒成立,则只需a 1≤22,∴a ≥42. 20.解 (1)若按原来投资环境,由p =-10)40(16012+-x 知,当x =40时,10max =p ,即每年只需从60万元专款中拿出40万元投资,可获最大利润10万元,这样十年的总利润最大值为w =10×10=100(万元).(2)若对该产品开发:前5年可用于对产品的投资只有30万元,而p =f (x )=-10)40(16012+-x 在[0,30]上递增,∴875)30(max ==f p . 前5年的总利润:83755875max 1=⨯=w (万元). 设后5年,x 万元用于本地销售投资,(60-x )万元用于异地销售投资,则总利润: 2w =[-10)40(16012+-x ]×5+(-x x 21191601592+)×5=5[-2)30(-x +900],当x =30时,max 2w =4 500,∴10年总利润最大值为max 1w +max 2w =8375+4 500, 而8375+4 500>100,故该项目具有极大的开发价值. 21.分析 条件1x <2<2x <4实际上给出了f (x )=x 的两个实根所在的区间,因此可以考虑利用上述图象特征去等价转化.(1)证明 设g (x )=f (x )-x =1)1(2+-+x b ax ,则g (x )=0的两根为1x 和2x . 由a >0及1x <2<2x <4,可得⎩⎨⎧>>0)4(0)2(g g ,即⎩⎨⎧>-+<-+034160124b a b a ,即⎪⎪⎩⎪⎪⎨⎧<+⋅--<-⋅+043224043233a a b aa b ,两式相加得12<a b ,所以10->x . (2)解 由221)(x x -=aa b 4)1(2--,可得2a +1=1)1(2+-b . 又0121>=ax x ,所以1x ,2x 同号. ∴|1x |<2,|2x -1x |=2等价于⎪⎩⎪⎨⎧+-=+<<<1)1(1220221b a x x 或⎪⎩⎪⎨⎧+-=+<<-<1)1(1202212b a x x即⎪⎪⎩⎪⎪⎨⎧+-=+>>1)1(120)0(0)2(2b a g g 或⎪⎪⎩⎪⎪⎨⎧+-=+>>-1)1(120)0(0)2(2b a g g 解之得b <41或b >47. 点评 本题主要考查二次函数f (x )的图象的连续性,且由于二次方程至多有两个实数根,所以存在实数m 、n 使得m <n 且f (m )f (n )<0在区间(m ,n )上,必存在f (x )=0的惟一的实数根.22.(1)解 由|f (0)|=|f (1)|=|f (-1)|知|c |=1,|a+b+c |=1,|a-b+c |=1,∴22)()(c b a c b a +-=++, 即4(a+c )b =0.∵b ≠0,∴a+c =0,即a =-c .又∵a >0,∴a =1,c =-1,此时b =±1, ∴f (x )=2x ±x -1. 于是f (x )=45)21(2-±x ≥-45,∴45)]([min -=x f . (2)解 依题意12=-ab,即b =-2a ,∵a >0且b ≠0, ∴b <0.令f (x )=0两根为1x 、2x ,则函数y =f (x )的图象与x 轴的两个交点为(1x ,0)、(2x ,0),且1x +2x =2,1x 2x =ac,满足题设的充要条件是: ⎪⎩⎪⎨⎧≥-+=->-=∆24)(||0421221212x x x x x x ac b ⇔⎪⎩⎪⎨⎧≥->-110442a c ac a ⇔⎩⎨⎧≥->-a c a c a ||0⇔⎩⎨⎧≤>00c a , ∴a >0,c ≤0,b <0且b =-2a 为所求.(3)证明 ∵|2b |=|(a+b+c )-(a-b+c )|≤|a+b+c |+|a-b+c |≤2,∴|b |≤1,又|b |≤|a |,∴,1≤ab又|c |=|f (0)|≤1,45||41||444)2(22≤+≤-=-=-b a b c a b c a b ac a b f , 而f (x )表示开口向上的抛物线,且|x |≤1,则f (x )最大值应在x =1或x =-1或x =-ab2时取到. 因为|f (-1)|≤1,|f (1)|≤1,45)2(≤-a b f ,故|f (x )|≤45得证.。
高三测试-函数及导数测试题含答案-2013-8-1
A.y1=y2 B.y1>y2 C.y1<y2 D.y1,y2 的大小关系不能确定 1+sinx xcosx-sinx-1 解析:设 f(x)= ,则 f′(x)= x x2 cosxx-tanx-1 π π = .当 x∈(0, )时,x-tanx<0,故 f′(x)<0,所以 f(x)在(0, )上是减函数,故 x2 2 2 由 x2>x1 得 y2<y1. 答案:B 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分,把答案填在题中横线上. -x +2x x>0, x=0, 7. 已知函数 f(x)=0 2 x +mx x<0 则 a 的取值范围是________. 解析:当 x<0 时,-x>0,∵f(-x)=-(-x)2+2(-x)=-x2-2x,又 f(x)为奇函数,∴f(-x)= -x +2x x>0, 2 2 x=0, -f(x)=-x -2x,∴x<0 时,f(x)=x +2x,∴m=2,即 f(x)=0 2 x +mx x<0
4.(2011· 全国)曲线 y=e ( ) 1 A. 3 2 C. 3 解析:
-2x
+1 在点(0,2)处的切线与直线 y=0 和 y=x 围成的三角形的面积为 1 B. 2 D.1
y′=-2e
-2x
,y′|x=0=-2,在点(0,2)处的切线为:y-2=-2x,即 2x+y-2=0
y=x 由 2x+y-2=0
x
3 a 当 a<0,b>0 时, 2 >-2b, a 则 x>log1.5 -2b;
x
3 a 当 a>0,b<0 时, 2 <-2b, a 则 x<log1.5 -2b. x 12.(2011· 北京)已知函数 f(x)=(x-k) e k
高考数学一轮复习:函数与方程(Word版,含解析)
函数与方程基础练一、选择题1.[2021·河南濮阳模拟]函数f (x )=ln2x -1的零点所在区间为( )A .(2,3)B .(3,4)C .(0,1)D .(1,2)2.函数f (x )=x 2+ln x -2021的零点个数是( )A .3B .2C .1D .03.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( )A.(-1,0) B .C .(1,2) D .(2,3)4.[2021·四川绵阳模拟]函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)5.[2021·大同调研]已知函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x >03x ,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]二、填空题6.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为________. 7.[2021·新疆适应性检测]设a ∈Z ,函数f (x )=e x +x -a ,若x ∈(-1,1)时,函数有零点,则a 的取值个数为________.8.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 三、解答题9.设函数f (x )=ax 2+bx +b -1(a ≠0).(1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同的零点,求实数a 的取值范围.10.已知函数f (x )=ax 2+bx +c (a ≠0),满足f (0)=2,f (x +1)-f (x )=2x -1.(1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-mx 的两个零点分别在区间(-1,2)和(2,4)内,求m 的取值范围.能力练11.[2021·天津部分区质量调查]已知函数f (x )=若关于x 的方程f (x )=m (m ∈R )恰有三个不同的实数根a ,b ,c ,则a +b +c 的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫34,1C.⎝⎛⎭⎫34,2D.⎝⎛⎭⎫32,212.[2021·长沙市四校高三年级模拟考试]已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤01x ,x >0,若方程f (x )=a (x +3)有四个不同的实数根,则实数a 的取值范围是( )A .(-∞,4-23)B .(4-23,4+23)C .(0,4-23]D .(0,4-23)13.[2021·山西省六校高三阶段性测试]函数y =5sin ⎝⎛⎭⎫π5x +π5(-15≤x ≤10)的图象与函数y=5(x +1)x 2+2x +2图象的所有交点的横坐标之和为______.参考答案:1.解析:由f (x )=ln2x -1,得函数是增函数,并且是连续函数,f (1)=ln2-1<0,f (2)=ln4-1>0,根据函数零点存在性定理可得,函数f (x )的零点位于区间(1,2)上,故选D.答案:D2.解析:由题意知x >0,由f (x )=0得ln x =2021-x 2,画出函数y =ln x 与函数y =2021-x 2的图象(图略),即可知它们只有一个交点.故选C.答案:C3.解析:设f (x )=e x -(x +2),则f (1)=-0.28<0,f (2)=3.39>0,故方程e x -x -2=0的一个根在区间(1,2)内.故选C.答案:C4.解析:由题意,知函数f (x )在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧ f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故选C 项. 答案:C5.解析:h (x )=f (x )+x -a 有且只有一个零点,即方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根,即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.在同一坐标系中作出函数f (x )的图象和直线y =-x +a ,如图所示,若函数y =f (x )的图象与直线y =-x +a 有且只有一个交点,则有a >1,故选B.答案:B 6.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-127.解析:根据函数解析式得到函数f (x )是单调递增的.由零点存在性定理知若x ∈(-1,1)时,函数有零点,需要满足⎩⎪⎨⎪⎧f (-1)<0,f (1)>0⇒1e -1<a <e +1,因为a 是整数,故可得a 的可能取值为0,1,2,3.答案:48.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点.令f (x )=0,得a =2x .因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是(0,1].答案:(0,1]9.解析:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同的实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).10.解析:(1)由f (0)=2得c =2,又f (x +1)-f (x )=2x -1,得2ax +a +b =2x -1,故⎩⎪⎨⎪⎧2a =2,a +b =-1,解得a =1,b =-2,所以f (x )=x 2-2x +2. (2)g (x )=x 2-(2+m )x +2,若g (x )的两个零点分别在区间(-1,2)和(2,4)内,则满足⎩⎪⎨⎪⎧ g (-1)>0,g (2)<0,g (4)>0⇒⎩⎪⎨⎪⎧ 5+m >0,2-2m <0,10-4m >0,解得1<m <52.所以m 的取值范围为⎝⎛⎭⎫1,52. 