18高考数学异构异模复习第二章函数的概念及其基本性质2.3.1函数的奇偶性撬题理
高考数学异构异模复习 第二章 函数的概念及其基本性质 2.1.1 函数的概念及其表示课件 理
2.(1)函数 f(x)= 2x-1+x-1 2的定义域为(
)
A.[0,2)
B.(2,+∞)
C.[0,2)∪(2,+∞)
D.(-∞,2)∪(2,+∞)
(2)若函数 y=f(x)的定义域为 M={x|-2≤x≤2},值域为 N={y|0≤y≤2},则函数 y=f(x)的图象可能是
()
2x-1≥0 解析 (1)由 f(x)解析式得x-2≠0 ,
命题法 1 求函数的定义域
典例 1
(1)f(x)= log21x2-1的定义域为(
)
A.0,12
B.(2,+∞)
C.0,21∪(2,+∞)
D.0,12∪[2,+∞)
(2)若函数 y=f(x)的定义域为[0,2],则函数 g(x)=xf-2x1的定义域是__[_0_,1_)___. [解析] (1)要使函数 f(x)有意义,需使(log2x)2-1>0,即(log2x)2>1,∴log2x>1 或 log2x<-1.解之得 x>2
解得 x≥0 且 x≠2, ∴f(x)的定义域为[0,2)∪(2,+∞). (2)由函数的概念知 C 错,由函数的定义域 M 知 A 错,再由函数的值域 N 知 D 错,故选 B.
3.函数 f(x)=ln (x2-x)的定义域为( )
A.(0,1)
B.[0,1]
C.(-∞,0)∪(1,+∞) D.(-∞,0)∪[1,+∞)
f(x)和它对应
元素 y 与之对应
名称
那么就称 f:A→B 为从集合 A 那么就称对应 f:A→B 为从集合 A
到集合 B 的一个函数
到集合 B 的一个映射
记法
y=f(x),x∈A
对应 f:A→B 是一个映射
2018高考数学异构异模复习第二章函数的概念及其基本性质课时撬分练2.3函数的奇偶性与周期性理
2018高考数学异构异模复习考案第二章函数的概念及其基本性质课时撬分练2.3 函数的奇偶性与周期性理时间:60分钟基础组1.[2016·冀州中学期末]下列函数中,既是偶函数又在(-∞,0)上单调递增的是( )A.y=x2B.y=2|x|C.y=log21 |x|D.y=sin x答案C解析函数y=x2在(-∞,0)上是减函数;函数y=2|x|在(-∞,0)上是减函数;函数y=log21|x|=-log2|x|是偶函数,且在(-∞,0)上是增函数;函数y=sin x不是偶函数.综上所述,选C.2. [2016·衡水中学预测]函数f(x)=a sin2x+bx 23+4(a,b∈R),若f⎝⎛⎭⎪⎫lg12014=2013,则f(lg 2014)=( )A.2018B.-2009A.2018 B.-2009C.2013 D.-2013答案C解析g(x)=a sin2x+bx 23,g(-x)=a sin2x+bx23,g(x)=g(-x),g(x)为偶函数,f⎝⎛⎭⎪⎫lg12014=f(-lg 2014),f(-lg 2014)=g(-lg 2014)+4=g(lg 2014)+4=f(lg 2014)=2013,故选C.3.[2016·枣强中学热身]若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则一定成立的是( )A.函数f(g(x))是奇函数3.[2016·枣强中学热身]若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则一定成立的是( )A.函数f(g(x))是奇函数B.函数g(f(x))是奇函数C.函数f(f(x))是奇函数D.函数g(g(x))是奇函数答案C解析由题得,函数f(x),g(x)满足f(-x)=-f(x),g(-x)=g(x),则有f(g(-x))=f(g(x)),g(f(-x))=g(-f(x))=g(f(x)),f(f(-x))=f(-f(x))=-f(f(x)),g(g(-x))=g(g(x)),可知函数f(f(x))是奇函数,故选C. 4.[2016·衡水中学猜题]定义域为(-∞,0)∪(0,+∞)的函数f(x)不恒为0,且对于定义域内的任意实数x,y都有f(xy)=x+y成立,则f(x)( ) A.是奇函数,但不是偶函数B.是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数答案 A解析 令x =y =1,则f (1)=1+1,∴f (1)=0. 令x =y =-1,则f (1)=--1+--1,∴f (-1)=0.令y =-1,则f (-x )=-x+-1,∴f (-x )=-f (x ).∴f (x )是奇函数.又∵f (x )不恒为0,∴f (x )不是偶函数.故选A.5.[2016·衡水中学一轮检测]设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}答案 B解析 当x <0时,-x >0,∵f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧x3-8,x≥0,-x3-8,x<0,∴f (x -2)=⎩⎪⎨⎪⎧--8,x≥2,---8,x<2,由f (x -2)>0,得⎩⎪⎨⎪⎧x≥2--8>0或⎩⎪⎨⎪⎧x<2,---8>0,解得x >4或x <0.故选B.6. [2016·冀州中学模拟]已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案 D解析 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).7.[2016·衡水二中周测]函数f (x )=x 3+sin x +1(x ∈R ),若f (m )=2,则f (-m )的值为( )A .3B .0C .-1D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x ,令g (x )=f (x )-1=x 3+sin x ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.。
高考数学异构异模复习第二章函数的概念及其基本性质2.9.1函数的实际应用课件理
第9讲 函数模型及函数的综合应用
考点一 函数的实际应用
撬点·基础点 重难点
1 常见的函数模型
函数模型
函数解析式
一次函数型
f(x)=ax+b(a,b 为常数,a≠0)
二次函数型
f(x)=ax2+bx+c(a,b,c 为常数,a≠0)
指数函数型 f(x)=bax+c(a,b,c 为常数,a>0 且 a≠1,b≠0)
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识 逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
【解题法】 函数模型的应用技巧 (1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图 象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解. (2)与幂函数、指数函数、对数函数三类函数模型有关的实际问题,在求解时,要先学会合理选择模型, 在三类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一类函数模型,与增长率、银行利率有关 的问题都属于指数函数模型. (3)在解决幂函数、指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再 借助函数的图象求解最值问题,必要时可借助导数.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
高考数学异构异模复习第二章函数的概念及其基本性质2.3.1函数的奇偶性课件理
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
2019/5/23Leabharlann 最新中小学教学课件14
thank you!
