高一下学期期末考试数学试题(解析版)

合集下载

2021-2022学年天津市河西区、四十一中高一下学期期末考试数学试题(解析版)

2021-2022学年天津市河西区、四十一中高一下学期期末考试数学试题(解析版)

天津市河西区、四十一中2021-2022学年高一下学期期末考试数学试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.实部为2-,虚部为1的复数所对应的点位于复平面内的( ) A .第一象限B .第二象限C .第三象限D .第四象限〖解 析〗实部为2-,虚部为1的复数所对应的点的坐标为(2,1)-,位于第二象限. 〖答 案〗B2.在频率分布直方图中,各个长方形的面积表示( ) A .落在相应各组的数据的频数 B .相应各组的频率C .该样本所分成的组数D .该样本的样本容量〖解 析〗频率分布直方图中,各个长方形的面积表示相应数据的频率, 它等于这组的频数除以样本容量的值, 小长方形的个数表示该样本所分成的组数. 〖答 案〗B3.已知(5,2)a =-,(4,3)b =--,(,)c x y =,若230a b c -+=,则(c = ) A .8(1,)3B .138(,)33C .134(,)33D .134(,)33-- 〖解 析〗由题意可得:23(133,43)0a b c x y -+=++=, 所以1330x +=,并且430y +=,所以133x =-,43y =-. 〖答 案〗D4.将无盖正方体纸盒展开如图,则直线AB 、CD 在原正方体中的位置关系是( )A .平行B .相交且垂直C .相交成60︒D .异面〖解 析〗将正方体还原得到A ,B ,C ,D 的位置如图因为几何体是正方体,所以连接AC ,得到三角形ABC 是等边三角形,所以60ABC ∠=︒;〖答 案〗C5.已知||4a =,e 为单位向量,当向量a 与e 的夹角θ等于150︒时,则向量a 在向量e 上的投影向量为( ) A .2eB .2e -C .3eD .3e -〖解 析〗||4a =,e 为单位向量,向量a 与e 的夹角θ等于150︒时,∴||||cos15041(a e a e ⋅=︒=⨯⨯=-∴向量a 在向量e 上的投影||a ee ⋅为-a 在向量e 上的投影向量为3e -. 〖答 案〗D6.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数和次品件数.则下列事件是互斥事件但不是对立事件的是( ) A .恰好有1件次品和恰好有2件次品B .至少有1件次品和全是次品C .至少有1件正品和至少有1件次品D .至少有1件次品和全是正品〖解 析〗从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数和次品件数,∴在A 中,恰好有1件次品和恰好有2件次品不能同时发生,但能同时不发生, ∴恰好有1件次品和恰好有2件次品是互斥事件但不是对立事件,故A 成立;在B 中,至少有1件次品和全是次品,能同时发生, ∴至少有1件次品和全是次品不是互斥事件,故B 不成立;在C 中,至少有1件正品和至少有1件次品能同时发生, ∴至少有1件正品和至少有1件次品不是互斥事件,故C 不成立;在D 中,至少有1件次品和全是正品不能同时发生,也不能同时不发生, ∴至少有1件次品和全是正品是对立事件,故D 不成立.〖答 案〗A7.两条异面直线与同一平面所成的角,不可能是( ) A .两个角均为锐角 B .一个角为0︒,一个角为90︒ C .两个角均为0︒D .两个角均为90︒〖解 析〗两条异面直线与同一平面所成的角,两个角均为锐角,所以A 正确, 如果异面直线互相垂直时,一条直线与平面平行,另一条直线与平面垂直, 满足一个角为0︒,一个角为90︒,所以B 正确;如果两条异面直线都与平面平行,此时两条异面直线与同一平面所成的角两个角均为0︒,所以C 正确;如果两个角均为90︒,则两条直线与平面垂直,两条直线是平行线,所以D 不正确. 〖答 案〗D8.袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2个球.设A = “两个球颜色相同”, B = “两个球颜色不同”,则( ) A .P (A )P =(B ) B .2P (A )P =(B )C .P (A )2P =(B )D .3P (A )P =(B )〖解 析〗袋子中有大小和质地完全相同的4个球,其中2个红球,2个白球,不放回地从中依次随机摸出2个球.基本事件总数246n C ==, 设A = “两个球颜色相同”, B = “两个球颜色不同”,则A 中包含的基本事件个数221222m C C =+=,B 中包含的基本事件个数112224m C C ==, P ∴(A )2163==,P (B )4263==,2P ∴(A )P =(B ). 〖答 案〗B9.如图,圆柱OO '中,AA '是侧面的母线,AB 是底面的直径,C 是底面圆上一点, 则( )A .BC ⊥平面A AC 'B .BC ⊥平面A AB 'C .AC ⊥平面A BC 'D .AC ⊥平面A AB '〖解 析〗C 是底面圆周上异于A ,B 的任意一点,且AB 是圆柱底面圆的直径,BC AC ∴⊥,AA '⊥平面ABC ,BC ⊂平面ABC ,AA BC '∴⊥,AA AC A '=,AA '⊂平面AA C ',AC ⊂平面AA C ',BC ∴⊥平面A AC '.〖答 案〗A二、填空题:本大题共6个小题,每小题4分,共24分.10.已知i 是虚数单位,若复数z 满足(1)2i z +=,则z 的虚部为 ;z = . 〖解 析〗(1)2i z +=,22(1)11(1)(1)i z i i i i -∴===-++-, 故z 的虚部是1-,1z i =+. 〖答 案〗1-,1i +11.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为 . 〖解 析〗分层抽样的抽取比例为701350050=, 总体个数为350015005000+=,∴样本容量1500010050n =⨯=. 〖答 案〗10012.如图,已知正方体1111ABCD A B C D -的棱长为1,则四棱锥111A BB D D -的体积为 .〖解 析〗由题意可知四棱锥111A BB D D -的底面是矩形,边长:1四棱锥的高:1112AC =.则四棱锥111A BB D D -的体积为:11133⨯=.〖答 案〗1313.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 . 〖解 析〗从1,2,3,4,5中任意取出两个不同的数共有2510C =种情况, 和为5的有(1,4)(2,3)两种情况,故所求的概率为:20.210=. 〖答 案〗0.214.已知a ,b ,c 是直线,给出下列命题: ①若//a b ,//b c ,则//a c ; ②若a b ⊥,b c ⊥,则a c ⊥; ③若//a b ,b c ⊥,则a c ⊥;④若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题是 (写出所有正确命题的序号) 〖解 析〗已知a ,b ,c 是直线,给出下列命题:①若//a b ,//b c ,根据平行线的传递性可得://a c ,正确; ②若a b ⊥,b c ⊥,则a 与c 平行、相交或为异面直线,因此不正确; ③若//a b ,b c ⊥,则a c ⊥,正确;④若a 与b 异面,则有无数条直线与a ,b 都垂直,因此不正确. 其中真命题是 ①③. 〖答 案〗①③15.在ABC ∆中,60A ∠=︒,3AB =,2AC =.若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为 . 〖解 析〗如图所示,ABC ∆中,60A ∠=︒,3AB =,2AC =,2BD DC =,∴AD AB BD =+23AB BC =+2()3AB AC AB =+-1233AB AC =+,又()AE AC AB R λλ=-∈,∴12()()33AD AE AB AC AC AB λ⋅=+⋅-221212()3333AB AC AB AC λλ=-⋅-+221212()32cos603243333λλ=-⨯⨯⨯︒-⨯+⨯=-, ∴1113λ=,解得311λ=. 〖答 案〗311三、解答题:本大题共5小题,共49分、解答应写出文字说明,证明过程或演算步骤. 16.(9分)如图,在平行四边形ABCD 中,点E 是AB 的中点,点F ,G 分别是AD ,BC 的三等分点1(3AF AD =,13BG BC =.设AB a =,AD b =.(1)用a ,b 表示EF ,EG ; (2)如果3||||2b a =,EF ,EG 有什么位置关系?用向量方法证明你的结论. 解:(1)11113232EF AF AE AD AB b a =-=-=-,1111122323EG EB BG AB AF AB AD a b =+=+=+=+, (2)EF EG ⊥,证明:由(1)得,1132EF b a =-,1132EG b a =+,∴2222111111191()()0323294944EF EG b a b a b a a a ⋅=-⋅+=-=⨯-=,∴EF EG ⊥,EF EG ∴⊥.17.(10分)在ABC ∆中,内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin cos()6b A a B π=-. (Ⅰ)求角B 的大小; (Ⅱ)设2a =,3c =,求b . 解:(Ⅰ) 在ABC ∆中,由正弦定理sin sin a bA B=,又sin cos()6b A a B π=-.可得sin cos()6B B π=-,1sin sin 2B B B ∴=+,则tan B . 又(0,)B π∈,可得3B π=.(Ⅱ) 在ABC ∆中,由余弦定理及2a =,3c =,3B π=,2222cos 49223cos73b ac ac B π∴=+-=+-⨯⨯⨯=,解得b =.18.(10分)为了了解某学校高一年级的712名学生身高的情况,现从该学校386名女生中抽取一个样本容量为27的样本,其观测数据(单位:)cm 如下: 163.0 164.0 161.0 157.0 162.0 165.0 158.0 155.0 164.0 162.5 154.0 154.0 164.0 149.0 159.0 161.0 170.0 171.0 155.0 148.0 172.0 162.5 158.0 155.5 157.0 163.0 172.0 (1)计算女生身高的样本平均数;(2)若该学校男生平均身高为170.6cm ,试估计该校高一年级学生的平均身高; (3)根据女生的样本数据估计该学校高一年级女生身高的第75百分位数. 解:(1)根据题意,女生身高的样本平均数1(163.0164.0161.0157.0162.0165.0158.0155.0164.0162.5154.027x =++++++++++ 154.0164.0149.0159.0161.0170.0171.0155.0148.0172.0162.5158.0155.5157.0163.0172.0)160.6cm ++++++++++++++++≈,(2)根据题意,高一年级共712名学生,其中女生386名,则男生有712386326-=, 则高一年级学生的平均身高为386160.6326170.6165.2712cm ⨯+⨯=,(3)根据题意,女生身高从小到大排列为:148、149、154、154、155、155.5、157、157、158、159、161、161、162、162.5、162.5、163、163、164、164、164、165、170、171、172、172, 又由2775%20.25⨯=,则女生身高的第75百分位数为第21个数据,即164, 故该学校高一年级女生身高的第75百分位数为164cm .19.(10分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求0X =,1X =的概率; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解:(1)由题意可知1111(0)(1)(1)(1)2344P X ==-⨯-⨯-=,11111111111(1)(1)(1)(1)(1)(1)(1)23423423424P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=. (2)两辆车共遇到1个红灯的概率为11111111142424448P =⨯+⨯=, 所以这2辆车共遇到1个红灯的概率为1148. 20.(10分)如图,在四面体ABCD 中,ABC ∆是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,2AB =,AD =90BAD ∠=︒.(Ⅰ)求证:AD BC ⊥;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ⋂平面ABD AB =,AD AB ⊥, 得AD ⊥平面ABC ,故AD BC ⊥;(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND ,M 为棱AB 的中点,故//MN BC ,DMN ∴∠(或其补角)为异面直线BC 与MD 所成角,在Rt DAM ∆中,1AM =,故DM =,AD ⊥平面ABC ,故AD AC ⊥,在Rt DAN ∆中,1AN =,故DN ==在等腰三角形DMN 中,1MN =,可得12cos MNDMN DM ∠==.∴异面直线BC 与MD (Ⅲ)解:连接CM ,ABC ∆为等边三角形,M 为边AB 的中点,故CM AB ⊥,CM =又平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,则CDM ∠为直线CD 与平面ABD 所成角.在Rt CAD ∆中,4CD =,在Rt CMD ∆中,sin CM CDM CD ∠==.∴直线CD 与平面ABD .。

