最新北师版七年级下册全等三角形专题2
1北师大版七年级下册数学[.全等三角形的概念和性质(基础)知识点整理及重点题型梳理]
北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习全等三角形的概念和性质(基础)【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素. 2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【答案】A【解析】B,C,D选项中形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式】(2014秋•岱岳区期末)下列各组图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长3cm的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形【答案】D;解析:A、两个等腰三角形的45°不一定同是底角或顶角,还缺少对应边相等,所以,两个三角形不一定全等,故本选项错误;B、两个等边三角形的边长不一定相等,所以,两个三角形不一定全等,故本选项错误;C、40°角不一定是两个三角形的顶角,所以,两个三角形不一定全等,故本选项错误;D、腰和顶角对应相等的两个等腰三角形可以利用“边角边”证明全等,故本选项正确.类型二、全等三角形的对应边,对应角2、(2016•厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB【思路点拨】由全等三角形的性质:对应角相等即可得到问题的选项【答案与解析】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选A.【总结升华】全等三角形对应角所对的边是对应边;全等三角形对应边所对的角是对应角. 举一反三:【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.【答案】AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠ADB和∠AEC是对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB=∠________=________°.【思路点拨】由旋转的定义,△ABD≌△EBC,∠ADB与∠ECB是对应角,通过计算得出结论.【答案】55;ABD,EBC;ECB,55【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.【总结升华】根据全等三角形的性质来解题.4、(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.【思路点拨】根据全等三角形的性质得出即可,根据全等得出∠ACB=∠DCE ,都减去∠ACE 即可.【答案与解析】解:AB 的对应边为DE ,∵△ABC ≌△DEC ,∴∠ACB=∠DCE ,∴∠ACB —∠ACE=∠DCE —∠ACE ,即∠BCE=∠DCA=40°.【总结升华】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.举一反三:【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若AC A B ''⊥,则BAC ∠的度数是____________.【答案】70°;提示:BAC ∠=∠B A C ''=90°-20°=70°.。
北师大版七年级数学下册第四章 三角形2 图形的全等
对应角:∠A 与∠D ; ∠B 与∠E ;∠C 与∠F .
全等三角形的对应边相等,对应角相等.
全等的表示方法
A
F
B
C
D
E
“全等”用符号“≌”表示,读作“全等于”.
△ABC 与 △DEF 全等,记作 △ABC≌△FDE
注意:记两个三角形全等时,通常把表示对应顶点的 字母写在对应的位置上.
全等三角形的性质的几何语言
2 全等三角形的定义
A
D
B
CE
F
能够完全重合的两个三角形叫做全等三角形. 例如,在图中,△ABC 与 △DEF 能够完全重合, 它们是全等三角形.
A
D
B
C
E
F
你能找出其他的对应顶点、对应边和对应角吗?
对应点:点 A,点 D; 点 B,点 E;点 C,点 F;
对应边:AB 与 DE; AC 与 DF;BC 与 EF;
探究新知
1 全等图形的定义及性质
全等图形的定义: 能够完全重合的两个图形称为全等图形.
议一议
(1) 你能说出生活中全等图形的例子吗?
(2) 观察下面三组图形,它们是不是全等图形? 为什么?与同伴进行交流.
大小不同
形状不同
√
(3) 如果两个图形全等,它们的形状和大小一定都相同 吗?
全等图形的性质:全等图形的形状和大小都相同.
A
F
B
C
D
E
因为△ABC≌△FDE,
所以 AB = FD,AC = FE,BC = DE (全等三角形的对应边 相等),
∠A =∠F,∠B =∠D,∠C =∠E (全等三角形对应角相等)
典例精析 例1 如图,若△BOD≌△COE,指出这两个全等三角形 的对应边;若△ADO≌△AEO,指出这两个三角形的对 应角. 解:△BOD 与△COE 的对应边为: BO 与 CO,OD 与 OE,BD 与 CE; △ADO 与△AEO 的对应角为: ∠DAO 与∠EAO,∠ADO 与∠AEO, ∠AOD 与∠AOE.
北师大新版七年级下册《第4章 三角形》2含解析版答案
北师大新版七年级下册《第4章三角形》一、选择题(共11小题)1.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°2.如图,点C在AB的延长线上,∠A=35°,∠DBC=110°,则∠D的度数是()A.65°B.70°C.75°D.95°3.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠24.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD6.如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等()A.∠A=∠DFE B.BF=CF C.DF∥AC D.∠C=∠EDF7.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对9.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC10.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°11.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC ≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F二、填空题(共12小题)12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.13.如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:.14.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)15.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC ≌△ADC,只需再添加的一个条件可以是.16.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)17.如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD ≌△CDB.(只需写一个)18.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件,使△ABC≌△DEF.19.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB =AC.∠E=30°,∠BCE=40°,则∠CDF=.20.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是.(只填一个即可)21.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).22.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).23.如图,AC与BD相交于点O,且AB=CD,请添加一个条件,使得△ABO≌△CDO.三、解答题(共7小题)24.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.25.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.26.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.27.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)28.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.29.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD ≌△AEC.30.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.北师大新版七年级下册《第4章三角形》参考答案与试题解析一、选择题(共11小题)1.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选:A.2.如图,点C在AB的延长线上,∠A=35°,∠DBC=110°,则∠D的度数是()A.65°B.70°C.75°D.95°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质得,∠D=∠DBC﹣∠A=110°﹣35=75°.故选:C.3.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.4.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【分析】本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.6.如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等()A.∠A=∠DFE B.BF=CF C.DF∥AC D.∠C=∠EDF 【分析】根据三角形中位线的性质,可得∠CEF=∠DFE,∠CFE=∠DEF,根据SAS,可判断B、C;根据三角形中位线的性质,可得∠CFE=∠DEF,根据AAS,可判断D.【解答】解:A、∠A与∠DEF没关系,故A错误;B、BF=CF,F是BC中点,点D、E分别是边AB、AC的中点,∴DF∥AC,DE∥BC,∴∠CEF=∠DFE,∠CFE=∠DEF,在△CEF和△DFE中,∴△CEF≌△DFE(ASA),故B正确;C、点D、E分别是边AB、AC的中点,∴DE∥BC,∴∠CFE=∠DEF,∵DF∥AC,∴∠CEF=∠DFE在△CEF和△DFE中,∴△CEF≌△DFE(ASA),故C正确;D、点D、E分别是边AB、AC的中点,∴DE∥BC,∴∠CFE=∠DEF,,∴△CEF≌△DFE(AAS),故D正确;故选:A.7.