高考函数专题复习教师版
高考数学 函数的图象(教师版)

专题2 函数的图象1.已知函数32()f x ax bx c =++,其导数()f x '的图象如图所示,则函数()f x 的极大值是( )A .a b c ++B .84a b c ++C .32a b +D .c【解析】由导函数的图象知,()f x 在(1,2)递增;在(2,)+∞上递减,所以当2x =时取得极大值, 极大值为:f (2)84a b c =++,则函数()f x 的极大值是84a b c ++故选B2.设函数()y f x =可导,()y f x =的图象如图所示,则导函数()y f x ='可能为( )A .B .C .D .【解析】根据()y f x =的图象可知其定义域为{|0}x x ≠,故其导函数的定义域也为{|0}x x ≠,又从原函数()y f x =的图象可知,函数()y f x =的单调性是:函数()y f x =在(,0)-∞,(0,)a 上是增函数,在(,)a b 上是减函数,在(,)b +∞是增函数,即()y f x =是先增后减再增,得出导函数是先正后负再正, 根据选项中的函数()f x 的单调性知选D .故选D 3.函数sin 21cos xy x=-的部分图象大致为( )A .B .C .D .【解析】函数sin 21cos x y x =-,可知函数是奇函数,排除选项B ,当3x π=时,2()1312f π==-A ,x π=时,()0f π=,排除D .故选C4.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()2||xf x ln x =B .2()||f x ln x x =-C .1()||f x ln x x=+ D .||()||xln x f x x =【解析】函数图象关于原点对称,函数为奇函数,排除B ,C ,又f (1)0=,则()2||xf x ln x =无意义,排除A ,故选D 5.函数2||()1xln x f x x =+的图象大致为( ) A . B .C .D .【解析】因为2||()()()1xln x f x f x x ---==--+,所以()f x 为奇函数,图象关于原点对称,排除C ,D ,因为f (1)0=,01x <<时,()0f x <,所以排除B .故选A6.函数22,01()(),01xlnxx x f x xln x x x ⎧>⎪⎪+=⎨-⎪<⎪+⎩的图象大致为( )A .B .C .D .【解析】若0x >,则0x -<,则2()()1xlnxf x f x x --==-+,若0x <,则0x ->, 则2()()()1xln x f x f x x ---==-+,综上()()f x f x -=-,即()f x 是奇函数,图象关于圆的对称,排除C ,D ,当0x >,且0x →时,()0f x <,排除B ,故选A 7.函数||()||xln x f x x =的大致图象是( ) A . B .C .D .【解析】|()|||()()||||x ln x xln x f x f x x x ----===--,()f x ∴是奇函数,图象关于原点对称,故A ,C 错误;又当1x >时,||0ln x lnx =>,()0f x ∴>,故D 错误,故选B8.函数1()()cos (f x x x x xππ=--且0)x ≠的图象可能为( )A .B .C .D .【解析】11()()cos()()cos ()f x x x x x f x x x -=-+-=--=-,∴函数()f x 为奇函数,∴函数()f x 的图象关于原点对称,故排除A ,B ,当x π=时,11()()cos 0f ππππππ=-=-<,故排除C , 故选D 9.已知21()sin()42f x x x π=++,()f x '为()f x 的导函数,则()f x '的图象是( ) A . B .C .D .【解析】由2211()sin()cos 424f x x x x x π=++=+,1()sin 2f x x x ∴'=-,它是一个奇函数,其图象关于原点对称,故排除B ,D .又1()cos 2f x x ''=-,当33x ππ-<<时,1cos 2x >,()0f x ∴''<,故函数()y f x ='在区间(3π-,)3π上单调递减,故排除C .故选A10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④【解析】根据()0f x '>时,()f x 递增;()0f x '<时,()f x 递减可得:①中函数的图象从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;②中函数的图象也是从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;所以①②可能正确.而③中函数的图象从左向右先减后增,对应的导函数是小于0,大于0,再小于0,大于0;④中函数的图象从左向右先增后减后,对应的导函数也是小于0,大于0,再小于0,大于0;所以③④可能错误.故选B11.已知R 上的可导函数()f x 的图象如图所示,则不等式(2)()0x f x '->的解集为( )A .(-∞,2)(1-⋃,)+∞B .(-∞,2)(1-⋃,2)C .(-∞,1)(2⋃,)+∞D .(1-,1)(2⋃,)+∞【解析】由函数()f x 的图象可得,当(,1)x ∈-∞-,(1,)+∞时,()0f x '>, 当(1,1)x ∈-时,()0f x '<.由()0(2)()020f x x f x x '>⎧-'>⇔⎨->⎩①或()020f x x '<⎧⎨-<⎩②解①得,2x >,解②得,11x -<<,综上,不等式(2)()0x f x -'>的解集为(1-,1)(2⋃,)+∞,故选D12.函数32()f x x bx cx d =+++的大致图象如图所示,则2212x x +等于( )A .89B .109C .169D .289【解析】32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=,8420b c d +++=,0d ∴=,1b =-,2c =-,22()32322f x x bx c x x ∴'=++=--.由题意有1x 和2x 是函数()f x 的极值点,故有1x 和2x 是()0f x '=的根,1223x x ∴+=,1223x x =-.则2221212124416()2939x x x x x x +=+-=+=,故选C 13.如图是函数32()f x x bx cx d =+++的大致图象,则12(x x += )A .23B .109 C .89D .289【解析】32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=,8420b c d +++=,0d ∴=,1b =-,2c =-22()32322f x x bx c x x ∴'=++=--. 由题意有1x 和2x 是函数()f x 的极值,故有1x 和2x 是()0f x '=的根,1223x x ∴+=,故选A 14.函数2()()ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A .0a <,0b >,0c <B .0a >,0b <,0c <C .0a >,0b <,0c >D .0a <,0b >,0c >【解析】依题意,函数()f x 的定义域为{|}x x c ≠-,从函数图象上看,0c ->,故0c <,当0x =时,()0f x <,所以20bc<,所以0b <,根据函数图象,当x →∞时,0ax b +>,故0a >,故选B 15.函数2()()ax bf x x c +=+的图象大致如图所示,则下列结论正确的是( )A .0a >,0b >,0c >B .0a <,0b >,0c <C .0a <,0b <,0c >D .0a >,0b >,0c <【解析】函数2()()ax bf x x c +=+,x c ∴=-时,函数值不存在,结合函数图象得0c >,排除B 和D ;当0x =时,(0)f b =,结合函数图象得0b >,排除C .故选A16.函数32()f x ax bx cx d =+++的图象如图所示,则下列结论成立的是( )A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d <【解析】由图可知,(0)0f d =>,32()f x ax bx cx d =+++,2()32f x ax bx c '∴=++,从图象可知,()f x 先递增,后递减,再递增,且极大值点和极小值点均大于0, 其导函数的图象大致如下:0a ∴>,03ba->,△2(2)430b a c =->,(0)0f '>,0a ∴>,0b <,0c >.故选A 17.函数22||(2)sin x x y x e x=-在[2-,2]的图象大致为( )A .B .C .D .【解析】根据题意,函数22||(2)sin x x y x e x=-在[2-,2]中,必有0x ≠;又由222||2||()()[2()](2)()sin()sin x x x x f x x e x e f x x x ---=--=--=--,函数为奇函数,排除B ,f (1)12(2)1sin1sin1e e -=-=≈-,排除D ,f (2)224(22)2sin 2e =⨯-≈,排除C ; 故选A18.函数2||2x y x e =-+在区间[2-,2]上的图象大致为( )A .B .C .D .【解析】根据题意,函数2||()2x y f x x e ==-+,有f (2)280e =-+<,排除A ,又由(0)1f =,11()122f =-+>,f (1)21e =-+<,排除C 、D ,故选B19.函数2||22x y x =-在[2-,2]的图象大致为( )A .B .C .D .【解析】函数2||22x y x =-在[2-,2]是偶函数,排除选项B 、D , 当2x =时,f (e )40=>,排除选项A .故选:C .20.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .2()||f x ln x x =-B .()||||f x ln x x =-C .2()2||f x ln x x =-D .()2||||f x ln x x =-【解析】由图可知,函数()f x 为偶函数,于是只需考查0x >的情况即可,且当0x >时,()f x 的极大值点小于1.选项A ,2()f x lnx x =-,1()2f x x x'∴=-,令()0f x '=,则x ,当(0,)2x ∈时,()0f x '>,()f x 单调递增;当(2x ∈,)+∞时,()0f x '<,()f x 单调递减,()f x ∴在(0,)+∞上的极大值点为1x <,符合题意;同理可得,选项B 中函数对应的极大值点为1x =, 选项C 中函数对应的极大值点为1x =,选项D 中函数对应的极大值点为21x =>,均不符合题意, 故选A21.已知某函数的图象如图所示,则该函数的解析式可能是( )A .1()||f x ln x x =-B .1()||f x ln x x =+C .1()||f x ln x x=- D .1()||||f x ln x x =+【解析】选项A ,f (1)1=-与图象矛盾,故A 错误;选项C ,1()10f e e =-<与图象矛盾,故C 错误;选项D ,(1)1f -=与图象矛盾,故D 错误.故选B 22.函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2x x f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-【解析】由图象可知,函数的定义域为R ,故排除C ;由f (1)0=可知,故排除D ; 当x →-∞时,()0f x →,故排除A ;故选B23.已知函数()f x 的图象如图所示,则该函数的解析式可能是( )A .||()x ln x f x e =B .()||xf x e ln x = C .||()ln x f x x =D .()(1)||f x x ln x =- 【解析】由图象可知,当x →+∞时,()0f x →,当x →-∞时,()f x →+∞对于A :满足要求,对于B :当x →+∞时,()||x f x e ln x =→+∞,不满足,对于C :当x →-∞时,()||0x f x e ln x =→,不满足,对于D :当x →-∞时,()(1)||f x x ln x =-→+∞,不满足,故选A 24.已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A .2()||xf x ln x =B .2||()||x f x ln x =C .21()1f x x =- D .1()1||||f x x x =-【解析】由函数的图象可知函数是偶函数,选项A 函数是奇函数不成立. 0x =,函数没有意义,所以选项C 的函数不成立;1x >时,11()11||||f x x x x x==--,函数是减函数,所以选项D 不成立;故选B25.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )11A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+ 【解析】由图可知()02f π>,故可排除A ,B ;对于||:()cos x C f x e x =+,当(0,1)x ∈时()0f x >,故可排除C .故选D26.已知函数()f x 的局部图象如图所示,则()f x 的解析式可以是( )A .1||()sin 2x f x e x π=B .1||()cos 2x f x e x π=C .()||sin 2f x ln x x π=D .()||cos 2f x ln x x π= 【解析】由图可知,函数()f x 为偶函数,可排除选项A 和C ;对于选项B 和D ,都有f (1)0=, 当(0,1)x ∈时,1||()cos 02x f x ex π=>,与函数图象不符;()||cos 02f x ln x x π=<,与函数图象符合,所以选项B 错误.故选D。
第11讲 函数专题2 (教师)