误;对于选项 C,f(-x)|g(-x)|=-f(x)|g(x)|,所以 f(x)|g(x)|是奇函数,故 C 项正确;对于选项 D,|f(-x)g(-
高考数学异构异模复习第二章函数的概念及其基本性质课时撬分练2.1函数的概念及其表示文
2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质课时撬分练2.1 函数的概念及其表示 文时间:45分钟基础组1.[2016·枣强中学周测]已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x答案 D解析 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.2. [2016·冀州中学预测]函数f (x )=+1-2x的定义域是( )A .(-3,0)B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)答案 A解析 ∵f (x )=+1-2x,∴要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x +3>0,1-2x>0,即-3<x <0.3.[2016·冀州中学猜题]设函数f (x )=⎩⎨⎧x ,x≥0,-x ,x<0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1答案 D解析 当a ≥0时,f (a )=a ,由已知得a +1=2,得a =1;当a <0时,f (a )=-a ,由已知得-a +1=2,得a =-1,综上a =±1.4.[2016·武邑中学仿真]已知函数f (n )=⎩⎪⎨⎪⎧n -3,n≥10,+,n<10.其中n ∈N *,则f (6)的值为( )A .6B .7C .8D .9答案 B解析 由函数解析式,可知f (6)=f (f (11))=f (8)=f (f (13))=f (10)=10-3=7.5.[2016·衡水中学模拟]已知函数g (x )=1-2x ,f [g (x )]=1-x2x2(x ≠0),则f ⎝ ⎛⎭⎪⎫12等于( )A .1B .3C .15D .30答案 C解析 令1-2x =12,得x =14,∴f ⎝ ⎛⎭⎪⎫12=1-116116=15,故选C.6.[2016·冀州中学期中]函数f (x )=11--的最大值是( )A.45B.54 C.34D.43 答案 D解析 1-x (1-x )=⎝ ⎛⎭⎪⎫x -122+34≥34,所以0<11--≤43.7.[2016·衡水中学仿真]已知函数f (x )的定义域为(0,2],则函数f (x +1)的定义域为( )A .[-1,+∞)B .(-1,3]C .[5,3)D .(0,5)答案 B解析 根据题意,得0<x +1≤2,即0<x +1≤4,解得-1<x ≤3,故选B.8.[2016·枣强中学预测]设函数f (x )=⎩⎪⎨⎪⎧x ,x≥0,⎝ ⎛⎭⎪⎫12x ,x<0,则f (f (-4))=________.答案 4解析 因为x =-4<0,所以f (-4)=⎝ ⎛⎭⎪⎫12-4=16,因为x =16>0,所以f (16)=16=4.9.[2016·冀州中学一轮检测]函数f (x )=x +1-2x 的值域为________.答案 (-∞,1]解析 函数的定义域为⎝⎛⎦⎥⎤-∞,12,令t =1-2x(t ≥0),则x =1-t22.∴y =1-t22+t =-12(t -1)2+1(t ≥0),故t =1(即x =0)时,y 有最大值1,故值域为(-∞,1].10.[2016·武邑中学一轮检测]已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式.解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0,∴c =0,即f (x )=ax 2+bx .又∵f (x +1)=f (x )+x +1.。
2018高考数学(理科)异构异模复习考案撬分法课件:第二章 函数的概念及其基本性质 2-4-1
函数 f(x)=-x2+4x+a 的对称轴为直线 x=2, 开口向下, f(x)=-x2+4x+a 在[0,1]上单调递增,
则当 x=0 时,f(x)的最小值为 f(0)=a=-2;当 x=1 时,f(x)的最大值为 f(1)=3+a=3-2=1,选 C.
(0,8) 3.(1)已知关于 x 的不等式 x2-ax+2a>0 在 R 上恒成立,则实数 a 的取值范围是____________ .
y=ax2+bx+c(a<0) 当 x=- b 时, 2a
最值 ymin= 注意点
4ac-b2 ymax= 4a
解决二次函数问题应用数形结合思想
二次函数、一元二次方程和一元二次不等式统称为三个“二次”.它们常结合在一起,而二次函数又 是其核心.因此,利用二次函数的图象数形结合是探求这类问题的基本策略.
[解析]
(1)因为图象与 x 轴有两个交点,所以 b2-4ac>0,即 b2>4ac,①正确;
b 对称轴为 x=-1,即- =-1,2a-b=0,②错误; 2a 结合图象,当 x=-1 时,y>0,即 a-b+c>0,③错误; 由对称轴为 x=-1 知,b=2a.又函数图象开口向下,所以 a<0,所以 5a<2a,即 5a<b,④正确. (2)f(x) = x2 + (a - 4)x + 4 - 2a = (x - 2)a + (x2 - 4x + 4) .记 g(a) = (x - 2)a + (x2 - 4x + 4) ,由题意可得
高考数学· 理
第二章
函数的概念及其基本性质
第 4讲
二次函数与幂函数
点击观看 考点视频
考点一
二次函数
撬点· 基础点 重难点
高考数学异构异模复习第二章函数的概念及其基本性质2.
3.如图,函数 f(x)的图象是曲线 OAB,其中点 O,A,B 的坐标分别为(0,0),(1,2),(3,1),则 ff13的 值等于___2_____.
解析 ∵由图象知 f(3)=1, ∴f13=1.∴ff13=f(1)=2.
撬法·命题法 解题法
[考法综述] 函数图象的应用主要是利用图象研究函数的性质,考查解决有关问题(如方程的根、解 不等式)的能力.体现了数形结合解题思想,题目难度一般较大.