11.解析:假设a <b <c ,通过作图可得a ∈⎝⎛⎭⎫-12,0,b +c =2,所以a +b +c ∈⎝⎛⎭⎫32,2,故选D 项.答案:D12.解析:方程f (x )=a (x +3)有四个不同的实数根可化为函数y =f (x )与y =a (x +3)的图象有四个不同的交点,易知直线y =a (x +3)恒过点(-3,0),作出函数y =f (x )的大致图象如图所示,结合函数图象,可知a >0且直线y =a (x +3)与曲线y =-x 2-2x ,x ∈[-2,0]有两个不同的公共点,所以方程x 2+(2+a )x +3a =0在[-2,0]上有两个不等的实数根,令g (x )=x 2+(2+a )x +3a ,则实数a 满足⎩⎪⎨⎪⎧ Δ=(2+a )2-12a >0-2<-2+a 2<0g (0)=3a ≥0g (-2)=a ≥0,解得0≤a <4-23,又a >0,所以实数a 的取值范围是(0,4-23),故选D.答案:D 13.解析:函数y =5sin ⎝⎛⎭⎫π5x +π5(x ∈R )的图象关于点(-1,0)对称.对于函数y =5(x +1)x 2+2x +2,当x =-1时,y =0,当x ≠-1时,易知函数y =5(x +1)x 2+2x +2=5x +1+1x +1在(-1,0)上单调递增,在(0,+∞)上单调递减,且当x ∈(-1,+∞)时,y =5(x +1)x 2+2x +2的最大值为52,函数图象关于点(-1,0)对称.对于函数y =5sin ⎝⎛⎭⎫π5x +π5,当x =0时,y =5sin π5>5sin π6=52,所以在(-1,0)内两函数图象有一个交点.根据两函数图象均关于点(-1,0)对称.可知两函数图象的交点关于点(-1,0)对称,画出两函数在[-15,10]上的大致图象,如图,得到所有交点的横坐标之和为-1+(-2)×3=-7.答案:-7。
高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析
专题2.3 二次函数与一元二次方程、不等式1.(浙江高考真题)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0【答案】A 【解析】由已知得f (x )的图象的对称轴为x =2且f (x )先减后增,可得选项. 【详解】由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-2ba=2,∴4a +b =0, 又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0, 故选:A.2.(2021·全国高三专题练习(文))已知函数42()f x x x =-,则错误的是( )A .()f x 的图象关于y 轴对称B .方程()0f x =的解的个数为2C .()f x 在(1,)+∞上单调递增D .()f x 的最小值为14-【答案】B 【解析】结合函数的奇偶性求出函数的对称轴,判断A ,令()0f x =,求出方程的解的个数,判断B ,令2t x =,2211()()24g t t t t =-=--,从而判断C ,D 即可.【详解】42()f x x x =-定义域为R ,显然关于原点对称,又()()4242()f x x x x x -=---=-()f x =,所以()y f x =是偶函数,关于y 轴对称,故选项A 正确. 令()0f x =即2(1)(1)0x x x +-=,解得:0x =,1,1-,函数()f x 有3个零点,故B 错误;练基础令2t x =,2211()()24g t t t t =-=--,1x >时, 函数2t x =,2()g t t t =-都为递增函数,故()f x 在(1,)+∞递增,故C 正确;由12t =时,()g t 取得最小值14-,故()f x 的最小值是14-,故D 正确.故选:B .3.(2021·北京高三其他模拟)设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A.4.(2021·全国高三月考)已知函数2()f x x bx c =-++,则“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C 【解析】根据二次函数的图象与性质,求得(())02bf f >,反之若()0f t =有两个正根12t t <,当12max ()t t f x <<,得到方程(())0f f x =恰有四个不同实数解,结合充分条件、必要条件的判定方法,即可求解. 【详解】由2()f x x bx c =-++表示开口向下的抛物线,对称轴的方程为2b x =,要使得方程()0f x =有两个不同实数,只需()02bf >,要使得方程(())0f f x =恰有两个不同实数解,设两解分别为12,x x ,且12x x <, 则满足1max 2()x f x x <<,因为12(,)x x x ∈时,()0f x >,所以(())02b f f >,所以必要性成立; 反之,设()02b t f =>,即()0f t >,当()0f t =有两个正根,且满足12t t <,若12max ()t t f x <<, 此时方程(())0f f x =恰有四个不同实数解,所以充分性不成立.所以“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的必要不充分条件. 故选:C.5.(2021·全国高三专题练习)若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是___________. 【答案】1<a ≤2. 【解析】在同一个坐标系中画出两个函数的图象,结合图形,列出不等式组,求得结果. 【详解】如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象.由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则1log 21aa >⎧⎨⎩,解得1<a ≤2.故答案为:1<a ≤2.6.(2020·山东省微山县第一中学高一月考)若不等式220ax x a ++<对任意x ∈R 恒成立,则实数a 的取值范围是_________.【答案】(,1)-∞- 【解析】∵不等式220ax x a ++<对任意x ∈R 恒成立, ∴函数22y ax x a =++的图象始终在x 轴下方,∴2440a a <⎧⎨∆=-<⎩,解得1a <-, 故答案为:(,1)-∞-.7.(2021·全国高三专题练习)已知当()0,x ∈+∞时,不等式9x -m ·3x +m +1>0恒成立,则实数m 的取值范围是________.【答案】(,2-∞+ 【解析】先换元3x =t ,()1,t ∈+∞,使f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,再利用二次函数图象特征列限定条件,计算求得结果即可. 【详解】令3x =t ,当()0,x ∈+∞时,()1,t ∈+∞,则f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,即函数在()1,t ∈+∞的图象在x 轴的上方,而判别式()()224144m m m m ∆=--+=--,故2440m m ∆=--<或()0121110m f m m ∆≥⎧⎪⎪≤⎨⎪=-++≥⎪⎩,解得2m <+故答案为:(,2-∞+.8.(2021·浙江高一期末)已知函数2()1(0)f x ax x a =-+≠,若任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围是___________.【答案】[)1,+∞ 【解析】本题首先可令12x x >,将()()12121f x f x x x ->-转化为()()1122f x x f x x ->-,然后令()()g x f x x =-,通过函数单调性的定义得出函数()g x 在[1,)+∞上是增函数,最后分为0a =、0a ≠两种情况进行讨论,结合二次函数性质即可得出结果. 【详解】因为任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,所以令12x x >,()()12121f x f x x x ->-即()()1212f x f x x x ->-,()()1122f x x f x x ->-,令()()221g x f x x ax x =-=-+,则函数()g x 在[1,)+∞上是增函数, 若0a =,则()21g x x =-+,显然不成立;若0a ≠,则0212a a>⎧⎪-⎨-≤⎪⎩,解得1a ≥,综合所述,实数a 的取值范围是[)1,+∞, 故答案为:[)1,+∞.9.(2021·四川成都市·高三三模(理))已知函数21,0()2,0x x f x x x x --≤⎧=⎨-+>⎩,若()()12f x f x =,且12x x ≠,则12x x -的最大值为________. 【答案】134【解析】由()()12f x f x =得,212221x x x =--,把12x x -转化为212212231x x x x x x -=-=-++,利用二次函数求最值. 【详解】()y f x =的图像如图示:不妨令12x x <,由图像可知,10x ≤,20x >由()()22121221221221f x f x x x x x x x =⇒--=-+⇒=--,由212212231x x x x x x -=-=-++ 当232x =时,12max134x x -=. 故答案为:134. 10.(2021·浙江高一期末)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围; (Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围. 【答案】(Ⅰ)1(,]4-∞;(Ⅱ)1[,)2+∞ 【解析】(Ⅰ)由题意讨论0k =,0k >与0k <三种情况,求出函数的对称轴,结合区间,列不等式求解;(Ⅱ)利用参变分离法得24k x x≥+在[2,4]上恒成立,令4()f x x x =+,根据单调性,求解出最值,即可得k 的取值范围. 【详解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x=+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞1.(2020·山东省高三二模)已知函数()()21f x x m x m =+--,若()()0f f x 恒成立,则实数m 的范围是( )A .3,3⎡--+⎣B .1,3⎡--+⎣C .[]3,1- D .3⎡⎤-+⎣⎦【答案】A 【解析】()()()()211f x x m x m x m x =+--=-+,(1)1m >-,()()0ff x ≥恒成立等价于()f x m ≥或()1f x ≤-恒成立,即()()21f x x m x m m =+--≥或()()211f x x m x m =+--≤-(不合题意,舍去)恒成立;即01m ∆≤⎧⎨>-⎩,解得(1,3m ∈--+, (2)1m =-恒成立,符合题意; (3)1m <-,()()0ff x ≥恒成立等价于()f x m ≤(不合题意,舍去)或()1f x ≥-恒成立,等价于1m ∆≤⎧⎨<-⎩,解得[)3,1m ∈--. 综上所述,3,3m ⎡∈--+⎣,故选:A.2.(2021·浙江高三二模)已知()22f x x x =-,对任意的1x ,[]20,3x ∈.方程练提升()()()()12f x f x f x f x m -+-=在[]0,3上有解,则m 的取值范围是( )A .[]0,3B .[]0,4C .{}3D .{}4【答案】D 【解析】对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,不妨取取()11f x =-,()23f x =,方程有解m 只能取4,则排除其他答案.【详解】2()(1)1f x x =--,[0,3]x ∈,则min ()1f x =-,max ()3f x =.