第11讲 函数复习专题2.函数图象与零点(教师)一、教学目标:1.会运用函数图象理解和研究函数的性质.2.结合二次函数的图象,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数.3.根据具体函数的图象,能够用二分法求相应方程的近似解二、重点难点:1.函数图像及运用2.函数零点与方程关系三、教学方法:“一学二记三应用” 四、知识梳理:(1)描点法作函数图象,应注意在定义域内依据函数的性质,选取关键的一部分点连接而成.(2)图象变换法,包括有平移变换、伸缩变换、对称翻折变换.的图像的画法:先画时,再将其关于对称,得轴左侧的图像. 的图像画法:先画的图象,然后位于轴上方的图象不变,位于轴下方的图象关于 轴翻折上去. 的图象关于对称;的图象关于点对称.的图象关于轴对称的函数图象解析式为;关于轴对称的函数解析式为;关于原点对称的函数解析式为.(3)熟记基本初等函数的图象,以及形如的图象五.课前评估:1.[2022·重庆六校联考]函数f (x )=sin πxx2的大致图象为( )0(0(()()a a a a f x f x a ><−−−−−−−→+向左平移个单位)向右平移个单位)0(0(()()+k k k f x f x k ><−−−−−−−→向上平移k 个单位)向下平移个单位)11(101(()()(0,1)f x f x w ωωωωωω><<−−−−−−−−−−−−−−−−→>≠图像上所有点的纵坐标不会,横坐标缩短为原来的)图像上所有点的纵坐标不会,横坐标伸长为原来的)1(01(()()(0,1)A A A f x Af x A A ><<−−−−−−−−−−−−−−−−→>≠图像上所有点的横坐标不会,纵坐标伸长为原来的)图像上所有点的横坐标不会,纵坐标缩短为原来的A )()f x 0x ≥()y f x =y y ()f x()y f x =x x x ()()f a x f a x +=-()y f x =x =a ()()f a x f a x +=--()y f x =(a,0)()y f x =x (y f x =-)y (-y f x =)-(-y f x =)1y x x=+xyf x () = x +1x–1–2–3–41234–1–2–3–41234O答案:D 解析:易知函数f (x )=sinπxx 2为奇函数且定义域为{x |x ≠0},只有选项D 满足, 2.[2022·福州质检]若函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( )A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e -x +1D .f (x )=e -x -1答案:D 解析:与y =e x 的图象关于y 轴对称的图象对应的函数为y =e -x .依题意,f (x )的图象向右平移1个单位长度,得y =e -x 的图象,∴f (x )的图象是由y =e -x 的图象向左平移1个单位长度得到的,∴f (x )=e -(x +1)=e -x -1.3.[2022·全国卷Ⅱ]函数f (x )=e x -e -xx 2的图象大致为( )A BCD答案:B 解析:∵ y =e x -e -x是奇函数,y =x 2是偶函数,∴ f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e>0,排除D 选项.又e>2,∴ 1e <12,∴ e -1e>1,排除C 选项.故选B.题型一 识图与辨图例1(1)(2022年高考浙江卷)在同一直角坐标系中,函数y =1x a ,y =log a (x +12)(a >0,且a ≠1)的图象可能是答:D(2)在同一直角坐标系中,函数()2f x ax =-, ()()log 2a g x x =+(0a >,且1a ≠)的图象大致为( )A. B. C. D.(3)(2022年高考全国3卷)函数3222x xxy -=+在[]6,6-的图像大致为 A . B .C .D .答:B(4)(2022年高考全国1卷)函数f (x )=在[,]-ππ的图像大致为A .B .C .D .答:D课堂练习1:(1)(内江市高中2022届第一次模拟考试题)函数()()21=ln 2x f x x e -+-的图象大致是( )2sin cos ++x xx xA. B C. D.答:C (2).(2022届吉林省五地六校联考高三考前适应卷)已知函数()(22)ln ||x x f x x -=+的图象大致为( )A .B .C .D .【答案】B 【详解】()f x 定义域为{}0x x ≠,()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .题型二 图象初等变换例2 (1)(江西省红色七校2022届高三第一次联考理科数学科试题)设,则函数的图象的大致形状是( )答:B(2)已知图①中的图象对应的函数为y =f (x ),则在下列给出的四个选项中,图②中的图象对应的函数只可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)答案:C 解析:由图②知,图象关于y 轴对称,对应的函数是偶函数.对于A ,当x >00a >()y x x a =-时,y=f(|x|)=f(x),其图象在y轴右侧与图①的相同,不符合,故错误;对于B,当x>0时,对应的函数是y=f(x),显然B错误;对于D,当x<0时,y=-f(-x),其图象在y轴左侧与图①的不相同,不符合,故错误;所以C选项是正确的.(3)已知函数,则函数的大致图象是()A. B. C. D.解析】,函数在处图象有跳跃点,选项AC错误;当(4).若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()答案:C解析:要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.(5)[2022·咸宁模拟]已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象可能是图中的()答案:B解析:通解因为y=a x与y=log a x互为反函数,而y=log a x与y=log a(-x)的图象关于y轴对称,根据图象特征可知选B.优解首先,曲线y=a x只可能在x轴上方,曲线y=log a(-x)只可能在y轴左边,从而排除A,C;其次,y=a x与y=log a(-x)的增减性正好相反,排除D,选B.(6)(提高)函数的部分图象大致为()A. B. C. D.【解析】分析:分析函数的奇偶性,以及是函数值的符号,利用排除法即可得到答案.解:由题意,函数满足,所以函数为奇函数,图象关于轴对称,排除B 、D ;又由当时,函数,排除C ,故选A.[规律方法] 识图常用方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 课堂练习2.(1).函数的图象大致为( )A. B. C. D. 【解析】根据函数表达式得到,故函数是奇函数,排除D 选项,当x 趋向于正无穷时,函数值趋向于0,并且大于0,排除B ;当x 从左侧趋向于1时,函数值趋向于负无穷,故排除 C.故答案为:A. (2) 函数的图象可能是( )A. B. C. D. 【解析】试题分析:化简函数的解析式,判断函数的对称性,利用函数的值判断即可. 详解:函数f (x )==,可知函数的图象关于(2,0)对称,排除A ,B .当x <0时,ln (x ﹣2)2>0,(x ﹣2)3<0,函数的图象在x 轴下方,排除D ,故选:C .题型三 零点判断与运用例3 (1)[2022·南昌调研]函数f (x )=2x +ln 1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)答案:B 解析:易知f (x )=2x +ln 1x -1=2x-ln(x -1)在(1,+∞)上单调递减且连续,当1<x <2时,ln(x -1)<0,2x>0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83,8=22≈2.828>e ,所以8>e 2,即ln8>2,所以f (3)<0.所以f (x )的零点所在的大致区间是(2,3),故选B.(2).[2022·山东枣庄模拟]函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3 答案:B解析:在同一直角坐标系中作出函数y =x 12与y =⎝⎛⎭⎫12x的图象,如图所示.由图知,两个函数图象只有一个交点,所以函数f (x )的零点只有1个.故选B. a c 若()2019()()f x x a x b =---的零点为c ,d ,则下列不等式正确的是( ) A . a c b d >>> B .a b c d >>> C.c d a b >>> D .c a b d >>>答:由()2019()()f x x a x b =---,又()()2019f a f b ==,c ,d ,为函数()f x 的零点,且a b >,c d >,所以可在平面直角坐标系中作出函数()f x 的大致图像,如图所示,由图可知c a b d >>>,故选D.(4) [2022·河南省实验中学模拟]已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))-1的图象与x 轴的交点个数为( )A .3 B .2 C .0 D .4答案: A 解析:y =f (f (x ))-1=0,即f (f (x ))=1.当f (x )≤0时,得f (x )+1=1,f (x )=0. 所以log 2x =0,得x =1;由x +1=0,得x =-1.当f (x )>0时,得log 2f (x )=1, 所以f (x )=2.由x +1=2,得x =1(舍去);由log 2x =2,得x =4. 综上所述,函数y =f (f (x ))-1的图象与x 轴的交点个数为3.故选A. (5) (提高)已知函数,则函数的零点个数是( )A. 7 B. 6 C. 5 D. 4 【解析】分析:令 函数的零点个数问题的根的个数问题.结合图象可得的根,方程有1解,有3解,有3解.从而得到函数的零点个数详解:令函数的零点个数问题的根的个数问题.即 的图象如图,结合图象可得的根方程 有1解,有3解,有3解.综上,函数的零点个数是7.故选A.(6)(提高) 定义在实数集上的函数满足,当时,,则函数的零点个数为__________.【解析】分析:先根据函数的奇偶性与周期性画出函数的图象,以及的图象,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点.详解:定义在上的函数,满足,上的偶函数,因为满足,函数为周期为的周期函数,且为上的偶函数,因为时,,所以,在上递增,且值域为,根据周期性及奇偶性画出函数的图象和的图象,如图,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点,故答案为.课堂练习3:(1)已知函数f (x )=1x -a为奇函数,g (x )=ln x -2f (x ),则函数g (x )的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解:由函数f (x )=1x -a为奇函数,可得a =0,则g (x )=ln x -2f (x )=ln x -2x ,所以g (2)=ln2-1<0,g (3)=ln3-23>0,所以g (2)·g (3)<0,可知函数的零点在(2,3)之间。
2025版高考数学一轮总复习第4章三角函数第2节同角三角函数的基本关系与诱导公式教师用书

其次节同角三角函数的基本关系与诱导公式考试要求:1.理解同角三角函数的基本关系式:sin2α+cos2α=1,tan α.2.借助单位圆的对称性推导出±α,π±α的正弦、余弦、正切的诱导公式.一、教材概念·结论·性质重现1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tan α.(3)常见变形:sin α=±;cos α=±;(sinα±cos α)2=1±2sin αcos α;sin α=tan α·cos α.利用同角三角函数的基本关系可以实现正弦、余弦、正切值的转化,但肯定要留意确定角的终边所在的象限.“同角”有两层含义:一是角相同,二是随意一个角(在有意义的前提下).2.三角函数的诱导公式公式一二三四五六角απ+α-απ-α-α+α正弦sin α-sin α-sin αsin αcos αcos α余弦cos α-cos αcos α-cos αsin α-sin α正切tan αtan α-tan α-tan α口诀函数名不变,符号看象限函数名变更,符号看象限诱导公式的记忆口诀:“奇变偶不变,符号看象限.”其含义理解为:(1)全部诱导公式均可看作k·±α(k∈Z)和α的三角函数值之间的关系,口诀中的奇、偶指的是此处的k是奇数还是偶数,变与不变是指三角函数名称的变更.(2)结果的符号与把α当成锐角时角k·±α(k∈Z)的三角函数值的符号相同.二、基本技能·思想·活动阅历1.推断下列说法的正误,对的画“√”,错的画“×”.(1)对随意角α,sin23α+cos23α=1都成立.( √)(2)若cos(nπ-θ)=(n∈Z),则cos θ=.( ×)(3)已知sin θ=,cos θ=,其中θ∈,则m<-5或m≥3.(×) 2.若α是第四象限角,tan α=-,则sin α等于( )A.B.-C.D.-D解析:因为tan α==-,sin2α+cos2α=1,所以sinα=±.因为α是第四象限角,所以sin α=-.3.已知sin =,则cos =( )A.C.-D.-C解析:因为sin =,所以cos =cos =-sin =-.故选C.4.若α是第三象限角且cos α=-,则sin α=_______,tan α=_________.-解析:因为α是第三象限角且cos α=-,所以sin α=-=-,所以tanα==.5.已知sin α=,则·sin (α-π)·cos (2π-α)的值为_________.-解析:原式=·(-sin α)·cos (-α)=·(-sin α)·cos α=·(-sin α)·cos α=-sin2α=-.考点1 同角三角函数关系的基本应用——应用性考向1 知弦求弦、切或知切求弦(1)(2024·济南一模)已知α∈(0,π),若cosα=-,则tan α的值为( ) A.B.-C.D.-D解析:因为α∈(0,π),cos α=-,所以sin α=,则tan α=-.(2)已知3sin +sin (θ+π)=0,θ∈(-π,0),则sin θ=( )A.-B.-C.A解析:由3sin +sin (θ+π)=0,可得3cos θ=sin θ,可得tan θ=3. 而θ∈(-π,0),可得sin θ=-=-.本例(2)条件不变,求cos θ的值.解:由3sin +sin (θ+π)=0,可得3cos θ=sin θ,可得tan θ=3.而θ∈(-π,0),可得sin θ<0.又tan θ=3>0,所以cos θ<0,所以cos θ=-=-.1.利用sin 2α+cos2α=1可以实现正弦、余弦的互化,利用tanα=可以实现弦切互化.2.由一个角的随意一个三角函数值可以求出这个角的另外两个三角函数值,求值时要留意角所在的象限,以免出现符号错误.考向2 弦切互化求值(1)已知cos θ=,则sin θ·的值为( )A.B.-C.3 D.-3C解析:原式=sin θ=sin θ·=3.(2)(2024·新高考全国Ⅰ卷)若tan θ=-2,则=( )A.-B.-C.C解析:将式子进行齐次化处理,得=in θ(sin θ+cos θ)====.本例(2)条件不变,求cos2θ-sin2θ的值.解:cos2θ-sin2θ===1.1.弦化切的常见结构(1)形如“a sin2α+b sin αcos α+c cos2α”的二次式,分母看作1,利用1=sin2α+cos2α将原式转化为齐次式求值.(2)形如“次分式.2.切化弦当要化简的式子中同时出现正弦、余弦、正切时,一般利用公式tan α=,把式中的正切化为弦.考向3 sin α±cos α,sin αcos α之间的关系(1)已知sin α+cos α=,且α∈(0,π),则sin α-cos α=( )A.±B.-C.C解析:把sin α+cos α=,两边平方得(sin α+cos α)2=1+2sin αcos α=,即2sin αcos α=-<0.因为0<α<π,故sin α>0,cos α<0.所以sin α-cos α====.(2)已知sin x+cos x=,x∈(0,π),则tan x等于( )A.-C.D.-D解析:由题意可知sin x+cos x=,x∈(0,π),则(sin x+cos x)2=.因为sin2x+cos2x=1,所以2sin x cos x=-,即==-,得tan x=-或tan x=-. 当tan x=-时,sin x+cos x<0,不合题意,舍去.所以tan x=-.留意方程思想的应用:对于sin α+cos α,sin α·cos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.1.已知tan θ+=4,则sin4θ+cos4θ=( )A.C.D解析:由tanθ+===4,得sin θcos θ=,所以sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-2×=.2.