高考函数专题复习教师版
高考数学 函数的图象(教师版)
专题2 函数的图象1.已知函数32()f x ax bx c =++,其导数()f x '的图象如图所示,则函数()f x 的极大值是( )A .a b c ++B .84a b c ++C .32a b +D .c【解析】由导函数的图象知,()f x 在(1,2)递增;在(2,)+∞上递减,所以当2x =时取得极大值, 极大值为:f (2)84a b c =++,则函数()f x 的极大值是84a b c ++故选B2.设函数()y f x =可导,()y f x =的图象如图所示,则导函数()y f x ='可能为( )A .B .C .D .【解析】根据()y f x =的图象可知其定义域为{|0}x x ≠,故其导函数的定义域也为{|0}x x ≠,又从原函数()y f x =的图象可知,函数()y f x =的单调性是:函数()y f x =在(,0)-∞,(0,)a 上是增函数,在(,)a b 上是减函数,在(,)b +∞是增函数,即()y f x =是先增后减再增,得出导函数是先正后负再正, 根据选项中的函数()f x 的单调性知选D .故选D 3.函数sin 21cos xy x=-的部分图象大致为( )A .B .C .D .【解析】函数sin 21cos x y x =-,可知函数是奇函数,排除选项B ,当3x π=时,2()1312f π==-A ,x π=时,()0f π=,排除D .故选C4.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()2||xf x ln x =B .2()||f x ln x x =-C .1()||f x ln x x=+ D .||()||xln x f x x =【解析】函数图象关于原点对称,函数为奇函数,排除B ,C ,又f (1)0=,则()2||xf x ln x =无意义,排除A ,故选D 5.函数2||()1xln x f x x =+的图象大致为( ) A . B .C .D .【解析】因为2||()()()1xln x f x f x x ---==--+,所以()f x 为奇函数,图象关于原点对称,排除C ,D ,因为f (1)0=,01x <<时,()0f x <,所以排除B .故选A6.函数22,01()(),01xlnxx x f x xln x x x ⎧>⎪⎪+=⎨-⎪<⎪+⎩的图象大致为( )A .B .C .D .【解析】若0x >,则0x -<,则2()()1xlnxf x f x x --==-+,若0x <,则0x ->, 则2()()()1xln x f x f x x ---==-+,综上()()f x f x -=-,即()f x 是奇函数,图象关于圆的对称,排除C ,D ,当0x >,且0x →时,()0f x <,排除B ,故选A 7.函数||()||xln x f x x =的大致图象是( ) A . B .C .D .【解析】|()|||()()||||x ln x xln x f x f x x x ----===--,()f x ∴是奇函数,图象关于原点对称,故A ,C 错误;又当1x >时,||0ln x lnx =>,()0f x ∴>,故D 错误,故选B8.函数1()()cos (f x x x x xππ=--且0)x ≠的图象可能为( )A .B .C .D .【解析】11()()cos()()cos ()f x x x x x f x x x -=-+-=--=-,∴函数()f x 为奇函数,∴函数()f x 的图象关于原点对称,故排除A ,B ,当x π=时,11()()cos 0f ππππππ=-=-<,故排除C , 故选D 9.已知21()sin()42f x x x π=++,()f x '为()f x 的导函数,则()f x '的图象是( ) A . B .C .D .【解析】由2211()sin()cos 424f x x x x x π=++=+,1()sin 2f x x x ∴'=-,它是一个奇函数,其图象关于原点对称,故排除B ,D .又1()cos 2f x x ''=-,当33x ππ-<<时,1cos 2x >,()0f x ∴''<,故函数()y f x ='在区间(3π-,)3π上单调递减,故排除C .故选A10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④【解析】根据()0f x '>时,()f x 递增;()0f x '<时,()f x 递减可得:①中函数的图象从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;②中函数的图象也是从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;所以①②可能正确.而③中函数的图象从左向右先减后增,对应的导函数是小于0,大于0,再小于0,大于0;④中函数的图象从左向右先增后减后,对应的导函数也是小于0,大于0,再小于0,大于0;所以③④可能错误.故选B11.已知R 上的可导函数()f x 的图象如图所示,则不等式(2)()0x f x '->的解集为( )A .(-∞,2)(1-⋃,)+∞B .(-∞,2)(1-⋃,2)C .(-∞,1)(2⋃,)+∞D .(1-,1)(2⋃,)+∞【解析】由函数()f x 的图象可得,当(,1)x ∈-∞-,(1,)+∞时,()0f x '>, 当(1,1)x ∈-时,()0f x '<.由()0(2)()020f x x f x x '>⎧-'>⇔⎨->⎩①或()020f x x '<⎧⎨-<⎩②解①得,2x >,解②得,11x -<<,综上,不等式(2)()0x f x -'>的解集为(1-,1)(2⋃,)+∞,故选D12.函数32()f x x bx cx d =+++的大致图象如图所示,则2212x x +等于( )A .89B .109C .169D .289【解析】32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=,8420b c d +++=,0d ∴=,1b =-,2c =-,22()32322f x x bx c x x ∴'=++=--.由题意有1x 和2x 是函数()f x 的极值点,故有1x 和2x 是()0f x '=的根,1223x x ∴+=,1223x x =-.则2221212124416()2939x x x x x x +=+-=+=,故选C 13.如图是函数32()f x x bx cx d =+++的大致图象,则12(x x += )A .23B .109 C .89D .289【解析】32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=,8420b c d +++=,0d ∴=,1b =-,2c =-22()32322f x x bx c x x ∴'=++=--. 由题意有1x 和2x 是函数()f x 的极值,故有1x 和2x 是()0f x '=的根,1223x x ∴+=,故选A 14.函数2()()ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A .0a <,0b >,0c <B .0a >,0b <,0c <C .0a >,0b <,0c >D .0a <,0b >,0c >【解析】依题意,函数()f x 的定义域为{|}x x c ≠-,从函数图象上看,0c ->,故0c <,当0x =时,()0f x <,所以20bc<,所以0b <,根据函数图象,当x →∞时,0ax b +>,故0a >,故选B 15.函数2()()ax bf x x c +=+的图象大致如图所示,则下列结论正确的是( )A .0a >,0b >,0c >B .0a <,0b >,0c <C .0a <,0b <,0c >D .0a >,0b >,0c <【解析】函数2()()ax bf x x c +=+,x c ∴=-时,函数值不存在,结合函数图象得0c >,排除B 和D ;当0x =时,(0)f b =,结合函数图象得0b >,排除C .故选A16.函数32()f x ax bx cx d =+++的图象如图所示,则下列结论成立的是( )A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d <【解析】由图可知,(0)0f d =>,32()f x ax bx cx d =+++,2()32f x ax bx c '∴=++,从图象可知,()f x 先递增,后递减,再递增,且极大值点和极小值点均大于0, 其导函数的图象大致如下:0a ∴>,03ba->,△2(2)430b a c =->,(0)0f '>,0a ∴>,0b <,0c >.故选A 17.函数22||(2)sin x x y x e x=-在[2-,2]的图象大致为( )A .B .C .D .【解析】根据题意,函数22||(2)sin x x y x e x=-在[2-,2]中,必有0x ≠;又由222||2||()()[2()](2)()sin()sin x x x x f x x e x e f x x x ---=--=--=--,函数为奇函数,排除B ,f (1)12(2)1sin1sin1e e -=-=≈-,排除D ,f (2)224(22)2sin 2e =⨯-≈,排除C ; 故选A18.函数2||2x y x e =-+在区间[2-,2]上的图象大致为( )A .B .C .D .【解析】根据题意,函数2||()2x y f x x e ==-+,有f (2)280e =-+<,排除A ,又由(0)1f =,11()122f =-+>,f (1)21e =-+<,排除C 、D ,故选B19.函数2||22x y x =-在[2-,2]的图象大致为( )A .B .C .D .【解析】函数2||22x y x =-在[2-,2]是偶函数,排除选项B 、D , 当2x =时,f (e )40=>,排除选项A .故选:C .20.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .2()||f x ln x x =-B .()||||f x ln x x =-C .2()2||f x ln x x =-D .()2||||f x ln x x =-【解析】由图可知,函数()f x 为偶函数,于是只需考查0x >的情况即可,且当0x >时,()f x 的极大值点小于1.选项A ,2()f x lnx x =-,1()2f x x x'∴=-,令()0f x '=,则x ,当(0,)2x ∈时,()0f x '>,()f x 单调递增;当(2x ∈,)+∞时,()0f x '<,()f x 单调递减,()f x ∴在(0,)+∞上的极大值点为1x <,符合题意;同理可得,选项B 中函数对应的极大值点为1x =, 选项C 中函数对应的极大值点为1x =,选项D 中函数对应的极大值点为21x =>,均不符合题意, 故选A21.已知某函数的图象如图所示,则该函数的解析式可能是( )A .1()||f x ln x x =-B .1()||f x ln x x =+C .1()||f x ln x x=- D .1()||||f x ln x x =+【解析】选项A ,f (1)1=-与图象矛盾,故A 错误;选项C ,1()10f e e =-<与图象矛盾,故C 错误;选项D ,(1)1f -=与图象矛盾,故D 错误.故选B 22.函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2x x f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-【解析】由图象可知,函数的定义域为R ,故排除C ;由f (1)0=可知,故排除D ; 当x →-∞时,()0f x →,故排除A ;故选B23.已知函数()f x 的图象如图所示,则该函数的解析式可能是( )A .||()x ln x f x e =B .()||xf x e ln x = C .||()ln x f x x =D .()(1)||f x x ln x =- 【解析】由图象可知,当x →+∞时,()0f x →,当x →-∞时,()f x →+∞对于A :满足要求,对于B :当x →+∞时,()||x f x e ln x =→+∞,不满足,对于C :当x →-∞时,()||0x f x e ln x =→,不满足,对于D :当x →-∞时,()(1)||f x x ln x =-→+∞,不满足,故选A 24.已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A .2()||xf x ln x =B .2||()||x f x ln x =C .21()1f x x =- D .1()1||||f x x x =-【解析】由函数的图象可知函数是偶函数,选项A 函数是奇函数不成立. 0x =,函数没有意义,所以选项C 的函数不成立;1x >时,11()11||||f x x x x x==--,函数是减函数,所以选项D 不成立;故选B25.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )11A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+ 【解析】由图可知()02f π>,故可排除A ,B ;对于||:()cos x C f x e x =+,当(0,1)x ∈时()0f x >,故可排除C .故选D26.已知函数()f x 的局部图象如图所示,则()f x 的解析式可以是( )A .1||()sin 2x f x e x π=B .1||()cos 2x f x e x π=C .()||sin 2f x ln x x π=D .()||cos 2f x ln x x π= 【解析】由图可知,函数()f x 为偶函数,可排除选项A 和C ;对于选项B 和D ,都有f (1)0=, 当(0,1)x ∈时,1||()cos 02x f x ex π=>,与函数图象不符;()||cos 02f x ln x x π=<,与函数图象符合,所以选项B 错误.故选D。
第11讲 函数专题2 (教师)
第11讲 函数复习专题2.函数图象与零点(教师)一、教学目标:1.会运用函数图象理解和研究函数的性质.2.结合二次函数的图象,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数.3.根据具体函数的图象,能够用二分法求相应方程的近似解二、重点难点:1.函数图像及运用2.函数零点与方程关系三、教学方法:“一学二记三应用” 四、知识梳理:(1)描点法作函数图象,应注意在定义域内依据函数的性质,选取关键的一部分点连接而成.(2)图象变换法,包括有平移变换、伸缩变换、对称翻折变换.的图像的画法:先画时,再将其关于对称,得轴左侧的图像. 的图像画法:先画的图象,然后位于轴上方的图象不变,位于轴下方的图象关于 轴翻折上去. 的图象关于对称;的图象关于点对称.的图象关于轴对称的函数图象解析式为;关于轴对称的函数解析式为;关于原点对称的函数解析式为.(3)熟记基本初等函数的图象,以及形如的图象五.课前评估:1.[2022·重庆六校联考]函数f (x )=sin πxx2的大致图象为( )0(0(()()a a a a f x f x a ><−−−−−−−→+向左平移个单位)向右平移个单位)0(0(()()+k k k f x f x k ><−−−−−−−→向上平移k 个单位)向下平移个单位)11(101(()()(0,1)f x f x w ωωωωωω><<−−−−−−−−−−−−−−−−→>≠图像上所有点的纵坐标不会,横坐标缩短为原来的)图像上所有点的纵坐标不会,横坐标伸长为原来的)1(01(()()(0,1)A A A f x Af x A A ><<−−−−−−−−−−−−−−−−→>≠图像上所有点的横坐标不会,纵坐标伸长为原来的)图像上所有点的横坐标不会,纵坐标缩短为原来的A )()f x 0x ≥()y f x =y y ()f x()y f x =x x x ()()f a x f a x +=-()y f x =x =a ()()f a x f a x +=--()y f x =(a,0)()y f x =x (y f x =-)y (-y f x =)-(-y f x =)1y x x=+xyf x () = x +1x–1–2–3–41234–1–2–3–41234O答案:D 解析:易知函数f (x )=sinπxx 2为奇函数且定义域为{x |x ≠0},只有选项D 满足, 2.[2022·福州质检]若函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( )A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e -x +1D .f (x )=e -x -1答案:D 解析:与y =e x 的图象关于y 轴对称的图象对应的函数为y =e -x .依题意,f (x )的图象向右平移1个单位长度,得y =e -x 的图象,∴f (x )的图象是由y =e -x 的图象向左平移1个单位长度得到的,∴f (x )=e -(x +1)=e -x -1.3.[2022·全国卷Ⅱ]函数f (x )=e x -e -xx 2的图象大致为( )A BCD答案:B 解析:∵ y =e x -e -x是奇函数,y =x 2是偶函数,∴ f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e>0,排除D 选项.又e>2,∴ 1e <12,∴ e -1e>1,排除C 选项.故选B.题型一 识图与辨图例1(1)(2022年高考浙江卷)在同一直角坐标系中,函数y =1x a ,y =log a (x +12)(a >0,且a ≠1)的图象可能是答:D(2)在同一直角坐标系中,函数()2f x ax =-, ()()log 2a g x x =+(0a >,且1a ≠)的图象大致为( )A. B. C. D.(3)(2022年高考全国3卷)函数3222x xxy -=+在[]6,6-的图像大致为 A . B .C .D .答:B(4)(2022年高考全国1卷)函数f (x )=在[,]-ππ的图像大致为A .B .C .D .答:D课堂练习1:(1)(内江市高中2022届第一次模拟考试题)函数()()21=ln 2x f x x e -+-的图象大致是( )2sin cos ++x xx xA. B C. D.答:C (2).(2022届吉林省五地六校联考高三考前适应卷)已知函数()(22)ln ||x x f x x -=+的图象大致为( )A .B .C .D .【答案】B 【详解】()f x 定义域为{}0x x ≠,()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .题型二 图象初等变换例2 (1)(江西省红色七校2022届高三第一次联考理科数学科试题)设,则函数的图象的大致形状是( )答:B(2)已知图①中的图象对应的函数为y =f (x ),则在下列给出的四个选项中,图②中的图象对应的函数只可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)答案:C 解析:由图②知,图象关于y 轴对称,对应的函数是偶函数.对于A ,当x >00a >()y x x a =-时,y=f(|x|)=f(x),其图象在y轴右侧与图①的相同,不符合,故错误;对于B,当x>0时,对应的函数是y=f(x),显然B错误;对于D,当x<0时,y=-f(-x),其图象在y轴左侧与图①的不相同,不符合,故错误;所以C选项是正确的.(3)已知函数,则函数的大致图象是()A. B. C. D.解析】,函数在处图象有跳跃点,选项AC错误;当(4).若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()答案:C解析:要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.(5)[2022·咸宁模拟]已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象可能是图中的()答案:B解析:通解因为y=a x与y=log a x互为反函数,而y=log a x与y=log a(-x)的图象关于y轴对称,根据图象特征可知选B.优解首先,曲线y=a x只可能在x轴上方,曲线y=log a(-x)只可能在y轴左边,从而排除A,C;其次,y=a x与y=log a(-x)的增减性正好相反,排除D,选B.(6)(提高)函数的部分图象大致为()A. B. C. D.【解析】分析:分析函数的奇偶性,以及是函数值的符号,利用排除法即可得到答案.解:由题意,函数满足,所以函数为奇函数,图象关于轴对称,排除B 、D ;又由当时,函数,排除C ,故选A.[规律方法] 识图常用方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 课堂练习2.(1).函数的图象大致为( )A. B. C. D. 【解析】根据函数表达式得到,故函数是奇函数,排除D 选项,当x 趋向于正无穷时,函数值趋向于0,并且大于0,排除B ;当x 从左侧趋向于1时,函数值趋向于负无穷,故排除 C.故答案为:A. (2) 函数的图象可能是( )A. B. C. D. 【解析】试题分析:化简函数的解析式,判断函数的对称性,利用函数的值判断即可. 详解:函数f (x )==,可知函数的图象关于(2,0)对称,排除A ,B .当x <0时,ln (x ﹣2)2>0,(x ﹣2)3<0,函数的图象在x 轴下方,排除D ,故选:C .题型三 零点判断与运用例3 (1)[2022·南昌调研]函数f (x )=2x +ln 1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)答案:B 解析:易知f (x )=2x +ln 1x -1=2x-ln(x -1)在(1,+∞)上单调递减且连续,当1<x <2时,ln(x -1)<0,2x>0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83,8=22≈2.828>e ,所以8>e 2,即ln8>2,所以f (3)<0.所以f (x )的零点所在的大致区间是(2,3),故选B.(2).[2022·山东枣庄模拟]函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3 答案:B解析:在同一直角坐标系中作出函数y =x 12与y =⎝⎛⎭⎫12x的图象,如图所示.由图知,两个函数图象只有一个交点,所以函数f (x )的零点只有1个.故选B. a c 若()2019()()f x x a x b =---的零点为c ,d ,则下列不等式正确的是( ) A . a c b d >>> B .a b c d >>> C.c d a b >>> D .c a b d >>>答:由()2019()()f x x a x b =---,又()()2019f a f b ==,c ,d ,为函数()f x 的零点,且a b >,c d >,所以可在平面直角坐标系中作出函数()f x 的大致图像,如图所示,由图可知c a b d >>>,故选D.(4) [2022·河南省实验中学模拟]已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))-1的图象与x 轴的交点个数为( )A .3 B .2 C .0 D .4答案: A 解析:y =f (f (x ))-1=0,即f (f (x ))=1.当f (x )≤0时,得f (x )+1=1,f (x )=0. 所以log 2x =0,得x =1;由x +1=0,得x =-1.当f (x )>0时,得log 2f (x )=1, 所以f (x )=2.由x +1=2,得x =1(舍去);由log 2x =2,得x =4. 综上所述,函数y =f (f (x ))-1的图象与x 轴的交点个数为3.故选A. (5) (提高)已知函数,则函数的零点个数是( )A. 7 B. 6 C. 5 D. 4 【解析】分析:令 函数的零点个数问题的根的个数问题.结合图象可得的根,方程有1解,有3解,有3解.从而得到函数的零点个数详解:令函数的零点个数问题的根的个数问题.即 的图象如图,结合图象可得的根方程 有1解,有3解,有3解.综上,函数的零点个数是7.故选A.(6)(提高) 定义在实数集上的函数满足,当时,,则函数的零点个数为__________.【解析】分析:先根据函数的奇偶性与周期性画出函数的图象,以及的图象,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点.详解:定义在上的函数,满足,上的偶函数,因为满足,函数为周期为的周期函数,且为上的偶函数,因为时,,所以,在上递增,且值域为,根据周期性及奇偶性画出函数的图象和的图象,如图,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点,故答案为.课堂练习3:(1)已知函数f (x )=1x -a为奇函数,g (x )=ln x -2f (x ),则函数g (x )的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解:由函数f (x )=1x -a为奇函数,可得a =0,则g (x )=ln x -2f (x )=ln x -2x ,所以g (2)=ln2-1<0,g (3)=ln3-23>0,所以g (2)·g (3)<0,可知函数的零点在(2,3)之间。
2025版高考数学一轮总复习第4章三角函数第2节同角三角函数的基本关系与诱导公式教师用书
其次节同角三角函数的基本关系与诱导公式考试要求:1.理解同角三角函数的基本关系式:sin2α+cos2α=1,tan α.2.借助单位圆的对称性推导出±α,π±α的正弦、余弦、正切的诱导公式.一、教材概念·结论·性质重现1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tan α.(3)常见变形:sin α=±;cos α=±;(sinα±cos α)2=1±2sin αcos α;sin α=tan α·cos α.利用同角三角函数的基本关系可以实现正弦、余弦、正切值的转化,但肯定要留意确定角的终边所在的象限.“同角”有两层含义:一是角相同,二是随意一个角(在有意义的前提下).2.三角函数的诱导公式公式一二三四五六角απ+α-απ-α-α+α正弦sin α-sin α-sin αsin αcos αcos α余弦cos α-cos αcos α-cos αsin α-sin α正切tan αtan α-tan α-tan α口诀函数名不变,符号看象限函数名变更,符号看象限诱导公式的记忆口诀:“奇变偶不变,符号看象限.”其含义理解为:(1)全部诱导公式均可看作k·±α(k∈Z)和α的三角函数值之间的关系,口诀中的奇、偶指的是此处的k是奇数还是偶数,变与不变是指三角函数名称的变更.(2)结果的符号与把α当成锐角时角k·±α(k∈Z)的三角函数值的符号相同.二、基本技能·思想·活动阅历1.推断下列说法的正误,对的画“√”,错的画“×”.(1)对随意角α,sin23α+cos23α=1都成立.( √)(2)若cos(nπ-θ)=(n∈Z),则cos θ=.( ×)(3)已知sin θ=,cos θ=,其中θ∈,则m<-5或m≥3.(×) 2.若α是第四象限角,tan α=-,则sin α等于( )A.B.-C.D.-D解析:因为tan α==-,sin2α+cos2α=1,所以sinα=±.因为α是第四象限角,所以sin α=-.3.已知sin =,则cos =( )A.C.-D.-C解析:因为sin =,所以cos =cos =-sin =-.故选C.4.若α是第三象限角且cos α=-,则sin α=_______,tan α=_________.-解析:因为α是第三象限角且cos α=-,所以sin α=-=-,所以tanα==.5.已知sin α=,则·sin (α-π)·cos (2π-α)的值为_________.-解析:原式=·(-sin α)·cos (-α)=·(-sin α)·cos α=·(-sin α)·cos α=-sin2α=-.考点1 同角三角函数关系的基本应用——应用性考向1 知弦求弦、切或知切求弦(1)(2024·济南一模)已知α∈(0,π),若cosα=-,则tan α的值为( ) A.B.-C.D.-D解析:因为α∈(0,π),cos α=-,所以sin α=,则tan α=-.(2)已知3sin +sin (θ+π)=0,θ∈(-π,0),则sin θ=( )A.-B.-C.A解析:由3sin +sin (θ+π)=0,可得3cos θ=sin θ,可得tan θ=3. 而θ∈(-π,0),可得sin θ=-=-.本例(2)条件不变,求cos θ的值.解:由3sin +sin (θ+π)=0,可得3cos θ=sin θ,可得tan θ=3.而θ∈(-π,0),可得sin θ<0.又tan θ=3>0,所以cos θ<0,所以cos θ=-=-.1.利用sin 2α+cos2α=1可以实现正弦、余弦的互化,利用tanα=可以实现弦切互化.2.由一个角的随意一个三角函数值可以求出这个角的另外两个三角函数值,求值时要留意角所在的象限,以免出现符号错误.考向2 弦切互化求值(1)已知cos θ=,则sin θ·的值为( )A.B.-C.3 D.-3C解析:原式=sin θ=sin θ·=3.(2)(2024·新高考全国Ⅰ卷)若tan θ=-2,则=( )A.-B.-C.C解析:将式子进行齐次化处理,得=in θ(sin θ+cos θ)====.本例(2)条件不变,求cos2θ-sin2θ的值.解:cos2θ-sin2θ===1.1.弦化切的常见结构(1)形如“a sin2α+b sin αcos α+c cos2α”的二次式,分母看作1,利用1=sin2α+cos2α将原式转化为齐次式求值.(2)形如“次分式.2.切化弦当要化简的式子中同时出现正弦、余弦、正切时,一般利用公式tan α=,把式中的正切化为弦.考向3 sin α±cos α,sin αcos α之间的关系(1)已知sin α+cos α=,且α∈(0,π),则sin α-cos α=( )A.±B.-C.C解析:把sin α+cos α=,两边平方得(sin α+cos α)2=1+2sin αcos α=,即2sin αcos α=-<0.因为0<α<π,故sin α>0,cos α<0.所以sin α-cos α====.(2)已知sin x+cos x=,x∈(0,π),则tan x等于( )A.-C.D.-D解析:由题意可知sin x+cos x=,x∈(0,π),则(sin x+cos x)2=.因为sin2x+cos2x=1,所以2sin x cos x=-,即==-,得tan x=-或tan x=-. 当tan x=-时,sin x+cos x<0,不合题意,舍去.所以tan x=-.留意方程思想的应用:对于sin α+cos α,sin α·cos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.1.已知tan θ+=4,则sin4θ+cos4θ=( )A.C.D解析:由tanθ+===4,得sin θcos θ=,所以sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-2×=.2.若sinα+cos α=,α∈(0,π),则=( )A.B.-C.D.-B解析:因为sin α+cos α=,α∈(0,π),所以两边平方,可得1+2sin αcos α=,可得2sin αcos α=-<0,所以sin α>0,cos α<0,可得cos α-sin α=-==-=-,所以==-=-.考点2 诱导公式的应用——综合性(1)sin ·cos ·tan 的值是_________.-解析:原式=sin ·cos ·tan=··=×(-)=-.(2)(2024·北京卷)若P(cos θ,sin θ)与Q关于y轴对称,写出一个符合题意的θ值:_________.(答案不唯一)解析:因为P(cos θ,sin θ)与Q关于y轴对称,故其横坐标相反,纵坐标相等,即sin θ=sin 且cos θ=-cos ,由诱导公式sin θ=sin (π-θ),cos θ=-cos (π-θ),所以θ+=π-θ,解得θ=,则符合题意的θ值可以为.1.诱导公式的两个应用口诀(1)求值:负化正,大化小,化到锐角就终了.(2)化简:统一角,统一名,同角名少目的到.2.角的变更的通式特别角±已知角=所求角.1.下列各选项中与sin 2 022°最接近的是( )A.C.-D.-D解析:sin 2 022°=sin (1 800°+222°)=sin 222°=sin(180°+42°)=-sin 42°≈-.2.已知sin =-,则cos =( )A.C.-D.-B解析:cos =cos =-cos =-sin =.已知3cos x+4sin x=5,求tan x的值.[四字程序]读想算思求tan x的值1.同角的正弦、余弦和正切有什么关系?2.3cos x+4sin x 的最大值是多少?3.由已知条件联想点A(cosx,sin x)在哪条直线上1.求sin x和cos x.2.协助角公式1.方程思想.2.数形结合.3.转化与化归3cos x +4sinx=51.sin2x+cos2x=1,tan x=.2.3cos x +4sin x的最大值为5.3.点A(cos x,sin x)在直线3x+4y=5上1.联立3cos x+4sinx=5与sin2x+cos2x=1.2.3cos x+4sin x=5sin (x+φ)1.tan x可看作直线的斜率.2.