四川省雅安市2023-2024学年高一下学期期末考试数学试题(含答案)

四川省雅安市2023-2024学年高一下学期期末考试数学试题(含答案)

雅安市2023-2024学年下期期末教学质量检测高中一年级数学试题本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、座位号和准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第I 卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数所表示的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.从小到大排列的数据1,2,3,7,8,9,10,11的第三四分位数为()A .B .9C .D .103.复数满足,则( )A .B .C .D .4.如图,在梯形ABCD 中,,E 在BC 上,且,设,,则( )A .B .C .D .5.已知m ,n 表示两条不同直线,表示平面,则( )A .若,,则B .若,,则C .若,,则D .若,,则()3i 1i -172192z 1i 22i z z +-=+z =31i 515--31i 515-+11i 155-11i 155+2AB DC =12CE EB =AB a = AD b = DE = 1233a b + 1233a b - 2133a b + 2133a b - αm α⊥n α∥m n⊥m α∥n α∥m n ∥m α⊥m n ⊥n α∥m α∥m n ⊥n α⊥6.一艘船向正北航行,在A 处看灯塔S 在船的北偏东方向上,航行后到B 处,看到灯塔S 在船的北偏东的方向上,此时船距灯塔S 的距离(即BS 的长)为( )AB .C .D .7.在复平面内,满足的复数对应的点为Z ,复数对应的点为,则的值不可能为()A .3B .4C .5D .68.已知下面给出的四个图都是正方体,A ,B 为顶点,E ,F 分别是所在棱的中点,① ②③ ④则满足直线的图形的个数为()A .1个B .2个C .3个D .4个二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.为普及居民的消防安全知识,某社区开展了消防安全专题讲座.为了解讲座效果,随机抽取14位社区居民,让他们在讲座前和讲座后各回答一份消防安全知识问卷,这14位社区居民在讲座前和讲座后问卷答题的得分如图所示,下列说法正确的是( )30︒10nmile 75︒5i 11iz --=-z 1i --0Z 0Z Z AB EF ⊥A .讲座前问卷答题得分的中位数小于70B .讲座后问卷答题得分的众数为90C .讲座前问卷答题得分的方差大于讲座后得分的方差D .讲座前问卷答题得分的极差大于讲座后得分的极差10.若平面向量,满足,则( )A .B .向量与的夹角为C .D .在上的投影向量为11.如图,在棱长为1的正方体中,M 是的中点,点P 是侧面上的动点,且平面,则( )A .P 在侧面B .异面直线AB 与MP 所成角的最大值为C .三棱锥的体积为定值D .直线MP 与平面所成角的正切值的取值范围是第II 卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分.a b 2a b a b ==+= 2a b ⋅=- a a b - π3a b -= a b - a 32a 1111ABCD A B C D -11A B 11CDD C MP ∥1AB C 11CDD C π21A PB C -12411ABB A ⎡⎣12.某学校高中二年级有男生600人,女生400人,为了解学生的身高情况,现按性别分层,采用比例分配的分层随机抽样方法抽取一个容量为50的样本,则所抽取的男生人数为________.13.已知的内角A ,B ,C 的对边分别为a ,b ,c ,且,,BC 边上,则________.14.半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体.如图是以一个正方体的各条棱的中点为顶点的多面体,这是一个有8个面为正三角形,6个面为正方形的“阿基米德多面体”,包括A ,B ,C 在内的各个顶点都在球O 的球面上.若P 为球O 上的动点,记三棱锥体积的最大值为,球O 的体积为V ,则________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数,(其中).(1)若为实数,求m 的值;(2)当时,复数是方程的一个根,求实数p ,q 的值.16.(15分)已知向量,.(1)若与垂直,求实数k 的值;(2)已知O ,A ,B ,C 为平面内四点,且,,.若A ,B ,C 三点共线,求实数m 的值.17.(15分)一家水果店为了解本店苹果的日销售情况,记录了过去200天的日销售量(单位:kg ),将全部数据按区间ABC △()πsin π2A A ⎛⎫-=- ⎪⎝⎭6b =c =P ABC -1V 1V V=12i z m =-2i z m =-m ∈R 12z z 1m =12z z ⋅220x px q ++=()1,2a =- ()3,2b =2ka b - 2a b + 2OA a b =+ 3OB a b =+ ()3,2OC m m =-,,…,分成5组,得到下图所示的频率分布直方图.(1)求图中a 的值;并估计该水果店过去200天苹果日销售量的平均数(同一组中的数据用该组区间的中点值为代表);(2)若一次进货太多,水果不新鲜;进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能地满足顾客的需要(在100天中,大约有85天可以满足顾客的需求).请问,每天应该进多少水果?18.(17分)从①;②;③.这三个条件中任选一个补充在下面问题中,并解答该题.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知________.(1)求角C 的大小;(2)若点D 在AB 上,CD 平分,,,求CD 的长;(3a 的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.19.(17分)我国古代数学名著《九章算术》在“商功”一章中,将“底面为矩形,一侧棱垂直于底面的四棱锥”称为“阳马”.现有如图所示一个“阳马”形状的几何体,底面ABCD 是正方形,底面ABCD ,,E 为线段PB 的中点,F 为线段BC 上的动点[)50,60[)60,70[]90,10085%()in cos s a C C a B +=+πsin 62a b c B +⎛⎫+= ⎪⎝⎭()s sin s in in C A B A -=-ABC △ACB ∠2a =c =PA ⊥PA AB =(1)平面AEF 与平面PBC 是否垂直?若垂直,请证明,若不垂直,请说明理由;(2)求二面角的大小;(3)若直线平面AEF ,求直线AB 与平面AEF 所成角的正弦值.B PCD --PC ∥数学试题参考答案及评分标准一、选择题:本题共8小题,每小题5分,共40分.1.C 2.C 3.B 4.D 5.A 6.B 7.A 8.D二、选择题:本题共3小题,每小题6分,共18分.9.11题选对1个得2分,选对2个得4分,全部选对的得6分,有选错的得0分;10题选对1个得3分,全部选对的得6分,有选错的得0分.9.ACD10.AD11.ABD三、填空题:本题共3小题,每小题5分,共15分.12.3013.314四、解答题:本题共5小题,共77分.15.(13分)【解析】(1),因为为实数,所以,解得.故为实数时,m 的值为.(2)当时,,,则复数,因为是方程的一个根,所以,化简得,由解得()()()2122232i 2i i 2i i 11m m m m z m m m m z +--+-===-++12z z 220m -=m =12z z 1m =12i z =-21i z =-()()1221i =1-3i z i z =--⋅13i -220x px q ++=()()2213i 13i 0p q -+-+=()16123i 0p q p +--+=()160,1230,p q p ⎩+-=-+⎧⎨=4,20.p q ⎧⎨⎩=-=16.(15分)【解析】(1),则,因为与垂直,所以,解得.(2),,,,因为A ,B ,C 三点共线,所以.所以,解得.17.(15分)【解析】(1)由直方图可得,样本落在,,…,的频率分别为,,0.2,0.4,0.3,由,解得.则样本落在,,…,频率分别为0.05,0.05,0.2,0.4,0.3,所以,该苹果日销售量的平均值为.(2)为了能地满足顾客的需要,即估计该店苹果日销售量的分位数.方法1:依题意,日销售量不超过的频率为,则该店苹果日销售量的分位数在,设为,则,解得.所以,每天应该进苹果.()()()21,223,26,42ka b k k k -=--=--- ()()()221,23,25,2a b +=-+=- 2ka b - 2a b +()()562420k k ----=229k =()()()21,223,27,2OA a b =+=-+= ()()()331,23,26,4OB a b =+=-+=- ()()()6,47,21,6AB OB OA =-=--=-- ()()()3,27,237,22AC OC OA m m m m =-=--=--- AB AC∥()()22637m m ---=-⨯-2m =[)50,60[)60,70[]90,10010a 10a 10100.20.40.31a a ++++=0.005a =[)50,60[)60,70[]90,100()506060707080809090100005005020403835kg 22..222....+++++⨯+⨯+⨯+⨯+⨯=85%85%90kg 10031007..-⨯=85%[]90,100()kg x ()0.031000.15x ⨯-=()95kg x =95kg方法2:依题意,日销售量不超过的频率为,则该店苹果日销售量的分位数在,所以日销售量的分位数为.所以,每天应该进苹果.18.(17分)【解析】(1)若选条件①,依题意,得,根据正弦定理得,因为,所以,则,,所以.又,则,所以.若选条件②.由正弦定理得,所以,,,即.因为,所以,所以.若选条件③在中,因为,,所以,90kg 10.03100.7-⨯=85%[]90,10085%()g .0.8507901095k 10.7-+⨯=-95kg cos sin a A C a +=sin sin cos si n A A C C A +=π02A <<sin 0A >i 1cos n C C +=1c os C C -=1122cos C C -=π1sin 62C ⎛⎫-= ⎪⎝⎭0πC <<ππ=66C -π3C =2sin sin s n πsin i 6A B C B +⎛⎫+= ⎪⎝⎭()sin sin sin 2s sin 1in c 2os 2B A B C B B B C ⎫++++==⎪⎪⎭sin cos cos 2sin sin B C B C B ++=i sin sin cos s n cos cos sin sin C B C B B C B C B +=++i sin s n cos sin C B B C B =+1c os C C -=π1sin 62C ⎛⎫-= ⎪⎝⎭()0,πC ∈ππ=66C -π3C =ABC △()s sin s in in C A B A -=-πA B C ++=()()n s s s n i i in C A C A A +-=-即,化简得.又,则,故.因为,所以.(2)依题意,,即,则,在中,根据余弦定理,有,即,解得或(舍去),所以.(3)依题意,的面积,所以.又为锐角三角形,且,则,所以.又,则,所以.由正弦定理,得,所以,所以所以a 的取值范围为.19.(17分)【解析】(1)平面平面PBC.理由如下:因为平面ABCD ,平面ABCD ,sin cos cos sin sin sin cos cos sin C A C A A C A C A +-=-sin co 2s sin A C A =()0,πA ∈sin 0A ≠cos 12C =0πC <<π3C =1π1π1πsin sin sin 262623D a b a CD b C ⋅+⋅=⋅⋅⋅()b CD a b ⋅+=CD =ABC △22222π2cos3c a b ab a b ab =+-=+-2742b b =+-3b =1a =-CD ==ABC △sin 1122ABC S C ab ab ===△4ab =ABC △π3C =2ππ0,32A B ⎛⎫=-∈ ⎪⎝⎭π2π63B <<π02B <<ππ62B <<tan B >sin sin B a b A =sin sin A Bb a =221s sin sin s 2in π4sin 223B a B ab B BB ⎫⎛⎫+⎪- ⎪⎝⎭⎝⎭===228a <<a <<AEF ⊥PA ⊥BC ⊂所以,因为,又.所以平面PAB ,故.在中,,E 为PB 的中点,所以.因为平面PBC ,平面PBC ,,所以平面PBC .又平面AEF ,所以平面平面PBC .(2)不妨设,计算可得,,又,,,所以,则,作于G ,连结DG ,又,,可知,所以,所以是二面角的平面角.在中,由,,则,,连结BD ,知中,根据余弦定理,得,所以.(3)因为直线平面AEF ,平面PBC ,平面平面,所以直线直线EF .又E 为线段PB 的中点,所以F 为线段BC 上的中点.由(2)知,所以.设BG 与EF 交点为H ,连结AH ,由(1)知,平面平面PBC ,平面平面,PA BC ⊥BC AB ⊥PA A AB = BC ⊥BC AE ⊥PAB △PA AB =AE PB ⊥PB ⊂BC ⊂PB BC B = AE ⊥AE ⊂AEF ⊥1AB =PB PD ==PC ==PB PD =BC DC =PC PC =PBC PDC △≌△PCB PCD =∠∠BG PC ⊥BC DC =CG CG =GBC GDC △≌△90DGC BGC ∠=∠=︒BGD ∠B PC D --Rt PBC △C P P BG C B B =⋅⋅1=BG =DG =BD =GBD △2221cos 22BG D D BGD DG G B BG +-=∠⋅==-120BGD ∠=︒PC ∥PC ⊂PBC AEF EF =PC ∥BG PC ⊥BG EF ⊥AEF ⊥AEF PBC EF =所以平面AEF .所以直线AB 与平面AEF 所成角为.又由EF ,F 为BC 上的中点,可得H 为BG 的中点,可知,,又,所以.直线AB 与平面AEFBH ⊥BAH ∠PC ∥12BH BG ===1AB =sin A BA BH H B =∠=。