要对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上都有解, 取()11f x =-,()23f x =,此时,任意[0,3]x ∈,都有()()()()124m f x f x f x f x =-+-=, 其他m 的取值,方程均无解,则m 的取值范围是{}4. 故选:D.3.(2020·浙江省高三二模)已知函数()321,020a x x f x x ax x ⎧-≤⎪=⎨-+->⎪⎩的图象经过三个象限,则实数a 的取值范围是________. 【答案】2a <或3a >. 【解析】当0x ≤时,3()||11f x a x =-≤-,此时函数图象经过第三象限,当02x <<时,2()(1)2f x x a x =-++,此时函数图象恒经过第一象限,当2[(1)]40a =--->且10a +>,即3a >时,函数图像经过第一、四象限,当2x ≥时,2()(1)2f x x a x =---,此时函数图象恒经过第一象限,当(2)0f <,即2a >时,函数图像经过第一、四象限, 综上所述:2a <或3a >.4.(2020·陕西省西安中学高三其他(理))记{},max ,,,m m nm n n m n ≥⎧=⎨<⎩函数{}22()max 44(1),ln (1)f x x ax a x a =-+--<有且只有一个零点,则实数a 的取值范围是_________.【答案】12a < 【解析】令()()2244(1)0g x x ax a x =-+-->,因为1a <,则()2(1)651(5)0ln1g a a a a =-+-=---<=,所以(1)ln10f ==,即1是函数()f x 的零点, 因为函数()g x 的对称轴为122a x =<, 所以根据题意,若函数()f x 有且只有一个零点,则二次函数()g x 没有零点,22(4)16(1)0a a ∆=--<,解得12a <. 故答案为:12a <5.(2021·浙江高三专题练习)已知函数()21,()2f x x x a b a b R =+-+∈,若[1,1]x ∈-时,()1f x ≤,则12a b +的最大值是___________. 【答案】12- 【解析】根据函数()21,()2f x x x a b a b R =+-+∈,分1a >,1a <-和11a -≤≤三种情况讨论,分别求得其最大值,即可求解. 【详解】由题意,函数()21,()2f x x x a b a b R =+-+∈, 当1a >时,()211,[1,1]22f x x x a b x =-++∈-,因为() 1f x ≤,可得(1)11()14f f -≤⎧⎪⎨≥-⎪⎩,所以1122115216a b a b ⎧+≤-⎪⎪⎨⎪+≥-⎪⎩,所以15111622a b -≤+≤-; 当1a <-时,()211,[1,1]22f x x x a b x =+-+∈-,因为()1f x ≤,可得()max 11(1)1122f x f a b ==+-+≤, 所以1122b a ≤-,所以113222a b a +=-≤-;当11a -≤≤时,()21,[1,1]2f x x x a b x =+-+∈-,由()1f x ≤知,()max (1)1112f f x a b =+--+=, 因为11a -≤≤,所以10a --≤,所以()max (1)1112f f x a b =+--+=,所以1122a b +≤-,综上可得,12a b +的最大值是12-.故答案为:12-6.(2021·浙江高三期末)已知函数()()21sin sin ,22bf x x x a a b R =+-+∈,若对于任意x ∈R ,均有()1f x ≤,则+a b 的最大值是___________.【答案】1- 【解析】首先讨论1a ≥、1a ≤-时()f x 的最值情况,由不等式恒成立求+a b 的范围,再讨论11a -<<并结合()f x 的单调情况求+a b 的范围,最后取它们的并集即可知+a b 的最大值. 【详解】当sin a x ≥时,211()(sin )4216a b f x x +=-+-, 当sin a x <时,211()(sin )4216b a f x x -=++-,令sin [1,1]t x =∈-,则()()2211,4216{11(),()4216a b t a t g t b a t a t +⎛⎫-+-≥ ⎪⎝⎭=-++-<∴当1a ≥时,14t =有min 1()216a b g t +=-;1t =-有max 3()22a b g t +=+; 由x ∈R 有()1f x ≤,有131121622a b a b ++-≤-<+≤,故1518a b -≤+≤-; 当1a ≤-时,14t =-有min 1()216b a g t -=-;1t =有max 3()22b a g t -=+; 由x ∈R 有()1f x ≤,有131121622b a b a ---≤-<+≤,故1518b a -≤-≤-,即3a b +≤-; 当11a -<<时,()2211(),(1)4216{11,(1)4216a b t t a g t b a t a t +-+--<<=-⎛⎫++-≤< ⎪⎝⎭, ∴1(1,)4a ∈--:()g t 在(1,)a -上递减,1[,)4a -上递减,1[,1]4-上递增; 11[,]44a ∈-:()g t 在(1,)a -上递减,[,1)a 上递增;1(,1)4a ∈:()g t 在1(1,]4-上递减,1[,)4a 上递增,[,1)a 上递增;∴综上,()g t 在(1,1)-上先减后增,则(1)1(1)1g g ≤⎧⎨-≤⎩,可得1a b +≤-∴1a b +≤-恒成立,即+a b 的最大值是-1. 故答案为:1-.7.(2020·武汉外国语学校(武汉实验外国语学校)高一期中)已知函数2()3(,)f x ax bx a b R =++∈,且()0f x ≤的解集为[1,3].(1)求()f x 的解析式;(2)设()()41xh x f x x =+-,在定义域范围内若对于任意的12x x ,,使得()()12h x h x M -≤恒成立,求M 的最小值.【答案】(1)2()43f x x x =-+;(2)2. 【解析】(1)代入方程的根,求得参数值.(2)使不等式恒成立,根据函数单调性求得函数的最值,从而求得参数的值. 【详解】 解:(1)由题意(1)30(3)9330f a b f a b =++=⎧⎨=++=⎩解得14a b =⎧⎨=-⎩2()43f x x x ∴=-+(2)由题意max ()()min M h x h x -2(),2xh x x R x =∈+ 当0()0x h x ==当10()2x h x x x≠=+, 令2()g x x x=+,当0,()22x g x>,当x =当0,()x g x <≤-x =()(,)g x ∴∈-∞-⋃+∞(),00,(0)44h x x ⎡⎫⎛∈-⋃≠⎪ ⎢⎪⎣⎭⎝⎦综上,()44h x ⎡∈-⎢⎣⎦2442M⎛∴--= ⎝⎭min 2M ∴=8.(2021·浙江高一期末)设函数()()2,f x x ax b a b R =-+∈. (1)若()f x 在区间[]0,1上的最大值为b ,求a 的取值范围; (2)若()f x 在区间[]1,2上有零点,求2244a b b +-的最小值. 【答案】(1)[)1,+∞;(2)45. 【解析】(1)对实数a 的取值进行分类讨论,分析函数()f x 在区间[]0,1上的单调性,求得()max f x ,再由()max f x b =可求得实数a 的取值范围;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理化简()22222221222222241414144a x x x x x x b b x +-=+⎛⎫=+-- ⎪++⎝⎭,设()22224124g x x =⎛⎫+- ⎪⎝⎭,由[]21,2x ∈结合不等式的基本性质求出()2g x 的最小值,即为所求. 【详解】(1)二次函数()2f x x ax b =-+的图象开口向上,对称轴为直线2a x =. ①当02a≤时,即当0a ≤时,函数()f x 在区间[]0,1上单调递增,则()()max 11f x f a b ==-+; ②当012a <<时,即当02a <<时,函数()f x 在0,2a ⎡⎫⎪⎢⎣⎭上单调递减,在,12a ⎛⎤⎥⎝⎦上单调递增, ()0f b =,()11f a b =-+,所以,(){}max 1,01max ,1,12a b a f x b a b b a -+<<⎧=-+=⎨≤<⎩;③当12a≥时,即当2a ≥时,函数()f x 在区间[]0,1上单调递减,则()()max 0f x f b ==.综上所述,()max 1,1,1a b a f x b a -+<⎧=⎨≥⎩.所以,当()f x 在区间[]0,1上的最大值为b ,实数a 的取值范围是[)1,+∞; (2)设函数()f x 的两个零点为1x 、2x ,由韦达定理可得1212x x ax x b+=⎧⎨=⎩,所以,()()22222222222212121211221212122444424142a b b x x x x x x x x x x x x x x x x x +-=++-=-++=+-+()222222222212222222241414141x x x x x x x x x x ⎛⎫=+-+-≥- ⎪+++⎝⎭, 设()242222222222422222444144141124x x g x x x x x x x =-===++⎛⎫++- ⎪⎝⎭, 由212x ≤≤可得221114x ≤≤,所以,()2222445124g x x =≥⎛⎫+- ⎪⎝⎭.此时,21x =,由212241x x x =+可得115x =. 所以,当115x =,21x =时,2244a b b +-取最小值45. 9.(2020·全国高一单元测试)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.【答案】(Ⅰ)g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)m ≤﹣52或m ≥52.【解析】(Ⅰ)令u =3x ∈[1,3],得到f (x )=h (u )=u 2﹣3au +a 2,分类讨论即可求出, (Ⅱ)先求出g (a )min =g (32)=﹣54,再根据题意可得﹣m 2+tm ≤﹣54,利用函数的单调性即可求出.【详解】解:(Ⅰ)令u =3x ∈[1,3],则f (x )=h (u )=u 2﹣3au +a 2. 当32a≤2,即a ≤43时,g (a )=h (u )min =h (3)=a 2﹣9a +9; 当322a>,即a >43时,g (a )=h (u )min =h (1)=a 2﹣3a +1; 故g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)当a≤43时,g (a )=a 2﹣9a +9,g (a )min =g (43)=﹣119;当a 43>时,g (a )=a 2﹣3a +1,g (a )min =g (32)=﹣54;因此g (a )min =g (32)=﹣54;对于任意任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立等价于﹣m 2+tm ≤﹣54. 令h (t )=mt ﹣m 2,由于h (t )是关于t 的一次函数,故对于任意t ∈[﹣2,2]都有h (t )≤﹣54等价于5(2)45(2)4h h ⎧-≤-⎪⎪⎨⎪≤-⎪⎩,即2248504850m m m m ⎧+-≥⎨--≥⎩, 解得m ≤﹣52或m ≥52. 10.(2021·全国高一课时练习)已知函数()22(0)f x ax ax b a =-+>,在区间[]0,3上有最大值16,最小值0.设()()f xg x x=. (1)求()g x 的解析式;(2)若不等式()22log log 0g x k x -⋅≥在[]4,16上恒成立,求实数k 的取值范围;【答案】(1)()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)(,1]-∞. 