专题函数常见题型归纳教师版

合集下载

(完整)专题:基本不等式常见题型归纳(教师版),推荐文档

(完整)专题:基本不等式常见题型归纳(教师版),推荐文档

专题函数常见题型归纳三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号.(2)a ,b ∈R +,a +b ≥2,当且仅当a =b 时取等号.ab (3)a ,b ∈R ,≤()2,当且仅当a =b 时取等号.a 2+b 22a +b2上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2(或ab ≤()2),当且仅当ab a +b2a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值.利用基本不等式求最值:一正、二定、三等号.【题型一】利用拼凑法构造不等关系【典例1】(扬州市2015—2016学年度第一学期期末·11)已知且1,,b a ,则的最小值为 .7log 3log 2=+a b b a 112-+b a 【解析】∵且∴,解得1,,b a 7log 3log 2=+a b b a 32log 7log a a b b+=或,∵∴,即.1log 2a b =log 3a b =1,,b a 1log 2a b =2a b =2111111a ab a +=-++--.13≥=练习:1.(南京市、盐城市2015届高三年级第一次模拟·10)若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为.解析:由log 2x+log 2y=1可得log 2xy=1=log 22,则有xy=2,那么y x y x -+22=y x xy y x -+-2)(2=(x -y )+y x -4≥2y x y x -⋅-4)(=4,当且仅当(x -y )=yx -4,即x=3+1,y=3-1时等号成立,故y x y x -+22的最小值为4.2.(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)若实数满足,x y,则的最小值为 .133(02xy x x +=<<313x y +-3.(无锡市2017届高三上学期期末)已知,且,则0,0,2a b c >>>2a b +=的最小值为 .2ac c c b ab +-+【典例2】(南京市2015届高三年级第三次模拟·12)已知x ,y 为正实数,则+4x4x +y 的最大值为 .yx +y 解析:由于+==4x 4x +y yx +y ))(4()4()(4y x y x y x y y x x +++++22225484yxy x y xy x ++++=1+=1+≤1+=,22543y xy x xy ++345x y y x ⋅++5423+⋅xy y x 43当且仅当4=,即y=2x 时等号成立.y x xy【典例3】若正数、满足,则的最小值为__________.a b 3ab a b =++a b +解析:由,得,解得,a b R +∈223(),()4()1202a b ab a b a b a b +=++≤+-+-≥(当且仅当且,即时,取等号).6a b +≥a b =3ab a b =++3a b ==变式:1.若,且满足,则的最大值为_________.,a b R +∈22a b a b +=+a b +解析:因为,所以由,,a b R +∈22222()2a b a b a b a b a b ++=+⇒+=+≥2()a b +-,解得(当且仅当且,即时,取等号).2()0a b +≤02a b <+≤a b =22a b a b +=+1a b ==2.设,,则的最小值为_______ 40,0>>y x 822=++xy y x y x 2+3.设,,则的最大值为_________R y x ∈,1422=++xy y x y x +210524.(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)已知正数,满a b 足,则的最小值为 195a b+=-ab 【题型二】含条件的最值求法【典例4】(苏州市2017届高三上期末调研测试)已知正数满足,则y x ,1=+y x的最小值为 1124+++y x 练习1.(江苏省镇江市高三数学期末·14)已知正数满足,则y x ,111=+yx 的最小值为 .1914-+-y yx x 解析:对于正数x ,y ,由于+=1,则知x>1,y>1,那么x 1y1+=(+)(1+1--)=(+)(+)≥(14-x x 14-y y 14-x x 14-y y x 1y 114-x x 14-y y x x 1-yy 1-+)2=25,当且仅当·=·时等号成x x x x 114-⋅-y y y y 114-⋅-14-x x y y 1-14-y y x x 1-立.2.(2013~2014学年度苏锡常镇四市高三教学情况调查(一)·11)已知正数,x y 满足22x y +=,则8x yxy+的最小值为 .解析:8181828145922x y x y x y xy y x y x y x ⎛⎫++⎛⎫=+=+⋅=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当82x yy x=时,取等号.故答案为:9.3.(南通市2015届高三第一次调研测试·12)已知函数的图像经过点(0)xy a b b =+>,如下图所示,则的最小值为 .(1,3)P 411a b+-解析:由题可得a+b=3,且a>1,那么+=(a -1+b )(+)=(4+14-a b 12114-a b 121++1)≥(2+5)=,当且仅当=时等号成立.b a 1-14-a b 21141-⋅-a b b a 29b a 1-14-a b4.(江苏省苏北四市2015届高三第一次模拟考试·12)己知a ,b 为正数,且直线60ax by +-=与直线2(3)50x b y +-+=互相平行,则2a+3b 的最小值为________.【解析】由于直线ax+by -6=0与直线2x+(b -3)y+5=0互相平行,则有2a =3-b b ,即3a+2b=ab ,那么2a+3b=(2a+3b )·ab b a 23+=(2a+3b )(b 3+a 2)=b a 6+ab6+13≥2a b b a 66⋅+13=25,当且仅当b a 6=ab6,即a=b 时等号成立.5.常数a ,b 和正变量x ,y 满足ab =16,+=.若x +2y 的最小值为64,则ax 2by 12a b =________.答案:64;(考查基本不等式的应用).6.已知正实数满足,则的最大值为.,a b ()()12122a b b b a a +=++ab 答案:2【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知,,则的14ab =,(0,1)a b ∈1211ab+--最小值为 .解析:由得 ,14ab =14a b=2221211424122711411451451a b b b b b b b b b bb +---+--=+==+---+--+-令 则当且仅当71b t -=227149*********5142718427b t b bt t t t-+=+=-≥+-+--+-+- 等号成立.t =练习1.(江苏省扬州市2015届高三上学期期末·12)设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .解析:由x 2+2xy -1=0可得y=,那么x 2+y 2=x 2+=x 2+-≥2212x x -222(1)4x x -54214x 12-,当且仅当x 2=,即x 4=时等号成立. 121254214x 152.(苏州市2014届高三调研测试·13)已知正实数x ,y 满足,则x + y 的最小值为.解析:∵正实数x ,y 满足xy+2x+y=4,∴(0<x <2).∴x+y=x+==(x+1)+﹣3,当且仅当时取等号.∴x+y 的最小值为.故答案为:.3.(南通市2014届高三第三次调研测试·9)已知正实数满足,则,x y (1)(1)16x y -+=的最小值为.x y +解析:∵正实数x ,y 满足(x ﹣1)(y+1)=16,∴,∴x+y=1116++=y x ,当且仅当y=3,(x=5)时取等号.∴x+y 的最小值为()8116121116=+⋅+≥+++y y y y 8.故答案为:8.4.(扬州市2017届高三上学期期中)若,且,则使得取2,0>>b a 3=+b a 214-+b a 得最小值的实数=。