2021-2022学年山东省青岛市莱西市高一下学期期末考试数学试题(解析版)

2021-2022学年山东省青岛市莱西市高一下学期期末考试数学试题(解析版)

山东省青岛市莱西市2021-2022学年高一下学期期末考试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数13z i =-+,i 为虚数单位,则z 的共轭复数为( ) A .13i + B .13i - C .13i -- D .3i -〖解 析〗13z i =-+,∴13z i =--.〖答 案〗C2.一支野外科学考察队有男队员56人,女队员42人,按性别进行分层,用分层随机抽样的方法从全体队员中抽出一个容量为28的样本,如果样本按比例分配,那么下面说法正确的为( )A .男队员应抽取12人B .男队员应抽取16人C .女队员应抽取6人D .女队员应抽取14人〖解 析〗由分层抽样的定义可知,男队员应抽取5628165642⨯=+人,女队员应抽取281612-=人.〖答 案〗B3.若||2a =,(1,1)b =-,a 与b 共线,则向量a 的坐标可能为( )A .(1,1)a =-B .(1,1)a =C .2(,2a = D .2(,2a =-〖解 析〗设(,)a x y =,||2a =,(1,1)b =-,且a 与b 共线,则2220x y x y ⎧+=⎨+=⎩,解得11x y =⎧⎨=-⎩或11x y =-⎧⎨=⎩,即(1,1)a =-或(1,1)a =-(舍去). 〖答 案〗A4.下列命题正确的为( ) A .两条直线确定一个平面 B .一条直线和一个点确定一个平面C .若直线在平面外,则这条直线与这个平面没有公共点D .若两条直线没有公共点,则这两条直线为平行直线或异面直线〖解 析〗在A 中,由平面基本性质的推论2,3得到:两条相交直线能确定一个平面,两条平行直线能确定一个平面,故A 错误;在B 中,一条直线和这条直线外一个点可以确定一个平面,故B 错误;在C 中,若直线在平面外,包括直线和平面平行和直线和平面相交,若直线和平面相交,则这条直线与这个平面有一个公共点,故C 错误;在D 中,若两条直线没有公共点,则这两条直线为平行直线或异面直线,故D 正确. 〖答 案〗D5.下列说法正确的为( )A .互斥事件一定是对立事件,对立事件不一定是互斥事件B .事件A 与事件B 中至少有一个发生的概率一定比A 与B 中恰有一个发生的概率大C .事件A 与事件B 中同时发生的概率一定比A 与B 中恰有一个发生的概率小D .设A ,B 是一个随机试验中的两个事件,则()P AB P =(A )P +(B )()P AB -〖解 析〗对A ,互斥事件不一定是对立事件,对立事件一定是互斥事件,故A 错误; 对B ,当事件A 与事件B 为对立事件时,事件A 与事件B 中至少有一个发生的概率和A 与B 中恰有一个发生的概率相等,故B 错误;对C ,当A B =时,事件A 与事件B 中同时发生的概率等于A 与B 中恰有一个发生的概率,故C 错误;对D ,设A ,B 是一个随机试验中的两个事件, 则()P AB P =(A )P +(B )()P AB -正确,故D 正确.〖答 案〗D6.要得到()sin(4)3g x x π=+的图象,只需要将22()cos 2sin 2f x x x =-的图象( )A .向左平移3π个单位长度 B .向右平移24π个单位长度C .向左平移12π个单位长度D .向右平移6π个单位长度 〖解 析〗22()cos 2sin 2cos4sin(4)sin 4()sin 4[()]282412f x x x x x x x ππππ=-==+=+=++,又()sin(4)sin 4()312g x x x ππ=+=+,故要得到函数()sin(4)3g x x π=+的图象,只需将函数()sin 4[()]2412f x x ππ=++的图象向右平移24π个单位长度即可. 〖答 案〗B7.为了普及环保知识,某学校随机抽取了30名学生参加环保知识测试,得分(十分制,单位:分)的统计数据如表:设这30名学生得分的中位数为m ,众数为n ,平均数为x ,则下列选项正确的为( ) A .m n x ==B .m n x =<C .m n x <<D .n m x <<〖解 析〗这30名学生得分的中位数为565.52m +==,众数为5n =, 平均数1(324351066738292102) 5.9630x =⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 故n m x <<. 〖答 案〗D8.已知球O 是正三棱锥A BCD -(底面是正三角形,顶点在底面的射影为底面中心)的外接球,3BC =,AB =E 在线段BD 上,且3BD BE =.过点E 作球O 的截面,则所得截面面积的最小值是( ) A .2πB .3πC .4πD .5π〖解 析〗如图,1O 是A 在底面的射影,由正弦定理得,BCD ∆的外接圆半径131sin602r =⨯=︒;由勾股定理得棱锥的高13AO ==;设球O 的半径为R ,则22(3)R R =-,解得2R =,所以11OO =;在△1BO E 中,由余弦定理得2113211O E =+-⨯=,所以11O E =;所以在1OEO ∆中,OE ;当截面垂直于OE =2π. 〖答 案〗A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.连续抛掷一枚质地均匀的硬币两次,下面说法正确的为( ) A .两次均正面朝上的概率为12 B .两次均反面朝上的概率为14C .两次中,一次正面朝上,另一次反面朝上的概率为14D .两次中,至少一次正面朝上的概率为34〖解答〗对A ,两次均正面朝上的概率为111224⨯=,故A 错误;对B ,两次均反面朝上的概率为111224⨯=,故B 正确;对C ,两次中,一次正面朝上,另一次反面朝上的概率为1111122222⨯+⨯=,故C 错误;对D ,两次均正面朝上的概率为111224⨯=,故两次中,至少一次正面朝上的概率为13144-=,故D 正确. 〖答 案〗BD10.已知三个不同的平面α,β,γ和三条不同的直线m ,n ,l ,下列命题中为真命题的是( )A .若//m n ,m α⊥,则n α⊥B .若//m n ,//m α,则//n αC .若m αβ=,n α⊂,l β⊂,//n l ,则////m n lD .若αγ⊥,//αβ,则βγ⊥〖解 析〗选项A ,由线面垂直的性质定理知,若//m n ,m α⊥,则n α⊥,即A 正确; 选项B ,若//m n ,//m α,则//n α或n α⊂,即B 错误; 选项C ,因为l β⊂,//n l ,n β⊂/,所以//n β,又m αβ=,n α⊂,所以//n m ,由平行线的传递性知,////m n l ,即C 正确;选项D ,由面面垂直的性质定理知,若αγ⊥,//αβ,则βγ⊥,即D 正确. 〖答 案〗ACD11.给出以下24个数据:148.0 149.0 154.0 154.0 155.0 155.0 155.2 157.0 158.0 158.0 159.0 159.5 161.5 162.0 162.5 162.5 163.0 163.0 164.0 164.1 165.0 170.0 171.0 172.0 对于以上给出的数据,下列选项正确的为( ) A .极差为24.0B .第75百分位数为164.0C .第25百分位数为155.2D .80%分位数为164.1〖解 析〗对于A ,由题意可得,极差为17214824-=,故A 正确, 对BCD ,25%246⨯=,75%2418⨯=,80%2419.2⨯=,∴样本数据的第25,75,80百分位数为第6,7为的平均数,第18,19的平均数,第20项数据,即分别为155155.2155.12+=,163164163.52+=,164.1,故BC 错误,D 正确. 〖答 案〗AD12.在ABC ∆中,135BAC ∠=︒,6AB =,AC =D 为BC 边上的一点,且D 到A ,B 距离相等,则下列结论正确的为( )A.sin ABC ∠=B.BD =C .ABC ∆外接圆的面积为45πD .18ABC S ∆=〖解 析〗在ABC ∆中,135BAC ∠=︒,6AB =,AC =由余弦定理可得2222cos 90BC AB AC AB AC BAC =+-⋅∠=,BC ∴=由正弦定理可得sin sin AC BCABC BAC=∠∠,sin ACin BAC ABC BC ∠∴∠===,由角B为锐角知cos B A 错误; 过点D 作AB 的垂线DE , 如图,由AD BD =得cos cos DAE B ∠=,132AE AB ==, Rt ADE ∆,3cos cos AE AD DAE B ====∠BD AD ∴==B 正确;由正弦定理可知,ABC ∆外接圆的直径2sin BC R A ==,R = ABC ∴∆外接圆的面积为245S R ππ==,故C 正确;由三角形面积公式可得11sin 6922ABC S AB AC A ∆=⋅⋅=⨯⨯=,故D 错误. 〖答 案〗BC三、填空题:本题共4小题,每小题5分,共20分.13.已知复数z 满足46z i zi +=+,其中i 为虚数单位,则复数z = . 〖解 析〗设z a bi =+,a ,b R ∈,46z i zi +=+,46()6a bi i a bi i b ai ∴++=++=-+,即64a bb a =-⎧⎨+=⎩,解得5a =,1b =, 故5z i =+. 〖答 案〗5i +14.已知1sin cos 5αα+=,0απ,则cos 2α= .〖解 析〗由1sin cos 5αα+=,两边平方得:112sin cos 25αα+=,可得242sin cos 25αα=-,0απ,∴2παπ<,则sin 0α>,cos 0α<,7sin cos 5αα∴-. 解得4sin 5α=,3cos 5α=-,∴cos2α.〖答 15.已知(12,1)a k =-,(3,)b k =-,若a 与b 的夹角为钝角,则实数k 的取值范围为 . 〖解 析〗由已知条件可得,0a b ⋅<且,a b 不共线, 则3(12)0(12)3a b k k k k ⎧⋅=--<⎪⎨-≠-⎪⎩,解得37k <且1k ≠-,故实数k 的取值范围为(-∞,31)(1,)7--.〖答 案〗(-∞,31)(1,)7--16.(3分)某传媒机构举办闯关答题比赛,比赛分两轮,每轮共有4道题,参赛者必须从前往后逐道题回答.在第一轮中,若中途回答错误,立马淘汰,若四道题全部回答正确,就能获得一枚复活币并进入下一轮答题,这枚复活币在下一轮答题中最多只能使用一次;在第二轮中,若首次遇到某一道题回答错误时,系统会自动使用第一轮获得的一枚复活币复活一次,即视为答对该道题,其后若回答错误,和第一轮一样,立马淘汰;两轮都通过就可以获得优胜者纪念奖章.