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB【分析】本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.9.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】由条件可得∠A=∠D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案.【解答】解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:A.10.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC ≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.11.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC ≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.二、填空题(共12小题)12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和R t△AOP ≌R t△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.13.如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:△ADF≌△CBE.【分析】由平行四边形的性质,可得到等边或等角,从而判定全等的三角形.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,∠DAC=∠BCA,∵BE∥DF,∴∠DFC=∠BEA,∴∠AFD=∠BEC,在△ADF与CBE中,,∴△ADF≌△CBE(AAS),故答案为:△ADF≌△CBE.14.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF.(只填一个即可)【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.【解答】解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:BC=EF或∠BAC=∠EDF15.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC ≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS 即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC16.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD =∠CBD或AD=CD..(只需写一个,不添加辅助线)【分析】由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S 了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.【解答】解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.17.如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件AB=CD,使△ABD≌△CDB.(只需写一个)【分析】先根据平行线的性质得∠ABD=∠CDB,加上公共边BD,所以根据“SAS”判断△ABD≌△CDB时,可添加AB=CD.【解答】解:∵AB∥CD,∴∠ABD=∠CDB,而BD=DB,∴当添加AB=CD时,可根据“SAS”判断△ABD≌△CDB.故答案为AB=CD.18.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF(或∠B=∠DEF或AB∥DE),使△ABC≌△DEF.【分析】可选择利用SSS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.【解答】解:①添加AC=DF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).②添加∠B=∠DEF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).③添加AB∥DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:AC=DF(或∠B=∠DEF或AB∥DE).19.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB =AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.20.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE.(只填一个即可)【分析】此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.【解答】解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.21.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是AB=CD(答案不唯一)(填出一个即可).【分析】添加条件是AB=CD,根据AAS推出两三角形全等即可.【解答】解:AB=CD,理由是:∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:AB=CD(答案不唯一).22.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=DE(只需写一个,不添加辅助线).【分析】求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.【解答】解:AB=DE,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=DE.23.如图,AC与BD相交于点O,且AB=CD,请添加一个条件∠A=∠C,使得△ABO≌△CDO.【分析】首先根据对顶角相等,可得∠AOB=∠COD;然后根据两角及其中一个角的对边对应相等的两个三角形全等,要使得△ABO≌△CDO,则只需∠A=∠C即可.【解答】解:∵∠AOB、∠COD是对顶角,∴∠AOB=∠COD,又∵AB=CD,∴要使得△ABO≌△CDO,则只需添加条件:∠A=∠C.(答案不唯一)故答案为:∠A=∠C.(答案不唯一)三、解答题(共7小题)24.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.【分析】根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).25.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.【分析】已知这两个三角形的一个边与一个角相等,所以再添加一个对应角相等即可.【解答】解:添加∠BAC=∠DAC.理由如下:在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).26.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.【分析】根据中点定义求出AC=CB,根据两直线平行,同位角相等,求出∠ACD=∠B,然后利用SAS即可证明△ACD≌△CBE.【解答】证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).27.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)【分析】先求出BC=EF,添加条件AC=DF,根据SAS推出两三角形全等即可.【解答】AC=DF.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS).28.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.【分析】首先根据AB=AC可得∠B=∠C,再由DE⊥AB,DF⊥AC,可得∠BED=∠CFD=90°,然后再利用AAS定理可判定△BED≌△CFD.【解答】证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C,在△BED和△CFD中,,∴△BED≌△CFD(AAS).29.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD ≌△AEC.【分析】根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.【解答】证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠CAE,在△ABD和△AEC中,,∴△ABD≌△AEC(SAS).30.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.【分析】根据∠BCE=∠ACD=90°,可得∠3=∠5,又根据∠BAE=∠1+∠2=90°,∠2+∠D=90°,可得∠1=∠D,继而根据AAS可判定△ABC≌△DEC.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).。
北师大版七年级数学下册《图形的全等》三角形PPT优质课件
5:如图,已知ΔAEF是ΔABC绕A点顺时针旋转55° 得到的,求∠BAE,∠CAF和∠BME的度数.
6:如图,已知ΔABE≌ΔACD,且∠1=∠2, ∠B=∠C,请指出其余的对应边和对应角.
课堂小结
两个能够重合 的图形称为全等图形; 如果两个图形全等,那么它们的__形___状___大___小____ 一定都相同; 把一个图形可以划分为两个全等图形 ; 几个全等的图形拼成一个大的图案。
课后作业
习题4.5 第2、3题
∠O=65°,∠C=20°,则∠OAD=
.
3:如图,若ΔABC≌ΔAEF, AB=AE,∠B=∠E,则下列结 论:①AC=AF, ②∠FAB=∠EAB, ③EF=BC,
④ ∠FAC=∠EAB,其中正确结论的个数是(
)
A.1个 个
Bபைடு நூலகம்2个
C.3个
D.4
4:如图,已知ΔABD≌ΔAEC, ∠B和∠E是对 应角,AB与AE是对应边,试说明:BC=DE.
形状相同,大小不同
面积相同,形状不同
全等图形的特征是:能够完全重合,即 形状和大小完全相同。
课堂练习
1 若ΔDEF≌ΔABC, ∠A=70°,∠B=50°,点A的 对应点是点D,AB=DE,那么∠F的度数等于( ) A.50° B.60° C.50° D.以上都不对
2 如图,若ΔOAD≌ΔOBC, 且
说一说:
说说你生活中见过的全等图形的例子。
你能找出图 中有几对全 等图形?
(2)与(4 ) (3)与(6 )
观察下列各组图形是不是全等图形?为什么?
交 流 1. 讨 论 2.