【解析】(1)由二次函数的性质知()f x 在0,1上为减函数,在()1,3上为增函数,结合其区间的最值,列方程组求,a b ,即可写出()g x 解析式; (2)由题设得222184()4log log k x x≤-+在[]4,16x ∈上恒成立,即k 只需小于等于右边函数式的最小值即可. 【详解】(1)∵()2(1)f x a x b a =-+-(0a >),即()f x 在0,1上为减函数,在()1,3上为增函数.又在[]0,3上有最大值16,最小值0,∴(1)0f b a =-=,(3)316f a b =+=,解得4a b ==, ∴()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠; (2)∵()22log log 0g x k x -≥∴22214log 8log log x k x x ⎛⎫+-≥ ⎪⎝⎭,由[]4,16x ∈,则[]2log 2,4x ∈, ∴222221814()44(1)log log log k x x x ≤-+=-,设21log t x =,11,42t ⎡⎤∈⎢⎥⎣⎦, ∴()24(1)h t t =-在11,42⎡⎤⎢⎥⎣⎦上为减函数,当12t =时,()h t 最小值为1,∴1k ≤,即(,1]k ∈-∞.1.(浙江省高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关练真题【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2018·浙江高考真题)已知λ∈R,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】 (1,4) (1,3]∪(4,+∞) 【解析】由题意得{x ≥2x −4<0 或{x <2x 2−4x +3<0 ,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f(x)=x −4>0,此时f(x)=x 2−4x +3=0,x =1,3,即在(−∞,λ)上有两个零点;当λ≤4时,f(x)=x −4=0,x =4,由f(x)=x 2−4x +3在(−∞,λ)上只能有一个零点得1<λ≤3.综上,λ的取值范围为(1,3]∪(4,+∞).3.(北京高考真题)已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____.【答案】1[,1]2【解析】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x =时,取最小值12.因此22x y +的取值范围为1[,1]2.4.(2018·天津高考真题(理))已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是______________.【答案】(48),【解析】分析:由题意分类讨论0x ≤和0x >两种情况,然后绘制函数图像,数形结合即可求得最终结果. 详解:分类讨论:当0x ≤时,方程()f x ax =即22x ax a ax ++=, 整理可得:()21x a x =-+,很明显1x =-不是方程的实数解,则21x a x =-+,当0x >时,方程()f x ax =即222x ax a ax -+-=, 整理可得:()22x a x =-,很明显2x =不是方程的实数解,则22x a x =-,令()22,01,02x x x g x x x x ⎧-≤⎪⎪+=⎨⎪>⎪-⎩, 其中211211x x x x ⎛⎫-=-++- ⎪++⎝⎭,242422x x x x =-++-- 原问题等价于函数()g x 与函数y a =有两个不同的交点,求a 的取值范围. 结合对勾函数和函数图象平移的规律绘制函数()g x 的图象, 同时绘制函数y a =的图象如图所示,考查临界条件, 结合0a >观察可得,实数a 的取值范围是()4,8.5.(2020·江苏省高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; 【答案】(1)()2h x x =; 【解析】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立. 令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =. 故()2h x x =.6.(浙江省高考真题(文))设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>;(2)[3,9--【解析】 (1)当214a b时,2()()12a f x x =++,故其对称轴为2a x =-. 当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>(2)设,s t 为方程()0f x =的解,且11t -≤≤,则{s t ast b+=-=.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++, 由于222032t t --≤≤+和212932t t t --≤≤-+所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b 的取值范围是[3,9--.。
函数概念与基本初等函数(A卷基础过关检测)1——新高考数学复习专题测试附答案解析
第二单元 函数概念与基本初等函数A 卷 基础过关检测一、选择题:本题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019·哈尔滨市第一中学校高三开学考试(文))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( )A .(1,1)-B .1(1,)2--C .(1,0)-D .1(,1)22.(2020·重庆南开中学高三其他(文))下列函数中,值域是R 且是奇函数的是( )A .31y x =+B .sin y x =C .3y x x =-D .2x y =3.(2020·河南省高三三模(文))已知定义域为R 的函数()f x 的图象关于原点对称,且0x >时,(2)4()f x f x +=.当(0,2]x ∈时,3()log 22x f x ⎛⎫=+ ⎪⎝⎭,则(8)(4)f f -+=( ) A .60- B .8- C .12 D .684.(2020·黑龙江省哈尔滨三中高三其他(文))设2log 3a =,13log 2b =,20.4c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .a c b >>D .c a b >>5.(2020·河北省衡水中学高三其他(文))函数()()ln 3f x x =-的部分图象大致为( ) A . B .C .D .6.(2020·哈尔滨市第一中学校高三一模(文))已知()1f x +是定义在R 上的奇函数,()22f =-,且对任意11x ≤,21x ≤,12x x ≠,()()1212f x f x x x --0<恒成立,则使不等式()22log 2f x -<成立的x 的取值范围是( )A .()0,1B .()0,2C .()4,+∞D .()1,47.(2020·重庆高三其他(文))定义在R 上的奇函数()f x 满足:3344f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,且当30,4x ⎛⎫∈ ⎪⎝⎭时,()2log (1)f x x m =++,若()2100log 3f =,则实数m 的值为( )A .2B .1C .0D .-18.(2020·江西省高三二模(文))已知函数()f x 是定义在R 上的偶函数,且(1)(1)f x f x -=-+,(0)1f =,则(0)(1)(2020)f f f +++=( ) A .1- B .0 C .1 D .20209.(2019·天津高考模拟(文))已知函数()22,0,0ax x x f x ax x x ⎧+=⎨-+<⎩,当11,22x ⎡⎤∈-⎢⎥⎣⎦时,恒有()()f x a f x +<成立,则实数a 的取值范围是( )A .1515-+⎝⎭B .15⎛+- ⎝⎭ C .15⎫-⎪⎪⎝⎭ D .1512⎤--⎥⎝⎦ 10.(2020·四川省仁寿第二中学高三三模(文))已知函数()()2ln 1f x x x =++,若对于[]1,2x ∈-,()22229ln 4f x ax a +-<+恒成立,则实数a 的取值范围是( )A .261a --<<B .11a -<<C.22a +>或22a -< D.2222a -<< 11.(2020·福建省厦门一中高三其他(文))已知函数()()ln ,02,0,x x x f x x x e x ⎧>⎪=⎨⎪+≤⎩若函数()()g x f x a =-的零点有2个或3个,则实数a 的取值范围为( )A .311,e e ⎛⎫- ⎪⎝⎭B .311,e e ⎡⎤-⎢⎥⎣⎦C .10,e ⎛⎤ ⎥⎝⎦D .31,0e ⎛⎫- ⎪⎝⎭12.(2020·四川省遂宁市第二中学校高三其他(文))已知函数()3,00,0133,1x x f x x x x <⎧⎪=≤≤⎨⎪->⎩,若函数()()3g x x f x λ=+恰有3个零点,则λ的取值范围为A .()9,04⎧⎫-∞⋃⎨⎬⎩⎭B .9,4⎛⎫+∞ ⎪⎝⎭C .90,4⎛⎫ ⎪⎝⎭D .()9,0,4⎛⎫-∞⋃+∞ ⎪⎝⎭二、填空题:本大题共4小题,共20分。
高考数学压轴专题(易错题)备战高考《函数与导数》基础测试题附答案
【高中数学】单元《函数与导数》知识点归纳一、选择题1.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.2.已知()f x 是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于()f x 的结论:①()f x 是周期函数;②()f x 满足()(4)f x f x =-;③()f x 在(0,2)单调递减;④()cos 2xf x π=是满足条件的一个函数.其中正确结论的个数是( ) A .4 B .3C .2D .1【答案】B 【解析】 【分析】题目中条件:(2)()f x f x +=-可得(4)()f x f x +=知其周期,利用奇函数图象的对称性,及函数图象的平移变换,可得函数的对称中心,结合这些条件可探讨函数的奇偶性,及单调性. 【详解】解:对于①:()()f x f x -=Q ,其图象关于点(1,0)对称(2)()f x f x +=- 所以(4)(2)()f x f x f x +=-+=,∴函数()f x 是周期函数且其周期为4,故①正确;对于②:由①知,对于任意的x ∈R ,都有()f x 满足()(4)f x f x -=-, 函数是偶函数,即()(4)f x f x =-,故②正确. 对于③:反例:如图所示的函数,关于y 轴对称,图象关于点(1,0)对称,函数的周期为4,但是()f x 在(0,2)上不是单调函数,故③不正确;对于④:()cos 2xf x π=是定义在R 上的偶函数,其图象关于点(1,0)对称的一个函数,故④正确. 故选:B . 【点睛】本题考查函数的基本性质,包括单调性、奇偶性、对称性和周期性,属于基础题.3.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是A .M N N =IB .()U M N =∅I ðC .M N U =UD .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.4.已知定义在R 上的函数()f x 满足()()242f x f x x +-=+,设()()22g x f x x =-,若()g x 的最大值和最小值分别为M 和m ,则M m +=( ) A .1 B .2 C .3 D .4【答案】B 【解析】∵()()242f x f x x +-=+,()()22g x f x x =-∴2222()()()2()24242g x g x f x x f x x x x +-=-+--=+-= ∴函数()g x 关于点(0,1)对称∵()g x 的最大值和最小值分别为M 和m ∴122M m +=⨯= 故选B.5.