若sinα+cos α=,α∈(0,π),则=( )A.B.-C.D.-B解析:因为sin α+cos α=,α∈(0,π),所以两边平方,可得1+2sin αcos α=,可得2sin αcos α=-<0,所以sin α>0,cos α<0,可得cos α-sin α=-==-=-,所以==-=-.考点2 诱导公式的应用——综合性(1)sin ·cos ·tan 的值是_________.-解析:原式=sin ·cos ·tan=··=×(-)=-.(2)(2024·北京卷)若P(cos θ,sin θ)与Q关于y轴对称,写出一个符合题意的θ值:_________.(答案不唯一)解析:因为P(cos θ,sin θ)与Q关于y轴对称,故其横坐标相反,纵坐标相等,即sin θ=sin 且cos θ=-cos ,由诱导公式sin θ=sin (π-θ),cos θ=-cos (π-θ),所以θ+=π-θ,解得θ=,则符合题意的θ值可以为.1.诱导公式的两个应用口诀(1)求值:负化正,大化小,化到锐角就终了.(2)化简:统一角,统一名,同角名少目的到.2.角的变更的通式特别角±已知角=所求角.1.下列各选项中与sin 2 022°最接近的是( )A.C.-D.-D解析:sin 2 022°=sin (1 800°+222°)=sin 222°=sin(180°+42°)=-sin 42°≈-.2.已知sin =-,则cos =( )A.C.-D.-B解析:cos =cos =-cos =-sin =.已知3cos x+4sin x=5,求tan x的值.[四字程序]读想算思求tan x的值1.同角的正弦、余弦和正切有什么关系?2.3cos x+4sin x 的最大值是多少?3.由已知条件联想点A(cosx,sin x)在哪条直线上1.求sin x和cos x.2.协助角公式1.方程思想.2.数形结合.3.转化与化归3cos x +4sinx=51.sin2x+cos2x=1,tan x=.2.3cos x +4sin x的最大值为5.3.点A(cos x,sin x)在直线3x+4y=5上1.联立3cos x+4sinx=5与sin2x+cos2x=1.2.3cos x+4sin x=5sin (x+φ)1.tan x可看作直线的斜率.2.将已知条件变为cos x+sinx=1思路参考:解方程组解:由消去cos x,整理得(5sin x-4)2=0,解得sin x=,cos x=.故tan x==.思路参考:留意到3cos x+4sin x的最大值为5,利用协助角公式推出x与协助角的关系.解:3cos x+4sin x=5=5sin (x+φ)=5,其中cos φ=,sin φ=,所以tan φ=,所以x+φ=2kπ+(k∈Z).于是tan x=tan ==.思路参考:令tan x=t,借助已知条件用t表示sin x和cos x.解:令tan x=t,即t cos x=sin x,代入3cos x+4sin x=5,得3cos x+4t cos x=5,所以cos x=,sin x=.再代入sin2x+cos2x=1,得+=1,解得t=,即tan x=.思路参考:设P(m,n)为角x终边上随意一点,r=,利用三角函数的定义求解.解:设P(m,n)为角x终边上随意一点,点P到原点O的距离为r,则r=.把sin x=,cos x=代入已知等式得3·+4·=5,即(3m+4n)2=(5r)2=25(m2+n2),整理得(4m-3n)2=0,所以4m=3n.明显m≠0,故tan x==.思路参考:设点A(cos x,sin x)是直线3x+4y=5与单位圆x2+y2=1的切点,而tan x =k OA.解:由3cos x+4sin x=5可知点A(cos x,sin x)在直线3x+4y=5上,同时也在单位圆x2+y2=1上,所以点A为直线3x+4y=5与单位圆的切点.由于直线3x+4y=5的斜率为-,所以OA的斜率为,即tan x=.思路参考:m=(cos x,sin x),n=,证明m∥n.解:因为cos x+sin x=1,不妨令m=(cos x,sin x),n=,可知|m|=1,|n|=1,所以m,n均为单位向量,且m·n=1.由|m||n|≥|m·n|,等号成立的条件为m∥n,则有cos x=sin x,即tan x=.1.本题考查同角三角函数基本关系的应用,基本解题方法是构建方程(组)、数形结合等.在求解过程中,应留意同角三角函数的基本关系本身是恒等式,也可以看作是方程.2.基于课程标准,解答本题一般须要有良好的运算求解实力、转化与化归的实力.本题的解答体现了数学运算的核心素养.3.基于高考数学评价体系,本题的多种解法中涉及同角三角函数基本关系式、方程、协助角公式、直线与圆、向量等学问,渗透着函数与方程、等价转换、数形结合等思想方法,对提升思维的敏捷性起到了主动的作用.已知θ是第一象限角,若sin θ-2cos θ=-,求sin θ+cos θ的值.解:因为sin θ-2cos θ=-,所以sin θ=2cos θ-,所以+cos2θ=1,所以5cos2θ-cosθ-=0,即=0.又因为θ为第一象限角,所以cos θ=,所以sin θ=,所以sin θ+cos θ=.课时质量评价(二十二)A组全考点巩固练1.已知sin α=,α∈,则tan α=( )A.B.-C.D.-D解析:因为sin α=,α∈,所以cos α=-=-,则tanα==-.2.已知α是其次象限角,sin (π-α)=,则cos (π+α)=( )A.-B.-C.D解析:因为α是其次象限角,sin (π-α)=,可得sin α=,所以cos α=-=-,则cos(π+α)=-cos α=.3.已知tan α=3,则=( )A.-C.±D解析:因为tanα=3,所以===.4.(2024·安徽模拟)已知cos+cos (π+α)=,则tan α+=( ) A.2 B.-2C.D.3A解析:因为cos +cos (π+α)=,所以-sin α-cos α=,即sin α+cos α=-,两边平方,可得1+2sin αcos α=2,所以sin αcos α=,所以tan α+===2.5.已知cos =,则cos =______,sin=_________.-解析:cos =cos =-cos =-.sin =sin =cos =.6.已知函数f(x)=a sin (πx+α)+b cos (πx+β),且f(4)=3,则f(2 021)=_________.-3解析:因为f(4)=a sin (4π+α)+b cos (4π+β)=a sin α+b cos β=3,所以f(2 021)=a sin (2 021π+α)+b cos (2 021π+β)=a sin (π+α)+b cos (π+β)=-(a sin α+b cos β)=-3.B组新高考培优练7.(多选题)已知α是三角形内角,若sin α+cos α=,则sin α-cos α的值可能为( )A.-B.-C.BC解析:因为α是三角形内角,所以α∈(0,π),又因为(sin α+cos α)2=sin2α+cos2α+2sinαcos α=1+2sin αcos α=,解得2sin αcos α=.因为sin αcos α>0且α∈(0,π),所以sin α>0,cos α>0,所以sin α-cos α符号不确定,所以(sin α-cos α)2=1-2sin αcos α=1-=,所以sin α-cos α=±.8.(2024·聊城模拟)已知α,β∈,且满意sin αcos β-2cos αsin β=0,则tan (2π+α)+tan 的最小值为( )A.2 B.C.1 D.2D解析:因为sin αcos β-2cos αsin β=0,α,β∈,所以tan α>0,tan β>0,tan α=2tan β,所以tan (2π+α)+tan =tan α+=2tan β+≥2,当且仅当tan β=时等号成立.9.(2024·承德二模)若α∈,2sin α+cos α=,则tan α=( )A.-2 B.2C.D.-A解析:由2sin α+cos α=,两边平方,可得(2sin α+cos α)2=,即4sin2α+4sinαcos α+cos2α=.所以,所以,则11tan2α+20tanα-4=0.解得tan α=-2或tan α=.因为α∈,所以tan α=-2.10.(2024·浙江卷)若3sin α-sin β=,α+β=,则sin α=________,cos 2β=_________.解析:因为3sin α-sin β=,α+β=,所以3sin α-cos α=,所以cos α=3sin α-.因为sin2α+cos2α=1,所以sin2α+(3sinα-)2=1,解得sin α=,cos β=sin α=,cos 2β=2cos2β-1=2×-1=.11.已知cos+sin =1,则cos2+cosβ-1的取值范围为_________.解析:由已知得cos β=1-sin α.因为-1≤cos β≤1,所以-1≤1-sin α≤1.又-1≤sin α≤1,可得0≤sin α≤1,所以cos2+cosβ-1=sin2α+1-sinα-1=sin2α-sinα=-.(*) 又0≤sin α≤1,所以当sin α=时,(*)式取得最小值-,当sin α=0或sin α=1时,(*)式取得最大值0,故所求范围是.12.已知-<α<0,且函数f(α)=cos -sin α·-1.(1)化简f(α);(2)若f(α)=,求sin αcos α和sin α-cos α的值.解:(1)因为-<α<0,所以sin α<0,所以f(α)=sin α-sin α·-1=sinα+sin α·-1=sin α+cos α.(2)法一:由f(α)=sin α+cos α=,平方可得sin2α+2sinα·cos α+cos2α=,即2sinαcos α=-.所以sin αcos α=-.又-<α<0,所以sin α<0,cos α>0,所以sin α-cos α<0,因为(sin α-cos α)2=1-2sin αcos α=,所以sin α-cos α=-.法二:联立方程解得或因为-<α<0,所以所以sin αcos α=-,sin α-cos α=-.。
专题3.1--函数的概念及其表示--教师版

专题3.1函数的概念及其表示练基础1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =()A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩则(3)f =()A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为()A .16B .18C .21D .24【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =()A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为().A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x x=的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()1x f x x=的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x ∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或22-【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:2a =-,故1a =或2-,故答案为:1或2-.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦练提升1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则()A .t 没有最小值B .t 51-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =()min 1n m -=.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是()A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有()A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有()A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭=()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )=2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是()A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则()A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则()A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.【答案】5112a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21515111022a a a a a a ⎛⎫⎛⎫--+=+--=---≤ ⎪⎪ ⎪⎪⎝⎭⎝⎭,由于01a <<,所以解得112a ≤<.故答案为:112a -≤<9.(2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10.(2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x 的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .练真题1.(山东高考真题)设=s 0<<12−1,≥1,若=+1,则1=()A.2B.4C.6D.8【答案】C【解析】由≥1时=2−1是增函数可知,若≥1,则≠+1,所以0<<1,由op =o +1)得=2(+1−1),解得=14,则1=o4)=2(4−1)=6,故选C.2.(2018上海卷)设是含数1的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,1的可能取值只能是()A.3B.3C.3D.0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=3,3,0时,此时得到的圆心角为3,6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y,因此只有当此时旋转6,此时满足一个x 只会对应一个y,故选:B.3.(2018年新课标I 卷文)设函数=2−,≤01,>0,则满足+1<2的x 的取值范围是()A.−∞,−1B.0,+∞C.−1,0D.−∞,0【答案】D【解析】将函数op 的图象画出来,观察图象可知会有2<02<+1,解得<0,所以满足+1<2的x 的取值范围是−∞,0,故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5.(2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4)(1,3](4,)⋃+∞【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。
2023年高考数学总复习第二章 函数概念与基本初等函数第4节:幂函数与二次函数(教师版)