第二章 函数的概念及其基本性质
第7讲 函数的图象
考点二 函数图象的应用
撬点·基础点 重难点
利用函数图象研究的几个方面 (1)利用函数的图象研究函数的性质:①从图象的最高点、最低点,分析函数的 最值、极值 ;②从图象 的对称性,分析函数的 奇偶性 ;③从图象的走向趋势,分析函数的 单调性、周期性 . (2)利用函数的图象研究不可解方程的 根的个数 、求不等式的解集以及求参数的取值范围等.
【解题法】 利用函数图象研究函数性质、不等式及方程根的个数 (1)对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零 点)常借助于图象研究,但一定要注意性质与图象特征的对应关系. (2)当不等问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系 问题,从而利用数形结合求解. (3)当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程 f(x)=0 的根就是函数 f(x)图象 与 x 轴的交点的横坐标,方程 f(x)=g(x)的根就是函数 f(x)与 g(x)图象的交点的横坐标.
要使方程 f(x)=g(x)有两个不相等的实根,则函数 f(x)与 g(x)的图象有两个不同的交点,由图可知,12<k<1.
高考数学异构异模复习第二章函数的概念及其基本性质2.9.1函数的实际应用撬题文
2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.9.1 函数的实际应用撬题 文1.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题意可得:y min =-3+k =2.解得k =5,故这段时间水深的最大值为3+5=8(m),选C.2.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.++-12C.pqD.++-1 答案 D解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a (1+p )(1+q ).设这两年生产总值的年平均增长率为x ,则a (1+x )2=a (1+p )(1+q ),由于连续两年持续增加,所以x >0,因此x =++-1,故选D.3.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费S (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元 D.403元答案 A解析 依题意可设S A (t )=20+kt ,S B (t )=mt . 又S A (100)=S B (100),∴100k +20=100m ,得k -m =-0.2,于是S A (150)-S B (150)=20+150k -150m =20+150×(-0.2)=-10,即两种方式电话费相差10元,选A.4. 如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)答案 539解析 由于AB ⊥BC ,AB =15 m ,AC =25 m ,所以BC = 252-152=20 m .过点P 作PN⊥BC 交BC 于N ,连接AN (如图),则∠PAN =θ,tan θ=PN AN .设NC =x (x >0),则BN =20-x ,于是AN =AB2+BN2= 152+-=x2-40x +625,PN =NC ·tan30°=33x ,。
2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.1.2 分段函数及其应用撬题 文
2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.1.2 分段函数及其应用撬题 文1.设函数f (x )=⎩⎪⎨⎪⎧1+log 2-x ,x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A .3 B .6 C .9 D .12答案 C解析 由于f (-2)=1+log 24=3,f (log 212)=2log 212-1=2log 26=6,所以f (-2)+f (log 212)=9.故选C.2.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)答案 C解析 由题意知,f (a )=⎩⎪⎨⎪⎧3a -1,a <12a,a ≥1.由f (a )<1,解得a <23.所以f (f (a ))=⎩⎪⎨⎪⎧3fa -1,f a2fa,f a=⎩⎪⎨⎪⎧a --1,a <2323a -1,23≤a <122a,a ≥1故当a <23时,方程f (f (a ))=2f (a )化为9a -4=23a -1,即18a -8=23a.如图,分别作出直线y =18x -8与函数y =23x=8x的图象,根据图象分析可知,A 点横坐标为23,故a <23不符合题意.当23≤a <1时,方程f (f (a ))=2f (a )化为23a -1=23a -1,显然方程恒成立. 当a ≥1时,方程f (f (a ))=2f (a )化为22a =22a,显然方程恒成立.所以a 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞. 3.已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A .sgn[g (x )]=sgn xB .sgn[g (x )]=-sgn xC .sgn[g (x )]=sgn[f (x )]D .sgn[g (x )]=-sgn[f (x )] 答案 B解析 因为f (x )是R 上的增函数,又a >1,所以当x >0时,f (x )<f (ax ),即g (x )<0;当x =0时,f (x )=f (ax ),即g (x )=0;当x <0时,f (x )>f (ax ),即g (x )>0.由符号函数sgn x=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0知,sgn[g (x )]=⎩⎪⎨⎪⎧-1,x >0,0,x =0,1,x <0∴sgn[g (x )]=-sgn x .4.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1, x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)答案 D解析 作出f (x )的图象如图所示,可排除A 、B 、C ,故D 正确.5.设f (x )=⎩⎪⎨⎪⎧x -a 2,x ≤0,x +1x+a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案 D解析 ∵当x ≤0时,f (x )=(x -a )2,又f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x+a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解之,得-1≤a ≤2,∴a 的取值范围是0≤a ≤2.选D.6.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45 C .2 D .9答案 C解析 f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1.∵0<1,∴f (0)=20+1=2.∵f (0)=2≥1,∴f (f (0))=22+2a =4a ,∴a =2. 故应选C.7.已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 由题知,f (-3)=1,f (1)=0,即f (f (-3))=0.又f (x )在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,所以f (x )min =min{f (0),f (2)}=22-3.。
2018高考数学异构异模复习第二章函数的概念及其基本性质2.5指数与指数函数撬题理