对于每轮的4道题,若某参赛者从前往后每道题回答正确的概率均依次为910,89,34,13,且每道题回答正确与否不受其它题的影响,则该参赛者能进入第二轮答题的概率为 ;该参赛者能获得优胜者纪念奖章的概率为 . 〖解 析〗该参赛者能进入第二轮答题的概率为98311109435⨯⨯⨯=; 该参赛者能获得优胜者纪念奖章的概率:198311831913198119832257()510943109431094310943109431800⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=. 〖答 案〗15,2571800四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知复数22(710)(56)z m m m m i =-++-+,i 为虚数单位,m R ∈. (Ⅰ)若z 为纯虚数,求m 的值;(Ⅱ)若在复平面上表示复数z 的点位于第二象限,求m 的取值范围; (Ⅲ)若在复平面上表示复数z 的点位于直线2140x y --=上,求m 的值. 解:(I)z 为纯虚数,∴225607100m m m m ⎧-+≠⎨-+=⎩,解得5m =. (II)在复平面上表示复数z 的点位于第二象限,则225607100m m m m ⎧-+>⎨-+<⎩,解得35m <<,故m 的取值范围为(3,5).(III)在复平面上表示复数z 的点位于直线2140x y --=上,则222(710)(56)140m m m m -+--+-=,解得0m =或9. 18.(12分)试分别解答下列两个小题:(Ⅰ)已知||6a =,||4b =,(2)(3)480a b a b +⋅-+=,求向量a 与b 的夹角θ; (Ⅱ)已知3sin()cos cos()sin 5βαβαββ---=,α是第三象限角,求3tan(2)4πα+的值. 解:(Ⅰ)由已知,||6a =,||4b =,(2)(3)480a b a b +⋅-+=, 所以22648a b a b --⋅=-,将||6a =,||4b =,代入上式得12a b ⋅=-, 故1cos 2||||a b a b θ⋅==-,[0θ∈,]π,故23πθ=;(Ⅱ)由3sin()cos cos()sin 5βαβαββ---=, 得3sin[()]sin()5βαβα--=-=,故3sin 5α=-,因为α为第三象限角,故4cos 5α=-,所以3tan 4α=,所以22tan 24tan 217tan ααα==-, 所以2413177tan(2)244311(1)7πα-+==-⨯-. 19.(12分)试分别解答下列两个小题:(Ⅰ)一个袋子中有标号分别为1,2,3,4的4个球,除标号外没有其它差异.采用不放回方式从中任意摸球两次,每次摸出一个球.设事件A = “第一次摸出球的标号小于3”,事件B = “第二次摸出球的标号小于3”,试判断事件A 与事件B 是否相互独立?请写出判断过程;(Ⅱ)如图,在平行六面体1111ABCD A B C D -中,M 为1DD 的中点,N 为1CC 的中点,求证:平1//NBD 平面MAC .(I)解:因为样本空间{(,)|m n m Ω=,{1n ∈,2,3,4},且}m n ≠, {(1,2)A =,(1.3),(1,4),(2,1),(2,3),(2,4)}, {(1,2)B =,(2.1),(3,1),(3,2),(4,1),(4,2)},由题意可知,P (A )P =(B )61122==,21()126P AB ==, 此时()P AB P ≠(A )P (B ),因此事件A 与事件B 不相互独立; (II)证明:连接BD 交AC 于O ,连接OM ,在平行六面体1111ABCD A B C D -中,可知ABCD 是平行四边形, 所以O 是BD 的中点,因为M 为1DD 的中点,所以1//MO D B , 又MO ⊂平面MAC ,1BD ⊂/平面MAC ,所以1//BD 平面MAC , 又因为M 为1DD 的中点,N 为1CC 的中点, 所以四边形1MCND 为平行四边形,所以1//ND CM ,又CM ⊂平面MAC ,1ND ⊂/平面MAC ,所以1//ND 平面MAC , 又111BD ND D =,1BD ,1ND ⊂平面1BND所以平面1//NBD 平面MAC .20.(12分)为调查禽类某种病菌感染情况,某养殖场每周都定期抽样检测禽类血液中A 指标的值.养殖场将某周的5000只家禽血液样本中A 指标值的检测数据进行整理,发现这些数据均在区间[1,15]内,现将这些数据分成7组:第1组,第2组,第3组,⋯,第7组对应的区间分别为[1,3),[3,5),[5,7),⋯,[13,15],绘成如图所示的频率分布直方图.(Ⅰ)求直方图中a 的值;(Ⅱ)根据频率分布直方图,估计这5000只家禽血液样本中A 指标值的中位数和85%分位数(结果保留两位小数);(Ⅲ)现从第2组A 指标值对应的家禽中抽取4只,分别记为1R ,2R ,3R ,4R ,从第5组A 指标值对应的家禽中抽取3只,分别记为1E ,2E ,3E ,然后将这7只家禽混在一起作为一个新的样本Ω,从Ω中任取2只家禽进行δ指标值的检测,求从Ω中取到的两只家禽的A 指标值的差的绝对值小于2的概率.解:(Ⅰ)由题意可得:2(0.020.060.180.050.030.02)1a ⨯++++++=,则0.14a =; (Ⅱ)由题意,每组的频率依次为:0.04,0.12,0.28,0.36,0.10,0.06,0.04, 0.040.120.280.440.50++=<,0.040.120.280.360.700.50+++=>,∴中位数位于[7,9)内,设为m ,则0.440.18(7)0.50m +⨯-=,7.33m ∴≈,0.040.120.280.360.800.85+++=<,0.040.120280.360.100.900.85++++=>, 85%∴分位数为[9,11)的中点10.00;(Ⅲ)从Ω中任取2只,共2721C =个基本事件,记“从Ω中取到的两只家禽的a 指标值的差的绝对值小于2”为事件B ,则事件B 共9个基本事件,∴从Ω中取到的两只家禽的A 指标值的差的绝对值小于2的概率P (B )93217==. 21.(12分)如图①,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C ,1C 分别为AB ,11A B 的中点,现把平行四边形11AA C C 沿1CC 折起如图②所示.在图②中,连接1AB ,11A B ,若1AB =(Ⅰ)求证:平面11AAC C ⊥平面11BB C C ;(Ⅱ)求平面11AA B 与平面11BB C C 所成的锐二面角的大小. (1)证明:取1CC 的中点O ,连接OA ,1OB ,1AC ,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,1ACC ∴∆,△11B CC 为正三角形,则1AO CC ⊥,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,2AC ∴=,1OA OB ==1AB =22211OA OB AB +=,则三角形1AOB 为直角三角形,则1AO OB ⊥, 又1OB ⊂平面11BB C C ,1CC ⊂平面11BB C C ,11OB CC O =,AO ∴⊥平面11BB C C ,又AO ⊂平面11AA C C ,∴平面11AAC C ⊥平面11BB C C ;(II)解:以O 为原点,以OC ,1OB ,OA 为x ,y ,z 轴建立空间直角坐标系,则(1C ,0,0),1(0B0),1(1C -,0,0),(0A ,0, 则1(2CC =-,0,0),则11(2AA CC ==-,0,0),1(0AB =,(1AC =,0,, 设平面11AB A 的一个法向量为(n x =,y ,)z ,则113020n AB y n AA x ⎧⋅==⎪⎨⋅=-=⎪⎩,令1z =,则1y =,0x =,∴平面11AB A 的一个法向量为(0n =,1,1),(0OA ∴=,0为平面11BB C C的一个法向量,则cos OA <,3||||3OA n n OA n ⋅>===⋅⨯OA <,45n >=︒,∴平面11AA B 与平面11BB C C 所成的锐二面角的大小45︒.22.(12分)如图所示,某住宅小区一侧有一块三角形空地ABO ,其中3OA km =,OB =,90AOB ∠=︒.物业管理拟在中间开挖一个三角形人工湖OMN ,其中M ,N 都在边AB 上(M ,N 不与A ,B 重合,M 在A ,N 之间),且30MON ∠=︒.(Ⅰ)若M 在距离A 点2km 处,求点M ,N 之间的距离;(Ⅱ)为节省投入资金,三角形人工湖OMN 的面积要尽可能小.试确定M 的位置,使OMN ∆的面积最小,并求出最小面积.解:(Ⅰ)在ABO ∆中,因为3,90OA OB AOB ==∠=︒,所以60OAB ∠=︒,在OAM ∆中,由余弦定理得:2222cos 7OM AO AM AO AM A =+-⋅=,所以OM所以222cos 2OA OM AM AOM AO AM +-∠==⋅, 在OAN ∆中,sin sin()sin(90)cos ONA A AON AOM AOM ∠=∠+∠=∠+︒=∠= 在OMN ∆中,由sin30sin MN OMONA =︒∠,得1724MN ==; (Ⅱ)解法1:设AOM θ∠=,060θ︒<<︒, 在OAM ∆中,由sin sin OM OAOAB OMA=∠∠,得OM =, 在OAN ∆中,由sin sin ON OAOAB ONA=∠∠,得ON =,所以111sin 222OMN S OM ON MON ∆=⋅∠=2716sin(60)cos θθ==+︒=60θ=<<︒.当26090θ+︒=︒,即15θ=︒时,OMNS∆所以应设计15AOM∠=︒,可使OMN∆2.解法2:设AM x=,03x<<.在OAM∆中,由余弦定理得22222cos39OM AO AM AO AM A x x=+-⋅⋅=-+,所以OM222cos2OA OM AMAOMOA OM+-∠==⋅,在OAN∆中,sin sin()ONA A AON∠=∠+∠sin(90)cosAOM AOM=∠+︒=∠=由sin sinON OAOAB ONA=∠∠,得36ONx==-,所以1sin2OMNS OM ON MON∆=⋅⋅∠1122==03x<<,令6x t-=,则6x t=-,36t<<,则:27339)9)4OMNS tt∆=-+⋅=当且仅当27tt=,即t=,6x=-OMNS∆所以M的位置为距离A点6-处,可使OMN∆的面积最小,最小面积是2.。

