平面解析几何专题
专题05 平面解析几何(选择题、填空题)-三年(2022–2024)高考数学真题分类汇编(原卷版)
专题05平面解析几何(选择题、填空题)考点三年考情(2022-2024)命题趋势考点1:直线方程与圆的方程2022年全国II卷、2022年全国甲卷(文)2022年全国乙卷(理)近三年高考对解析几何小题的考查比较稳定,考查内容、频率、题型难度均变化不大,备考时应熟练以下方向:(1)要重视直线方程的求法、两条直线的位置关系以及点到直线的距离公式这三个考点.(2)要重视直线与圆相交所得弦长及相切所得切线的问题.(3)要重视椭圆、双曲线、抛物线定义的运用、标准方程的求法以及简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现.考点2:直线与圆的位置关系2024年北京卷、2022年全国甲卷(理)2022年天津卷、2022年北京卷2023年全国Ⅰ卷、2024年北京卷考点3:圆与圆的位置关系2022年全国I卷考点4:轨迹方程及标准方程2023年北京卷、2023年天津卷2024年全国Ⅱ卷、2022年天津卷2022年全国甲卷(文)考点5:椭圆的几何性质2022年全国I卷2023年全国甲卷(理)2023年全国甲卷(文)考点6:双曲线的几何性质2022年北京卷2023年全国乙卷(理)考点7:抛物线的几何性质2024年北京卷、2024年天津卷2023年全国乙卷(理)2023年天津卷、2023年全国Ⅱ卷2024年全国Ⅱ卷、2022年全国I卷考点8:弦长问题2022年全国乙卷(理)2023年全国甲卷(理)考点9:离心率问题2024年全国Ⅰ卷、2022年全国甲卷(文)2023年全国Ⅰ卷、2022年浙江卷2022年全国乙卷(理)2024年全国甲卷(理)2023年全国Ⅰ卷、2022年全国甲卷(理)考点10:焦半径、焦点弦问题2022年全国II卷、2023年北京卷考点11:范围与最值问题2022年全国II卷2024年全国甲卷(文)2023年全国乙卷(文)考点12:面积问题2024年天津卷、2023年全国Ⅱ卷2023年全国Ⅱ卷考点13:新定义问题2024年全国Ⅰ卷考点1:直线方程与圆的方程1.(2022年新高考全国II 卷数学真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||23MA NB MN ==l 的方程为.2.(2022年高考全国甲卷数学(文)真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为.3.(2022年高考全国乙卷数学(理)真题)过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为.考点2:直线与圆的位置关系4.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214xy -=只有一个公共点,则k 的一个取值为.5.(2022年高考全国甲卷数学(理)真题)若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =.6.(2022年新高考天津数学高考真题)若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =.7.(2022年新高考北京数学高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ()A .12B .12-C .1D .1-8.(2023年新课标全国Ⅰ卷数学真题)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D 649.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A 2B .2C .3D .32考点3:圆与圆的位置关系10.(2022年新高考全国I 卷数学真题)写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程.考点4:轨迹方程及标准方程11.(2023年北京高考数学真题)已知双曲线C 的焦点为(2,0)-和(2,0),离心率为2,则C 的方程为.12.(2023年天津高考数学真题)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、.过2F 向一条渐近线作垂线,垂足为P .若22PF =,直线1PF 的斜率为24,则双曲线的方程为()A .22184x y -=B .22148x y -=C .22142x y -=D .22124x y -=13.(2022年新高考天津数学高考真题)已知抛物线21245,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为()A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=14.(2022年高考全国甲卷数学(文)真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=15.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)考点5:椭圆的几何性质16.(2022年新高考全国I 卷数学真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是.17.(2023年高考全国甲卷数学(理)真题)设O 为坐标原点,12,F F 为椭圆22:196x yC +=的两个焦点,点P 在C 上,123cos 5F PF ∠=,则||OP =()A .135B .302C .145D .35218.(2023年高考全国甲卷数学(文)真题)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅=,则12PF PF ⋅=()A .1B .2C .4D .5考点6:双曲线的几何性质19.(2022年新高考北京数学高考真题)已知双曲线221x y m +=的渐近线方程为3y =,则m =.20.(2023年高考全国乙卷数学(理)真题)设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A .()1,1B .()1,2-C .()1,3D .()1,4--考点7:抛物线的几何性质21.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为.22.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.23.(2023年高考全国乙卷数学(理)真题)已知点(5A 在抛物线C :22y px =上,则A 到C 的准线的距离为.24.(2023年天津高考数学真题)已知过原点O 的一条直线l 与圆22:(2)3C x y ++=相切,且l 与抛物线22(0)y px p =>交于点,O P 两点,若8OP =,则p =.25.(多选题)(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||15PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个26.(多选题)(2022年新高考全国I 卷数学真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A .C 的准线为1y =-B .直线AB 与C 相切C .2|OP OQ OA⋅>D .2||||||BP BQ BA ⋅>27.(多选题)(2023年新课标全国Ⅱ卷数学真题)设O 为坐标原点,直线)31y x =--过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN 为等腰三角形考点8:弦长问题28.(2022年高考全国乙卷数学(理)真题)设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A .2B .22C .3D .3229.(2023年高考全国甲卷数学(理)真题)已知双曲线2222:1(0,0)x y C a b a b-=>>5C 的一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A 55B .255C .355D .455考点9:离心率问题30.(2024年新课标全国Ⅰ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.31.(2022年高考全国甲卷数学(文)真题)记双曲线2222:1(0,0)x y C a b a b -=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值.32.(2023年新课标全国Ⅰ卷数学真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A B ⊥=- ,则C 的离心率为.33.(2022年新高考浙江数学高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是.34.(多选题)(2022年高考全国乙卷数学(理)真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A 52B .32C .132D .17235.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 236.(2023年新课标全国Ⅰ卷数学真题)设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若213e e =,则=a ()A 233B 2C 3D 637.(2022年高考全国甲卷数学(理)真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A 32B .22C .12D .13考点10:焦半径、焦点弦问题38.(多选题)(2022年新高考全国II 卷数学真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则()A .直线AB 的斜率为26B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒39.(2023年北京高考数学真题)已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =()A .7B .6C .5D .4考点11:范围与最值问题40.(2022年新高考全国II 卷数学真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是.41.(2024年高考全国甲卷数学(文)真题)已知直线20ax y a ++-=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .642.(2023年高考全国乙卷数学(文)真题)已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A .3212+B .4C .132+D .7考点12:面积问题43.(2024年天津高考数学真题)双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=44.(2023年新课标全国Ⅱ卷数学真题)已知直线:10l x my -+=与()22:14C x y -+= 交于A ,B 两点,写出满足“ABC 面积为85”的m 的一个值.45.(2023年新课标全国Ⅱ卷数学真题)已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A .23B 23C .23D .23-考点13:新定义问题46.(多选题)(2024年新课标全国Ⅰ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+。
平面解析几何知识点归纳
平面解析几何知识点归纳平面解析几何是研究平面上点、直线、圆及其相关性质和相互关系的数学分支。
在平面解析几何中,我们通过坐标系的建立和运用向量的概念,可以方便地描述和研究平面上的各种几何图形和问题。
本文将对平面解析几何中的一些重要知识点进行归纳,以帮助读者更好地理解和掌握这些知识。
1. 坐标系的建立平面解析几何中,坐标系是最基本的工具之一。
一般来说,我们可以建立直角坐标系、极坐标系或其他特定的坐标系来描述平面上的点。
以直角坐标系为例,我们用x轴和y轴分别表示水平和垂直方向,将一个点P的位置用有序数对(x, y)表示,其中x称为点P的横坐标,y称为点P的纵坐标。
2. 点的坐标计算对于已知坐标系的平面上的点P(x, y),我们可以通过给定的信息计算出点的坐标。
例如,已知点A和点B的坐标,我们可以通过运用向量的加法和数乘运算,求得点P的坐标。
设向量OA的坐标为A(x1,y1),向量OB的坐标为B(x2, y2),则向量OP的坐标为P(x, y),其中P 的坐标满足向量OP = 向量OA + 向量OB。
3. 向量的定义和运算在平面解析几何中,向量是重要的概念之一。
向量可以表示有大小和方向的量,并且可以与点一一对应。
向量的表示方法有很多种,常见的有坐标表示和位置向量表示。
在坐标表示中,向量通常用有序数对(x, y)表示。
在位置向量表示中,我们用一个固定点O与向量表示的点P的坐标差,来表示向量OP。
向量的运算包括加法、减法和数乘。
设向量u = (x1, y1),向量v = (x2, y2),实数k,向量u与v的加法定义为:u + v = (x1 + x2, y1 + y2);向量u与v的减法定义为:u - v = (x1 - x2, y1 - y2);向量u的数乘定义为:k * u = (kx1, ky1)。
4. 直线的方程直线是平面几何中的基本要素之一。
在平面解析几何中,我们可以通过直线上的点和直线的斜率来确定直线的方程。
平面解析几何的应用题
平面解析几何的应用题在解析几何中,我们学习了如何利用坐标系和代数方法来研究和解决平面上的几何问题。
平面解析几何的应用非常广泛,可以帮助我们解决实际生活中的很多实际问题。
本文将通过几个具体的应用题来展示平面解析几何的应用。
1. 题目一:平面上两点的中点坐标已知平面上两点A和B的坐标分别为A(x1, y1)和B(x2, y2),求这两点的中点坐标M。
解析:根据中点的定义,我们知道中点M的横坐标为xM = (x1 + x2) / 2,纵坐标为yM = (y1 + y2) / 2。
因此,我们可以得出中点M的坐标为M((x1 + x2) / 2, (y1 + y2) / 2)。
2. 题目二:平面上两点间的距离已知平面上两点A和B的坐标分别为A(x1, y1)和B(x2, y2),求这两点之间的距离AB。
解析:根据两点间的距离公式,我们可以利用坐标差值和勾股定理来计算距离。
首先计算x轴上的差值dx = x2 - x1,y轴上的差值dy = y2 - y1。
然后,根据勾股定理,我们有距离AB = √(dx^2 + dy^2)。
3. 题目三:平面上直线的斜率和截距已知平面上一条直线L过点A(x1, y1)且斜率为k,求直线L的方程和截距。
解析:直线L的方程可以表示为y = kx + b,其中b为截距。
由于直线L过点A(x1, y1),代入得到y1 = kx1 + b。
因此,截距b可以通过解方程y1 = kx1 + b来求解。
4. 题目四:平面上两直线的交点坐标已知平面上两条直线L1和L2的方程分别为y = k1x + b1和y = k2x + b2,求这两条直线的交点坐标。
解析:将直线L1和L2的方程联立,我们得到k1x + b1 = k2x + b2。
通过移项整理,我们可以解出x坐标。
然后,将求得的x坐标代入其中一个方程中求解y坐标,即可得到交点的坐标。
5. 题目五:平面上两直线的夹角已知平面上两条直线L1和L2的斜率分别为k1和k2,求这两条直线的夹角。
专题12平面解析几何(第二部分)