2023年高考数学总复习第二章函数概念与基本初等函数第4节二次函数性质的再研究与幂函数考试要求 1.了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=x 12,y=1x的图像,了解它们的变化情况;2.理解二次函数的图像和性质,能用二次函数、方程、不等式之间的关系解决简单问题.1.幂函数(1)幂函数的定义如果一个函数,底数是自变量x,指数是常量α,即y=xα,这样的函数称为幂函数.(2)常见的五种幂函数的图像(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图像和性质1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),>0,<0时,恒有f (x )>0;<0,<0时,恒有f (x )<0.3.(1)幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限;(2)幂函数的图像过定点(1,1),如果幂函数的图像与坐标轴相交,则交点一定是原点.1.思考辨析(在括号内打“√”或“×”)(1)函数y =2x 13是幂函数.()(2)当α>0时,幂函数y =x α在(0,+∞)上是增函数.()(3)二次函数y =ax 2+bx +c (a ≠0)的两个零点可以确定函数的解析式.()(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是4ac-b24a.()答案(1)×(2)√(3)×(4)×解析(1)由于幂函数的解析式为f(x)=xα,故y=2x 13不是幂函数,(1)错误.(3)确定二次函数的解析式需要三个独立的条件,两个零点不能确定函数的解析式.(4)对称轴x=-b2a,当-b2a不在给定定义域内时,最值不是4ac-b24a,故(4)错误.2.(2021·全国甲卷)下列函数中是增函数的为()A.f(x)=-xB.f(x)C.f(x)=x2D.f(x)=3x答案D解析取x1=-1,x2=0,对于A项有f(x1)=1,f(x2)=0,所以A项不符合题意;对于B项有f(x1)=32,f(x2)=1,所以B项不符合题意;对于C项有f(x1)=1,f(x2)=0,所以C项不符合题意.故选D.3.(易错题)若函数y=mx2+x+2在[3,+∞)上是减函数,则m的取值范围是________.答案-∞,-16解析当m=0时,函数在给定区间上是增函数;当m≠0时,二次函数的对称轴为直线x=-12m,<0,-12m≤3,∴m≤-16.4.(易错题)已知幂函数f(x)=x-12,若f(a+1)<f(10-2a),则a的取值范围是________.答案(3,5)解析∵幂函数f(x)=x-12在定义域(0,+∞)上单调递减,∴由f(a+1)<f(10-2a),a +1>0,10-2a >0,a +1>10-2a ,∴3<a <5.5.(2018·上海卷)已知α-2,-1,-12,12,1,2,3若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.答案-1解析由y =x α为奇函数,知α取-1,1,3.又y =x α在(0,+∞)上递减,∴α<0,取α=-1.6.已知函数f (x )=-2x 2+mx +3(0≤m ≤4,0≤x ≤1)的最大值为4,则m 的值为________.答案22解析f (x )=-2x 2+mx +3=-x m 4+m 28+3,∵0≤m ≤4,∴0≤m4≤1,∴当x =m4时,f (x )取得最大值,∴m 28+3=4,解得m =2 2.考点一幂函数的图像和性质1.若幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的大致图像是()答案C解析设幂函数的解析式为y =x α,因为幂函数y =f (x )的图像过点(4,2),所以2=4α,解得α=12.所以y=x,其定义域为[0,+∞),且是增函数,当0<x<1时,其图像在直线y =x的上方,对照选项,C正确.2.若幂函数f(x)=(2b-1)x a2-10a+23(a,b∈Z)为偶函数,且f(x)在(0,+∞)上是减函数,则a,b的值分别为()A.2,1B.4,1C.5,1D.6,1答案C解析由幂函数的定义得2b-1=1,∴b=1.又∵a2-10a+23=(a-5)2-2,函数f(x)为偶函数且在(0,+∞)上为减函数,∴(a-5)2-2<0,故a=4,5,6.又(a-5)2-2为偶数,∴a=5.3.如图是①y=x a;②y=x b;③y=x c在第一象限的图像,则a,b,c的大小关系为()A.c<b<aB.a<b<cC.b<c<aD.a<c<b答案D解析由幂函数的图像和单调性可知a<0,b>1,0<c<1,∴a<c<b.4.(2021·郑州质检)幂函数f(x)=(m2-3m+3)x m的图像关于y轴对称,则实数m=________.答案2解析由幂函数定义,知m2-3m+3=1,解得m=1或m=2,当m=1时,f(x)=x的图像不关于y轴对称,舍去,当m=2时,f(x)=x2的图像关于y轴对称,因此m =2.5.若(a +1)-13<(3-2a )-13,则实数a 的取值范围是________.答案(-∞,-1)23,32解析不等式(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.感悟提升1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴.考点二二次函数的解析式例1已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解法一(利用“一般式”)设f (x )=ax 2+bx +c (a ≠0).4a +2b +c =-1,a -b +c 1,4ac -b24a=8,a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.法二(利用“顶点式”)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8,所以y=f(x)=+8.因为f(2)=-1,所以+8=-1,解得a=-4,所以f(x)=-+8=-4x2+4x+7.法三(利用“零点式”)由已知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.又函数有最大值8,即4a(-2a-1)-(-a)24a=8.解得a=-4或a=0(舍).故所求函数的解析式为f(x)=-4x2+4x+7.感悟提升求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:训练1(1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)=________.(2)已知二次函数f(x)的图像经过点(4,3),在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.答案(1)x2+2x+1(2)x2-4x+3解析(1)设函数f(x)的解析式为f(x)=a(x+1)2=ax2+2ax+a,由已知f(x)=ax2+bx+1,所以a=1,b=2a=2,故f(x)=x2+2x+1.(2)因为f(2-x)=f(2+x)对x∈R恒成立,所以y=f(x)的图像关于x=2对称.又y=f(x)的图像在x轴上截得的线段长为2,所以f(x)=0的两根为2-22=1或2+22=3.所以二次函数f(x)与x轴的两交点坐标为(1,0)和(3,0).因此设f(x)=a(x-1)(x-3).又点(4,3)在y=f(x)的图像上,所以3a=3,则a=1.故f(x)=(x-1)(x-3)=x2-4x+3.考点三二次函数的图像和性质角度1二次函数的图像例2(1)二次函数y=ax2+bx+c的图像如图所示.则下列结论正确的是______(填序号).①b2>4ac;②c>0;③ac>0;④b<0;⑤a-b+c<0.(2)设函数f(x)=x2+x+a(a>0),若f(m)<0,则()A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0答案(1)①②⑤(2)C解析(1)由题图知,a<0,-b2a>0,c>0,∴b>0,ac<0,故②正确,③④错误.又函数图像与x轴有两交点,∴Δ=b2-4ac>0,故①正确;又由题图知f(-1)<0,即a-b+c<0,故⑤正确.(2)因为f(x)的对称轴为x=-12,f(0)=a>0,所以f(x)的大致图像如图所示.由f(m)<0,得-1<m<0,所以m+1>0>-1 2,所以f(m+1)>f(0)>0.角度2二次函数的单调性与最值例3(1)函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取值范围是()A.[-3,0)B.(-∞,-3]C.[-2,0]D.[-3,0]答案D解析当a=0时,f(x)=-3x+1在[-1,+∞)上单调递减,满足题意.当a≠0时,f(x)的对称轴为直线x=3-a 2a,由f(x)在[-1,+∞)a<0,3-a2a≤-1,解得-3≤a<0.综上,a的取值范围为[-3,0].(2)(2021·西安模拟)已知f(x)=ax2-2x(0≤x≤1),求f(x)的最小值.解①当a=0时,f(x)=-2x在[0,1]上递减,∴f(x)min=f(1)=-2.②当a>0时,f(x)=ax2-2x图像开口方向向上,且对称轴为x=1 a .(ⅰ)当1a≤1,即a≥1时,f(x)=ax2-2x图像的对称轴在[0,1]内,∴f(x)在0,1a上递减,在1a,1上递增.∴f(x)min=1a=1a-2a=-1a.(ⅱ)当1a>1,即0<a<1时,f(x)=ax2-2x图像的对称轴在[0,1]的右侧,∴f(x)在[0,1]上递减.∴f(x)min=f(1)=a-2.③当a<0时,f(x)=ax2-2x的图像的开口方向向下,且对称轴x=1a<0,在y轴的左侧,∴f(x)=ax2-2x在[0,1]上递减.∴f(x)min=f(1)=a-2.综上所述,f(x)min-2,a<1,-1a,a≥1.感悟提升 1.闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图像,根据函数的单调性及分类讨论的思想求解.2.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图像的对称轴与区间的位置关系,当含有参数时,要依据图像的对称轴与区间的位置关系进行分类讨论.角度3二次函数中的恒成立问题例4(1)已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,则实数a的取值范围是________.(2)函数f(x)=a2x+3a x-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则实数a的最大值为________.答案(2)2解析(1)由题意知2ax2+2x-3<0在[-1,1]上恒成立,当x=0时,-3<0,符合题意,a∈R;当x≠0时,a-1 6,因为1x∈(-∞,-1]∪[1,+∞),所以当x=1时,不等号右边式子取最小值1 2,所以a<1 2 .综上,实数a∞(2)令a x=t,因为a>1,x∈[-1,1],所以1a≤t≤a,原函数化为g(t)=t2+3t-2,t∈1a,a,显然g(t)在1a,a上单调递增,所以f(x)≤8恒成立,即g(t)max=g(a)≤8成立,所以有a2+3a-2≤8,解得-5≤a≤2,又a>1,所以1<a≤2,所以a的最大值为2.感悟提升由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.其中分离参数的依据是:a≥f(x)恒成立⇔a≥f(x)max,a≤f(x)恒成立⇔a ≤f(x)min.训练2(1)(2021·长春五校联考)已知二次函数f(x)满足f(3+x)=f(3-x),若f(x)在区间[3,+∞)上单调递减,且f(m)≥f(0)恒成立,则实数m的取值范围是()A.(-∞,0]B.[0,6]C.[6,+∞)D.(-∞,0]∪[6,+∞)(2)(2022·泰安调研)当x∈(0,+∞)时,ax2-3x+a≥0恒成立,则实数a的取值范围是________.答案(1)B(2)32,+∞解析(1)设f(x)=ax2+bx+c(a,b,c∈R,且a≠0),∵f(3+x)=f(3-x),∴a(3+x)2+b(3+x)+c=a(3-x)2+b(3-x)+c,∴x(6a+b)=0,∴6a+b=0,∴f(x)=ax2-6ax+c=a(x-3)2-9a+c.又∵f(x)在区间[3,+∞)上单调递减,∴a<0,∴f(x)的图像是以直线x=3为对称轴,开口向下的抛物线,∴由f(m)≥f(0)恒成立,得0≤m≤6,∴实数m的取值范围是[0,6].(2)由ax2-3x+a≥0,得a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当x=1时等号成立,∴y=3x+1x≤32,故a≥32.(3)设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.解f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,函数图像的对称轴为x=1.当t+1≤1,即t≤0时,函数图像如图(1)所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为f(t+1)=t2+1;当t<1<t+1,即0<t<1时,函数图像如图(2)所示,在对称轴x=1处取得最小值,最小值为f(1)=1;当t≥1时,函数图像如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值为f(t)=t2-2t+2.综上可知,当t≤0时,f(x)min=t2+1,当0<t<1时,f(x)min=1,当t≥1时,f(x)min=t2-2t+2.1.若f (x )是幂函数,且满足f (4)f (2)=3,则()A.3B.-3C.13D.-13答案C解析设f (x )=x α,则4α2α=2α=3,∴=13.2.若函数f (x )=(m 2-m -1)x m 是幂函数,且其图像与坐标轴无交点,则f (x )()A.是偶函数B.是定义域内的减函数C.是定义域内的增函数D.在定义域内没有最小值答案D解析幂函数f (x )=(m 2-m -1)x m 的图像与坐标轴无交点,可得m 2-m -1=1,且m ≤0,解得m =-1,则函数f (x )=x -1是奇函数,在定义域上不是减函数,且无最值.3.(2021·河南名校联考)函数y =1-|x -x 2|的图像大致是()答案C解析∵当0≤x ≤1时,y =x 2-x +1+34,又当x >1或x <0时,y =-x 2+x +1+54,因此,结合图像,选项C 正确.4.(2021·西安检测)已知函数f (x )=x -3,若a =f (0.60.6),b =f (0.60.4),c =f (0.40.6),则a ,b ,c 的大小关系是()A.a <c <bB.b <a <cC.b <c <aD.c <a <b答案B解析∵0.40.6<0.60.6<0.60.4,又y =f (x )=x -3在(0,+∞)上是减函数,∴b <a <c .5.若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围是()A.[2,+∞)B.(2,+∞)C.(-∞,0)D.(-∞,2)答案A解析二次函数y =kx 2-4x +2图像的对称轴为直线x =2k,当k >0时,要使函数y =kx 2-4x +2在区间[1,2]上是增函数,只需2k ≤1,解得k ≥2;当k <0时,2k <0,此时抛物线的对称轴在区间[1,2]的左侧,则函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).6.