不全等,大小不等
全等,大小、形状 均相同
全等,大小、形状
北师大版七年级下全等三角形专题训练
全等三角形复习【复习巩固】1.判断三角形全等的条件有:2.角边角和角角边的区别:3.判断三角形全等的一般思路:【分组练习】一.分别指出对应顶点,对应角,对应边。
再完成练习1.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能说明△ABC≌△DEF,这个条件是( )A.∠A=∠D =EFC.∠ACB=∠F =DF变式1:如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.变式2:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.2.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )=BD B.∠CAB=∠DBA C.∠C=∠D =AD变式1:如图,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.试说明:AC=BD.变式2:如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是(只填一个).3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AAS D.HL变式1:如图,AD平分∠BAC,AB=AC,那么判定△ABD≌△ACD的理由是()A.SSS B.SAS C.ASA D.AAS变式2:如图,∠1=∠2.(1)当BC=BD时,△ABC≌△ABD的依据是;(2)当∠3=∠4时,△ABC≌△ABD的依据是.变式3:在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC变式4:已知AB=AD给出下列条件:(1)AB=AC(2)∠CDA=∠BDADCFEBAG(3)∠CAD=∠BAD (4)∠B=∠D,若再添一个条件后,能使△ABD≌△ACD的共有()A.1个 B.2个 C.3个 D.4个4.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是( )A.∠A=∠CB.∠D=∠B ∥BC ∥BE变式1:如图,已知AB∥CD,AE=CF,则下列条件中不一定能使△ABE≌△CDF的是()A.AB=CD B.BE∥DF C.∠B=∠D D.BE=DF:变式2:如图,已知AE=DB,BC=EF,AC=DF,求证:(1)AC∥DF;(2)CB∥EF.5.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠C =AE =CE =CD变式1:如图,已知AB=AC=12 cm,AD=AE=7 cm,CD=10 cm,△ABE的周长是 .变式2:如图,AD=AE,∠C=∠B,∠CDB=55°,则∠AEB= .变式3:如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是( ):=ED B.∠BAD=∠EACC.∠B=∠ED.∠BAC=∠EAD变式4:如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,且CD=BE,△ADC与△AEB全等吗请说明理由.变式5:如图,已知AB=AC,E,D分别是AB,AC的中点,且AF•⊥BD交BD的延长线于F,AG⊥CE交CE的延长线于G,试判断AF和AG的关系是否相等,并说明理由.6.如图,AA',BB'表示两根长度相同的木条,若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为( )cm cm cm cm7.如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD变式1:如图,AB∥CD,AD∥BC;则图中的全等三角形共有()A.5对 B.4对 C.3对 D.2对7题变式1 变式2变式2:如图,AD=BC,DC=AB,AE=CF,找出图中的一对全等三角形,并说明你的理由。
北师大版七年级数学下册《4.3 第2课时 利用“角边角”“角角边”判定三角形全等》教案
北师大版七年级数学下册《4.3 第2课时利用“角边角”“角角边”判定三角形全等》教案一. 教材分析《北师大版七年级数学下册》第4.3节主要讲述了利用“角边角”(AAA)和“角角边”(AAS)判定三角形全等的方法。
学生在学习本节课之前已经掌握了三角形的基本概念、性质以及全等三角形的判定方法“边角边”(SAS)。
本节课的内容是全等三角形判定方法的重要组成部分,是进一步研究三角形相似、解三角形等知识的基础。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,能够理解和掌握三角形的全等概念。
但是,对于“角边角”(AAA)和“角角边”(AAS)判定三角形全等的方法,他们可能还比较难以理解,需要通过大量的练习来巩固。
此外,学生可能对全等三角形的判定方法之间的联系和区别还不够清晰,需要教师进行引导和讲解。
三. 教学目标1.让学生掌握“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法。
2.使学生能够运用这两种方法解决实际问题。
3.培养学生空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:掌握“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法。
2.教学难点:理解“角边角”(AAA)和“角角边”(AAS)判定三角形全等的原理,能够灵活运用这两种方法解决实际问题。
五. 教学方法采用讲授法、演示法、练习法、讨论法等教学方法。
通过教师的讲解和演示,学生的练习和讨论,使学生理解和掌握全等三角形的判定方法。
六. 教学准备1.教师准备PPT,内容包括全等三角形的判定方法、实例讲解等。
2.准备一些三角形模型或图片,用于展示和练习。
七. 教学过程1.导入(5分钟)通过一个实例引出全等三角形的判定方法,激发学生的兴趣。
例如,展示一个三角形模型,让学生观察并判断它是否与另一个三角形全等。
2.呈现(10分钟)教师通过PPT呈现“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法,并进行讲解。
北师版初中七下数学4.3.2 探索三角形全等的条件(2)(课件)
导入新课
发现: 两个角 和 一条边 可以确定一个三角形。
导入新课
1.什么叫全等三角形? 能够完全重合的两个三角形叫 全等三角形.
2. 我们已经学过了哪几种判定两个三角形全等的方法? 边边边(SSS).
3.如果已知一个三角形的两角及一边,那么有几种可能的情况呢?
导入新课
如果已知一个三角形的两角及一边,那么有几种可能的情况呢?
当堂检测
1. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图 中标有1,2,3,4的四块),你认为将其中的哪块带去,就能 配一块与原来一样大小的三角形玻璃?应该带( B ) A.第1块 B.第2块 C.第3块 D.第4块
当堂检测
2. 如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那 么添加下列一个条件后,仍无法判定△ABC≌△DEF的是( C ) A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC
A
A
它们能判定
两个三角形
全等吗?
B
图一
C
“两角及夹边”
B
图二 C
“两角和其中一角的对边”
讲授新课
一 三角形全等的判定(“角边角”)
探究一:任意画出一个△ABC,再画一个△A′B′C′, 使A′B′=AB,∠A′=∠A,∠B′=∠B(即保证两角和它 们的夹边对应相等).把画好的△A′B′C′剪下,放到 △ABC上,它们全等吗?
∠B=∠E(已知 ), AB=AE(已知), ∠BAC=∠EAD (已证 ), ∴△BAC≌△EAD(ASA). ∴BC=ED.
讲授新课
找相等角的方法: 1.公共角、对顶角分别相等; 2.等角加(减)等角,其和(差)相等; 3.同角或等角的余(补)角相等; 4.角平分线得到相等角; 5.平行线的同位角、内错角相等; 6.直角都相等; 7.全等三角形对应角相等.
新北师大版七下第三章全等三角形的判定专题复习
E A C
D
全等三角形判定
2、如图所示,已知∠B=∠C ,请你添加 一个条件 ,依据 AAS 使得 BD=CE △ABC≌△ABD
B
E A C
D
全等三角形判定
1、如图所示,已知AB=DC,请你添加一 AC=DB 个条件 ∠ACB=∠DBC ,依据 SAS 使得 △ABC≌△DCB
B
思 路
E A C
A D
B
C
全等三角形判定
1、如图所示,已知∠ABC=∠DCB,请你 添加一个条件∠ACB=∠DBC ,依据 ASA 使 得△ABC≌△DCB
A D
B
C
全等三角形判定
1、如图所示,已知∠ABC=∠DCB,请你 添加一个条件 ∠A=∠D ,依据 AAS 使 得△ABC≌△DCB 思
A
D
B
C
已 知 一 边 一 角
D
已 找夹边(ASA) 知 两 角 找任一对边 (AAS)
全等三角形判定
1、如图所示,已知∠A=∠D,请你添加 一个条件 ∠ABC=∠DC ,依据 AAS 使 B 得△ABC≌△DCB 思
路
A D 已 知 一 边 C 一 角 若 边 为 角 找任一角 (AAS) 的 对 边
B
全等三角形判定
1、如图所示,已知∠ABC=∠DCB,请你 添加一个条件 AB=D ,依据 SAS 使 C 得△ABC≌△DCB
大湖中学 赖世挺
一、知识点
1、定义:能够 完全重合的两个三角形 称为全等 三角形。 2、表示法:符号“≌”,如下图,△ABC与 A △DEF全等,记作 △ABC≌△DEF 。 注意:记两个三角形全等时,要把 B C 对应顶点 的字母写在 对应位置 上。 D 全等三角形的 对应边 相等; 3、性质: E 全等三角形的 对应角 相等。 4、判定三角形全等的方法: SSS SAS ASA AAS
4-3 探索三角形全等的条件(第二课时)七年级数学下册同步精品课件(北师大版)
B
C
D
∴△ABC ≌ △DEF(ASA)
E
F
小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标
有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配
一块与原来一样大小的三角形?应该带(
A.第1块
B.第2块
C.第3块
)
D.第4块
【详解】
第1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不
呢?三个条件呢?
一个条件:
两个条件:
①一角对应相等; ①两角对应相等;
②一边对应相等; ②两边对应相等;
③一边一角对应相等。
如果给出三个条件画三角形,你
能说出有哪几种可能的情况?