专题12平面解析几何(第二部分)一、单选题1.已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =( )A .7B .6C .5D .42.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP二、填空题3.抛物线216y x =的焦点坐标为.4.已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为; MNF V 的面积为.5.设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为. 6.已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为.7.设0a >,函数2,,(),1,.x x a f x a x a x a +<-⎧=-≤≤>⎪⎩,给出下列四个结论:①()f x 在区间(1,)a -+∞上单调递减;②当1a ≥时,()f x 存在最大值;③设()()()()()()111222,,,M x f x x a N x f x x a ≤>,则||1MN >;④设()()()()()()333444,,,P x f x x a Q x f x x a <-≥-.若||PQ 存在最小值,则a 的取值范围是10,2⎛⎤ ⎥⎝⎦. 其中所有正确结论的序号是.三、解答题8.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A . (Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.9.已知椭圆C :()222210x y a b a b +=>>,点()01P ,和点()A m n ,()0m ≠ 都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠若存在,求点Q 的坐标;若不存在,说明理由.10.已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =. (Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值. 11.已知椭圆2222:1x y C a b+=过点()()2,0,0,1A B 两点. (Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.12.已知椭圆C :22221x y a b +=(0a b >>)(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.13.已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.14.已知椭圆2222:1(0)x y E a b a b+=>>一个顶点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交3y =-交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.15.已知椭圆2222:1(0)x y E a b a b +=>>A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,||4AC =.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y =-交于点N .求证://MN CD .16.已知椭圆2222:1(0)x y E a b a b+=>>的一个顶点为(0,1)A ,焦距为 (1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值.17.已知椭圆2222:1(0)x y M a b a b +=>>斜率为k 的直线l 与椭圆M 有两个不同的交点A 、B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C 、D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .18.已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x (Ⅰ)求椭圆C 的方程; (Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.19.已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u v u u u v ,QN QO μ=u u u v u u u v ,求证:11λμ+为定值. 21.已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫ ⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程;(2)求证:A 为线段BM 的中点.。
平面解析几何试题 解析
平面解析几何1.(2020届安徽省“江南十校”高三综合素质检测)已知点P是双曲线2222:1(0,0,x y C a b c a b-=>>=上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为()ABCD .2【答案】A【解析】设点P 的坐标为(,)m n ,有22221m n a b-=,得222222b m a n a b -=.双曲线的两条渐近线方程为0bx ay -=和0bx ay +=,则点P 到双曲线C的两条渐近线的距离之积为222222222b m a n a b a b c-==+,所以222214a b c c =,则22244()a c a c -=,即()22220c a -=,故2220c a -=,即2222c e a ==,所以e =.故选A 。
2.(2020届河南省濮阳市高三模拟)已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于()A.B .8C.D .4【答案】C【解析】F (1,0),故直线AB 的方程为y =x ﹣1,联立方程组241y xy x ⎧=⎨=-⎩,可得x 2﹣6x+1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|FA|=x 1+1,|FB|=x 2+1,∴||FA|﹣|FB||=|x 1﹣x 2|==,故选C 。
3.(2020届陕西省西安中学高三第一次模拟)已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO ,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得|PF′|=8=,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36,于是b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=,故选B 。
专题37平面解析几何解答题(第二部分)
专题37平面解析几何解答题(第二部分)一、解答题1.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.2.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r r .证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.3.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P满足NP u u u v u u u v .(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u v u u u v .证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .4.已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.5.如图,椭圆()222210x y a b a b+=>>的左、右焦点分别为12,,F F 过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1)若1222PF PF ==(2)若1,PF PQ =求椭圆的离心率.e6.已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.7.已知椭圆2222:1(0)x y E a b a b +=>>过点,且离心率e =.(1)求椭圆E 的方程;(2)设直:1()l x my m R =-∈交椭圆E 于,A B 两点,判断点9(,0)4G -与以线段AB 为直径的圆的位置关系,并说明理由.8.如图,椭圆E :2222+1(0)x y a b a b =>>,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PA QB PB =恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.9.设椭圆E 的方程为()222210x y a b a b +=>>,点O 为坐标原点,点A 的坐标为 ()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足 2BM MA =,直线OM (Ⅰ)求E 的离心率e ; (Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为 72,求E 的方程.10.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,0FM FN ⋅=u u u u r u u u r ,求MFN △面积的最小值.11.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB V 面积的最大值.12.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.13.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(Ⅱ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.14.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.15.在直角坐标系xoy 中,曲线C :y=24x 与直线(),0y kx a a =+>交与M,N 两点, (Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 16.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.17.已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =u u u v u u u v ,求|AB |.18.设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.19.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.。
专题38平面解析几何解答题(第二部分)
专题38平面解析几何解答题(第二部分)一、解答题1.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,0FM FN ⋅=u u u u r u u u r ,求MFN △面积的最小值.2.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(Ⅱ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.3.如图,已知抛物线211C 4x :y=,圆222C (y 1)1x +-=:,过点 P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆 2C 相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.4.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.5.已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由. 6.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =u u u r u u u r ,求直线OQ 斜率的最大值.7.如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF|–1.(Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M.求M 的横坐标的取值范围.8.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.9.已知曲线2:,2x C y D =,为直线12y =-上的动点,过D 作C 的两条切线,切点分别为,A B . (1)证明:直线AB 过定点:(2)若以50,2E ⎛⎫ ⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 10.设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN ∠=∠.11.设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.12.设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.13.在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.14.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OHON ;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.15.已知点F 为抛物线 2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线 E 上,且3AF =.(Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长 AF 交抛物线E 于点 B ,证明:以点F 为圆心且与直线 GA 相切的圆,必与直线GB 相切.。
专题10平面解析几何(第二部分)
专题10平面解析几何(第二部分)一、填空题1.若函数()21f x ax =-+恰有一个零点,则a 的取值范围为. 2.已知过原点O 的一条直线l 与圆22:(2)3C x y ++=相切,且l 与抛物线22(0)y px p =>交于点,O P 两点,若8OP =,则p =.3.设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=︒,则圆的方程为 .4.设抛物线22{2x pt y pt ==(0p >)的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B ,设7(,0)2C p ,AF 与BC 相交于点E ,若||2||C F AF =,且ACE ∆的面积为p 的值为.二、解答题5.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程. (2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤u u r u u u r .若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.6.设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为BAB(1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ V 面积的2倍,求k 的值.7.设椭圆22221x y a b +=(a >b >0)的左焦点为F ,上顶点为B . A 的坐标为(),0b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若AQAOQ PQ =∠(O 为原点) ,求k 的值.8.设椭圆2221(3x y a a +=>的右焦点为F ,右顶点为A ,已知113||||||e OF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF HF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.9.已知椭圆2222+=1(0)x y a b a b >>的左焦点为(,0)F c -,点M 在椭圆上且位于第一象限,直线FM 被圆222+4b x y =截得的线段的长为c ,(Ⅰ)求直线FM 的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设动点P 在椭圆上,若直线FP OP (O 为原点)的斜率的取值范围.10.已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,,且BF = (1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.11.已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =u u u r u u u r ,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.12.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若APD△AP的方程.13.设椭圆22221(0)x ya ba b+=>>的左焦点为F,左顶点为A,上顶点为B.已知|2||OA OB=(O为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线4x=上,且OC AP∥,求椭圆的方程.14.设椭圆22221(0)x ya ba b+=>>的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心(Ⅰ)求椭圆的方程;(Ⅱ)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若||||ON OF=(O为原点),且OP MN⊥,求直线PB的斜率.15.已知椭圆22221(0)x ya ba b+=>>的左焦点为(,0)F c-,右顶点为A,点E的坐标为(0,)c,EFA△的面积为22 b.(I)求椭圆的离心率;(II)设点Q在线段AE上,32FQ c=,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM QNP,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.16.设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.17.已知椭圆22221(0)x y a b a b+=>>的上顶点为 B ,左焦点为F ,离心率为 (Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点 M ,||=||PM MQ l . (ⅰ)求λ的值;(ⅱ)若||sin PM BQP ∠=求椭圆的方程.。
高考数学真题三年专题平面解析几何