将已知条件变为cos x+sinx=1思路参考:解方程组解:由消去cos x,整理得(5sin x-4)2=0,解得sin x=,cos x=.故tan x==.思路参考:留意到3cos x+4sin x的最大值为5,利用协助角公式推出x与协助角的关系.解:3cos x+4sin x=5=5sin (x+φ)=5,其中cos φ=,sin φ=,所以tan φ=,所以x+φ=2kπ+(k∈Z).于是tan x=tan ==.思路参考:令tan x=t,借助已知条件用t表示sin x和cos x.解:令tan x=t,即t cos x=sin x,代入3cos x+4sin x=5,得3cos x+4t cos x=5,所以cos x=,sin x=.再代入sin2x+cos2x=1,得+=1,解得t=,即tan x=.思路参考:设P(m,n)为角x终边上随意一点,r=,利用三角函数的定义求解.解:设P(m,n)为角x终边上随意一点,点P到原点O的距离为r,则r=.把sin x=,cos x=代入已知等式得3·+4·=5,即(3m+4n)2=(5r)2=25(m2+n2),整理得(4m-3n)2=0,所以4m=3n.明显m≠0,故tan x==.思路参考:设点A(cos x,sin x)是直线3x+4y=5与单位圆x2+y2=1的切点,而tan x =k OA.解:由3cos x+4sin x=5可知点A(cos x,sin x)在直线3x+4y=5上,同时也在单位圆x2+y2=1上,所以点A为直线3x+4y=5与单位圆的切点.由于直线3x+4y=5的斜率为-,所以OA的斜率为,即tan x=.思路参考:m=(cos x,sin x),n=,证明m∥n.解:因为cos x+sin x=1,不妨令m=(cos x,sin x),n=,可知|m|=1,|n|=1,所以m,n均为单位向量,且m·n=1.由|m||n|≥|m·n|,等号成立的条件为m∥n,则有cos x=sin x,即tan x=.1.本题考查同角三角函数基本关系的应用,基本解题方法是构建方程(组)、数形结合等.在求解过程中,应留意同角三角函数的基本关系本身是恒等式,也可以看作是方程.2.基于课程标准,解答本题一般须要有良好的运算求解实力、转化与化归的实力.本题的解答体现了数学运算的核心素养.3.基于高考数学评价体系,本题的多种解法中涉及同角三角函数基本关系式、方程、协助角公式、直线与圆、向量等学问,渗透着函数与方程、等价转换、数形结合等思想方法,对提升思维的敏捷性起到了主动的作用.已知θ是第一象限角,若sin θ-2cos θ=-,求sin θ+cos θ的值.解:因为sin θ-2cos θ=-,所以sin θ=2cos θ-,所以+cos2θ=1,所以5cos2θ-cosθ-=0,即=0.又因为θ为第一象限角,所以cos θ=,所以sin θ=,所以sin θ+cos θ=.课时质量评价(二十二)A组全考点巩固练1.已知sin α=,α∈,则tan α=( )A.B.-C.D.-D解析:因为sin α=,α∈,所以cos α=-=-,则tanα==-.2.已知α是其次象限角,sin (π-α)=,则cos (π+α)=( )A.-B.-C.D解析:因为α是其次象限角,sin (π-α)=,可得sin α=,所以cos α=-=-,则cos(π+α)=-cos α=.3.已知tan α=3,则=( )A.-C.±D解析:因为tanα=3,所以===.4.(2024·安徽模拟)已知cos+cos (π+α)=,则tan α+=( ) A.2 B.-2C.D.3A解析:因为cos +cos (π+α)=,所以-sin α-cos α=,即sin α+cos α=-,两边平方,可得1+2sin αcos α=2,所以sin αcos α=,所以tan α+===2.5.已知cos =,则cos =______,sin=_________.-解析:cos =cos =-cos =-.sin =sin =cos =.6.已知函数f(x)=a sin (πx+α)+b cos (πx+β),且f(4)=3,则f(2 021)=_________.-3解析:因为f(4)=a sin (4π+α)+b cos (4π+β)=a sin α+b cos β=3,所以f(2 021)=a sin (2 021π+α)+b cos (2 021π+β)=a sin (π+α)+b cos (π+β)=-(a sin α+b cos β)=-3.B组新高考培优练7.(多选题)已知α是三角形内角,若sin α+cos α=,则sin α-cos α的值可能为( )A.-B.-C.BC解析:因为α是三角形内角,所以α∈(0,π),又因为(sin α+cos α)2=sin2α+cos2α+2sinαcos α=1+2sin αcos α=,解得2sin αcos α=.因为sin αcos α>0且α∈(0,π),所以sin α>0,cos α>0,所以sin α-cos α符号不确定,所以(sin α-cos α)2=1-2sin αcos α=1-=,所以sin α-cos α=±.8.(2024·聊城模拟)已知α,β∈,且满意sin αcos β-2cos αsin β=0,则tan (2π+α)+tan 的最小值为( )A.2 B.C.1 D.2D解析:因为sin αcos β-2cos αsin β=0,α,β∈,所以tan α>0,tan β>0,tan α=2tan β,所以tan (2π+α)+tan =tan α+=2tan β+≥2,当且仅当tan β=时等号成立.9.(2024·承德二模)若α∈,2sin α+cos α=,则tan α=( )A.-2 B.2C.D.-A解析:由2sin α+cos α=,两边平方,可得(2sin α+cos α)2=,即4sin2α+4sinαcos α+cos2α=.所以,所以,则11tan2α+20tanα-4=0.解得tan α=-2或tan α=.因为α∈,所以tan α=-2.10.(2024·浙江卷)若3sin α-sin β=,α+β=,则sin α=________,cos 2β=_________.解析:因为3sin α-sin β=,α+β=,所以3sin α-cos α=,所以cos α=3sin α-.因为sin2α+cos2α=1,所以sin2α+(3sinα-)2=1,解得sin α=,cos β=sin α=,cos 2β=2cos2β-1=2×-1=.11.已知cos+sin =1,则cos2+cosβ-1的取值范围为_________.解析:由已知得cos β=1-sin α.因为-1≤cos β≤1,所以-1≤1-sin α≤1.又-1≤sin α≤1,可得0≤sin α≤1,所以cos2+cosβ-1=sin2α+1-sinα-1=sin2α-sinα=-.(*) 又0≤sin α≤1,所以当sin α=时,(*)式取得最小值-,当sin α=0或sin α=1时,(*)式取得最大值0,故所求范围是.12.已知-<α<0,且函数f(α)=cos -sin α·-1.(1)化简f(α);(2)若f(α)=,求sin αcos α和sin α-cos α的值.解:(1)因为-<α<0,所以sin α<0,所以f(α)=sin α-sin α·-1=sinα+sin α·-1=sin α+cos α.(2)法一:由f(α)=sin α+cos α=,平方可得sin2α+2sinα·cos α+cos2α=,即2sinαcos α=-.所以sin αcos α=-.又-<α<0,所以sin α<0,cos α>0,所以sin α-cos α<0,因为(sin α-cos α)2=1-2sin αcos α=,所以sin α-cos α=-.法二:联立方程解得或因为-<α<0,所以所以sin αcos α=-,sin α-cos α=-.。
专题3.1--函数的概念及其表示--教师版
专题3.1函数的概念及其表示练基础1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =()A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩则(3)f =()A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为()A .16B .18C .21D .24【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =()A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为().A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x x=的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()1x f x x=的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x ∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或22-【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:2a =-,故1a =或2-,故答案为:1或2-.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦练提升1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则()A .t 没有最小值B .t 51-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =()min 1n m -=.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是()A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有()A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有()A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭=()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )=2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是()A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则()A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则()A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.【答案】5112a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21515111022a a a a a a ⎛⎫⎛⎫--+=+--=---≤ ⎪⎪ ⎪⎪⎝⎭⎝⎭,由于01a <<,所以解得112a ≤<.故答案为:112a -≤<9.(2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10.(2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x 的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .练真题1.(山东高考真题)设=s 0<<12−1,≥1,若=+1,则1=()A.2B.4C.6D.8【答案】C【解析】由≥1时=2−1是增函数可知,若≥1,则≠+1,所以0<<1,由op =o +1)得=2(+1−1),解得=14,则1=o4)=2(4−1)=6,故选C.2.(2018上海卷)设是含数1的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,1的可能取值只能是()A.3B.3C.3D.0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=3,3,0时,此时得到的圆心角为3,6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y,因此只有当此时旋转6,此时满足一个x 只会对应一个y,故选:B.3.(2018年新课标I 卷文)设函数=2−,≤01,>0,则满足+1<2的x 的取值范围是()A.−∞,−1B.0,+∞C.−1,0D.−∞,0【答案】D【解析】将函数op 的图象画出来,观察图象可知会有2<02<+1,解得<0,所以满足+1<2的x 的取值范围是−∞,0,故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5.(2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4)(1,3](4,)⋃+∞【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。
2023年高考数学总复习第二章 函数概念与基本初等函数第4节:幂函数与二次函数(教师版)
2023年高考数学总复习第二章函数概念与基本初等函数第4节二次函数性质的再研究与幂函数考试要求 1.了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=x 12,y=1x的图像,了解它们的变化情况;2.理解二次函数的图像和性质,能用二次函数、方程、不等式之间的关系解决简单问题.1.幂函数(1)幂函数的定义如果一个函数,底数是自变量x,指数是常量α,即y=xα,这样的函数称为幂函数.(2)常见的五种幂函数的图像(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图像和性质1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),>0,<0时,恒有f (x )>0;<0,<0时,恒有f (x )<0.3.(1)幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限;(2)幂函数的图像过定点(1,1),如果幂函数的图像与坐标轴相交,则交点一定是原点.1.思考辨析(在括号内打“√”或“×”)(1)函数y =2x 13是幂函数.()(2)当α>0时,幂函数y =x α在(0,+∞)上是增函数.()(3)二次函数y =ax 2+bx +c (a ≠0)的两个零点可以确定函数的解析式.()(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是4ac-b24a.()答案(1)×(2)√(3)×(4)×解析(1)由于幂函数的解析式为f(x)=xα,故y=2x 13不是幂函数,(1)错误.(3)确定二次函数的解析式需要三个独立的条件,两个零点不能确定函数的解析式.(4)对称轴x=-b2a,当-b2a不在给定定义域内时,最值不是4ac-b24a,故(4)错误.2.(2021·全国甲卷)下列函数中是增函数的为()A.f(x)=-xB.f(x)C.f(x)=x2D.f(x)=3x答案D解析取x1=-1,x2=0,对于A项有f(x1)=1,f(x2)=0,所以A项不符合题意;对于B项有f(x1)=32,f(x2)=1,所以B项不符合题意;对于C项有f(x1)=1,f(x2)=0,所以C项不符合题意.故选D.3.(易错题)若函数y=mx2+x+2在[3,+∞)上是减函数,则m的取值范围是________.答案-∞,-16解析当m=0时,函数在给定区间上是增函数;当m≠0时,二次函数的对称轴为直线x=-12m,<0,-12m≤3,∴m≤-16.4.(易错题)已知幂函数f(x)=x-12,若f(a+1)<f(10-2a),则a的取值范围是________.答案(3,5)解析∵幂函数f(x)=x-12在定义域(0,+∞)上单调递减,∴由f(a+1)<f(10-2a),a +1>0,10-2a >0,a +1>10-2a ,∴3<a <5.5.(2018·上海卷)已知α-2,-1,-12,12,1,2,3若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.答案-1解析由y =x α为奇函数,知α取-1,1,3.又y =x α在(0,+∞)上递减,∴α<0,取α=-1.6.已知函数f (x )=-2x 2+mx +3(0≤m ≤4,0≤x ≤1)的最大值为4,则m 的值为________.答案22解析f (x )=-2x 2+mx +3=-x m 4+m 28+3,∵0≤m ≤4,∴0≤m4≤1,∴当x =m4时,f (x )取得最大值,∴m 28+3=4,解得m =2 2.考点一幂函数的图像和性质1.若幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的大致图像是()答案C解析设幂函数的解析式为y =x α,因为幂函数y =f (x )的图像过点(4,2),所以2=4α,解得α=12.所以y=x,其定义域为[0,+∞),且是增函数,当0<x<1时,其图像在直线y =x的上方,对照选项,C正确.2.若幂函数f(x)=(2b-1)x a2-10a+23(a,b∈Z)为偶函数,且f(x)在(0,+∞)上是减函数,则a,b的值分别为()A.2,1B.4,1C.5,1D.6,1答案C解析由幂函数的定义得2b-1=1,∴b=1.又∵a2-10a+23=(a-5)2-2,函数f(x)为偶函数且在(0,+∞)上为减函数,∴(a-5)2-2<0,故a=4,5,6.又(a-5)2-2为偶数,∴a=5.3.如图是①y=x a;②y=x b;③y=x c在第一象限的图像,则a,b,c的大小关系为()A.c<b<aB.a<b<cC.b<c<aD.a<c<b答案D解析由幂函数的图像和单调性可知a<0,b>1,0<c<1,∴a<c<b.4.(2021·郑州质检)幂函数f(x)=(m2-3m+3)x m的图像关于y轴对称,则实数m=________.答案2解析由幂函数定义,知m2-3m+3=1,解得m=1或m=2,当m=1时,f(x)=x的图像不关于y轴对称,舍去,当m=2时,f(x)=x2的图像关于y轴对称,因此m =2.5.若(a +1)-13<(3-2a )-13,则实数a 的取值范围是________.答案(-∞,-1)23,32解析不等式(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.感悟提升1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴.考点二二次函数的解析式例1已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解法一(利用“一般式”)设f (x )=ax 2+bx +c (a ≠0).4a +2b +c =-1,a -b +c 1,4ac -b24a=8,a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.法二(利用“顶点式”)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8,所以y=f(x)=+8.因为f(2)=-1,所以+8=-1,解得a=-4,所以f(x)=-+8=-4x2+4x+7.法三(利用“零点式”)由已知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.又函数有最大值8,即4a(-2a-1)-(-a)24a=8.解得a=-4或a=0(舍).故所求函数的解析式为f(x)=-4x2+4x+7.感悟提升求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:训练1(1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)=________.(2)已知二次函数f(x)的图像经过点(4,3),在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.答案(1)x2+2x+1(2)x2-4x+3解析(1)设函数f(x)的解析式为f(x)=a(x+1)2=ax2+2ax+a,由已知f(x)=ax2+bx+1,所以a=1,b=2a=2,故f(x)=x2+2x+1.(2)因为f(2-x)=f(2+x)对x∈R恒成立,所以y=f(x)的图像关于x=2对称.又y=f(x)的图像在x轴上截得的线段长为2,所以f(x)=0的两根为2-22=1或2+22=3.所以二次函数f(x)与x轴的两交点坐标为(1,0)和(3,0).因此设f(x)=a(x-1)(x-3).又点(4,3)在y=f(x)的图像上,所以3a=3,则a=1.故f(x)=(x-1)(x-3)=x2-4x+3.考点三二次函数的图像和性质角度1二次函数的图像例2(1)二次函数y=ax2+bx+c的图像如图所示.则下列结论正确的是______(填序号).①b2>4ac;②c>0;③ac>0;④b<0;⑤a-b+c<0.(2)设函数f(x)=x2+x+a(a>0),若f(m)<0,则()A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0答案(1)①②⑤(2)C解析(1)由题图知,a<0,-b2a>0,c>0,∴b>0,ac<0,故②正确,③④错误.又函数图像与x轴有两交点,∴Δ=b2-4ac>0,故①正确;又由题图知f(-1)<0,即a-b+c<0,故⑤正确.(2)因为f(x)的对称轴为x=-12,f(0)=a>0,所以f(x)的大致图像如图所示.由f(m)<0,得-1<m<0,所以m+1>0>-1 2,所以f(m+1)>f(0)>0.角度2二次函数的单调性与最值例3(1)函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取值范围是()A.[-3,0)B.(-∞,-3]C.[-2,0]D.[-3,0]答案D解析当a=0时,f(x)=-3x+1在[-1,+∞)上单调递减,满足题意.当a≠0时,f(x)的对称轴为直线x=3-a 2a,由f(x)在[-1,+∞)a<0,3-a2a≤-1,解得-3≤a<0.综上,a的取值范围为[-3,0].(2)(2021·西安模拟)已知f(x)=ax2-2x(0≤x≤1),求f(x)的最小值.解①当a=0时,f(x)=-2x在[0,1]上递减,∴f(x)min=f(1)=-2.②当a>0时,f(x)=ax2-2x图像开口方向向上,且对称轴为x=1 a .(ⅰ)当1a≤1,即a≥1时,f(x)=ax2-2x图像的对称轴在[0,1]内,∴f(x)在0,1a上递减,在1a,1上递增.∴f(x)min=1a=1a-2a=-1a.(ⅱ)当1a>1,即0<a<1时,f(x)=ax2-2x图像的对称轴在[0,1]的右侧,∴f(x)在[0,1]上递减.∴f(x)min=f(1)=a-2.③当a<0时,f(x)=ax2-2x的图像的开口方向向下,且对称轴x=1a<0,在y轴的左侧,∴f(x)=ax2-2x在[0,1]上递减.∴f(x)min=f(1)=a-2.综上所述,f(x)min-2,a<1,-1a,a≥1.感悟提升 1.闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图像,根据函数的单调性及分类讨论的思想求解.2.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图像的对称轴与区间的位置关系,当含有参数时,要依据图像的对称轴与区间的位置关系进行分类讨论.角度3二次函数中的恒成立问题例4(1)已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,则实数a的取值范围是________.(2)函数f(x)=a2x+3a x-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则实数a的最大值为________.答案(2)2解析(1)由题意知2ax2+2x-3<0在[-1,1]上恒成立,当x=0时,-3<0,符合题意,a∈R;当x≠0时,a-1 6,因为1x∈(-∞,-1]∪[1,+∞),所以当x=1时,不等号右边式子取最小值1 2,所以a<1 2 .综上,实数a∞(2)令a x=t,因为a>1,x∈[-1,1],所以1a≤t≤a,原函数化为g(t)=t2+3t-2,t∈1a,a,显然g(t)在1a,a上单调递增,所以f(x)≤8恒成立,即g(t)max=g(a)≤8成立,所以有a2+3a-2≤8,解得-5≤a≤2,又a>1,所以1<a≤2,所以a的最大值为2.感悟提升由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.其中分离参数的依据是:a≥f(x)恒成立⇔a≥f(x)max,a≤f(x)恒成立⇔a ≤f(x)min.训练2(1)(2021·长春五校联考)已知二次函数f(x)满足f(3+x)=f(3-x),若f(x)在区间[3,+∞)上单调递减,且f(m)≥f(0)恒成立,则实数m的取值范围是()A.(-∞,0]B.[0,6]C.[6,+∞)D.(-∞,0]∪[6,+∞)(2)(2022·泰安调研)当x∈(0,+∞)时,ax2-3x+a≥0恒成立,则实数a的取值范围是________.答案(1)B(2)32,+∞解析(1)设f(x)=ax2+bx+c(a,b,c∈R,且a≠0),∵f(3+x)=f(3-x),∴a(3+x)2+b(3+x)+c=a(3-x)2+b(3-x)+c,∴x(6a+b)=0,∴6a+b=0,∴f(x)=ax2-6ax+c=a(x-3)2-9a+c.又∵f(x)在区间[3,+∞)上单调递减,∴a<0,∴f(x)的图像是以直线x=3为对称轴,开口向下的抛物线,∴由f(m)≥f(0)恒成立,得0≤m≤6,∴实数m的取值范围是[0,6].(2)由ax2-3x+a≥0,得a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当x=1时等号成立,∴y=3x+1x≤32,故a≥32.(3)设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.解f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,函数图像的对称轴为x=1.当t+1≤1,即t≤0时,函数图像如图(1)所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为f(t+1)=t2+1;当t<1<t+1,即0<t<1时,函数图像如图(2)所示,在对称轴x=1处取得最小值,最小值为f(1)=1;当t≥1时,函数图像如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值为f(t)=t2-2t+2.综上可知,当t≤0时,f(x)min=t2+1,当0<t<1时,f(x)min=1,当t≥1时,f(x)min=t2-2t+2.1.若f (x )是幂函数,且满足f (4)f (2)=3,则()A.3B.-3C.13D.-13答案C解析设f (x )=x α,则4α2α=2α=3,∴=13.2.若函数f (x )=(m 2-m -1)x m 是幂函数,且其图像与坐标轴无交点,则f (x )()A.是偶函数B.是定义域内的减函数C.是定义域内的增函数D.在定义域内没有最小值答案D解析幂函数f (x )=(m 2-m -1)x m 的图像与坐标轴无交点,可得m 2-m -1=1,且m ≤0,解得m =-1,则函数f (x )=x -1是奇函数,在定义域上不是减函数,且无最值.3.(2021·河南名校联考)函数y =1-|x -x 2|的图像大致是()答案C解析∵当0≤x ≤1时,y =x 2-x +1+34,又当x >1或x <0时,y =-x 2+x +1+54,因此,结合图像,选项C 正确.4.(2021·西安检测)已知函数f (x )=x -3,若a =f (0.60.6),b =f (0.60.4),c =f (0.40.6),则a ,b ,c 的大小关系是()A.a <c <bB.b <a <cC.b <c <aD.c <a <b答案B解析∵0.40.6<0.60.6<0.60.4,又y =f (x )=x -3在(0,+∞)上是减函数,∴b <a <c .5.若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围是()A.[2,+∞)B.(2,+∞)C.(-∞,0)D.(-∞,2)答案A解析二次函数y =kx 2-4x +2图像的对称轴为直线x =2k,当k >0时,要使函数y =kx 2-4x +2在区间[1,2]上是增函数,只需2k ≤1,解得k ≥2;当k <0时,2k <0,此时抛物线的对称轴在区间[1,2]的左侧,则函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).6.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图像三等分,即有BM =MN =NA ,那么a -1b=()A.0B.1C.12D.2答案A解析BM =MN =NA ,点A (1,0),B (0,1),所以将两点坐标分别代入y =x a ,y =x b ,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log 2313=0.7.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.答案-22,解析因为函数图像开口向上,(m )=m 2+m 2-1<0,(m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0.8.(2021·青岛联考)已知函数f (x )=x 2-2ax +b (a >1)的定义域和值域都为[1,a ],则b =________.答案5解析f (x )=x 2-2ax +b 的图像关于x =a 对称,所以f (x )在[1,a ]上为减函数,又f (x )的值域为[1,a ],(1)=1-2a +b =a ,(a )=a 2-2a 2+b =1.消去b ,得a 2-3a +2=0,解得a =2(a >1),从而得b =3a -1=5.9.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 的值都有f (x )>0,则实数a的取值范围为________.答案解析由题意得a >2x -2x2对1<x <4恒成立,又2x -2x2=-+12,14<1x<1,max=12,∴a >12.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图像过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[3,5]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a .因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0.所以4a 2-4a =0,所以a =1,b =2.所以f (x )=x 2+2x +1.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1+1.由g (x )的图像知,要满足题意,则k -22≥5或k -22≤3,即k ≥12或k ≤8,所以所求实数k 的取值范围为(-∞,8]∪[12,+∞).11.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图像恒在函数y =2x +m 的图像的上方,求实数m 的取值范围.解(1)设f (x )=ax 2+bx +c (a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以,2a =2且a +b =0,解得a =1,b =-1,又f (0)=1,所以c =1.因此f(x)的解析式为f(x)=x2-x+1.(2)因为当x∈[-1,1]时,y=f(x)的图像恒在y=2x+m的图像上方,所以在[-1,1]上,x2-x+1>2x+m恒成立;即x2-3x+1>m在区间[-1,1]上恒成立.所以令g(x)=x2-3x+1-5 4,因为g(x)在[-1,1]上的最小值为g(1)=-1,所以m<-1.故实数m的取值范围为(-∞,-1).12.已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围是()A.[-2,2]B.[1,2]C.[2,3]D.[1,2]答案B解析由于f(x)=x2-2tx+1的图像的对称轴为x=t,又y=f(x)在(-∞,1]上是减函数,所以t≥1.则在区间[0,t+1]上,f(x)max=f(0)=1,f(x)min=f(t)=t2-2t2+1=-t2+1,要使对任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,只需1-(-t2+1)≤2,解得-2≤t≤ 2.又t≥1,∴1≤t≤ 2.13.(2022·太原调研)对于问题:当x>0时,均有[(a-1)x-1](x2-ax-1)≥0,求实数a的所有可能值.几位同学提供了自己的想法.甲:解含参不等式,其解集包含正实数集;乙:研究函数y=[(a-1)x-1](x2-ax-1);丙:分别研究两个函数y1=(a-1)x-1与y2=x2-ax-1;丁:尝试能否参变量分离研究最值问题.你可以选择其中某位同学的想法,也可以用自己的想法,可以得出的正确答案为______.答案3 2解析选丙.画出y2=x2-ax-1的草图,y2=x2-ax-1过定点C(0,-1).∴y2=x2-ax-1与x轴有两个交点,且两交点在原点两侧,又y1=(a-1)x-1也过定点C(0,-1),故直线y1=(a-1)x-1只有过点A,C才满足题意,∴a-1>0,即a>1,令y1=0得x=1a-1,y2=x2-ax-1,-aa-1-1=0,解得a=0(舍)或a=3 2 .14.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],函数图像的对称轴为直线x=-32∈[-2,3],∴f(x)min==94-92-3=-214,f(x)max=f(3)=15,∴f(x)的值域为-214,15.(2)函数图像的对称轴为直线x=-2a-12.①当-2a-12≤1,即a≥-12时,f(x)max=f(3)=6a+3,∴6a+3=1,即a=-13,满足题意;②当-2a-12>1,即a<-12时,f(x)max=f(-1)=-2a-1,∴-2a-1=1,即a=-1,满足题意.综上可知,a=-13或-1.。