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图像三等分,即有BM =MN =NA ,那么a -1b=()A.0B.1C.12D.2答案A解析BM =MN =NA ,点A (1,0),B (0,1),所以将两点坐标分别代入y =x a ,y =x b ,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log 2313=0.7.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.答案-22,解析因为函数图像开口向上,(m )=m 2+m 2-1<0,(m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0.8.(2021·青岛联考)已知函数f (x )=x 2-2ax +b (a >1)的定义域和值域都为[1,a ],则b =________.答案5解析f (x )=x 2-2ax +b 的图像关于x =a 对称,所以f (x )在[1,a ]上为减函数,又f (x )的值域为[1,a ],(1)=1-2a +b =a ,(a )=a 2-2a 2+b =1.消去b ,得a 2-3a +2=0,解得a =2(a >1),从而得b =3a -1=5.9.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 的值都有f (x )>0,则实数a的取值范围为________.答案解析由题意得a >2x -2x2对1<x <4恒成立,又2x -2x2=-+12,14<1x<1,max=12,∴a >12.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图像过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[3,5]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a .因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0.所以4a 2-4a =0,所以a =1,b =2.所以f (x )=x 2+2x +1.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1+1.由g (x )的图像知,要满足题意,则k -22≥5或k -22≤3,即k ≥12或k ≤8,所以所求实数k 的取值范围为(-∞,8]∪[12,+∞).11.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图像恒在函数y =2x +m 的图像的上方,求实数m 的取值范围.解(1)设f (x )=ax 2+bx +c (a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以,2a =2且a +b =0,解得a =1,b =-1,又f (0)=1,所以c =1.因此f(x)的解析式为f(x)=x2-x+1.(2)因为当x∈[-1,1]时,y=f(x)的图像恒在y=2x+m的图像上方,所以在[-1,1]上,x2-x+1>2x+m恒成立;即x2-3x+1>m在区间[-1,1]上恒成立.所以令g(x)=x2-3x+1-5 4,因为g(x)在[-1,1]上的最小值为g(1)=-1,所以m<-1.故实数m的取值范围为(-∞,-1).12.已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围是()A.[-2,2]B.[1,2]C.[2,3]D.[1,2]答案B解析由于f(x)=x2-2tx+1的图像的对称轴为x=t,又y=f(x)在(-∞,1]上是减函数,所以t≥1.则在区间[0,t+1]上,f(x)max=f(0)=1,f(x)min=f(t)=t2-2t2+1=-t2+1,要使对任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,只需1-(-t2+1)≤2,解得-2≤t≤ 2.又t≥1,∴1≤t≤ 2.13.(2022·太原调研)对于问题:当x>0时,均有[(a-1)x-1](x2-ax-1)≥0,求实数a的所有可能值.几位同学提供了自己的想法.甲:解含参不等式,其解集包含正实数集;乙:研究函数y=[(a-1)x-1](x2-ax-1);丙:分别研究两个函数y1=(a-1)x-1与y2=x2-ax-1;丁:尝试能否参变量分离研究最值问题.你可以选择其中某位同学的想法,也可以用自己的想法,可以得出的正确答案为______.答案3 2解析选丙.画出y2=x2-ax-1的草图,y2=x2-ax-1过定点C(0,-1).∴y2=x2-ax-1与x轴有两个交点,且两交点在原点两侧,又y1=(a-1)x-1也过定点C(0,-1),故直线y1=(a-1)x-1只有过点A,C才满足题意,∴a-1>0,即a>1,令y1=0得x=1a-1,y2=x2-ax-1,-aa-1-1=0,解得a=0(舍)或a=3 2 .14.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],函数图像的对称轴为直线x=-32∈[-2,3],∴f(x)min==94-92-3=-214,f(x)max=f(3)=15,∴f(x)的值域为-214,15.(2)函数图像的对称轴为直线x=-2a-12.①当-2a-12≤1,即a≥-12时,f(x)max=f(3)=6a+3,∴6a+3=1,即a=-13,满足题意;②当-2a-12>1,即a<-12时,f(x)max=f(-1)=-2a-1,∴-2a-1=1,即a=-1,满足题意.综上可知,a=-13或-1.。
高考函数专项复习教案

高考函数专项复习教案一、教学目标1. 理解函数的定义及其性质,掌握常见函数的图像和特征。
2. 熟练运用函数性质解决实际问题,提高数学思维能力和解决问题的能力。
3. 巩固求解函数方程、不等式的能力,提升高考数学成绩。
二、教学内容1. 函数的定义与性质1.1 函数的概念1.2 函数的性质(单调性、奇偶性、周期性)2. 常见函数的图像与特征2.1 一次函数、二次函数、反比例函数的图像与性质2.2 指数函数、对数函数的图像与性质2.3 三角函数的图像与性质三、教学重点与难点1. 重点:函数的定义与性质,常见函数的图像与特征。
2. 难点:函数方程、不等式的求解,函数性质在实际问题中的应用。
四、教学方法与手段1. 采用讲练结合的方法,通过例题解析、课后习题训练,巩固知识点。
2. 利用多媒体教学手段,展示函数图像,直观地理解函数性质。
3. 组织小组讨论,促进学生互动交流,提高解决问题的能力。
五、课时安排1. 第1课时:函数的定义与性质2. 第2课时:一次函数、二次函数的图像与性质3. 第3课时:反比例函数、指数函数的图像与性质4. 第4课时:对数函数、三角函数的图像与性质5. 第5课时:函数方程、不等式的求解及应用教案内容待补充。
六、教学过程6. 结合具体案例,让学生通过观察、分析、归纳函数的性质,如单调性、奇偶性、周期性等。
7. 通过例题展示,引导学生运用函数性质解决实际问题,巩固所学知识。
8. 针对高考题型,进行函数方程、不等式的专项训练,提高解题技巧。
9. 组织学生进行小组讨论,分享解题心得,互相学习,共同进步。
10. 总结本节课所学内容,布置课后作业,巩固知识点。
七、课后作业1. 选择题:1. 函数f(x) = 2x + 1的定义域是____。
2. 函数f(x) = |x|的值域是____。
3. 下列函数中,奇函数的是____。
4. 若函数f(x) = ax^2 + bx + c的图像开口向上,则a的取值范围是____。
轮总复习教师教案(函数)完

函数总复习教师教案(一)一、教学目标1. 理解函数的概念,掌握函数的表示方法。
2. 掌握函数的性质,包括单调性、奇偶性、周期性等。
3. 学会运用函数解决实际问题,提高数学建模能力。
二、教学内容1. 函数的概念与表示方法函数的定义函数的表示方法:解析式、表格、图象2. 函数的性质单调性:增函数、减函数奇偶性:奇函数、偶函数周期性:周期函数、周期三、教学重点与难点1. 重点:函数的概念、表示方法,以及函数的性质。
2. 难点:函数性质的运用,以及实际问题的解决。
四、教学方法1. 采用讲授法,系统地讲解函数的概念、表示方法,以及函数的性质。
2. 利用案例分析法,分析实际问题,引导学生学会运用函数解决实际问题。
3. 运用数形结合法,结合图象讲解函数的性质,提高学生的直观理解能力。
五、教学过程1. 导入:回顾函数的概念,引导学生思考函数在实际生活中的应用。
2. 讲解:讲解函数的表示方法,如解析式、表格、图象。
3. 练习:让学生举例说明函数的表示方法,并进行点评。
4. 讲解:讲解函数的单调性、奇偶性、周期性等性质。
5. 案例分析:分析实际问题,引导学生运用函数解决实际问题。
6. 练习:让学生举例说明函数性质的运用,并进行点评。
7. 总结:对本节课的内容进行总结,强调重点和难点。
8. 作业布置:布置相关练习题,巩固所学知识。
函数总复习教师教案(二)一、教学目标1. 掌握函数的图像,学会分析函数图像的特点。
2. 掌握函数的变换,包括平移、翻折、缩放等。
3. 学会运用函数图像解决实际问题,提高数学建模能力。
二、教学内容1. 函数的图像直线函数的图像二次函数的图像指数函数、对数函数的图像2. 函数的变换平移:上移、下移翻折:关于x轴翻折、关于y轴翻折缩放:放大、缩小三、教学重点与难点1. 重点:函数图像的特点,以及函数图像的变换。
2. 难点:函数图像变换的运用,以及实际问题的解决。
四、教学方法1. 采用讲授法,系统地讲解函数图像的特点,以及函数图像的变换。
2025高考数学必刷题 第15讲、单调性问题(教师版)

第15讲单调性问题知识梳理知识点一:单调性基础问题1、函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数.2、已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.知识点二:讨论单调区间问题类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根作图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负);(5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导);求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导.(7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系);(5)导数图像定区间;【解题方法总结】1、求可导函数单调区间的一般步骤(1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注:①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥;()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.必考题型全归纳题型一:利用导函数与原函数的关系确定原函数图像【例1】(2024·全国·高三专题练习)设()f x '是函数()f x 的导函数,()y f x '=的图象如图所示,则()y f x =的图象最有可能的是()A .B .C .D .【答案】C【解析】由导函数的图象可得当0x <时,()0f x ¢>,函数()f x 单调递增;当02x <<时,()0f x '<,函数()f x 单调递减;当2x >时,()0f x ¢>,函数()f x 单调递增.只有C 选项的图象符合.故选:C.【对点训练1】(多选题)(2024·全国·高三专题练习)已知函数()f x 的定义域为R 且导函数为'()f x ,如图是函数'()y xf x =的图像,则下列说法正确的是A .函数()f x 的增区间是(2,0),(2,)-+∞B .函数()f x 的增区间是()(),2,2,-∞-+∞C .2x =-是函数的极小值点D .2x =是函数的极小值点【答案】BD【解析】先由题中图像,确定()f x '的正负,得到函数()f x 的单调性;从而可得出函数极大值点与极小值点,进而可得出结果.由题意,当02x <<时,()0f x '<;当2x >,()0f x '>;当20x -<<时,()0f x '<;当<2x -时,()0f x '>;即函数()f x 在(),2-∞-和(2,)+∞上单调递增,在()2,2-上单调递减,因此函数()f x 在2x =时取得极小值,在2x =-时取得极大值;故A 错,B 正确;C 错,D 正确.故选:BD.【对点训练2】(2024·黑龙江齐齐哈尔·统考二模)已知函数()y xf x '=的图象如图所示(其中()f x '是函数()f x 的导函数),下面四个图象中可能是()y f x =图象的是()A .B .C .D .【答案】C【解析】由()y xf x '=的图象知,当(),1x ∈-∞-时,()0xf x '<,故()0f x ¢>,()f x 单调递增;当()1,0x ∈-时,()0xf x '>,故()0f x '<,当[)0,1x ∈,()0xf x '≤,故()0f x '≤,等号仅有可能在x =0处取得,所以()1,1x ∈-时,()f x 单调递减;当()1,x ∈+∞时,()0xf x '>,故()0f x ¢>,()f x 单调递增,结合选项只有C 符合.故选:C.【对点训练3】(2024·陕西西安·校联考一模)已知定义在[3,4]-上的函数()f x 的大致图像如图所示,()f x '是()f x 的导函数,则不等式()0xf x '>的解集为()A .5(2,1)1,2⎛⎫-- ⎪⎝⎭B .(3,2)--C .5(1,0)1,2⎛⎫- ⎪⎝⎭D .(3,4)【答案】C【解析】若0x <,则()()0,f x f x '<单调递减,图像可知,()1,0x ∈-,若0x >,则()()0,f x f x '>单调递增,由图像可知51,2x ⎛⎫∈ ⎪⎝⎭,故不等式()0xf x '>的解集为()51,01,2⎛⎫- ⎪⎝⎭.故选:C【解题方法总结】原函数的单调性与导函数的函数值的符号的关系,原函数()f x 单调递增⇔导函数()0f x '≥(导函数等于0,只在离散点成立,其余点满足()0f x '>);原函数单调递减⇔导函数()0f x '≤(导函数等于0,只在离散点成立,其余点满足0()0f x <).题型二:求单调区间【例2】(2024·江西鹰潭·高三贵溪市实验中学校考阶段练习)函数22ln x y x x+=+的单调递增区间为()A .(0,2)B .(0,1)C .(2,)+∞D .(1,)+∞【答案】D【解析】函数的定义域为(0,)+∞.222ln ln x y x x x x x +=+=++,则2222212(2)(1)1x x x x y x x x x +-+-'=-+==.令00y x >⎧⎨>'⎩,解得(1,)x ∈+∞.故选:D【对点训练4】(2024·全国·高三专题练习)函数ln y x x =()A .严格增函数B .在0,1e ⎛⎫⎪⎝⎭上是严格增函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是严格减函数C .严格减函数D .