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2- B .1(,1)(,)2-∞-+∞U C .1(,1)2-D .1(,)(1,)2-∞-⋃+∞【答案】B 【解析】 【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2xxf x e ex -=-+,定义域为R ,且满足()()sin 2xx f x ee x --=-+- ()()sin2x x e e xf x -=--+=-,∴()f x 为R 上的奇函数; 又()'2cos222cos20xxf x e ex x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f xf x f x ->-=-,∴221x x ->-, 即2210x x +->, 解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选B . 【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.6.已知函数()()1110x x e f x x e++-=<与()()1ln x xg x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .1,1e ⎛⎫-∞+ ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .1,1e ⎛⎫-∞- ⎪⎝⎭D .11,e⎛⎫-+∞ ⎪⎝⎭【答案】D 【解析】 【分析】先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e ex x a ++-=在()0,∞+上有解,设()()11ln 1e ex x x ϕ=++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.【详解】由()f x 关于y 轴对称的函数为()()()1111e e 10ex x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1e 1e ln 1e x x x x a --=+-()0x >,则方程()1e 1e ln 1e x x x x a --=+-在()0,∞+上有解,即方程()11ln 1e ex x a ++-=在()0,∞+上有解, 设()()11ln 1e ex x x ϕ=++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,()()11e 1e 1e 1x x x x x x x ϕ--=-+='++Q ,令()=e 1xm x x --,则()=e 10xm x '->在()0,∞+上恒成立,所以()=e 1xm x x --在()0,∞+上为增函数,∴()()00m x m >=,即()0x ϕ'>Q 在()0,∞+上恒成立, ∴()x ϕ在()0,∞+上为增函数,当0x >时,则()()101x eϕϕ>=-, 所以11ea >-, 故选:D 【点睛】本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.7.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。
高三函数单元测试题及答案
高三函数单元测试题及答案一、选择题(每题3分,共15分)1. 函数f(x) = 2x^2 - 3x + 1的顶点坐标是:A. (-1, 0)B. (-1, 2)C. (1, -2)D. (1, 0)2. 若函数f(x) = 4x^3 - 3x^2 + 2x - 5在x=1处取得极值,那么f'(x)在x=1处的值为:A. 0B. 1C. -1D. 23. 已知函数g(x) = 3x + 5,若g(a) = 8,则a的值为:A. 1B. -1C. 3D. -34. 函数h(x) = x^3 - 6x^2 + 11x - 6的单调递增区间是:A. (-∞, 1)B. (1, 2)C. (2, +∞)D. (-∞, 2)5. 若函数y = 2x - 3与直线y = 6 - x平行,则它们的交点坐标是:A. (1, 2)B. (3, 3)C. (5, 7)D. (7, 5)二、填空题(每题2分,共10分)6. 函数f(x) = x^2 + 2x + 1的最小值是______。
7. 若函数f(x) = sin(x) + cos(x)的最大值为√2,则x的值为______。
8. 函数f(x) = 1 / x在区间(-1, 0)上是______函数。
9. 若函数f(x) = log_2(x)的定义域为______。
10. 函数f(x) = |x - 2|的对称轴是______。
三、解答题(每题5分,共20分)11. 求函数f(x) = x^3 - 3x^2 - 9x + 5的极值点。
12. 已知函数f(x) = x^2 + 2x - 3,求其在区间[-5, 4]上的值域。
13. 已知函数f(x) = 2x - 1与直线y = x + 2平行,求两直线的交点坐标。
14. 已知函数f(x) = √x,求其在x=4处的导数值。
四、综合题(每题10分,共10分)15. 已知函数f(x) = x^3 - 9x^2 + 26x - 16,求其在区间[1, 5]上的单调性,并求出极值。
高考数学模拟考试试题
高考数学模拟考试试题本次模拟考试是针对高中生准备参加高考的重要考核,经过严格的测试,可以全面检测学生高考数学知识水平,及时发现和改正不足;并以此有效提升学生参加高考的能力。
高考数学模拟考试试题【一】一元二次方程的解1、已知一元二次方程2x2−2x−3=0,求解此方程。
2、设a≠0,b≠0,利用一元二次方程ax2 + bx + c = 0 的判别式D=b2−4ac,求实数解的个数。
【二】二次函数的性质1、设a、b、c 均为实数且满足a≠0,求实数解的二次函数y =ax2 +bx +c的图象的对称性和极值的位置。
2、设a≠0,求函数y=ax2 + bx+ c的最大值。
【三】解不等式1、解不等式x2-2x+1≥0。
2、解不等式|x+2|-x+1≤0。
【四】平面几何的图形1、计算点P(3,4)关于直线x+y=6的对称点坐标。
2、求四边形ABCD,其中∠C=90°,AB=10,CD=2 对应的AC=?【五】正弦定理1、已知正三角形ABC,其中a=3,b=4。
求∠A(A边对角)的角度。
2、已知正三角形ABC,c=6,b=4。
求边a的长度。
【六】勾股定理1、已知直角三角形的两条直角边长度为3和4,求斜边的长度。
2、已知直角三角形的斜边为5,求两边边长之和。
【七】多项式乘法1、求(x+2)(2x2+3x+4)的值。
2、已知2a2b3+4ab2-6a2b-7ab+8,求a和b的值。
【八】三角函数1、函数 y = 3sin2x -2cos2x 在[0,π]上的最大值和最小值都是多少?2、设P(2,3)在正弦函数y=sin x+2上,求x的值。
【九】立体几何1、三棱柱的锥角是几度?2、已知棱台的正三棱锥ABC的各边长分别是3、4、5,求体积的大小。
【十】从句1、如果f(x) =x2-2x+1,求f(f(-2))的值多少?2、当x≠0,求x2-2x+1的值分别为多少?。
新高考高三数学测试卷
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = ax^2 + bx + c的图象开口向上,且f(1) = 3,f(-1) = 1,则a的取值范围是()A. a > 0B. a ≥ 0C. a < 0D. a ≤ 02. 在等差数列{an}中,若a1 = 3,公差d = 2,则第10项an =()A. 19B. 20C. 21D. 223. 已知复数z = 2 + 3i,求|z|的值为()A. 5B. 6C. 7D. 84. 若向量a = (1, 2),向量b = (3, 4),则向量a·b的值为()A. 5B. 7C. 9D. 115. 函数y = log2(x - 1)的图象与直线y = x相交于点P,则点P的坐标为()A. (2, 1)B. (3, 1)C. (2, 2)D. (3, 2)6. 若不等式2x - 3 < 0,则x的取值范围是()A. x < 1.5B. x ≤ 1.5C. x > 1.5D. x ≥ 1.57. 已知等比数列{bn}的公比q = 2,首项b1 = 1,则第n项bn =()A. 2^n - 1B. 2^nC. 2^n + 1D. 2^n - 28. 在直角坐标系中,点A(1, 2),点B(3, 4),则线段AB的中点坐标为()A. (2, 3)B. (2, 2)C. (3, 2)D. (2, 1)9. 函数y = e^x在区间(0, +∞)上的单调性是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增10. 若等差数列{an}的前n项和为Sn,公差d = 3,首项a1 = 1,则Sn的值为()A. 3n^2B. 3n^2 - 3nC. 3n^2 + 3nD. 3n^2 - 6n二、填空题(本大题共5小题,每小题10分,共50分)11. 已知函数f(x) = x^3 - 3x + 2,求f'(x)的值。
高考数学专题《函数的单调性与最值》习题含答案解析
专题3.2 函数的单调性与最值1.(2021·全国高一课时练习)函数f(x)=1,01,0x xx x+≥⎧⎨-<⎩在R上()A.是减函数B.是增函数C.先减后增D.先增后减【答案】B【解析】画出函数图像即可得解.【详解】选B.画出该分段函数的图象,由图象知,该函数在R上是增函数.故选:B.2.(2021·全国高一课时练习)若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有()-()-f a f ba b>0成立,则必有()A.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)先增后减D.函数f(x)先减后增【答案】A【解析】根据条件可得当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),从而可判断.【详解】练基础由()-()-f a f b a b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.3.(2021·全国高一课时练习)设函数f (x )是(-∞,+∞)上的减函数,则 ( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a ) D .f (a 2+1)<f (a )【答案】D 【解析】利用0a =排除ABC ,作差可知21a a +>,根据单调性可知D 正确. 【详解】当0a =时,选项A 、B 、C 都不正确; 因为22131()024a a a +-=-+>,所以21a a +>, 因为()f x 在(,)-∞+∞上为减函数,所以2(1)()f a f a +<,故D 正确.故选:D4.(2021·西藏高三二模(理))已知函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为( ) A .(),3-∞ B .()3,+∞C .(),3-∞-D .()3,-+∞【答案】C 【解析】根据函数为奇函数且在R 上单调递减可得()()32f m f m -<求解. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<, 得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C .5.(2021·广西来宾市·高三其他模拟(理))已知定义在R 上的偶函数()f x 满足在[0,)+∞上单调递增,(3)0f =,则关于x 的不等式(2)(2)0f x f x x++-->的解集为( )A .(5,2)(0,)--+∞ B .(,5)(0,1)-∞- C .(3,0)(3,)-⋃+∞ D .(5,0)(1,)-+∞【答案】D 【解析】根据题意作出函数()f x 的草图,将(2)(2)0f x f x x++-->,转化为2(2)0f x x +>,利用数形结合法求解. 