三个角相等
不一定全等
三条边相等
结论:只给出一个或两个条件时,都不
两角一边相等
能保证所画的三角形一定全等
两边一角相等
全等
本节课尝试证明
能带它们去。只有第2块有完整的两角及夹边,符合定理,满足题目要求的
条件,是符合题意的。故选:B.
已知∠1=∠2,∠ABD=∠ABC,求证:AD=AC.
证明:在△ABD和△ABC中
∠1=∠2
(已知)
AB=AB
(公共边)
∠ABD=∠ABC (已知)
∴ △ABD≌△ABC(ASA)
∴ AD=AC
在平行四边形ABCD中,E为CD的中点,连接BE并延长交AD的延长线于F.
由上节课所学可知:如果给出一个三角形三条边的长度,那么因此
得到的三角形都是全等。如果已知一个三角形的两角及一边,那么有几种
可能的情况呢?
两角和他们的夹
边分别相等
北师大版数学七年级下全等三角形、等腰三角形专题复习
初中数学试卷全等三角形、等腰三角形专题复习一、知识回顾1.全等三角形的性质:全等三角形对应边 ;全等三角形对应角 .2.全等三角形的判断方法有 : , , , , (简记形式)3.等腰三角形:(1)定义 ;(2)性质:①等腰三角形的两底角 ;简记为②“三线合一”是指 . ③对称性,等腰三角形有 条对称轴,是 .(3)等腰三角形的判定:①两边相等的三角形是 (定义)② ;简记 .4.等边三角形:(1)定义:腰和底边相等的等腰三角形是 ;(2)性质:①等边三角形的三边 ,②等边三角形三内角 ,都为 . ③等边三角形对称性,等边三角形有 条对称轴,是 .④在直角三角形中,300角所对的 的一半.(3)等边三角形的判定方法:①三边相等的三角形是 ;②三内角相等的三角形是 ,③有两个角为600的三角形是 ;④有一个角为600的 是等边三角形.二、典例讲解1.利用相等线段的和差找对应边相等证明三角形全等.例1.如图,在△ABC 与△FED 中,AD=CF ,BC=DE ,BC ∥DE ;求证:AB ∥FE.D A B C F EF E D C B A E D B C A F EDC B A2.利用相等角的和差找对应角相等证明三角形全等.例2.如图, 若AB=AE, ∠1=∠2=∠EFB ,那么AF=AC 吗?说明理由.3.利用三角形全等找出对应相等的边或角,再次证明三角形全等解题(两次全等)例3. 如图,在四边形ABCD 中,AE ⊥BD,CF ⊥BD, AB=CD, AE=CF ,试判断AD 与BC 有何关系?并说明理由.4.通过添加辅助线,完成解题.例4.如图,在△ACB 中,∠C=900,AD 平分∠CAB ,DB=DE ,(1)若AC=8,AB=10 , S △ABC =24 ,求CD 的长.(2)探究线段AB 、AC 、CE 之间的数量关系,并证明你的结论.5.等腰三角形问题.例5.如图,点E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE. 求证:△ABC 是等腰三角形.6.等边三角形问题.例6.如图,已知△ABC 、△ADE 是等边三角形.(1)找出图中一对全等三角形,并证明. A B F C E 1 2ED C B A B A FE D C EF D BCA (2)猜想线段AC 、CE 、CD 三者有何数量关系,说明理由.知识应用:1.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSSB.SASC.AASD.ASA1题图 2题图 4题图 2.如图,∠1=∠2,要使△ABD ≌△ACD ,需添加一个条件, 那么补充下列一个条件后, 仍无法判定△ABD ≌△ACD 的是( )A.∠B=∠CB.∠BAD=∠CADC. BD=CDD. AB=AC3.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC , AB=8m ,∠A=30°,则DE 等于( )A.1mB.2m C,3m D.4m4.如图,∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )A.90°B. 75°C.70°D.60°5.如图所示,∠BAC =108° ,AB =AC=BE=CD ,则图中共有等腰三角形( )A.6个B.5个C.4个D.3个5题图 6题图 8题图6.已知,如图:AB ∥DE ,AB=DE ,要使ΔABC ≌ΔDEF.(1) 若以“SAS ”为依据,还要添加的条件为_ _;(2) 若以“ASA ”为依据,还要添加的条件为__ ___;(3) 若以“AAS ”为依据,还要添加的条件为_ ;7.若等腰三角形的一个内角是800, 则它的另两个角是 ;若等腰三角形的两边长a, b ;满足0136422=+-+-b b a a ,则周长为 .8.如图,∠BAC=30º,点D 为∠BA C 角平分线上一点,DE⊥A B 于E ,DF//AB ,交AC 于点F ,DE=5 ,则△AFD 的面积为 . 9.如图,AB=BC=10, AD ⊥BC, AF ⊥CD, BD=4 ,求CE 的长.3题图 E D C B A D CB A F EA21D B C A P N M E D CB A10.如图,在△ABC 中,BD=DC ,∠1=∠2,求证:AD 平分∠BAC.11.如图,在△ABC 中,∠ACB=90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB•交CE 于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ; (2)FG=FE.12.如图,长方形ABCD 中,E 是AD 上一点,∠EBC=30º,∠ECD=15º,求证:BC=2CD.13.如图,在△ABC 中,AB >AC ,AD 为∠A 的平分线, 求证:AB -AC >BD -CD.14.如图,△ABC 和△DCE 都是等边三角形,B 、C 、E 共线,BD 与AC 、AE 相交于M 、P ,AE 与CD 相交于N.求证:(1)△BCD≌△ACE; (2)∠APB= 度; (3) PC 平分∠BPE 吗?说明理由.15.如图,点P 是等腰Rt △ACB 内任意一点(AC=BC ),连接AP 、BP 、CP ,以CP 为腰作等腰Rt △PCE ,连接BE ,(1)图中的全等三角形是 .(说明:结论中不得含有未标识的字母);(2)当∠APB=1150 时,求∠PBE 的度数;(3)在(2)的条件下,设∠APC= x 0 ,试探究:△PBE 可以是等腰三角形吗?若能,求满足条E D C BA件的x的值;若不能,说明理由.。
北师大版数学七年级下册第2课时 利用“角边角”“角角边”判定三角形全等教案与反思