在0,1e ⎛⎫⎪⎝⎭上是严格减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是严格增函数【答案】D【解析】已知ln y x x =,0x >,则1ln ln 1y x x x x'=+⋅=+,令0y '=,即ln 10x +=,解得1ex =,当10e x <<时,0'<y ,所以在0,1e ⎛⎫⎪⎝⎭上是严格减函数,当1e x >时,0'>y ,所以在1,e ⎛⎫+∞ ⎪⎝⎭上是严格增函数,故选:D.【对点训练5】(2024·全国·高三专题练习)函数()()2ln 41f x x =-的单调递增区间()A .1,2⎛⎫+∞ ⎪⎝⎭B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎛⎫- ⎪⎝⎭D .()0,∞+【答案】A【解析】由2410x ->,可得12x <-或12x >,所以函数()()2ln 41f x x =-的定义域为11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.求导可得()2841x f x x =-',当()0f x ¢>时,0x >,由函数定义域可知,12x >,所以函数()()2ln 41f x x =-的单调递增区间是1,2⎛⎫+∞ ⎪⎝⎭.故选:A.【对点训练6】(2024·高三课时练习)函数()bf x ax x=+(a 、b 为正数)的严格减区间是().A .,⎛-∞ ⎝B .,0b a ⎛⎫- ⎪⎝⎭与0,b a ⎛⎫⎪⎝⎭C .⎛⎫ ⎪ ⎪⎝⎭与⎛ ⎝D .⎛⎫⎛⎫⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】由题得0x ≠.由()2b f x a x -'=,令()20b f x a x '=-<解得0x <<或0x <<.所以函数()bf x ax x =+的严格减区间是⎛⎫ ⎪ ⎪⎝⎭与⎛ ⎝.选项D ,本题的两个单调区间之间不能用“ ”连接,所以该选项错误.故选:C【解题方法总结】求函数的单调区间的步骤如下:(1)求()f x 的定义域(2)求出()f x '.(3)令()0f x '=,求出其全部根,把全部的根在x 轴上标出,穿针引线.(4)在定义域内,令()0f x '>,解出x 的取值范围,得函数的单调递增区间;令()0f x '<,解出x 的取值范围,得函数的单调递减区间.若一个函数具有相同单调性的区间不只一个,则这些单调区间不能用“ ”、“或”连接,而应用“和”、“,”隔开.题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围【例3】(2024·宁夏银川·银川一中校考三模)若函数2()ln 2x f x x =-在区间1(,3m m +上不单调,则实数m 的取值范围为()A .203m <<B .213m <<C .213m ≤≤D .m >1【答案】B【解析】函数2()ln 2x f x x =-的定义域为(0,)+∞,且2(11)1)1)((x f x x x x xx x -==+-'=-,令()0f x '=,得1x =,因为()f x 在区间1(,)3m m +上不单调,所以0113m m m >⎧⎪⎨<<+⎪⎩,解得:213m <<故选:B.【对点训练7】(2024·陕西西安·统考三模)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则a 的取值范围是()A .[)3,+∞B .(],3-∞C .23,e 1⎡⎤+⎣⎦D .23,e 1⎡⎤-⎣⎦【答案】B【解析】因为函数()2ln f x x ax x =-+在区间()1,e 上单调递增,所以()120f x x a x'=-+≥在区间()1,e 上恒成立,即12a x x ≤+在区间()1,e 上恒成立,令()()121e g x x x x=+<<,则())22221112120x g x x x x +--'=-==>,所以()g x 在()1,e 上递增,又()13g =,所以3a ≤.所以a 的取值范围是(],3-∞.故选:B【对点训练8】(2024·全国·高三专题练习)若函数()()3log (0a f x ax x a =->且1)a ≠在区间()0,1内单调递增,则a 的取值范围是()A .[)3,+∞B .(]1,3C .10,3⎛⎫⎪⎝⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令()3g x ax x μ==-,则()23g x a x '=-,当x >x <()0g x '<,当x <<()0g x '>,所以()g x在⎫+∞⎪⎪⎭和,⎛-∞ ⎝上递减,在⎛ ⎝上递增,当1a >时,log a y μ=为增函数,且函数()f x 在区间()0,1内单调递增,所以101a ⎧⎪>⎪⎪≤⎨≥,解得3a ≥,此时()g x 在()0,1上递增,则()()00g x g >=恒成立,当01a <<时,log a y μ=为减函数,且函数()f x 在区间()0,1内单调递增,所以001a ≤<<⎩,无解,综上所述,a 的取值范围是[)3,+∞.故选:A.【对点训练9】(2024·全国·高三专题练习)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫⎪⎝⎭上是减函数,则实数a 的取值范围为()A.1a -B .1a ≥C.1a >D .1a ≥-【答案】B【解析】由题意,()cos sin 0f x x a x '=-≤在ππ,42⎛⎫⎪⎝⎭上恒成立,即cos 1sin tan x a x x ≥=在ππ,42⎛⎫⎪⎝⎭上恒成立,因为tan y x =在ππ,42⎛⎫⎪⎝⎭上单调递增,所以tan 1y x =>,所以在ππ,42x ⎛⎫∈ ⎪⎝⎭时,101tan x <<,所以1a ≥.故选:B【对点训练10】(2024·全国·高三专题练习)三次函数3()f x mx x =-在(,)-∞+∞上是减函数,则m 的取值范围是()A .0m <B .1m <C .0m ≤D .1m £【答案】A【解析】对函数3()f x mx x =-求导,得2()31f x mx '=-因为函数()f x 在(,)-∞+∞上是减函数,则()0f x '≤在R 上恒成立,即2310mx -≤恒成立,当20x =,即0x =时,2310mx -≤恒成立;当20x ≠,即0x ≠时,20x ≥,则213m x ≤,即2min13m x ⎛⎫≤ ⎪⎝⎭,因为210x ≥,所以30m ≤,即0m ≤;又因为当0m =时,()f x x =-不是三次函数,不满足题意,所以0m <.故选:A .【对点训练11】(2024·青海西宁·高三校考开学考试)已知函数()ln 1af x x x =++.若对任意1x ,(]20,2x ∈,且12x x ≠,都有()()21211f x f x x x ->--,则实数a 的取值范围是()A .27,4⎛⎤-∞ ⎥⎝⎦B .(],2-∞C .27,2⎛⎫-∞ ⎪⎝⎭D .(],8∞-【答案】A【解析】根据题意,不妨取12x x <,则()()21211f x f x x x ->--可转化为()()2112f x f x x x ->-,即112212ln ln 11a ax x x x x x ++<++++.令()ln 1aF x x x x =+++,则对任意1x ,(]20,2x ∈,且12x x <,都有()()12F x F x <,所以()F x 在(]0,2上单调递增,即()()21101a F x x x '=-+≥+在(]0,2上恒成立,即()31x a x+≤在(]0,2上恒成立.令()()31x h x x+=,02x <≤,则()()()22121x x h x x +-'=,02x <≤,令()0h x '<,得102x <<,令()0h x '>,得122x <≤,所以()h x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,22⎛⎤⎥⎝⎦上单调递增,所以()min 12724h x h ⎛⎫== ⎪⎝⎭,所以274a ≤,即实数a 的取值范围是27,4⎛⎤-∞ ⎥⎝⎦,故选:A【对点训练12】(2024·全国·高三专题练习)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫ ⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是()A .[)2,-+∞B .1,8⎛⎫-+∞ ⎪⎝⎭C .128⎡⎫--⎪⎢⎣⎭,D .()2,-+∞【答案】D【解析】∵2()ln 2f x x ax =+-,∴1()2f x ax x'=+,若()f x 在区间1,22⎛⎫ ⎪⎝⎭内存在单调递增区间,则1()0,22,f x x '>∈⎛⎫⎪⎝⎭有解,故212a x>-,令21()2g x x =-,则21()2g x x =-在1,22⎛⎫⎪⎝⎭单调递增,1()22g x g ⎛⎫∴>=- ⎪⎝⎭,故 2 a >-.故选:D.【对点训练13】(2024·全国·高三专题练习)若函数2()ln 2f x x x x =+--在其定义域的一个子区间(21,21)k k -+内不是单调函数,则实数k 的取值范围是()A .33,24⎛⎫- ⎪⎝⎭B .1,32⎡⎫⎪⎢⎣⎭C .3,32⎛⎫- ⎪⎝⎭D .13,24⎡⎫⎪⎢⎣⎭【答案】D【解析】因为函数()f x 的定义域为(0,)+∞,所以210k -≥,即12k ≥,2121(1)(21)()21x x x x f x x x x x+-+-'=+-==,令()0f x '=,得12x =或=1x -(舍去),因为()f x 在定义域的一个子区间(21,21)k k -+内不是单调函数,所以121212k k -<<+,得4143k -<<,综上,1324k ≤<,故选:D【对点训练14】(2024·全国·高三专题练习)已知函数()()2ln f x x x b =+-(R b ∈)在区间1,22⎡⎤⎢⎥⎣⎦上存在单调递增区间,则实数b 的取值范围是A .3,2⎛⎫-∞ ⎪⎝⎭B .9,4⎛⎫-∞ ⎪⎝⎭C .(),3-∞D .(-∞【答案】B【解析】 函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦上存在单调增区间,∴函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦上存在子区间使得不等式()0f x '>成立.()()212212x bx f x x b x x -+=+-=',设()2221h x x bx =-+,则()20h >或102h ⎛⎫> ⎪⎝⎭,即8410b -+>或1102b -+>,得94b <,故选B.考点:导数的应用.【例4】(2024·全国·高三专题练习)已知函数()321132a f x x x x =+++在(),0∞-,()3,+∞上单调递增,在()1,2上单调递减,则实数a 的取值范围为()A .105,32⎡⎤--⎢⎥⎣⎦B .(],2-∞-C .10,23⎛⎤-- ⎥⎝⎦D .105,32⎛⎫-- ⎪⎝⎭【答案】A 【解析】由()321132a f x x x x =+++,得()21f x x ax '=++.因为()f x 在(),0∞-,()3,+∞上单调递增,在()1,2上单调递减,所以方程()0f x '=的两个根分别位于区间[]0,1和[]2,3上,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10,110,4210,9310,a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩解得10532a -≤≤-.故选:A .【对点训练15】(2024·全国·高三专题练习)已知函数()()()3223110f x mx m x m m =+--+>的单调递减区间是()0,4,则m =()A .3B .13C .2D .12【答案】B【解析】函数()()()3223110f x mx m x m m =+--+>,则导数()()2361f x mx m x'=+-令()0f x '<,即()23610mx m x +-<,∵0m >,()f x 的单调递减区间是()0,4,∴0,4是方程()23610mx m x +-=的两根,∴()2104m m-+=,040⨯=,∴13m =故选:B.【解题方法总结】(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围.(3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解.题型四:不含参数单调性讨论【例5】(2024·全国·高三专题练习)已知函数()()()1ln 10x f x x x++=>.试判断函数()f x 在()0+∞,上单调性并证明你的结论;【解析】函数()f x 在()0,∞+上为减函数,证明如下:因为()()()1ln 10x f x x x++=>,所以()()21ln 11xx f x x --++'=,又因为0x >,所以101x>+,ln(1)0x +>,所以()0f x '<,即函数()f x 在()0,∞+上为减函数.【对点训练16】(2024·广东深圳·高三深圳外国语学校校考阶段练习)已知()e ln x af x x x+=+若1a =,讨论()f x 的单调性;【解析】若1a =,则()()e 1ln 0x f x x x x +=+>,求导得()()()21e 1x x f x x-+'=,令()0f x ¢>可得1x >,令()0f x '<可得10x >>,故()f x 在()0,1x ∈上单调递减;在()1,+∞上单调递增.【对点训练17】(2024·贵州·校联考二模)已知函数()ln e 1xf x x x =-+.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)讨论()f x 在()0,∞+上的单调性.【解析】(1)()ln 1e x f x x '=+-,∴()11e f '=-,又()11e f =-,∴曲线()y f x =在点()()1,1f 处的切线方程是()()1e 1e 1y x -+=--,即()1e y x =-;(2)令()()()0ln 1e xg f x x x x '==+>-,则()1e x g x x ='-在()0,∞+上递减,且1202g ⎛⎫=> ⎪⎝⎭',()11e 0g ='-<,∴01,12x ⎛⎫∃∈⎪⎝⎭,使()0001e 0xg x x =-=',即00ln x x =-,当()00,x x ∈时,()00g x '>,当()0,x x ∈+∞时,()00g x '<,∴()f x '在()00,x 上递增,在()0,x +∞上递减,∴()()000001ln 1e 1110xf x f x x x x ⎛⎫''≤=+-=-++≤-=-< ⎪⎝⎭,当且仅当001x x =,即01x =时,等号成立,显然,等号不成立,故()0f x '<,∴()f x 在()0,∞+上是减函数.【对点训练18】(2024·湖南长沙·高三长沙一中校考阶段练习)已知函数()()e R x f x ax a =-∈,()πe cos2x g x x =+.(1)若()0f x ≥,求a 的取值范围;(2)求函数()g x 在()0,∞+上的单调性;【解析】(1)由题意知()f x 的定义域为R.①当0x >时,由()0f x ≥得e x a x ≤,设()exm x x =,则()()2e 1x x m x x -'=,当()0,1x ∈时,()0m x '<,故()m x 在(0,1)上单调递减;当()1,x ∈+∞时,()0m x '>,故()m x 在(1,)+∞上单调递增,所以()()min 1e m x m ==⎡⎤⎣⎦,因此e a ≤.②当0x <时,若0a <,因为11e 10a f a ⎛⎫=-< ⎪⎝⎭,不合题意.所以0a ≥,此时()0f x >恒成立.③当0x =时,()010f =>,此时R a ∈.