【详解】因为定义在R 上的偶函数()f x 满足在(0,)+∞内单调递增, 所以()f x 满足在(,0)-∞内单调递减,又(3)0f =, 所以(3)(3)0f f -==. 作出函数()f x 的草图如下:由(2)(2)0f x f x x ++-->,得(2)[(2)]0f x f x x++-+>,得2(2)0f x x+>, 所以0,(2)0,x f x >⎧⎨+>⎩或0,(2)0,x f x <⎧⎨+<⎩所以0,23,x x >⎧⎨+>⎩或0,323,x x <⎧⎨-<+<⎩ 解得1x >或5x 0-<<, 即不等式(2)(2)0f x f x x++-->的解集为(5,0)(1,)-+∞.故选:D6.(2021·黑龙江哈尔滨市·哈师大附中高三三模(文))已知函数()22f x x x -=-( )A .是奇函数,0,单调递增B .是奇函数,0,单调递减C .是偶函数,0,单调递减D .是偶函数,0,单调递增【答案】D 【解析】利用奇偶性和单调性的定义判断即可 【详解】解:定义域为{}0x x ≠, 因为2222()()()()f x x x x x f x ---=---=-=,所以()f x 为偶函数,任取12,(0,)x x ∈+∞,且12x x <,则2222212211()()f x f x x x x x ---=--+212122121()()(1)x x x x x x =-++, 因为12x x <,12,(0,)x x ∈+∞,所以212122121()()(1)0x x x x x x -++>,所以21()()f x f x >,所以()f x 在0,单调递增,故选:D7.(2021·全国高三月考(理))若()f x 是奇函数,且在(,0)-∞上是减函数,又(4)0f -=,则(2)(2)0f x f x x+--->的解集是( )A .(4,0)(4,)-⋃+∞B .(6,2)(0,2)--⋃C .(6,2)(2,)--⋃+∞D .(,4)(0,4)-∞-⋃【答案】B 【解析】根据函数()f x 为奇函数,(4)0f -=得到(4)0f =,再由函数在(,0)-∞上是减函数,作出函数()f x 的图象,再由(2)(2)0f x f x x +--->,等价于2(2)0f x x+>,利用数形结合法求解.【详解】因为函数()f x 为奇函数, 所以(4)(4)0f f -=-=, 所以(4)0f =,因为函数()f x 在(,0)-∞上是减函数, 所以函数()f x 在(0,) +∞上是减函数. 作出函数()f x 的大致图象如图所示,而(2)(2)0f x f x x +--->,等价于(2)[(2)]0f x f x x +--+>,即2(2)0f x x+>,则0(2)0x f x <⎧⎨+<⎩或0(2)0x f x >⎧⎨+>⎩,所以0420x x <⎧⎨-<+<⎩或0024x x >⎧⎨<+<⎩,解得62x -<<-或02x <<. 综上,(2)(2)0f x f x x+--->的解集是(6,2)(0,2)--⋃.故选:B8.(2021·全国高三专题练习(文))已知函数()||2f x x x x =⋅-,则下列结论正确的是( )A .()f x 是偶函数,递增区间是()0-∞,B .()f x 是偶函数,递减区间是()1-∞,C .()f x 是奇函数,递减区间是(11)-, D .()f x 是奇函数,递增区间是(0)+∞,【答案】C 【解析】将函数解析式化为分段函数型,画出函数图象,数形结合即可判断; 【详解】解:将函数()||2f x x x x =⋅-去掉绝对值得2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,画出函数()f x 的图象,如图,观察图象可知,函数()f x 的图象关于原点对称,故函数()f x 为奇函数,且在(11)-,上单调递减, 故选:C9.(2021·宁夏银川市·高三二模(文))设函数()21f x x x=-,则()f x ( )A .是偶函数,且在(),0-∞单调递增B .是偶函数,且在(),0-∞单调递减C .是奇函数,且在(),0-∞单调递增D .是奇函数,且在(),0-∞单调递减【答案】B 【解析】利用定义可判断函数()f x 的奇偶性,化简函数()f x 在(),0-∞上的解析式,利用函数单调性的性质可判断函数()f x 在(),0-∞上的单调性. 【详解】函数()21f x x x =-的定义域为{}0x x ≠,()()()2211f x x x f x x x-=--=-=-, 所以,函数()f x 为偶函数, 当0x <时,()21f x x x=+,由于函数2y x 、1y x=在(),0-∞上均为减函数,所以,函数()f x 在(),0-∞上单调递减, 故选:B.10.(2021·全国高一课时练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______. 【答案】1223⎛⎫- ⎪⎝⎭, 【解析】结合函数定义域和函数的单调性列不等式求解即可. 【详解】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,1.(2021·黑龙江大庆市·大庆实验中学高二月考(文))定义在*N 上的函数()22,3,3x ax a x f x ax x ⎧-+<=⎨≥⎩为递增函数,则头数a 的取值范围是( ) A .()1,2 B .33,42⎛⎫⎪⎝⎭C .3,14⎡⎫⎪⎢⎣⎭D .()1,3【答案】D 【解析】练提升根据定义域和单调性可知()()12f f <,再根据3x ≥时()f x 的单调性判断出()()32f f >,由此求解出a 的取值范围..【详解】因为*x ∈N ,所以3x <时,即{}1,2x ∈,由单调性可知()()21f f >,所以22142a a a a -+<-+,解得3a <;当3x ≥时,y ax =为增函数,若()f x 单调递增,则只需()()32f f >,所以2342a a a >-+,解得14a <<,综上可知a 的取值范围是:()1,3, 故选:D.2.(2021·上海高三二模)已知函数()(),y f x y g x ==满足:对任意12,x x R ∈,都有()()()()1212f x f x g x g x -≥-.命题p :若()y f x =是增函数,则()()y f x g x =-不是减函数;命题q :若()y f x =有最大值和最小值,则()y g x =也有最大值和最小值. 则下列判断正确的是( ) A .p 和q 都是真命题 B .p 和q 都是假命题 C .p 是真命题,q 是假命题 D .p 是假命题,q 是真命题【答案】A 【解析】利用函数单调性定义结合已知判断命题p 的真假,再利用函数最大、最小值的意义借助不等式性质判断命题q 的真假而得解. 【详解】对于命题p :设12x x <,因为()y f x =是R 上的增函数,所以()()12f x f x <, 所以()()()()1221f x f x f x f x -=-, 因为()()()()1212f x f x g x g x -≥-,所以()()()()211221()()f x f x g x g x f x f x -+≤-≤-所以()()1122()()f x g x f x g x -≤- 故函数()()y f x g x =-不是减函数, 故命题p 为真命题;对于命题():q y f x =在R 上有最大值M ,此时x a =,有最小值m ,此时x b =, 因为()()()()()()()()f x f a g x g a f x M g x g a M f x -≥-⇔-≤-≤-,()()()()()()()()f x f b g x g b m f x g x g b f x m -≥-⇔-≤-≤-所以()()()()2()()()()22m M g a g b M m g a g b m M g x g a g b M m g x -++-++-≤--≤-⇔≤≤,所以()y g x =也有最大值和最小值,故命题q 为真命题. 故选:A3.(2021·全国高三二模(理))已知实数a ,b ,c ,d 满足a b c >>,且0a b c ++=,220ad bd b +-=,则d 的取值范围是( ) A .(][),10,-∞-+∞B .()1,1-C .(D .(11--+【答案】D 【解析】先求解出方程的解1,2d ,然后利用换元法(bt a=)将d 表示为关于t 的函数,根据条件分析t 的取值范围,然后分析出d 关于t 的函数的单调性,由此求解出d 的取值范围. 【详解】因为220ad bd b +-=,所以1,2b b d a a -==-±2440b ab ∆=+≥,令bt a=,则1,2d t =-±20t t +≥,所以(][),10,t ∈-∞-+∞,又因为0a b c ++=且a b c >>,所以0a >且c a b b a =--<<, 所以2,a b b a -<<,所以112bt a-<=<,所以[)0,1t ∈,当[)0,1t ∈时,())10,1d t t =-==∈, 因为1y t=在()0,1上单调递减,所以y t =-()0,1上单调递增, 当0t =时,10d =,当1t =时,11d =,所以)11d ⎡∈⎣; 当[)0,1t ∈时,2d t =-,因为y t =、2y t t =+在[)0,1上单调递增,所以y t =-[)0,1上单调递减, 当0t =时,20d =,当1t =时,21d =-(21d ⎤∈-⎦,综上可知:(11d ∈---, 故选:D.4.【多选题】(2021·湖南高三三模)关于函数()111f x x x =++的结论正确的是( ) A .()f x 在定义域内单调递减 B .()f x 的值域为R C .()f x 在定义城内有两个零点 D .12y f x ⎛⎫=-⎪⎝⎭是奇函数 【答案】BD 【解析】根据所给函数结合函数性质,对各项逐个分析判断, 即可得解. 【详解】()111f x x x =++的定义域为(,1)(1,0)(0,)-∞--+∞, 而1x和11x +在各段定义域内均为减函数, 故()f x 在各段上为减函数,但不能说在定义域内单调递减,故A 错误; 当(1,0)x ∈- ,1x →-时,有()111f x x x =+→+∞+, 当0x →时,有()111f x x x =+→-∞+,所以()f x 的值域为R ,故B 正确; 令()2112101x f x x x x x+=+==++,可得12x =-,所以()f x 在定义城内有一个零点,故C 错误;2211128111241224x x y f x x x x x ⎛⎫=-=+== ⎪-⎝⎭-+-, 令28()41x g x x =-,易知12x ≠±,此时定义域关于原点对称,且28()()41xg x g x x --==--,故()g x 为奇函数, 所以12y f x ⎛⎫=- ⎪⎝⎭是奇函数,故D 正确, 故选:BD.5.【多选题】(2021·全国高三专题练习)(多选题)已知函数f (x )的定义域为R ,对任意实数x ,y 满足f (x +y )=f (x )+f (y )+12,且f 1()2=0,当x >12时,f (x )>0,则以下结论正确的是( ) A .f (0)=-12,f (-1)=-32B .f (x )为R 上的减函数C .f (x )+12为奇函数 D .f (x )+1为偶函数 【答案】AC 【解析】取0x y ==,11,22x y ==-,12x y ==-得出(0)f ,12f ⎛⎫- ⎪⎝⎭,(1)f -的值进而判断A ;由(1)(0)f f -<判断B ;令y x =-结合奇偶性的定义判断C ;令1()()2=+g x f x ,结合g (x )为奇函数,得出()1()f x f x -+=-,从而判断D.【详解】由已知,令0x y ==,得1(0)(0)(0)2f f f =++,1(0)2f ∴=-,令11,22x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112f ⎛⎫∴-=- ⎪⎝⎭,再令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3(1)2f ∴-=-,A 正确;(1)(0)f f -<,()f x ∴不是R 上的减函数,B 错误;令y x =-,得1()()()2f x x f x f x -=+-+,11()()022f x f x ⎡⎤⎡⎤∴++-+=⎢⎥⎢⎥⎣⎦⎣⎦,故C正确;令1()()2=+g x f x ,由C 可知g (x )为奇函数,11()()22g x g x ∴-+=-+,即1111()()2222f x f x ⎡⎤⎡⎤-++=-++⎢⎥⎢⎥⎣⎦⎣⎦,()1()f x f x ∴-+=-,故D 错误. 