2021-2022学年四川省遂宁市高一下学期期末考试数学试题(解析版)

2021-2022学年四川省遂宁市高一下学期期末考试数学试题(解析版)

四川省遂宁市2021-2022学年高一下学期期末考试数学试题一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.)1.cos10cos20sin10sin20︒︒-︒︒等于( )A .BC .12D .12-〖解 析〗因为cos10cos20sin10sin 20cos(1020)cos30︒︒-︒︒=︒+︒=︒= 〖答 案〗B2.已知等差数列{}n a 中,23a =-,35a =-,则9(a = ) A .10-B .17-C .19-D .21-〖解 析〗等差数列{}n a 中,23a =-,35a =-,322d a a ∴=-=-,9273(2)717a a d ∴=+=-+-⨯=-.〖答 案〗B3.若0a b >>,0c d <<,则一定有( ) A .0a bc d-> B .0a b c d-< C .a b d c> D .a b d c< 〖解 析〗0c d <<,0c d ∴->->,0a b >>,ac bd ∴->-,∴ac bd cd cd -->,∴a bd c<. 〖答 案〗D4.设一元二次不等式210ax bx ++>的解集为1(1,)3-,则ab 的值为( )A .6-B .5-C .6D .5〖解 析〗不等式210ax bx ++>的解集为1{|1}3x x -<<,0a ∴<,∴原不等式等价于210ax bx ---<,由根与系数的关系,得113ba-+=-,113a -⨯=,3a ∴=-,2b =-,6ab ∴=.〖答 案〗C5.下列函数中最小值为4的是( )A .224y x x =++B .4|sin ||sin |y x x =+C .222x x y -=+D .4y lnx lnx=+〖解 析〗对于A ,2224(1)33y x x x =++=++, 所以函数的最小值为3,故选项A 错误; 对于B ,因为0|sin |1x <,所以4|sin |2|sin |4|sin |y x x x =+=,当且仅当4|sin ||sin |x x =,即|sin |2x =时取等号, 因为|sin |1x ,所以等号取不到, 所以4|sin |4|sin |y x x =+>,故选项B 错误; 对于C ,因为20x >,所以24422222422x x x x xxy -=+=+⋅, 当且仅当22x =,即1x =时取等号, 所以函数的最小值为4,故选项C 正确; 对于D ,因为当1x e=时,1414541y ln e ln e=+=--=-<, 所以函数的最小值不是4,故选项D 错误. 〖答 案〗C6.某几何体的三视图如图所示,则该几何体的体积为( )A .4πB .3πC .2πD .π〖解 析〗由三视图还原原几何体如图,可知该几何体为圆柱,圆柱的底面半径为1,高为4, 则圆柱的体积2144V ππ=⨯⨯=. 〖答 案〗A7.在数列{}n a 中,114a =-,111(2,*)n n a n n N a -=-∈,则2022a 的值为( )A .14-B .5C .45D .54〖解 析〗在数列{}n a 中,114a =-,111(2,*)n n a n n N a -=-∈,2111145a a ∴=-=+=,321415a a =-=,431114a a =-=-, ∴数列{}n a 是以3为周期的周期函数,20226743345a a a ⨯∴===. 〖答 案〗C8.三角形ABC 中,D 为边BC 上一点,且满足3BD DC =,则AD 等于( ) A .1344AB AC + B .3144AB AC + C .1344AB AC - D .3144AB AC - 〖解 析〗3313()4444AD AB BD AB BC AB AC AB AB AC =+=+=+-=+.〖答 案〗A9.已知数列{}n a 为等比数列,且22642a a a π+=,则35tan()(a a = ) AB.C. D.〖解 析〗由等比数列{}n a 的性质可得:226354a a a a a ==,∴22643523a a a a a π+==,353a a π∴=.则35tan()tan 3a a π==.〖答 案〗A10.在2022北京冬奥会开幕式上,二十四节气倒计时惊艳亮相,与节气相配的14句古诗词,将中国人独有的浪漫传达给了全世界.我国古代天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同,即太阳照射物体影子的长度增长或减少的量相同,周而复始(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度),二十四节气及晷长变化如图所示,已知雨水的晷长为9.5尺,立冬的晷长为10.5尺,则大雪所对的晷长为( )A .11.5尺B .12.5尺C .13.5尺D .14.5尺〖解 析〗设相邻两个节气晷长减少或增加的量为(0)d d >,则立冬到大雪增加2d , 大雪到雨水先增加一个d 再减少4d ,设大雪的晷长为x ,则49.510.52x d d d x +-=⎧⎨+=⎩,解得112.5d x =⎧⎨=⎩.〖答 案〗B11.已知ABC ∆的内角A ,B ,C 的对边分别是a ,b ,c ,若2sin sin c ba B C+=,则ABC ∆是( ) A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形 〖解 析〗根据题意,ABC ∆中,2sin sin c ba B C+=, 由正弦定理可得:sin sin 2sin sin sin C BA B C+=, 又由左式sin sin sin 22sin sin sin C B B B C C =+⨯=,当且仅当sin sin B C =时等号成立, 而右式2sin 2A ,则有sin sin B C =且sin 1A =,即b c =且2A π=,故ABC ∆是等腰直角三角形. 〖答 案〗C12.设等差数列{a n }满足:,公差d ∈(﹣1,0).若当且仅当n =10时,数列{a n }的前n 项和S n 取得最大值,则首项a 1的取值范围是( )A .B .C .D .〖解 析〗由,得,整理,得,所以sin (3d )=﹣1,因为公差d ∈(﹣1,0),所以3d ∈(﹣3,0), 则.所以, 设,其图像的对称轴方程为,由题意,当且仅当n =10时,数列{a n }的前n 项和S n 取得最大值, 所以,解得,则首项a 1的取值范围是.〖答 案〗A二、填空题(本题共4小题,每小题5分,共20分)13.已知||1,||2a b ==,a 与b 的夹角60θ=︒,则向量b 在向量a 方向上的投影为 . 〖解 析〗依题意,向量b 在向量a 方向上的投影为1||cos 212b θ=⨯=. 〖答 案〗114.已知等比数列{}n a 中,1354a a a ⋅⋅=,公比q ,则456a a a ⋅⋅= .〖解 析〗等比数列{}n a 中,1354a a a ⋅⋅=,公比q =32645613544832a a a a a a q q q q ∴⋅⋅=⋅⋅⋅⋅⋅=⨯=⨯=.〖答 案〗3215.已知圆锥的侧面积(单位:2)cm 为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)cm 是 .〖解 析〗圆锥侧面展开图是半圆,面积为22cm π,设圆锥的母线长为acm ,则2122a ππ⨯=,2a cm ∴=,∴侧面展开扇形的弧长为2cm π,设圆锥的底面半径OC rcm =,则22r ππ=,解得1r cm =. 〖答 案〗1cm16.已知方程22(2)(2)0x x m x x n -+-+=的四个根组成一个首项为14的等差数列,设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且4||b m n =-,2A B =,则a 的取值范围为 .