综上可得,a 的取值范围是[]0,e .(2)设()sin n x x x =-,0x >,则()cos 10n x x '=-≤,所以()n x 在()0,∞+上单调递减,所以()()00n x n <=,即sin x x <在()0,∞+上恒成立.所以ππsin 22x x <.又由(1)知e e x x ≥,所以当0x >时,()2πππππe sin e e 022224xg x x x x x ⎛⎫'=->-⋅=-> ⎪⎝⎭,所以()g x 在()0,∞+上单调递增.【对点训练19】(2024·全国·高三专题练习)已知函数()ln(e 1)ln x f x x =--.判断()f x 的单调性,并说明理由;【解析】e 1e e 1(1)e 1()e 1(e 1)(e 1)x x x x xxx x x f x x x x-+-+'=-==---令()(1)e 1x g x x =-+,()e(1)e e 0xx x g x x x '=+-=>()g x 在(0,)+∞上递增,()(0)0g x g ∴>=,()0f x '∴>,()f x 在(0,)+∞上单调递增.【解题方法总结】确定不含参的函数的单调性,按照判断函数单调性的步骤即可,但应注意一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.题型五:含参数单调性讨论情形一:函数为一次函数【例6】(2024·山东聊城·统考三模)已知函数()(1)ln f x m x m x m =+--.讨论()f x 的单调性;【解析】(1)()1m m x mf x m x x+-'=+-=,,()0x ∈+∞,①当10m +=,即1m =-时,1()0f x x'=>,()f x 在区间(0,)+∞单调递增.②当10+<m ,即1m <-时,令()0f x '>,得01m x m <<+,令()0f x '<,得1mx m >+,所以()f x 在区间0,1m m ⎛⎫ ⎪+⎝⎭单调递增;在区间,1m m ⎛⎫+∞ ⎪+⎝⎭单调递减.③当10m +>,即1m >-时,若10m -<≤,则()0f x '>,()f x 在区间(0,)+∞单调递增.若0m >,令()0f x '<,得01m x m <<+,令()0f x '>,得1m x m >+,所以()f x 在区间0,1m m ⎛⎫ ⎪+⎝⎭单调递减;在区间,1m m ⎛⎫+∞ ⎪+⎝⎭单调递增.综上,1m <-时,()f x 在区间0,1m m ⎛⎫ ⎪+⎝⎭单调递增;在区间,1m m ⎛⎫+∞ ⎪+⎝⎭单调递减;10m -≤≤时,()f x 在区间(0,)+∞单调递增0m >时,()f x 在区间0,1m m ⎛⎫ ⎪+⎝⎭单调递减、在区间,1m m ⎛⎫+∞ ⎪+⎝⎭单调递增.【对点训练20】(2024·湖北黄冈·黄冈中学校考二模)已知函数()()22ln 2310f x x a x ax a =-+-≥.讨论函数()f x 的单调性;【解析】()f x 的定义域为()()()()4110,,ax ax f x x∞+-+'=若0a =,则()()1,f x f x x='在()0,∞+单调递增;若0a >,令()0f x '=,解得12110,04x x a a=>=-<(舍去)当10x a <<时,()0f x ¢>,函数()f x 在10,a ⎛⎫⎪⎝⎭上单调递增,当1x a >时,()0f x '<,函数()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,【对点训练21】(2024·全国·模拟预测)已知函数()()()ln 11f x x a x a =+-+∈R .讨论函数()f x 的单调性;【解析】因为()()ln 11f x x a x =+-+,所以()()11f x a x+'=-.因为0x >,若10a -≥,即1a ≤时,()f x 在()0,∞+上单调递增,若10a -<,即1a >时,令()()110f x a x=+->',得101x a <<-;令()()110f x a x=+-<',得11x a >-,所以()f x 在10,1a ⎛⎫ ⎪-⎝⎭上单调递增,在1,1a ⎛⎫+∞⎪-⎝⎭上单调递减.综上,当1a ≤时,()f x 在()0,∞+上单调递增;当1a >时,()f x 在10,1a ⎛⎫ ⎪-⎝⎭上单调递增,在1,1a ⎛⎫+∞⎪-⎝⎭上单调递减.【对点训练22】(2024·福建泉州·泉州五中校考模拟预测)已知函数()()ln f x x a x -=.讨论()f x '的单调性;【解析】由函数()()ln f x x a x -=,可得()ln ln 1(0)x a af x x x x x x-=+=+->',设()()ln 1a x f x x x ϕ==+-',可得221()a x ax x x xϕ+=+=',①当0a ≥时,()0x ϕ'>,所以()f x '在(0,)+∞单调递增;②当a<0时,令()0x ϕ'=,解得x a =-.当0x a <<-时,()0x ϕ'<,()f x '单调递减;当x a >-时,()0x ϕ'>,()f x '单调递增.综上,当0a ≥时,()f x '在(0,)+∞单调递增;当0a <时,()f x '在(0,)a -单调递减,在(,)a -+∞单调递增.情形二:函数为准一次函数【对点训练23】(2024·云南师大附中高三阶段练习)已知函数()ln f x x x ax =-.讨论()f x 的单调性;【解析】函数()f x 的定义域为(0)x ∈+∞,,()ln 1f x x a '=+-.令()0f x '=,解得1e a x -=,则有当10e a x -<<时,()0f x '<;当1e a x ->时,()0f x '>;所以()f x 在1(0e )a -,上单调递减,在1(e )a -+∞,上单调递增.【对点训练24】(2024·北京·统考模拟预测)已知函数21()e 2x f x k x =-.(1)当1k =时,求曲线()y f x =在1x =处的切线方程;(2)设()()g x f x '=,讨论函数()g x 的单调性;【解析】(1)1k = ,21()e 2x f x x ∴=-,()e x f x x '∴=-,当1x =时,1(1)e 2f =-,∴切点坐标为11e 2⎛⎫- ⎪⎝⎭,,又(1)e 1f '=-,∴切线斜率为e 1-,∴曲线()y f x =在1x =处切线方程为:()1e 102x y --+=.(2)21()e 2x f x k x =- ,x ∈R ,()()e x g x f x k x '∴==-,x ∈R ,()e 1x g x k '∴=-,x ∈R ,①当0k ≤时,()'0g x <成立,()f x ∴的单调递减区间为R ,无单调递增区间.②当0k >时,令()10ln x g x ke x k '=-=⇒=-,所以当ln x k <-时,()0g x '<,()g x 在(,ln )-∞-k 上单调递减ln x k >-时,()0g x '>,()g x 在(ln ,)-+∞k 上单调递增综上:0k ≤时,()f x 的单调递减区间为R ,无单调递增区间;0k >时,()f x 的单调递增区间为(ln ,)-+∞k ,单调递减区间为(,ln )-∞-k ;【对点训练25】(2024·陕西安康·高三陕西省安康中学校考阶段练习)已知函数()()e 1=--∈x f x ax a R .讨论()f x 的单调性;【解析】∵()()e 1=--∈x f x ax a R ,∴()e xf x a '=-,①当0a ≤时,()0f x ¢>恒成立,此时()f x 在(),-∞+∞上单调递增;②当0a >时,令()e 0xf x a '=-=,解得ln x a =,当(),ln x a ∈-∞时,()0f x '<,()f x 在区间(),ln a -∞上单调递减,当()ln ,x a ∈+∞时,()0f x ¢>,()f x 在区间()ln ,a +∞上单调递增.综上所述,当0a ≤时,()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在区间(),ln a -∞上单调递减,在区间()ln ,a +∞上单调递增.情形三:函数为二次函数型方向1、可因式分解【对点训练26】(2024·山东济宁·嘉祥县第一中学统考三模)已知函数()()()2ln 20f x a x x a x a =+-+>.讨论函数()f x 的单调性;【解析】因为()()()2ln 20f x a x x a x a =+-+>,该函数的定义域为()0,∞+,()()()()()2222122x a x a x a x ax a x x xf x -++-'-=+-+==.因为0a >,由()0f x '=得:2ax =或1x =.①当12a=,即2a =时,()0f x '≥对任意的0x >恒成立,且()f x '不恒为零,此时,函数()f x 的增区间为()0,∞+,无减区间;②当12a >,即2a >时,由()0f x ¢>得01x <<或2ax >;由()0f x '<得12a x <<.此时,函数()f x 的增区间为()0,1、,2a ⎛⎫+∞ ⎪⎝⎭,减区间为1,2a ⎛⎫⎪⎝⎭;③当12a <,即02a <<时,由()0f x ¢>得02ax <<或1x >;由()0f x '<得12a x <<.此时函数()f x 的增区间为0,2a ⎛⎫ ⎪⎝⎭、()1,+∞,减区间为,12a ⎛⎫⎪⎝⎭.综上所述:当2a =时,函数()f x 的增区间为()0,∞+,无减区间;当2a >时,函数()f x 的增区间为()0,1、,2a ⎛⎫+∞ ⎪⎝⎭,减区间为1,2a ⎛⎫⎪⎝⎭;当02a <<时,函数()f x 的增区间为0,2a ⎛⎫ ⎪⎝⎭、()1,+∞,减区间为,12a ⎛⎫⎪⎝⎭.【对点训练27】(2024·湖北咸宁·校考模拟预测)已知函数()()2111ln 22f x x a x b x x x ⎛⎫=----+ ⎪⎝⎭,其中,R a b ∈.讨论函数()f x 的单调性;【解析】函数()f x 的定义域为()()()()310,,x x a f x x ∞--+='-.①若1a >时,01x <<11x a<<ax a>()f x '-0+-()f x 极小值 极大值②若1a =时,()0f x '≤恒成立,()f x 单调递减,③若01a <<时0x a<<a1<<a x 11x >()f x '-0+-()f x 极小值 极大值④若0a ≤时,()0,1x ∈时,()()0,f x f x '<单调递减;()1,x ∈+∞时,()()0,f x f x '>单调递增.综上所述,当1a >时,()()0,1,x f x ∈单调递减,()()1,,x a f x ∈单调递增,()(),,x a f x ∞∈+单调递减;当1a =时,()()0,,x f x ∞∈+单调递减;当01a <<时,()()0,,x a f x ∈单调递减,(),1x a ∈,()f x 单调递增,()()1,,x f x ∞∈+单调递减;当0a ≤时,()()0,1,x f x ∈单调递减,()()1,,x f x ∞∈+单调递增.【对点训练28】(2024·北京海淀·高三专题练习)设函数()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()1,1f 处的切线与x 轴平行,求a ;(2)求()f x 的单调区间.【解析】(1)因为()()24143e x f x ax a x a ⎡⎤=-+++⎣⎦,所以()()()()2241e 4143e R x xf x ax a ax a x a x '⎡⎤⎡⎤=-++-+++∈⎣⎦⎣⎦()2212e xax a x ⎡⎤=-++⎣⎦.()()11e f a '=-.由题设知()10f '=,即()1e 0a -=,解得1a =.此时()13e 0f =≠.所以a 的值为1(2)由(1)得()()()()2212e 12e x xf x ax a x ax x '⎡⎤=-++=--⎣⎦.1)当0a =时,令()0f x '=,得2x =,所以()(),,x f x f x '的变化情况如下表:x(),2-∞2()2,+∞()f x '+-()f x 单调递增极大值单调递减2)当0a ≠,令()0f x '=,得1x a=或2①当0a <时,12a<,所以()(),,x f x f x '的变化情况如下表:x1,a ⎛⎫-∞ ⎪⎝⎭1a1,2a ⎛⎫⎪⎝⎭2()2,+∞()f x '-+-()f x 单调递减极小值单调递增极大值单调递减②当0a >时,(ⅰ)当102a <<即12a >时,x1,a ⎛⎫-∞ ⎪⎝⎭1a1,2a ⎛⎫⎪⎝⎭2()2,+∞()f x '+-+()f x 单调递增极大值单调递减极小值单调递增(ⅱ)当12a =即12a =时,()0f x '≥恒成立,所以()f x 在R 上单调递增;(ⅲ)当12a >即102a <<时,x(),2-∞212,a ⎛⎫⎪⎝⎭1a1,a ⎛⎫+∞ ⎪⎝⎭()f x '+-+()f x 单调递增极大值单调递减极小值单调递增综上,当0<a 时,()f x 的单调递增区间是1,2a ⎛⎫⎪⎝⎭,单调递减区间是1,a ⎛⎫-∞ ⎪⎝⎭和()2,+∞;当0a =时,()f x 的单调递增区间是(),2-∞,单调递减区间是()2,+∞;当102a <<时,()f x 的单调递增区间是(),2-∞和1,a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为12,a ⎛⎫⎪⎝⎭;当12a =时,()f x 的单调递增区间是R ,无单调递减区间;当12a >时,()f x 的单调递增区间是1,a ⎛⎫-∞ ⎪⎝⎭和()2,+∞,单调递减区间是1,2a ⎛⎫⎪⎝⎭.【对点训练29】(2024·广西玉林·统考模拟预测)已知函数()22132ln 2f x x ax a x =-+,0a ≠.讨论()f x 的单调区间;【解析】()f x 的定义域为()0,∞+,()()()2x a x a f x x-'-=若0a >,当()0,x a ∈时,()0f x ¢>,()f x 单调递增;当(),2x a a ∈时,()0f x '<,()f x 单调递减;当()2,x a ∈+∞时,()0f x ¢>,()f x 单调递增.若a<0,则()0f x ¢>恒成立,()f x 在()0,∞+上单调递增.综上,当0a >时,()f x 的单调递增区间为()0,a ,()2,a +∞,单调递减区间为(),2a a ;当a<0时,()f x 的单调递增区间为()0,∞+,无单调递减区间【对点训练30】(2024·河南郑州·统考模拟预测)已知()()24ln 20f x x a x =-≠.讨论()f x 的单调性;【解析】因为()()24ln 20f x x a x =-≠定义域为()0,∞+,所以())2222144444f x a x a x x x x a a xa a ⎛⎫-+⎛⎫'+ ⎪⎝⎭⎝=+++= ⎭⎭=⎪⎝,若0a <时,则()0f x ¢>,所以()f x 在()0,∞+上单调递增,若2a =时,则())2202f x x '=≥,所以()f x 在()0,∞+上单调递增,若02a <<时,4a a <,则2216a a <,当2216,x a a ⎛⎫∈ ⎪⎝⎭时()0f x '<,()f x 在2216,a a ⎛⎫ ⎪⎝⎭上单调递减,当20x a <<或216x a >时()0f x ¢>,()f x 在()20,a ,216,a ⎛⎫+∞ ⎪⎝⎭上单调递增,若2a >时,4a a >,则2216a a >,当2216,x a a ⎛⎫∈ ⎪⎝⎭时()0f x '<,()f x 在2216,a a ⎛⎫ ⎪⎝⎭上单调递减,当2160x a <<或2x a >时()0f x ¢>,()f x 在2160,a ⎛⎫ ⎪⎝⎭,()2,a +∞上单调递增,综上可得,当0a <或2a =时()f x 在()0,∞+上单调递增;当02a <<时()f x 在2216,a a ⎛⎫ ⎪⎝⎭上单调递减,()f x 在()20,a ,216,a ⎛⎫+∞ ⎪⎝⎭上单调递增;当2a >时()f x 在2216,a a ⎛⎫ ⎪⎝⎭上单调递减,在2160,a ⎛⎫ ⎪⎝⎭,()2,a +∞上单调递增.