三年专题 平面解析几何(选择题、填空题)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1C .x 23+y 22=1 D .x 22+y 2=12.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .133.【2022年全国乙卷】设F 为抛物线C:y 2=4x 的焦点,点A 在C 上,点B(3,0),若|AF |=|BF |,则|AB |=( ) A .2B .2√2C .3D .3√24.【2022年全国乙卷】双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 的两支交于M ,N 两点,且cos∠F 1NF 2=35,则C 的离心率为( )A .√52B .32C .√132D .√1725.【2021年甲卷文科】点()3,0到双曲线221169xy -=的一条渐近线的距离为( )A .95B .85C .65D .456.【2021年乙卷文科】设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则P B的最大值为( )A .52B C D .27.【2021年乙卷理科】设B 是椭圆2222:1(0)x y C a b ab+=>>的上顶点,若C 上的任意一点P 都满足||2P B b ≤,则C 的离心率的取值范围是( )A .12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛⎝⎦D .10,2⎛⎤ ⎥⎝⎦8.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12M F M F ⋅的最大值为( )A .13B .12C .9D .69.【2021年新高考2卷】抛物线22(0)y p x p =>的焦点到直线1y x =+p=( )A .1B .2C .D .410.【2020年新课标1卷理科】已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .9 11.【2020年新课标1卷理科】已知⊙M :222220xyx y +---=,直线l :220xy ++=,P为l 上的动点,过点P 作⊙M 的切线,P A P B ,切点为,A B ,当||||PM AB ⋅最小时,直线A B的方程为( ) A .210xy --= B .210xy +-=C .210xy -+= D .210xy ++=12.【2020年新课标1卷文科】已知圆2260x yx +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .4 13.【2020年新课标1卷文科】设12,F F 是双曲线22:13y Cx-=的两个焦点,O 为坐标原点,点P 在C 上且||2O P =,则12P F F △的面积为( )A .72B .3C .52D .214.【2020年新课标2卷理科】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A 5B 5C 5D 515.【2020年新课标2卷理科】设O 为坐标原点,直线x a=与双曲线2222:1(0,0)x y Ca b ab-=>>的两条渐近线分别交于,D E 两点,若O D E的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .3216.【2020年新课标3卷理科】设O 为坐标原点,直线2x =与抛物线C :22(0)yp x p =>交于D ,E 两点,若O D O E⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫⎪⎝⎭C .(1,0)D .(2,0)17.【2020年新课标3卷理科】设双曲线C :22221x y ab-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1B .2C .4D .818.【2020年新课标3卷文科】在平面内,A ,B 是两个定点,C 是动点,若=1A CBC ⋅,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线19.【2020年新课标3卷文科】点(0,﹣1)到直线()1y kx =+距离的最大值为( )A .1BC D .220.【2022年新高考1卷】已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1 B .直线AB 与C 相切 C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|221.【2022年新高考2卷】已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°22.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线A B 的距离大于2C .当P B A ∠最小时,P B = D .当P B A ∠最大时,P B =23.【2021年新高考2卷】已知直线2:0l a x b y r+-=与圆222:Cxyr+=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 24.【2020年新高考1卷(山东卷)】已知曲线22:1C m xn y+=.( )A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =±D .若m =0,n >0,则C 是两条直线25.【2022年全国甲卷】设点M 在直线2x +y −1=0上,点(3,0)和(0,1)均在⊙M 上,则⊙M 的方程为______________. 26.【2022年全国甲卷】记双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值______________. 27.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.28.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.29.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________. 30.【2022年新高考1卷】已知椭圆C:x 2a2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________.31.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 32.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 33.【2021年甲卷文科】已知12,F F 为椭圆C :221164xy +=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12P QF F =,则四边形12P F Q F 的面积为________.34.【2021年乙卷文科】双曲线22145xy -=的右焦点到直线280xy +-=的距离为________.35.【2021年乙卷理科】已知双曲线22:1(0)xC y m m-=>0m y +=,则C 的焦距为_________.36.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y p x=(0p>)的焦点为F ,P 为C 上一点,P F 与x 轴垂直,Q 为x 轴上一点,且P Q O P⊥,若6F Q =,则C 的准线方程为______.37.【2021年新高考2卷】若双曲线22221x y ab-=的离心率为2,则此双曲线的渐近线方程___________.38.【2020年新课标1卷理科】已知F 为双曲线2222:1(0,0)x y Ca b ab-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.39.【2020年新课标3卷文科】设双曲线C :22221x y ab-= (a >0,b >0)的一条渐近线为y x ,则C 的离心率为_________.40.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C交于A ,B 两点,则A B=________.三年专题 平面解析几何(解答题)1.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程.2.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点. (1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 3.【2022年新高考1卷】已知点A(2,1)在双曲线C:x 2a2−y 2a 2−1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP,AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan∠PAQ =2√2,求△PAQ 的面积. 4.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F 的直线与C A ,B 两点,点P (x 1,y 1),Q (x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在AB 上;②PQ ∥AB ;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.5.【2021年甲卷文科】抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C于P ,Q 两点,且O P O Q⊥.已知点()2,0M ,且M与l 相切.(1)求C ,M的方程;(2)设123,,AA A 是C 上的三个点,直线12AA ,13AA 均与M相切.判断直线23AA 与M的位置关系,并说明理由.6.【2021年乙卷文科】已知抛物线2:2(0)C yp x p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9P Q Q F=,求直线O Q 斜率的最大值.7.【2021年乙卷理科】已知抛物线()2:20Cxp yp =>的焦点为F ,且F 与圆22:(4)1M xy ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,P A P B 是C 的两条切线,,A B 是切点,求P A B △面积的最大值.8.【2021年新高考1卷】在平面直角坐标系x O y 中,已知点()1F -、()21202F M F M F -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x=上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且T A T B T P T Q⋅=⋅,求直线A B 的斜率与直线P Q 的斜率之和.9.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b ab+=>>,右焦点为0)F ,且3.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线M N 与曲线222(0)x yb x +=>相切.证明:M ,N ,F 三点共线的充要条件是||M N=10.【2020年新课标1卷理科】已知A 、B 分别为椭圆E :2221x ya+=(a >1)的左、右顶点,G 为E 的上顶点,8A G GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.11.【2020年新课标2卷理科】已知椭圆C 1:22221x y ab+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程. 12.【2020年新课标2卷文科】已知椭圆C 1:22221x y ab+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.13.【2020年新课标3卷理科】已知椭圆222:1(05)25xy C m m+=<<4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x=上,且||||B PB Q =,B PB Q⊥,求A P Q的面积.14.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b ab+=>>的离心率为2,且过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且A M A N⊥,A DM N⊥,D 为垂足.证明:存在定点Q ,使得D Q为定值.15.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b ab+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 ,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.。
专题11平面解析几何(第一部分)
专题11平面解析几何(第一部分)一、单选题1.在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .42.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2 C .3 D .3.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为 ( )A .1B .2C D .4.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A .①B .②C .①②D .①②③ 5.圆心为()1,1且过原点的圆的方程是A .()()22111x y -+-=B .()()22111x y +++=C .()()22112x y +++=D .()()22112x y -+-=6.若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ( )A .12 B .12- C .1 D .1-7.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .78.已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A .1±B .C .D .2±9.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则 A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b二、填空题10.已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为;双曲线N 的离心率为.三、解答题11.已知椭圆E :()222210x y a b a b+=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.四、单选题12.若双曲线2222:1x y C a b -=离心率为2,过点,则该双曲线的方程为( )A .2221x y -=B .2213y x -= C .22531x y -= D .22126x y -=五、填空题13.已知双曲线C 的焦点为(2,0)-和(2,0)C 的方程为.14.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为20x y +=,一个焦点为,则=a ;b =.15.已知双曲线221x y m +=的渐近线方程为y =,则m =. 16.已知双曲线22:163x y C -=,则C 的右焦点的坐标为;C 的焦点到其渐近线的距离是. 17.已知双曲线2221x y a-= (a >0)+y =0,则a =.六、单选题18.已知双曲线2221x y a-=(a >0则a =A B .4 C .2 D .12七、填空题19.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .20.若双曲线2221(0)4x y a a -=>a =. 21.若双曲线221y xm -=m =. 22.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=.23.已知()2,0是双曲线2221y x b -=(0b >)的一个焦点,则b =.。
专题36平面解析几何解答题(第一部分)