第2课时利用“角边角”“角角边”判定三角形全等人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》原创不容易,【关注】,不迷路!【知识与技能】1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.掌握三角形的“角边角”“角角边”的全等条件,了解三角形的稳定性.【过程与方法】学生经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,由此带动知识发生、发展的全过程.【情感态度】学生积极参与三角形全等条件的探究过程,从中体味协作与成功的快乐,建立学习好数学的自信心,体会三角形全等条件在现实生活中的应用价值.【教学重点】三角形“角边角”“角角边”的全等条件.【教学难点】用三角形“角边角”“角角边”的条件进行有条理的思考并进行简单的推理.一、情景导入,初步认知1.我们已学过识别两个三角形全等的简便方法是什么,识别三角形全等是不是还有其它方法呢?2.有一块三角形纸片撕去了一个角,要去剪一块新的,如果你手头没有测量的仪器,你能保证新剪的纸片形状.大小和原来的一样吗?【教学说明】既复习了全等三角形的“SSS”的识别方法,又唤起学生对新知识探索学习的渴望,引发学生兴趣,从而提高学生学习的热情.二、思考探究,获取新知探究:如果给出一个三角形的“两角一边”能确定这个三角形吗?1.让学生拿出提前准备好的60°角80°角和2厘米的线段,以小组为单位,进行操作拼接成三角形,再进行对比,看一看组成的三角形是否全等.【教学说明】通过实践操作,使学生对三角形全等条件有了一个更清楚的理解——两角和它们的夹边对应相等的两个三角形全等,让他们尝到成功的喜悦.让学生懂得数学就来自于我们的生活,体会到数学与我们生活的联系.【归纳结论】如果两个三角形有两个角及其夹边分别对应相等,那么这两个三角形全等.简写成“角边角”或简记为“ASA”用符号语言表达为:在△ABC和△DEF中,∵∠B=∠E,BC=EF,∠C=∠F,∴△ABC≌△DEF(ASA).2.让学生拿出提前准备好的60°角45°角和3厘米的线段,以小组为单位,进行操作拼接成三角形.(1)如果60°角所对的边是3厘米.所组成的三角形是否全等.(2)如果45°角所对的边是3厘米.所组成三角形是否全等.组员之间,小组之间进行对比.【归纳结论】如果两个三角形有两个角及其一个角的对边分别对应相等,那么这两个三角形全等.简写成“角角边”或简记为“AAS”.用符号语言表达为:在△ABC和△DEF中∵∠B=∠E,∠C=∠F,AC=DF∴△ABC≌△DEF(AAS)【教学说明】通过学生实践,让学生在合作学习中共同解决问题,使学生主动探究三角形全等的条件,培养学生分析、探究问题的能力,提高他们归纳知识的能力和语言组织能力、表达能力.三、运用新知,深化理解1.如图,填什么就有△AOC≌△BOD:∠A=∠B(已知);AC=BD(已知);∠C=∠D(已知);所以△AOC≌△BOD(ASA).如图,应填什么就有△AOC≌△BOD:∠A=∠B(已知);CO=DO(已知);∠C=∠D(已知);所以△AOC≌△BOD(AAS).如图,应填什么就有△AOC≌△BOD:∠A=∠B(已知);AO=BO(已知);∠C=∠D(已知);所以△AC≌△BOD(AAS).2.如图,AB与CD相交于点O,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为么?解:△AOC≌△BOD.理由是:∵O是AB的中点(已知)∴AO=BO(线段中点定义)又∵AB与CD相交于点O(已知)∴∠1=∠2(对顶角相等)在△AOC与△BOD中,∠A=∠B(已知)AO=BO(已证)∠1=∠2(已证)∴△AOC≌△BODASA)3.如图,1=∠2,∠D=∠C,试说明△ADB≌△ACB.解:∵在△ADB中,∠3=180°-∠1-∠D(三角形内角和定理).∵在△ACB中,∠4=180°-∠2-∠C(三角形内角和定理),而∠1=∠2,∠D=∠C(已知),∴∠3=∠4(等量代换),∴在△ADB和△ACB中,∠1=∠2(已知),AB=AB(公共边),∠3=∠4(已证),∴△DB≌△ACB(ASA).4.如图,AB=AC,∠B=∠C,△ABD≌△ACE吗?为什么?解:△ABD≌△ACE.理由:△ABD和△ACE中∠B=∠C(已知)AB=AC(已知)∠A=∠A(公共角)∴△ABD≌△ACE(ASA)5.如图,∠B=∠C,AD平分∠BAC,你能说明△ABD≌△ACD吗?若BD=3cm,则CD有多长?解:∵AD平分∠BAC,∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,∠B=∠C(已知),∠BAD=∠CAD(已证),AD=AD(公共边).∴△ABD≌△ACD(AAS),∴BD=CD,∵BD=3cm(已知),∴CD=BD=3cm(等量代换).6.如图,在△ABC中,BE⊥AD于E,CF⊥AD于F,且BE=CF,那么BD与DC 相等吗?你能说明理由吗?解:BD=DC.理由:∵BE⊥AD于E,CF⊥AD于F,∴∠BED=∠CFD=90°.在△BED与△CFD中,∠BED=∠CFD(已证),∠BDE=∠CDF(对顶角相等),BE=CF,∴△BED≌△CFD(AAS),∴BD=DC.【教学说明】使学生对三角形全等条件有了一个更清楚的理解——两角和它们的夹边对应相等的两个三角形全等.在学生做题的过程中,学生还能体会到严谨的数学思想.四、师生互动,课堂小结本节课我们经历了对符合两角一边的条件的所有三角形进行画图验证,探索出三角形全等的另两个定理,它们分别是?五、教学板书1.布置作业:教材“习题4.7”中第1、2、3题.2.完成同步练习册中本课时的练习.本节课从复习旧知识入手,把知识点问题化,在教学设计时提供充分探索与交流的空间,使学生进一步经历,实验、猜测、推理、交流、反思等活动,培养学生类比的思想方法,让学生学会一些探究的基本方法与思路,并体会到数学教材在内容安排上螺旋上升的特点.采用自主、探究、合作学习,组内交流的学习方式,让学生自己当老师,一方面让其他学生容易接受,另一方面可增强学生的自信心和学习数学的兴趣,让学生在探究中,经历知识产生发展的过程,体会“做数学”的乐趣.【素材积累】辛弃疾忧国忧民辛弃疾曾写《美芹十论》献给宋孝宗。
北师大版七年级下3.3.2探索三角形全等的条件(第2课时)课件ppt(金榜学案配套)
【解析】选C.根据题意AD∥BC得∠ADO=∠CBO,∠DOA=∠BOC,
又OD=OB,所以△DOA≌△BOC同理可证△DOC≌△BOA,
△DAB≌△BCD,△ACD≌△CAB,所以有4对.
1.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′, AB=B′A′,则下列结论中正确的是( (A)AC=A′C′ (C)AC=B′C′ )
对边 相等的两个三 3.由2得:两角分别相等且其中一组等角的_____
角角边 AAS 角形全等,简写成:“_______”或“____”. 【归纳】在两个三角形中,有两角一边对应相等,则这两个三
角形全等.
【预习思考】
对于两个直角三角形,有一边和锐角对应相等,它们全等吗?
提示:全等,其中隐含条件是直角对应相等,故可由“ASA”或 “AAS”得两个三角形全等.
_________.
【解析】因为四边形ABCD是正方形,所以AB=AD, ∠ABC=∠BAD=90°.
因为BF⊥a于点F,DE⊥a于点E,
所以∠FAB+∠FBA=∠FAB+∠EAD=90°,所以∠FBA=∠EAD.
所 以 在 Rt△AFB 和 Rt△AED 中 , 因 为 ∠ AFB=∠DEA=90° ,
(B)BC=B′C′ (D)∠A=∠A′
【解析】选C.如图所示,因为∠C=∠C′=90°,∠A=∠B′, AB=B′A′,∴Rt△ABC≌Rt△B′A′C′,所以AC=B′C′(A不
正确,C正确),BC=A′C′(B不正确),∠A=∠B′(已知已给出,
D不正确).