2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质 2.5 指数与指数函数撬题 理1.已知a =2-13 ,b =log 213,c =log 12 13,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a 答案 C解析 由指数函数及对数函数的单调性易知0<2-13 <1,log 213<log 21=0,log 12 13>log 12 12=1, 故选C.2.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( ) A .(-2,1) B .(-4,3) C .(-1,2) D .(-3,4) 答案 C解析 原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x ,∵函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,∴⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2, 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2.3.函数f (x )=2|x -1|的图象是( )答案 B解析 f (x )=⎩⎪⎨⎪⎧2x -1,x≥1,⎝ ⎛⎭⎪⎫12x -1,x<1,故选B.4.已知4a=2,lg x =a ,则x =________.答案 10解析 ∵4a=2,∴a =log 42=12.由lg x =12,得x =1012=10.5.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =ekx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.5.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.答案 24解析 由题意得⎩⎪⎨⎪⎧eb =192e22k +b =48,即⎩⎪⎨⎪⎧eb =192e11k =12,所以该食品在33 ℃的保鲜时间是y =e 33k +b=(e 11k )3·e b=⎝ ⎛⎭⎪⎫123×192=24(小时).。
[配套K12]2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.4.1 二次函数撬题 理
2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.4.1 二次函数撬题 理1.如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,那么mn 的最大值为( )A .16B .18C .25 D.812答案 B解析 由已知得f ′(x )=(m -2)x +n -8,又对任意的x ∈⎣⎢⎡⎦⎥⎤12,2,f ′(x )≤0,所以⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12≤0f,即⎩⎪⎨⎪⎧m ≥0,n ≥0m +2n ≤182m +n ≤12,画出该不等式组表示的平面区域如图中阴影部分所示,令mn =t ,则当n =0时,t =0,当n ≠0时,m =tn.由线性规划的相关知识知,只有当直线2m +n =12与曲线m =tn 相切时,t 取得最大值.由⎩⎪⎨⎪⎧-t n 2=-126-12n =tn,解得n =6,t =18,所以(mn )max =18,选B.2.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0答案 A解析 由f (0)=f (4)得f (x )=ax 2+bx +c 的对称轴为x =-b2a=2,∴4a +b =0,又f (0)>f (1),∴f (x )先减后增,∴a >0,选A.3.两个二次函数f (x )=ax 2+bx +c 与g (x )=bx 2+ax +c 的图象可能是( )答案 D解析 函数f (x )图象的对称轴为x =-b 2a ,函数g (x )图象的对称轴为x =-a 2b ,显然-b2a 与-a2b同号,故两个函数图象的对称轴应该在y 轴的同侧,只有D 满足.故选D.4.若函数f (x )=cos2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2上是减函数,则a 的取值范围是________. 答案 (-∞,2]解析 f (x )=cos2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,x ∈⎝⎛⎭⎪⎫π6,π2,则t ∈⎝ ⎛⎭⎪⎫12,1,原函数化为y =-2t 2+at +1,由题意及复合函数单调性的判定可知y =-2t 2+at +1在⎝ ⎛⎭⎪⎫12,1上是减函数,结合抛物线图象可知,a 4≤12,所以a ≤2.5.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________. 答案 2或-1解析 f (x )=-(x -a )2+a 2-a +1,在x ∈[0,1]时, 当a ≥1时,f (x )max =f (1)=a ; 当0<a <1时,f (x )max =f (a )=a 2-a +1; 当a ≤0时,f (x )max =f (0)=1-a .根据已知条件得,⎩⎪⎨⎪⎧a ≥1,a =2或⎩⎪⎨⎪⎧0<a <1,a 2-a +1=2或⎩⎪⎨⎪⎧a ≤0,1-a =2.解得a =2或a =-1.6.对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.答案 -2解析 设2a +b =t ,则2a =t -b ,由已知得关于b 的方程(t -b )2-b (t -b )+4b 2-c =0有解,即6b 2-3tb +t 2-c =0有解.故Δ=9t 2-24(t 2-c )≥0,所以t 2≤85c ,所以|t |max =210c 5,此时c =58t 2,b =14t ,2a =t -b =3t 4,所以a =3t8.故3a -4b +5c =8t -16t +8t2=8⎝ ⎛⎭⎪⎫1t 2-1t=8⎝ ⎛⎭⎪⎫1t -122-2≥-2. 7.已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.答案 (0,1)∪(9,+∞)解析 在同一坐标系中分别作出函数f (x )与y =a |x -1|的图象,由图知,当a =0时,两函数的图象只有2个交点,当a <0时,两图象没有交点,故必有a >0.若曲线y =-x 2-3x (-3≤x ≤0)与直线y =-a (x -1)(x ≤1)相切,联立方程得x 2+(3-a )x +a =0,则由Δ=0得a =1(a =9舍去),因此当0<a <1时,f (x )的图象与y =a |x -1|的图象有4个交点;若曲线y =x 2+3x (x >0)与直线y =a (x -1)(x >1)相切,联立方程得x 2+(3-a )x +a =0,则由Δ=0可得a =9(a =1舍去),因此当a >9时,f (x )的图象与y =a |x -1|的图象有4个交点,故当方程有4个互异实数根时,实数a 的取值范围是(0,1)∪(9,+∞).。
高考数学异构异模复习第二章函数的概念及其基本性质2.6对数与对数函数撬题文
2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.6 对数与对数函数撬题 文1.设f (x )=ln x,0<a <b ,若p =f (ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q 答案 B解析 ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab)<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f ()ab =p ,∴p =r <q .故选B.2.函数f (x )=log 12 (x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 答案 D解析 由x 2-4>0得x >2或x <-2,因此函数定义域为(-∞,-2)∪(2,+∞).令t =x 2-4,当x ∈(-∞,-2)时,t 随x 的增大而减小,y =log 12t 随t 的增大而减小,所以y =log 12(x 2-4)随x 的增大而增大,即f (x )在(-∞,-2)上单调递增.故选D.3.设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b 答案 B解析 由3<7<9得log 33<log 37<log 39,∴1<a <2,由21.1>21=2得b >2,由0.83.1<0.80=1得c <1,因此c <a <b ,故选B.4.已知关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a 1-lg a有正根,则实数a 的取值范围是( )A .(0,1)B .(0.1,10)C .(0.1,1)D .(10,+∞) 答案 C解析 当x >0时,0<⎝ ⎛⎭⎪⎫12x <1,∵关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a 1-lg a有正根,∴0<1+lg a 1-lg a <1,∴⎩⎪⎨⎪⎧1+lg a 1-lg a <1,1+lg a 1-lg a >0,解得-1<lg a <0,∴0.1<a <1.故选C.5.函数y =2log 4(1-x )的图象大致是( )答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C.6.若a =log 43,则2a+2-a=________.答案433解析 ∵a =log 43=log 23,∴2a +2-a=2log23 +2-log23=3+13=433.。