专题36平面解析几何解答题(第一部分)一、解答题1.已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.2.已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG V 是直角三角形; (ii )求PQG V 面积的最大值.3.已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.4.设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.5.平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>抛物线E :22x y=的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.6.已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).7.已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.8.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =u u u r u u u r.证明:直线HN 过定点.9.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=u u u r u u u r ,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.10.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1,C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.11.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.12.平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b a b +=>>,左、右焦点分别是12,F F ,以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144+=x y E a b ,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求OQ OP的值;(ⅱ)求ABQ ∆面积的最大值.13.一种作图工具如图1所示.O 是滑槽AB 的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子在滑槽AB 内做往复运动时,带动绕O 转动一周(不动时,也不动),处的笔尖画出的曲线记为.以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.14.在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>,焦距为2. (Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M e 的半径为MC ,,OS OT 是M e的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.15.如图,设椭圆2221x y a+=(a >1).(Ⅰ)求直线y=kx +1被椭圆截得的线段长(用a 、k 表示);(Ⅱ)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.16.已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.17.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 18.设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 19.已知抛物线21:4C x y =的焦点也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为26. (1)求2C 的方程; (2)过点的直线l 与1C 相交于,两点,与2C 相交于,两点,且AC u u u r 与BD u u u r同向(ⅰ)若AC BD =,求直线l 的斜率 (ⅱ)设1C 在点处的切线与x 轴的交点为M ,证明:直线l 绕点旋转时,MFD ∆总是钝角三角形。
平面解析几何-经典题(含答案)
平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角的范围0180(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k 。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k g 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式是直线上两定点不包括垂直于x 轴和y 轴的直线截距式a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知112233(,),(,),(,),x x x k k或,则有A、B、C三点共A x yB x yC x y若123AB AC线。
专题08平面解析几何
专题08平面解析几何一、单选题1.已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A .4B .3C .2D 2.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A .1B .2C .4D .3.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -= 4.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >) B .221168x y +=(0y >) C .221164y x +=(0y >) D .221168y x +=(0y >) 5.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2 C .3 D .二、多选题6.设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =- B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+ 7.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A .l 与A e 相切B .当P ,A ,B三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个三、填空题8.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.9.圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.10.若函数()21f x ax =-+恰有一个零点,则a 的取值范围为.11.抛物线216y x =的焦点坐标为.12.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .四、解答题13.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点. (1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP V 的面积为9,求l 的方程.14.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴. (1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.15.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程. (2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤u u r u u u r .若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.16.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ; (2)证明:数列{}n n x y -是公比为11k k +-的等比数列; (3)设n S 为12n n n P P P ++V 的面积,证明:对任意正整数n ,1n n S S +=.17.已知椭圆E :()222210x y a b a b+=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.。
高考数学-平面解析几何(含22年真题讲解)
高考数学-平面解析几何(含22年真题讲解)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1 C .x 23+y 22=1 D .x 22+y 2=1【答案】B 【解析】 【分析】根据离心率及BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1,解得关于a 2,b 2的等量关系式,即可得解.【详解】解:因为离心率e =c a =√1−b 2a 2=13,解得b 2a 2=89,b 2=89a 2,A 1,A 2分别为C 的左右顶点,则A 1(−a,0),A 2(a,0),B 为上顶点,所以B(0,b).所以BA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(−a,−b),BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =(a,−b),因为BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1 所以−a 2+b 2=−1,将b 2=89a 2代入,解得a 2=9,b 2=8, 故椭圆的方程为x 29+y 28=1.故选:B.2.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .13【答案】A 【解析】 【分析】设P (x 1,y 1),则Q (−x 1,y 1),根据斜率公式结合题意可得y 12−x 12+a 2=14,再根据x 12a 2+y 12b 2=1,将y 1用x 1表示,整理,再结合离心率公式即可得解. 【详解】解:A(−a,0),设P(x1,y1),则Q(−x1,y1),则k AP=y1x1+a ,k AQ=y1−x1+a,故k AP⋅k AQ=y1x1+a ⋅y1−x1+a=y12−x12+a2=14,又x12a2+y12b2=1,则y12=b2(a2−x12)a2,所以b2(a2−x12)a2−x12+a2=14,即b2a2=14,所以椭圆C的离心率e=ca =√1−b2a2=√32.故选:A.3.【2022年全国乙卷】设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A.2 B.2√2C.3 D.3√2【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A的横坐标,进而求得点A坐标,即可得到答案.【详解】由题意得,F(1,0),则|AF|=|BF|=2,即点A到准线x=−1的距离为2,所以点A的横坐标为−1+2=1,不妨设点A在x轴上方,代入得,A(1,2),所以|AB|=√(3−1)2+(0−2)2=2√2.故选:B4.【2022年全国乙卷】(多选)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.√52B.32C.√132D.√172【答案】AC 【解析】【分析】依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,利用正弦定理结合三角变换、双曲线的定义得到2b=3a或a=2b,即可得解,注意就M,N在双支上还是在单支上分类讨论.【详解】解:依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,若M,N分别在左右支,因为OG⊥NF1,且cos∠F1NF2=35>0,所以N在双曲线的右支,又|OG|=a,|OF1|=c,|GF1|=b,设∠F1NF2=α,∠F2F1N=β,在△F1NF2中,有|NF2|sinβ=|NF1|sin(α+β)=2csinα,故|NF1|−|NF2|sin(α+β)−sinβ=2csinα即asin(α+β)−sinβ=csinα,所以asinαcosβ+cosαsinβ−sinβ=csinα,而cosα=35,sinβ=ac,cosβ=bc,故sinα=45,代入整理得到2b=3a,即ba =32,所以双曲线的离心率e=ca =√1+b2a2=√132若M,N均在左支上,同理有|NF 2|sinβ=|NF 1|sin (α+β)=2c sinα,其中β为钝角,故cosβ=−bc ,故|NF 2|−|NF 1|sinβ−sin (α+β)=2c sinα即a sinβ−sinαcosβ−cosαsinβ=csinα, 代入cosα=35,sinβ=ac ,sinα=45,整理得到:a4b+2a =14, 故a =2b ,故e =√1+(b a)2=√52,故选:AC.5.【2022年北京】若直线2x +y −1=0是圆(x −a)2+y 2=1的一条对称轴,则a =( ) A .12 B .−12C .1D .−1【答案】A 【解析】 【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解. 【详解】由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a +0−1=0,解得a =12. 故选:A .6.【2022年新高考1卷】(多选)已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1B .直线AB 与C 相切C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|2【答案】BCD 【解析】 【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D. 【详解】将点A 的代入抛物线方程得1=2p ,所以抛物线方程为x 2=y ,故准线方程为y =−14,A 错误; k AB =1−(−1)1−0=2,所以直线AB 的方程为y =2x −1,联立{y =2x −1x 2=y ,可得x 2−2x +1=0,解得x =1,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点, 所以,直线l 的斜率存在,设其方程为y =kx −1,P(x 1,y 1),Q(x 2,y 2), 联立{y =kx −1x 2=y,得x 2−kx +1=0,所以{Δ=k 2−4>0x 1+x 2=k x 1x 2=1,所以k >2或k <−2,y 1y 2=(x 1x 2)2=1,又|OP|=√x 12+y 12=√y 1+y 12,|OQ|=√x 22+y 22=√y 2+y 22, 所以|OP|⋅|OQ|=√y 1y 2(1+y 1)(1+y 2)=√kx 1×kx 2=|k|>2=|OA|2,故C 正确; 因为|BP|=√1+k 2|x 1|,|BQ|=√1+k 2|x 2|,所以|BP|⋅|BQ|=(1+k 2)|x 1x 2|=1+k 2>5,而|BA|2=5,故D 正确. 故选:BCD7.【2022年新高考2卷】(多选)已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°【答案】ACD 【解析】 【分析】由|AF |=|AM |及抛物线方程求得A(3p 4,√6p2),再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得B(p 3,−√6p3),即可求出|OB |判断B 选项;由抛物线的定义求出|AB |=25p 12即可判断C 选项;由OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ <0,MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ <0求得∠AOB ,∠AMB 为钝角即可判断D 选项. 【详解】对于A ,易得F(p2,0),由|AF |=|AM |可得点A 在FM 的垂直平分线上,则A 点横坐标为p2+p2=3p 4,代入抛物线可得y 2=2p ⋅3p 4=32p2,则A(3p 4,√6p2),则直线AB 的斜率为√6p23p 4−p2=2√6,A 正确; 对于B ,由斜率为2√6可得直线AB 的方程为x =2√6+p2,联立抛物线方程得y 2−√6−p 2=0,设B(x 1,y 1),则√62p +y 1=√66p ,则y 1=−√6p3,代入抛物线得(−√6p 3)2=2p ⋅x 1,解得x 1=p3,则B(p 3,−√6p3),则|OB |=√(p 3)2+(−√6p 3)2=√7p 3≠|OF |=p 2,B 错误; 对于C ,由抛物线定义知:|AB |=3p 4+p 3+p =25p 12>2p =4|OF |,C 正确;对于D ,OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =(3p 4,√6p 2)⋅(p 3,−√6p 3)=3p 4⋅p 3+√6p 2⋅(−√6p 3)=−3p 24<0,则∠AOB 为钝角, 又MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ =(−p 4,√6p 2)⋅(−2p 3,−√6p 3)=−p 4⋅(−2p 3)+√6p 2⋅(−√6p 3)=−5p 26<0,则∠AMB 为钝角,又∠AOB +∠AMB +∠OAM +∠OBM =360∘,则∠OAM +∠OBM <180∘,D 正确. 故选:ACD.8.【2022年全国甲卷】设点M在直线2x+y−1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M 的方程为______________.【答案】(x−1)2+(y+1)2=5【解析】【分析】设出点M的坐标,利用(3,0)和(0,1)均在⊙M上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M在直线2x+y−1=0上,∴设点M为(a,1−2a),又因为点(3,0)和(0,1)均在⊙M上,∴点M到两点的距离相等且为半径R,∴√(a−3)2+(1−2a)2=√a2+(−2a)2=R,a2−6a+9+4a2−4a+1=5a2,解得a=1,∴M(1,−1),R=√5,⊙M的方程为(x−1)2+(y+1)2=5.故答案为:(x−1)2+(y+1)2=59.【2022年全国甲卷】记双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值______________.【答案】2(满足1<e≤√5皆可)【解析】【分析】根据题干信息,只需双曲线渐近线y=±ba x中0<ba≤2即可求得满足要求的e值.【详解】解:C:x2a2−y2b2=1(a>0,b>0),所以C的渐近线方程为y=±bax,结合渐近线的特点,只需0<ba ≤2,即b2a2≤4,可满足条件“直线y=2x与C无公共点”所以e=ca =√1+b2a2≤√1+4=√5,又因为e>1,所以1<e≤√5,故答案为:2(满足1<e≤√5皆可)10.