2. 如图,某同学将一块三角形玻璃打碎成
故得AB=ED.
(3)由BC∥DF,得∠CBD=∠FDB,进而得∠ABC=∠EDF.
最新北师版七年级下册全等三角形辅助线专题
全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造两条边之间的相等,构造两个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质.4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造两条边之间的相等,两个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
(4)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.D C BAED F CB A(5)已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
北师大数学七年级下册第三章-全等三角形
第02讲_全等三角形知识图谱全等三角形知识精讲一.全等的概念与性质三点剖析一.考点:全等的概念,全等三角形的性质二.重难点:全等三角形的性质三.易错点:利用全等的性质时容易忽略对应关系,导致找错对应边或对应角.全等图形例题1、 下列图形中,与右图全等的是( )全等图形(1)能够完全重合的两个图形就是全等图形(2)平移、旋转、对称前后的图形是一组全等图形四边形四边形全等多边形(1)相互重合的顶点为对应点,相互重合的边为对应边,相互重合的 角为对应角 (2)对应边、对应角分别相等全等三角形的性质 (1)对应边相等 ( 2)对应角相等(3)对应边上的高相等 (4)周长、面积相等易错点:1.利用全等的性质时注意不要找错对应边或对应角A B C DA.A选项B.B选项C.C选项D.D选项【答案】A【解析】观察图形上实心点与空心点的位置得出全等图形即可,原图与选项A全等.例题2、下列说法中,错误的是()A.全等三角形的周长相等B.全等三角形的对应角相等C.全等三角形的面积相等D.面积相等的两个三角形全等【答案】D【解析】暂无解析随练1、用两个全等的直角三角形(非等腰直角三角形)拼成凸四边形,拼法共有()A.3种B.4种C.5种D.6种【答案】B【解析】拿两个“90︒,60︒,30︒”的三角板试一试即可得.随练2、如图,ADE BDE≌,若ADC∆∆∆的周长为12,AC的长为5,则CB的长为()A.8B.7C.6D.5【答案】B【解析】解:∵ADE BDE∆≅∆,∴DA DB=,AC=,∴7BC=,故选B.=++=++=+=,又5ADC∆的周长12AC CD AD AC CD BD AC BC随练3、下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=___________.【答案】27cm【解析】因为AB=3cm,所以CD=2AB=6cm,所以AF=3AB+3CD=3×3+3×6=27(cm).全等三角形的性质例题1、下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】全等三角形的对应边相等,对应角相等.同时,全等三角形对应边上的高、对应边上的中线,对应角的角平分线也分别相等,一定要注意“对应”二字.例题2、如图,在△ABC中,AB=AC,E、D分别为AB、AC边上的中点,连接BD、CE交于O,此图中全等三角形的对数为()对.A.4B.3C.2D.1【答案】B【解析】∵AB=AC,∴∠EBC=∠DCB,∵AE=BE,AD=DC,∴BE=DC,∵BC=CB,∴△EBC≌△DCB,∴∠ECB=∠DBC,∴∠EBO=∠DCO,∵BE=CD,∴∠BOE=∠COD,∴△BOE≌△COD,∵∠A=∠A,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE,共有3对全等三角形.例题3、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C【答案】A【解析】暂无解析例题4、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB =∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.例题5、 如图,△ABC 一个等腰三角形,其中AB =A C .分别以AB ,AC 为腰向外作等腰三角形△ADB 和△ACE ,且∠BAD =∠CAE =84°,连接CD 和BE ,相交于点F ,连接AF ,则∠AFD 的度数为________.【答案】 48°【解析】 暂无解析随练1、 下列四个命题中,真命题的是( ) A.相等的圆心角所对的弧相等 B.同旁内角互补 C.平行四边形是轴对称图形 D.全等三角形对应边上的高相等 【答案】 D【解析】 A 、在同圆或等圆中,相等的圆心角所对的弧相等; B 、两直线平行,同旁内角互补; C 、平行四边形是中心对称图形; D 、全等三角形对应边上的高相等 随练2、 已知∆≅∆ABC DEF ,DEF ∆的周长为32cm ,9cm 12cm DE EF ==,,则AB =________,BC =________,AC =________【答案】 9cm ;12cm ;11cm【解析】 由于∆≅∆ABC DEF ,所以AB 与DE 、AC 与DF 、BC 与EF 分别是对应边,即AB DE =,AC DF =,BC EF =.又DEF ∆的周长为32cm ,9cm 12cm DE EF ==,,则()3291211cm DF =--=.因此9cm AB =,12cm BC =,11cm AC =随练3、 如图ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =,求DFE ∠的度数与EC 的长.【答案】 =100DFE ∠︒,2EC =.【解析】 在ABC ∆中,180ACB A B ∠=︒-∠-∠.又∵30A ∠=︒,50B ∠=︒ ∴1803050100ACB ∠=︒-︒-︒=︒∵ABC DEF ∆≅∆,∴ACB DFE ∠=∠,∴=100DFE ∠︒, ∵BC EF =,∴BC CF EF CF -=-, ∴2EC =全等三角形的判定知识精讲一.全等三角形的判定方法:FE DCBA二.思路点拨边边角(SSA )不能证明两个三角形全等常见全等图形共线三等角模型4.“AAS ”与“ASA ”易混,要注意区分“边”“角”的位置关系5. 错用“AAA ”,“SSA ”证三角形全等.三点剖析一.考点:全等三角形的判定二.重难点:全等三角形的判定三.易错点:1.边边角(SSA )在一般情况下是不能证明两个三角形全等的; 2.斜边、直角边定理(HL)必须是在直角三角形中才能使用;3.在使用判定定理证明两个三角形全等时要注意条件的顺序必须和判定定理要求的一样.SSS例题1、 如图,AB AC =,AD AE =,BE CD =,求证:ABD ACE ∆∆≌.【答案】 见解析【解析】 由SSS 可得ABD ACE ∆∆≌.随练1、 已知:如图,AC=EC ,E 、A 、D 在同一条直线上,∠1=∠2=∠3.试说明:△ABC ≌△EDC .A BCABCDDABCE90°CEDA BD E CBA【答案】 见解析【解析】 证明:∵∠1=∠2,∴∠1+∠ACD=∠2+∠ACD ,∴∠ACB=∠ECD , ∵∠1=∠3,∠4=∠5,∴∠B=∠D , 在△ABC 和△CDE 中,,∴△ABC ≌△EDC (AAS ).SAS例题1、 已知:如图,E 为BC 上一点,AC ∥BD ,AC BE =,BC BD =. 求证:AB DE =【答案】 见解析【解析】 证明:∵AC ∥BD ,∴C CBD ∠=∠ 在△ACB 和△EBD 中: AC BE C CBD BC BD =⎧⎪∠=∠⎨⎪=⎩,∴△CBM ≌△DBM (SAS ),∴AB DE =. 例题2、 已知AB =AC ,AD =AE ,∠BAC =∠DAE ,直线BD 、CE 交于点G ,(1)如图1,点D 在AC 上,求证:∠BGC =∠BAC ; (2)如图2,当点D 不在AC 上,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由。
北师大版七年级下:三角形全等(二)全等模型总结