〖解 析〗设方程22(2)(2)0x x m x x n -+-+=的四根分别为1a 、2a 、3a 、4a , 则数列1a 、2a 、3a 、4a 是首项为14的等差数列,设其公差为d , 由等差数列的性质,可得1423a a a a +=+,无妨设1a 、4a 为方程220x x m -+=的两根,则2a 、3a 为方程220x x n -+=的两根, 由韦达定理,可得144124a a a +=+=,474a ∴=,41132a a d -==,则234a =,354a =,此时14716m a a ==,231516n a a ==,则1||2m n -=,2b ∴=,三角形ABC 为锐角三角形,∴02022032B B B ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,∴64B ππ<<,cos (2B ∴∈,由正弦定理,得sin sin a b A B =,∴2sin cos sin a b B B B=,4cos a B ∴=∈.〖答 案〗,三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(10分)已知(1,2)a =,(2,3)b =-,c a b λ=+. (1)当1λ=-时,求a c ⋅的值; (2)若()a b c +⊥,求实数λ的值. 解:(1)当1λ=-时,(1,2)a =,(2,3)b =-,∴(1,5)c a b a b λ=+=-=-,∴1109a c ⋅=-+=.(2)(3,1)a b +=-,(12,23)c a b λλλ=+=+-,()a b c +⊥,()3(12)(23)190a b c λλλ∴+⋅=+--=+=,19λ∴=-.18.(12分)已知等比数列{}n a ,12a =,532a =. (1)求数列{}n a 的通项公式;(2)若数列{}n a 为正项数列(各项均为正),求数列{(21)}n n a +⋅的前n 项和n T . 解:(1)由题意,设等比数列{}n a 的公比为q ,12a =,532a =,4132a q ∴=,即4232q =,416q ∴=,解得2q =±,当2q =时,1222n n n a -=⋅=,*n N ∈, 当2q =-时,12(2)n n a -=⋅-,*n N ∈.(2)由题意及(1),可知2n n a =,*n N ∈,则(21)(21)2n n n a n +⋅=+⋅, 故123325272(21)2n n T n =⨯+⨯+⨯+⋅⋅⋅++⋅,23123252(21)2(21)2n n n T n n +=⨯+⨯+⋅⋅⋅+-⋅++⋅,两式相减,得123132222222(21)2n n n T n +-=⨯+⨯+⨯+⋅⋅⋅+⋅-+⋅2112262(21)212n n n ++-=+⨯-+⋅-1(21)22n n +=--⋅-,1(21)22n n T n +∴=-⋅+.19.(12分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2c =且222cos 2cos b bc A a ac B -=-,(1)证明:ABC ∆为等腰三角形;(2)设ABC ∆的面积为S ,若 _______,求S 的值.在①7cos 2cos B C =;②2228a b c +=两个选项中,选择一个填入空白处并求解. 注:如果选择多个条件分别解答,按第一个解答计分 (1)证明:因为222cos 2cos b bc A a ac B -=-, 所以22222cos 2cos b c bc A a c ac B +-=+-,由余弦定理可知,22a b =,即a b =,即ABC ∆为等腰三角形; (2)解:选①,由(1)可知,A B =,所以2C B π=-, 所以27cos 2cos 2cos(2)2cos224cos B C B B B π==-=-=-, 整理得24cos 7cos 20B B +-=,解得1cos 4B =,所以77cos cos 28C B ==,所以sin C ==又由2c =,sin B =, 由正弦定理可得4a b ==,所以11sin 4422S ab C ==⨯⨯选②,因为2228a b c +=,且a b =,2c =,所以4a b ==,所以222161647cos 22448a b c C ab +-+-===⨯⨯,所以sin C ==所以11sin 4422S ab C ==⨯⨯20.(12分)如图,正方体1111ABCD A B C D -中,棱长1AB =.过点1A 的平面α与正方体的面相交,交线围成一个正三角形.(1)在图中画出这个正三角形(不必说明画法和理由);(2)平面α将该正方体截成两个几何体,求体积较大的几何体的体积和表面积.解:(1)连接1A D ,AB ,BD ,则△1A BD 为所求三角形, 如图所示:连接11A C ,1A D ,1C D ,则△11A C D 为所求三角形,如图所示:连接11A C ,1A B ,1BC ,则△11A BC 为所求三角形,如图所示:(2)平面α将正方体截成三棱锥1A ABD -和多面体1111BCD A B C D -两部分 1111111326A ABD V -=⨯⨯⨯⨯=,111115166BCD A B C D V -=-=多面体.因此体积较大的几何体是多面体1111BCD A B C D -,其体积为56.由BD =11sin 602A BDS=︒又111122BCD S ∆=⨯⨯=,111S BB C C =正方形,故多面体1111BCD A B C D -1931322⨯+⨯=+. 21.(12分)如图,在平面直角坐标系xOy 中,顶点在坐标原点,以x 轴非负半轴为始边的锐角α与钝角β的终边与单位圆O 分别交于A ,B 两点,x 轴的非负半轴与单位圆O 交于点M ,已知OAM S ∆=,点B 的横坐标是(1)求cos()αβ-的值; (2)求2αβ-的值.解:(1)由题意知,||||1OA OM ==,点(cos ,sin )A αα,则有1||sin 2OAM S OM α∆=⋅=sin α, 又α为锐角,则cos α=, 因钝角β的终边与单位圆O 的交点B的横坐标是10-,则cos ββ=,所以cos()cos cos sin sin (αβαβαβ-=+=+= (2)由(1)知sin ααββ====则sin()sin cos cos sin (αβαβαβ-=-==,从而sin(2)sin[()]sin cos()cos sin()((αβααβααβααβ-=+-=-+-=因为α为锐角,sin α>, 则有(,)42ππα∈,即2(,)2παπ∈,又(,)2πβπ∈,因此2(,)22ππαβ-∈-,所以24παβ-=-.22.(12分)已知各项均为正数的数列{}n a 的前n 项和为n S ,11a =,*,2)n a n N n =∈.(1)求证:数列是等差数列,并求{}na 的通项公式;(2)若[]x 表示不超过x 的最大整数,如[ 1.2]2-=-,[2.1]2=,求22212111[]n a a a +++的值;11 (3)设*1()(21)(2)n n b n N n a =∈-+,123n n T b b b b =++++,问是否存在正整数m ,使得对任意正整数n 均有2022n m T >恒成立?若存在求出m 的最大值;若不存在,请说明理由. (1)证明:因为n a =2n时,1n n S S --=,即+=而0n a >1(2)n -,所以数列1==为首项,公差为1的等差数列,1(1)1n n +-⨯=,即2n S n =,当2n时,121n a n n n ==+-=-,又11a =满足上式, 所以{}n a 的通项公式为21n a n =-.(2)解:由(1)知222111(21)441n a n n n ==--+, 当2n 时,2211111()4441n a n n n n <=---, 则22212111111111111151()1(1)1412231444n a a a n n n +++<+-+-++-=+-<+=-, 当1n =时,211514a =<, 即对任意的*n N ∈,都有22221121111514n a a a a =+++<, 所以22212111[]1n a a a +++=. (3)解:由(1)知,1111()(21)(21)22121n b n n n n ==--+-+, 则有11111111[(1)()()](1)2335212122121n n T n n n n =-+-+⋯+-=-=-+++, 因1110(21)(23)n n n T T b n n ++-==>++,则数列{}n T 单调递增,111()3n min T T b ===, 因对任意正整数n 均有2022n m T >成立, 于是得120223m <,解得20226743m <=, 而*m N ∈,则673max m =,所以存在正整数m ,使得对任意正整数n 均有2022n m T >总成立,m 的最大值为673.。