2018高考数学异构异模复习 第二章 函数的概念及其基本性质 课时撬分练2.5 指数与指数函数 文
2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质课时撬分练2.5 指数与指数函数 文时间:45分钟基础组1.[2016·冀州中学热身]下列函数中值域为正实数的是( ) A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x -1 D .y =1-2x答案 B解析 ∵1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x 的值域是正实数,∴y =⎝ ⎛⎭⎪⎫131-x的值域是正实数.故选B.2. [2016·枣强中学热身]已知a =⎝ ⎛⎭⎪⎫1223 ,b =2-43 ,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c答案 B解析 把b 化简为b =⎝ ⎛⎭⎪⎫12 43 ,而函数y =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243 <⎝ ⎛⎭⎪⎫12 23 <⎝ ⎛⎭⎪⎫12 13,即b <a <c .3.[2016·冀州中学周测]设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( ) A .(-∞,-3) B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞) 答案 C解析 若a <0,则由f (a )<1得⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8=⎝ ⎛⎭⎪⎫12-3,所以-3<a <0,若a ≥0,则由f (a )<1得a <1,所以0≤a <1.综上,a 的取值范围是-3<a <1,即(-3,1).4.[2016·衡水二中一轮检测]已知f (x )=2x+2-x,若f (a )=3,则f (2a )等于( ) A .5B .7C .9D .11答案 B解析 ∵f (x )=2x+2-x,f (a )=3, ∴2a +2-a=3. ∴f (2a )=22a+2-2a=(2a +2-a )2-2=9-2=7.5.[2016·衡水二中猜题]若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]答案 B解析 f (1)=19得a 2=19.又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.因为g (x )=|2x -4|在[2,+∞)上单调递增,所以f (x )的单调递减区间是[2,+∞). 6.[2016·枣强中学月考]函数y =⎝ ⎛⎭⎪⎫12-x 2+x +2 的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤-1,12 B .(-∞,-1]C .[2,+∞) D.⎣⎢⎡⎦⎥⎤12,2答案 D解析 由-x 2+x +2≥0知,函数定义域为[-1,2],-x 2+x +2=-⎝ ⎛⎭⎪⎫x -122+94.当x ≥12时,u (x )=-x 2+x +2递减,又y =⎝ ⎛⎭⎪⎫12x 在定义域上递减,故函数y =⎝ ⎛⎭⎪⎫12-x 2+x +2的单调递增区间为⎣⎢⎡⎦⎥⎤12,2. 7.[2016·衡水二中预测]不等式2-x 2+2x>⎝ ⎛⎭⎪⎫12x +4的解集为________. 答案 {x |-1<x <4} 解析 不等式2-x 2+2x>⎝ ⎛⎭⎪⎫12x +4可化为⎝ ⎛⎭⎪⎫12x 2-2x >⎝ ⎛⎭⎪⎫12x +4,等价于不等式x 2-2x <x +4,即x 2-3x -4<0,解得-1<x <4,所以解集为{x |-1<x <4}.8.[2016·武邑中学期末]已知偶函数f (x )在[0,+∞)上单调递减,若f (2x -1)>f ⎝ ⎛⎭⎪⎫53成立,则x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-13,43 解析 由题可知f (x )在区间(-∞,0]上单调递增,若f (2x -1)>f ⎝ ⎛⎭⎪⎫53成立,则-53<2x -1<53,即-13<x <43.9.[2016·衡水二中热身]已知0≤x ≤2,则y =4x -12-3·2x+5的最大值为________.答案 52解析 令t =2x,∵0≤x ≤2,∴1≤t ≤4, 又y =22x -1-3·2x+5,∴y =12t 2-3t +5=12(t -3)2+12, ∵1≤t ≤4,∴t =1时,y max =52.10.[2016·衡水中学热身]函数f (x )=a x(a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.解 当a >1时,f (x )=a x 为增函数,在x ∈[1,2]上,f (x )最大=f (2)=a 2,f (x )最小=f (1)=a .∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍)或a =32>1.∴a =32.当0<a <1时, f (x )=a x为减函数,在x ∈[1,2]上,f (x )最大=f (1)=a , f (x )最小=f (2)=a 2.∴a -a 2=a2.∴a (2a -1)=0,∴a =0(舍)或a =12.∴a =12.综上可知,a =12或a =32.11.[2016·武邑中学月考]已知函数f (x )=2x,g (x )=12|x |+2. (1)求函数g (x )的值域;(2)求满足方程f (x )-g (x )=0的x 的值. 解 (1)g (x )=12|x |+2=⎝ ⎛⎭⎪⎫12|x |+2,因为|x |≥0,所以0<⎝ ⎛⎭⎪⎫12|x |≤1,即2<g (x )≤3,故g (x )的值域是(2,3]. (2)由f (x )-g (x )=0,得2x-12|x |-2=0,当x ≤0时,显然不满足方程, 即只有x >0时满足2x-12x -2=0,整理得(2x )2-2·2x-1=0,(2x-1)2=2,故2x=1±2, 因为2x>0,所以2x=1+2, 即x =log 2(1+2).12.[2016·武邑中学一轮检测]已知函数f (x )=b ·a x(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).(1)求f (x )的表达式;(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1bx-m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.解 (1)因为f (x )的图象过点A (1,6),B (3,24),则⎩⎪⎨⎪⎧b ·a =6,b ·a 3=24.所以a 2=4,又a >0,所以a =2,则b =3.所以f (x )=3·2x.(2)由(1)知a =2,b =3,则x ∈(-∞,1]时,⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x -m ≥0恒成立,即m ≤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在x ∈(-∞,1]时恒成立.