三角形全等(二)旋转的全等例1、如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.例2、如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.例3、如图①,已知,在△ABC中,∠ACB=90°,AC=BC,点D是AB边上的中点,点M和点N 是动点,分别从A,C出发,以相同的速度沿AC,CB边上运动.(1)判断DM与DN的关系,并说明理由;(2)若AC=BC=2,请直接写出四边形MCND的面积;(3)如图②,当点M运动到C点后,将改变方向沿着CB运动,此时,点N在CB延长线上,过M作ME⊥CD于点E,过点N作NF⊥DB交DB延长线于F,求证:ME=NF.练习1:如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD 交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).练习2:如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.对称全等例1.已知∠BAC的平分线与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,(1)连接CD、BD,求证:△CDF≌△BDE;(2)若AE=5,AC=3,求BE的长.例2.如图,四边形ABCD中,∠B+∠D=180°,AB=AD.(1)求证:CA平分∠BCD;例3.如图,AC平分∠BCD,AB=AD,AE⊥CB于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数.(2)若AE=2,BE=1,CD=4.求四边形ABCD的面积.垂直模型例1.如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.例2.如图,△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC边的中点,连接DH,交BE于点G.(1)求证:△ADC≌△FDB;(2)求证:CE=BF;(3)连结CG,判断△ECG的形状,并说明理由.例3.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连结CE,作AD⊥CE,BE ⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DA=12,则ED的长是.一线三等角例1.如图,已知点C是线段AB上一点,∠DCE=∠A=∠B,CD=CE.(1)说明△ACD与△BEC全等的理由;(2)说明AB=AD+BE的理由.例2.如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.(1)当∠BDA=100°时,∠EDC=°,∠DEC=°.(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.例3.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.半角模型例1.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(1)当∠MAN绕点A旋转到(如图1)时,求证:BM+DN=MN;(2)当∠MAN绕点A旋转到如图2的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?请直接写出你的猜想.例2.在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,D为三角形ABC 外一点,且∠MDN=60°,∠BDC=120°,BD=DC,探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(1)问的结论还成立吗?写出你的猜想并加以证明.例3.已知两个全等的等腰直角△ABC、△DEF,其中∠ACB=∠DFE=90°,E为AB中点,△DEF可绕顶点E旋转,线段DE,EF分别交线段CA,CB(或它们所在直线)于M、N.(1)如图l,当线段EF经过△ABC的顶点C时,点N与点C重合,线段DE交AC于M,求证:AM=MC;(2)如图2,当线段EF与线段BC边交于N点,线段DE与线段AC交于M点,连MN,EC,请探究AM,MN,CN之间的等量关系,并说明理由;(3)如图3,当线段EF与BC延长线交于N点,线段DE与线段AC交于M点,连MN,EC,请猜想AM,MN,CN之间的等量关系,不必说明理由.B 卷练习 21、=++=-+32,01232m m m m 则若.22、如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是.23、已知:,则= 。
七年级数学三角形全等之倍长中线(二)(北师版)(专题)(含答案)
三角形全等之倍长中线(二)(北师版)(专题)一、单选题(共4道,每道25分)1.已知:如图,在四边形ABCD中,AD∥BC,E为AB的中点,G,F分别为AD,BC边上的点,且GE⊥EF.求证:GF=AG+BF.如图,先在图上走通思路后再填写空格内容:①因为AD∥BC,E为AB的中点,考虑延长GE交FB的延长线于点H;②进而利用全等三角形的判定_________,证明_______≌_______;③由全等可得________________;④结合已知条件,得EF垂直平分GH,根据线段垂直平分线上的点到这条线段两个端点的距离相等,可得________________,可得FG=AG+BF.以上空缺处依次所填最恰当的是( )A.②AAS或ASA,△AEG,△BEH;③AG=BH,∠A=∠EBH;④FG=FHB.②SAS,△AEG,△BEH;③AG=BH,∠A=∠EBH;④FG=FHC.②AAS或ASA,△AEG,△BEH;③AG=BH,EG=EH;④FG=FHD.②ASA,△AEG,△BEH;③AG=BH;④FG=FH答案:C解题思路:要证明GF=AG+BF,这三条线段比较分散,考虑作辅助线将它们集中,AD∥BC,E为AB边的中点,这是平行夹中点结构,利用倍长的思想,如图,延长GE交FB的延长线于点H.∵AD∥BC∴∠AGE=∠H∵E为AB的中点∴AE=BE在△AEG和△BEH中∴△AEG≌△BEH(AAS)∴AG=BH,EG=EH∵GE⊥EF∴∠FEG=∠FEH在△FEG和△FEH中∴△FEG≌△FEH(SAS)∴FG=FH∵FH=FB+BH∴FG=FB+AG即GF=AG+BF.(其中,证明全等时也可以先由AD∥BC得∠A=∠EBH,再结合AE=BE,∠1=∠2,利用ASA证明△AEG≌△BEH.)故选C.试题难度:三颗星知识点:三角形全等之倍长中线2.已知:如图,在四边形ABCD中,AD∥BC,E是CD的中点,若AB=AD+BC,∠ABC=50°,求∠BAE的度数.如图,先在图上走通思路后再填写空格内容:①因为AD∥BC,E是CD的中点,考虑___________________________(辅助线);②进而利用全等三角形的判定_________,证明_______≌_______;③由全等可得________________;④结合已知条件AB=AD+BC,得AB=BF,从而∠BAE=∠F,所以在△ABF中,根据三角形的内角和等于180°,得.以上空缺处依次所填最恰当的是( )A.①延长AE到点F,使EF=AE,连接CF;②AAS或ASA,△ADE,△FCE;③∠D=∠ECFB.①延长AE交BC的延长线于点F;②AAS或ASA,△ADE,△FCE;③AD=FCC.①延长AE交BC的延长线于点F;②SAS,△ADE,△FCE;③AE=EFD.①延长AE到点F,使EF=AE,连接CF;②SAS,△ADE,△FCE;③AD=FC,AE=EF答案:B解题思路:要求∠BAF,已知∠ABC=50°,考虑将这两个角联系起来,观察图形,这是平行夹中点结构,考虑延长AE.如图,延长AE交BC的延长线于点F.∵AD∥BC∴∠D=∠ECF,∠DAF=∠F∵E是CD的中点∴DE=CE在△ADE和△FCE中∴△ADE≌△FCE(AAS)∴AD=FC∵BF=BC+CF,AB=BC+AD∴AB=BF∴∠BAE=∠F∵∠ABC=50°∴.(其中,证明全等时也可以先由AD∥BC得∠DAE=∠F,再结合∠AED=∠FEC,DE=CE,利用AAS证明△AED≌△FEC;还可以先由AD∥BC得∠D=∠ECF,再结合DE=CE,∠AED=∠FEC,利用ASA证明△AED≌△FEC.)故选B.试题难度:三颗星知识点:三角形全等之倍长中线3.已知:如图,点E是BC的中点,∠BAE=∠D.求证:AB=CD.如图,先在图上走通思路后再填写空格内容:①因为点E是BC的中点,考虑延长AE到点F,使EF=AE,连接CF;②进而利用全等三角形的判定_________,证明_______≌_______;③由全等可得________________;④结合已知条件∠BAE=∠D,得∠F=∠D,在△DCF中,利用___________,可得CF=CD,等量代换得AB=CD.以上空缺处依次所填最恰当的是( )A.②SAS,△ABE,△ECF;③A B=CF;④等角对等边B.