高考函数专项复习教案
高考函数专项复习教案一、教学目标1. 理解函数的定义及其性质,掌握常见函数的图像和特征。
2. 熟练运用函数性质解决实际问题,提高数学思维能力和解决问题的能力。
3. 巩固求解函数方程、不等式的能力,提升高考数学成绩。
二、教学内容1. 函数的定义与性质1.1 函数的概念1.2 函数的性质(单调性、奇偶性、周期性)2. 常见函数的图像与特征2.1 一次函数、二次函数、反比例函数的图像与性质2.2 指数函数、对数函数的图像与性质2.3 三角函数的图像与性质三、教学重点与难点1. 重点:函数的定义与性质,常见函数的图像与特征。
2. 难点:函数方程、不等式的求解,函数性质在实际问题中的应用。
四、教学方法与手段1. 采用讲练结合的方法,通过例题解析、课后习题训练,巩固知识点。
2. 利用多媒体教学手段,展示函数图像,直观地理解函数性质。
3. 组织小组讨论,促进学生互动交流,提高解决问题的能力。
五、课时安排1. 第1课时:函数的定义与性质2. 第2课时:一次函数、二次函数的图像与性质3. 第3课时:反比例函数、指数函数的图像与性质4. 第4课时:对数函数、三角函数的图像与性质5. 第5课时:函数方程、不等式的求解及应用教案内容待补充。
六、教学过程6. 结合具体案例,让学生通过观察、分析、归纳函数的性质,如单调性、奇偶性、周期性等。
7. 通过例题展示,引导学生运用函数性质解决实际问题,巩固所学知识。
8. 针对高考题型,进行函数方程、不等式的专项训练,提高解题技巧。
9. 组织学生进行小组讨论,分享解题心得,互相学习,共同进步。
10. 总结本节课所学内容,布置课后作业,巩固知识点。
七、课后作业1. 选择题:1. 函数f(x) = 2x + 1的定义域是____。
2. 函数f(x) = |x|的值域是____。
3. 下列函数中,奇函数的是____。
4. 若函数f(x) = ax^2 + bx + c的图像开口向上,则a的取值范围是____。
轮总复习教师教案(函数)完
函数总复习教师教案(一)一、教学目标1. 理解函数的概念,掌握函数的表示方法。
2. 掌握函数的性质,包括单调性、奇偶性、周期性等。
3. 学会运用函数解决实际问题,提高数学建模能力。
二、教学内容1. 函数的概念与表示方法函数的定义函数的表示方法:解析式、表格、图象2. 函数的性质单调性:增函数、减函数奇偶性:奇函数、偶函数周期性:周期函数、周期三、教学重点与难点1. 重点:函数的概念、表示方法,以及函数的性质。
2. 难点:函数性质的运用,以及实际问题的解决。
四、教学方法1. 采用讲授法,系统地讲解函数的概念、表示方法,以及函数的性质。
2. 利用案例分析法,分析实际问题,引导学生学会运用函数解决实际问题。
3. 运用数形结合法,结合图象讲解函数的性质,提高学生的直观理解能力。
五、教学过程1. 导入:回顾函数的概念,引导学生思考函数在实际生活中的应用。
2. 讲解:讲解函数的表示方法,如解析式、表格、图象。
3. 练习:让学生举例说明函数的表示方法,并进行点评。
4. 讲解:讲解函数的单调性、奇偶性、周期性等性质。
5. 案例分析:分析实际问题,引导学生运用函数解决实际问题。
6. 练习:让学生举例说明函数性质的运用,并进行点评。
7. 总结:对本节课的内容进行总结,强调重点和难点。
8. 作业布置:布置相关练习题,巩固所学知识。
函数总复习教师教案(二)一、教学目标1. 掌握函数的图像,学会分析函数图像的特点。
2. 掌握函数的变换,包括平移、翻折、缩放等。
3. 学会运用函数图像解决实际问题,提高数学建模能力。
二、教学内容1. 函数的图像直线函数的图像二次函数的图像指数函数、对数函数的图像2. 函数的变换平移:上移、下移翻折:关于x轴翻折、关于y轴翻折缩放:放大、缩小三、教学重点与难点1. 重点:函数图像的特点,以及函数图像的变换。
2. 难点:函数图像变换的运用,以及实际问题的解决。
四、教学方法1. 采用讲授法,系统地讲解函数图像的特点,以及函数图像的变换。
2025高考数学必刷题 第15讲、单调性问题(教师版)
第15讲单调性问题知识梳理知识点一:单调性基础问题1、函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数.2、已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.知识点二:讨论单调区间问题类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根作图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负);(5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导);求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导.(7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系);(5)导数图像定区间;【解题方法总结】1、求可导函数单调区间的一般步骤(1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注:①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥;()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.必考题型全归纳题型一:利用导函数与原函数的关系确定原函数图像【例1】(2024·全国·高三专题练习)设()f x '是函数()f x 的导函数,()y f x '=的图象如图所示,则()y f x =的图象最有可能的是()A .B .C .D .【答案】C【解析】由导函数的图象可得当0x <时,()0f x ¢>,函数()f x 单调递增;当02x <<时,()0f x '<,函数()f x 单调递减;当2x >时,()0f x ¢>,函数()f x 单调递增.只有C 选项的图象符合.故选:C.【对点训练1】(多选题)(2024·全国·高三专题练习)已知函数()f x 的定义域为R 且导函数为'()f x ,如图是函数'()y xf x =的图像,则下列说法正确的是A .函数()f x 的增区间是(2,0),(2,)-+∞B .函数()f x 的增区间是()(),2,2,-∞-+∞C .2x =-是函数的极小值点D .2x =是函数的极小值点【答案】BD【解析】先由题中图像,确定()f x '的正负,得到函数()f x 的单调性;从而可得出函数极大值点与极小值点,进而可得出结果.由题意,当02x <<时,()0f x '<;当2x >,()0f x '>;当20x -<<时,()0f x '<;当<2x -时,()0f x '>;即函数()f x 在(),2-∞-和(2,)+∞上单调递增,在()2,2-上单调递减,因此函数()f x 在2x =时取得极小值,在2x =-时取得极大值;故A 错,B 正确;C 错,D 正确.故选:BD.【对点训练2】(2024·黑龙江齐齐哈尔·统考二模)已知函数()y xf x '=的图象如图所示(其中()f x '是函数()f x 的导函数),下面四个图象中可能是()y f x =图象的是()A .B .C .D .【答案】C【解析】由()y xf x '=的图象知,当(),1x ∈-∞-时,()0xf x '<,故()0f x ¢>,()f x 单调递增;当()1,0x ∈-时,()0xf x '>,故()0f x '<,当[)0,1x ∈,()0xf x '≤,故()0f x '≤,等号仅有可能在x =0处取得,所以()1,1x ∈-时,()f x 单调递减;当()1,x ∈+∞时,()0xf x '>,故()0f x ¢>,()f x 单调递增,结合选项只有C 符合.故选:C.【对点训练3】(2024·陕西西安·校联考一模)已知定义在[3,4]-上的函数()f x 的大致图像如图所示,()f x '是()f x 的导函数,则不等式()0xf x '>的解集为()A .5(2,1)1,2⎛⎫-- ⎪⎝⎭B .(3,2)--C .5(1,0)1,2⎛⎫- ⎪⎝⎭D .(3,4)【答案】C【解析】若0x <,则()()0,f x f x '<单调递减,图像可知,()1,0x ∈-,若0x >,则()()0,f x f x '>单调递增,由图像可知51,2x ⎛⎫∈ ⎪⎝⎭,故不等式()0xf x '>的解集为()51,01,2⎛⎫- ⎪⎝⎭.故选:C【解题方法总结】原函数的单调性与导函数的函数值的符号的关系,原函数()f x 单调递增⇔导函数()0f x '≥(导函数等于0,只在离散点成立,其余点满足()0f x '>);原函数单调递减⇔导函数()0f x '≤(导函数等于0,只在离散点成立,其余点满足0()0f x <).题型二:求单调区间【例2】(2024·江西鹰潭·高三贵溪市实验中学校考阶段练习)函数22ln x y x x+=+的单调递增区间为()A .(0,2)B .(0,1)C .(2,)+∞D .(1,)+∞【答案】D【解析】函数的定义域为(0,)+∞.222ln ln x y x x x x x +=+=++,则2222212(2)(1)1x x x x y x x x x +-+-'=-+==.令00y x >⎧⎨>'⎩,解得(1,)x ∈+∞.故选:D【对点训练4】(2024·全国·高三专题练习)函数ln y x x =()A .严格增函数B .在0,1e ⎛⎫⎪⎝⎭上是严格增函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是严格减函数C .严格减函数D .在0,1e ⎛⎫⎪⎝⎭上是严格减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是严格增函数【答案】D【解析】已知ln y x x =,0x >,则1ln ln 1y x x x x'=+⋅=+,令0y '=,即ln 10x +=,解得1ex =,当10e x <<时,0'<y ,所以在0,1e ⎛⎫⎪⎝⎭上是严格减函数,当1e x >时,0'>y ,所以在1,e ⎛⎫+∞ ⎪⎝⎭上是严格增函数,故选:D.【对点训练5】(2024·全国·高三专题练习)函数()()2ln 41f x x =-的单调递增区间()A .1,2⎛⎫+∞ ⎪⎝⎭B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎛⎫- ⎪⎝⎭D .()0,∞+【答案】A【解析】由2410x ->,可得12x <-或12x >,所以函数()()2ln 41f x x =-的定义域为11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.求导可得()2841x f x x =-',当()0f x ¢>时,0x >,由函数定义域可知,12x >,所以函数()()2ln 41f x x =-的单调递增区间是1,2⎛⎫+∞ ⎪⎝⎭.故选:A.【对点训练6】(2024·高三课时练习)函数()bf x ax x=+(a 、b 为正数)的严格减区间是().A .,⎛-∞ ⎝B .,0b a ⎛⎫- ⎪⎝⎭与0,b a ⎛⎫⎪⎝⎭C .⎛⎫ ⎪ ⎪⎝⎭与⎛ ⎝D .⎛⎫⎛⎫⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】由题得0x ≠.由()2b f x a x -'=,令()20b f x a x '=-<解得0x <<或0x <<.所以函数()bf x ax x =+的严格减区间是⎛⎫ ⎪ ⎪⎝⎭与⎛ ⎝.选项D ,本题的两个单调区间之间不能用“ ”连接,所以该选项错误.故选:C【解题方法总结】求函数的单调区间的步骤如下:(1)求()f x 的定义域(2)求出()f x '.(3)令()0f x '=,求出其全部根,把全部的根在x 轴上标出,穿针引线.(4)在定义域内,令()0f x '>,解出x 的取值范围,得函数的单调递增区间;令()0f x '<,解出x 的取值范围,得函数的单调递减区间.若一个函数具有相同单调性的区间不只一个,则这些单调区间不能用“ ”、“或”连接,而应用“和”、“,”隔开.题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围【例3】(2024·宁夏银川·银川一中校考三模)若函数2()ln 2x f x x =-在区间1(,3m m +上不单调,则实数m 的取值范围为()A .203m <<B .213m <<C .213m ≤≤D .m >1【答案】B【解析】函数2()ln 2x f x x =-的定义域为(0,)+∞,且2(11)1)1)((x f x x x x xx x -==+-'=-,令()0f x '=,得1x =,因为()f x 在区间1(,)3m m +上不单调,所以0113m m m >⎧⎪⎨<<+⎪⎩,解得:213m <<故选:B.【对点训练7】(2024·陕西西安·统考三模)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则a 的取值范围是()A .[)3,+∞B .(],3-∞C .23,e 1⎡⎤+⎣⎦D .23,e 1⎡⎤-⎣⎦【答案】B【解析】因为函数()2ln f x x ax x =-+在区间()1,e 上单调递增,所以()120f x x a x'=-+≥在区间()1,e 上恒成立,即12a x x ≤+在区间()1,e 上恒成立,令()()121e g x x x x=+<<,则())22221112120x g x x x x +--'=-==>,所以()g x 在()1,e 上递增,又()13g =,所以3a ≤.所以a 的取值范围是(],3-∞.故选:B【对点训练8】(2024·全国·高三专题练习)若函数()()3log (0a f x ax x a =->且1)a ≠在区间()0,1内单调递增,则a 的取值范围是()A .[)3,+∞B .(]1,3C .10,3⎛⎫⎪⎝⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令()3g x ax x μ==-,则()23g x a x '=-,当x >x <()0g x '<,当x <<()0g x '>,所以()g x在⎫+∞⎪⎪⎭和,⎛-∞ ⎝上递减,在⎛ ⎝上递增,当1a >时,log a y μ=为增函数,且函数()f x 在区间()0,1内单调递增,所以101a ⎧⎪>⎪⎪≤⎨≥,解得3a ≥,此时()g x 在()0,1上递增,则()()00g x g >=恒成立,当01a <<时,log a y μ=为减函数,且函数()f x 在区间()0,1内单调递增,所以001a ≤<<⎩,无解,综上所述,a 的取值范围是[)3,+∞.故选:A.【对点训练9】(2024·全国·高三专题练习)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫⎪⎝⎭上是减函数,则实数a 的取值范围为()A.1a -B .1a ≥C.1a >D .1a ≥-【答案】B【解析】由题意,()cos sin 0f x x a x '=-≤在ππ,42⎛⎫⎪⎝⎭上恒成立,即cos 1sin tan x a x x ≥=在ππ,42⎛⎫⎪⎝⎭上恒成立,因为tan y x =在ππ,42⎛⎫⎪⎝⎭上单调递增,所以tan 1y x =>,所以在ππ,42x ⎛⎫∈ ⎪⎝⎭时,101tan x <<,所以1a ≥.故选:B【对点训练10】(2024·全国·高三专题练习)三次函数3()f x mx x =-在(,)-∞+∞上是减函数,则m 的取值范围是()A .0m <B .1m <C .0m ≤D .1m £【答案】A【解析】对函数3()f x mx x =-求导,得2()31f x mx '=-因为函数()f x 在(,)-∞+∞上是减函数,则()0f x '≤在R 上恒成立,即2310mx -≤恒成立,当20x =,即0x =时,2310mx -≤恒成立;当20x ≠,即0x ≠时,20x ≥,则213m x ≤,即2min13m x ⎛⎫≤ ⎪⎝⎭,因为210x ≥,所以30m ≤,即0m ≤;又因为当0m =时,()f x x =-不是三次函数,不满足题意,所以0m <.故选:A .【对点训练11】(2024·青海西宁·高三校考开学考试)已知函数()ln 1af x x x =++.若对任意1x ,(]20,2x ∈,且12x x ≠,都有()()21211f x f x x x ->--,则实数a 的取值范围是()A .27,4⎛⎤-∞ ⎥⎝⎦B .(],2-∞C .27,2⎛⎫-∞ ⎪⎝⎭D .(],8∞-【答案】A【解析】根据题意,不妨取12x x <,则()()21211f x f x x x ->--可转化为()()2112f x f x x x ->-,即112212ln ln 11a ax x x x x x ++<++++.令()ln 1aF x x x x =+++,则对任意1x ,(]20,2x ∈,且12x x <,都有()()12F x F x <,所以()F x 在(]0,2上单调递增,即()()21101a F x x x '=-+≥+在(]0,2上恒成立,即()31x a x+≤在(]0,2上恒成立.令()()31x h x x+=,02x <≤,则()()()22121x x h x x +-'=,02x <≤,令()0h x '<,得102x <<,令()0h x '>,得122x <≤,所以()h x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,22⎛⎤⎥⎝⎦上单调递增,所以()min 12724h x h ⎛⎫== ⎪⎝⎭,所以274a ≤,即实数a 的取值范围是27,4⎛⎤-∞ ⎥⎝⎦,故选:A【对点训练12】(2024·全国·高三专题练习)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫ ⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是()A .[)2,-+∞B .1,8⎛⎫-+∞ ⎪⎝⎭C .128⎡⎫--⎪⎢⎣⎭,D .()2,-+∞【答案】D【解析】∵2()ln 2f x x ax =+-,∴1()2f x ax x'=+,若()f x 在区间1,22⎛⎫ ⎪⎝⎭内存在单调递增区间,则1()0,22,f x x '>∈⎛⎫⎪⎝⎭有解,故212a x>-,令21()2g x x =-,则21()2g x x =-在1,22⎛⎫⎪⎝⎭单调递增,1()22g x g ⎛⎫∴>=- ⎪⎝⎭,故 2 a >-.故选:D.【对点训练13】(2024·全国·高三专题练习)若函数2()ln 2f x x x x =+--在其定义域的一个子区间(21,21)k k -+内不是单调函数,则实数k 的取值范围是()A .33,24⎛⎫- ⎪⎝⎭B .1,32⎡⎫⎪⎢⎣⎭C .3,32⎛⎫- ⎪⎝⎭D .13,24⎡⎫⎪⎢⎣⎭【答案】D【解析】因为函数()f x 的定义域为(0,)+∞,所以210k -≥,即12k ≥,2121(1)(21)()21x x x x f x x x x x+-+-'=+-==,令()0f x '=,得12x =或=1x -(舍去),因为()f x 在定义域的一个子区间(21,21)k k -+内不是单调函数,所以121212k k -<<+,得4143k -<<,综上,1324k ≤<,故选:D【对点训练14】(2024·全国·高三专题练习)已知函数()()2ln f x x x b =+-(R b ∈)在区间1,22⎡⎤⎢⎥⎣⎦上存在单调递增区间,则实数b 的取值范围是A .3,2⎛⎫-∞ ⎪⎝⎭B .9,4⎛⎫-∞ ⎪⎝⎭C .(),3-∞D .(-∞【答案】B【解析】 函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦上存在单调增区间,∴函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦上存在子区间使得不等式()0f x '>成立.()()212212x bx f x x b x x -+=+-=',设()2221h x x bx =-+,则()20h >或102h ⎛⎫> ⎪⎝⎭,即8410b -+>或1102b -+>,得94b <,故选B.考点:导数的应用.【例4】(2024·全国·高三专题练习)已知函数()321132a f x x x x =+++在(),0∞-,()3,+∞上单调递增,在()1,2上单调递减,则实数a 的取值范围为()A .105,32⎡⎤--⎢⎥⎣⎦B .(],2-∞-C .10,23⎛⎤-- ⎥⎝⎦D .105,32⎛⎫-- ⎪⎝⎭【答案】A 【解析】由()321132a f x x x x =+++,得()21f x x ax '=++.因为()f x 在(),0∞-,()3,+∞上单调递增,在()1,2上单调递减,所以方程()0f x '=的两个根分别位于区间[]0,1和[]2,3上,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10,110,4210,9310,a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩解得10532a -≤≤-.故选:A .【对点训练15】(2024·全国·高三专题练习)已知函数()()()3223110f x mx m x m m =+--+>的单调递减区间是()0,4,则m =()A .3B .13C .2D .12【答案】B【解析】函数()()()3223110f x mx m x m m =+--+>,则导数()()2361f x mx m x'=+-令()0f x '<,即()23610mx m x +-<,∵0m >,()f x 的单调递减区间是()0,4,∴0,4是方程()23610mx m x +-=的两根,∴()2104m m-+=,040⨯=,∴13m =故选:B.【解题方法总结】(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围.(3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解.题型四:不含参数单调性讨论【例5】(2024·全国·高三专题练习)已知函数()()()1ln 10x f x x x++=>.试判断函数()f x 在()0+∞,上单调性并证明你的结论;【解析】函数()f x 在()0,∞+上为减函数,证明如下:因为()()()1ln 10x f x x x++=>,所以()()21ln 11xx f x x --++'=,又因为0x >,所以101x>+,ln(1)0x +>,所以()0f x '<,即函数()f x 在()0,∞+上为减函数.【对点训练16】(2024·广东深圳·高三深圳外国语学校校考阶段练习)已知()e ln x af x x x+=+若1a =,讨论()f x 的单调性;【解析】若1a =,则()()e 1ln 0x f x x x x +=+>,求导得()()()21e 1x x f x x-+'=,令()0f x ¢>可得1x >,令()0f x '<可得10x >>,故()f x 在()0,1x ∈上单调递减;在()1,+∞上单调递增.【对点训练17】(2024·贵州·校联考二模)已知函数()ln e 1xf x x x =-+.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)讨论()f x 在()0,∞+上的单调性.【解析】(1)()ln 1e x f x x '=+-,∴()11e f '=-,又()11e f =-,∴曲线()y f x =在点()()1,1f 处的切线方程是()()1e 1e 1y x -+=--,即()1e y x =-;(2)令()()()0ln 1e xg f x x x x '==+>-,则()1e x g x x ='-在()0,∞+上递减,且1202g ⎛⎫=> ⎪⎝⎭',()11e 0g ='-<,∴01,12x ⎛⎫∃∈⎪⎝⎭,使()0001e 0xg x x =-=',即00ln x x =-,当()00,x x ∈时,()00g x '>,当()0,x x ∈+∞时,()00g x '<,∴()f x '在()00,x 上递增,在()0,x +∞上递减,∴()()000001ln 1e 1110xf x f x x x x ⎛⎫''≤=+-=-++≤-=-< ⎪⎝⎭,当且仅当001x x =,即01x =时,等号成立,显然,等号不成立,故()0f x '<,∴()f x 在()0,∞+上是减函数.【对点训练18】(2024·湖南长沙·高三长沙一中校考阶段练习)已知函数()()e R x f x ax a =-∈,()πe cos2x g x x =+.(1)若()0f x ≥,求a 的取值范围;(2)求函数()g x 在()0,∞+上的单调性;【解析】(1)由题意知()f x 的定义域为R.①当0x >时,由()0f x ≥得e x a x ≤,设()exm x x =,则()()2e 1x x m x x -'=,当()0,1x ∈时,()0m x '<,故()m x 在(0,1)上单调递减;当()1,x ∈+∞时,()0m x '>,故()m x 在(1,)+∞上单调递增,所以()()min 1e m x m ==⎡⎤⎣⎦,因此e a ≤.②当0x <时,若0a <,因为11e 10a f a ⎛⎫=-< ⎪⎝⎭,不合题意.所以0a ≥,此时()0f x >恒成立.③当0x =时,()010f =>,此时R a ∈.综上可得,a 的取值范围是[]0,e .(2)设()sin n x x x =-,0x >,则()cos 10n x x '=-≤,所以()n x 在()0,∞+上单调递减,所以()()00n x n <=,即sin x x <在()0,∞+上恒成立.所以ππsin 22x x <.又由(1)知e e x x ≥,所以当0x >时,()2πππππe sin e e 022224xg x x x x x ⎛⎫'=->-⋅=-> ⎪⎝⎭,所以()g x 在()0,∞+上单调递增.【对点训练19】(2024·全国·高三专题练习)已知函数()ln(e 1)ln x f x x =--.判断()f x 的单调性,并说明理由;【解析】e 1e e 1(1)e 1()e 1(e 1)(e 1)x x x x xxx x x f x x x x-+-+'=-==---令()(1)e 1x g x x =-+,()e(1)e e 0xx x g x x x '=+-=>()g x 在(0,)+∞上递增,()(0)0g x g ∴>=,()0f x '∴>,()f x 在(0,)+∞上单调递增.【解题方法总结】确定不含参的函数的单调性,按照判断函数单调性的步骤即可,但应注意一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.题型五:含参数单调性讨论情形一:函数为一次函数【例6】(2024·山东聊城·统考三模)已知函数()(1)ln f x m x m x m =+--.讨论()f x 的单调性;【解析】(1)()1m m x mf x m x x+-'=+-=,,()0x ∈+∞,①当10m +=,即1m =-时,1()0f x x'=>,()f x 在区间(0,)+∞单调递增.②当10+<m ,即1m <-时,令()0f x '>,得01m x m <<+,令()0f x '<,得1mx m >+,所以()f x 在区间0,1m m ⎛⎫ ⎪+⎝⎭单调递增;在区间,1m m ⎛⎫+∞ ⎪+⎝⎭单调递减.③当10m +>,即1m >-时,若10m -<≤,则()0f x '>,()f x 在区间(0,)+∞单调递增.若0m >,令()0f x '<,得01m x m <<+,令()0f x '>,得1m x m >+,所以()f x 在区间0,1m m ⎛⎫ ⎪+⎝⎭单调递减;在区间,1m m ⎛⎫+∞ ⎪+⎝⎭单调递增.综上,1m <-时,()f x 在区间0,1m m ⎛⎫ ⎪+⎝⎭单调递增;在区间,1m m ⎛⎫+∞ ⎪+⎝⎭单调递减;10m -≤≤时,()f x 在区间(0,)+∞单调递增0m >时,()f x 在区间0,1m m ⎛⎫ ⎪+⎝⎭单调递减、在区间,1m m ⎛⎫+∞ ⎪+⎝⎭单调递增.【对点训练20】(2024·湖北黄冈·黄冈中学校考二模)已知函数()()22ln 2310f x x a x ax a =-+-≥.讨论函数()f x 的单调性;【解析】()f x 的定义域为()()()()4110,,ax ax f x x∞+-+'=若0a =,则()()1,f x f x x='在()0,∞+单调递增;若0a >,令()0f x '=,解得12110,04x x a a=>=-<(舍去)当10x a <<时,()0f x ¢>,函数()f x 在10,a ⎛⎫⎪⎝⎭上单调递增,当1x a >时,()0f x '<,函数()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,【对点训练21】(2024·全国·模拟预测)已知函数()()()ln 11f x x a x a =+-+∈R .讨论函数()f x 的单调性;【解析】因为()()ln 11f x x a x =+-+,所以()()11f x a x+'=-.因为0x >,若10a -≥,即1a ≤时,()f x 在()0,∞+上单调递增,若10a -<,即1a >时,令()()110f x a x=+->',得101x a <<-;令()()110f x a x=+-<',得11x a >-,所以()f x 在10,1a ⎛⎫ ⎪-⎝⎭上单调递增,在1,1a ⎛⎫+∞⎪-⎝⎭上单调递减.综上,当1a ≤时,()f x 在()0,∞+上单调递增;当1a >时,()f x 在10,1a ⎛⎫ ⎪-⎝⎭上单调递增,在1,1a ⎛⎫+∞⎪-⎝⎭上单调递减.【对点训练22】(2024·福建泉州·泉州五中校考模拟预测)已知函数()()ln f x x a x -=.讨论()f x '的单调性;【解析】由函数()()ln f x x a x -=,可得()ln ln 1(0)x a af x x x x x x-=+=+->',设()()ln 1a x f x x x ϕ==+-',可得221()a x ax x x xϕ+=+=',①当0a ≥时,()0x ϕ'>,所以()f x '在(0,)+∞单调递增;②当a<0时,令()0x ϕ'=,解得x a =-.当0x a <<-时,()0x ϕ'<,()f x '单调递减;当x a >-时,()0x ϕ'>,()f x '单调递增.综上,当0a ≥时,()f x '在(0,)+∞单调递增;当0a <时,()f x '在(0,)a -单调递减,在(,)a -+∞单调递增.情形二:函数为准一次函数【对点训练23】(2024·云南师大附中高三阶段练习)已知函数()ln f x x x ax =-.讨论()f x 的单调性;【解析】函数()f x 的定义域为(0)x ∈+∞,,()ln 1f x x a '=+-.令()0f x '=,解得1e a x -=,则有当10e a x -<<时,()0f x '<;当1e a x ->时,()0f x '>;所以()f x 在1(0e )a -,上单调递减,在1(e )a -+∞,上单调递增.【对点训练24】(2024·北京·统考模拟预测)已知函数21()e 2x f x k x =-.(1)当1k =时,求曲线()y f x =在1x =处的切线方程;(2)设()()g x f x '=,讨论函数()g x 的单调性;【解析】(1)1k = ,21()e 2x f x x ∴=-,()e x f x x '∴=-,当1x =时,1(1)e 2f =-,∴切点坐标为11e 2⎛⎫- ⎪⎝⎭,,又(1)e 1f '=-,∴切线斜率为e 1-,∴曲线()y f x =在1x =处切线方程为:()1e 102x y --+=.(2)21()e 2x f x k x =- ,x ∈R ,()()e x g x f x k x '∴==-,x ∈R ,()e 1x g x k '∴=-,x ∈R ,①当0k ≤时,()'0g x <成立,()f x ∴的单调递减区间为R ,无单调递增区间.②当0k >时,令()10ln x g x ke x k '=-=⇒=-,所以当ln x k <-时,()0g x '<,()g x 在(,ln )-∞-k 上单调递减ln x k >-时,()0g x '>,()g x 在(ln ,)-+∞k 上单调递增综上:0k ≤时,()f x 的单调递减区间为R ,无单调递增区间;0k >时,()f x 的单调递增区间为(ln ,)-+∞k ,单调递减区间为(,ln )-∞-k ;【对点训练25】(2024·陕西安康·高三陕西省安康中学校考阶段练习)已知函数()()e 1=--∈x f x ax a R .