又因为y =⎝ ⎛⎭⎪⎫12x 与y =⎝ ⎛⎭⎪⎫13x 均为减函数,所以y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 也是减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 有最小值56.所以m ≤56,即m 的取值范围是⎝⎛⎦⎥⎤-∞,56.能力组13. [2016·冀州中学一轮检测]已知函数f (x )=|2x-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是________.①a <0,b <0,c <0; ②a <0,b ≥0,c >0; ③2-a<2c; ④2a+2c<2. 答案 ④解析 由图示可知a <0时,b 的符号不确定,1>c >0,故①②错; ∵f (a )=|2a -1|,f (c )=|2c-1|, ∴|2a -1|>|2c-1|, 即1-2a >2c-1, 故2a +2c <2,④成立. 又2a+2c>22a +c,∴2a +c<1,∴a +c <0,∴-a >c , ∴2-a>2c,③不成立.14.[2016·枣强中学预测]设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则方程f (x )=12的解集为________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2解析 当x ≤0时,解2x=12得x =-1;当x >0时,解|log 2x |=12得x =22或x = 2.所以方程f (x )=12的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2.15. [2016·衡水中学仿真]已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,若a >b ≥0,且f (a )=f (b ),则bf (a )的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫34,2 解析 如图,f (x )在[0,1),[1,+∞)上均单调递增,由a >b ≥0及f (a )=f (b )知a ≥1>b ≥12.bf (a )=bf (b )=b (b +1)=b 2+b ,∵12≤b <1,∴34≤bf (a )<2.16.[2016·冀州中学期中]求函数f (x )=3x 2-5x +4的定义域、值域及单调区间.解 依题意知x 2-5x +4≥0,解得x ≥4或x ≤1, ∴f (x )的定义域是(-∞,1]∪[4,+∞).∵x 2-5x +4≥0,∴f (x )=3x 2-5x +4≥30=1,∴函数f (x )的值域是[1,+∞). 令u =x 2-5x +4=⎝ ⎛⎭⎪⎫x -522-94, x ∈(-∞,1]∪[4,+∞),∴当x ∈(-∞,1]时,u 是减函数, 当x ∈[4,+∞)时,u 是增函数. 而3>1,∴由复合函数的单调性可知,f (x )=3x 2-5x +4在(-∞,1]上是减函数,在[4,+∞)上是增函数.。
高考数学异构异模复习第二章函数的概念及其基本性质2.8函数与方程课件理
1.思维辨析 (1)函数 f(x)=x2-1 的零点是(-1,0)和(1,0).( × ) (2)函数 y=f(x)在区间(a,b)内有零点(函数图象连续不断),则 f(a)·f(b)<0.( × ) (3)二次函数 y=ax2+bx+c(a≠0)在 b2-4ac<0 时没有零点.( √ ) (4)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (5)函数 y=2sinx-1 的零点有无数多个.( √ ) (6)函数 f(x)=kx+1 在[1,2]上有零点,则-1<k<-12.( × )
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
则有 f(1)·f(2)<0,所以(-a)(4-1-a)<0,即 a(a-3)<0.所以 0<a<3.
高考数学异构异模复习第二章函数的概念及其基本性质课时撬分练2.8函数与方程文
2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质课时撬分练2.8 函数与方程 文时间:60分钟基础组1.[2016·武邑中学仿真]已知x 0是f (x )=⎝ ⎛⎭⎪⎫12x +1x的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0答案 C解析 如图,在同一坐标系下作出函数y =⎝ ⎛⎭⎪⎫12x ,y =-1x 的图象,由图象可知当x ∈(-∞,x 0)时,⎝ ⎛⎭⎪⎫12x >-1x,当x ∈(x 0,0)时,⎝ ⎛⎭⎪⎫12x <-1x,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0,选C.2.[2016·枣强中学一轮检测]函数f (x )=x cos2x 在区间[0,2π]上的零点个数为( )A .2B .3C .4D .5答案 D解析 令f (x )=x cos2x =0,得x =0或cos2x =0.由cos2x =0,得2x =k π+π2(k ∈Z ),故x =k π2+π4(k ∈Z ).又因为x ∈[0,2π],所以x =π4,3π4,5π4,7π4.所以零点的个数为1+4=5.故选D. 3.[2016·衡水中学周测]已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 函数f (x )的导数为f ′(x )=1x ,所以g (x )=f (x )-f ′(x )=ln x -1x .因为g (1)=ln 1-1=-1<0,g (2)=ln 2-12>0,所以函数g (x )=f (x )-f ′(x )的零点所在的区间为(1,2).故选B.4. [2016·衡水中学模拟]设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数,当x ∈[0,π]时,0<f (x )<1;当x ∈(0,π)且x ≠π2时,⎝⎛⎭⎪⎫x -π2f ′(x )>0,则函数y =f (x )-sin x 在[-2π,2π]上的零点个数为( )A .2B .4C .5D .8答案 B解析 ∵f (x )是最小正周期为2π的偶函数,∴f (x +2π)=f (x )=f (-x ),∴y =f (x )的图象关于y 轴和直线x =π对称,又∵0<x <π2时,⎝ ⎛⎭⎪⎫x -π2f ′(x )>0,∴0<x <π2时,f ′(x )<0.同理,π2<x <π时,f ′(x )>0.又∵0≤x ≤π时,0<f (x )<1,∴y =f (x )的大致图象如图所示.又函数y =f (x )-sin x 在[-2π,2π]上的零点个数⇔函数y =f (x )与y =sin x 图象的交点个数,由图可知共有四个交点,故选B.5.[2016·枣强中学热身]已知函数f (x )=⎝ ⎛⎭⎪⎫14x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4答案 C。
2018高考数学异构异模复习 第二章 函数的概念及其基本性质 2.6 对数与对数函数撬题 理
2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质2.6 对数与对数函数撬题 理1.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q 答案 B解析 ∵0<a <b ,∴a +b 2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝ ⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f ()ab =p ,∴p =r <q .故选B. 2.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)答案 D解析 由x 2-4>0得x >2或x <-2,因此函数定义域为(-∞,-2)∪(2,+∞).令t =x 2-4,当x ∈(-∞,-2)时,t 随x 的增大而减小,y =log 12 t 随t 的增大而减小,所以y =log 12(x 2-4)随x 的增大而增大,即f (x )在(-∞,-2)上单调递增.故选D.3.设a =log 37,b =21.1,c =0.83.1,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b答案 B解析 由3<7<9得log 33<log 37<log 39,∴1<a <2,由21.1>21=2得b >2,由0.83.1<0.80=1得c <1,因此c <a <b ,故选B. 4.已知关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a 1-lg a有正根,则实数a 的取值范围是( ) A .(0,1)B .(0.1,10)C .(0.1,1)D .(10,+∞)答案 C 解析 当x >0时,0<⎝ ⎛⎭⎪⎫12x <1,∵关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a 1-lg a有正根,∴0<1+lg a 1-lg a <1,∴⎩⎪⎨⎪⎧ 1+lg a 1-lg a <1,1+lg a 1-lg a >0,解得-1<lg a <0,∴0.1<a <1.故选C.5.函数y =2log 4(1-x )的图象大致是( )答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C.6.若a =log 43,则2a +2-a =________.答案 433解析 ∵a =log 43=log 23,∴2a +2-a =2log 23 +2-log 23 =3+13=433.。