专题3.4---幂函数--教师版

专题3.4---幂函数--教师版

专题3.4幂函数练基础1.(2021·全国高一课时练习)下列命题中,不正确的是()A .幂函数y =x -1是奇函数B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =12x 既不是奇函数,又不是偶函数【答案】C 【解析】根据奇偶函数的定义依次判断即可.【详解】因为11xx -=,11=--xx ,所以A 正确;因为22()x x -=,所以B 正确;因为x x -=不恒成立,所以C 不正确;因为12y x =定义域为[0,+∞),不关于原点对称,所以D 正确.故选:C.2.(2020·上海高一课时练习)下列函数中,既是偶函数,又在(,0)-∞上单调递增的函数是()A .2y x -=-B .23y x=-C .13y x=-D .3y x-=【答案】B 【解析】A:2y x-=-为偶函数,且在()0,∞+上递增,即2y x -=-在(,0)-∞上单调递减,排除;B:23y x =-为偶函数,在(,0)-∞上单调递增;C:13y x=-为奇函数,故排除;D:3y x -=为奇函数,故排除.故选:B.3.(2020·石嘴山市第三中学高二月考(文))幂函数()221()21m f x m m x -=-+在()0,∞上为增函数,则实数m 的值为()A .0B .1C .1或2D .2【答案】D 【解析】由题意()f x 为幂函数,所以2211m m -+=,解得0m =或2m =.因为()f x 在()0,∞上为增函数,所以210m ->,即12m >,所以2m =.故选D.4.(2020·上海高一课时练习)下面是有关幂函数3()-=f x x 的四种说法,其中错误的叙述是()A .()f x 的定义域和值域相等B .()f x 的图象关于原点中心对称C .()f x 在定义域上是减函数D .()f x 是奇函数【答案】C 【解析】3()-=f x x ,函数的定义域和值域均为()(),00,-∞⋃+∞,A 正确;3()-=f x x ,()()33()f x x x f x ---=-=-=-,函数为奇函数,故BD 正确;()f x 在(),0-∞和()0,∞+是减函数,但在()(),00,-∞⋃+∞不是减函数,C 错误.故选:C.5.(2020·上海高一课时练习)若幕函数()f x 的图像经过点1,42⎛⎫⎪⎝⎭,则该函数的图像()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】B 【解析】设()f x x α=,依题意可得1()42α=,解得2α=-,所以2()f x x -=,因为22()()()f x x x f x ---=-==,所以()f x 为偶函数,其图象关于y 轴对称.故选:B.6.(2019·延安市第一中学高三月考(文))已知幂函数()f x x α=的图像过点1(,22,则方程()2f x =的解是()A .4B .22C .2D .12【答案】A 【解析】依题意得12(22α=,解得12α=,所以12()f x x =,由()2f x =得122x =,解得4x =.故选:A.7.(2021·浙江高一期末)幂函数()()22222m f x m m x -=--在()0,∞+为增函数,则m 的值是()A .1-B .3C .1-或3D .1或3-【答案】B 【解析】由幂函数解析式的形式可构造方程求得1m =-或3m =,分别验证两种情况下()f x 在()0,∞+上的单调性即可得到结果.【详解】()f x 为幂函数,2221m m ∴--=,解得:1m =-或3m =;当1m =-时,()1f x x -=,则()f x 在()0,∞+上为减函数,不合题意;当3m =时,()7=f x x ,则()f x 在()0,∞+上为增函数,符合题意;综上所述:3m =.故选:B.8.(2021·全国高一课时练习)下列结论正确的是()A .幂函数图象一定过原点B .当0α<时,幂函数y x α=是减函数C .当1α>时,幂函数y x α=是增函数D .函数2y x =既是二次函数,也是幂函数【答案】D 【解析】由函数1y x -=的性质,可判定A 、B 不正确;根据函数2y x =可判定C 不正确;根据二次函数和幂函数的定义,可判定D 正确.【详解】由题意,函数1y x -=的图象不过原点,故A 不正确;函数1y x -=在(,0)-∞及(0,)+∞上是减函数,故B 不正确;函数2y x =在(,0)-∞上是减函数,在(0,)+∞上是增函数,故C 不正确;根据幂函数的定义,可得函数2y x =是二次函数,也是幂函数,所以D 正确.故选:D.9.(2021·全国高一课时练习)幂函数的图象过点(3,),则它的单调递增区间是()A .[-1,+∞)B .[0,+∞)C .(-∞,+∞)D .(-∞,0)【答案】B 【解析】根据利用待定系数法求出幂函数的解析式,再根据幂函数求出单调增区间即可.【详解】设幂函数为f (x )=x α,因为幂函数的图象过点(3,,所以f (3)=3α123,解得α=12,所以f (x )=12x ,所以幂函数的单调递增区间为[0,+∞).故选:B10.(2021·全国高三专题练习)下列关于幂函数图象和性质的描述中,正确的是()A .幂函数的图象都过(1,1)点B .幂函数的图象都不经过第四象限C .幂函数必定是奇函数或偶函数中的一种D .幂函数必定是增函数或减函数中的一种【答案】AB 【解析】举反例结合幂函数的性质判断即可.【详解】因为11α=,所以的幂函数都经过(1,1),故A 正确;当0x >时,0x α>,幂函数的图象都不经过第四象限,故B 正确;12y x =的定义域为[)0,+∞,为非奇非偶函数,故C 错误;1y x=在(),0-∞和()0,∞+上为减函数,但在定义域内不是减函数,故D 错误.故选:AB练提升1.(2020·内蒙古自治区集宁一中高二月考(文))若a =12⎛⎫ ⎪⎝⎭23,b =15⎛⎫ ⎪⎝⎭23,c =12⎛⎫ ⎪⎝⎭13,则a ,b ,c 的大小关系是()A .a <b <cB .c <a <bC .b <c <aD .b <a <c【答案】D 【解析】∵y =x23(x >0)是增函数,∴a =12⎛⎫ ⎪⎝⎭23>b =15⎛⎫ ⎪⎝⎭23.∵y =12⎛⎫⎪⎝⎭x 是减函数,∴a =12⎛⎫ ⎪⎝⎭23<c =12⎛⎫ ⎪⎝⎭13,∴b <a <c .故本题答案为D.2.(2019·湖北高三高考模拟(理))幂函数op =的图象过点(2,4),且=12,=(13),=−log 3,则、、的大小关系是()A.>>B.>>C.>>D.>>【答案】C【解析】幂函数op =的图象过点(2,4),∴2=4,m =2;∴=12=2>1,=(13)=19∈0,1,=−log 3=﹣log 23<0,∴2>19>−log 23,∴>>.故选:C .3.(2021·全国高三专题练习)已知幂函数()f x x α=满足()()2216f f =,若()4log 2a f =,()ln 2b f =,()125c f -=,则a ,b ,c 的大小关系是()A .a c b >>B .a b c >>C .b a c >>D .b c a>>【答案】C 【解析】由()()2216f f =可求得13α=,得出()f x 单调递增,根据单调性即可得出大小.【详解】由()()2216f f =可得4222αα⋅=,∴14αα+=,∴13α=,即()13f x x =.由此可知函数()f x 在R 上单调递增.而由换底公式可得242log 21log 2log 42==,22log 2ln 2log e =,125-=,∵21log 2e <<,∴2222log 2log 2log 4log e<,于是4log 2ln 2<,12<,∴1245log 2-<,故a ,b ,c 的大小关系是b a c >>.故选:C.4.(2021·安徽高三二模(理))函数()nxf x x a =,其中1a >,1n >,n 为奇数,其图象大致为()A .B .C .D .【答案】B 【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n nx x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.5.(2021·新疆高三其他模拟(理))若实数m ,n 满足m n >,且0mn ≠,则下列选项正确的是()A .330m n ->B .1122m n⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .()lg 0m n ->D .11m n<【答案】A 【解析】利用幂函数、指数函数单调性和对数的运算可求解.【详解】解:∵函数3y x =,在R x ∈时单调递增,且m n >,∴330m n ->,故A 正确;∵函数1(2x y =,在R x ∈时单调递减,且m n >,∴11()()22mn<,故B 错误;当11,2m n ==时,()1lg lg 02m n -=<,故C 错误;当,11m n ==-时,1111m n=>=-,故D 错误;故选:A.6.【多选题】(2020·新泰市第二中学高二月考)已知函数()f x x α=图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若1x >,则()1f x >D .若120x x <<,则()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭.【答案】ACD 【解析】将点(4,2)代入函数()f x x α=得:2=4α,则1=2α.所以12()f x x =,显然()f x 在定义域[0,)+∞上为增函数,所以A 正确.()f x 的定义域为[0,)+∞,所以()f x 不具有奇偶性,所以B 不正确.当1x >1>,即()1f x >,所以C 正确.当若120x x <<时,()()122212()()22f x f x x x f ++-=22-.122x x +-.=0<.即()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭成立,所以D 正确.故选:ACD.7.【多选题】(2021·湖南高三月考)已知函数1,0(),0x x e x f x xe x -⎧>⎪=⎨≤⎪⎩,若关于x 的方程()f x a =有且仅有一个实数解,且幂函数()a g x x =在()0,∞+上单调递增,则实数a 的取值可能是()A .1B .1eC .2D .e【答案】AD 【解析】作出()f x 的图象,根据方程根的个数判断参数a 的取值,再结合函数()a g x x =在()0,∞+上单调递增,即可求解出结果.【详解】当0x ≤时,()x f x xe =,()()1xf x e x '=+,当1x <-时()0f x '<,当10x -<<时()0f x '>所以()x f x xe =在(),1-∞-上单调递减,在()1,0-上单调递增,最小值为1(1)f e --=-;所以()f x 的图象如图所示,因为()f x a =有且仅有一个实数解,即()y f x =的图象与y a =有且只有一个交点,所以[)1,1,0,a e e ⎧⎫∈+∞-⎨⎬⎩⎭,又因为()a g x x =在()0,∞+上单调递增,所以0a >,所以[){},1a e ∈+∞ .故选:AD8.(2019·上海高考模拟)设∈12,−1,−2,3,若=为偶函数,则=______.【答案】−2【解析】由题可知,=−2时,=−2,满足f(-x)=f(x),所以是偶函数;=13,12,−1,3时,不满足f(-x)=f(x),∴=−2.故答案为:−2.9.(2021·全国高三专题练习(理))已知幂函数()39*N m y x m -=∈的图像关于y 轴对称,且在()0,∞+上函数值随着x 的增大而减小.(1)求m 值.(2)若满足()()22132mma a +<-,求a 的取值范围.【答案】(1)1m =;(2)()2,4,3⎛⎫-∞⋃+∞ ⎪⎝⎭.【解析】(1)由题意可知39m -为负偶数,且*N m ∈,即可求得m 值;(2)将所求不等式化为()()22132a a +<-,求解,即可得出结果.【详解】(1)因为函数39*()m y x m N -=∈在()0,∞+上单调递减,所以390m -<,解得3m <.又因为*m N ∈,所以1m =,2;因为函数的图象关于y 轴对称,所以39m -为偶数,故1m =.(2)由(1)可知,1m =,所以得()()22132a a +<-,解得4a >或23<a ,即a 的取值范围为()2,4,3⎛⎫-∞⋃+∞ ⎪⎝⎭.10.(2021·浙江高一期末)已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2g x x k =-.(1)求m 的值;(2)当[1,2)x ∈时,记(),()f x g x 的值域分别为集合A ,B ,设:,:p x A q x B ∈∈,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设2()()1F x f x kx k =-+-,且|()|F x 在[0,1]上单调递增,求实数k 的取值范围.【答案】(1)0m =;(2)01k ≤≤;(3)[][)1,02,-+∞ 【解析】(1)由幂函数的定义2(1)1m -=,再结合单调性即得解.(2)求解()f x ,()g x 的值域,得到集合A ,B ,转化命题p 是q 成立的必要条件为B A ⊆,列出不等关系,即得解.(3)由(1)可得22()1F x x kx k =-+-,根据二次函数的性质,分类讨论02k ≤和12k ≥两种情况,取并集即可得解.【详解】(1)由幂函数的定义得:2(1)1m -=,0m ⇒=或2m =,当2m =时,2()f x x -=在(0,)+∞上单调递减,与题设矛盾,舍去;当0m =时,2()f x x =在(0,)+∞上单调递增,符合题意;综上可知:0m =.(2)由(1)得:2()f x x =,当[1,2)x ∈时,[)()1,4f x ∈,即[)1,4A =,当[1,2)x ∈时,[)()2,4g x k k ∈--,即[)2,4B k k =--,由命题p 是q 成立的必要条件,则B A ⊆,显然B ≠∅,则2144k k -≥⎧⎨-≤⎩,即10k k ≤⎧⎨≥⎩,所以实数k 的取值范围为:01k ≤≤.(3)由(1)可得22()1F x x kx k =-+-,二次函数的开口向上,对称轴为2k x =,要使|()|F x 在[0,1]上单调递增,如图所示:或即02(0)0k F ⎧≤⎪⎨⎪≥⎩或12(0)0k F ⎧≥⎪⎨⎪≤⎩,解得:10k -≤≤或2k ≥.所以实数k 的取值范围为:[][)1,02,-+∞ 练真题1.(2019·全国高考真题(理))若a >b ,则()A.ln(a −b )>0B.3a <3b C.a 3−b 3>0D.│a │>│b │【答案】C 【解析】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A;因为9333a b =>=,知B 错,排除B;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C.2.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩ 若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是()A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭ B .1,(0,2)2⎛⎫-∞- ⎪⎝⎭C .(,0)2)-∞ D .(,0)(22,)-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0))-∞+∞ .故选:D.3.(2020·江苏高考真题)已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.【答案】4-【解析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-4.(2018·上海卷)已知α-2,-1,-12,12,1,2,3f (x )=x α为奇函数,且在(0,+∞)上递减,则α=.【答案】-1【解析】∵幂函数f (x )=x α为奇函数,∴α可取-1,1,3,又f (x )=x α在(0,+∞)上递减,∴α<0,故α=-1.5.(浙江省高考真题(文))已知函数()2,1{ 66,1x x f x x x x ≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.6.(江苏省高考真题)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x (x >0)图象上一动点.若点P ,A 之间的最短距离为,则满足条件的实数a 的所有值为________.【答案】-1【解析】试题分析:设点1,P x x ⎛⎫ ⎪⎝⎭()0x >,则PA ===令1,0,2t x x t x=+>∴≥ 令()()22222222g t t at a t a a =-+-=-+-(1)当2a ≥时,t a =时()g t 取得最小值()22g a a =-,=,解得a =(2)当2a <时,()g t 在区间[)2,+∞上单调递增,所以当2t =时,()g t 取得最小值()22242g a a =-+=1a =-综上可知:1a =-或a =所以答案应填:-1.。