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.【答案】√33【解析】 【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可. 【详解】解:双曲线y 2−x 2m2=1(m >0)的渐近线为y =±xm ,即x ±my =0,不妨取x +my =0,圆x 2+y 2−4y +3=0,即x 2+(y −2)2=1,所以圆心为(0,2),半径r =1,依题意圆心(0,2)到渐近线x +my =0的距离d =√1+m 2=1,解得m =√33或m =−√33(舍去).故答案为:√33.11.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.【答案】(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x−85)2+(y −1)2=16925;【解析】 【分析】设圆的方程为x 2+y 2+Dx +Ey +F =0,根据所选点的坐标,得到方程组,解得即可; 【详解】解:依题意设圆的方程为x 2+y 2+Dx +Ey +F =0,若过(0,0),(4,0),(−1,1),则{F =016+4D +F =01+1−D +E +F =0 ,解得{F =0D =−4E =−6 ,所以圆的方程为x 2+y 2−4x −6y =0,即(x −2)2+(y −3)2=13;若过(0,0),(4,0),(4,2),则{F =016+4D +F =016+4+4D +2E +F =0 ,解得{F =0D =−4E =−2 , 所以圆的方程为x 2+y 2−4x −2y =0,即(x −2)2+(y −1)2=5; 若过(0,0),(4,2),(−1,1),则{F =01+1−D +E +F =016+4+4D +2E +F =0 ,解得{F =0D =−83E =−143 ,所以圆的方程为x 2+y 2−83x −143y =0,即(x −43)2+(y −73)2=659;若过(−1,1),(4,0),(4,2),则{1+1−D +E +F =016+4D +F =016+4+4D +2E +F =0,解得{F =−165D =−165E =−2 , 所以圆的方程为x 2+y 2−165x −2y −165=0,即(x −85)2+(y −1)2=16925;故答案为:(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x −85)2+(y −1)2=16925;12.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________.【答案】y =−34x +54或y =724x −2524或x =−1 【解析】 【分析】先判断两圆位置关系,分情况讨论即可. 【详解】圆x 2+y 2=1的圆心为O (0,0),半径为1,圆(x −3)2+(y −4)2=16的圆心O 1为(3,4),半径为4,两圆圆心距为√32+42=5,等于两圆半径之和,故两圆外切, 如图,当切线为l 时,因为k OO 1=43,所以k l =−34,设方程为y =−34x +t(t >0)O 到l 的距离d =√1+916=1,解得t =54,所以l 的方程为y =−34x +54,当切线为m 时,设直线方程为kx +y +p =0,其中p >0,k <0,由题意{√1+k 2=1√1+k2=4 ,解得{k =−724p =2524,y =724x −2524 当切线为n 时,易知切线方程为x =−1, 故答案为:y =−34x +54或y =724x −2524或x =−1.13.【2022年新高考1卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________. 【答案】13 【解析】 【分析】利用离心率得到椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,根据离心率得到直线AF 2的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,利用弦长公式求得c =138,得a =2c =134,根据对称性将△ADE 的周长转化为△F 2DE 的周长,利用椭圆的定义得到周长为4a =13. 【详解】∵椭圆的离心率为e =ca =12,∴a =2c ,∴b 2=a 2−c 2=3c 2,∴椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,不妨设左焦点为F 1,右焦点为F 2,如图所示,∵AF 2=a ,OF 2=c ,a =2c ,∴∠AF 2O =π3,∴△AF 1F 2为正三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,DE 为线段AF 2的垂直平分线,∴直线DE 的斜率为√33,斜率倒数为√3, 直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,判别式∆=(6√3c)2+4×13×9c 2=62×16×c 2, ∴|CD |=√1+(√3)2|y 1−y 2|=2×√∆13=2×6×4×c 13=6,∴ c =138, 得a =2c =134,∵DE 为线段AF 2的垂直平分线,根据对称性,AD =DF 2,AE =EF 2,∴△ADE 的周长等于△F 2DE 的周长,利用椭圆的定义得到△F 2DE 周长为|DF 2|+|EF 2|+|DE|=|DF 2|+|EF 2|+|DF 1|+|EF 1|=|DF 1|+|DF 2|+|EF 1|+|EF 2|=2a +2a =4a =13. 故答案为:13.14.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 【答案】[13,32] 【解析】 【分析】首先求出点A 关于y =a 对称点A ′的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可; 【详解】解:A (−2,3)关于y =a 对称的点的坐标为A ′(−2,2a −3),B (0,a )在直线y =a 上, 所以A ′B 所在直线即为直线l ,所以直线l 为y =a−3−2x +a ,即(a −3)x +2y −2a =0;圆C:(x +3)2+(y +2)2=1,圆心C (−3,−2),半径r =1, 依题意圆心到直线l 的距离d =√(a−3)2+22≤1,即(5−5a )2≤(a −3)2+22,解得13≤a ≤32,即a ∈[13,32]; 故答案为:[13,32]15.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 【答案】x +√2y −2√2=0 【解析】 【分析】令AB 的中点为E ,设A (x 1,y 1),B (x 2,y 2),利用点差法得到k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据|MN |求出k 、m ,即可得解; 【详解】解:令AB 的中点为E ,因为|MA |=|NB |,所以|ME |=|NE |, 设A (x 1,y 1),B (x 2,y 2),则x 126+y 123=1,x 226+y 223=1,所以x 126−x 226+y 123−y 223=0,即(x 1−x 2)(x 1+x 2)6+(y 1+y 2)(y 1−y 2)3=0所以(y 1+y 2)(y 1−y 2)(x 1−x 2)(x 1+x 2)=−12,即k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,令x =0得y =m ,令y =0得x =−m k ,即M (−m k ,0),N (0,m ),所以E (−m 2k ,m2), 即k ×m2−m 2k=−12,解得k =−√22或k =√22(舍去),又|MN |=2√3,即|MN |=√m 2+(√2m)2=2√3,解得m =2或m =−2(舍去), 所以直线AB:y =−√22x +2,即x +√2y −2√2=0;故答案为:x+√2y−2√2=016.【2022年北京】已知双曲线y2+x2m =1的渐近线方程为y=±√33x,则m=__________.【答案】−3【解析】【分析】首先可得m<0,即可得到双曲线的标准方程,从而得到a、b,再跟渐近线方程得到方程,解得即可;【详解】解:对于双曲线y2+x2m =1,所以m<0,即双曲线的标准方程为y2−x2−m=1,则a=1,b=√−m,又双曲线y2+x2m =1的渐近线方程为y=±√33x,所以ab =√33,即√−m=√33,解得m=−3;故答案为:−317.【2022年浙江】已知双曲线x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F且斜率为b4a的直线交双曲线于点A(x1,y1),交双曲线的渐近线于点B(x2,y2)且x1<0<x2.若|FB|=3|FA |,则双曲线的离心率是_________.【答案】3√64【解析】【分析】联立直线AB 和渐近线l 2:y =ba x 方程,可求出点B ,再根据|FB|=3|FA|可求得点A ,最后根据点A 在双曲线上,即可解出离心率. 【详解】过F 且斜率为b4a 的直线AB:y =b4a (x +c),渐近线l 2:y =ba x , 联立{y =b4a (x +c)y =b a x,得B (c 3,bc 3a ),由|FB|=3|FA|,得A (−5c 9,bc 9a), 而点A 在双曲线上,于是25c 281a 2−b 2c 281a 2b 2=1,解得:c 2a 2=8124,所以离心率e =3√64. 故答案为:3√64.18.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程. 【答案】(1)y 2=4x ; (2)AB:x =√2y +4. 【解析】 【分析】(1)由抛物线的定义可得|MF|=p +p2,即可得解;(2)设点的坐标及直线MN:x =my +1,由韦达定理及斜率公式可得k MN =2k AB ,再由差角的正切公式及基本不等式可得k AB =√22,设直线AB:x =√2y +n ,结合韦达定理可解.(1)抛物线的准线为x =−p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时|MF|=p +p2=3,所以p =2, 所以抛物线C 的方程为y 2=4x ; (2)设M(y 124,y 1),N(y 224,y 2),A(y 324,y 3),B(y 424,y 4),直线MN:x =my +1,由{x =my +1y 2=4x 可得y 2−4my −4=0,Δ>0,y 1y 2=−4,由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2,k AB =y 3−y 4y 324−y 424=4y3+y 4,直线MD:x =x 1−2y 1⋅y +2,代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0,Δ>0,y 1y 3=−8,所以y 3=2y 2,同理可得y 4=2y 1, 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β, 所以k AB =tanβ=k MN 2=tanα2,若要使α−β最大,则β∈(0,π2), 设k MN =2k AB=2k >0,则tan(α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k ≤2√1k⋅2k=√24,当且仅当1k =2k 即k =√22时,等号成立,所以当α−β最大时,k AB =√22,设直线AB:x =√2y +n ,代入抛物线方程可得y 2−4√2y −4n =0, Δ>0,y 3y 4=−4n =4y 1y 2=−16,所以n =4, 所以直线AB:x =√2y +4. 【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.19.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点.(1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 【答案】(1)y 24+x 23=1(2)(0,−2) 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为mx 2+ny 2=1,过A (0,−2),B (32,−1), 则{4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.(2)A(0,−2),B(32,−1),所以AB:y +2=23x ,①若过点P(1,−2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63),代入AB 方程y =23x −2,可得T(√6+3,2√63),由MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ 得到H(2√6+5,2√63).求得HN 方程:y =(2−2√63)x −2,过点(0,−2).②若过点P(1,−2)的直线斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2). 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,可得{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4 ,{y 1+y 2=−8(2+k)3k 2+4y 2y 2=4(4+4k−2k 2)3k 2+4 , 且x 1y 2+x 2y 1=−24k3k 2+4(∗) 联立{y =y 1y =23x −2 ,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1).可求得此时HN:y−y2=y1−y23y1+6−x1−x2(x−x2),将(0,−2),代入整理得2(x1+x2)−6(y1+y2)+x1y2+x2y1−3y1y2−12=0,将(∗)代入,得24k+12k2+96+48k−24k−48−48k+24k2−36k2−48=0,显然成立,综上,可得直线HN过定点(0,−2).【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.【2022年新高考1卷】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】(1)−1;(2)16√29.【解析】【分析】(1)由点A(2,1)在双曲线上可求出a,易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q (x2,y2),再根据k AP+k BP=0,即可解出l的斜率;(2)根据直线AP,AQ的斜率之和为0可知直线AP,AQ的倾斜角互补,再根据tan∠PAQ=2√2即可求出直线AP,AQ的斜率,再分别联立直线AP,AQ与双曲线方程求出点P,Q的坐标,即可得到直线PQ的方程以及PQ的长,由点到直线的距离公式求出点A到直线PQ的距离,即可得出△PAQ的面积.(1)因为点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,所以4a2−1a2−1=1,解得a2=2,即双曲线C:x22−y2=1易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q(x2,y2),联立{y =kx +m x 22−y 2=1可得,(1−2k 2)x 2−4mkx −2m 2−2=0,所以,x 1+x 2=−4mk 2k 2−1,x 1x 2=2m 2+22k 2−1,Δ=16m 2k 2+4(2m 2+2)(2k 2−1)>0⇒m 2−1+2k 2>0.所以由k AP +k BP =0可得,y 2−1x2−2+y 1−1x 1−2=0,即(x 1−2)(kx 2+m −1)+(x 2−2)(kx 1+m −1)=0, 即2kx 1x 2+(m −1−2k )(x 1+x 2)−4(m −1)=0, 所以2k ×2m 2+22k 2−1+(m −1−2k )(−4mk2k 2−1)−4(m −1)=0,化简得,8k 2+4k −4+4m (k +1)=0,即(k +1)(2k −1+m )=0, 所以k =−1或m =1−2k ,当m =1−2k 时,直线l:y =kx +m =k (x −2)+1过点A (2,1),与题意不符,舍去, 故k =−1. (2)不妨设直线PA,PB 的倾斜角为α,β(α<β),因为k AP +k BP =0,所以α+β=π, 因为tan∠PAQ =2√2,所以tan (β−α)=2√2,即tan2α=−2√2, 即√2tan 2α−tanα−√2=0,解得tanα=√2,于是,直线PA:y =√2(x −2)+1,直线PB:y =−√2(x −2)+1, 联立{y =√2(x −2)+1x 22−y 2=1可得,32x 2+2(1−2√2)x +10−4√2=0,因为方程有一个根为2,所以x P =10−4√23,y P = 4√2−53,同理可得,x Q =10+4√23,y Q = −4√2−53.所以PQ:x +y −53=0,|PQ |=163,点A 到直线PQ 的距离d =|2+1−53|√2=2√23, 故△PAQ 的面积为12×163×2√23=16√29.21.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1> x2>0,y1>0.过P且斜率为−√3的直线与过Q且斜率为√3的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.