故选:AC6.【多选题】(2021·全国高一单元测试)如果函数()f x 在[,]a b 上是增函数,对于任意的1212,[,]()x x a b x x ∈≠,则下列结论中正确的是( )A .1212()()0f x f x x x ->-B .1212()[()()]0x x f x f x -->C .12()()()()f a f x f x f b ≤<≤D .12()()f x f x >E.1212()()0f x f x x x -<-【答案】AB 【解析】利用函数单调性的定义:12x x -与12()()f x f x -同号,判断A 、B 、E 的正误;而对于C 、D 选项,由于12,x x 的大小不定,1()f x 与2()f x 的大小关系不能确定. 【详解】由函数单调性的定义知,若函数()y f x =在给定的区间上是增函数,则12x x -与12()()f x f x -同号,由此可知,选项A ,B 正确,E 错误;对于选项C 、D ,因为12,x x 的大小关系无法判断,则1()f x 与2()f x 的大小关系确定也无法判断,故C ,D 不正确.故选:AB.7.【多选题】(2021·全国高一课时练习)(多选题)已知函数()f x 的定义域为D ,若存在区间[,]m n D ⊆使得()f x :(1)()f x 在[,]m n 上是单调函数; (2)()f x 在[,]m n 上的值域是[2,2]m n , 则称区间[,]m n 为函数()f x 的“倍值区间”. 下列函数中存在“倍值区间”的有( ) A .2()f x x =; B .1()f x x=; C .1()f x x x=+; D .23()1x f x x =+.【答案】ABD 【解析】函数中存在“倍值区间”,则()f x 在[],m n 内是单调函数,()()22f m m f n n ⎧=⎪⎨=⎪⎩或()()22f m nf n m ⎧=⎪⎨=⎪⎩,对四个函数的单调性分别研究,从而确定是否存在“倍值区间”. 【详解】函数中存在“倍值区间”,则(1)()f x 在[,]m n 内是单调函数,(2)()2()2f m m f n n =⎧⎨=⎩或()2()2f m nf n m=⎧⎨=⎩,对于A ,2()f x x =,若存在“倍值区间”[,]m n ,则()2()2f m m f n n =⎧⎨=⎩⇒2222m m n n⎧=⎨=⎩⇒02m n =⎧⎨=⎩,2()f x x ∴=,存在“倍值区间”[0,2];对于B ,1()()f x x R x =∈,若存在“倍值区间”[,]m n ,当0x >时,1212n m mn⎧=⎪⎪⎨⎪=⎪⎩⇒12mn =,故只需12mn =即可,故存在; 对于C ,1()f x x x=+;当0x >时,在区间[0,1]上单调递减,在区间[1,)+∞上单调递增, 若存在“倍值区间”1[],1][0,2n m n m m ⊆⇒+=,212210n m m mn n+=⇒-+=,222210n mn m n -+=⇒=不符题意;若存在“倍值区间”1[,][1,)2m n m m m ⊆+∞⇒+=,22121n n m n n+=⇒==不符题意,故此函数不存在“倍值区间“; 对于D ,233()11x f x x x x==++,所以()f x 在区间[0,1]上单调递增,在区间[1,)+∞上单调递减,若存在“倍值区间”[,][0,1]m n ⊆,2321m m m =+,2321n n n =+,0m ∴=,2n =, 即存在“倍值区间”[0,2; 故选:ABD .8.(2021·全国高三专题练习(理))已知1a >,b R ∈,当0x >时,[]24(1)102x a x b x ⎛⎫---⋅-≥ ⎪⎝⎭恒成立,则3b a +的最小值是_____.3 【解析】根据题中条件,先讨论10,1x a ⎛⎤∈ ⎥-⎝⎦,根据不等式恒成立求出114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦;再讨论1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭,求出114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦得到b ,再由基本不等式即可求出结果.【详解】当10,1x a ⎛⎤∈ ⎥-⎝⎦时,(1)10a x --<,即2402x b x--≤恒成立, 24222x x y x x-==-是10,1x a ⎛⎤∈ ⎥-⎝⎦上的增函数, ∴114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦, 当1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭时,(1)10a x -->,即2402x b x--≥恒成立,24222x x y x x-==-是1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭上的增函数, ∴114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦, ∴114(1)21b a a ⎡⎤=--⎢⎥-⎣⎦,∴13(1)332(1)b a a a +=+-+≥-,当12a =+时等号成立.3.9.(2021·全国高三专题练习)对于满足2p ≤的所有实数p ,则使不等式212x px p x ++>+恒成立的x的取值范围为______.【答案】()()13+-∞-⋃∞,,. 【解析】将不等式转化为在[-2,2]内关于p 的一次函数函数值大于0恒成立求参变量x 的范围的问题. 【详解】解:原不等式可化为2(1)210x p x x -+-+>,令2()(1)21f p x p x x =-+-+,则原问题等价于()0f p >在[2,2]p ∈-上恒成立,则(2)0(2)0f f ->⎧⎨>⎩,即2243010x x x ⎧-+>⎨->⎩解得:1311x x x x ⎧⎪⎨-⎪⎩或或∴1x <-或3x >. 即x 的取值范围为()()13+-∞-⋃∞,,. 故答案为:()()13+-∞-⋃∞,,. 10.(2021·上海高三二模)已知a R ∈,函数()22,011,02x a x x f x x ax a x ⎧++-≥⎪=⎨-++<⎪⎩的最小值为2a ,则由满足条件的a 的值组成的集合是_______________.【答案】{3- 【解析】讨论a -与0、2的大小关系,判断函数()f x 在[)0,+∞、(),0-∞上的单调性与最小值,根据函数()f x 的最小值列方程解出实数a 的值.【详解】分以下三种情况讨论:①若0a -≤时,即当0a ≥时,()222,22,0211,02x a x f x a x x ax a x ⎧⎪+->⎪=+≤≤⎨⎪⎪-++<⎩,所以,函数()f x 在(),0-∞上单调递减,且()112f x a >+, 当0x ≥时,()min 1212f x a a =+>+, 此时,函数()f x 无最小值;②若02a <-≤时,即当20a -≤<时,()222,22,222,011,02x a x a a x f x x a x a x ax a x +->⎧⎪+-≤≤⎪⎪=⎨--+≤<-⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥+.22a a +>,所以,21242a aa -++=,整理可得2640a a +-=,20a -≤<,解得3a =-±; ③当2a ->时,即当2a <-时,()222,2,222,0211,02x a x a a x a f x x a x x ax a x +->-⎧⎪--≤≤-⎪⎪=⎨--+≤<⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥--.因为202a a -->>,所以,21242a aa -++=,整理可得2640a a +-=,2a <-,解得3a =-3a =-+.综上所述,实数a的取值集合为{3-.故答案为:{3-.1.(2020·全国高考真题(文))设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出. 【详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x=-在0,上单调递增,在,0上单调递增.故选:A .2.(2019·北京高考真题(文))下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A 【解析】函数122,log xy y x -==, 练真题1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .3.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .4.(2017课标II)函数2()ln(28)f x x x =-- 的单调递增区间是( ) A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【答案】D【解析】函数有意义,则:2280x x --> ,解得:2x <- 或4x > ,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为()4,+∞ . 故选D.5.(2017天津)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>, 即,a b c c b a >><<,本题选择C 选项.6.(2020·北京高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】根据定义逐一判断,即可得到结果 【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③。
新教材2023年高考数学总复习考案2周测卷二函数的概念与性质课件
1
2
C.f(-10)=-14
D.f(x)在区间[2,4]上单调递增
[解析] 根据已知条件,求出 x∈[-1,1]时,f(x)=1-x2;x∈(1, 3]时,f(x)=(x-2)2-1,再结合 x>3 时,f(x)=12f(x-4)及偶函数的性质, 对各选项逐一分析即可求解.
解:因为 f(x)为 R 上的偶函数,所以 f(x)=f(-x),又 x∈[0,1]时, f(x)=1-x2,所以 x∈[-1,0]时,f(x)=f(-x)=1-(-x)2=1-x2,所以 f(x)=1-x2,x∈[-1,1],当 1<x≤3 时,-1<x-2≤1,由题意,f(x)= -f(x-2)=-[1-(x-2)2]=(x-2)2-1,所以 x∈[-1,3]时,f(x)max=f(0) =1,f(x)min=f(2)=-1,因为 x>3 时,f(x)=12f(x-4),所以 f(x)不是周期 函数,故选项 A 错误;因为 f(x)为 R 上的偶函数,且 x>3 时,f(x)=12f(x -4),所以任意 x1,x2∈R,|f(x1)-f(x2)|≤|f(0)-f(2)|=2,故选项 B 正确;
A.a=2
B.f(2)=2
C.f(x)是增函数
D.f(-3)=-12
[解析] 由f(x)是R上的奇函数,则f(0)=0可算出a=2,代入可算得 f(2),根据f(x)的对称性可得出单调性,根据f(-3)=-f(3)可求得f(-3).对 于A项,f(x)是R上的奇函数,故f(0)=a-2=0,得a=2,故A对.对于B 项,f(2)=4+2=6,故B错.对于C 项,当x≥0时,f(x)=x2+x在[0,+ ∞)上为增函数,利用奇函数的对称性可知,f(x)在(-∞,0]上为增函 数,故f(x)是R上的增函数,故C对.f(-3)=-f(3)=-9-3=-12,故D 对.故选:ACD.