讨论()f x 的单调性;【解析】∵()()e 1=--∈x f x ax a R ,∴()e xf x a '=-,①当0a ≤时,()0f x ¢>恒成立,此时()f x 在(),-∞+∞上单调递增;②当0a >时,令()e 0xf x a '=-=,解得ln x a =,当(),ln x a ∈-∞时,()0f x '<,()f x 在区间(),ln a -∞上单调递减,当()ln ,x a ∈+∞时,()0f x ¢>,()f x 在区间()ln ,a +∞上单调递增.综上所述,当0a ≤时,()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在区间(),ln a -∞上单调递减,在区间()ln ,a +∞上单调递增.情形三:函数为二次函数型方向1、可因式分解【对点训练26】(2024·山东济宁·嘉祥县第一中学统考三模)已知函数()()()2ln 20f x a x x a x a =+-+>.讨论函数()f x 的单调性;【解析】因为()()()2ln 20f x a x x a x a =+-+>,该函数的定义域为()0,∞+,()()()()()2222122x a x a x a x ax a x x xf x -++-'-=+-+==.因为0a >,由()0f x '=得:2ax =或1x =.①当12a=,即2a =时,()0f x '≥对任意的0x >恒成立,且()f x '不恒为零,此时,函数()f x 的增区间为()0,∞+,无减区间;②当12a >,即2a >时,由()0f x ¢>得01x <<或2ax >;由()0f x '<得12a x <<.此时,函数()f x 的增区间为()0,1、,2a ⎛⎫+∞ ⎪⎝⎭,减区间为1,2a ⎛⎫⎪⎝⎭;③当12a <,即02a <<时,由()0f x ¢>得02ax <<或1x >;由()0f x '<得12a x <<.此时函数()f x 的增区间为0,2a ⎛⎫ ⎪⎝⎭、()1,+∞,减区间为,12a ⎛⎫⎪⎝⎭.综上所述:当2a =时,函数()f x 的增区间为()0,∞+,无减区间;当2a >时,函数()f x 的增区间为()0,1、,2a ⎛⎫+∞ ⎪⎝⎭,减区间为1,2a ⎛⎫⎪⎝⎭;当02a <<时,函数()f x 的增区间为0,2a ⎛⎫ ⎪⎝⎭、()1,+∞,减区间为,12a ⎛⎫⎪⎝⎭.【对点训练27】(2024·湖北咸宁·校考模拟预测)已知函数()()2111ln 22f x x a x b x x x ⎛⎫=----+ ⎪⎝⎭,其中,R a b ∈.讨论函数()f x 的单调性;【解析】函数()f x 的定义域为()()()()310,,x x a f x x ∞--+='-.①若1a >时,01x <<11x a<<ax a>()f x '-0+-()f x 极小值 极大值②若1a =时,()0f x '≤恒成立,()f x 单调递减,③若01a <<时0x a<<a1<<a x 11x >()f x '-0+-()f x 极小值 极大值④若0a ≤时,()0,1x ∈时,()()0,f x f x '<单调递减;()1,x ∈+∞时,()()0,f x f x '>单调递增.综上所述,当1a >时,()()0,1,x f x ∈单调递减,()()1,,x a f x ∈单调递增,()(),,x a f x ∞∈+单调递减;当1a =时,()()0,,x f x ∞∈+单调递减;当01a <<时,()()0,,x a f x ∈单调递减,(),1x a ∈,()f x 单调递增,()()1,,x f x ∞∈+单调递减;当0a ≤时,()()0,1,x f x ∈单调递减,()()1,,x f x ∞∈+单调递增.【对点训练28】(2024·北京海淀·高三专题练习)设函数()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()1,1f 处的切线与x 轴平行,求a ;(2)求()f x 的单调区间.【解析】(1)因为()()24143e x f x ax a x a ⎡⎤=-+++⎣⎦,所以()()()()2241e 4143e R x xf x ax a ax a x a x '⎡⎤⎡⎤=-++-+++∈⎣⎦⎣⎦()2212e xax a x ⎡⎤=-++⎣⎦.()()11e f a '=-.由题设知()10f '=,即()1e 0a -=,解得1a =.此时()13e 0f =≠.所以a 的值为1(2)由(1)得()()()()2212e 12e x xf x ax a x ax x '⎡⎤=-++=--⎣⎦.1)当0a =时,令()0f x '=,得2x =,所以()(),,x f x f x '的变化情况如下表:x(),2-∞2()2,+∞()f x '+-()f x 单调递增极大值单调递减2)当0a ≠,令()0f x '=,得1x a=或2①当0a <时,12a<,所以()(),,x f x f x '的变化情况如下表:x1,a ⎛⎫-∞ ⎪⎝⎭1a1,2a ⎛⎫⎪⎝⎭2()2,+∞()f x '-+-()f x 单调递减极小值单调递增极大值单调递减②当0a >时,(ⅰ)当102a <<即12a >时,x1,a ⎛⎫-∞ ⎪⎝⎭1a1,2a ⎛⎫⎪⎝⎭2()2,+∞()f x '+-+()f x 单调递增极大值单调递减极小值单调递增(ⅱ)当12a =即12a =时,()0f x '≥恒成立,所以()f x 在R 上单调递增;(ⅲ)当12a >即102a <<时,x(),2-∞212,a ⎛⎫⎪⎝⎭1a1,a ⎛⎫+∞ ⎪⎝⎭()f x '+-+()f x 单调递增极大值单调递减极小值单调递增综上,当0<a 时,()f x 的单调递增区间是1,2a ⎛⎫⎪⎝⎭,单调递减区间是1,a ⎛⎫-∞ ⎪⎝⎭和()2,+∞;当0a =时,()f x 的单调递增区间是(),2-∞,单调递减区间是()2,+∞;当102a <<时,()f x 的单调递增区间是(),2-∞和1,a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为12,a ⎛⎫⎪⎝⎭;当12a =时,()f x 的单调递增区间是R ,无单调递减区间;当12a >时,()f x 的单调递增区间是1,a ⎛⎫-∞ ⎪⎝⎭和()2,+∞,单调递减区间是1,2a ⎛⎫⎪⎝⎭.【对点训练29】(2024·广西玉林·统考模拟预测)已知函数()22132ln 2f x x ax a x =-+,0a ≠.讨论()f x 的单调区间;【解析】()f x 的定义域为()0,∞+,()()()2x a x a f x x-'-=若0a >,当()0,x a ∈时,()0f x ¢>,()f x 单调递增;当(),2x a a ∈时,()0f x '<,()f x 单调递减;当()2,x a ∈+∞时,()0f x ¢>,()f x 单调递增.若a<0,则()0f x ¢>恒成立,()f x 在()0,∞+上单调递增.综上,当0a >时,()f x 的单调递增区间为()0,a ,()2,a +∞,单调递减区间为(),2a a ;当a<0时,()f x 的单调递增区间为()0,∞+,无单调递减区间【对点训练30】(2024·河南郑州·统考模拟预测)已知()()24ln 20f x x a x =-≠.讨论()f x 的单调性;【解析】因为()()24ln 20f x x a x =-≠定义域为()0,∞+,所以())2222144444f x a x a x x x x a a xa a ⎛⎫-+⎛⎫'+ ⎪⎝⎭⎝=+++= ⎭⎭=⎪⎝,若0a <时,则()0f x ¢>,所以()f x 在()0,∞+上单调递增,若2a =时,则())2202f x x '=≥,所以()f x 在()0,∞+上单调递增,若02a <<时,4a a <,则2216a a <,当2216,x a a ⎛⎫∈ ⎪⎝⎭时()0f x '<,()f x 在2216,a a ⎛⎫ ⎪⎝⎭上单调递减,当20x a <<或216x a >时()0f x ¢>,()f x 在()20,a ,216,a ⎛⎫+∞ ⎪⎝⎭上单调递增,若2a >时,4a a >,则2216a a >,当2216,x a a ⎛⎫∈ ⎪⎝⎭时()0f x '<,()f x 在2216,a a ⎛⎫ ⎪⎝⎭上单调递减,当2160x a <<或2x a >时()0f x ¢>,()f x 在2160,a ⎛⎫ ⎪⎝⎭,()2,a +∞上单调递增,综上可得,当0a <或2a =时()f x 在()0,∞+上单调递增;当02a <<时()f x 在2216,a a ⎛⎫ ⎪⎝⎭上单调递减,()f x 在()20,a ,216,a ⎛⎫+∞ ⎪⎝⎭上单调递增;当2a >时()f x 在2216,a a ⎛⎫ ⎪⎝⎭上单调递减,在2160,a ⎛⎫ ⎪⎝⎭,()2,a +∞上单调递增.方向2、不可因式分解型【对点训练31】(2024·河南驻马店·统考二模)已知函数()()21ln 12f x x ax =+-,()()1sin 01ex xg x ax a x =+-≠+.讨论()f x 的单调性;【解析】由题意可得()f x 的定义域为()1,-+∞,且()21111ax ax f x ax x x --'+=-=++.令()0f x '=,则210ax ax --+=,()244a a a a ∆=+=+.当0∆≤,即40a -≤<时,()0f x '≥,()f x 在()1,-+∞上单调递增.当0∆>,即0a >或4a <-时,()0f x '=有两个根112x =--2122x a=-+.若0a >,11x <-,20x >,则当()21,x x ∈-时,()0f x ¢>,()f x 单调递增,当()2,x x ∈+∞时,()0f x '<,()f x 单调递减;若4a <-,()121,x x >∈-+∞,则当()21,x x ∈-或()1,x x ∈+∞时,()0f x ¢>,()f x 单调递增,当()21,x x x ∈时,()0f x '<,()f x 单调递减.综上,当0a >时,()f x 在()21,x -上单调递增,在()2,x +∞上单调递减;当40a -≤<时,()f x 在()1,-+∞上单调递增;当4a <-时,()f x 在()21,x -和()1,x +∞上单调递增,在()21,x x 上单调递减.【对点训练32】(2024·重庆·统考模拟预测)已知函数22()ln (R)2x ax af x x a x--+=+∈.讨论函数()f x 的单调性;【解析】函数()f x 的定义域为(0,)+∞,求导得222112()222a x x af x x x x -+-'=--=,①当440a -≤,即1a ≥时,()0f x '≤恒成立,此时()f x 在(0,)+∞上单调递减;②当4400a a ->⎧⎨>⎩,即01a <<时,由()0f x '=解得,1x =由()0f x '>解得,11x <<,由()0f x '<解得01x <<1x >,此时()f x 在(1上单调递增,在(0,1和(1)++∞上单调递减;③当4400a a ->⎧⎨≤⎩,即0a ≤时,由()0f x '=解得1x =1x =舍),由()0f x '>解得01x <<+()0f x '<解得1x >此时()f x 在(0,1+上单调递增,在(1)+∞上单调递减,所以当1a ≥时,函数()f x 在(0,)+∞上单调递减;当01a <<时,函数()f x 在(1上单调递增,在(0,1和(1)+∞上单调递减;当0a ≤时,函数()f x 在(0,1上单调递增,在(1)+∞上单调递减.【对点训练33】(2024·广东·统考模拟预测)已知函数()21eax x f x +=,R a ∈.讨论()f x 的单调性;【解析】依题意()2e 2axax x af x -+=-'.若0a =,则()2f x x '=,故当()0x ∈-∞,时,()0f x '<,当()0x ∈+∞,时,()0f x ¢>.若0a ≠,令22y ax x a =-+,244a ∆=-,令0∆≤,解得1a ≤-或1a ≥.①若1a ≤-,则()0f x '≥.②若1a ≥,则()0f x '≤.③若11a -<<且0a ≠,令()0f x '=,得122x a =,222x a=.若10a -<<,则12x x >,当()2x x ∈-∞,时,()0f x ¢>,当()21x x x ∈,时,()0f x '<,当()1x x ∈+∞,时,()0f x ¢>;若01a <<,则12x x <,当()1x x ∈-∞,时,()0f x '<,当()12x x x ∈,时,()0f x ¢>,当()2x x ∈+∞,时,()0f x '<.综上所述:若1a ≤-,则()f x 在R 上单调递增;若10a -<<,则()f x 在22a ⎛⎫-∞ ⎪ ⎪⎝⎭,和22a ⎛⎫+∞⎪ ⎪⎝⎭上单调递增,在2222a a ⎛⎫⎪ ⎪⎝⎭,上单调递减;若0a =,则()f x 在()0-∞,上单调递减,在()0+∞,上单调递增;若01a <<,则()f x 在22a ⎛⎫-∞ ⎪ ⎪⎝⎭,和22a ⎛⎫+∞⎪ ⎪⎝⎭上单调递减,在2222a a ⎛⎫⎪ ⎪⎝⎭,上单调递增;若1a ≥,则()f x 在R 上单调递减;【对点训练34】(2024·江苏·统考模拟预测)已知函数21()32ln (R)2f x x ax x a =++∈.讨论函数()f x 的单调性;【解析】易知0x >,又因为2232()3x ax f x x a x x++'=++=,令2()32h x x ax =++,298a ∆=-,①当0∆≤,即289a ≤时,()0h x ≥恒成立,所以()0f x '≥,此时,()f x 在区间()0,∞+上是增函数;②当2980a ∆=->,得到3a >或a <又2()32h x x ax =++,其对称轴为32a x =-,且(0)20h =>,所以,当3a >时,302a x =-<,所以()0h x ≥在区间(0,)+∞上恒成立,即()0f x ¢>在区间(0,)+∞上恒成立,此时()f x 在区间()0,∞+上是增函数;当3a <-时,302a x =->,且(0)20h =>,由()0h x =,得到32a x -=或32a x -+=,33(0,(,)22a a x --∈+∞ 时,()0h x >,33(,22a a x --∈时,()0h x <即33(0,)()22a a x --∈+∞ 时,()0f x '>,x ∈时,()0f x '<此时,()f x 在33,22a a ⎛⎫--⎪ ⎪⎝⎭上是减函数,在330,,,22a a ⎛⎫⎛⎫--+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭上是增函数.综上所述,当3a ≥-时,()f x 在()0,∞+上是增函数;当a <()f x 在33,22a a ⎛⎫-- ⎪ ⎪⎝⎭上是减函数,在330,,,22a a ⎛⎫⎛⎫--+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭上是增函数.【解题方法总结】1、关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2、需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3、利用草稿图像辅助说明.情形四:函数为准二次函数型【对点训练35】(2024·全国·高三专题练习)已知函数()e ln axaf x x x x=++,()0,x ∈+∞,其中R a ∈.讨论函数()f x 的单调性;【解析】,()0x ∈+∞,211()(1)e (1)(e a a x x a a a f x x x x x x'=--+=-+,当0a ≤时,()0f x '>,函数()f x 在(0,)+∞上单调递增,当0a >时,当(0,)x a ∈时,()0f x '<,当(,)x a ∈+∞时,()0f x '>,即函数()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增,所以当0a ≤时,函数()f x 在(0,)+∞上单调递增;当0a >时,函数()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.【对点训练36】(2024·河南郑州·统考模拟预测)已知()()2211e 12x f x x a ax a x =---+-.(R a ∈)讨论()f x 的单调性;【解析】因为221()(1)e 12x f x x a ax a x =---+-,所以()()()e ()()e x xf x x a a x a x a a '=---=--,若0,e 0,(,)x a a x a ∞≤->∈-时,()0,()'<f x f x 单调递减,(,)x a ∈+∞时,()0f x '>,()f x 单调递增;若0a >,由()0f x '=得x a =或ln x a =,设()ln (0)g a a a a =->,则11()1a g a a a-'=-=,(0,1)a ∈时,()0,()g a g a '<单调递减,(1,)∈+∞a 时,()0,()g a g a '>单调递增,所以()(1)10g a g ≥=>,所以ln a a >,所以(ln ,)x a a ∈时,()0,()'<f x f x 单调递减,(,ln )x a ∈-∞,(,)x a ∈+∞时,()0f x '>,()f x 单调递增.综上得,当0a ≤时,()f x 在(,)a -∞上单调递减,在(,)a +∞上单调递增,当0a >时,()f x 在(ln ,)a a 上单调递减,在(,ln )a -∞,(,)a +∞上单调递增.【对点训练37】(2024·陕西咸阳·武功县普集高级中学校考模拟预测)已知()()()()231e 03x a f x x x ax x a =--+>∈R .讨论函数()f x 的单调性;【解析】由题知,()()()22()1e 1(1)(1)x xf x x a x x x e a '=---=-+-.当1a ≤时,当01x <<时,()0f x '<;当1x >时,()0f x ¢>,()f x \在区间()0,1上是㺂函数,在区间()1,+∞上是增函数;当1e a <<时,0ln 1a <<;当0ln x a <<或1x >时,()0f x ¢>;当ln 1a x <<时,()0f x '<;()f x \在区间()0,ln a 上是增函数,在区间()ln ,1a 上是减函数,在区间()1,+∞上是增函数;当e a =时,()()0,f x f x ≥'∴在区间()0,∞+上是增函数;当e a >时,ln 1a >;当01x <<或ln x a >时,()0f x ¢>;当1ln x a <<时,()0f x '<;()f x \在区间()0,1上是增函数,在区间()1,ln a 上是减函数,在区间()ln ,a ∞+上是增函数;综上所述,当1a ≤时,()f x 在区间()0,1上是减函数,在区间()1,+∞上是增函数;当1e a <<时,()f x 在区间()0,ln a 上是增函数,在区间()ln ,1a 上是减函数,在区间()1,+∞上是增函数;当e a =时,()f x 在区间()0,∞+上是增函数;当e a >时,()f x 在区间()0,1上是增函数,在区间()1,ln a 上是减函数,在区间()ln ,a ∞+上是增函数.【对点训练38】(2024·重庆沙坪坝·重庆八中校考模拟预测)已知函数()()2ln 1ln 1,R f x x a x x a ⎡⎤=-++⋅∈⎣⎦,讨论函数()f x 的单调性;【解析】()()2ln 1ln 1f x x a x x ⎡⎤=-++⋅⎣⎦,()()()()()222ln 1ln 1ln 1ln 1ln ln ln 1x a f x x x a x x a x a x a x x x +⎡⎤⎡⎤∴=-+-++=+--=-+⎣⎦⎢⎥⎣⎦'令()0f x '=,则两根分别为121e ,eax x ==.1、当1a =-时,()()2ln 10f x x '=+≥在()0,∞+恒成立,故()f x 的单调递增区间为()0,∞+,无单调递减区间;2、当1a >-时,令()0f x ¢>得1ex <或e a x >,令()0f x '<得1e e ax <<,所以()f x 单调递增区间为()10,,e ,e a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为1,e e a ⎛⎫⎪⎝⎭;3、当1a <-时,令()0f x ¢>得e a x <或1e x >时,令()0f x '<得1e eax <<,所以()f x 单调递增区间为()10,e ,,e a⎛⎫+∞ ⎪⎝⎭,单调递减区间为1e ,e a ⎛⎫ ⎪⎝⎭.。
2024版高考数学总复习:二次函数与幂函数教师用书
第四节二次函数与幂函数考试要求:1.通过具体实例,结合y=x,y=x-1,y=x2,y=�12,y=x3的图象,理解它们的变化规律,了解幂函数.2.理解简单二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.一、教材概念·结论·性质重现1.幂函数的概念一般地,函数y=xα称为幂函数,其中α为常数.(1)自变量x处在幂底数的位置,幂指数3.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,因此在第一象限内都有图象,并且图象都通过点(1,1).(2)如果α>0,则幂函数的图象通过原点,并且在(0,+∞)上是增函数.(3)如果α<0,则幂函数在(0,+∞)上是减函数,且在第一象限内,当x从右边趋向于原点时,图象在y轴右方且无限逼近y轴;当x无限增大时,图象在x轴上方且无限逼近x轴.4.二次函数的图象与性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图象二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.5.常用结论(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”.(2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0且Δ<0”.二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)函数y =2�12是幂函数.(×)(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.(√)(3)当n <0时,幂函数y =x n 是定义域上的减函数.(×)(4)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.(×)2.已知幂函数y =f (x )的图象经过点4f (2)=()A.14B.4C.22D .2C 解析:设f (x )=x α,因为图象过点4所以f (4)=4α=12,解得α=-12,所以f (2)=2−12=22.3.二次函数f (x )的图象经过(0,3),(2,3)两点,且f (x )的最大值是5,则该函数的解析式是()A.f (x )=2x 2-8x +11B.f (x )=-2x 2+8x -1C.f (x )=2x 2-4x +3D.f(x)=-2x2+4x+3D解析:二次函数f(x)的图象经过(0,3),(2,3)两点,则图象的对称轴为x=1.又由函数的最大值是5,可设f(x)=a(x-1)2+5(a≠0).于是3=a+5,解得a=-2.故f(x)=-2(x-1)2+5=−2�2+4x+3.故选D.4.(多选题)(2022·海南中学月考)若幂函数y=f(x)的图象经过点(3,27),则幂函数f(x)是() A.奇函数B.偶函数C.增函数D.减函数AC解析:设幂函数为f(x)=xα(α为常数),因为其图象经过点(3,27),所以27=3α,解得α=3,所以幂函数f(x)=x3.因为f(x)的定义域为R,且f(-x)=(-x)3=-x3=-f(x),所以f(x)是奇函数,又α=3>0,所以f(x)在R上是增函数.5.已知函数y=2x2-6x+3,x∈[-1,1],则y的最小值是_________.-1解析:因为函数y=2x2-6x+3的图象的对称轴为x=32>1,所以函数y=2x2-6x+3在[-1,1]上单调递减.当x=1时,y取得最小值,所以y min=2-6+3=-1.考点1幂函数的图象和性质——基础性1.幂函数y=f(x)的图象经过点(3,3),则f(x)是()A.偶函数,且在区间(0,+∞)上是增函数B.偶函数,且在区间(0,+∞)上是减函数C.奇函数,且在区间(0,+∞)上是减函数D.非奇非偶函数,且在区间(0,+∞)上是增函数D解析:设幂函数f(x)=x a,则f(3)=3a=3,解得a=12,所以f(x)=�12=�,是非奇非偶函数,且在区间(0,+∞)上是增函数.2.若幂函数y=(m2-3m+3)·��2−�−2的图象不过原点,则() A.-1≤m≤2B.m=1或m=2C.m=2D.m=1B解析:因为幂函数y=(m2-3m+3)��2−�−2的图象不过原点,所以�2−�−2≤0,�2−3�+3=1,解得m=1或2,符合题意.故选B.3.与函数y=�12-1的图象关于x轴对称的图象大致是()B解析:y=�12的图象位于第一象限且函数图象是上升的,函数y=�12-1的图象可看作由y=�12的图象向下平移一个单位长度得到的(如选项A中的图象所示).将y=�12-1的图象关于x轴对称后即为选项B.4.若(a+1)-2>(3-2a)-2,则a的取值范围是_________.(-∞,-1)∪−1解析:因为(a+1)-2>(3-2a)-2,又f(x)=x-2为偶函数,且在(0,+∞)上单调递减,所以푎+1<3−2푎,푎+1≠0,3−2푎≠0,解得a<23且a≠-1或a>4.1.解决这类问题要优先考虑幂函数的定义以及解析式,然后结合幂函数的图象与性质来求解.2.有些题目,如第考点2二次函数的解析式——综合性已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,求二次函数f(x)的解析式.解:(方法一:利用二次函数的一般式)设f(x)=ax2+bx+c(a≠0).由题意得4푎+2�+ =−1,푎−�+ =−1,4푎 −�24푎=8,解得푎=−4,�=4,=7.故f (x )=-4x 2+4x +7.(方法二:利用二次函数的顶点式)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为x=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以y =f (x )=a �+8.因为f (2)=-1,所以a 2−+8=-1,解得a =-4,所以f (x )=-4×�−+8=-4x 2+4x +7.(方法三:利用二次函数的零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x+1),a ≠0,即f (x )=ax 2-ax -2a -1.又函数有最大值y maxa =-4.故f (x )=-4x 2+4x +7.1.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A.与a 有关,且与b 有关B.与a 有关,但与b 无关C.与a 无关,且与b 无关D.与a 无关,但与b 有关B 解析:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =�12+ax 1+b ,M =�22+ax 2+b .所以M -m =�22−�12+a (x 2-x 1),显然与a 有关,与b 无关.2.(2022·青岛模拟)设a ,b 为不相等的实数,若二次函数f (x )=x 2+ax +b 满足f (a )=f (b ),则f (2)=()A.7B.5C.4D.2C解析:由f (x )=x 2+ax +b 可得函数f (x )图象的对称轴为直线x =-푎2.又由a ≠b ,f (a )=f (b )得f (x )图象的对称轴为直线x =푎+�2,所以-푎2=푎+�2,得2a +b =0,所以f (2)=4+2a +b =4.故选C.考点3二次函数的图象和性质——应用性考向1二次函数的图象应用(1)已知函数f (x )=ax 2-x -c ,且f (x )>0的解集为(-2,1),则函数y =f (-x )的图象为()D 解析:因为函数f (x )=ax 2-x -c ,且f (x )>0的解集为(-2,1),所以-2,1是方程ax 2-x-c =0的两根.把x =-2,1分别代入方程得4푎+2− =0,푎−1− =0,联立解得a =-1,c =-2.所以f (x )=-x 2-x +2.所以函数y =f (-x )=-x 2+x +2,可知其图象开口向下,与x 轴的交点坐标分别为(-1,0)和(2,0).故选D.(2)对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是()A解析:若0<a<1,则y=log a x在(0,+∞)上单调递减;y=(a-1)x2-x的图象开口向下,对称轴在y轴左侧,排除C,D.若a>1,则y=log a x在(0,+∞)上单调递增,y=(a-1)x2-x的图象开口向上,且对称轴在y轴右侧,因此B不正确,只有A满足.1.解决二次函数图象问题的基本方法(1)排除法.抓住函数的特殊性质或特殊点.(2)讨论函数图象,依据图象特征,得到参数间的关系.2.分析二次函数图象问题的要点一是看二次项系数的符号;二是看对称轴和顶点;三是看函数图象上的一些特殊点.从这三方面入手,能准确地判断出二次函数的图象.反之,也能从图象中得到如上信息.若函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取值范围是()A.[-3,0)B.(-∞,-3]C.[-2,0]D.[-3,0]D解析:当a=0时,f(x)=-3x+1在[-1,+∞)上单调递减,满足题意.当a≠0时,f(x)的图象对称轴为x=3−푎2푎.由f(x)在[-1,+∞)上单调递减知푎<0,3−푎2푎≤−1,解得-3≤a<0.综上,a的取值范围为[-3,0].若函数f(x)=ax2+(a-3)x+1的单调递减区间是[-1,+∞),则a=_________.-3解析:由题意知f(x)必为二次函数且a<0.(1)对于二次函数的单调性,的位置不确定,则需要分类讨论.已知函数f(x)=ax2+2ax+1在区间[-1,2]上有最大值4,求实数a的值.解:f(x)=a(x+1)2+1-a.①当a=0时,函数f(x)在区间[-1,2]上的值为常数1,不符合题意,舍去.②当a>0时,函数f(x)在区间[-1,2]上单调递增,最大值为f(2)=8a+1=4,解得a=3.8③当a<0时,函数f(x)在区间[-1,2]上单调递减,最大值为f(-1)=1-a=4,解得a=-3.综上可知,a的值为3或-3.8将本例改为:求函数解:f(x)=(x+f(x)的图象是开口向上的抛物线,对称轴为直线1二次函数的最值问题主要有以下几类:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系.已知函数f(x)=x2-x+1,在区间[-1,1]上不等式f(x)>2x+m恒成立,求实数m的取值范围.解:由题意可知,f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0.令g(x)=x2-3x+1-m,要使g(x)>0在[-1,1]上恒成立,只需使函数g(x)在[-1,1]上的最小值大于0即可.因为g(x)=x2-3x+1-m在[-1,1]上单调递减,所以g(x)min=g(1)=-m-1,由-m-1>0得m<-1.因此,满足条件的实数m的取值范围是(-∞,-1).将问题归结为求函数的最值,依据是1.(2021·洛阳一中检测)已知函数f(x)=ax2+bx+c.若a>b>c且a+b+c=0,则f(x)的图象可能是()D解析:由a>b>c且a+b+c=0,得a>0,c<0,所以函数图象开口向上,排除选项A,C.又f(0)=c<0,排除选项B.故选D.2.(多选题)设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(4+t)=f(-t)成立,则f(-1),f(1),f(2),f(5)中,最小的可能是()A.f(-1)B.f(1)C.f(2)D.f(5)ACD解析:因为对任意实数t都有f(4+t)=f(-t)成立,所以函数f(x)=ax2+bx+c(a≠0)图象的对称轴是x=2.当a>0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(2);当a<0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(-1)和f(5).3.函数f(x)=ax2-(a-1)x-3在区间[-1,+∞)上是增函数,则实数a的取值范围是() A.−∞B.(-∞,0)C.0D .0D解析:若a =0,则f (x )=x -3,f (x )在区间[-1,+∞)上是增函数,符合题意.若a ≠0,因为f (x )在区间[-1,+∞)上是增函数,故푎>0,푎−12푎≤−1,解得0<a ≤13.综上,0≤a ≤13.故选D.4.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为_________.−∞解析:2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,成立;当x ≠0时,a <32-16,易知1�∈(-∞,-1]∪[1,+∞),所以当x =1时,函数f (x )取最小值12,所以a<12.综上,实数a 的取值范围是−∞课时质量评价(九)A 组全考点巩固练1.若幂函数f (x )=(m 2-4m +4)��2-6�+8在(0,+∞)上单调递增,则m 的值为()A.1或3B.1C.3D.2B 解析:由题意得m 2-4m +4=1,m 2-6m +8>0,解得m =1.2.函数y =3�2的图象大致是()C 解析:y =3�2=�23,其定义域为x ∈R ,排除A,B.