=1【答案】(1)x2−y23(2)见解析【解析】【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;(2)先分析得到直线AB的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到x0+ky0=8k2;由直线PM和QM的斜率得到直线方程,结合双曲线的方k2−3,由②PQ//AB等价转化为ky0=3x0,由程,两点间距离公式得到直线PQ的斜率m=3x0y①M在直线AB上等价于ky0=k2(x0−2),然后选择两个作为已知条件一个作为结论,进行证明即可.(1)=√3,∴b=√3a,∴c2=a2+右焦点为F(2,0),∴c=2,∵渐近线方程为y=±√3x,∴bab2=4a2=4,∴a=1,∴b=√3.=1;∴C的方程为:x2−y23(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x−2),则条件①M在AB上,等价于y0=k(x0−2)⇔ky0=k2(x0−2);两渐近线的方程合并为3x2−y2=0,联立消去y并化简整理得:(k2−3)x2−4k2x+4k2=0设A(x3,y3),B(x3,y4),线段中点为N(x N,y N),则x N=x3+x42=2k2k2−3,y N=k(x N−2)=6kk2−3,设M(x0,y0),则条件③|AM|=|BM|等价于(x0−x3)2+(y0−y3)2=(x0−x4)2+(y0−y4)2, 移项并利用平方差公式整理得:(x3−x4)[2x0−(x3+x4)]+(y3−y4)[2y0−(y3+y4)]=0,[2x0−(x3+x4)]+y3−y4x3−x4[2y0−(y3+y4)]=0,即x−x N+k(y0−y N)=0,即x0+ky0=8k2k2−3;由题意知直线PM的斜率为−√3, 直线QM的斜率为√3, ∴由y1−y0=−√3(x1−x0),y2−y0=√3(x2−x0), ∴y1−y2=−√3(x1+x2−2x0),所以直线PQ的斜率m=y1−y2x1−x2=−√3(x1+x2−2x0)x1−x2,直线PM:y=−√3(x−x0)+y0,即y=y0+√3x0−√3x,代入双曲线的方程3x2−y2−3=0,即(√3x+y)(√3x−y)=3中,得:(y0+√3x0)[2√3x−(y0+√3x0)]=3,解得P的横坐标:x1=2√3(y+√3x+y0+√3x0),同理:x2=2√3(y−√3xy0−√3x0),∴x1−x2=√3(3y0y02−3x02+y0),x1+x2−2x0=−3x0y02−3x02−x0,∴m=3x0y,∴条件②PQ//AB等价于m=k⇔ky0=3x0,综上所述:条件①M在AB上,等价于ky0=k2(x0−2);条件②PQ//AB等价于ky0=3x0;条件③|AM|=|BM|等价于x0+ky0=8k2k2−3;选①②推③:由①②解得:x 0=2k 2k 2−3,∴x 0+ky 0=4x 0=8k 2k 2−3,∴③成立;选①③推②:由①③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3, ∴ky 0=3x 0,∴②成立; 选②③推①:由②③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3,∴x 0−2=6k 2−3, ∴ky 0=k 2(x 0−2),∴①成立. 22.【2022年北京】已知椭圆:E:x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A(0,1),焦距为2√3. (1)求椭圆E 的方程;(2)过点P(−2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN|=2时,求k 的值. 【答案】(1)x 24+y 2=1(2)k =−4 【解析】 【分析】(1)依题意可得{b =12c =2√3c 2=a 2−b 2,即可求出a ,从而求出椭圆方程;(2)首先表示出直线方程,设B (x 1,y 1)、C (x 2,y 2),联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出x M 、x N ,根据|MN |=|x N −x M |得到方程,解得即可; (1)解:依题意可得b =1,2c =2√3,又c 2=a 2−b 2, 所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P (−2,1)的直线为y −1=k (x +2),设B (x 1,y 1)、C (x 2,y 2),不妨令−2≤x 1<x 2≤2,由{y −1=k (x +2)x 24+y 2=1 ,消去y 整理得(1+4k 2)x 2+(16k 2+8k )x +16k 2+16k =0, 所以Δ=(16k 2+8k )2−4(1+4k 2)(16k 2+16k )>0,解得k <0,所以x 1+x 2=−16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k 1+4k 2,直线AB 的方程为y −1=y 1−1x 1x ,令y =0,解得x M =x11−y 1, 直线AC 的方程为y −1=y 2−1x 2x ,令y =0,解得x N =x21−y 2, 所以|MN |=|x N −x M |=|x21−y 2−x11−y 1|=|x 21−[k (x 2+2)+1]−x 11−[k (x 1+2)+1]| =|x 2−k (x 2+2)+x 1k (x 1+2)| =|(x 2+2)x 1−x 2(x 1+2)k (x 2+2)(x 1+2)|=2|x 1−x 2||k |(x 2+2)(x 1+2)=2,所以|x 1−x 2|=|k |(x 2+2)(x 1+2),即√(x 1+x 2)2−4x 1x 2=|k |[x 2x 1+2(x 2+x 1)+4] 即√(−16k 2+8k1+4k 2)2−4×16k 2+16k 1+4k 2=|k |[16k 2+16k 1+4k 2+2(−16k 2+8k 1+4k 2)+4]即81+4k 2√(2k 2+k )2−(1+4k 2)(k 2+k )=|k |1+4k2[16k 2+16k −2(16k 2+8k )+4(1+4k 2)]整理得8√−k =4|k |,解得k =−4 23.【2022年浙江】如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P(0,1)的两点,且点Q (0,12)在线段AB 上,直线PA,PB 分别交直线y =−12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD|的最小值.【答案】(1)12√1111;(2)6√55.【解析】 【分析】(1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,再根据两点间的距离公式求出|PQ|2,再根据二次函数的性质即可求出;(2)设直线AB:y =kx +12与椭圆方程联立可得x 1x 2,x 1+x 2,再将直线y =−12x +3方程与PA 、PB 的方程分别联立,可解得点C,D 的坐标,再根据两点间的距离公式求出|CD |,最后代入化简可得|CD |=3√52⋅√16k 2+1|3k+1|,由柯西不等式即可求出最小值. (1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,P(0,1),则|PQ|2=12cos 2θ+(1−sinθ)2=13−11sin 2θ−2sinθ=−11(sinθ+111)2+14411≤14411,当且仅当sinθ=−111时取等号,故|PQ|的最大值是12√1111.(2)设直线AB:y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得(k 2+112)x 2+kx −34=0,设A (x 1,y 1),B (x 2,y 2),所以{x 1+x 2=−kk 2+112x 1x 2=−34(k 2+112), 因为直线PA:y =y 1−1x 1x +1与直线y =−12x +3交于C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1,同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1.则|CD|=√1+14|x C −x D |=√52|4x 1(2k +1)x 1−1−4x 2(2k +1)x 2−1|=2√5|x 1−x 2[(2k +1)x 1−1][(2k +1)x 2−1]|=2√5|x 1−x 2(2k +1)2x 1x 2−(2k +1)(x 1+x 2)+1|=3√52⋅√16k 2+1|3k+1|=6√55⋅√16k 2+1√916+1|3k+1|≥6√55×√(4k×34+1×1)2|3k+1|=6√55, 当且仅当k =316时取等号,故|CD |的最小值为6√55.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.1.(2022·全国·模拟预测)设M 是椭圆C :()222210x y a b a b+=>>的上顶点,P 是C 上的一个动点,当P 运动到下顶点时,PM 取得最大值,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】设()00,P x y ,由()0,M b ,求出()2220PM x y b =+-消元可得,22342220222c b b PM y a b b c c⎛⎫=-++++ ⎪⎝⎭,再根据0b y b -≤≤以及二次函数的性质可知,32b bc -≤-,即可解出. 【详解】设()00,P x y ,()0,M b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PM x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,0b y b -≤≤,由题意知当0y b =-时,2PM 取得最大值,所以32b b c -≤-,可得222a c ≥,即0e 2<≤故选:C .2.(2022·福建·三明一中模拟预测)已知圆229:4O x y +=,圆22:()(1)1M x a y -+-=,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得π3APB ∠=,则实数a的取值范围是( )A .[B .[C .D .[[3,15]【答案】D【解析】 【分析】由题意求出OP 的距离,得到 P 的轨迹,再由圆与圆的位置关系求得答案. 【详解】由题可知圆O 的半径为32,圆M 上存在点P ,过点P 作圆 O 的两条切线,切点分别为A ,B ,使得60APB ∠=︒,则30APO ∠=︒, 在Rt PAO △中,3PO =, 所以点 P 在圆229x y +=上,由于点 P 也在圆 M 上,故两圆有公共点. 又圆 M 的半径等于1,圆心坐标(),1M a , 3131OM -≤≤+∴,∴24≤≤,∴a ∈[[3,15]. 故选:D.3.(2022·全国·模拟预测(文))已知双曲线22221x y a b-=(0a >,0b >)一个虚轴的顶点为()0,B b ,右焦点为F ,分别以B ,F 为圆心作圆与双曲线的一条斜率为正值的渐近线相切于M ,N 两点,若ON =,则该渐近线的斜率为( )A .12 B .1 C D 【答案】A 【解析】 【分析】根据渐近线倾斜角的正切值表达出ON =,再化简得到4224200b a b a --=求解即可 【详解】由题意,如图,设NOF θ∠=,则因为该渐近线的斜率为ba ,故tanb aθ=,cos acθ==,sin bcθ==,又因为圆与渐近线相切,故BM OM ⊥,FN ON ⊥,故2cos sin 2b OM OB OB c π-θθ⎛⎫=== ⎪⎝⎭,cos ON OF a θ==,所以a =,即2,所以4224200b a b a --=,即()()2222450b a b a -+=,故2240b a -=,即2a b =,故该渐近线的斜率为12b k a ==故选:A4.(2022·河南·开封市东信学校模拟预测(理))已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F △的内切圆半径为1r ,12BF F △的内切圆半径为2r ,若12r r >,且直线l 的倾斜角为60︒,则12r r 的值为( ) A .2 B .3CD.【答案】B 【解析】 【分析】根据内切圆的性质及双曲线的定义求出两内切圆圆心的横坐标,由正切函数求解即可. 【详解】记12AF F △的内切圆圆心为C ,边1212,,AF AF F F 上的切点分别为M ,N ,E ,则C ,E 横坐标相等,则1122||||,,AM AN F M F E F N F E ===,由122AF AF a -=,即()12||||2AM MF AN NF a +-+=,得122MF NF a -=,即122F E F E a -=,记C 的横坐标为0x ,则()0,0E x ,于是()002x c c x a +--=,得0x a =,同理12BF F △的内心D 的横坐标也为a , 则有CD x ⊥轴,由直线的倾斜角为60︒,则230OF D ∠=︒,260CF O ∠=︒, 在2CEF △中,122tan tan 60r CF O EF ∠=︒=,可得12r =, 在2DEF △中,222tan tan 30r DF O EF ∠=︒=,可得22r =,可得123r r ==.故选:B5.(2022·贵州·贵阳一中模拟预测(文))已知双曲线22214x y b-=的左、右焦点分别为12,,F F 过左焦点1F 作斜率为2的直线与双曲线交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14,则b 的值是( )A .2 BC .32D【答案】D 【解析】 【分析】利用点差法设()11,A x y 、()22,B x y ,作差即可得到2121212124y y y y b x x x x -+⋅=-+,再根据斜率公式,从而得到2124b =,即可得解;【详解】解:设()11,A x y 、()22,B x y ,则2211214x y b -=,2222214x y b-=, 两式相减可得()()()()1212121221104x x x x y y y y b-+--+=,P 为线段AB 的中点,122p x x x ∴=+,122p y y y =+, 2121212124y y y y b x x x x -+∴⋅=-+,又12122AB y y k x x -==-,121214y y x x +=+, 2124b ∴=,即22b =,b ∴= 故选:D.6.(2022·全国·模拟预测(理))已知双曲线2222:1(0,0)x y C a b a b-=>>的左、有焦点分别为1F ,2F ,实轴长为4,离心率2e =,点Q 为双曲线右支上的一点,点(0,4)P .当1||QF PQ +取最小值时,2QF 的值为( ) A.1) B.1) C.1 D.1【答案】B 【解析】 【分析】由题意求得a,b,c ,即可得双曲线的方程,结合双曲线的定义确定当1||QF PQ +取最小值时Q 点的位置,利用方程组求得Q 点坐标,再利用两点间的距离公式求得答案. 【详解】由题意可得24,2a a == ,又2e =,故4c = , 所以22212b c a =-= ,则双曲线方程为221412x y -= ,结合双曲线定义可得221||4||||4QF PQ QF PQ QF PQ +=++=++, 如图示,连接2PF ,交双曲线右支于点M ,即当2,,P Q F 三点共线, 即Q 在M 位置时,1||QF PQ +取最小值,此时直线2PF 方程为4y x =-+ ,联立221412x y-=,解得点Q的坐标为2,6-,( Q 为双曲线右支上的一点),故21)QF =, 故选:B7.(2022·上海市七宝中学模拟预测)若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线222222222:1(0,0)x y C a b a b -=>>的焦点相同,且12a a >给出下列四个结论:①22221221a a b b -=-;②1221a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2112a a b b +>+;其中所有正确的结论序号是( ) A .①② B .①③C .②③D .①④【答案】B 【解析】 【分析】对于①,根据双曲线的焦点相同,可知焦距相同,可判断22221221a a b b -=-;对于②,举反例可说明1122a b a b <;对于③,根据120a a >>可推得12<b b ,继而推得1212b ba a <,可判断双曲线1C 与双曲线2C 一定没有公共点;对于④,举反例可判断.【详解】对于①:∵两双曲线的焦点相同,∴焦距相同,∴22221122a b a b +=+,即22221221a a b b -=-,故①正确;对于②:若1a =,2a =11b =,2b 1122a b a b <,故②错误; 对于③:∵120a a >>,∴22221221a a b b -=->0,∴2221b b > ,即12<b b ,即1212b b a a <,双曲线1C 与双曲线2C 一定没有公共点,故③正确; 对于④:∵22221221a a b b -=-,∴12121221()()()()a a a a b b b b +-=+-,∵12a a >且12<b b ,∴12211212a ab b b b a a +-=+- , 若12a =,21a =,11b =,22b =,则1212a a b b +=+,故④错误. 故选:B8.(2022·陕西·宝鸡中学模拟预测(理))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,M 为双曲线右支上的一点,若M 在以12F F 为直径的圆上,且215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,则该双曲线离心率的取值范围为( ) A.(B.)+∞C.()1D.1⎤⎦【答案】D 【解析】 【分析】由12MF MF ⊥可得1212sin MF c MF F =∠、2212cos MF c MF F =∠,由双曲线定义可构造方程得到2114caMF F π=⎛⎫∠- ⎪⎝⎭;由正弦型函数值域的求法可求得离心率的取值范围.