专题3.1--函数的概念及其表示--教师版

专题3.1--函数的概念及其表示--教师版

专题3.1函数的概念及其表示练基础1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =()A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩则(3)f =()A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为()A .16B .18C .21D .24【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =()A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为().A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x x=的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()1x f x x=的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x ∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或22-【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:2a =-,故1a =或2-,故答案为:1或2-.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦练提升1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则()A .t 没有最小值B .t 51-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =()min 1n m -=.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是()A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有()A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有()A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭=()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )=2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是()A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则()A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则()A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.【答案】5112a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21515111022a a a a a a ⎛⎫⎛⎫--+=+--=---≤ ⎪⎪ ⎪⎪⎝⎭⎝⎭,由于01a <<,所以解得112a ≤<.故答案为:112a -≤<9.(2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10.(2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x 的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .练真题1.(山东高考真题)设=s 0<<12−1,≥1,若=+1,则1=()A.2B.4C.6D.8【答案】C【解析】由≥1时=2−1是增函数可知,若≥1,则≠+1,所以0<<1,由op =o +1)得=2(+1−1),解得=14,则1=o4)=2(4−1)=6,故选C.2.(2018上海卷)设是含数1的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,1的可能取值只能是()A.3B.3C.3D.0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=3,3,0时,此时得到的圆心角为3,6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y,因此只有当此时旋转6,此时满足一个x 只会对应一个y,故选:B.3.(2018年新课标I 卷文)设函数=2−,≤01,>0,则满足+1<2的x 的取值范围是()A.−∞,−1B.0,+∞C.−1,0D.−∞,0【答案】D【解析】将函数op 的图象画出来,观察图象可知会有2<02<+1,解得<0,所以满足+1<2的x 的取值范围是−∞,0,故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5.(2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4)(1,3](4,)⋃+∞【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。