②SAS,△ABE,△DEC;③AB=CF,∠BAE=∠F;④等边对等角C.②SAS,△ABE,△FCE;③∠ABE=∠FCE,∠BAE=∠F;④等边对等角D.②SAS,△ABE,△FCE;③AB=FC,∠BAE=∠F;④等角对等边答案:D解题思路:如图,延长AE到点F,使EF=AE,连接CF.∵E是BC的中点∴BE=CE在△ABE和△FCE中∴△ABE≌△FCE(SAS)∴AB=FC,∠BAE=∠F∵∠BAE=∠D∴∠F=∠D∴FC=CD∴AB=CD(这个题也可以延长DE到点F,使EF=DE,连接BF遇中点也可以倍长,延长DE到点F,使EF=DE,连接BF,利用SAS证明△BEF≌△CED,然后根据全等三角形对应边相等,对应角也相等来转移边和角.题中让证明AB=CD,可以把CD转移到BF,问题就转化成证明AB=BF,这时可以考虑把它们放在△ABF中,利用等角对等边来证等腰,因此需要考虑证∠BAE=∠F.而由全等可知∠F=∠D(因此△BEF≌△CED之后需要得出BF=CD,∠F=∠D),再结合已知条件∠BAE=∠D可以证得∠BAE=∠F.)故选D.试题难度:三颗星知识点:三角形全等之倍长中线4.已知:如图,在△ABC中,AB>AC,E为BC的中点,AD平分∠BAC,过E作EF∥AD,交AB于点G,交CA的延长线于点F,求证BG=CF.如图,先在图上走通思路后再填写空格内容:①因为点E是BC的中点,考虑延长GE到点H,使EH=GE,连接CH;②进而利用全等三角形的判定_________,证明_______≌_______;③由全等可得________________;④再与已知条件重新组合,经过推理,可得BG=CF.以上空缺处依次所填最恰当的是( )A.②SAS,△ABD,△FEC;③BG=CF;B.②SAS,△BEG,△CEH;③BG=CH,∠BGE=∠H;C.②SAS,△BEG,△CEH;③GE=HE,∠BGE=∠H;D.②SAS,△BEG,△EHC;③BG=CH;答案:B解题思路:如图,延长GE到点H,使EH=GE,连接CH.∵E为BC的中点∴BE=CE在△BEG和△CEH中∴△BEG≌△CEH(SAS)∴BG=CH,∠BGE=∠H∵AD平分∠BAC∴∠BAD=∠CAD∵AD∥EF∴∠BGE=∠BAD,∠CAD=∠F∴∠BGE=∠F∴∠H=∠F∴CH=CF∴BG=CF(这个题也可以延长FE到点H,使EH=FE,连接BH遇中点也可以倍长,倍长之后利用SAS证明△BEH≌△CEF,然后根据全等三角形对应边相等,对应角也相等来转移边和角,题中让证明BG=CF,可以把CF转移到BH,问题就转化成证明BG=BH,这时可以考虑把它们放在△BGH中,利用等角对等边来证等腰,因此需要考虑证∠H=∠3.而由全等可知∠H=∠F(因此△BEH≌△CEF之后需要得出∠H=∠F,BH=CF),再结合已知条件AD∥EF可以证得∠1=∠3,∠2=∠F,由AD平分∠BAC可知∠1=∠2,等量代换可得∠3=∠F,结合∠H=∠F,可得∠3=∠H.)故选B.试题难度:三颗星知识点:三角形全等之倍长中线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全 等 三 角 形 专 题 二
一:垂直模型(该模型在基础题和综合题中均为重点考察内容)
1.如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .
求证:(1)AE =CD ; (2)若AC =12 cm ,求BD 的长.
2. 直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.
(1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问
题:
①如图1,若90,90BCA α∠=∠=,则EF
AF -(填“>”,“<”或“=”号);
②如图2,若0180BCA <∠<,若使①中的结论仍然成立,则 α∠与BCA ∠ 应满足的关系是 ;
(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.
A B
C E F D
D A B C
E
F A D F C E B
图1 图2 图3
3. 如图,在等腰R t△ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF . (1)求证:CD=BF ; (2)求证:AD ⊥CF ;
(3)连接AF ,试判断△ACF 的形状.
4:拓展巩固:如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F , 求证:∠ADC =∠BDE .
A B C
D E
F 图9
二:角平分线问题
5: (北京市中考模拟题)如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作
CE AB ⊥于E ,并且1
()2
AE AB AD =+,则ABC ADC ∠+∠等于多少?
E
D
C
B
A
6:练习: 如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F.
(1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.
E D
G
F
C B
A
三、中点问题
7. 在△ABC 中, D 为BC 的中点, 过D 点的直线GF 交AC 于F , 交AC 的平线
BG 于点G 。
DE GF ⊥, 并交AB 于点E . 连结EG . (1)求证: BG CF =;
(2)请猜想BE CF +与EF 的大小关系, 并加以证明
8:如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.
9.已知ABC ∆中,AB AC =,BD 为AB 的延长线,且BD AB =,CE 为ABC ∆的AB 边上的中线.求证2CD CE =(提示:倍长中线试试)
E
D
C
B A
10:附加思考题:(此题有很好地思维训练价值,值得深入思考探究) 以ABC ∆ 的
两边AB 、
AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90BAD CAE ∠=∠=︒.连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.
⑴如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ;线段AM 与DE 的数量关系是 ;
⑵将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,⑴问中得到的两个结论是否发生改变?并说明理由.
图①
N
M E
D
C
B A
图②
N
M E
D
C
B
A
11、问题:已知ABC △中,2BAC ACB ∠=∠,点D 是ABC △内的一点,且AD CD =,
BD BA =.探究DBC ∠与ABC ∠度数的比值. 请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1)当90BAC ∠=︒时,依问题中的条件补全右图. 观察图形,AB 与AC 得数量关系为________;
当推出15DAC ∠=︒时,可进一步推出DBC ∠的度数为_______; 可得到DBC ∠与ABC ∠度数的比值为_________.
(2)当90BAC ∠≠︒时,请你画出图形,研究DBC ∠与ABC ∠度数的比值是否与
(1)中的结论相同,写出你的猜想并加以证明.
C B
A
图1D C B A
12、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平分线CF 于点F ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
A
D
F
G
B
图1
A
D
F G
B 图2 A
D
F
C G
B
图3
13、(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.
求证:BE=CF.
(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于
点O,∠FOH=90°, EF=4.求GH的长.
(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,
∠FOH=90°,EF=4.直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;
②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).。