方向2、不可因式分解型【对点训练31】(2024·河南驻马店·统考二模)已知函数()()21ln 12f x x ax =+-,()()1sin 01ex xg x ax a x =+-≠+.讨论()f x 的单调性;【解析】由题意可得()f x 的定义域为()1,-+∞,且()21111ax ax f x ax x x --'+=-=++.令()0f x '=,则210ax ax --+=,()244a a a a ∆=+=+.当0∆≤,即40a -≤<时,()0f x '≥,()f x 在()1,-+∞上单调递增.当0∆>,即0a >或4a <-时,()0f x '=有两个根112x =--2122x a=-+.若0a >,11x <-,20x >,则当()21,x x ∈-时,()0f x ¢>,()f x 单调递增,当()2,x x ∈+∞时,()0f x '<,()f x 单调递减;若4a <-,()121,x x >∈-+∞,则当()21,x x ∈-或()1,x x ∈+∞时,()0f x ¢>,()f x 单调递增,当()21,x x x ∈时,()0f x '<,()f x 单调递减.综上,当0a >时,()f x 在()21,x -上单调递增,在()2,x +∞上单调递减;当40a -≤<时,()f x 在()1,-+∞上单调递增;当4a <-时,()f x 在()21,x -和()1,x +∞上单调递增,在()21,x x 上单调递减.【对点训练32】(2024·重庆·统考模拟预测)已知函数22()ln (R)2x ax af x x a x--+=+∈.讨论函数()f x 的单调性;【解析】函数()f x 的定义域为(0,)+∞,求导得222112()222a x x af x x x x -+-'=--=,①当440a -≤,即1a ≥时,()0f x '≤恒成立,此时()f x 在(0,)+∞上单调递减;②当4400a a ->⎧⎨>⎩,即01a <<时,由()0f x '=解得,1x =由()0f x '>解得,11x <<,由()0f x '<解得01x <<1x >,此时()f x 在(1上单调递增,在(0,1和(1)++∞上单调递减;③当4400a a ->⎧⎨≤⎩,即0a ≤时,由()0f x '=解得1x =1x =舍),由()0f x '>解得01x <<+()0f x '<解得1x >此时()f x 在(0,1+上单调递增,在(1)+∞上单调递减,所以当1a ≥时,函数()f x 在(0,)+∞上单调递减;当01a <<时,函数()f x 在(1上单调递增,在(0,1和(1)+∞上单调递减;当0a ≤时,函数()f x 在(0,1上单调递增,在(1)+∞上单调递减.【对点训练33】(2024·广东·统考模拟预测)已知函数()21eax x f x +=,R a ∈.讨论()f x 的单调性;【解析】依题意()2e 2axax x af x -+=-'.若0a =,则()2f x x '=,故当()0x ∈-∞,时,()0f x '<,当()0x ∈+∞,时,()0f x ¢>.若0a ≠,令22y ax x a =-+,244a ∆=-,令0∆≤,解得1a ≤-或1a ≥.①若1a ≤-,则()0f x '≥.②若1a ≥,则()0f x '≤.③若11a -<<且0a ≠,令()0f x '=,得122x a =,222x a=.若10a -<<,则12x x >,当()2x x ∈-∞,时,()0f x ¢>,当()21x x x ∈,时,()0f x '<,当()1x x ∈+∞,时,()0f x ¢>;若01a <<,则12x x <,当()1x x ∈-∞,时,()0f x '<,当()12x x x ∈,时,()0f x ¢>,当()2x x ∈+∞,时,()0f x '<.综上所述:若1a ≤-,则()f x 在R 上单调递增;若10a -<<,则()f x 在22a ⎛⎫-∞ ⎪ ⎪⎝⎭,和22a ⎛⎫+∞⎪ ⎪⎝⎭上单调递增,在2222a a ⎛⎫⎪ ⎪⎝⎭,上单调递减;若0a =,则()f x 在()0-∞,上单调递减,在()0+∞,上单调递增;若01a <<,则()f x 在22a ⎛⎫-∞ ⎪ ⎪⎝⎭,和22a ⎛⎫+∞⎪ ⎪⎝⎭上单调递减,在2222a a ⎛⎫⎪ ⎪⎝⎭,上单调递增;若1a ≥,则()f x 在R 上单调递减;【对点训练34】(2024·江苏·统考模拟预测)已知函数21()32ln (R)2f x x ax x a =++∈.讨论函数()f x 的单调性;【解析】易知0x >,又因为2232()3x ax f x x a x x++'=++=,令2()32h x x ax =++,298a ∆=-,①当0∆≤,即289a ≤时,()0h x ≥恒成立,所以()0f x '≥,此时,()f x 在区间()0,∞+上是增函数;②当2980a ∆=->,得到3a >或a <又2()32h x x ax =++,其对称轴为32a x =-,且(0)20h =>,所以,当3a >时,302a x =-<,所以()0h x ≥在区间(0,)+∞上恒成立,即()0f x ¢>在区间(0,)+∞上恒成立,此时()f x 在区间()0,∞+上是增函数;当3a <-时,302a x =->,且(0)20h =>,由()0h x =,得到32a x -=或32a x -+=,33(0,(,)22a a x --∈+∞ 时,()0h x >,33(,22a a x --∈时,()0h x <即33(0,)()22a a x --∈+∞ 时,()0f x '>,x ∈时,()0f x '<此时,()f x 在33,22a a ⎛⎫--⎪ ⎪⎝⎭上是减函数,在330,,,22a a ⎛⎫⎛⎫--+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭上是增函数.综上所述,当3a ≥-时,()f x 在()0,∞+上是增函数;当a <()f x 在33,22a a ⎛⎫-- ⎪ ⎪⎝⎭上是减函数,在330,,,22a a ⎛⎫⎛⎫--+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭上是增函数.【解题方法总结】1、关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2、需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3、利用草稿图像辅助说明.情形四:函数为准二次函数型【对点训练35】(2024·全国·高三专题练习)已知函数()e ln axaf x x x x=++,()0,x ∈+∞,其中R a ∈.讨论函数()f x 的单调性;【解析】,()0x ∈+∞,211()(1)e (1)(e a a x x a a a f x x x x x x'=--+=-+,当0a ≤时,()0f x '>,函数()f x 在(0,)+∞上单调递增,当0a >时,当(0,)x a ∈时,()0f x '<,当(,)x a ∈+∞时,()0f x '>,即函数()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增,所以当0a ≤时,函数()f x 在(0,)+∞上单调递增;当0a >时,函数()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.【对点训练36】(2024·河南郑州·统考模拟预测)已知()()2211e 12x f x x a ax a x =---+-.(R a ∈)讨论()f x 的单调性;【解析】因为221()(1)e 12x f x x a ax a x =---+-,所以()()()e ()()e x xf x x a a x a x a a '=---=--,若0,e 0,(,)x a a x a ∞≤->∈-时,()0,()'<f x f x 单调递减,(,)x a ∈+∞时,()0f x '>,()f x 单调递增;若0a >,由()0f x '=得x a =或ln x a =,设()ln (0)g a a a a =->,则11()1a g a a a-'=-=,(0,1)a ∈时,()0,()g a g a '<单调递减,(1,)∈+∞a 时,()0,()g a g a '>单调递增,所以()(1)10g a g ≥=>,所以ln a a >,所以(ln ,)x a a ∈时,()0,()'<f x f x 单调递减,(,ln )x a ∈-∞,(,)x a ∈+∞时,()0f x '>,()f x 单调递增.综上得,当0a ≤时,()f x 在(,)a -∞上单调递减,在(,)a +∞上单调递增,当0a >时,()f x 在(ln ,)a a 上单调递减,在(,ln )a -∞,(,)a +∞上单调递增.【对点训练37】(2024·陕西咸阳·武功县普集高级中学校考模拟预测)已知()()()()231e 03x a f x x x ax x a =--+>∈R .讨论函数()f x 的单调性;【解析】由题知,()()()22()1e 1(1)(1)x xf x x a x x x e a '=---=-+-.当1a ≤时,当01x <<时,()0f x '<;当1x >时,()0f x ¢>,()f x \在区间()0,1上是㺂函数,在区间()1,+∞上是增函数;当1e a <<时,0ln 1a <<;当0ln x a <<或1x >时,()0f x ¢>;当ln 1a x <<时,()0f x '<;()f x \在区间()0,ln a 上是增函数,在区间()ln ,1a 上是减函数,在区间()1,+∞上是增函数;当e a =时,()()0,f x f x ≥'∴在区间()0,∞+上是增函数;当e a >时,ln 1a >;当01x <<或ln x a >时,()0f x ¢>;当1ln x a <<时,()0f x '<;()f x \在区间()0,1上是增函数,在区间()1,ln a 上是减函数,在区间()ln ,a ∞+上是增函数;综上所述,当1a ≤时,()f x 在区间()0,1上是减函数,在区间()1,+∞上是增函数;当1e a <<时,()f x 在区间()0,ln a 上是增函数,在区间()ln ,1a 上是减函数,在区间()1,+∞上是增函数;当e a =时,()f x 在区间()0,∞+上是增函数;当e a >时,()f x 在区间()0,1上是增函数,在区间()1,ln a 上是减函数,在区间()ln ,a ∞+上是增函数.【对点训练38】(2024·重庆沙坪坝·重庆八中校考模拟预测)已知函数()()2ln 1ln 1,R f x x a x x a ⎡⎤=-++⋅∈⎣⎦,讨论函数()f x 的单调性;【解析】()()2ln 1ln 1f x x a x x ⎡⎤=-++⋅⎣⎦,()()()()()222ln 1ln 1ln 1ln 1ln ln ln 1x a f x x x a x x a x a x a x x x +⎡⎤⎡⎤∴=-+-++=+--=-+⎣⎦⎢⎥⎣⎦'令()0f x '=,则两根分别为121e ,eax x ==.1、当1a =-时,()()2ln 10f x x '=+≥在()0,∞+恒成立,故()f x 的单调递增区间为()0,∞+,无单调递减区间;2、当1a >-时,令()0f x ¢>得1ex <或e a x >,令()0f x '<得1e e ax <<,所以()f x 单调递增区间为()10,,e ,e a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为1,e e a ⎛⎫⎪⎝⎭;3、当1a <-时,令()0f x ¢>得e a x <或1e x >时,令()0f x '<得1e eax <<,所以()f x 单调递增区间为()10,e ,,e a⎛⎫+∞ ⎪⎝⎭,单调递减区间为1e ,e a ⎛⎫ ⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与基本初等函数函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 函数的基本性质一、单调性与最大(小)值 (1)函数的单调性①定义及判定方法 函数的性 质定义图象 判定方法函数的单调性 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)x y f(x )1f(x )2o (1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)y x o x x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()ug x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)a f x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.二、奇偶性(4)函数的奇偶性①定义及判定方法 函数的性 质定义图象 判定方法y xo函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶.函数...(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.求值域的几种常用方法(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数4cos 2sin 2+--=x x y ,可变为2)1(cos 4cos 2sin 22+-=+--=x x x y 解决(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数)32(log 221++-=x x y 就是利用函数u y 21log =和322++-=x x u 的值域来求。
(3)判别式法:通过对二次方程的实根的判别求值域。
如求函数22122+-+=x x x y 的值域 由22122+-+=x x x y 得012)1(22=-++-y x y yx ,若0=y ,则得21-=x ,所以0=y 是函数值域中的一个值;若0≠y ,则由0)12(4)]1(2[2≥--+-=∆y y y 得021332133≠+≤≤-y y 且,故所求值域是]2133,2133[+-(4)分离常数法:常用来求“分式型”函数的值域。
如求函数1cos 3cos 2+-=x x y 的值域,因为1cos 521cos 3cos 2+-=+-=x x x y ,而]2,0(1cos ∈+x ,所以]25,(1cos 5--∞∈+-x ,故]21,(--∞∈y(5)利用基本不等式求值域:如求函数432+=x xy 的值域当0=x 时,0=y ;当0≠x 时,xx y 43+=,若0>x ,则4424=⋅≥+x x x x若0<x ,则4)4()(2)4(4=-⋅-≤-+--=+x x x x x x ,从而得所求值域是]43,43[- (6)利用函数的单调性求求值域:如求函数])2,1[(2224-∈+-=x x x y 的值域因)14(22823-=-=x x x x y ,故函数])2,1[(2224-∈+-=x x x y 在)21,1(--上递减、在)0,21(-上递增、在)21,0(上递减、在)2,21(上递增,从而可得所求值域为]30,815[(7)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域(求某些分段函数的值域常用此法)。