期末高一复习专题02 一元二次函数、不等式(教师版)

期末高一复习专题02  一元二次函数、不等式(教师版)

专题02 一元二次函数、方程和不等式考点一:不等式性质及应用1.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B 答案 B解析 ∵A -B =a 2+3ab -(4ab -b 2)=⎝⎛⎭⎫a -b 22+34b 2≥0, ∴A ≥B . 2.若110a b<<,则下列不等式成立的是( ) A .a b ab -> B .a b ab -<C .b a ab ->D .b a ab -<【解答】解:由110a b<<, 对于A 、B ,因为110a b <<,则0a <,0b <,a b >,从而0ab >,0a b ->,即0a b ab ->,则可取1a bab-=,即a b ab -=,故A 、B 错误,对于C 、D ,因为110a b <<,则0a <,0b <,从而0ab >.又110b a->,即0a bab->,则0a b ->,所以0b a ab -<<,故D 正确,C 错误. 故选:D .3.对于任意实数a ,b ,c ,则下列四个命题:①若a b >,0c ≠,则ac bc >;②若a b >,则22ac bc >; ③若22ac bc >,则a b >;④若a b >,则11a b<. 其中正确命题的个数为( ) A .3 B .2C .1D .0【答案】C【解析】a b >时,若0c <,则ac bc <,①错误;若0c,则22ac bc =,②错误;若22ac bc >,则20c >,∴a b >,③正确;a b >,若0a b >>,仍然有11a b>,④错误. 正确的只有1个.故选:C .4.已知11x y -≤+≤,13x y ≤-≤,则182yx ⎛⎫⋅ ⎪⎝⎭的取值范围是( ) A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦【答案】C【解析】令()()()()3x y s x y t x y s t x s t y -=++-=++-则31s t s t +=⎧⎨-=-⎩,∴12s t =⎧⎨=⎩,又11x y -≤+≤,…∴①13x y ≤-≤,∴()226x y ≤-≤…②∴①+②得137x y ≤-≤.则371822,22yxx y -⎛⎫⎡⎤⋅=∈ ⎪⎣⎦⎝⎭.故选C .5.证明不等式22222a b a b ++⎛⎫≤⎪⎝⎭(,a b ∈R ). 【答案】证明见解析.【解析】证明:因为222a b ab +≥,所以22222()2a b a b ab +≥++, 所以()()2222a ba b +≥+两边同除以4,即得22222a b a b ++⎛⎫≤⎪⎝⎭,当且仅当a b =时,取等号. 考点二:利用基本不等式求最值 6.函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8 B .7 C .6 D .5【答案】D因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立,故函数413313y x x x ⎛⎫ ⎪⎝=>-⎭+的最小值为5. 故选:D .7.设0a >,0b >,41a b +=,则11a b+的最小值为( )A .7B .9C D 3【解答】解:0a >,0b >,41a b +=,111144()(4)()552549b a b a b a b a b a b a ∴+=++=++++=, 当且仅当4b a a b =,即126a b ==时取等号,∴11a b +的最小值为9.故选:B .8.已知a ,b R +∈,且23a b ab +=,则2a b +的最小值为( ) A .3B .4C .6D .9【解答】解:a ,b R +∈,且23a b ab +=,∴213a b+=,12152522(2)()()333333a b a b a b a b b a ∴+=++=+++⨯(当且仅当a b =时取“= “),即2a b +的最小值为3.故选:A .9.函数233(1)1x x y x x ++=<-+的最大值为( )A .3B .2C .1D .-1【答案】D2233(1)(1)111x x x x y x x ++++++==++1[(1)]1(1)x x =--+++-+11≤-=-, 当且仅当1111x x +==-+,即2x =-等号成立. 故选:D.10.已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A B C .18D .14【答案】C因为0x >,0y >,由基本不等式得:2x y +≥所以8xy ≥解得:18xy ≥,当且仅当2x y =,即14x =,12y =时,等号成立故选:C11.已知0x >,0y >且141x y+=,若28x y m m +>+恒成立,则实数m 的取值范围是_________.【答案】(9,1)- 【详解】0,0x y >> ,且141x y+=,()144149y xx y x y x y x y ⎛⎫∴+=++=+++≥ ⎪⎝⎭,当且仅当4y x x y =,即36x y ==,时取等号.()min 9x y ∴+=,由28x y m m +>+ 恒成立,即()2min 89m m x y +<+=,解得:91m -<<, 故答案为:(9,1)-12.已知正数a ,b 满足21a b +=,则( ) A .ab 有最大值18 B .12a b +有最小值8 C .1b b a +有最小值4 D .22a b +有最小值15【解答】解:根据题意,依次分析选项: 对于A ,22112()248a b a b ab+⋅=⇒,当且仅当12a =,14b =时取等号,则A 正确; 对于B ,121222(2)()5459b aa b a b a b a b +=++=+++=,当且仅当13a b ==时取等号,B 错误;对于C ,12224b a bb a b a+=+++=,当且仅当13a b ==时取等号,则C 正确;对于D ,222222211(12)5415()(0)552a b b b b b b b +=-+=-+=-+<<,故最小值为15,则D 正确;故选:ACD .13.已知20a b >>,则4(2)a b a b +-的最小值为______________思路一:所求表达式为和式,故考虑构造乘积为定值以便于利用均值不等式,分母为()2b a b -,所以可将a 构造为()112222a ab b ⋅=⋅-+⎡⎤⎣⎦,从而三项使用均值不等式即可求出最小值:4181(2)3(2)2(2)2a a b b b a b b a b ⎡⎤+=-++≥⋅=⎢⎥--⎣⎦ 思路二:观察到表达式中分式的分母()2b a b -,可想到作和可以消去b ,可得()()2222b a b b a b a +-⎡⎤-≤=⎢⎥⎣⎦,从而244(2)a a b a b a +≥+-,设()24f a a a =+,可从函数角度求得最小值(利用导数),也可继续构造成乘积为定值:()24322a a f a a =++≥= 答案:314.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F=76 000v v 2+18v +20l . (1)如果不限定车型,l =6.05,则最大车流量为________辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时. 答案 (1)1 900 (2)100解析 (1)当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v +18≤76 0002v ·121v +18=1 900(辆/时).当且仅当v =121v ,即v =11时,等号成立.(2)当l =5时,F =76 000vv 2+18v +100=76 000v +100v +18≤76 0002v ·100v +18=2 000(辆/时).当且仅当v =100v ,即v =10时,等号成立.∴最大车流量为2 000(辆/时). 2 000-1 900=100(辆/时).∴最大车流量比(1)中的最大车流量增加100(辆/时). 考点三:含参数与不含参数的不等式解法15.已知集合{}2230A x x x =-+≥,302x B x x ⎧⎫-=∈≤⎨⎬+⎩⎭Z,则A B =( ) A .{}23x x -<≤ B .{}1,0,1,2,3-C .{}2,1,1,2,3--D .R【答案】B解不等式2230x x -+≥ ,()2223120,x x x x R -+=-+>∈ ,解不等式302x x -≤+ 得23x -<≤,}{1,0,1,2,3B =- ,}{1,0,1,2,3A B ∴⋂=- ; 故选:B.16.不等式()()()21350x x x ++->的解集为___________. 【答案】1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃【详解】不等式()()()()()()2135021350x x x x x x ++->⇔++-<,由数轴标根法画出图线,可得不等式的解集为1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.故答案为:1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.17.已知二次不等式220x bx c -++<的解集为1{|3x x <或1}2x >,则关于x 的不等式220cx bx -->的解集为( )A .{|23}x x <<B .{|23}x x -<<C .{|32}x x -<<D .{|32}x x -<<-【解答】解:二次不等式220x bx c -++<的解集为1{|3x x <或1}2x >, 所以二次方程220x bx c -++=的解是13和12,由根与系数的关系知,1132211322bc ⎧+=⎪⎪⎨⎪⨯=-⎪⎩,解得53b =,13c =-;所以不等式220cx bx -->化为2152033x x --->, 即2560x x ++<,解得32x -<<-;所以所求不等式的解集为{|32}x x -<<-. 故选:D .18.25.已知关于x 的不等式20ax bx c ++>解集为{}23x x -<<,则下列说法错误的是( ) A .0a < B .不等式0ax c +>的解集为{}6x x <C .0a b c ++>D .不等式20cx bx a -+<的解集为1132x x ⎧⎫<<⎨⎬⎩⎭【答案】D 【详解】由已知可得-2,3是方程20ax bx c ++=的两根,则由根与系数的关系可得23,23,b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩且0a <,解得,6b a c a =-=-,所以A 正确;对于B ,0ax c +>化简为60x -<,解得6x <,B 正确;对于C ,660a b c a a a a ++=--=->,C 正确; 对于D ,20cx bx a -+<化简为:2610x x --<,解得1132x -<<,D 错误.故选:D.19.已知关于x 的不等式:()23130ax a x -++<.(1)当2a =-时,解此不等式; (2)当0a >时,解此不等式.【答案】(1)1{|2x x <-或}3x >(2)当13a =时,解集为∅;当103a <<时,解集为1{|3}x x a <<;当13a >时,解集为1{|3}x x a <<(1)当a =-2时,不等式-2x 2+5x +3<0整理得(2x +1)(x -3)>0,解得x <-12或x >3, 当a =-2时,原不等式解集为{x |x <-12或x >3}.(2)当a >0时,不等式ax 2-(3a +1)x +3<0整理得:(x -3)(x -1a )<0, 当a =13时,1a =3,此时不等式无解;当0<a <13时,1a >3,解得3<x <1a ;当a >13时,1a <3,解得1a <x <3;综上:当a =13时,解集为∅;当0<a <13时,解集为{x |3<x <1a };当a >13时,解集为{x |1a <x <3}.20.已知22()(3)3f x ax a x a =+--.(1)若关于x 的不等式()0f x <的解集为{|1x x >或3}x <-,求实数a 的值; (2)若关于x 的不等式()0f x x a ++<的解集中恰有2个整数,求正整数a 的值. 【解答】解:22()(3)3(3)()f x ax a x a ax x a =+--=-+,(1)若不等式()0f x <的解集为(-∞,3)(1-⋃,)+∞,则0a <,且1a -=,33a=-,解得1a =-; (2)不等式()0f x x a ++<,即22(2)20ax a x a +--<有两整数解, 所以(2)()0ax x a -+<;又a 为正整数,所以2a x a-<<, 由解集中必含0,两整数解为1-,0或0,1;当2a >时,整数解为2-,1-,0,不符合; 所以1a =或2a =.考点四:恒成立、有解与根分布问题21.函数()()20.8log 23f x x ax =-+在()1,-+∞有意义,则a 的取值范围( )A .(-B .5,⎡-⎣C .[]5,4--D .(],4-∞-【答案】B 【详解】由题意可知2230x ax -+>对任意的1x >-恒成立,令223u x ax =-+, 二次函数223u x ax =-+的图象开口向上,对称轴为直线4ax =. ①当14a≤-时,即当4a ≤-时,此时函数223u x ax =-+在()1,-+∞上单调递增, 所以,230a ++≥,解得5a ≥-,此时54a -≤≤-;②当14a>-时,即当4a >-时,则有2240a ∆=-<,解得a -<4a -<<综上所述,实数a 的取值范围是5,⎡-⎣. 