集合与函数测试题高考综合(含答案)
集合与函数测试题一.选择题1已知命题“012,2<++∈ax x x R 存在”是真命题,则实数a 的取值范围是 ( )A .)1,(--∞B .),1(+∞C .),1()1,(+∞--∞D .(—1,1)2、若{}8222<≤∈=-x Z x A {}1log R <∈=x x B x ,则)(C R B A ⋂的元素个数为( ) A.0B.1C.2D.33、 设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( ) A .2 B .4 C .22 D .24、 在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数, 则函数 ()x f ( )A.在区间[]1,2--上是减函数,区间[]4,3上是增函数B.在区间[]1,2--上是减函数,区间[]4,3上是减函数C.在区间[]1,2--上是增函数,区间[]4,3上是增函数D.在区间[]1,2--上是增函数,区间[]4,3上是减函数 5 .设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为( ) A. -1,3 B.-1,1 C. 1,3 D.-1,1,3 6.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 A.(0,1) B.1(0,)3C.1[,1)7D.11[,)737.若函数2)1(log )(223++++=x x b ax x f 在)0,(-∞上有最小值-5,(a ,b 为常 数),则函数)(x f 在),0(+∞上( )A .有最大值9B .有最小值5C .有最大值3D .有最大值58.函数|3||4|92-++-=x x x y 的图象关于 ( )A .x 轴对称B .y 轴对称C .原点对称D .直线0=-y x 对称9.若函数21(1)()lg (1)x x f x x x ⎧+≤=⎨>⎩,则f(f(10)=( )A .lg101B .2C .1D .010.设函数)(x f 是定义在R 上的奇函数,且对任意R ∈x 都有)4()(+=x f x f ,当 )02(,-∈x 时, x x f 2)(=,则)2011()2012(f f -的值为( ) A.21-B.21C. 2D.2-11.已知函数f (x )=x 2+ax +b -3(x ∈R )图象恒过点(2,0),则a 2+b 2的最小值为( ) A .5 B.15 C .4 D.1412. 设函数()f x =cx bax ++2的图象如下图所示,则a 、b 、c 的大小关系是11-1-1OxyA.a >b >cB.a >c >bC.b >a >cD.c >a >b二、填空题13、函数x x f 6log 21)(-=的定义域为__ 14、若24log 3,(22)x x x -=-=则___15. 已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=, 则当 ),0(∞+∈x 时,=)(x f16. .函数()y f x =是R 上的偶函数,且在(,0]-∞上是增函数,若()(2)f a f ≤,则实数a 的取 值范 围是______三、解答题17.(本小题满分10分) 计算:(1)0021)51(1212)4(2---+-+- (2)91log 161log 25log 532∙∙18.(本小题满分12分)已知函数()f x 在定义域()0,+∞上为增函数,且满足()()()(),31f xy f x f y f =+=(1)求()()9,27f f 的值 (2)解不等式()()82f x f x +-<19. (12分)已知函数2()(8),f x ax b x a ab =+---的零点是-3和2.(Ⅰ)求函数()f x 的解析式;(Ⅱ)当函数f (x )的定义域是[0,1]时,求函数()f x 的值域.20. (本小题满分12分)某地区预计明年从年初开始的前x 个月内,对某种商品的需求总量....()f x (万件)与月份x 的近似关系为1()(1)(352)(12)150f x x x x x N x =+-∈≤且. (1)写出明年第x 个月的需求量()g x (万件)与月份x 的函数关系式,并求出哪个月份的需求量超过1.4万件;(2)如果将该商品每月都投放市场p 万件,要保持每月都满足市场需求,则p 至少为多少万件.21..(本小题满分12分) 定义在非零实数集上的函数()f x 满足()()(),f xy f x f y =+且()f x 是区间()0,+∞上的增函数()1求(1),(1)f f -的值; ()2求证:()()f x f x -=; ()3解不等式1(2)()02f f x +-≤.22.(本小题满分14分)设二次函数2()(,,)f x ax bx c a b c R =++∈满足下列条件:①当x ∈R 时,()f x 的最小值为0,且f (x -1)=f (-x -1)成立; ②当x ∈(0,5)时,x ≤()f x ≤21x -+1恒成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学一轮复习《函数》过关测试卷时间 120分钟 总分 150分一、选择题1、若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A a=2,b=2B a= 2 ,b=2C a=2,b=1D a= 2 ,b= 2 2、设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x 在内近似解的过程中 得()()(),025.1,05.1,01<><f f f 则方程的根落在区间A (1,1.25)B (1.25,1.5)C (1.5,2)D 不能确定3、若32232(),,log 3xa b x c x ===,当x >1时,,,a b c 的大小关系是A .a b c <<B .c a b <<C .c b a <<D .a c b <<4、若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a =A42 B 22 C 41 D 215、一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是: A 0a < B 0a > C 1a <- D 1a >6、2)(x x f =,x x g 2)(=,x x h 2log )(=,当),4(+∞∈x 时,三个函数增长速度比较,下列选项中正确的是A )(x f >)(x g >)(x hB )(x g >)(x f >)(x hC )(x g >)(x h >)(x fD )(x f >)(x h >)(x g7、函数y=-e x的图象A 与y=e x 的图象关于y 轴对称.B 与y=e x的图象关于坐标原点对称.C 与y=e -x 的图象关于y 轴对称.D 与y=e -x的图象关于坐标原点对称. 8、图中三条对数函数图象,若1321>==x x x c b a ,则321,,x x x 的大小关系是A 321x x x >>B 123x x x >>C 213x x x >> D312x x x >>9、从任何一个正整数n 出发,若n 是偶数就除以2,若n 是奇数就乘3再加1,如此继续下去…,现在你从正整数3出发,按以上的操作,你最终得到的数不可能是 A 1 B 2 C 3 D 4 10、为了稳定市场,确保农民增收,某农产品的市场收购价格a 与其前三个月的市场收购价格有关,且使a 与其前三个月的市场收购价格之差的平方和最小.若下表列出的是该产品前6个月的市场收购价格:月份 1 2 3 4 5 6 7 价格(元/担)687867717270则7月份该产品的市场收购价格应为 A 69元B 70元C 71元D 72元11、正实数12,x x 及函数()f x 满足)(1)(14x f x f x-+=,且12()()1f x f x +=,则12()f x x +的最小值为 A 4B 2C 54 D4112、下列说法不正确的是A 函数2x xa a y --= (0,1)a a >≠是奇函数B 函数(1)()1x x a xf x a +=- (0,1)a a >≠是偶函数C 若()3x f x =,则)()()(y f x f y x f =+D 若()xf x a = (0,1)a a >≠,且12x x ≠,则12121[()()]()22x x f x f x f ++< 二、填空题13、已知0>a ,且1lg )10lg(10-+=a a x ,则x =_____________.14、若M={-1,0,1} N={-2,-1,0,1,2}从M 到N 的映射满足:对每个x ∈M 恒使x+f(x) 是偶数, 则映射f 有____个.15、函数62log 2)(2-++=x x x f x 的零点有 个. 16、设函数(0)()(0)x x f x x x ≥⎧=⎨-<⎩,则不等式2()20x f x x +-≤的解集是 .选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 11 12 答案三、解答题17、设⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤<≤-=)21(log )10()01()21()(221x x x x x f x x,在同一坐标系中作出函数)1(x f y -= 的图象.18、设)(x f 是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零. (1)证明)(x f 在[-1,1]上是减函数;(2)如果)(),(2c x f c x f --的定义域的交集为空集,求实数c 的取值范围; (3)证明:若 21≤≤-c ,则)(),(2c x f c x f --存在公共的定义域,并求出这个公共的定义域.19、已知常数1a >, 变数x 、y 有关系3y log x log a log 3x a x =-+. (1)若ta x =)0t ( ≠, 试以a 、t 表示y ;(2)若t 在) ,1[∞+内变化时, y 有最小值8, 求此时a 和x 的值各为多少?20、已知函数()Z k x x f k k ∈=++-22)(,且)3()2(f f <(1)求k 的值;(2)试判断是否存在正数p ,使函数()x p x f p x g 12)(1)(-+⋅-=在区间[]2,1-上的值域为⎥⎦⎤⎢⎣⎡-817,4.若存在,求出这个p 的值;若不存在,说明理由.21、某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次,每日来回的次数是车头每次拖挂车厢个数的一次函数,每节车厢能载乘客110人. 问这列火车每天来回多少次,每次应拖挂多少车厢才能使运营人数最多?并求出每天最多运营人数. 22、已知二次函数y=f 1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f 2(x)的图象与直线y=x 的两个交点间距离为8,f(x)= f 1(x)+ f 2(x). (1)求函数f(x)的表达式;(2)证明:当a>3时,关于x 的方程f(x)= f(a)有三个实数解.参考答案1-12 ABBAC BDBCC CD13、0 14、12 15 1 16 (,1]-∞ 17 略 18、解: (1)由已知对任意的1x 、2x ]1,1[-∈,且21x x ≠,都有0)()(2121<--x x x f x f ,从而21x x -与)()(21x f x f -异号,所以)(x f 在[-1,1]上是减函数.(2)因为)(c x f -的定义域是]1,1[+-c c ,)(2c x f -的定义域是]1,1[22+-c c ,因为以上两个集合的交集为空集,所以111122-<++>-c c c c 或 解得:12-<>c c 或(3)因为112->+c c 恒成立,有(2)问可知:当21≤≤-c 时,)(),(2c x f c x f --存在公共的定义域.若112+≤-c c ,即0121≤≤-≤≤c c 或时, 11,1122-≥-+≥+c c c c ,此时的交集是]1,1[2+-c c ;若10<<c ,则11,1122-<-+<+c c c c ,此时的交集是]1,1[2+-c c19、解:(1) .3y log t1t t 33y log a log a log 3,a x a a ta a t t t =-+⇒=-+∴= )0t (ay 3t 3t y log 3t 3t 2a 2≠=⇒+-=∴+-.(2)43)23t (2ay +-=),1[23t ∞+∈=23t =∴时,16a 28a 8y 343min =⇒==⇒=.6416x 23==20、解:(1)∵)3()2(f f <,∴022>++-k k ,即022<--k k ,∵Z k ∈,∴10或=k(2)2)(x x f =, ()p p p p x p x p x p x g 414212121)(222++⎪⎪⎭⎫ ⎝⎛---=-+⋅-=当[]2,1212-∈-pp ,即⎪⎭⎫⎢⎣⎡+∞∈,41p 时,1)2(,4)1(,2,8174142-=-=-==+g g p p p 当()+∞∈-,2212pp 时,∵0>p ,∴这样的p 不存在。
当()1,212-∞-∈-p p ,即⎪⎭⎫⎝⎛∈41,0p 时,4)2(,817)1(-==-g g ,这样的p 不存在。
综上得,2=p .21、解:设每日来回y 次,每次挂x 节车厢,由题意b kx y +=当x=4时y=16 当x=7时y=10得下列方程组:16=4k+b10=7k+b 解得:k=2- b=24 ∴ 242+-=x y 由题意知,每日挂车厢最多时,营运人数最多,设每日营运S 节车厢 则72)6(2242)242(22+--=+-=+-==x x x x x xy S 所以当6=x 时,72max =S 此时y=12 则每日最多运营人数为110×6×12=7920(人)22、(Ⅰ)由已知,设f 1(x)=ax 2,由f 1(1)=1,得a=1, ∴f 1(x)= x 2.设f 2(x)=xk(k>0),它的图象与直线y=x 的交点分别为A(k ,k ),B(-k ,-k )由AB =8,得k=8,. ∴f 2(x)=x 8.故f(x)=x 2+x 8. (Ⅱ) (证法一)f(x)=f(a),得x 2+x 8=a 2+a8, 即x 8=-x 2+a 2+a 8.在同一坐标系内作出f 2(x)=x8和 f 3(x)= -x 2+a 2+a8的大致图象,其中f 2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线, f 3(x)与的图象是以(0, a 2+a8)为顶点,开口向下的抛物线.因此, f 2(x)与f 3(x)的图象在第三象限有一个交点,即f(x)=f(a)有一个负数解.又∵f 2(2)=4, f 3(2)= -4+a 2+a 8,当a>3时,. f 3(2)-f 2(2)= a 2+a8-8>0,当a>3时,在第一象限f 3(x)的图象上存在一点(2,f(2))在f 2(x)图象的上方.f 2(x)与f 3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解.因此,方程f(x)=f(a)有三个实数解. (证法二)由f(x)=f(a),得x 2+x 8=a 2+a 8,即(x -a)(x+a -ax8)=0,得方程的一个解x 1=a.方程x+a -ax 8=0化为ax 2+a 2x -8=0,由a>3,△=a 4+32a>0,得x 2=aa a a 23242+--,x 3=a a a a 23242++-,x 2<0, x 3>0, ∵x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a=aaa a 23242++-,则3a 2=a a 324+, a 4=4a,得a=0或a=34,这与a>3矛盾,∴x 1≠ x 3.故原方程f(x)=f(a)有三个实数解.。