高考数学(文科)异构异模复习考案撬分法习题 第二章 函数的概念及其基本性质2-3-1 Word版含答案
1.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2+1答案 A解析 y =cos x 是偶函数且有无数多个零点,y =sin x 为奇函数,y =ln x 既不是奇函数也不是偶函数,y =x 2+1是偶函数但没有零点,故选A.2.若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)答案 C解析 f (-x )=2-x +12-x -a =2x +11-a ·2x ,由f (-x )=-f (x )得2x +11-a ·2x =-2x+12x-a ,即1-a ·2x=-2x+a ,化简得a ·(1+2x)=1+2x,所以a =1,f (x )=2x+12x -1.由f (x )>3得0<x <1.故选C.3.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3答案 C解析 令x =-1得,f (-1)-g (-1)=(-1)3+(-1)2+1=1.∵f (x ),g (x )分别是偶函数和奇函数,∴f (-1)=f (1),g (-1)=-g (1), 即f (1)+g (1)=1.故选C.4.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-16,16B.⎣⎢⎡⎦⎥⎤-66,66C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-33,33 答案 B解析 当x ≥0时,f (x )=⎩⎪⎨⎪⎧x -3a 2,x ≥2a 2,-a 2,a 2<x <2a 2,-x ,0≤x ≤a 2,画出图象,再根据f (x )是奇函数补全图象.∵满足∀x ∈R ,f (x -1)≤f (x ),则只需3a 2-(-3a 2)≤1, ∴6a 2≤1,即-66≤a ≤66,故选B. 5.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,则g (x )=( ) A .e x -e -x B.12(e x +e -x)C.12(e -x -e x )D.12(e x -e -x ) 答案 D解析 因为f (x )+g (x )=e x ①,则f (-x )+g (-x )=e -x ,即f (x )-g (x )=e -x②,故由①-②可得g (x )=12(e x -e -x),所以选D.6.若函数f (x )=x ln (x +a +x 2)为偶函数,则a =________.点击观看解答视频答案 1解析 解法一:由题意得f (x )=x ln (x +a +x 2)=f (-x )=-x ln (a +x 2-x ),所以a +x 2+x =1a +x 2-x,解得a =1.解法二:由f (x )为偶函数有y =ln (x +a +x 2)为奇函数,令g (x )=ln (x +a +x 2),有g (-x )=-g (x ),以下同解法一.7.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.点击观看解答视频答案 (-5,0)∪(5,+∞)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0,∴f (-x )=x 2+4x . 又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x , x >0,0, x =0,-x 2-4x , x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5; ②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x ,解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞). 8.已知函数f (x )=e x +e -x,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与ae -1的大小,并证明你的结论.解 (1)证明:因为对任意x ∈R ,都有f (-x )=e -x+e -(-x )=e -x +e x=f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x-1在(0,+∞)上恒成立, 令t =e x(x >0),则t >1, 所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立.因为t -1+1t -1+1≥2t -1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.因此实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. (3)令函数g (x )=e x +1e x -a (-x 3+3x ),则g ′(x )=e x -1ex +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e -1-2a <0,即a >e +e -12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x.令h ′(x )=0,得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数; 当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1; ②当a =e 时,ea -1=ae -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故ea -1>ae-1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,ea -1=ae -1;当a ∈(e ,+∞)时,e a -1>ae -1.。
高考数学异构异模复习第二章函数的概念及其基本性质2.9.2函数的综合应用课件理
[正解] 设包装盒的高为 h cm,底面边长为 a cm. 由已知得 a= 2x, h=60-22x= 2(30-x),0<x<30. 解法一:S=4ah=8x(30-x)=-8(x-15)2+1800, 所以当 x=15 时,S 取得最大值. 解法二:S=4ah=8x(30-x)≤8×x+320-x2=8×9400=1800, 当且仅当 x=30-x,即 x=15 时等号成立,∴当 x=15 时 S 取得最大值.
且Snn=2×ann+1(其中 Sn 为{an}的前 n 项和),则 f(a5)+f(a6)=(
)
A.-3
B.-2
C.3
D.2
解析 由题意可知 f(x)是以 3 为周期的周期函数.又 x∈R,∴f(0)=0.∵Snn=2×ann+1,∴Sn=2an+n, Sn-1=2an-1+(n-1)(n≥2).两式相减并整理得出 an=2an-1-1,即 an-1=2(an-1-1),∴数列{an-1}是以 2 为公比的等比数列,首项为 a1-1=-2,∴an-1=-2·2n-1=-2n,an=-2n+1,∴a5=-31,a6=-63.
2019/5/23
最新中小学教学课件
19
thank you!