故选:B.22.已知函数y =x 2+ax +3.(1)当x ∈R 时,y ≥a 恒成立,求a 的取值范围; (2)当a ∈[4,6]时,y ≥0恒成立,求x 的取值范围.解 (1)当x ∈R 时,x 2+ax +3-a ≥0恒成立,则Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,故a 的取值范围为{a |-6≤a ≤2}.(2)将y =xa +x 2+3看作关于a 的一次函数,当a ∈[4,6]时,y ≥0恒成立,只需在a =4和a =6时y ≥0即可,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0, 解得x ≤-3-6或x ≥-3+6,故x 的取值范围是{x |x ≤-3-6或x ≥-3+6}. 23.已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<< B .10a -<≤C .10a -≤<D .10a -≤≤【答案】B当0a =时,221=10ax ax +--<,对x R ∀∈恒成立;当0a ≠时,若2210ax ax +-<,对x R ∀∈恒成立,则必须有20(2)4(1)0a a a <⎧⎨-⨯-<⎩,解之得10a -<<, 综上,a 的取值范围为10a -<≤.故“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是10a -<≤,故选:B24.若命题“R x ∃∈,使得不等式22(3)0mx m x m +-+<”成立,则实数m 的取值集合是( ) A .(3,1)-- B .(,1)(3,)-∞+∞C .(,0]-∞D .(3,1)(1,3)--【答案】B命题“R x ∃∈,使得不等式22(3)0mx m x m +-+<”成立, 当0m =时,不等式为30x -<,显然有解,成立;当0m <时,开口向下,必然R x ∃∈,使得不等式22(3)0mx m x m +-+<成立,; 当0m >,0∆>即222(3)40m m -->,解得29m >或21m <,所以01m <<或3m >. 综上可得1m <或3m >. 故选:B .25.已知关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,则有( ) A .4m ≤- B .3m ≥- C .30m -≤< D .40m -≤<【答案】A因为关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,所以2min (4)m x x ≤-, 令224(2)4y x x x =-=--,(]0,3x ∈,所以当2x =时,24y x x =-取得最小值4-, 所以4m ≤- 故选:A26.若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________. 【答案】(52,+∞)【详解】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.27.2022年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成.在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户种养羊,每万元可创造利润0.15万元.若进行技术指导,养羊的投资减少了x ()0x >万元,且每万元创造的利润变为原来的()10.25x +倍.现将养羊少投资的x 万元全部投资网店,进行农产品销售,则每万元创造的利润为()0.150.875a x -万元,其中0a >. (1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x 的取值范围; (2)若网店销售的利润始终不高于技术指导后养羊的利润,求a 的最大值. 【答案】(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5. 【详解】解:(1)由题意,得()()0.1510.25100.1510x x +-≥⨯,整理得260x x -≤,解得06x ≤≤,又0x >,故06x <≤. (2)由题意知网店销售的利润为()0.150.875a x x -万元,技术指导后,养羊的利润为()()0.1510.2510x x +-万元,则()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,又010x <<,∴5101.58x a x≤++恒成立, 又51058x x +≥,当且仅当4x =时等号成立,∴0 6.5a <≤,即a 的最大值为6.5. 答:(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5.对点练习一、单选题1.不等式21560x x +->的解集为( )A .{1x x 或1}6x <- B .116x x ⎧⎫-<<⎨⎬⎩⎭ C .{1x x 或3}x <- D .{}32x x -<<【答案】B【分析】解一元二次不等式,首先确保二次项系数为正,两边同时乘1-,再利用十字相乘法,可得答案, 【详解】法一:原不等式即为26510x x --<,即()()6110x x +-<,解得116x -<<,故原不等式的解集为116x x ⎧⎫-<<⎨⎬⎩⎭.法二:当2x =时,不等式不成立,排除A ,C ;当1x =时,不等式不成立,排除D .故选:B .2.已知正数x y ,满足 4x y +=,则xy 的最大值( )A . 2B .4C . 6D .8【答案】B【分析】直接使用基本不等式进行求解即可. 【详解】因为正数x y ,满足 4x y +=,所以有424x y xy =+≥⇒≤,当且仅当2x y ==时取等号, 故选:B3.已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥ 【答案】A【分析】由二次函数与一元二次不等式关系,结合函数图象确定不等式解集. 【详解】由二次函数图象知:20ax bx c ++>有2<<1x -. 故选:A4.已知02x <<,则y =的最大值为( ) A .2B .4C .5D .6【答案】A【分析】由基本不等式求解即可【详解】因为02x <<,所以可得240x ->,则()22422x x y +-==,当且仅当224xx =-,即x =y =的最大值为2.故选:A .5.关于x 的不等式()210x a x a -++< 的解集中恰有1个整数,则实数a 的取值范围是( )A .(][)1,02,3-B .[)(]2,13,4--C .[)(]2130,-⋃,D .()()2134--⋃,, 【答案】C【分析】分类讨论一元二次不等式的解,根据解集中只有一个整数,即可求解.【详解】由()210x a x a -++<得()()10x x a --< ,若1a =,则不等式无解.若1a >,则不等式的解为1x a <<,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为2x =,则23a <≤.若1a <,则不等式的解为1<<a x ,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为0x =,则10a -≤<.综上,满足条件的a 的取值范围是[)(]2130,-⋃, 故选:C .6.已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是( )A .0a >B .不等式20ax cx b ++>的解集为{|22x x <<C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【分析】根据解集形式确定选项A 错误;化不等式为2430,x x --<即可判断选项B 正确;设2()f x ax bx c =++,则(1)0f >,判断选项C 错误;解不等式可判断选项D 错误.【详解】解:因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以a<0,所以选项A 错误; 由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<所以选项B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B二、多选题7.(多选)给出下列命题,其中正确的命题是( )A .a >b ⇒ac 2>bc 2B .a >|b |⇒a 2>b 2C .a >b ⇒a 3>b 3D .|a |>b ⇒a 2>b 2答案 BC解析 A 当c 2=0时不成立;B 一定成立;C 当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; D 当b <0时,不一定成立.如|2|>-3,但22<(-3)2.a b >,则222a b b >=,D 正确.故选:BD .8.对任意两个实数,a b ,定义{},,min ,,a ab a b b a b ≤⎧=⎨>⎩,若()22f x x =-,()2g x x =,下列关于函数()()(){}min ,F x f x g x =的说法正确的是( )A .函数()F x 是偶函数B .方程()0F x =有三个解C .函数()F x 在区间[1,1]-上单调递增D .函数()F x 有4个单调区间【答案】ABD【分析】结合题意作出函数()()(){}min ,F x f x g x =的图象,进而数形结合求解即可.【详解】解:根据函数()22f x x =-与()2g x x =,,画出函数()()(){}min ,F x f x g x =的图象,如图.由图象可知,函数()()(){}min ,F x f x g x =关于y 轴对称,所以A 项正确;函数()F x 的图象与x 轴有三个交点,所以方程()0F x =有三个解,所以B 项正确;函数()F x 在(,1]-∞-上单调递增,在[1,0]-上单调递减,在[0,1]上单调递增,在[1,)+∞上单调递减,所以C 项错误,D 项正确.故选:ABD三、填空题9.函数()1311y x x x =+>-的最小值是_____【答案】3+【分析】利用基本不等式可求得原函数的最小值.【详解】因为1x >,则10x ->,所以()1313331y x x =-++≥=-,当且仅当()1311x x -=-,因为1x >,即当x =.所以函数()1311y x x x =+>-的最小值是3.故答案为:3+10.已知[]0,2a ∀∈时,不等式()231102ax a x a +++-<恒成立,则x 的取值范围为__________. 【答案】()2,1--【分析】由题意构造函数关于a 的函数()f a 2312x x a x ⎛⎫=+-++ ⎪⎝⎭,则可得(0)0(2)0f f <⎧⎨<⎩,从而可求出x 的取值范围.【详解】由题意,因为当[]0,2a ∈,不等式()231102ax a x a +++-<恒成立, 可转化为关于a 的函数()f a 2312x x a x ⎛⎫=+-++ ⎪⎝⎭,则()0f a <对任意[]0,2a ∈恒成立, 则满足2(0)10(2)22310f x f x x x =+<⎧⎨=+-++<⎩,解得2<<1x --, 即x 的取值范围为()2,1--.故答案为:()2,1--四、解答题11.(1)已知一元二次不等式20x px q ++<的解集为11|23x x ⎧⎫-<<⎨⎬⎩⎭,求不等式210qx px ++>的解集; (2)若不等式2(7)0x mx m -++>在实数集R 上恒成立,求m 的范围.【答案】(1){|23}x x -<<;(2)22m -<+【分析】(1)先将不等式问题转化为方程问题求出,p q 的值,然后就可以解不等式了;(2)一元二次不等式恒成立,即考虑其判别式.【详解】(1)因为20x px q ++<的解集为11|23x x ⎧⎫-<<⎨⎬⎩⎭, 所以112x =-与213x =是方程20x px q ++=的两个实数根, 由根与系数的关系得11,3211,32p q ⎧-=-⎪⎪⎨⎛⎫⎪⨯-= ⎪⎪⎝⎭⎩解得1,61.6p q ⎧=⎪⎪⎨⎪=-⎪⎩不等式210qx px ++>, 即2111066x x -++>,整理得260x x --<,解得23x -<<.即不等式210qx px ++>的解集为{|23}x x -<<. (2)由题意可得,∆<0,即241(7)0-⨯⨯+<m m ,整理得24280m m --<,解得22m -<+12.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.【答案】(1)最大值为16米;(2)最小值为(824+平方米.【分析】(1)设草坪的宽为x 米,长为y 米,依题意列出不等关系,求解即可;(2)表示400(26)(4)(26)(4)S x y x x=++=++,利用均值不等式,即得最小值. 【详解】(1)设草坪的宽为x 米,长为y 米,由面积均为400平方米,得400y x =. 因为矩形草坪的长比宽至少大9米,所以4009x x +,所以294000x x +-,解得2516x -. 又0x >,所以016x <.所以宽的最大值为16米.(2)记整个的绿化面积为S 平方米,由题意可得400300(26)(4)(26)(4)8248()(824S x y x x x x=++=++=+++(平方米)当且仅当x =.所以整个绿化面积的最小值为(824+平方米.。