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。

2021-2022学年重庆市高一下学期期末考试数学试题(解析版)

2021-2022学年重庆市高一下学期期末考试数学试题(解析版)

重庆市2021-2022学年高一下学期期末考试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i +的虚部是( ) A .12- B .12 C .12i D .1〖解 析〗111122i i =-+,∴复数11i +的虚部是12-. 〖答 案〗A2.设向量(2,1)a =,(3,)b m =,a b ⊥,则(m = ) A .6-B .32-C .16-D .32〖解 析〗(2,1)a =,(3,)b m =,a b ⊥,2310m ∴⨯+⨯=,解得6m =-.〖答 案〗A3.设空间中的平面α及两条直线a ,b 满足a α⊂/且b α⊂,则“a b =∅”是“//a α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件〖解 析〗当ab =∅时,两条直线a ,b 满足a α⊂/且b α⊂,a ∴与α可能相交,故充分性不成立,当//a α时,a α⊂/且b α⊂,ab ∴=∅,故“a b =∅”是“//a α”的必要不充分条件.〖答 案〗B4.某地区对居民用电实行阶梯电价以提高能源效率,统计该地区每户居民月均用电量,得到相关数据如表:如果将该地区居民用户的月均用电量划分为三档,第一档电量按照覆盖70%的居民用户的月均用电量确定,第二档电量按照覆盖90%的居民用户的月均用电量确定,则第二档电量区间为( ) A .(162,173]B .(173,195]C .(173,220]D .(220,)+∞〖解 析〗由题意知,第一档用电量区间为(0,173],第二档用电量区间为(173,220]. 〖答 案〗C5.已知ABC ∆AB AC ⋅,则(BAC ∠= ) A .6π B .4π C .3π D .23π〖解 析〗由题设,3||||cos 2ABC S AB AC AB AC BAC ∆⋅=∠,又1||||sin 2ABC S AB AC BAC ∆=∠sin BAC BAC ∠=∠,即tan BAC ∠=0BAC π<∠<,故3BAC π∠=.〖答 案〗C6.在正方体1111ABCD A B C D -中,与直线1AB 不垂直的直线是( ) A .1A BB .BCC .1A DD .1BD〖解 析〗如图所示,在正方形11ABB A 中,11AB A B ⊥;因为BC ⊥平面11ABB A ,故1BC AB ⊥; 连接1B C 、AC ,因为11//B C A D ,所以1AB 与1A D 所成的角为60︒,不垂直; 易得1BD ⊥平面1AB C ,所以11BD AB ⊥;所以C 正确. 〖答 案〗C7.已知某圆台上下底面的面积之比为1:9,侧面积为163π,母线长为2,则该圆台的高为( )A .2B C .43D .1〖解 析〗设圆台的上底面半径为r ,母线长为l ,高为h , 圆台上下底面的面积之比为1:9,∴下底面的半径为3r ,又母线长为2,圆台的侧面积为163π,则16(3)83r r l r πππ+⋅==,解得23r =,则圆台的高h ==.〖答 案〗B8.从三对夫妇中随机抽选2人参加采访活动,则恰好抽到一对夫妇的概率为( ) A .16B .15C .14D .13〖解 析〗从三对夫妇中随机抽选2人参加采访活动,基本事件总数2615n C ==,恰好抽到一对夫妇包含的基本事件个数133m C ==, 则恰好抽到一对夫妇的概率为31155m P n ===. 〖答 案〗B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.关于复数z 及其共轭复数z ,下列说法正确的是( ) A .z z R +∈B .||||z z =C .2||z z z ⋅=D .||||z z z z ⋅=⋅〖解 析〗设(,)z a bi a b R =+∈,则(,)z a bi a b R =-∈,则2z z a R +=∈,故A 正确;||||z z ==B 正确;2||||z z z ⋅=,故C 错误,D 正确. 〖答 案〗ABD10.设平面向量||1a =,||2b =,b 在a 方向上的投影向量为c ,则( ) A .a c c b ⋅=⋅B .a b a c ⋅=⋅C .||2a c ⋅D .||||a c a c ⋅=⋅〖解 析〗设b 与a 的夹角为θ,对于A ,当θ为锐角时,2||||||,||||cos ||a c a c c c b c b c θ⋅=⋅=⋅=⋅=,不一定相等, 故A 错误,对于B .当θ为锐角时,||||cos ||cos ||||||a b a b b a c a c c θθ⋅=⋅==⋅=⋅=,成立, 当θ为钝角时,||||cos ||cos ||||||a b a b b a c a c c θθ⋅=⋅==⋅=-⋅=-,成立,当θ为直角时,0a b a c ⋅=⋅= 成立,故正确; 对于C ,||||||||||2a c a c c b ⋅=⋅==,故C 正确,对于D ,||||cos a c a c θ⋅=⋅,故D 错误. 〖答 案〗BC11.已知100个零件中恰有2个次品,现从中不放回地依次随机抽取两个零件,记事件1A = “第一次抽到的零件为次品”,事件2A = “第二次抽到的零件为次品”,事件A = “抽到的两个零件中有次品”,事件B = “抽到的两个零件都是正品”,则( ) A .12()()P A P A =B .P (A )12()()P A P A =+C .()P AB P =(A )P +(B )D .P (B )12(1())(1())P A P A =-⋅-〖解 析〗12111001()50C P A C ==,2492111()509950P A ⨯+⨯==⨯,所以A 正确. 因为12A A ≠∅,12A A A =,故P (A )1212()()()P A P A P A A =+-,所以B 错误.因为AB ≠∅,AB =Ω,即A 、B 为对立事件,故()P A B P =(A )P +(B ),所以C 正确.P (B )2982100989710099A A ⨯==⨯,124949[1()][1()]5050P A P A P --=⨯≠(B ),所以D 错误. 〖答 案〗AC12.某学校规定,若五个工作日内学校某天有超过3个人的体温测量值高于37.5C ︒,则需全员进行核酸检测.该校统计了五个工作日内每天体温超过37.5C ︒的人数,则根据这组数据的下列信息,能断定该校不需全员进行核酸检测的是( ) A .中位数是1,平均数是1 B .中位数是1,众数是0 C .中位数是2,众数是2D .平均数是2,方差是0.8〖解 析〗A .因为中位数是1,设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为a ,b ,1,c ,d ,因为平均数是1,所以15a b c d ++++=,若4d =,则0a b c ===,不合题意,故正确; B .设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为0,0,1,2,4, 满足中位数是1,众数是0,但有一天超过3,故错误;C .设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为0,2,2,3,4, 满足中位数是2,众数是2,但有一天超过3,故错误;D .设五个工作日内每天体温超过37.5C ︒的人数为a ,b ,c ,d ,e , 因为平均数是2,方差是0.8,则10a b c d e ++++=,222221[(2)(2)(2)(2)(2)]0.85a b c d e -+-+-+-+-=, 即22222(2)(2)(2)(2)(2)4a b c d e -+-+-+-+-=,则4e ,若4e =,从方差角度来说2a b c d ====,不满足10a b c d e ++++=, 所以4e <,故正确. 〖答 案〗AD三、填空题:本题共4小题,每小题5分,共20分.13.在ABC ∆中,BC =,2AC =,34BCA π∠=,则AB = . 〖解 析〗在ABC ∆中,由余弦定理得:2222cos AB AC BC AC BC BAC =+-⋅∠334222cos4222cos 622244ππ=+-⨯=+-⨯=-⨯=,所以AB〖答 14.如图,边长为2的正方形A B C D ''''是用斜二测画法得到的四边形ABCD 的直观图,则四边形ABCD 的面积为 .〖解 析〗根据题意,正方形A B C D ''''的边长为2,其面积224S '=⨯=,则四边形ABCD 的面积S ='=〖答 案〗15.将一枚质地均匀的骰子连续抛掷两次,则点数之和为8的概率是 .〖解 析〗连续投掷2次,骰子点数的样本空间为6636⨯=,2次点数之和为8的有:(2,6),(3,5),(4,4),(6,2),(5,3),故有5种,其概率为536. 〖答 案〗53616.如图,ABCD 是棱长为6的正四面体,E ,F 为线段AB 的三等分点,G ,H 为线段CD 的三等分点,过点E ,F ,G ,H 分别作平行于平面BCD ,平面ACD ,平面ABD ,平面ABC 的截面,则正四面体ABCD 被这四个截面截去四个角后所得几何体的体积为 .〖解 析〗如图,取BCD ∆中心O ,连接OA ,因为ABCD 是棱长为6的正四面体, 所以OA ⊥平面BCD ,根据几何关系:6,BO AB AO ===所以正四面体ABCD 的体积为:11166332A BCD BCD V S OA -∆=⋅=⨯⨯⨯=因为平面//EMN 平面BCD ,E 为线段AB 的三等分点,所以19EMN BCD S S ∆∆=,三棱锥A EMN -的高13h OA =,所以11327A EMN EMN A BCD V S h V -∆-=⋅===, 所以正四面体ABCD 被这四个截面截去四个角后所得几何体的体积为4A BCD A EMN V V ---=.〖答 案〗3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在ABC ∆中,3AB =,2AC =,3A π=,点D ,E 分别在边AB ,BC 上,且AD DB =,2BE EC =,设DE xAB y AC =+.(1)求x ,y 的值; (2)求||DE . 