【详解】M 在以12F F 为直径的圆上,12MF MF ∴⊥,12112sin MF MF F F F ∴∠=,22112cos MF MF F F F ∠=,1212sin MF c MF F ∴=∠,2212cos MF c MF F =∠, 由双曲线定义知:122MF MF a -=,即21212sin 2cos 2c MF F c MF F a ∠-∠=,21212111sin cos 4c a MF F MF F MF F π∴==∠-∠⎛⎫∠- ⎪⎝⎭; 215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,21,4126MF F πππ⎡⎤∴∠-∈⎢⎥⎣⎦,211sin 42MF F π⎤⎛⎫∴∠-∈⎥ ⎪⎝⎭⎣⎦,214MF F π⎛⎫∠-∈ ⎪⎝⎭⎣⎦,1c a ⎤∴∈⎦,即双曲线离心率的取值范围为1⎤⎦.故选:D.9.(2022·河南·通许县第一高级中学模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 的直线l 与C 的左、右两支分别交于点,A B ,若2ABF 是边长为4的等边三角形,则C 的离心率为( ) A .3 BCD .2【答案】B 【解析】 【分析】由双曲线定义可推导得244AF a ==,求得1a =;在12BF F △中,利用余弦定理可求得12F F ,进而得到c ,由ce a=可求得离心率. 【详解】224AB BF AF ===,1212BF BF AF a ∴-==,又212AF AF a -=,244AF a ∴==,解得:1a =,16BF ∴=, 在12BF F △中,由余弦定理得:2221212122cos 283F F BF BF BF BF π=+-⋅=,解得:12F F =2c =,c ∴=∴双曲线C 的离心率ce a==故选:B.10.(2022·四川省泸县第二中学模拟预测(文))已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】由题可知六个P 点,有两个是短轴端点,因此在四个象限各一个,设(,)P x y 是第一象限内的点,分112PF F F =或212PF F F =,列方程组求得P 点横坐标x ,由0x a <<可得离心率范围;或结合椭圆的性质列出不等关系即得. 【详解】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a +-+=, 解得22a ac x c --=(舍去)或22a acx c -+=, 由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a --+=, 解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意. 综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c == 当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,。
专题07 平面解析几何知识储备
直线方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan α.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. (3) 直线的倾斜角α和斜率k 之间的对应关系每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下:3.直线方程的五种形式4.说明:k 1=k 2,且b 1≠b 2,则两直线平行;若斜率都不存在,还要判定是否重合. 5.利用一般式方程系数判断平行与垂直设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0. l 1⊥l 2⇔A 1A 2+B 1B 2=0. 6.三种距离公式 (1)两点间距离公式点A (x 1,y 1),B (x 2,y 2)间的距离:|AB |= (x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离公式点P (x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.说明:求解点到直线的距离时,直线方程要化为一般式. (3)两平行线间距离公式两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0 (C 1≠C 2)间的距离为d =|C 2-C 1|A 2+B 2. 说明:求解两平行线间距离公式时,两直线x ,y 前系数要化为相同.圆的方程1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0可变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F4. (1) 当D 2+E 2-4F >0时,方程表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形.4. 直线与圆的位置关系的判断方法设直线l:Ax+By+C=0(A,B不全为0),圆为(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.5.(1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2) 判断两圆位置关系的方法设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).圆心距O1O2=d,则(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则(l2)2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A(x1,y1),B(x2,y2),则|AB|=1+k2|x1-x2|=(1+k2)[(x1+x2)2-4x1x2].注意:常用几何法研究圆的弦的有关问题.椭圆1.椭圆的概念把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.椭圆定义用集合语言表示如下:P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.在椭圆定义中,特别强调到两定点的距离之和要大于|F 1F 2|.当到两定点的距离之和等于|F 1F 2|时,动点的轨迹是线段F 1F 2;当到两定点的距离之和小于|F 1F 2|时,动点的轨迹不存在. 2.椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 说明:当焦点的位置不能确定时,椭圆方程可设成Ax 2+By 2=1的形式,其中A ,B 是不相等的正常数,或设成x 2m 2+y 2n2=1(m 2≠n 2)的形式.3.椭圆中的弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为2a .双曲线1.双曲线的概念把平面内到两定点F 1,F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的集合叫作双曲线.定点F 1,F 2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距. 用集合语言表示为:P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.说明:定义中,到两定点的距离之差的绝对值小于两定点间距离非常重要.令平面内一点到两定点F1,F2的距离的差的绝对值为2a(a为常数),则只有当2a<|F1F2|且2a≠0时,点的轨迹才是双曲线;若2a=|F1F2|,则点的轨迹是以F1,F2为端点的两条射线;若2a>|F1F2|,则点的轨迹不存在.2.双曲线的标准方程和几何性质x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a焦点在x轴上,若y2的系数为正,则焦点在y轴上.3.双曲线与椭圆的区别(1) 定义表达式不同:在椭圆中|PF1|+|PF2|=2a,而在双曲线中||PF1|-|PF2||=2a;(2) 离心率范围不同:椭圆的离心率e∈(0,1),而双曲线的离心率e∈(1,+∞);(3) a,b,c的关系不同:在椭圆中a2=b2+c2,a>c;而在双曲线中c2=a2+b2,c>a.抛物线1.抛物线的概念把平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线.这个定点F 叫作抛物线的焦点,这条定直线l 叫作抛物线的准线. 用集合语言描述:P ={M ||MF |d=1},即P ={M ||MF |=d }.注意:抛物线的定义中不可忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线. 2.抛物线的标准方程与几何性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面解析几何专题1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1CD .22.【2019年高考全国Ⅰ卷文数】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C的离心率为 A .2sin40° B .2cos40° C .1sin50︒D .1cos50︒3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=4.【2019年高考全国Ⅱ卷文数】若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .85.【2019年高考全国Ⅱ卷文数】设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 6.【2019年高考全国Ⅲ卷文数】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32B .52C .72D .927.【2019年高考北京卷文数】已知双曲线2221x y a-=(a >0a =AB .4C .2D .128.【2019年高考天津卷文数】已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2D 9.【2018年高考全国Ⅰ卷文数】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13 B .12C .2D .310.【2018年高考全国Ⅰ卷文数】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2-C .12D 111.【2018年高考全国Ⅰ卷文数】双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .2y x =±D .2y x =±12.【2018年高考全国Ⅰ卷文数】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣13.【2018年高考全国Ⅰ卷文数】已知双曲线2222:1(0,0)x y C a b a b-=>>,则点(4,0)到C的渐近线的距离为A B .2C .2D .14.【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)15.【2018年高考天津卷文数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .22139x y -=B .22193x y -=C .221412x y -=D . 221124x y -=16.【2017年高考全国Ⅰ卷文数】已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x轴垂直,点A 的坐标是(1,3),则△APF 的面积为A .13B .1 2C .2 3D .3 217.【2017年高考全国Ⅰ卷文数】设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞UB .[9,)+∞UC .(0,1][4,)+∞UD .[4,)+∞U18.【2017年高考全国Ⅱ卷文数】若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)19.【2017年高考全国Ⅱ卷文数】过抛物线2:4C y x =的焦点F C 于点M (M在x 的轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A B .C .D .20.【2017年高考全国Ⅲ卷文数】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3B .3C .3D .1321.【2017年高考天津卷文数】已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=22.【2017年高考浙江卷】椭圆22194x y +=的离心率是A .3B .3C .23D .5923.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.24.【2019年高考全国Ⅲ卷文数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.25.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .26.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .27.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.28.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.29.【2018年高考全国I 卷文数】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.30.【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.31.【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足2AP PB =u u u r u u u r ,则当m =___________时,点B 横坐标的绝对值最大.32.【2018年高考北京卷文数】若双曲线2221(0)4x y a a -=>a =________________. 33.【2018年高考北京卷文数】已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.34.【2018年高考江苏卷】在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c,则其离心率的值是________________. 35.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为________.36.【2017年高考全国Ⅲ卷文数】双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a = .37.【2017年高考北京卷文数】若双曲线221y x m-=m =_________.38.【2017年高考天津卷文数】设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=︒,则圆的方程为___________.39.【2017年高考山东卷文数】在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .40.【2017年高考江苏卷】在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是_______________.答 案1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离心率ce a==故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.【2019年高考全国Ⅰ卷文数】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒【答案】D【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50c e a ∴======︒, 故选D .【名师点睛】对于双曲线:()222210,0x y a b a b -=>>,有c e a ==对于椭圆()222210x y a b a b +=>>,有c e a ==3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.4.【2019年高考全国Ⅱ卷文数】若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D .5.【2019年高考全国Ⅱ卷文数】设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==Q ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径, ∴||2c OA =,,22c c P ⎛⎫∴ ⎪⎝⎭, 又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.6.【2019年高考全国Ⅲ卷文数】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .92【答案】B【解析】设点()00,P x y ,则2200145x y -=①.又3OP OF ===,22009x y ∴+=②.