高考数学导数与三角函数压轴题综合归纳总结教师版

高考数学导数与三角函数压轴题综合归纳总结教师版

高考数学导数与三角函数压轴题综合归纳总结教师版导数与三角函数的问题在近几年的高考数学试题中频繁出现,主要包括函数零点个数的确定、根据函数零点个数求参数围、隐零点问题及零点存在性赋值理论。

这些问题的形式逐渐多样化、综合化。

一、零点存在定理例1.【2019全国Ⅰ理20】函数$f(x)=\sin x-\ln(1+x)$,$f'(x)$为$f(x)$的导数。

证明:1)$f'(x)$在区间$(-1,)$存在唯一极大值点;2)$f(x)$有且仅有2个零点。

解析】(1)设$g(x)=f'(x)$,则$g(x)=\cos x-\frac{1}{1+x}$,$g'(x)=-\sin x+\frac{1}{(1+x)^2}$。

当$x\in(-1,\frac{\pi}{2})$时,$g'(x)$单调递减,而$g'(0)>0$,$g'(\frac{\pi}{2})<0$,可得$g'(x)$在$(-1,\frac{\pi}{2})$有唯一零点,设为$\alpha$。

则当$x\in(-1,\alpha)$时,$g'(x)>0$;当$x\in(\alpha,\frac{\pi}{2})$时,$g'(x)<0$。

所以$g(x)$在$(-1,\alpha)$单调递增,在$(\alpha,\frac{\pi}{2})$单调递减,故$g(x)$在$(-1,\frac{\pi}{2})$存在唯一极大值点,即$f'(x)$在$(-1,\frac{\pi}{2})$存在唯一极大值点。