又0<23<1,图象在第一象限为上凸的,排除D.故选C.3.(2021·全国甲卷)下列函数中是增函数的为()A.f (x )=-x B.f (x C.f (x )=x 2D.f (x )=3�D解析:对于A,f (x )=-x 为R 上的减函数,不合题意.对于B,f (x为R 上的减函数,不合题意.对于C,f (x )=x 2在(-∞,0)上单调递减,不合题意.对于D,f (x )=3�为R 上的增函数,符合题意.4.设函数f (x )=x 2+x +a (a >0),已知f (m )<0,则()A.f (m +1)≥0B.f (m +1)≤0C.f (m +1)>0D.f (m +1)<0C 解析:因为f (x )图象的对称轴为直线x =-12,f (0)=a >0,所以f (x )的大致图象如图所示.由f (m )<0,得-1<m <0.所以m +1>0.所以f (m +1)>f (0)>0.5.(2023·潍坊模拟)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则()A.a >0,4a +b =0B.a <0,4a +b =0C.a >0,2a +b =0D.a <0,2a +b =0A解析:由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-�2푎=2,所以4a +b =0,又f (0)>f (1),f (4)>f (1),所以f (x )先减后增,于是a >0.6.已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )=_________.x 2-2x +3解析:由f (0)=3,得c =3.又f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称,所以�2=1,所以b =2,所以f (x )=x 2-2x +3.7.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围28.若푎+1−13<3−2푎−13,则实数a的取值范围是___________.(-∞,-1)∪解析:不等式푎+1−13<3−2푎−13等价于a +1>3-2a >0或3-2a <a+1<0或a +1<0<3-2a ,解得a <-1或23<a <32.9.(2023·福州模拟)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)在区间[-1,1]上,y =f (x )的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.解:(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1得c =1,故f (x )=ax 2+bx +1.因为f (x +1)-f (x )=2x ,所以a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .即2ax +a +b =2x ,所以2푎=2,푎+�=0,所以푎=1,�=−1,所以f(x)=x2-x+1.(2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1,1]上恒成立.设g(x)=x2-3x+1-m,其图象的对称轴为直线x=32,所以g(x)在[-1,1]上单调递减.故只需最小值g(1)>0,即12-3×1+1-m>0,解得m<-1.10.已知幂函数f(x)=(m-1)2��2-4�+2在(0,+∞)上单调递增,函数g(x)=2x-k.(1)求m的值;(2)当x∈[1,2)时,记f(x),g(x)的值域分别为集合A,B,设p:x∈A,q:x∈B,若p是q 成立的必要条件,求实数k的取值范围.解:(1)依题意得:(m-1)2=1⇒m=0或m=2,当m=2时,f(x)=x-2在(0,+∞)上单调递减,与题设矛盾,舍去,所以m=0.(2)由(1)得,f(x)=x2,当x∈[1,2)时,f(x)∈[1,4),即A=[1,4),当x∈[1,2)时,g(x)∈[2-k,4-k),即B=[2-k,4-k).因为p是q成立的必要条件,所以B⊆A,则2−�≥1,4−�≤4,即�≤1,�≥0,得0≤k≤1.故实数k的取值范围是[0,1].B组新高考培优练11.设函数f(x)=1�,g(x)=ax2+bx(a,b∈R,a≠0).若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时,x1+x2>0,y1+y2<0C.当a>0时,x1+x2<0,y1+y2<0D.当a>0时,x1+x2>0,y1+y2>0B解析:当a<0时,作出两个函数的图象,如图所示,由题意不妨记函数f(x)与g(x)的图象在第三象限交于点A(x1,y1),在第一象限相切于点B(x2,y2).因为函数f(x)=1�是奇函数,所以设A关于原点对称的点为�'(−�1,−�1),显然x2>-x1>0,即x1+x2>0,-y1>y2,即y1+y2<0.当a>0时,由对称性知x1+x2<0,y1+y2>0.12.(多选题)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是()A.b 2>4ac B.2a -b =1C.a -b +c =0D.5a <bAD 解析:因为二次函数y =ax 2+bx +c 的图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,A 正确;二次函数的图象的对称轴为直线x =-1,即-�2푎=-1,得2a -b =0,B 错误;结合图象知,当x =-1时,y >0,即a -b +c >0,C 错误;因为函数的图象开口向下,所以a <0,所以5a <2a ,即5a <b ,D 正确.故选AD.13.(多选题)若函数f (x )=(x -1)(x +a )在区间(1,2)上单调递增,则满足条件的实数a 的值可能是(AB )A.0B.2C.-2D.-314.(2022·潍坊质检)已知函数f (x )=�2+�,−2≤�≤ ,1�, <�≤3.若c =0,则f (x )的值域是________;若f (x )的值域是−14,2,则实数c 的取值范围是_________.−14,+∞1解析:当c =0时,即x ∈[-2,0]时,f (x)∈−14,2,当x ∈(0,3]时,f (x +∞,所以f (x )的值域为−14,+∞.作出y =x 2+x 和y =1�的图象如图所示,当f (x )=-14时,x =-12;当x 2+x =2时,x =1或x =-2;当1�=2时,x =12,由图象可知当f (x )的值域为−14,2时,需满足12≤c ≤1.15.已知函数f (x )=x 2+2x .(1)若f (x )>a 在区间[1,3]上恒有解,求实数a 的取值范围;(2)若f (x )>a 在区间[1,3]上恒成立,求实数a 的取值范围.解:(1)f (x )>a 在区间[1,3]上恒有解,等价于푎<��max .又f (x )=x 2+2x 且x ∈[1,3],当x=3时,f(x)max=15,故a的取值范围为{a|a<15}.(2)f(x)>a在区间[1,3]上恒成立,等价于푎<��min,又f(x)=x2+2x且x∈[1,3],当x=1时,f(x)min=3,故a的取值范围为{a|a<3}.16.(2022·郑州模拟)已知函数g(x)=ax2-2ax+b+1(a≠0,b<1)在区间[2,3]上有最大值4,最小值1.(1)求a,b的值;(2)设f(x f(2x)-k·2x≥0对x∈[-1,1]恒成立,求实数k的取值范围.解:(1)g(x)=ax2-2ax+b+1=a(x-1)2-a+b+1.若a>0,则g(x)在[2,3]上单调递增,所以g(2)=b+1=1,g(3)=3a+b+1=4,解得a=1,b=0;若a<0,则g(x)在[2,3]上单调递减,所以g(2)=b+1=4,解得b=3.因为b<1,所以b=3(舍去).综上,a=1,b=0.(2)因为f(x f(x)=�2−2�+1�=x+1�-2.因为不等式f(2x)-k·2x≥0对x∈[-1,1]恒成立,所以2x+12�-2-k·2x≥0对x∈[-1,1]恒成立,即k 12对x∈[-1,1]恒成立.因为x∈[-1,1],所以12�∈2,−12∈[0,1],所以k≤0,故实数k的取值范围是(-∞,0].。
2024版高考数学总复习:函数模型及其应用教师用书
第九节函数模型及其应用考试要求:1.在实际情景中,会选择合适的函数模型刻画现实问题的变化规律.2.结合现实情景中的具体问题,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.一、教材概念·结论·性质重现1.常见的函数模型(1)正比例函数模型:f (x )=kx (k 为常数,k ≠0).(2)反比例函数模型:f (x )=��(k 为常数,k ≠0).(3)一次函数模型:f (x )=kx +b (k ,b 为常数,k ≠0).(4)二次函数模型:f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0).(5)指数型函数模型:f (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1).(6)对数型函数模型:f (x )=m log a x +n (m ,n ,a 为常数,m ≠0,a >0,a ≠1).(7)幂函数模型:f (x )=ax n +b (a ,b ,n 为常数,a ≠0,n ≠1).(8)“对勾”函数模型:y =x +��01.不要忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果的合理性.函数性质y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n <a x1.判断下列说法的正误,对的画“√”,错的画“×”.(1)幂函数增长比直线增长更快.(×)(2)不存在x0,使��0<�0�<log a x0.(×)(3)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>1)的增长速度.(√) (4)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.(×) 2.下列函数中,随x的增大,y的增长速度最快的是()A.y=0.001e x B.y=1000ln xC.y=x1000D.y=1000·2xA解析:在对数函数、幂函数、指数函数中,指数函数的增长速度最快,排除B,C;指数函数中,底数越大,函数增长速度越快.故选A.3.已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是()A.f(x)>g(x)>h(x)B.g(x)>f(x)>h(x)C.g(x)>h(x)>f(x)D.f(x)>h(x)>g(x)B解析:当x∈(4,+∞)时,易知增长速度由大到小依次为g(x)>f(x)>h(x).故选B. 4.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:x0.500.99 2.01 3.98y-0.990.010.98 2.00则对x,y最适合的拟合函数是()A.y=2x B.y=x2-1C.y=2x-2D.y=log2xD解析:根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D.5.用长度为24的材料围成一个矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为_________.3解析:设隔墙的长度为x(0<x<6),矩形的面积为y,则y=x·24−4�=2x(6-x)=-2(x-3)22+18,∴当x=3时,y最大.考点1利用函数的图象刻画实际问题——基础性1.如图,一个高为H且装满水的鱼缸,其底部装有一个排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()B解析:函数h=f(t)是关于t的减函数,故排除C,D;开始时,h随着时间的变化,变化缓慢,水排出超过一半时,h随着时间的变化,变化加快,故对应的图象为B.故选B. 2.有一个盛水的容器,由悬在它上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是()B解析:由函数图象可判断出该容器的形状不规则,又函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ为线段,知这一段是均匀变化的,所以容器上端必是直的一段,排除A,C,D.故选B.3.(多选题)(2022·北京东城区模拟)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,y关于x的函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y关于x的函数图象.给出下列四种说法,其中正确的是()A.图(2)对应的方案是:提高票价,并提高固定成本B.图(2)对应的方案是:保持票价不变,并降低固定成本C.图(3)对应的方案是:提高票价,并保持固定成本不变D.图(3)对应的方案是:提高票价,并降低固定成本BC 解析:由题图(1)可设y 关于x 的函数为y =kx +b ,k >0,b <0,k 为票价,当k =0时,y =b ,则-b 为固定成本.由题图(2)知,直线向上平移,k 不变,即票价不变,b 变大,则-b 变小,固定成本减小,故A 错误,B 正确;由题图(3)知,直线与y 轴的交点不变,直线斜率变大,即k 变大,票价提高,b 不变,即-b 不变,固定成本不变,故C 正确,D 错误.4.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (单位:千克)随时间x (单位:天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿________千克.1909解析:前10天满足一次函数关系.设为y =kx +b .将点(1,10)和点(10,30)的坐标代入函数解析式得10=�+�,30=10�+�,解得k =209,b =709,所以y =209x +709.当x =6时,y =1909.1.解决这类问题一般要根据题意构建函数模型,先建立函数模型,再结合模型选图象,并结合五个幂函数的图象与性质来求解.2.有些题目,如第3题,根据实际问题中两变量的变化特点,结合图象的变化趋势,验证答案是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点2已知函数模型解决实际问题——综合性汽车急刹车的停车距离与诸多因素有关,其中最为关键的两个因素是驾驶员的反应时间和汽车行驶的速度.设d 表示停车距离,d 1表示反应距离,d 2表示制动距离,则d =d 1+d 2.如图是根据美国公路局公布的试验数据制作的停车距离示意图.序号速度(km/h)停车距离14017.025026.536035.747046.058052.769070.7710085.48110101.0由图中数据得到如表的表格,根据表格中的数据,建立停车距离与汽车速度的函数模型.可选择模型①:d =av +b ;模型②:d =av 2+bv ;模型③:d =av +��;模型④:d =av 2+��(其中v 为汽车速度,a ,b 为待定系数)进行拟合.如果根据序号3和序号7两组数据分别求出四个函数模型的解析式,并通过计算120km/h 时的停车距离与实验数据比较,则拟合效果最好的函数模型是()A.d =av +b B.d =av 2+bv C.d =av +��D.d =av 2+��B 解析:若选择模型①,则60�+�=35.7,100�+�=85.4,解得a =1.2425,b =-38.85.故d =1.2425v -38.85.当v =120时,停车距离d 的预测值为1.2425×120-38.85=110.25.若选择模型②,则3600�+60�=35.7,10000�+100�=85.4,解得a =0.006475,b =0.2065.故d =0.006475v 2+0.2065v .当v =120时,停车距离d 的预测值为0.006475×1202+0.2065×120=118.02.若选择模型③,则60�+�60=35.7,100�+�100=85.4,解得a =0.9996875,b =-1456.875.故d =0.9996875v -1456.875�.当v =120时,停车距离d 的预测值为0.9996875×120-1456.875120=107.821875.若选择模型④,则3600�+�60=35.7,10000�+�100=85.4,解得a =15.9951960,b =379.2857143.故d =15.9951960v 2+379.2857143�.当v =120时,停车距离d 的预测值为15.9951960×1202+379.2857143120=120.675.由实验数据可知当v =120时,停车距离为118m.模型②的预测值更接近118m,故模型②拟合效果最好.解函数模型的实际应用题,首先应考虑该题考查的是何种函数,然后根据题意列出函数关系式(注意定义域),并进行相关求解,最后结合实际意义作答.→→→1.某市家庭煤气的使用量x (单位:m 3)和煤气费f (x )(单位:元)满足关系f (x )=�,0<�≤�,�+��−�,�>�.已知某家庭2021年前三个月的煤气费如表:月份用气量煤气费1月份4m 34元2月份25m 314元3月份35m 319元若4月份该家庭使用了20m 3的煤气,则其煤气费为()A.11.5元B.11元C.10.5元D.10元A 解析:根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=4,0<�≤5,4−5,�>5,所以f (20)=4+12×(20-5)=11.5.2.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,该企业考虑转型,下表显示的是某企业几年来年利润y (百万元)与年投资成本x (百万元)变化的一组数据:年份2018201920202021…投资成本x 35917…年利润y1234…给出以下3个函数模型:①y =kx +b (k ≠0);②y =ab x (a ≠0,b >0且b ≠1);③y =log a (x +b )(a >0且a ≠1).(1)选择一个恰当的函数模型来描述x ,y 之间的关系;(2)试判断该企业年利润超过6百万元时,该企业是否要考虑转型.解:(1)将(3,1),(5,2)代入y =kx +b (k ≠0),得1=3�+�,2=5�+�,解得�=12,�=−12,所以y =12x -12.当x =9时,y =4,不符合题意.将(3,1),(5,2)代入y =ab x (a ≠0,b >0且b ≠1),得1=��3,2=��5,解得�=24,�=2,所以y =24·(2)x=2�−32当x =9时,y =29−32=8,不符合题意.将(3,1),(5,2)代入y =log a (x +b )(a >0且a ≠1),得1=log �3+�,2=log �5+�,解得�=2,�=−1,所以y =log 2(x -1).当x =9时,y =log 28=3;当x =17时,y =log 216=4.故可用③来描述x ,y 之间的关系.(2)令log 2(x -1)>6,则x >65.因为年利润665<10%,所以该企业要考虑转型.考点3构造函数模型解决实际问题——应用性考向1二次函数、分段函数模型某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?解:(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3.因为x为整数,所以3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x2+68x-115>0,有3x2-68x+115<0,结合x为整数得6<x≤20,x∈Z.所以y=f(x)=50�−115,3≤�≤6,�∈�,−3�2+68�−115,6<�≤20,�∈�.(2)对于y=50x-115,3≤x≤6,x∈Z,显然当x=6时,y max=185.对于y=-3x2+68x-115=-3�−+8113,6<x≤20,x∈Z,当x=11时,y max=270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成.如出租车票价与路程之间的关系,应构建分段函数模型求解.(1)某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年B.2021年C.2022年D.2023年B解析:若2018年是第一年,则第n年科研费为1300×1.12n,由1300×1.12n>2000,可得lg 1.3+n lg 1.12>lg 2,得n ×0.05>0.19,n >3.8,n ≥4,即4年后,到2021年科研经费超过2000万元.故选B.(2)基本再生数R 0与世代间隔T 是流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在病毒感染初始阶段,可以用指数模型I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在病毒感染初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天B 解析:因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28−16=0.38,所以I (t )=e rt =e 0.38t .设在病毒感染初始阶段,累计感染病例数增加1倍需要的时间为t 1天,则e 0.38�+�1=2e 0.38t ,所以e 0.38�1=2,所以0.38t 1=ln 2,所以t 1=ln 20.38≈0.690.38≈1.8(天).故选B.(1)要先学会合理选择模型.与增长率、银行利率有关的问题都属于指数函数模型.1.某位股民买入某只股票,在接下来的交易时间内,他的这只股票先经历了3次涨停(每次上涨10%),又经历了3次跌停(每次下降10%),则该股民这只股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.无法判断盈亏情况C.没有盈利也没有亏损D.略有亏损D解析:设买入股票时的价格为m (m >0)元.先经历了3次涨停(每次上涨10%),又经历了3次跌停(每次下降10%)后的价格为m ×(1+10%)3×(1-10%)3=0.993m <m ,所以该股民这只股票的盈亏情况(不考虑其他费用)为略有亏损.故选D.2.某汽车销售公司在A,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆).若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元D.43.025万元C解析:设公司在A地销售该品牌的汽车x(0≤x≤16且x∈N)辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-110·�−+110×2124+32.因为x∈[0,16]且x∈N,所以当x=10或11时,总利润取得最大值43万元.3.一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地漏出,t min后剩余的细沙量为y=a e-bt(cm3),经过8min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.16解析:当t=0时,y=a;当t=8时,y=a e-8b=12a.故e-8b=12.当容器中的沙子只有开始时的八分之一时,即y=a e-bt=18a,e-bt=18=(e-8b)3=e-24b,则t=24,所以再经过16min,容器中的沙子只有开始时的八分之一.课时质量评价(十四)A组全考点巩固练1.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x(分钟)的函数图象为()D解析:y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,排除B.故选D.2.气象学院用32万元购置了一台天文观测仪,已知这台观测仪从启动的第1天开始连续使用,第n天的维修保养费为4n+46(n∈N*)元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器平均每天耗资最少)为止,则一共要使用()A.300天B.400天C.600天D.800天B 解析:使用n 天的平均耗资为3202�+2�+48元,当且仅当320000�=2n 时取得最小值,此时n =400.3.(2023·济南月考)某乡村一条污染河道的蓄水量为v 立方米,每天的进出水量为k 立方米.已知污染源以每天r 个单位污染河水,某一时段t (单位:天),河水污染质量指数m (t )(每立方米河水所含的污染物)满足m (t )=��+�0−e −���(m 0为初始质量指数),经测算,河道蓄水量是每天进出水量的80倍.若从现在开始关闭污染源,要使河水的污染水平下降到初始时的10%,需要的时间大约是(参考数据:ln 10≈2.30)()A.1个月B.3个月C.半年D.1年C 解析:由题意可知,m (t )=�0e−180�=0.1m 0,则e −180�=0.1,即-180t =ln 0.1≈-2.30,所以t ≈184,则要使河水的污染水平下降到初始时的10%,需要的时间大约是184天,即半年.故选C.4.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p 元,销售量为Q 件,销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)()A.30元B.60元C.28000元D.23000元D解析:设毛利润为L (p )元,则由题意知L (p )=pQ -20Q =Q (p -20)=(8300-170p -p 2)(p-20)=-p 3-150p 2+11700p -166000,所以L ′(p )=-3p 2-300p +11700.令L ′(p )=0,解得p =30或p =-130(舍去).当p ∈(0,30)时,L ′(p )>0;当p ∈(30,+∞)时,L ′(p )<0.故L (p )在p =30时取得极大值,即最大值,且最大值为L (30)=23000.5.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%.若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求.(参考数据:lg 2≈0.3010,lg 3≈0.4771)8解析:设至少过滤n 次才能达到市场要求,则2%×1−≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8.6.我们经常听到这样一种说法:一张纸经过一定次数对折之后厚度能超过地月距离.但实际上,因为纸张本身有厚度,我们并不能将纸张无限次对折,当厚度超过纸张的长边时,便不能继续对折了,一张长边为w ,厚度为x 的矩形纸张沿两个方向不断对折,则经过两次对折,长边变为12w ,厚度变为4x ,在理想情况下,对折次数n 有下列关系:n ≤23·log 2��(注:lg 2≈0.3).根据以上信息,一张长为21cm,厚度为0.05mm 的纸最多能对折________次.8解析:由题知n ≤23log 24200=23log 24+log 21000+log =232+3log 210+log 2因为log 210=1lg 2≈10.3,0<log 22120<1,所以n ≤8+23log 22120,n 的最大值为8.B 组新高考培优练7.(2022·聊城一模)“环境就是民生,青山就是美丽,蓝天也是幸福”,随着经济的发展和社会的进步,人们的环保意识日益增强.某化工厂产生的废气中污染物的含量为1.2mg/cm 3,排放前每过滤一次,该污染物的含量都会减少20%.当地环保部门要求废气中该污染物的含量不能超过0.2mg/cm 3,若要使该工厂的废气达标排放,那么在排放前需要过滤的次数至少为()(参考数据:lg 2≈0.3,lg 3≈0.477)A.5B.7C.8D.9C 解析:设该污染物排放前过滤的次数为n (n ∈N *),由题意1.2×0.8n≥6,两边取以10为底的对数可得lg≥lg 6,即n lg2+lg 3,所以n ≥lg 2+lg 31−3lg 2.因为lg 2≈0.3,lg 3≈0.477,所以lg 2+lg 31−3lg 2≈0.3+0.4771−3×0.3=7.77,所以n ≥7.77,又n ∈N *,所以n min =8,即该污染物排放前需要过滤的次数至少为8次.故选C.8.(多选题)(2022·济南月考)甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,它们行走的路程f i (x )(i =1,2,3,4)关于时间x (x ≥0)的函数关系式分别为f 1(x )=2x -1,f 2(x )=x 2,f 3(x )=x ,f 4(x )=log 2(x +1),则下列结论正确的是()A.当x >1时,甲走在最前面B.当x >1时,乙走在最前面C.当0<x <1时,丁走在最前面,当x >1时,丁走在最后面D.如果它们一直运动下去,最终走在最前面的是甲CD 解析:甲、乙、丙、丁的路程f i (x )(i =1,2,3,4)关于时间x (x ≥0)的函数关系式分别为f 1(x )=2x -1,f 2(x )=x 2,f 3(x )=x ,f 4(x )=log 2(x +1),它们对应的函数模型分别为指数型函数模型、二次函数模型、一次函数模型、对数型函数模型.当x =2时,f 1(2)=3,f 2(2)=4,所以A 不正确;当x =5时,f 1(5)=31,f 2(5)=25,所以B 不正确.根据四种函数的变化特点,对数型函数的增长速度是先快后慢,又当x =1时,甲、乙、丙、丁四个物体走过的路程相等,从而可知,当0<x <1时,丁走在最前面,当x >1时,丁走在最后面,所以C 正确;指数型函数的增长速度是先慢后快,当运动的时间足够长时,最前面的物体一定是按照指数型函数模型运动的物体,即一定是甲物体,所以D 正确.9.李冶(1192-1279),真定栾城(今河北省石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,有多部数学著作,其中《益古演段》主要研究平面图形问题,求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是________步、________步(注:240平方步为1亩,圆周率按3近似计算).2060解析:设圆池的半径为r 步,则方田的边长为(2r +40)步,由题意,得(2r +40)2-3r 2=13.75×240,解得r =10或r =-170(舍),所以圆池的直径为20步,方田的边长为60步.10.(2023·泰安模拟)某研究所开发了一种抗病毒新药,用小白鼠进行抗病毒实验.已知小白鼠服用1粒药后,每毫升血液含药量y (单位:微克)随着时间x (单位:时)变化的函数关系式近似为y=≤�≤6,12−�6<�≤12.当每毫升血液含药量不低于4微克时,该药能起到有效抗病毒的效果.(1)若小白鼠服用1粒药,多长时间后该药能起到有效抗病毒的效果?(2)某次实验:先给小白鼠服用1粒药,6小时后再服用1粒,请问这次实验该药能够有效抗病毒的时间为多少小时?解:(1)设服用1粒,经过x 小时能有效抗病毒,即血液含药量需不低于4微克,可得0≤�≤6,2�8−�≥4,解得163≤x ≤6.所以163小时后该药能起到有效抗病毒的效果.(2)设经过x 小时能有效抗病毒,即血液含药量需不低于4微克.若0≤x ≤6,药物浓度2�8−�≥4,解得163≤x ≤6.若6<x ≤12,药物浓度(12-x �−6x 2-20x +100≥0,所以6<x ≤12;若12<x ≤18,药物浓度12-(x -6)≥4,解得x ≤14,所以12<x ≤14.综上,x 14,所以这次实验该药能够有效抗病毒的时间为263小时.。
高考理科数学复习专题09三角函数(教师版)