由①②得20259y =,即053y =, 0115532232OPF S OF y ∴=⋅=⨯⨯=△, 故选B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设()00,P x y ,由=OP OF ,再结合双曲线方程可解出0y ,利用三角形面积公式可求出结果.7.【2019年高考北京卷文数】已知双曲线2221x y a-=(a >0a =AB .4C .2D .12【答案】D【解析】∵双曲线的离心率ce a==c=12a =,故选D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.8.【2019年高考天津卷文数】已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2 D【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---,∴2b AB a =,24ba=,2b a =,∴c e a ===故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.9.【2018年高考全国Ⅰ卷文数】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13 B .12C .2D .3【答案】C【解析】由题可得2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率2e ==,故选C . 【名师点睛】本题主要考查椭圆的方程及离心率,考查考生的运算求解能力,考查的数学核心素养是数学运算.在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中,,a b c 的关系求得结果.10.【2018年高考全国Ⅱ卷文数】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2C .12D 1-【答案】D【解析】在12F PF △中,122190,60F PF PF F ∠=∠=︒o,设2PF m =,则12122,c F F m PF ===,又由椭圆定义可知1221)a PF PF m =+=,则212c c e a a ====,故选D .【名师点睛】本题主要考查椭圆的定义和简单的几何性质,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.结合有关平面几何的知识以及椭圆的定义、性质加以灵活分析,关键是寻找椭圆中a ,c 满足的关系式.椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.11.【2018年高考全国Ⅱ卷文数】双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y x = 【答案】A【解析】因为c e a ==,所以2222221312b c a e a a -==-=-=,所以b a =,因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A . 【名师点睛】本题主要考查双曲线的简单几何性质,考查考生的运算求解能力,考查的数学核心素养是数学运算.(1)焦点在x 轴上的双曲线的标准方程为22221(0,0)x y a b a b-=>>,焦点坐标为(±c ,0),实轴长为2a ,虚轴长为2b ,渐近线方程为by x a=±; (2)焦点在y 轴上的双曲线的标准方程为22221(0,0)y x a b a b-=>>,焦点坐标为(0,±c ),实轴长为2a ,虚轴长为2b ,渐近线方程为a y x b=±. 12.【2018年高考全国Ⅲ卷文数】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A【解析】Q 直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则AB =.Q 点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1d ==故点P 到直线20x y ++=的距离2d 的范围为,则[]2212,62ABP S AB d ==∈△.故答案为A.【名师点睛】本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.先求出A ,B 两点坐标得到AB ,再计算圆心到直线的距离,得到点P 到直线距离的范围,由面积公式计算即可.13.【2018年高考全国Ⅲ卷文数】已知双曲线2222:1(0,0)x y C a b a b-=>>,则点(4,0)到C的渐近线的距离为A B .2C .2D .【答案】D【解析】c e a ===Q 1b a ∴=,所以双曲线C 的渐近线方程为0x y ±=,所以点(4,0)到渐近线的距离d ==D . 【名师点睛】本题主要考查双曲线的性质、点到直线的距离公式,考查考生的运算求解能力、化归与转化能力、逻辑思维能力,考查的数学核心素养是逻辑推理、数学运算、直观想象.熟记结论:若双曲线22221(0,0)x y a b a b-=>>是等轴双曲线,则a =b ,离心率e ,渐近线方程为y =±x ,且两条渐近线互相垂直.14.【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .(0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2) 【答案】B【解析】设2213x y -=的焦点坐标为(,0)c ±,因为222314c a b =+=+=,2c =,所以焦点坐标为(2,0)±,故选B .【名师点睛】本题主要考查双曲线基本量之间的关系,考查考生的运算求解能力,考查的数学核心素养是数学运算.解答本题时,先根据所给的双曲线方程确定焦点所在的坐标轴,然后根据基本量之间的关系进行运算.15.【2018年高考天津卷文数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .22139x y -=B .22193x y -=C .221412x y -=D . 221124x y -=【答案】A【解析】设双曲线的右焦点坐标为(,0)(0)F c c >,则A B x x c ==,由22221c y a b -=可得2b y a =±, 不妨设2(,)b A c a,2(),b B c a -,双曲线的一条渐近线方程为0bx ay -=,据此可得21d ==2bc b c -,222bc b d c +==,则12226bcd d b c+===,则3b =,29b =,双曲线的离心率2c e a ====,据此可得23a =,则双曲线的方程为22139x y -=. 故选A .【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.解答本题时,由题意首先求得A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解a 的值即可确定双曲线方程.16.【2017年高考全国Ⅰ卷文数】已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x轴垂直,点A 的坐标是(1,3),则△APF 的面积为A .13B .1 2C .2 3D .3 2【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3||=PF ,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,故选D . 【名师点睛】本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得)0,2(F ,结合PF 与x 轴垂直,可得3||=PF ,最后由点A 的坐标是(1,3),计算△APF 的面积.17.【2017年高考全国Ⅰ卷文数】设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞UB .[9,)+∞UC .(0,1][4,)+∞UD .[4,)+∞U【答案】A【解析】当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab≥=o≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab ≥=o ≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞U , 故选A .【名师点睛】本题设置的是一道以椭圆知识为背景的求参数范围的问题.解答问题的关键是利用条件确定b a ,的关系,求解时充分借助题设条件ο120=∠AMB 转化为360tan =≥οba,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.18.【2017年高考全国Ⅱ卷文数】若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)【答案】C【解析】由题意得222222111c a e a a a+===+,因为1a >,所以21112a <+<,则1e << 故选C.【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题的关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.19.【2017年高考全国Ⅱ卷文数】过抛物线2:4C y x =的焦点F 的直线交C 于点M (M在x 的轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A B .C .D .【答案】C【解析】由题知:1)MF y x =-,与抛物线24y x =联立得231030x x -+=,解得121,33x x ==,所以(3,M ,因为MN l ⊥,所以(1,N -,因为(1,0)F,所以:1)NF y x =-.所以M 到直线NF=故选C.【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用根与系数的关系或求根公式进行转化,涉及弦长的问题中,应熟练地利用根与系数的关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解;涉及中点弦问题往往利用点差法.20.【2017年高考全国Ⅲ卷文数】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABC.3D .13【答案】A【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c=-即2223ac =,从而22223c e a ==,则椭圆的离心率c e a ===, 故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.21.【2017年高考天津卷文数】已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D【解析】由题意可得2222tan 60c c a b ba⎧⎪=⎪=+⎨⎪⎪=︒=⎩,解得221,3a b ==,故双曲线方程为2213y x -=.故选D .【名师点睛】本题主要考查双曲线的标准方程与几何性质,属于基础题.解题时要注意,,之间满足的关系:,否则很容易出现错误.求解本题可先画出大致图形,根据题中所给的几何关系,结合双曲线的几何性质,得到,,满足的关系式,联立求解可得,,的值.22.【2017年高考浙江卷】椭圆22194x y +=的离心率是ABC .23D .59【答案】B【解析】椭圆22194x y +=的离心率e ==B . 【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.23.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.a b c 222c a b =+a b c a b c【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+=. 【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.24.【2019年高考全国Ⅲ卷文数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.25.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =,因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程. 26.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ . 【答案】4【解析】当直线x +y =0平移到与曲线4y x x=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小. 由2411y x'=-=-,得)x x ==,y =Q , 则切点Q 到直线x +y =04=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.27.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.28.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得32P ⎛- ⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛⎫- ⎪ ⎪⎝⎭,所以212PF k ==【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁.29.【2018年高考全国I 卷文数】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为()2214x y ++=,所以圆的圆心为()0,1-,且半径是2,根据点到直线的距离公式可以求得d ==结合圆中的特殊三角形,可知AB ==【名师点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形,即半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形,利用勾股定理求得弦长.30.【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】2220x y x +-=【解析】设圆的方程为220x y Dx Ey F ++++=,圆经过三点(0,0),(1,1),(2,0),则01104020F D E F D F =⎧⎪++++=⎨⎪+++=⎩,解得200D E F =-⎧⎪=⎨⎪=⎩,则圆的方程为2220x y x +-=. 【名师点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.31.【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足2AP PB =u u u r u u u r ,则当m =___________时,点B 横坐标的绝对值最大.【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r得122x x -=,1212(1)y y -=-,所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=,所以224x +22324()m y -=, 与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值.【名师点睛】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.32.【2018年高考北京卷文数】若双曲线2221(0)4x y a a -=>a =________________. 【答案】4【解析】在双曲线中c =c e a ==,=,即216a =, 因为0a >,所以4a =.【名师点睛】本题主要考查双曲线的方程与几何性质,考查考生的运求解能力,考查的数学核心素养是数学运算.在求解有关离心率的问题时,一般不直接求出c 和a 的值,而是根据题目给出的条件,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.33.【2018年高考北京卷文数】已知直线l 过点(1,0)且垂直于x轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________. 【答案】()1,0【解析】由题意可得,点()1,2P 在抛物线上,将()1,2P 代入24y ax =中,解得1a =,24y x ∴=,由抛物线方程可得:24,2,12pp p ===,∴焦点坐标为()1,0.【名师点睛】此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.根据题干描述画出相应图形,分析可得抛物线经过点()1,2,将点()1,2坐标代入可求参数a 的值,进而可求焦点坐标.34.【2018年高考江苏卷】在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c,则其离心率的值是________________. 【答案】2【解析】因为双曲线的焦点(,0)F c 到渐近线by x a =±,即0bx ay ±=bc b c ==,所以2b =, 因此2222223144a c b c c c =-=-=,12a c =,2e =. 【名师点睛】本题主要考查双曲线的几何性质,考查考生的运算求解能カ和应用意识,考查的核心素养是数学运算.熟记结论:双曲线的一个焦点到一条渐近线的距离为b .35.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为________.【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D.。