撬题·对点题 必刷题
请你设计一个包装盒.如图所示,ABCD 是边长为 60 cm 的正方形硬纸片,切去阴影部分所示的四个 全等的等腰直角三角形,再沿虚线折起,使得 A,B,C,D 四个点重合于图中的点 P,正好形成一个正四 棱柱形状的包装盒.E,F 在 AB 上,是被切去一个等腰直角三角形斜边的两个端点.设 AE=FB=x(cm).某 广告商要求包装盒的侧面积 S(cm2)最大,试问 x 应取何值?
2.下列函数中随 x 的增大而增大速度最快的是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高考数学异构异模复习考案 第二章 函数的概念及其基本性质
2.3.1 函数的奇偶性撬题 理
1.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2
+1
答案 A
解析 y =cos x 是偶函数且有无数多个零点,y =sin x 为奇函数,y =ln x 既不是奇函数也不是偶函数,y =x 2
+1是偶函数但没有零点,故选A.
2.若函数f (x )=2x
+1
2x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )
A .(-∞,-1)
B .(-1,0)
C .(0,1)
D .(1,+∞)
答案 C
解析 f (-x )=2-x +12-x -a =2x
+11-a ·2x ,由f (-x )=-f (x )得2x
+11-a ·2x =-2x
+12x
-a ,即1-a ·2x
=-2x
+a ,化简得a ·(1+2x
)=1+2x
,所以a =1,f (x )=2x
+1
2x -1
.由f (x )>3得0<x <1.故选
C.
3.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3
+x 2
+1,则f (1)+g (1)=( )
A .-3
B .-1
C .1
D .3
答案 C
解析 令x =-1得,f (-1)-g (-1)=(-1)3
+(-1)2
+1=1.∵f (x ),g (x )分别是偶函数和奇函数,
∴f (-1)=f (1),g (-1)=-g (1), 即f (1)+g (1)=1.故选C.
4.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2
|-
3a 2
).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )
A.⎣⎢⎡⎦⎥⎤-16,16
B.⎣⎢⎡⎦⎥⎤-66,66
C.⎣⎢⎡⎦
⎥⎤-13,13 D.⎣
⎢⎡⎦
⎥⎤-
33,33 答案 B
解析 当x ≥0时,
f (x )=⎩⎪⎨⎪⎧
x -3a 2,x ≥2a 2
,-a 2,a 2
<x <2a 2
,
-x ,0≤x ≤a 2,
画出图象,再根据f (x )是奇函数补全图象.
∵满足∀x ∈R ,f (x -1)≤f (x ),则只需3a 2
-(-3a 2
)≤1, ∴6a 2
≤1,即-
66≤a ≤6
6
,故选B. 5.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x
,则g (x )=( ) A .e x -e -x
B.12(e x +e -x )
C.12(e -x -e x
) D.12
(e x -e -x ) 答案 D
解析 因为f (x )+g (x )=e x
①,则f (-x )+g (-x )=e -x
,即f (x )-g (x )=e -x
②,故由①-②可得g (x )=12
(e x -e -x
),所以选D.
6.若函数f (x )=x ln (x +a +x 2
)为偶函数,则a =________. 答案 1
解析 解法一:由题意得f (x )=x ln (x +a +x 2
)=f (-x )=-x ln (a +x 2
-x ),所以
a +x 2+x =
1
a +x 2-x
,解得a =1.
解法二:由f (x )为偶函数有y =ln (x +a +x 2
)为奇函数,令g (x )=ln (x +a +x 2
),有g (-x )=-g (x ),以下同解法一.
7.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2
-4x ,则不等式f (x )>x 的解集用区间表示为________.
答案 (-5,0)∪(5,+∞)
解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0,∴f (-x )=x 2
+4x . 又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2
-4x (x <0),
∴f (x )=⎩⎪⎨⎪
⎧
x 2
-4x , x >0,0, x =0,
-x 2-4x , x <0.
①当x >0时,由f (x )>x 得x 2
-4x >x ,解得x >5; ②当x =0时,f (x )>x 无解;
③当x <0时,由f (x )>x 得-x 2
-4x >x ,解得-5<x <0.
综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞). 8.已知函数f (x )=e x +e -x
,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;
(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 3
0+3 x 0)成立.试比较e a -1
与a
e -1
的大小,并证明你的结论.
解 (1)证明:因为对任意x ∈R ,都有f (-x )=e -x
+e -(-x )
=e -x +e x
=f (x ),所以f (x )
是R 上的偶函数.
(2)由条件知m (e x
+e -x
-1)≤e -x
-1在(0,+∞)上恒成立, 令t =e x
(x >0),则t >1, 所以m ≤-
t -1t 2-t +1=-1
t -1+1
t -1
+1
对任意t >1成立.
因为t -1+1
t -1
+1≥2t -
1
t -1
+1=3,所以-1t -1+1
t -1
+1
≥-1
3
,当且
仅当t =2,即x =ln 2时等号成立.
因此实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. (3)令函数g (x )=e x +1e x -a (-x 3
+3x ),
则g ′(x )=e x -1e
x +3a (x 2
-1).
当x ≥1时,e x -1e x >0,x 2
-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单
调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1
-2a .
由于存在x 0∈[1,+∞),使e x
0+e -x
-a (-x 3
0+3x 0)<0成立,当且仅当最小值g (1)<0,
故e +e -1
-2a <0,即a >e +e
-1
2
.
令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1
x
.
令h ′(x )=0,得x =e -1.
当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数; 当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数.
所以h (x )在(0,+∞)上的最小值是h (e -1).
注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.
①当a ∈⎝ ⎛⎭
⎪
⎫e +e -1
2,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1; ②当a =e 时,e
a -1
=a
e -1
;
③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1
>a
e
-1
.
综上所述,当a ∈⎝ ⎛⎭
⎪
⎫e +e -1
2,e 时,e a -1<a e -1;
当a =e 时,e
a -1
=a
e -1
;
当a ∈(e ,+∞)时,e a -1
>a
e -1
.。