2.专题09三角函数【2021年高考全国I卷理数】函数sinxf(x)=一cosxx—在[,]的图像大致为xA.-ITC.门Tsin( x) ( x)【斛析】由 f ( x) 2cos( x) ( x)称,排除A.又fsin x x2cosx x- 1,f(力f(x),得f(x)是奇函数,其图象关于原点对立.........——2 0 ,排除B, C,应选D.1冗【名师点睛】此题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答此题时,A,再注意到选项的区别,利用特殊值得正确答案.【2021年高考全国I卷理数】关于函数f(x)先判断函数的奇偶性,得f(x)是奇函数,排除sin |x| |sin x|有下述四个结论:①f(x)是偶函数③f(x)在[,]有4个零点②f(x)在区间(一,)单调递增2④f(x)的最大值为2其中所有正确结论的编号是A.①②④B.②④C.①④D.①③冗当一x2/时,fx九时,fsin sin x sin2sinx,它在区间一22sinx ,它有两个零点:sin x f x , f x为偶函数,故①正确.单调递减,故②错误.0 ;当兀x 0时,f x sin x sinx当 x 2k ,2k k N 时,f x 2sin x ;当 x 2k , 2k 2 k N 时,f x sinx sinx 0,又f x 为偶函数,f x 的最大值为2,故④正确.综上所述,①④正确,应选 C. 【名师点睛】此题也可画出函数f x sin x sinx 的图象(如以下图),由图象可得①④正确.3.【2021年高考全国n 卷理数】以下函数中,以3为周期且在区间(7, 3)单调递增的是A . f(x)=|cos2x|B . f(x)=|sin2x| C. f(x)=cos|x| D . f(x)=sin|x|【答案】A【解析】作出由于 y sin |x|的图象如以下图1,知其不是周期函数,排除 D ;由于y cos|x| cosx,周期为2兀,排除C ; 作出ycos2x|图象如图2,由图象知,其周期为 -,在区间(一,一)单调递增,A 正确;24 2....一 一 一一一,一___ __________ 兀 •一、一作出y sin2x 的图象如图3,由图象知,其周期为 一,在区间(一,一)单调递减,排除 B,2 4 2应选A.2sin x ,它有一个零点:冗,故f x 在有3个零点:,故③错误.图3【名师点睛】此题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各 函数图象,即可作出选择.此题也可利用二级结论:①函数 y f (x)的周期是函数y f(x)周期 的一半;②y sin x 不是周期函数2222I2sin a cos a,又sin cos 1, 5sin a 1,sin a 一,又 sin 0, sin 5B.【名师点睛】此题是对三角函数中二倍角公式、同角三角函数根本关系式的考查,中等难度,判断 正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出 三角函数值的正负很关键,切记不能凭感觉.解答此题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2021年高考全国 出卷理数】设函数f x =sin ( x —)( >0),f X 在0,2有且仅有5个零点,下述四个结论:①f x 在(0,2 )有且仅有3个极大值点 ②f x 在(0,2 )有且仅有2个极小值点4. 2021年高考全国n 卷理数】(0, —),2sin2 a=cos2 o+1,贝U sin OF2B.Q2sin2 a cos2 a 1,4sin c cos 2 2cos a.Q 瓜cos 0 0 , sin0,图2③f x在(0, —)单调递增10④的取值范围是[但,29) 5 10其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④【解析】①假设f(x)在[0,2句上有5个零点,可画出大致图象,由图1可知,f(x)在(0,2时有且仅有3个极大值点.故①正确;②由图1、2可知,f (x)在(0,2时有且仅有2个或3个极小值点.故②错误;④当f x =sin ( x -)=0 时, x —=k Tt (kC Z)5 5,所以x由于f(x)在[0,2 句上有5个零点,所以当k=5时,* 2/当k=6时,12,解得—529w —,10故④正确.③函数f x =sin x 一)5 的增区间为:2k z 九10 130 2k7t取k=0,7,12 ,〜71当 一时,单调递增区间为 一冗x 一冗, 5 24 829 ....................... 7 3当 —时,单倜递增区间为 —x x —%,10 29 29一. 一 _.冗 ........... .. .综上可得,f X 在0,— 单调递增.故③正确.所以结论正确的有①③④.故此题正确答案为 D.【名师点睛】此题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理 解深度高,考查数形结合思想.注意此题中极小值点个数是动态的, 易错,正确性考查需认真计算,易出错.6.【2021年高考天津卷理数】函数 f(x) Asin( x )(A 0,0,| | )是奇函数,将f X 的图象上所有点的横坐标伸长到原来的 2倍(纵坐标不变),所得图象对应的函数为C.x .假设g x 的最小正周期为2私且g"那么f,2【解析】••• f(x)为奇函数,,f (0) Asin 0, Z, k 0, 0;g(x)八. 1-I- 2冗Asin - x, T -- 2 区22,f(x)32sin2x, f (一)V 2.应选 C.8【名师点睛】此题主要考查函数的性质和函数的求值问题,解题关键是求出函数 g x ,再根据函数性质逐步得出A,,的值即可.17 .【2021年局考全国 出卷理数】假设sin -,那么cos27 - 98 - 9 819 7-9♦ ♦B D1 9 7【解析】cos2 1 2sin 2 1 2 (―)2 —3 9应选B.【名师点睛】此题主要考查三角函数的求值,考查考生的运算求解水平,考查的核心素养是数学运 算.8.【2021年高考全国卷II 理数】假设f x cosx sinx 在 a,a 是减函数,那么a 的最大值是 花A . 一43冗 C.—— 4【答案】A(2)周期T求对称轴.⑶由 2k 冗 2ku k Z花求增区间;由一 2k :t23冗—2ku k Z 求 2减区间 9.【2021年高考天津理数】将函数 y sin(2x一)的图象向右平移 一个单位长度,所得图象对应的函5 103 5 ............A,在区间[3—,5—]上单调递增4 4,一一 .3 一B .在区间[,]上单调递减4【解析】由于fcosxsinx A /2cos x —,4所以由0 2k/花2kXk Z)得一43冗——2kXk Z), 4因此 a,a兀 ................ TT 一,从而a 的取大值为一, 4应选A.【名师点睛】 解答此题时,先确定三角函数单调减区间, 再根据集合包含关系确定a 的最大值 .函数y Asin B(A 0,.)的性质:⑴ y max =A+B, y min AB .令k 1可得一个单调递增区间为令k 1可得一个单调递减区间为:应选A.【名师点睛】此题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学 生的转化水平和计算求解水平10.【2021年高考浙江卷】函数 y=2"sin2x 的图象可能是C.在区间[3 ......... ,3-]上单调递增D.在区间3 -[斗[万,2 ]上单调递减【解析】由函数图象平移变换的性质可知:sin 2x的图象向右平移二个单位长度之后10的解析式为y sin 2 x7t 10 7t5sin2x .那么函数的单调递增区间满足 2k%2x 2ku花,即 k :t — x4.......................... 冗函数的单调递减区间满足: 2 k 冗22x 3冗2k 冗—k Z , IP k u — x243冗 k k ——k4A . 【答案】DB.D.f x2忸sin2x 为奇函数,排除选项 A, B ;...兀. 一_ 一一 ... . . .由于x —,冗时,f x 0,所以排除选项C, 2应选D.............. ....................... ............ 冗 ................................ 【名师点睛】解答此题时,先研究函数的奇偶性,再研究函数在 一,冗上的符号,即可作出判断2有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的循环往复.C1: y=cos x, C2: y=sin (2x+ 2^),那么下面结论正确的选项是3得到曲线C 2得到曲线C 2得到曲线C 2得到曲线C 2【解析】由于 C I ,C 2函数名不同,所以先将 C 2利用诱导公式转化成与 C I 相同的函数名,那么_ _ 2 7t _ 27t 冗 _ 冗 . .一 .................................. 1 C 2: y sin(2x ——)cos(2x —— 一)cos(2x —),那么由C 1上各点的横坐标缩短到原来的 一3 3 2 6 2,、、. _ . ....... .. 兀. .............. 4 倍变为y cos2x,再将曲线向左平移 一个单位长度得到c 2,应选D.12【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,【解析】令f x 2l x sin2x ,由于x R, f x2 x sin2 x2〞sin2 x11.【2021年高考全国 出理数】曲线 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变, 再把得到的曲线向右平移 」个单位长度,6B. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变, 再把得到的曲线向左平移—个单位长度,12C. 把C 1上各点的横坐标缩短到原来的1 ............. ....... 一倍,纵坐标不变, 2再把得到的曲线向右平移 」个单位长度, 6 D .把C 1上各点的横坐标缩短到原来的1 ............. .......一倍,纵坐标不变, 2再把得到的曲线向左平移—个单位长度,12y Asin x 或 y Acos x b 的形式...,、一...、_ ____________________________ _ 冗(2)求f x Asin( x ) 0的对称轴,只需令 x ku - k Z,求x ;求f(x)的2对称中央的横坐标,只需令 xkXk Z)即可.5.一.一 —兀 兀 . ..需要重点记住sin cos( -),cos sin( -);另外,在进行图象变换时,提倡先平移后伸 2 2缩,而先伸缩后平移在测试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.12.【2021年高考全国出理数】设函数 f x cos(x1,那么以下结论错误的选项是A. f(x)的一个周期为 2几8B. y f(x)的图象关于直线x 8^对称 3C. f (x 花)的一个零点为x -6D. f(x)在(/)单调递减【答案】D____ _ _ _…… 2兀 _ _ 【解析】函数f (x)的最小正周期为T —— 2/,那么函数f(x)的周期为T 2k :tk Z ,取k 1,1可得函数f x 的一个周期为 2任,选项A 正确;一…,―......TT函数f (x)图象的对称轴为 x — k u k Z,即x 38关于直线x —对称,选项B 正确;3冗一 一 .一 ..一,ku — k Z ,取k 3,可得y=f(x)的图象 37tcos x37tcos x —,函数f(x)的零点满足x — ku k Z ,即332, 冗. _ 「I x k 冗—k Z,取 k 60,可得f (x-- -一TT ... .冗)的一个零点为x -,选项C 正确;6-,冗时,x -52,4』,函数f (x)在该区间内不单调,选项 D 错误.23 6 3应选D. 【名师点睛】1)求最小正周期时可先把所给三角函数式化为y Asin( x )或 y Acos( x)的形式,那么最小正周期为T奇偶性的判断关键是解析式是否为13.【2021年高考天津卷理数】设函数f(x) 2sin( x ) , x R ,其中0, | | •假设f (一)2,8【解析】由题意得11 8又T 2- 2 ,所以0 1,所以 2,2k 1—,3 12由 得 —,应选A. 12【名师点睛】关于 y Asin( x )的问题有以下两种题型: ①提供函数图象求解析式或参数的取值范围, 一般先根据图象的最高点或最低点确定A,再根据最小正周期求,最后利用最高点或最低点的坐标满足解析式,求出满足条件的的值;②题目用文字表达函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己 画出大致图象,然后寻求待定的参变量,题型很活,一般是求 或 的值、函数最值、取值范围等.【2021年高考北京卷理数】函数 f (x) =sin 22x 的最小正周期是 . , 冗 【答案】- 2【解析】函数f x sin 22x 1 co s4x ,周期为-.2 2【名师点睛】此题主要考查二倍角的三角函数公式 ?三角函数的最小正周期公式,属于根底题 .将所 给的函数利用降哥公式进行恒等变形,然后求解其最小正周期即可f( .) 0,且f(x)的最小正周期大于 2 ,那么12B.12C.24D.2414.2k l 一12............ _,其中k 1,k 2 Z ,所以k215. 【2021年高考江苏卷】tan tan —4一,那么sin 2 一 的值是 ▲3 410tan 21类讨论和转化与化归思想解题.由题意首先求得tan 的值,然后利用两角和的正弦公式和二倍角公 式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可 16.【2021年高考全国I 理数】 函数f x 2sinx sin2x,那么f x 的最小值是21【斛析】f x 2cos x 2cos 2x 4cos x 2cos x 2 4 cosx 1 cosx 一 ,21 (1)所以当cosx -时函数单调递减,当 cosx 一时函数单调递增,从而得到函数的递减区间为 2 2 2k :t 55,2kTt - k Z ,函数的递增区间为 2ku -, 2k u - k Z , 33 33tantan tan 1 tan2 「 九 tan 1 tan 13'tan 一—41 tan2 ,或 tan1 .3【解析】由解得tan得 3tan 2 5tan 2 0,sin 2 sin 2花cos- 4 cos2 冗 sin 一4工~2~sin 2 cos2 2sin 2cos cos_■ 2sin2tan1 tan2 2 sin 2 cos当tan2时,上式=立 2 2 2 22 1 221W ;当tan1 ,,, 一时,上式= 32 [—〔3〕2〔J 〕213一10综上,sin、210【名师点睛】 此题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分_冗 _ . __ ... .x 2k u — ,k Z 时,函数f x 取得最小值,此时 sinx3【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关 的函数的求导公式, 需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值_........................................ .... ................ 7t..7t ........................................... ..17.【2021年高考北京卷理数】设函数 f (x) =cos( x -)(0),假设f(x)f(-)对任意白^实数x 都成64立,那么3的最小值为【名师点睛】此题主要考查三角函数的图象和性质,考查考生的逻辑推理水平以及运算求解水平, 考查的核心素养是逻辑推理、数学运算查的核心素养是数学运算所以当 所以f x .2min二垓",故答案是空3sin2 x 2由于f对任意白^实数x 都成立,所以f -取最大值,4所以-42ku6由于0,所以当 0时,..... ............. 2 w 取取小值为一318.【2021年高考全国出理数】函数cos兀的零点个数为Q0 x花3x619 7t由题可知3x解得xx4」,或7J ,故有3个零点.【名师点睛】 此题主要考查三角函数的图象与性质, 考查数形结合思想和考生的运算求解水平,考19.【2021年高考江苏卷】 函数y sin 2x一〕的图象关于直线x —对称, 23值是减区间.【解析】化简三角函数的解析式:【名师点睛】此题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次 方程与二次不等式统称 三个二次〞,它们常结合在一起,有关二次函数的问题,数形结合,密切联 系图象是探求解题思路的有效方法 .一般从:①开口方向;②对称轴位置;③判别式;④端点函数值 符号四个方面分析.21.【2021年高考北京卷理数】在平面直角坐标系xOy 中,角〞与角3均以Ox 为始边,它们的终边关1于y 轴对称.右sin-,贝U cos( ) =.【解析】由题意可得 sin kXk Z),由于花所以20,【名师点睛】 由对称轴得kXk Z),再根据限制范围求结果.函数y Asin(A>0,3>0)的性质:(1) ymaxAB, y min(2)最小正周期 ⑶由 x-ku k Z~. 一冗 ~2k u k Z 求增区间;由一2k/2 3冗—2k 冗 k 220.【2021年高考全国n 理数】函数x sin 2 x \ 3 cosx3 4(x花0,一2)的最大值是 f x 1 cos 2 x \ 3 cosx cos 2 x _ 3 cosxcosx由自变量的范围:0 -可得: ’2cosx 0,1 ,当cosx 立时, 2函数f x 取得最大值1.1,cos 2是数学运算.23.【2021年高考江苏卷】假设tan(」) 4【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(2)给值求值:关键是找出式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换式,进而求得待求式的值;②变换待求式,便于将式的值代入,从而到达解题的目的. (3)给值求角:实质是转化为“给值求值〞,先求角的某一函数值, 再求角的范围,进而确定角.24.【2021年高考浙江卷】设函数 f(x) sinx,x R .【解析】 由于和 关于y 轴对称,所sinsincoscos2.2 3(或 cos cos2J ) 3 所以coscos cos sin sin2. 2c • 2/cossin2sin 1【名师点睛】此题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:假设 边关于y 轴对称,那么冗2ku,k Z ,假设 与 的终边关于x 轴对称,那么2kRk Z ,假设 与 的终边关于原点对称,那么22.【2021年高考全国n 理数】 sin a cos 3 1, cos a sin 3 0 ,那么sin( a3)【解析】由于sin cos 1, cos sin0, 所以sincos1,所以sin因止匕sin1sin cos cos sin 一22cos. 2sin【名师点睛】 此题主要考查三角恒等变换,考查考生分析问题、解决问题的水平, 4考查的核心 【解析】tan tan[( 4)-]tan( ) tan — 4 41 tan( ) tan —4 41 16_ 1」 6(1)给角求值:关键是正确选用公式, 以便把非特殊角的三角函数转化为特殊角的三角函数.(1) [0,2工函数f (x )是偶函数,求 的值;;(2) [1即 sinxcos cosxsin sinxcos cosxsin ,故 2sinxcos 0 , 所以cos 0 . 又 [0, 2冗),1 3cos 2x 『2 3【名师点睛】此题主要考查三角函数及其恒等变换等根底知识,同时考查运算求解水平25.【2021年高考浙江卷】函数f (x) sin 2 x cos 2 x 2V3sin xcosx(x f(—)的值.3f(x)的最小正周期及单调递增区间.单调递增区间是[—k ,2 6 3(2)求函数y[f(x万『[f(x产值域・【解析】(1)由于 f(x sin(x )是偶函数,所以,对任意实数x 都有sin(x ) sin( x ),(1)由.2sin 一3.32 , cos —2.3 2 1 2“于(万)(2)得f (23 )2.(2)由 cos2x.2sin x 与 sin 2x2sin xcosx 得 f (x)cos2x、、3sin2x]•因此,或上7tx127t4sin 27tx 一12sin 2 xcos 2xcos 2x&os2x 2久in2x2因此,函数的值域是[1,3 .3 y ,1 一 ]•(1)求 (2)求2sin(2 x -). 6所以 ^3cosx 3sin x .于是tan x又x 0,冗即x 0时,f x 取到最大值3;5工时,f x 取到最小值 266所以f(x)的最小正周期是 .由正弦函数的性质得 一 2k2-2斛得一k x — k , k63所以,f(x)的单调递增区间是32x -——2k ,k Z , 6 2Z ,[-k ,— k ], k Z . 6 3【名师点睛】此题主要考查了三角函数的化简,以及函数y Asin x的性质,是高考中的常考知识点,属于根底题,强调根底的重要性;三角函数解做题中,涉及到周期,单调性,单调区间 以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的根本形式即y Asin x ,然后利用三角函数 y Asin u 的性质求解.26.【2021年高考江苏卷】向量a (cosx, sin x),b (3,扃x [0,4(1)假设 a// b,求x 的值; (2)记f(x) a b ,求f (x)的最大值和最小值以及对应的一 5冗 _(1) x ——;(2) x 0 时, 6x 取到最大值3;5冗x ——时,f x 取到最小值 2 J3 . 6(1)由于 a (cosx,sin x),(3, V 3) , all b,假设 cosx 0, 那么 sin x 0 ,与 sin 2 xcos 2 x 1 矛盾,故 cosx0.(2) f (x)a b (cos x,sin x) (3,、3) 3cos x \ 3 sin x「 兀2,3cos(x -).6由于x0,所以 冗 冗7冗x -[-,-],6 6 6从而cos(x27.【2021年高考浙江卷】角 a 的顶点与原点 O 重合,始边与x 轴的非负半轴重合,它的终边过点45)(1)求sin ( a+兀)的值;5 〜(2)右角3满足sin ( a+优=一,求cos 3的值.134【答案】(1) — ; (2) COS5【解析】(1)由角 的终边过点 所以sin( 访 sin【名师点睛】此题主要考查三角函数的定义、诱导公式、两角差的余弦公式,考查考生分析问题、 解决问题的水平,运算求解水平,考查的数学核心素养是数学运算求解三角函数的求值问题时,需综合应用三角函数的定义、诱导公式及三角恒等变换 (1)首先利用三角函数的定义求得 sin ,然后利用诱导公式,计算 sin (妙兀)的值;结合同角三角函数的根本关系,计算 cos( )的值,要注意该值的,利用两角差的余弦公式,通过分类讨论,求得 cosB 的值(1)求cos2的值;(2)求tan( )的值.【答案】(1)—;(2)-.25 11【解析】(1)由于tan 4 , tan §n 一3cos4— cos 356T 16 瓦或cos —3 4『P( -, 一Win5 5(2)由角 由 sin( 由 ( 34的终边过点P( 一,一)得cos 5 5 、5 3 , 、 12)而得.问)行) 得 cos cos( )cossin()sin ,所以cos史或cos6516 65(2)根据sin (廿3)的值, 正负,然后根据 28.【2021年高考江苏卷】为锐角,tan4一,cos( 3所以sin 由于sin 22cos因此tan(因此,tan( ) tan[2 (tan 2 tan( )2"1 tan 2 tan( )11由于tan4-, 八一,所以tan 2 3 2 tan 1 tan 2 24一,7【名师点睛】本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求 解水平.三角函数求值的三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出式与待求式之间的联系及函数的差异. 般有如下两种思路:①适当变换式,进而求得待求式的值;②变换待求式,便于将式的值代入,从而到达解题的目的.(3)给值求角:实质是转化为 给值求值〞,先求角的某一函数值, 再求角的范围,进而确定角. _ .............. .... ... 冗29.【2021年局考山东卷理数】设函数 f(x) sin( x —) sin( x 6」),其中0 2 3. 花 f(-) 0. 6 (1)求 (2)将函数y f (x)的图象上各点的横坐标伸长为原来的 2倍 (纵坐标不变),再将得到的图象 向左平移」个单位,得到函数y g(x)的图象,求g(x)在[-,3」]上的最小值 44 4 3 【答案】(1) 2 ; (2)最小值为 一. 2_ __ 冗冗【斛析】(1)由于 f (x) sin( x —) sin( x —), 62一, o 9 所以cos——,因此,cos2 2cos 2 17 25(2)由于,为锐角,所以(0, ).又由于cos(所以sin(...1 cos 2(2、5 ----- , 5所以f(x) .3 1——sin x cos x cos x 2 23;「 3 ———sin x —cos x2 23(』sin x -cos x)2 2、.3sin( x -). 3,-.一. Tt由题设知f (-) 0,6- Tt Tt . 一所以」」ku, k Z.6 3故6k 2 , k Z ,又0 3 ,所以2.(2)由(1)得f (x) >/3sin 2x —3所以g (x) . 3 sin x ——4 3 ?3 sin x —12所以x122 3, 3〜…,.,、 3所以当x 一一,即x 一时,g(x)取得最小值一.12 3 4 2【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答此题时,关键在于能利用三角公式化简函数、进一步讨论函数的性质,此题易错点在于一是图象的变换与解析式的对应,二是无视设定角的范围.难度不大,能较好地考查考生的根本运算求解水平及复杂式子的变形水平(1) 2; (2) f(x)的最小正周期是。
(新高考)高考二轮精品专题六 三角函数与解三角形 教师版
1.高考对三角函数的考查主要在于三角函数的定义、图象和性质、三角恒等变换,主要考查三角函数图象的变换、三角函数的性质(单调性、奇偶性、周期性、对称性及最值),三角恒等变换通常还与解三角交汇命题.2.解三角形的考查主要在具体面积、角的大小、面积与周长的最值或范围的考查,本部分要求对三角恒等变换公式熟悉.一、三角函数1.公式(1)扇形的弧长和面积公式如果半径为r 的圆的圆心角α所对的弧的长为l ,那么角α的弧度数的绝对值是l rα=.相关公式:①l =|α|r②21122S lr r α==(2)诱导公式:正弦余弦正切α+k ⋅2πsin αcos αtan αα+π―sin α―cos αtan α―α―sin αcos α―tan απ―αsin α―cos α―tan α2πα+cos α―sin α2πα-cos αsin α32πα+―cos αsin α32πα-―cos α―sin α(3)同角三角函数关系式:sin 2α+cos 2α=1,sin tan cos ααα=(4)两角和与差的三角函数:sin(α+β)=sin αcos β+cos αsin βsin(α―β)=sin αcos β―cos αsin βcos(α+β)=cos αcos β―sin αsin βcos(α―β)=cos αcos β+sin αsin βtan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+(5)二倍角公式:sin 22sin cos ααα=2222cos 2cos sin 12sin 2cos 1ααααα=-=-=-22tan tan 21tan ααα=-(6)降幂公式:21cos 2sin 2αα-=,21cos 2cos 2αα+=2.三角函数性质性质y =sin x ,x ∈Ry =cos x ,x ∈R奇偶性奇函数偶函数单调性在区间()2,222k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z 上是增函数,在区间()32,222k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z 上是减函数在区间[―π+2kπ,2kπ](k ∈Z )上是增函数,在区间[2kπ,π+2kπ](k ∈Z )上是减函数最值在()22x k k ππ=+∈Z 时,y max ;在()22x k k ππ=-∈Z 时,y min在x =2kπ(k ∈Z )时,y max ;在x =2kπ+π(k ∈Z )时,y min对称中心(kπ,0)(k ∈Z )(),02k k ππ⎛⎫+∈⎪⎝⎭Z 对称轴()2x k k ππ=+∈Z x =kπ(k ∈Z )正切函数的性质图象特点定义域为{|,}2x x k k ππ≠+∈Z 图象与直线2x k k ππ=+∈Z ,没有交点最小正周期为π在区间,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,上图象完全一样在,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,内是增函数图象在,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,内是上升的对称中心为,02k k π⎛⎫∈⎪⎝⎭Z ,图象关于点,02k k π⎛⎫∈⎪⎝⎭Z ,成中心对称3.函数y =A sin(ωx +φ)的图象及变换(1)φ对函数y =sin(x +φ)的图象的影响(2)ω(ω>0)对y =sin(ωx +φ)的图象的影响(3)A(A >0)对y =A sin(ωx +φ)的图象的影响4.函数y =A sin(ωx +φ)的性质(1)函数y =A sin(ωx +φ)(A >0,ω>0)中参数的物理意义(2)函数y =A sin(ωx +φ)(A >0,ω>0)的有关性质二、解三角形1.正余弦定理定理正弦定理余弦定理内容(为外接圆半径);;变形形式,,;,,;;;;2.利用正弦、余弦定理解三角形(1)已知两角一边,用正弦定理,只有一解.(2)已知两边及一边的对角,用正弦定理,有解的情况可分为几种情况.在中,已知,和角时,解得情况如下:为锐角为钝角或直角直角图形关系式解的个数一解两解一解一解上表中为锐角时,,无解.为钝角或直角时,,均无解.(3)已知三边,用余弦定理,有解时,只有一解.(4)已知两边及夹角,用余弦定理,必有一解.3.三角形中常用的面积公式(1)(表示边上的高);(2);(3)(为三角形的内切圆半径).4.解三角形应用题的一般步骤一、选择题.1.在平面直角坐标系xOy 中,α为第四象限角,角α的终边与单位圆O 交于点P (x 0,y 0),若cos 356πα⎛⎫+= ⎪⎝⎭,则x 0=( )ABCD【答案】C【解析】∵,02πα⎛⎫∈-⎪⎝⎭,∴,636πππα⎛⎫+∈- ⎪⎝⎭,又3cos 65πα⎛⎫+=< ⎪⎝⎭,所以,063ππα⎛⎫+∈- ⎪⎝⎭,所以4sin 65πα⎛⎫+=- ⎪⎝⎭,∴0cos cos cos cos sin sin 666666x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=-⨯=,故选C .【点评】本题容易忽视6πα+的范围,而导致sin 6πα⎛⎫+⎪⎝⎭出错.2.已知 tan 2θ―4tan θ+1=0,则2cos 4πθ⎛⎫+= ⎪⎝⎭( )A .12B .13C .14D .15【答案】C(70分钟)经典训练题【解析】由 tan 2θ―4tan θ+1=0,可得1tan 4tan θθ+=,所以sin cos 4cos sin θθθθ+=,即22sin cos 4cos sin θθθθ+=⋅,即1cos sin 4θθ⋅=,211cos 2121sin 212sin cos 124cos 422224πθπθθθθ⎛⎫++-⨯⎪--⎛⎫⎝⎭+===== ⎪⎝⎭,故选C .【点评】本题考查同角三角函数的关系、降幂公式、二倍角公式,解答本题的关键是由条件有1tan 4tan θθ+=,从而可得1cos sin 4θθ⋅=,由21cos 21sin 22cos 422πθπθθ⎛⎫++ ⎪-⎛⎫⎝⎭+== ⎪⎝⎭12sin cos 2θθ-=可解,属于中档题.3.已知函数f (x )=2sin(ωx +φ),(0,2πωϕ><的部分图象如图所示,f (x )的图象过,14A π⎛⎫⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将f (x )的图象向左平移712π个单位得到g (x )的图象,则函数g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A .―2B .2C .―3D .―1【答案】A【解析】由图象知,5244T πππ=-=,∴T =2π,则1ω=,∴f (x )=2sin(x +φ),将点,14A π⎛⎫⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=-⎪⎝⎭,将f (x )的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x x πππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为32cos 4π=,故选A .【点评】本题主要考了三角函数图象,以及三角函数的性质和三角函数图象的变换,属于中档题.4.已知a 、b 、c 分别是△ABC 的内角A 、B 、C 的对边,若sin cos sin CA B<,则ΔABC 的形状为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】A【解析】因为在三角形中,sin cos sin CA B<变形为sin C <sin B cos A ,由内角和定理可得sin(A +B)<cos A sin B ,化简可得:sin A cos B <0,∴cos B <0,所以2B π>,所以三角形为钝角三角形,故选A .【点评】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.5.(多选)已知函数f(x)=3sin x +sin 3x ,则( )A .f(x)是奇函数B .f(x)是周期函数且最小正周期为2πC .f(x)的值域是[―4,4]D .当x ∈(0,π)时,f(x)>0【答案】ABD【解析】A .f (―x )=3sin(―x )+sin(―3x )=―3sin x ―sin 3x =―f (x ),故f(x)是奇函数,故A 正确;B .