2)$f(x)$的定义域为$(-1,+\infty)$。

i) 由(1)知,$f'(x)$在$(-1,0)$单调递增,而$f'(0)=0$,所以当$x\in(-1,0)$时,$f'(x)<0$,故$f(x)$在$(-1,0)$单调递减,又$f(0)=0$,从而$x=0$是$f(x)$在$(-1,0]$的唯一零点。

专题05 函数周期性,对称性,奇偶性问题(教师版)-2024年高考二级结论速解技巧

专题05 函数周期性,对称性,奇偶性问题(教师版)-2024年高考二级结论速解技巧

()()()()012...516f f f f ++++× ()()()()()01234f f f f f +++++, 01633=×+=,故选:B.2.(2023·河南郑州·统考一模)已知函数()f x 定义域为R ,()1f x +为偶函数,()2f x +为奇函数,且满足()()122f f +=,则()20231k f k ==∑( ) A .2023− B .0 C .2 D .2023【答案】B【详解】因为(1)f x +为偶函数,所以(1)(1)−+=+f x f x ,所以(2)()f x f x −+=, 因为(2)f x +为奇函数,所以(2)(2)f x f x −+=−+, 所以(2)()f x f x +=−,所以(4)(2)()f x f x f x +=−+=, 所以()f x 是以4为周期的周期函数,由(2)(2)f x f x −+=−+,令0x =,得(2)(2)f f =−,则(2)0f =, 又(1)(2)2f f +=,得(1)2f =, 由(2)(2)f x f x −+=−+,令1x =,得(1)(3)f f =−,则(3)2f =−, 由(2)()f x f x +=−,令2x =,得(4)(2)0f f =−=, 则(1)(2)(3)(4)0f f f f +++=, 所以20213()[(1)(2)(3)(4)]505(1)(2)(3)05052(2)0k f k f f f f f f f ==+++×+++=×++−=∑. 故选:B .3.(2023秋·江西抚州·高三临川一中校考期末)若函数()f x 的定义域为R ,且()1f x +是偶函数,()1f x +关于点()2,0成中心对称,则函数()f x 的一条对称轴为( ) A .2023x = B .2022x =C .2021x =D .2020x =【答案】C【详解】因为()1f x +是偶函数,所以()()11f x f x +=−+,所以()f x 关于1x =对称,即()()2f x f x =−,因为()1f x +关于点()2,0成中心对称,且()f x 向左平移1个单位长度之后得到()1f x +, 所以()f x 关于()3,0对称,所以()()60f x f x +−=, 因为()()2f x f x =−,()()60f x f x +−=, 所以()()62f x f x −−=−,故()()()48f x f x f x =−+=+,故()f x 的周期为8, 因为()f x 关于1x =对称,关于()3,0对称,所以()f x 关于5x =对称,由图象可知,()y f x =与|lg |y x =有10个交点, 所以方程()lg f x x =有10个根. 故答案为:10。

导数常见题型与解题方法总结(教师版)

导数常见题型与解题方法总结(教师版)

导数题型解题方法总结1、分离变量 -----用分离变量时要特别注意是否需分类讨论( >0,=0,<0)2、变更主元 ----- 已知谁的范围就把谁作为主元3、根分布4、判别式法 -----结合图像分析5、二次函数区间最值求法 ----- (1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在一、基础题型:函数的单调区间、极值、最值;不等式恒成立此类问题提倡按以下三个步骤进行解决:第一步:令 f ' (x) = 0 得到两个根; 第二步:画两图或列表;第三步:由图表可知;第三种:变更主元(即关于某字母的一次函数) ----- (已知谁的范围就把谁作为主元) 。

例 1:设函数 y = f(x) 在区间 D 上的导数为 f,(x), f,(x) 在区间 D 上的导数为 g(x) ,若在区间 D 上, g(x) < 0 恒 成 立, 则 称 函 数 y = f(x) 在 区 间 D 上 为 “ 凸 函 数 ”, 已 知 实 数 m 是 常 数,x 4 mx 3 3x 212 6 2(1)若 y = f(x) 在区间[0,3] 上为“凸函数”,求 m 的取值范围;(2)若对满足 m 共 2 的任何一个实数m , 函数 f(x) 在区间( a, b ) 上都为“凸函数”, 求b 一 a 的最大.解:由函数 f(x) =x 412 一 mx 36一 3x 22 得 f,(x) = x 33 一 mx 22一 3x :g(x) = x 2 一 mx 一 3(1) y = f(x) 在区间[0,3] 上为“凸函数”,则 :g(x) = x 2 一 mx 一 3 < 0 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于g (x)< 0值 f(x) = 一 一max(g(0) < 0 (_3 < 0〈lg(3) < 0 亭〈l 9 _ 3m _ 3 <0 亭 m > 2解法二: 分离变量法:∵ 当 x = 0 时, :g(x) = x 2 _ mx _ 3 = _3 < 0 恒成立, 当 0 < x 三 3 时, g(x) = x 2 _ mx _ 3 < 0 恒成立等价于 m > x 2 _ 3 = x _ 3的最大值( 0 < x 三 3 )恒成立,x x而 h(x) = x _x( 0 < x 三 3 )是增函数,则 h max (x) = h(3) = 2:m > 2(2)∵当m 三 2 时 f(x) 在区间( a, b ) 上都为“凸函数”则等价于当 m 三 2 时 g(x) = x 2 _ mx _ 3 < 0 恒成立 变更主元法再等价于 F(m) = mx _ x 2 + 3 > 0 在 m 三 2 恒成立 (视为关于 m 的一次函数最值问题)亭〈 亭〈亭 _ 1< x < 1:b _ a = 2-2 2例 2:设函数 f(x) = _ 1x 3 + 2ax 2 _ 3a 2 x + b(0 < a < 1, b =R)3(Ⅰ)求函数 f (x)的单调区间和极值;(Ⅱ)若对任意的 x = [a + 1, a + 2], 不等式f,(x)三 a 恒成立,求 a 的取值范围. 解: (Ⅰ) f,(x) = _x 2 + 4ax _ 3a 2 = _ (x _ 3a )(x _ a )0 < a < 13aaf,(x)3a3a令 f ,(x) > 0, 得 f(x) 的单调递增区间为(a,3a)令 f ,(x) < 0, 得 f(x) 的单调递减区间为(- w , a)和(3a , + w )∴当x=a 时, f(x) 极小值= _ 4a 3+ b; 当 x=3a 时, f(x) 极大值=b.(Ⅱ)由| f ,(x) |≤a,得:对任意的 x = [a + 1, a + 2], _a 共 x 2 _ 4ax + 3a 2 共 a 恒成立①则 等 价 于 g(x) 这 个 二 次 函 数〈(g max (x) 共 ag(x) = x 2 _ 4ax +3a 2 的 对 称 轴 x = 2a0 < a < 1, a +1 > a + a = 2a (放缩法)即定义域在对称轴的右边, g(x) 这个二次函数的最值问题:单调增函数的最值问题。

专题十 函数的周期性(教师版)

专题十 函数的周期性(教师版)