因为y =sin x 的最小正周期是2π,y =sin 3x 的最小正周期为23π,二者的“最小公倍数”是2π,故2π是f(x)的最小正周期,故B 正确;C .分析f(x)的最大值,因为3sin x ≤3,sin 3x ≤1,所以f(x)≤4,等号成立的条件是sin x =1和sin 3x =1同时成立,而当sin x =1,即()22x k k ππ=+∈Z 时,()3362x k k ππ=+∈Z ,sin 3x =―1,故C 错误;D .展开整理可得()2()3sin sin cos 2cos sin 2sin 4cos 2f x x x x x x x x =++=+,易知当x ∈(0,π)时,f(x)>0,故D 正确,故选ABD .【点评】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数()f x 为奇函数或偶函数的必要非充分条件;(2)()()f x f x -=-或()()f x f x -=是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.二、解答题.6.已知m =(2sin x ,sin x ―cos x ),n =(3cos x ,sin x +cos x ),函数f(x)=m ⋅n .求函数f(x)的最大值以及取最大值时x 的取值集合.【答案】f(x)的最大值为2,,3x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z .【解析】()()()cos sin cos sin cos f x x x x x x x =⋅=+-+m n2cos 22sin 26x x x π⎛⎫=-=- ⎪⎝⎭,所以函数f(x)的最大值为2,当2262x k πππ-=+,即,3x k k ππ=+∈Z 取得,即集合为,3x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z .【点评】本题与向量的坐标运算结合,考查三角函数的最值,属于基础题.7.已知函数2()cos 222x x x f x =+-.(1)求函数f(x)在区间[0,π]上的值域;(2)若方程f(ωx)=3(ω>0)在区间[0,π]上至少有两个不同的解,求ω的取值范围.【答案】(1)[―2,2];(2)5,12⎡⎫+∞⎪⎢⎣⎭.【解析】(1)()2cos 2sin(2224x x x f x x x x π=+-==+,令4U x π=+,∵x ∈[0,π],5,44U ππ⎡⎤∴∈⎢⎥⎣⎦,由y =sin U 的图象知,sin U ⎡⎤∈⎢⎥⎣⎦,即sin 4x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,2sin 24x π⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数f(x)的值域为[―2,2].(2)()2sin()(0)4f x x πωωω=+>,∵f(ωx)=3,2sin(4x πω∴+=,即sin()4x πω+=,∵x ∈[0,π],,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,且()243x k k ππωπ+=+∈Z 或()2243x k k ππωπ+=+∈Z ,由于方程f(ωx)=3(ω>0)在区间[0,π]上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥,所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭.【点评】考查三角函数的值域时,常用的方法:(1)将函数化简整理为f(x)=A sin(ωx +φ),再利用三角函数性质求值域;(2)利用导数研究三角函数的单调区间,从而求出函数的最值.8.已知函数f(x)=3sin x cos x +cos 2x +1.(1)求f(x)的最小正周期和值域;(2)若对任意x ∈R ,2()()20f x k f x -⋅-≤的恒成立,求实数k 的取值范围.【答案】(1)最小正周期π,值域为15,22⎡⎤⎢⎥⎣⎦;(2)1710k ≥.【解析】(1)f(x)=3sin x cos x +cos 2x +1cos 21133212cos 2sin 222262x x x x x π+⎛⎫=++=++=++ ⎪⎝⎭,∴f(x)的为最小正周期22T ππ==,值域为()15,22f x ⎡⎤∈⎢⎥⎣⎦.(2)记f(x)=t ,则15,22t ⎡⎤∈⎢⎥⎣⎦,由f 2(x)―k ⋅f(x)―2≤0恒成立,知t 2―kt ―2≤0恒成立,即kt ≥t 2―2恒成立,∵t >0,∴222t k t t t-≥=-.∵()2g t t t =-在15,22t ⎡⎤∈⎢⎥⎣⎦时单调递增,max 5541722510g g ⎛⎫==-= ⎪⎝⎭,∴k 的取值范围是1710k ≥.【点评】本题主要考查了三角函数的恒等变换的应用,正弦函数的性质,考查了函数思想,属于中档题.9.△ABC 的内角A ,B ,C 的对边为a ,b ,c ,且3(sin B +sin C )2―3sin 2(B +C)=8sin B sin C .(1)求cos A 的值;(2)若△ABC 的面积为,求a +b +c 的最小值.【答案】(1)13;(2)4+.【解析】(1)由3(sin B +sin C )2―3sin 2(B +C)=8sin B sin C ,∵A +B +C =π,所以228(sin sin )sin sin sin 3B C A B C +=+,由正弦定理可得228()3b c a bc +=+,则22223b c a bc +-=,由余弦定理可得2221cos 23b c a A bc +-==.(2)由1cos 3A =,得sin A =,∵1sin 2ABC S bc A ==△,∴bc =12,由22223b c a bc +-=,得222224216333a b c bc bc bc bc =+-≥-==,∴a ≥4,当且仅当b =c =23时,等号成立.又b +c ≥2bc =43,当且仅当b =c =23时,等号成立.∴a +b +c ≥4+43,当且仅当b =c =23时,等号成立.即a +b +c 的最小值为4+.【点评】求解三角形中有关边长、角、面积的最值(范围)问题时,常利用正弦定理、余弦定理与三角形面积公式,建立a +b ,ab ,a 2+b 2之间的等量关系与不等关系,然后利用函数或基本不等式求解.10.设函数f(x)=12cos 2x ―43sin x cos x ―5.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC 中,角A 、B 、C 的对边长分别为a 、b 、c .若f(A)=―5,a =3,求△ABC 周长的取值范围.【答案】(1)π,[―43+1,43+1](2)(3+3,33].【解析】(1)f (x )=12cos 2x ―43sin x cos x ―5=12cos 2x ―23sin 2x ―56cos 221216x x x π⎛⎫=-+=++ ⎪⎝⎭,T π∴=,值域为[―43+1,43+1].(2)由f(A)=―5,可得212cos cos A A A =,因为三角形为锐角△ABCsin A A =,即tan A =,3A π=,由正弦定理sin sin sin a b c A B C ==,得2sin b B =,22sin 2sin()3c C B π==-,所以212sin sin()2(sin sin )32a b c B B B B B π⎡⎤++=++-=++⎢⎥⎣⎦32(sin ))26B B B π==++,因为△ABC 为锐角三角形,所以02B π<<,02C π<<,即022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<,所以2363B πππ<+<sin(16B π<+≤,即36B π+<+≤,所以周长的取值范围为区间(3+3,33].【点评】在解三角形的周长范围时,将a +b +c 转化为含一个角的三角函数问题,利用三角函数的值域,求周长的取值范围,是常用解法.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a +b )(sin A ―sin B )=(b +c )sin C .(1)求角A 的大小;(2)若点D 是BC 的中点,且AD =2,求△ABC 的面积的最大值.【答案】(1)23π;(2)23.【解析】(1)由题意得(a +b)(a ―b)=(b +c)c ,∴b 2+c 2―a 2=―bc ,1cos 2A ∴=-,()0,A π∈,23A π∴=.(2)1()2AD AB AC =+u u u r u u u r u u u r ,()()2222211244AD AB AC AB AC AB AC AB AC =++⋅=+-⋅u u u r u u u r u u u r u u u r u u u r ,()1224AB AC AB AC ∴≥⋅-⋅,当且仅当AB =AC 时,等号成立,∴AB ⋅AC ≤8,11sin120822S AB AC =⋅︒≤⨯=故△ABC 的面积的最大值是23.【点评】用三角形中线向量进行转化是解题关键.12.如图,在△ABC 中,AB =2AC ,∠BAC 的角平分线交BC 于点D .(1)求ABD ADCS S △△的值;(2)若AC =1,BD =2,求AD 的长.【答案】(1)2;(2)1.【解析】(1)∵AD 为∠BAC 的角平分线,∴∠BAD =∠CAD ,即sin ∠BAD =sin ∠CAD,∴1sin 21sin 2ABDADC AB AD B AB AD S S AC AD A ACC D ⋅∠∠==⋅V V ,又∵AB =2AC ,∴2ABD ADC S S =△△.(2)由(1)知2ABD ADC S AB S AC ==△△,而1212ABDADC BC h S BC S CDCD h ⋅==⋅△△,2AB BD AC CD ∴==且AC =1,BD =2,∴2AB =,CD =∵∠BAD =∠CAD ,∴cos ∠BAD =cos ∠CAD ,在△ABD 中,22222422cos 2224AB AD BD AD AD BAD AB AD AD AD+-+-+∠===⋅⨯⨯,在△ACD 中,2222211122cos 2212AD AD AC AD CD CAD AC AD AD AD +-++-∠===⋅⨯⨯,∴2212242AD AD AD AD ++=,∴AD =1.【点评】本题考查三角形面积公式和余弦定理的应用,解题的关键在于对角平分线的性质的理解和运用,考查解题和运用能力.13.在ΔABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且(a +b +c)(a +b ―c)=3ab .(1)求角C 的值;(2)若c =2,且ΔABC 为锐角三角形,求a +b 的取值范围.【答案】(1)3C π=;(2)(23,4].【解析】(1)由题意知(a +b +c)(a +b ―c)=3ab ,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵C ∈(0,π),∴3C π=.(2)由正弦定理可知,2sin sin sin 3a b A B π===a A =,b B =,∴)2sin sin sin sin 3a b A B A A π⎡⎤⎛⎫+=+=+- ⎪⎢⎥⎝⎭⎣⎦2cos 4sin 6A A A π⎛⎫=+=+ ⎪⎝⎭,又∵ΔABC 为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上a +b 的取值范围为(23,4].【点评】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.一、选择题.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则“b cos A ―c <0”,是“△ABC 为锐角三角形”的( )条件.A .充分必要B .充分不必要C .必要不充分D .既不充分也不必要【答案】C高频易错题即sin(A +B)=sin A cos B +sin B cos A >sin B cos A ,∴sin A cos B >0,因为sin A >0,∴cos B >0,所以B 为锐角.当B 为锐角时,△ABC 不一定为锐角三角形;当△ABC 为锐角三角形时,B 一定为锐角,所以“b cos A ―c <0”是“△ABC 为锐角三角形”的必要非充分条件,故选C .【点评】判断充分必要条件,一般有三种方法:(1)定义法;(2)集合法;(3)转化法.我们要根据实际情况灵活选择方法,本题选择的是定义法判断充分必要条件.二、填空题.2.设锐角三角形ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,B =2A ,则b 的取值范围为___________.【答案】(22,23)【解析】由sin2sin b a A A=,得4cos b A =,由0290045A A ︒<<︒⇒︒<<︒,01803903060A A ︒<︒-<︒⇒︒<<︒,故3045cos A A ︒<<︒⇒<<cos A <<b =4cos A ∈(22,23).【点评】该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理,以及锐角三角形的条件,属于简单题目.三、解答题.3.已知a >0,函数()2sin(2)26f x a x a b π=-+++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,―5≤f (x )≤1.(1)求常数a ,b 的值;(2)设()2g x f x π⎛⎫=+ ⎪⎝⎭且lg g (x )>0,求g (x )的单调区间.【答案】(1)2a =,5b =-;(2)递增区间为,6k k k πππ⎛⎫+∈ ⎪⎝⎭Z ,;递减区间为,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ,.【解析】(1)由0,2x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin(2),162x π⎡⎤+∈-⎢⎥⎣⎦,所以[]2sin(2)2,6a x a a π-+∈-,所以f (x )∈[b ,3a +b],又因为―5≤f (x )≤1,可得531b a b =-⎧⎨+=⎩,解得2a =,5b =-.(2)由(1)得()4sin(2)16f x x π=-+-,则()74sin(214sin(21266g x f x x x πππ⎛⎫=+=-+-=+- ⎪⎝⎭,又由lg g (x )>0,可得g (x )>1,所以4sin(2116x π+->,即1sin(2)62x π+>,所以5222666k x k k πππππ+<+<+∈Z ,,当222662k x k k πππππ+<+≤+∈Z ,时,解得6k x k k πππ<≤+∈Z ,,此时函数g (x )单调递增,即g (x )的递增区间为,6k k k πππ⎛⎫+∈ ⎪⎝⎭Z ,;当5222266k x k k πππππ+<+<+∈Z 时,解得63k x k k ππππ+<<+∈Z ,,此时函数g (x )单调递减,即g (x )的递减区间为,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ,.【点评】本题主要考查了三角函数的图象与性质的综合应用,其中解答中根据三角函数的性质,求得函数的解析式,熟练应用三角函数的性质是解答的关键,着重考查推理与运算能力.一、选择题.1.如图所示,扇形OQP 的半径为2,圆心角为3π,C 是扇形弧上的动点,四边形ABCD 是扇形的内接矩形,则S ABCD 的最大值是()AB.CD .23【答案】A【解析】如图,记∠COP =α,在Rt △OPC 中,2cos OB α=,2sin BC α=,在Rt △OAD中,OA DA BC α===,所以2cos AB OB OA αα=-=,设矩形ABCD 的面积为S,(2cos )2sin S AB BC ααα=⋅=⋅精准预测题24sin cos 2sin 22ααααα==+-)6πα=+,由03πα<<,所以当262ππα+=,即6πα=时,S =,故选A .【点评】本题考查在实际问题中建立三角函数模型,求解问题的关键是根据图形建立起三角模型,将三角模型用所学的恒等式变换公式进行求解.2.已知函数()2sin 26f x x π⎛⎫=+⎪⎝⎭,现将()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的解析式为( )A .221124x y +=B .sin 3y x π⎛⎫=+⎪⎝⎭C .2sin 43y x π⎛⎫=+⎪⎝⎭D .2sin 3y x π⎛⎫=+⎪⎝⎭【答案】C【解析】将()y f x =的图象向左平移12π个单位得2sin 22sin 21263y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()2sin 43y g x x π⎛⎫==+⎪⎝⎭,故选C .【点评】在三角函数平移变换中,y =sin ωx 向左平移ϕ个单位得到的函数解析式为y =sin[ω(x +φ)]=sin(ωx +ωφ),而不是y =sin(ωx +),考查运算求解能力,是基础题.3.(多选)如图是函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象,则下列说法正确的是( )A .ω=2B .,06π⎛⎫-⎪⎝⎭是函数,f (x )的一个对称中心C .23πϕ=D .函数f (x )在区间4,5ππ⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【解析】由题知,A =2,函数f (x )的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,所以22T πω==,故A 正确;因为1111112sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11262k ππϕπ+=+,k ∈Z ,解得423k πϕπ=-,k ∈Z ,又|φ|<π,所以23πϕ=,故C 正确;函数()22sin 23f x x π⎛⎫=+⎪⎝⎭,因为22sin 22sin 06633f ππππ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以,06π⎛⎫-⎪⎝⎭不是函数f (x )的一个对称中心,故B 错误;令23222232m x m πππππ+≤+≤+,m ∈Z ,得51212m x mx πππ-≤≤+,m ∈Z ,当m =―1时,1371212x ππ-≤≤-,因为4137,,51212ππππ⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数f (x )在区间4,5ππ⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确,故选ACD .【点评】已知()(sin 0,0)()f x A x A ωϕω+>>=的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由2Tπω=,即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+=(或0x ωϕπ+=),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.二、解答题.4.已知函数f(x)=cos(ωx)(ω>0)的最小正周期为π.(1)求ω的值及函数()()0,42g x x f x x ππ⎛⎫⎡⎤=--∈ ⎪⎢⎥⎝⎭⎣⎦,的值域;(2)在△ABC 中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,若0,2A π⎛⎫∈ ⎪⎝⎭,()12f A =-,△ABC 的面积为33,b ―c =2,求a 的值.【答案】(1)ω=2,值域为[―1,2];(2)4.【解析】(1)因为函数f(x)=cos(ωx)的最小正周期为π,由2T ππω==,2ω=,又因为ω>0,所以ω=2.此时f(x)=cos 2x ,则得()2cos 24g x x x π⎛⎫=-- ⎪⎝⎭,即g(x)=3sin 2x ―cos 2x ,即()2sin 26g x x π⎛⎫=-⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,[]2sin 21,26x π⎛⎫-∈- ⎪⎝⎭,所以所求函数的值域为[―1,2].(2)由题意得1cos 22A =-,因为0,2A π⎛⎫∈ ⎪⎝⎭,则得2A ∈(0,π),所以223A π=,解得3A π=,因为△ABC 的面积为33,则得1sin 2bc A =,即1sin 23bc π=,即bc =12.又因为b ―c =2,由余弦定理,得a =b 2+c 2―2bc cos A =b 2+c 2―bc =(b ―c )2+bc =22+12=4,所以a =4.【点评】本题考查求三角函数的值域,考查余弦定理解三角形,以及三角形面积公式.三角函数问题中,首先需利用诱导公式、二倍角公式、两角和与差的正弦(余弦)公式化函数为一个角的一个三角函数形式(主要是f(x)=A sin(ωx +ϕ)+k 形式),然后利用正弦函数性质确定求解.5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B ―C )=c sin(B +C ).(1)求角C 的大小;(2)若2a +b =8,且△ABC 的面积为23,求△ABC 的周长.【答案】(1)3C π=;(2)6+23.【解析】(1)∵a sin(A +B ―C)=c sin(B +C),∴sin A sin(π―2C)=sin C sin A ,∴2sin A sin C cos C =sin C sin A ,∵sin A sin C ≠0,1cos 2C ∴=,0C π<<,3C π∴=.(2)由题意可得12=∴ab =8,∵2a +b =8联立可得,a =2,b =4,由余弦定理可得,c 2=12,c =23,此时周长为6+23.【点评】本题主要考查了三角形的内角和诱导公式在三角化简中的应用,还考查了三角形的面积公式及余弦定理,属于基础题.6.如图,矩形ABCD 是某个历史文物展览厅的俯视图,点E 在AB 上,在梯形DEBC 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观.在AE 上点P 处安装一可旋转的监控摄像头,∠MPN 为监控角,其中M 、N 在线段DE (含端点)上,且点M 在点N 的右下方.经测量得知:AD =6米,AE =6米,AP =2米,4MPN π∠=.记∠EPM =θ(弧度),监控摄像头的可视区域△PMN 的面积为S 平方米.(1)分别求线段PM 、PN 关于θ的函数关系式,并写出θ的取值范围;(2)求S 的最小值.【答案】(1)4sin cos PM θθ=+,PN =,30arctan 34πθ≤≤-;(2)8(2―1)平方米.【解析】(1)在△PME 中,∠EPM =θ,4PE AE AP =-=米,4PEM π∠=,34PME πθ∠=-,由正弦定理得sin sin PM PEPEM PME=∠∠,所以sin 4sin sin cos PE PEM PM PME θθ⨯∠===∠+;同理在PNE △中,由正弦定理得sin sin PN PEPEN PNE=∠∠,所以sin sin PE PEN PN PNE ⨯∠===∠当M 与E 重合时,θ=0;当N 与D 重合时,tan ∠APD =3,即∠APD =arctan 3,3πarctan 3arctan 344πθπ=--=-,所以30arctan 34πθ≤≤-.(2)△PMN 的面积214sin 2cos sin cos S PM PN MPN θθθ=⨯⨯∠=+481cos 21sin 2cos 21sin 222θθθθ===++++,因为30arctan 34πθ≤≤-,所以当242ππθ+=,即30,arctan 384ππθ⎡⎤=∈-⎢⎥⎣⎦时,S)81=-,所以可视区域△PMN 面积的最小值为8(2―1)平方米.【点评】本题考查解三角形的应用.掌握三角函数的性质是解题关键.解题方法是利用正弦定理或余弦定理求出三角形的边长,面积,利用三角函数的恒等变换化函数为基本三角函数形式,然后由正弦函数性质求最值.7.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若23cos 2A +cos 2A =0,且△ABC 为锐角三角形,a =7,c =6,求b 的值;(2)若a =3,3A π=,求b +c 的取值范围.【答案】(1)5b =;(2)b +c ∈(3,23].【解析】(1)22223cos cos 223cos 2cos 10A A A A +=+-=Q ,∴21cos 25A =,又∵A 为锐角,1cos 5A =,而a 2=b 2+c 2―2bc cos A ,即2121305b b --=,解得b =5或135b =-(舍去),∴b =5.(2)由正弦定理可得()22sin sin 2sin sin 36b c B C B B B ππ⎡⎤⎛⎫⎛⎫+=+=+-=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,203B π<<Q ,∴5666B πππ<+<,∴1sin 126B π⎛⎫<+≤ ⎪⎝⎭,∴b +c ∈(3,23].【点评】本题考查三角函数的恒等变换,三角形的正弦定理和余弦定理的运用,以及运算能力,属于中档题.。
高三数学第一学期中复习专题-三角函数(教师用)函数与导数
函数与导数班级 姓名 成绩一.填空题1.函数12+=+x a y (1,0≠>a a )恒过定点2.函数y =的定义域为 3.223y x x =+-,[]1,2-∈x 的值域是4.已知函数2(1)4f x x x -=-,函数()f x 的解析式为5.函数y =的单调增区间是6.不等式2212()4x x x +-≤的解集为 7.若0()ln 0xe x g x x x ⎧≤=⎨>⎩,则1(())2g g = 8.曲线2ln 3++=x x y 在点P 0处的切线方程为014=--y x ,则点P 0的坐标是9.设)(x f 为定义在R 上的奇函数,当0≥x 时,b x x f x ++=22)((b 为常数),则=-)1(f10.若函数h (x )=2x -k x +k 3在(2,+∞)上是增函数,则实数k 的取值范围是________ 11.函数错误!未找到引用源。
在定义域R 内可导,若错误!未找到引用源。
,且当错误!未找到引用源。
时,错误!未找到引用源。
,设错误!未找到引用源。
则c b a ,,的大小关系是 (用“<”连结) 12.函数2x +2x-3,x 0x)=-2+ln x,x>0f ⎧≤⎨⎩(的零点个数为 13.定义在R 上的函数)(x f 满足)(x f = ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则)2009(f 的值为 14.已知()x xe x f =,()()a x x g ++-=21,若∈∃21,x x R ,使得()()12x g x f ≤成立,则实数a 的取值范围是____________.15已知a 为正实数,函数22()f x ax a x c =-+的图象与x 轴交于,A B 两点,与y 轴交于C 点.且△ABC 为直角三角形.则线段AB 的最小值为二.解答题16.已知函数2()1x f x x =+ (1)证明:该函数是奇函数; (2)证明:该函数在区间上(],1-∞-是减函数.17.已知函数c bx ax x x f +++=23)(,曲线)(x f y =在点1=x 处的切线为l :013=+-y x ,若32=x 时,)(x f y =有极值.(1)求c b a ,,的值;(2)求)(x f y =在[]1,3-上的最大值和最小值.18.已知函数)(ln )(R a ax x x f ∈-=.(1)求函数)(x f y =的单调区间;(2)当0>a 时,求函数)(x f 在[1,2]上的最小值19.设函数x x xe e x x f -+=221)(. (1)求)(x f 的单调区间;(2)若当[]2,2-∈x 时,不等式m x f >)(恒成立,求实数m 的取值范围.20.已知函数R a ax x x f ∈-+=,1cos )(2.(1)求证:函数)(x f 是偶函数;(2)当1=a 时,求函数)(x f 在[]ππ,-上的最大值及最小值;(3)若对于任意的实数x 恒有0)(≥x f ,求实数a 的取值范围.21.某水产养殖场的休闲垂钓水域如图所示,水域由以AB 为直径的半圆和以AB 为斜边的等腰直角三角形ABD 组成,其中,AD DB 和圆弧AEFB 为水域岸边, O 为半圆圆心,200AB =m .为方便客人垂钓,决定架设两座木桥,DE DF ,,E F 点在岸边上,且2(0)4EOA FOB παα∠=∠=<<.据估测,岸边,,,AD DB AE BF 上单位长度(m )内垂钓的人数均为k (k 为常数),桥,DE DF 上和岸边圆弧EF 上单位长度(m )内垂钓的人数均为2k .水域垂钓总人数记为y .(1)求y 关于α的函数表达式;(2)估测当α取何值时,垂钓总人数最多?(第21题图) D。
函数的单调性(教师版)高考数学习题与解析
专题3单调性问题1.已知函数()()f x lnx ln a x =+-的图象关于直线1x =对称,则函数()f x 的单调递增区间为()A.(0,2)B.[0,1)C.(-∞,1]D.(0,1]【解析】 函数()()f x lnx ln a x =+-的图象关于直线1x =对称,(2)()f x f x ∴-=,即(2)[(2)]()ln x ln a x lnx ln a x -+--=+-,即(2)(2)()ln x a ln x lnx ln a x +-+-=+-,2a ∴=.()(2)(2)f x lnx ln x lnx x ∴=+-=-,02x <<.由于2(2)(1)1y x x x =-=--+为开口向下的抛物线,其对称轴为1x =,定义域为(0,2),∴它的递增区间为(0,1],由复合函数的单调性知,()(2)f x lnx ln x =+-的单调递增区间为(0,1],故选D2.若函数()f x 的定义域为D 内的某个区间I 上是增函数,且()()f x F x x=在I 上也是增函数,则称()y f x =是I 上的“完美函数”,已知()1x g x e x lnx =+-+,若函数()g x 是区间[2m,)+∞上的“完美函数”,则正整数m 的最小值为()A.1B.2C.3D.4【解析】()1x g x e x lnx =+-+ ,0x >,1()1x g x e x ∴'=+-在(0,)+∞单调递增,1()102g '=>,∴可以得出:()g x 在1[2,)+∞上是单调递增.1()x e x lnx G x x +-+=,2(1)2()x e x lnx G x x -+-∴'=,0x >,设()2x x m x xe e lnx =--+,1()0xm x xe x'=+>,()m x 在(0,)+∞上单调递增,1()2202m ln =-<,m (1)2020e e =--+=-<,32313()2()0222m e ln =-+>,∴在3[2,)+∞上,有()0G x '>成立,∴函数()()g x G x x =在3[2,)+∞上是单调递增函数,综合判断:()1x g x e x lnx =+-+,与()()g x G x x =在3[2,)+∞上都是单调递增函数,()1x g x e x lnx =+-+,与()()g x G x x=在[1,)+∞上不是都为单调递增函数, 函数()g x 是区间[2m,)+∞上的“完美函数”,3m ∴,即整数m 最小值为3.故选C 3.设函数2()x f x e ax =+在(0,)+∞上单调递增,则实数a 的取值范围为()A.[1-,)+∞B.(1,)-+∞C.[2-,)+∞D.(2,)-+∞【解析】由函数2()x f x e ax =+在(0,)+∞上单调递增,则()0f x '恒成立,2()2x f x e a ∴'=+,即22x a e -,(0,)x ∈+∞,由20x e >,则222x e -<-,则2a -,故选C4.若函数2()2f x x lnx =-在其定义域内的一个子区间[1k -,1]k +内不是单调函数,则实数k 的取值范围是A.[1,2)B.(1,2)C.3[1,2D.3(1,)2【解析】因为()f x 定义域为(0,)+∞,又1()4f x x x '=-,由()0f x '=,得12x =,当1(0,)2x ∈时,()0f x '<,当1(2x ∈,)+∞时,()0f x '>,据题意,111210k k k ⎧-<<+⎪⎨⎪->⎩,解得:312k <<,故选D 5.若函数2()2f x lnx ax =+-在区间1(,2)2内存在单调递增区间,则实数a 的取值范围是()A.(-∞,2]-B.(2,)-+∞C.1(2,)8--D.1[,)8-+∞【解析】2121()2ax f x ax x x+'=+=,2210ax +>在1(,2)2内有解,所以21(2min a x >-,由于1(,2)2x ∈,所以21(,4)4x ∈,211((2,28x -∈--,所以2a >-,故选B6.若函数2()()()f x lnx x b b R =+-∈在区间1[2,2]上存在单调递增区间,则实数b 的取值范围是()A.3(,)2-∞B.9(,4-∞C.3(2-,9)4D.3(2,)+∞【解析】 函数()f x 在区间1[2,2]上存在单调增区间,∴函数()f x 在区间1[2,2]上存在子区间使得不等式()0f x '>成立.211221()[2()]2x bx f x x b x x -+'=+-=,设2()221h x x bx =-+,则h (2)0>或1()02h >,即8410b -+>或1102b -+>,得94b <.故选B 7.设12x <<,则lnx x 、2()lnxx 、22lnx x 的大小关系是()A.222()lnx lnx lnx x x x <<B.222(lnx lnx lnx x x x <<C.222()lnx lnx lnx x x x<<D.222(lnx lnx lnx x x x<<【解析】令()(12)f x x lnx x =-<<,则11()10x f x x x-'=-=>∴函数()(12)y f x x =<<为增函数,()f x f ∴>(1)10=>0x lnx ∴>>∴01lnx x <<,∴2()lnx lnxx x<,又22222(2)0lnx lnx lnx xlnx x lnx x x x x ---==>,∴222()lnx lnx lnx x x x<<,故选A 8.已知函数(1)y f x =-的图象关于直线1x =对称,且当(0,)x ∈+∞时,()||lnx f x x =.若(2ea f =-,b f =(2),2()3c f =,则a ,b ,c 的大小关系是()A.b a c >>B.a b c >>C.a c b >>D.c b a>>【解析】由函数(1)y f x =-的图象关于直线1x =对称,可知()y f x =的图象关于y 轴对称,即()f x 为偶函数,因为当(0,)x ∈+∞时,,1||()||,01lnx x lnx lnx xf x lnx x x x x⎧>⎪⎪===⎨-⎪<<⎪⎩,则2(()222e lne e af f =-==b f =(2)22ln =,3222273()23338(232223lnln ln ln c f ---=====,因为27228e <<,所以27228e ln ln ln <<,所以a b c <<.故选D 9.下列命题为真命题的个数是()①22ee >;②223ln >;③1ln e ππ<;④22ln ln ππ<.A.1B.2C.3D.4【解析】对于①,设()f x elnx x =-,0x >,()1e e xf x x x-∴'=-=,当0x e <<时,()0f x '>,函数单调递增,当x e >时,()0f x '<,函数单调递减,()f x f ∴<(e)0elne e =-=,f ∴(2)22eln f =-<(e)0=,即22eln >,22ee >,故①正确;对于②,2288e ln lne >∴> .322ln ∴>,223ln >;因此正确,对于③,设()lnx g x x =,21()lnxg x x -'=,当0x e <<时,()0f x '>,函数单调递增,当x e >时,()0f x '<,函数单调递减,e π< ,g ∴(e)()g π>,即1ln e ππ<;故③正确.对于④,22ππ< ,∴22ln ln ππ<.,④正确;正确的命题的个数为4个,故选D 10.下列命题为真命题的个数是()①32ln <;②ln π<③15<;④32eln <A.1B.2C.3D.4【解析】构造函数()lnx f x x =,导数为21()lnxf x x -'=,当0x e <<时,()0f x '>,()f x 递增,x e >时,()0f x '<,()f x 递减,可得x e =处()f x 取得最大值1e,232222ln ln ⇔<⇔<2e <<可得f f <(2),故①正确;ln π<⇔<e <<,可得f f <,故②错误;15215215215ln ln <⇔<,由215e e -<-,可得f (2)(15)f <,故③正确;因为22e >,(22)f f <(e),即2222ln lne e <,即32122ln e <,则3242eln <,故④正确.故选C 11.已知函数()()x x f x e lnx ae a R =-∈,若()f x 在(0,)+∞上单调递增,则实数a 的取值范围是(-∞,1]【解析】根据题意,函数()xxf x e lnx ae =-,则1()()x xx x e f x e lnx ae e lnx a x x'=+-=+-,设1()g x lnx x =+,则22111()x g x x x x-'=-=,易得在区间(0,1)上,()0g x '<,即()g x 在(0,1)上为减函数,在区间(1,)+∞上,()0g x '>,即()g x 在(1,)+∞上为增函数,故()g x 在(0,)+∞有最小值g (1)1=,没有最大值,若()f x 在(0,)+∞上单调递增,则1()()0x xx x e f x e lnx ae e lnx a x x'=+-=+-在(0,)+∞上恒成立;即()0g x a -在(0,)+∞上恒成立,即()a g x 在(0,)+∞上恒成立,必有()1min a g x =,故a 的取值范围为(-∞,1];故答案为:(-∞,1]12.已知函数2,0()(0)21,0x e x f x a ax x -⎧-=>⎨->⎩,对于下列命题:(1)函数()f x 的最小值是1-;(2)函数()f x 在R 上是单调函数;(3)若()0f x >在1(2,)+∞上恒成立,则a 的取值范围是1a >,其中真命题的序号是(1).【解析】对于(1),由图只需说明在点0x =处函数()f x 的最小值是1-;故正确;对于(2),由图象说明函函数()f x 在R 上不是单调函数;故错;对于(3)由图象说明函函数()f x 在1(2,)+∞上是单调增函数,()0min f x >即可,即1()02f 解,得a 的取值范围是1a ;故错;答案为:(1)13.已知函数2()()()f x lnx x a a R =+-∈在区间1[2,2]上存在单调递增区间,则实数a 的取值范围是9(,)4-∞.【解析】 函数()f x 在区间1[2,2]上存在单调增区间,∴函数()f x 在区间1[2,2]上存在子区间使得不等式()0f x '>成立.21221()2()]x ax f x x a x x -+'=+-=,设2()221h x x ax =-+,则h (2)0>或1()02h >,即8410a -+>或1102a -+>,得94a <,故答案为9(,)4-∞14.设函数23()()x x axf x a R e +=∈,()f x 在[3,)+∞上为减函数,则a 的取值范围是.【解析】23(6)()xx a x af x e-+-+'=,令2()3(6)g x x a x a =-+-+,由()0g x =,解得216366a a x -+=,226366a a x -+=.当1x x <时,()0g x <,即()0f x '<,此时函数()f x 为减函数;当12x x x <<时,()0g x >,即()0f x '>,此时函数()f x 为增函数;当2x x >时,()0g x <,即()0f x '<,此时函数()f x 为减函数.由()f x 在[3,)+∞上为减函数,可知:2263636a a x -++=,解得92a -.因此a 的取值范围为9[,)2-+∞解法二:由()f x 在[3,)+∞上为减函数,()0f x ∴',可得2361x xa x -+-,在[3,)+∞上恒成立.令236()1x x u x x -+=-,223[(1)1]()0(1)x u x x --+'=<-,()u x ∴在[3,)+∞上单调递减,a u ∴(3)92=-.因此a 的取值范围为9[,)2-+∞。
2023年高考数学总复习第三章 导数及其应用第2节:导数与函数的单调性(教师版)
2023年高考数学总复习第三章导数及其应用第2节导数与函数的单调性考试要求 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.利用导数研究函数的单调性,并会解决与之有关的方程(不等式)问题.1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.3.单调性的应用若函数y=f(x)在区间(a,b)上单调,则y=f′(x)在该区间上不变号.若函数f(x)在区间(a,b)上递增,则f′(x)≥0,所以“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.1.思考辨析(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数在(a,b)内单调递减与函数的单调递减区间为(a,b)是不同的.()(4)函数f(x)=x-sin x在R上是增函数.()答案(1)×(2)√(3)√(4)√解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.2.(易错题)函数f(x)=x+ln(2-x)的单调递增区间为()A.(-∞,1)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案A解析由f(x)=x+ln(2-x),得f′(x)=1-12-x=1-x2-x(x<2).令f′(x)>0,即1-x2-x>0,解得x<1.∴函数f(x)=x+ln(2-x)的单调递增区间为(-∞,1).3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图像如图所示,则函数y=f(x)的图像可能是()答案D解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图像易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R答案B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,故选B.5.(易错题)若函数f(x)=13x3-32x2+ax+4的单调递减区间为[-1,4],则实数a的值为________.答案-4解析f′(x)=x2-3x+a,且f(x)的单调递减区间为[-1,4],∴f′(x)=x2-3x+a≤0的解集为[-1,4],∴-1,4是方程f′(x)=0的两根,则a=(-1)×4=-4.6.(2021·青岛检测)已知函数f(x)=sin2x+4cos x-ax在R上单调递减,则实数a 的取值范围是________.答案[3,+∞)解析f′(x)=2cos2x-4sin x-a=2(1-2sin2x)-4sin x-a=-4sin2x-4sin x+2-a=-(2sin x+1)2+3-a.由题设,f′(x)≤0在R上恒成立.因此a≥3-(2sin x+1)2恒成立,则a≥3.考点一不含参函数的单调性1.函数f(x)=x+3x+2ln x的单调递减区间是()A.(-3,1)B.(0,1)C.(-1,3)D.(0,3)答案B 解析法一函数的定义域是(0,+∞),f ′(x )=1-3x 2+2x ,令f ′(x )=1-3x 2+2x<0,得0<x <1,故所求函数的单调递减区间为(0,1),故选B.法二由题意知x >0,故排除A 、C 选项;又f (1)=4<f (2)=72+2ln 2,故排除D选项.故选B.2.函数f (x )=(x -3)e x 的单调递增区间为________.答案(2,+∞)解析f (x )的定义域为R ,f ′(x )=(x -2)e x ,令f ′(x )>0,得x >2,∴f (x )的单调递增区间为(2,+∞).3.已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________.答案0,π6,5π6,π解析f ′(x )=1-2sin x ,x ∈(0,π),令f ′(x )=0,得x =π6或x =5π6,当0<x <π或5π<x <π时,f ′(x )>0,∴f (x )0,π6,5π6,π.感悟提升确定函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.考点二讨论含参函数的单调性例1已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数f (x )的定义域为(0,+∞),f′(x)=ax-(a+1)+1x=ax2-(a+1)x+1x=(ax-1)(x-1)x.(1)当0<a<1时,1a>1,∴x∈(0,1)f′(x)>0;x f′(x)<0,∴函数f(x)在(0,1)(2)当a=1时,1a=1,∴f′(x)≥0在(0,+∞)上恒成立,∴函数f(x)在(0,+∞)上单调递增;(3)当a>1时,0<1a<1,∴x(1,+∞)时,f′(x)>0;x f′(x)<0,∴函数f(x)(1,+∞).综上,当0<a<1时,函数f(x)在(0,1)减;当a=1时,函数f(x)在(0,+∞)上单调递增;当a>1时,函数f(x)(1,+∞).感悟提升 1.含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x=0时取到),f(x)在R上是增函数.训练1已知f (x )=a (x -ln x )+2x -1x 2,a >0,讨论f (x )的单调性.解f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3=a (x -1)x 3x -2a x +2a (1)当0<a <2时,2a>1,当x (0,1)∪2a,+∞时,f ′(x )>0,当x 1,2a 时,f ′(x )<0.(2)当a =2时,2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )递增.(3)当a >2时,0<2a <1,当x 0,2a ∪(1,+∞)时,f ′(x )>0,当x 2a,1时,f ′(x )<0.综上所述,当0<a <2时,f (x )在(0,1)2a ,+∞内递增,在1,2a 内递减.当a =2时,f (x )在(0,+∞)内递增;当a >2时,f (x )0,2a (1,+∞)2a,1.考点三根据函数单调性求参数值(范围)例2(经典母题)已知x =1是f (x )=2x +bx +ln x 的一个极值点.(1)求函数f (x )的单调递减区间;(2)设函数g (x )=f (x )-3+ax,若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围.解(1)f (x )=2x +bx+ln x ,定义域为(0,+∞).∴f ′(x )=2-b x 2+1x =2x 2+x -bx2.因为x=1是f(x)=2x+bx+ln x的一个极值点,所以f′(1)=0,即2-b+1=0.解得b=3,经检验,适合题意,所以b=3.所以f′(x)=2x2+x-3x2,令f′(x)<0,得0<x<1.所以函数f(x)的单调递减区间为(0,1).(2)g(x)=f(x)-3+ax=2x+ln x-ax(x>0),g′(x)=2+1x+ax2(x>0).因为函数g(x)在[1,2]上单调递增,所以g′(x)≥0在[1,2]上恒成立,即2+1x+ax2≥0在[1,2]上恒成立,所以a≥-2x2-x在[1,2]上恒成立,所以a≥(-2x2-x)max,x∈[1,2].因为在[1,2]上,(-2x2-x)max=-3,所以a≥-3.所以实数a的取值范围是[-3,+∞).迁移在本例(2)中,若函数g(x)在区间[1,2]上不单调,求实数a的取值范围.解∵函数g(x)在区间[1,2]上不单调,∴g′(x)=0在区间(1,2)内有解,则a=-2x2-x=-+18在(1,2)内有解,易知该函数在(1,2)上是减函数,∴a=-2x2-x的值域为(-10,-3),因此实数a的取值范围为(-10,-3).感悟提升 1.已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围.2.如果能分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.3.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.训练2(1)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是()A.13,+∞ B.-∞,13C.13,+∞ D.-∞,13(2)(2022·郑州调研)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案(1)C(2)(1,2]解析(1)由y =x 3+x 2+mx +1是R 上的单调函数,所以y ′=3x 2+2x +m ≥0恒成立,或y ′=3x 2+2x +m ≤0恒成立,显然y ′=3x 2+2x +m ≥0恒成立,则Δ=4-12m ≤0,所以m ≥13.(2)易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x.又x >0,令f ′(x )=x -9x ≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,a -1>0,a +1≤3,解得1<a ≤2.考点四与导数有关的函数单调性的应用角度1比较大小例3(1)已知函数f (x )=x sin x ,x ∈R ,则π5f (1),f -π3的大小关系为()A.-π3f (1)>π5B.f (1)>-π3π5C.π5f (1)>-π3D.-π3π5>f (1)(2)已知y =f (x )是定义在R 上的奇函数,且当x <0时不等式f (x )+xf ′(x )<0成立,若a =30.3·f (30.3),b =log π3·f (log π3),c =log 319·则a ,b ,c 的大小关系是()A.a >b >cB.c >b >aC.a >c >bD.c >a >b答案(1)A(2)D解析(1)因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以又当x f ′(x )=sin x +x cos x >0,所以函数f (x )f (1)<f (1)> A.(2)设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ),又当x <0时,f (x )+xf ′(x )<0,∴x <0时,g ′(x )<0,g (x )在(-∞,0)上单调递减.由y =f (x )在R 上为奇函数,知g (x )在R 上为偶函数,∴g (x )在(0,+∞)上是增函数,∴c =g (-2)=g (2),又0<log π3<1<30.3<3<2,∴g (log π3)<g (30.3)<g (2),即b <a <c .角度2解不等式例4已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有f (x )>f ′(x )ln 2成立,若f (-2)=2,则不等式f (x )>-2x -1的解集为()A.(-2,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,2)答案D解析f (x )>f ′(x )ln 2⇔f ′(x )-ln 2·f (x )<0.令g(x)=f(x)2x,则g′(x)=f′(x)-f(x)·ln22x,∴g′(x)<0,则g(x)在(-∞,+∞)上是减函数.由f(-2)=2,且f(x)在R上是奇函数,得f(2)=-2,则g(2)=f(2)22=-12,又f(x)>-2x-1⇔f(x)2x>-12=g(2),即g(x)>g(2),所以x<2.感悟提升 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f(x)与f′(x)的不等关系时,常构造含f(x)与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.训练3(1)已知函数f(x)=3x+2cos x.若a=f(32),b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<cB.c<b<aC.b<a<cD.b<c<a(2)(2021·西安模拟)函数f(x)的导函数为f′(x),对任意x∈R,都有f′(x)>-f(x)成立,若f(ln2)=12,则满足不等式f(x)>1e x的x的取值范围是()A.(1,+∞)B.(0,1)C.(ln2,+∞)D.(0,ln2)答案(1)D(2)C解析(1)由题意,得f′(x)=3-2sin x.因为-1≤sin x≤1,所以f′(x)>0恒成立,所以函数f(x)是增函数.因为2>1,所以32>3.又log 24<log 27<log 28,即2<log 27<3,所以2<log 27<32,所以f (2)<f (log 27)<f (32),即b <c <a .(2)对任意x ∈R ,都有f ′(x )>-f (x )成立,即f ′(x )+f (x )>0.令g (x )=e x f (x ),则g ′(x )=e x [f ′(x )+f (x )]>0,所以函数g (x )在R 上单调递增.不等式f (x )>1e x 即e xf (x )>1,即g (x )>1.因为f (ln 2)=12,所以g (ln 2)=e ln 2f (ln 2)=2×12=1.故当x >ln 2时,g (x )>g (ln 2)=1,所以不等式g (x )>1的解集为(ln 2,+∞).1.如图是函数y =f (x )的导函数y =f ′(x )的图像,则下列判断正确的是()A.在区间(-2,1)上f (x )单调递增B.在区间(1,3)上f (x )单调递减C.在区间(4,5)上f (x )单调递增D.在区间(3,5)上f (x )单调递增答案C解析在区间(4,5)上f ′(x )>0恒成立,∴f (x )在区间(4,5)上单调递增.2.函数f (x )=ln x -ax (a >0)的单调递增区间为()D.(-∞,a)答案A解析函数f(x)的定义域为(0,+∞),f′(x)=1x-a,令f′(x)=1x-a>0,得0<x<1a,所以f(x)3.函数y=f(x)的图像如图所示,则y=f′(x)的图像可能是()答案D解析由函数f(x)的图像可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足. 4.(2021·德阳诊断)若函数f(x)=e x(sin x+a)在R上单调递增,则实数a的取值范围为()A.[2,+∞)B.(1,+∞)C.[-1,+∞)D.(2,+∞)答案A解析因为f(x)=e x(sin x+a),所以f′(x)=e x(sin x+a+cos x).要使函数f(x)在R上单调递增,需使f′(x)≥0恒成立,即sin x+a+cos x≥0恒成立,所以a≥-sin x-cos x.因为-sin x-cos x=-2sin所以-2≤-sin x-cos x≤2,所以a≥ 2.5.(2021·江南十校联考)已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,4)上不单调的一个充分不必要条件可以是()A.a>-12B.0<a<116C.a>116或-12<a<0 D.a>116答案D解析f′(x)=2ax-4a-1x=2ax2-4ax-1x,令g(x)=2ax2-4ax-1,则函数g(x)=2ax2-4ax-1的对称轴方程为x=1,若f(x)在(1,4)上不单调,则g(x)在区间(1,4)上有零点.当a=0时,显然不成立;当a≠0>0,(1)=-2a-1<0,(4)=16a-1>0,<0,(1)=-2a-1>0,(4)=16a-1<0,解得a>116或a<-12.∴a>116是f(x)在(1,4)上不单调的一个充分不必要条件.6.已知函数y=f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)=sin x-x,设a=b=f(3),c=f(0),则a,b,c的大小关系为()A.b<a<cB.c<a<bC.b<c<aD.a<b<c答案A解析由函数y=f(x+1)是偶函数,可得函数f(x)的图像关于直线x=1对称,则a=b=f(3),c=f(0)=f(2),又当x∈(1,+∞)时,f′(x)=cos x-1≤0,所以f(x)=sin x-x在(1,+∞)上为减函数,所以b<a<c,故选A.7.若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值范围为________.答案(-3,0)∪(0,+∞)解析依题意知,f ′(x )=3ax 2+6x -1有两个不相等的零点,≠0,=36+12a >0,解得a >-3且a ≠0.8.(2022·哈尔滨调研)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.答案1解析f ′(x )=4x -1x =(2x -1)(2x +1)x(x >0),令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.-1≥0,-1<12<k +1,解之得1≤k <32.9.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.答案(-∞,-2)∪(0,2)解析令φ(x )=f (x )x,∵当x >0时,f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)上为减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数,由数形结合知x∈(-∞,-2)时,f(x)>0.故x2f(x)>0的解集为(-∞,-2)∪(0,2).10.已知函数f(x)=ln x+ke x(k为常数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求实数k的值;(2)求函数f(x)的单调区间.解(1)f′(x)=1x-ln x-ke x(x>0).又由题意知f′(1)=1-ke=0,所以k=1.(2)由(1)知,f′(x)=1x-ln x-1e x(x>0).设h(x)=1x-ln x-1(x>0),则h′(x)=-1x2-1x<0,所以h(x)在(0,+∞)上单调递减.由h(1)=0知,当0<x<1时,h(x)>0,所以f′(x)>0;当x>1时,h(x)<0,所以f′(x)<0.综上f(x)的单调增区间是(0,1),减区间为(1,+∞).11.讨论函数g(x)=(x-a-1)e x-(x-a)2的单调性.解g(x)的定义域为R,g′(x)=(x-a)e x-2(x-a)=(x-a)(e x-2),令g′(x)=0,得x=a或x=ln2,①当a>ln2时,x∈(-∞,ln2)∪(a,+∞)时,f′(x)>0,x∈(ln2,a)时,f′(x)<0;②当a=ln2时,f′(x)≥0恒成立,∴f(x)在R上单调递增;③当a<ln2时,x∈(-∞,a)∪(ln2,+∞)时,f′(x)>0,x∈(a,ln2)时,f′(x)<0,综上,当a>ln2时,f(x)在(-∞,ln2),(a,+∞)上单调递增,在(ln2,a)上单调递减;当a=ln2时,f(x)在R上单调递增;当a<ln2时,f(x)在(-∞,a),(ln2,+∞)上单调递增,在(a,ln2)上单调递减.12.已知a=ln33,b=e-1,c=3ln28,则a,b,c的大小关系为()A.b>c>aB.a>c>bC.a>b>cD.b>a>c答案D解析依题意,得a=ln33=ln33,b=e-1=ln ee,c=3ln28=ln88.令f(x)=ln xx(x>0),则f′(x)=1-ln xx2,易知函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.所以f(x)max=f(e)=1e=b,且f(3)>f(8),即a>c,所以b>a>c.13.(2021·成都诊断)已知函数f(x)是定义在R上的偶函数,其导函数为f′(x).若x>0时,f′(x)<2x,则不等式f(2x)-f(x-1)>3x2+2x-1的解集是________.答案1解析令g(x)=f(x)-x2,则g(x)是R上的偶函数.当x>0时,g′(x)=f′(x)-2x<0,则g(x)在(0,+∞)上递减,于是在(-∞,0)上递增.由f(2x)-f(x-1)>3x2+2x-1得f(2x)-(2x)2>f(x-1)-(x-1)2,即g (2x )>g (x -1),于是g (|2x |)>g (|x -1|),则|2x |<|x -1|,解得-1<x <13.14.(2021·全国乙卷)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.解(1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )∞(1+1-3a 3,+∞)上单调递增,在.(2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .=(1+a )x ,=x 3-x 2+ax +1,=1,=1+a=-1,=-1-a .所以曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标为(1,1+a)和(-1,-1-a).。
专题03 奇函数的最值性质(教师版)-2024年高考二级结论速解技巧
ex
1 + a ⋅e−x
+
e−x
1 + a⋅ex
( ) = e−x + a ⋅ ex + ex + a ⋅ e−x
(a +1) ex + e−x
= 0,
( )( ) ( )( ) ex + a ⋅ e−x e−x + a ⋅ ex
ex + a ⋅e−x e−x + a ⋅ex
( ) 即 (a +1) e−x + ex = 0 ,故 a = −1 .
为奇函数,
函数
g
(
x)
=
cos lg
2 3 3
x+ +x −x
3
的定义域为
(
−3,
0)
(0,
3)
,关于原点对称,
( ) g
(−x)
=coslg( −332+−x x)x+
3
=cos 2x +
lg
3+ x 3− x
3
−1
=− cos lg
2x + 3+ x 3− x
3
=− g
(x)
,所以函数
y
=
g
(x)
x∈
R
,有
f
(x) +
f
(−x)
= 2 − 3x
2 +
1
−
2 3−x +1
= 2 − 3x
2 +
1
−
2× 3x 3x +1
= 0 ,
即函数 f (x) 是 R 上的奇函数,所以实数 a 的值为 3 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与基本初等函数函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 函数的基本性质一、单调性与最大(小)值 (1)函数的单调性①定义及判定方法 函数的性 质定义图象 判定方法函数的单调性 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)x y f(x )1f(x )2o (1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)y x o x x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()ug x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)a f x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.二、奇偶性(4)函数的奇偶性①定义及判定方法 函数的性 质定义图象 判定方法y xo函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶.函数...(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.求值域的几种常用方法(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数4cos 2sin 2+--=x x y ,可变为2)1(cos 4cos 2sin 22+-=+--=x x x y 解决(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数)32(log 221++-=x x y 就是利用函数u y 21log =和322++-=x x u 的值域来求。
(3)判别式法:通过对二次方程的实根的判别求值域。
如求函数22122+-+=x x x y 的值域 由22122+-+=x x x y 得012)1(22=-++-y x y yx ,若0=y ,则得21-=x ,所以0=y 是函数值域中的一个值;若0≠y ,则由0)12(4)]1(2[2≥--+-=∆y y y 得021332133≠+≤≤-y y 且,故所求值域是]2133,2133[+-(4)分离常数法:常用来求“分式型”函数的值域。
如求函数1cos 3cos 2+-=x x y 的值域,因为1cos 521cos 3cos 2+-=+-=x x x y ,而]2,0(1cos ∈+x ,所以]25,(1cos 5--∞∈+-x ,故]21,(--∞∈y(5)利用基本不等式求值域:如求函数432+=x xy 的值域当0=x 时,0=y ;当0≠x 时,xx y 43+=,若0>x ,则4424=⋅≥+x x x x若0<x ,则4)4()(2)4(4=-⋅-≤-+--=+x x x x x x ,从而得所求值域是]43,43[- (6)利用函数的单调性求求值域:如求函数])2,1[(2224-∈+-=x x x y 的值域因)14(22823-=-=x x x x y ,故函数])2,1[(2224-∈+-=x x x y 在)21,1(--上递减、在)0,21(-上递增、在)21,0(上递减、在)2,21(上递增,从而可得所求值域为]30,815[(7)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域(求某些分段函数的值域常用此法)。