函数的周期性问题四、典型例题分析例1. 解:)()3(1]3)3[()6()(1)3(x f x f x f x f x f x f =+-=++=+∴-=+ 51)5.2(1)5.03(1)5.0()5.06()5.5(5.56185.1136)(=--=--=-=-==+⨯=∴=∴f f f f f f f T x f )()(为周期的周期函数是以变式1:解析:∵f(x+2)=-f (x ).∴f(6)=f (4+2)=-f (4)=f (2)=-f (2). 又-f (x )为R 上的奇函数,∴f (2)=0 ∴f (6)=0.例2.解析:选B ∵f (x )是最小正周期为2的周期函数,且0≤x <2时,f (x )=x 3-x =x (x -1)(x +1),∴当0≤x <2时,f (x )=0有两个根,即x 1=0,x 2=1.由周期函数的性质知,当2≤x <4时,f (x )=0有两个根,即x 3=2,x 4=3;当4≤x <6时,f (x )=0有两个根,即x 5=4,x 6=5,x 7=6也是f (x )=0的根.故函数f (x )的图象在区间[0,6]上与x 轴交点的个数为7.变式2:答案:D例3.解答:由f (x +6)=f (x )可知,函数f (x )的周期为6,所以f (-3)=f (3)=-1,f (-2)=f (4)=0,f (-1)=f (5)=-1,f (0)=f (6)=0,f (1)=1,f (2)=2,所以在一个周期内有f (1)+f (2)+…+f (6)=1+2-1+0-1+0=1,所以f (1)+f (2)+…+f (2 012)=f (1)+f (2)+335×1=1+2+335=338. 变式3:解答:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22,即b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10. 例4.解析:选D 由f (x )在[-1,0]上是减函数,又f (x )是R 上的偶函数,所以f (x )在[0,1]上是增函数. 由f (x +1)=-f (x ),得f (x +2)=f [(x +1)+1]=-f (x +1)=f (x ),故2是函数f (x )的一个周期.结合以上性质,模拟画出f (x )部分图象的变化趋势,如下图.由图象可以观察出,f (x )在[1,2]上为减函数,在[2,3]上为增函数.变式4解析:选C ∵-3<log 126<-2,∴-1<log 126+2<0,即-1<log 1232<0.∵f (x )是周期为2的奇函数, ∴f (log 126)=f ⎝ ⎛⎭⎪⎫log 1232=-f ⎝ ⎛⎭⎪⎫-log 1232=-f ⎝⎛⎭⎫log 232=-⎝⎛⎭⎫223log 2-1=-12. 五、强化练习1、函数)x (f 对于任意实数x 满足条件)x (f 1)2x (f =+,若5)1(f -=,则))5(f (f 等于 A. 5 B. 5- C. 51 D. 51- 2、已知定义在R 上的函数)x (f y =满足下列三个条件:① 对于任意的R x ∈,都有)x (f )4x (f =+;② 对于任意的2x x 021≤<≤,都有)x (f )x (f 21<;③ 函数)2x (f y +=的图象关于y 轴对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题函数常见题型归纳(教师版)
————————————————————————————————— 日期:
专题函数常见题型归纳
本专题热点考点可总结为六类:一是分段函数的求值问题,二是函数的性质及其应用,三是基本函数的图像和性质,四是函数图像的应用,五是方程根的问题,六是函数的零点问题。
A.2 B.4ﻩﻩC.6 ﻩD.8
【解题技巧点睛】在解决与函数性质有关的问题中,如果结合函数的性质画出函数的简图,根据简图进一步研究函数的性质,就可以把抽象问题变得直观形象、复杂问题变得简单明了,对问题的解决有很大的帮助. (1)一般的解题步骤:利用函数的周期性把大数变小或小数变大,然后利用函数的奇偶性调整正负号,最后利用函数的单调性判断大小; (2)画函数草图的步骤:由已知条件确定特殊点的位置,然后利用单调性确定一段区间的图象,再利用奇偶性确定对称区间的图象,最后利用周期性确定整个定义域内的图象.
【解析】本题考查二次函数的性质和图像。
f(x)= =
则f 的图象如图:
∵y=f(x)-c的图象与x轴恰有两个公共点,
∴y=f(x)与y=c的图象恰有两个公共点,
由图象知c≤-2,或-1<c<- .
考点四 函数图像的应用
【例8】设函数f(x)(x∈R)满足f(-x)=f(x),f(x+2)=f(x),则y=f(x)的图像可能是( )
考点五 与方程根的相关问题
【例10】设 ,一元二次方程 有整数根的充要条件是
=.
【答案】 3或4.
【解析】直接利用求根公式进行计算,然后用完全平方数、整除等进行判断计算. ,因为 是整数,即 为整数,所以 为整数,且 ,又因为 ,取 ,验证可知 符合题意;反之 时,可推出一元二次方程 有整数根.
【例11】已知函数f(x)= 若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是________.
考点三 基本函数的性质与图像
【例6】已知 则( ).
A. B. C. D.
【答案】C
【解析】根据对数函数的运算性质可知: 再由指数函数
为单调递增函数,因为 . ,
,且 ,所以 .
【例7】对实数a和b,定义运算“⊗”:a⊗ b=设函数f (x)=(x2-2)⊗(x- x2),x∈R,若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是( )
考点一 分段函数求值问题
【例1】已知函数f(x)= 若f(a)+f(1)=0,则实数a的值等于()
【解析】 由已知,得f(1)=2;又当x>0时,f(x)=2x>1,而f(a)+f(1)=0,∴f(a)=-2,且a<0,∴a+1=-2,解得a=-3
【例2】设f(x)= 则f(f(-2))=________.
【解析】f(x)= -2<0, f(-2)=10-2; 10-2>0,
f(10-2)=lg10-2=-2.
【解题技巧点睛】求f(g(x))类型的函数值时,应遵循先内后外的原则,而对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解,特别地对具有周期性的函数求值要用好其周期性.
考点二 函数性质的基本应用
【例4】若函数f(x)= 为奇函数,则a=( )
【解析】 法一:由已知得f(x)= 定义域关于原点对称,由于该函数定义域为,知a=,故选A.
法二:∵f(x)是奇函数,∴f(-x)=-f(x),又f(x)= ,
则 =,因函数的定义域内恒成立,可得 a=.
【例5】函数 的图像与函数 ( )的图像所有交点的横坐标之和等于( ).
【答案】B
【解析】 由f(-x)=f(x)可知函数为偶函数,其图像关于y轴对称,可以结合选项排除A、C,再利用f(x+2)=f(x),可知函数为周期函数,且T=2,必满足f(4)=f(2),排除D,故只能选B.
【例9】已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图像与函数y=|lgx|的图像的交点共有( )
【解析】 本题考查对数函数的单调性与函数零点定理的应用.因为2<a<3,所以loga2<1=logaa<loga3,因为3<b<4,所以b-2>1>loga2,b-3<1<loga3,所以f(2)·f(3)=(loga2+2-b)(loga3+3-b)<0,所以函数的零点在(2,3)上,所以n=2.
【解析】考查数形结合思想,在同一直角坐标系中作出两个函数的图像,故下图.容易判断出两函数图像的交点个数为10个
【解题技巧点睛】函数图象分析类试题,主要就是推证函数的性质,然后根据函数的性质、特殊点的函数值以及图象的实际作出判断,这类试题在 考查函数图象的同时重点是考查探究函数性质、用函数性质分析问题和解决问题的能力.利用导数研究函数的性质、对函数图象作出分析判断类的试题,已经逐渐成为高考的一个命题热点。
【例3】下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )
A.y=x3B.y=|x|+1 C.y=-x2+1 D.y=2-|x|
【答案】B
【解析】 A选项中,函数y=x3是奇函数;B选项中,y=+1是偶函数,且在 上是增函数;C选项中,y=-x2+1是偶函数,但在上是减函数;D选项中,y=2-|x|=|x|是偶函数,但在 上是减函数.故选B.
【答案】(0,1)
【解析】 单调递减且值域为(0,1], 单调递增
且值域为 ,函数f(x)的图象如图所示,故 有两个不同的实根,则实数
k的取值范围是(0,1).
考点六 函数零点问题
【例12】在下列区间中,函数f(x)=ex+4x-3的零点所在的区间为( )
【解析】 因为f=e -2<0,f =e -1>0,所以f·f <0,
又因为函数y=ex是单调增函数,y=4x-3也是单调增函数,
所以函数f(x)=ex+4x-3是单调增函数,
所以函数f(x)=ex+4x-3的零点在 内.
【例13】已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,则n=________.
【例14】函数f(x)=-cosx在[0,+∞)内( )
相关文档
最新文档