解:(1)AD DB =,2BE EC =,∴12DB AB =,22()33BE BC AC AB ==-, ∴1212()2363DE BE BD AB AC AB AB AC =-=--=-+,DE xAB y AC =+,16x ∴=-,23y =.(2)ABC ∆中,3AB =,2AC =,3A π=,∴22121412149()942326336963236DE AB AC =-+=⨯+⨯-⨯⨯⨯⨯⨯=, ∴7||6DE =. 18.(12分)某学校派出甲、乙、丙三名同学参加英语演讲比赛,已知甲、乙、丙三人晋级的概率分别为13,34,23,且三人是否晋级彼此独立.(1)求甲、乙、丙三人中至少有一人晋级的概率; (2)求甲、乙、丙三人中恰有两人晋级的概率. 解:(1)设甲乙丙三人至少一人晋级的事件为A .依题意P (A )132171(1)(1)(1)34318=----=.(2)设甲乙丙三人至少一人晋级的事件为B .依题意P (B )132********(1)(1)(1)34343333436=-⨯⨯+-⨯⨯+-⨯⨯=.19.(12分)如图,在正三棱柱111ABC A B C -中,M ,N 分别为棱1AA ,BC 的中点.(1)证明://AN 平面1BMC ;(2)证明:平面1BMC ⊥平面11BB C C . 证明:(1)取1BC 的中点D ,连接ND ,MD ,则11////ND CC AA ,1122ND CC AM ===,得四边形AMDN 为平行四边形,//AN MD ∴,又MD ⊂平面1BMC ,AN ⊂/平面1BMC ,//AN ∴平面1BMC ; (2)在正三棱柱111ABC A B C -中,可得1BB ⊥平面ABC ,AN ⊂平面ABC ,1BB AN ∴⊥,又ABC ∆为正三角形,N 为棱BC 的中点. AN BC ∴⊥,又1BCBB B =,BC ,1BB ⊂平面11BB C C ,AN ∴⊥平面11BB C C ,由(1)可知//AN MD ,MD ∴⊥平面11BB C C ,MD ⊂平面1BMC ,∴平面1BMC ⊥平面11BB C C .20.(12分)学校统计了高三年级1000名学生的某次数学考试成绩,已知所有学生的成绩均在区间[100,150]内,且粮据统计结果绘制出如下频率分布表和频率分布直方图.(1)求图中a 的值;(2)试估计这1000名学生此次数学考试成绩的中位数.解:(1)由题设频率直方表如下:100.15a ∴=,解得0.015a =.(2)由(1)知:0.05100.20.50.05100.40.6a a +=<<++=,∴中位数位于[120,130)内,令中位数为x ,则0.0510(120)0.040.2(120)0.040.5a x x ++-⨯=+-⨯=, 解得127.5x =.21.(12分)如图1,在梯形ABCD 中,//AB CD ,AD DC ⊥,224AB AD CD ===,将ADB ∆沿DB 折成如图2所示的三棱锥P DBC -,且平面PDB ⊥平面DBC .(1)证明:PD BC ⊥;(2)设N 为线段PC 的中点,求直线DN 与平面PBC 所成角的正切值.(1)证明:在梯形ABCD 中,BD =,BC =4CD =,所以222BD BC CD +=,即BD BC ⊥, 取BD 的中点M ,连接PM ,CM , 因为PD PB =,所以PM BD ⊥,又平面PDB ⊥平面DBC ,平面PDB ⋂平面DBC BD =,所以PM ⊥平面DBC , 因为BC ⊂平面DBC ,所以PM BC ⊥, 因为BDPM M =,BD ,PM ⊂平面PBD ,所以BC ⊥平面PBD ,因为PD ⊂平面PBD ,所以PD BC ⊥.(2)解:由(1)知,PD BC ⊥,PD PB ⊥, 因为BCPB B =,BC ,PB ⊂平面PBC ,所以PD ⊥平面PBC ,所以PND ∠即为直线DN 与平面PBC 所成角,在PBD ∆中,12PM BD == 在BCM ∆中,2228210CM BC BM =+=+=, 由(1)知,PM ⊥平面DBC ,因为CM ⊂平面DBC ,所以PM CM ⊥,所以PC ==因为N 为线段PC 的中点,所以12PN PC ==tan PD PND PN ∠===,故直线DN 与平面PBC 22.(12分)如图,边长为2的等边ABC ∆所在平面内一点D 满足(0)CD t AB t =>,点P 在边BC 上,||PB m =.PDB ∆a AB =,b AC =.(1)用a ,b 及m 表示PC ; (2)求CB PD ⋅的最小值.解:(1)因为ABC ∆是边长为2的等边三角形,||PB m =,所以,||2PC m =-,所以2222222222m m m m mPC BC AC AB b a -----==-=-; (2)因为2222()2222m m m mPD PC CD b a ta b t a ----=+=-+=--,CB AB AC a b =-=-,1222,||||22a b a b ⋅=⨯⨯===,所以,22222()[()]24()4()2()22222m m m m mCB PD a b b t a m t t -----⋅=-⋅--=----+-224t m =+-,设三角形PBD 在PB 边上的高为h ,则12mh =h因为(0)CD t AB t =>,所以//,60CD AB BCD ∠=︒,所以11222sin 6022BCD S t ∆=⨯=⨯⨯︒,即2t m=,所以,44224242244CB PD t m m m m m ⋅=+-=+-⋅=,当且仅当42m m=,即m所以CB PD ⋅的最小值为4.重庆市2021-2022学年高一下学期期末考试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i +的虚部是( ) A .12- B .12 C .12i D .1〖解 析〗111122i i =-+,∴复数11i +的虚部是12-. 〖答 案〗A2.设向量(2,1)a =,(3,)b m =,a b ⊥,则(m = ) A .6-B .32-C .16-D .32〖解 析〗(2,1)a =,(3,)b m =,a b ⊥,2310m ∴⨯+⨯=,解得6m =-.〖答 案〗A3.设空间中的平面α及两条直线a ,b 满足a α⊂/且b α⊂,则“a b =∅”是“//a α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件〖解 析〗当ab =∅时,两条直线a ,b 满足a α⊂/且b α⊂,a ∴与α可能相交,故充分性不成立,当//a α时,a α⊂/且b α⊂,ab ∴=∅,故“a b =∅”是“//a α”的必要不充分条件.〖答 案〗B4.某地区对居民用电实行阶梯电价以提高能源效率,统计该地区每户居民月均用电量,得到相关数据如表:如果将该地区居民用户的月均用电量划分为三档,第一档电量按照覆盖70%的居民用户的月均用电量确定,第二档电量按照覆盖90%的居民用户的月均用电量确定,则第二档电量区间为( ) A .(162,173]B .(173,195]C .(173,220]D .(220,)+∞〖解 析〗由题意知,第一档用电量区间为(0,173],第二档用电量区间为(173,220]. 〖答 案〗C5.已知ABC ∆AB AC ⋅,则(BAC ∠= ) A .6π B .4π C .3π D .23π 〖解 析〗由题设,3||||cos 2ABC S AB AC AB AC BAC ∆⋅=∠,又1||||sin 2ABC S AB AC BAC ∆=∠sin BAC BAC ∠=∠,即tan BAC ∠=0BAC π<∠<,故3BAC π∠=.〖答 案〗C6.在正方体1111ABCD A B C D -中,与直线1AB 不垂直的直线是( ) A .1A BB .BCC .1A DD .1BD〖解 析〗如图所示,在正方形11ABB A 中,11AB A B ⊥;因为BC ⊥平面11ABB A ,故1BC AB ⊥; 连接1B C 、AC ,因为11//B C A D ,所以1AB 与1A D 所成的角为60︒,不垂直; 易得1BD ⊥平面1AB C ,所以11BD AB ⊥;所以C 正确. 〖答 案〗C7.已知某圆台上下底面的面积之比为1:9,侧面积为163π,母线长为2,则该圆台的高为( )A .2B C .43D .1〖解 析〗设圆台的上底面半径为r ,母线长为l ,高为h , 圆台上下底面的面积之比为1:9,∴下底面的半径为3r , 又母线长为2,圆台的侧面积为163π,则16(3)83r r l r πππ+⋅==,解得23r =,则圆台的高h ==.〖答 案〗B8.从三对夫妇中随机抽选2人参加采访活动,则恰好抽到一对夫妇的概率为( ) A .16B .15C .14D .13〖解 析〗从三对夫妇中随机抽选2人参加采访活动,基本事件总数2615n C ==,恰好抽到一对夫妇包含的基本事件个数133m C ==, 则恰好抽到一对夫妇的概率为31155m P n ===. 〖答 案〗B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.关于复数z 及其共轭复数z ,下列说法正确的是( ) A .z z R +∈B .||||z z =C .2||z z z ⋅=D .||||z z z z ⋅=⋅〖解 析〗设(,)z a bi a b R =+∈,则(,)z a bi a b R =-∈,则2z z a R +=∈,故A 正确;||||z z ==B 正确;2||||z z z ⋅=,故C 错误,D 正确. 〖答 案〗ABD10.设平面向量||1a =,||2b =,b 在a 方向上的投影向量为c ,则( ) A .a c c b ⋅=⋅B .a b a c ⋅=⋅C .||2a c ⋅D .||||a c a c ⋅=⋅〖解 析〗设b 与a 的夹角为θ,对于A ,当θ为锐角时,2||||||,||||cos ||a c a c c c b c b c θ⋅=⋅=⋅=⋅=,不一定相等, 故A 错误,对于B .当θ为锐角时,||||cos ||cos ||||||a b a b b a c a c c θθ⋅=⋅==⋅=⋅=,成立, 当θ为钝角时,||||cos ||cos ||||||a b a b b a c a c c θθ⋅=⋅==⋅=-⋅=-,成立, 当θ为直角时,0a b a c ⋅=⋅= 成立,故正确; 对于C ,||||||||||2a c a c c b ⋅=⋅==,故C 正确,对于D ,||||cos a c a c θ⋅=⋅,故D 错误. 〖答 案〗BC11.已知100个零件中恰有2个次品,现从中不放回地依次随机抽取两个零件,记事件1A = “第一次抽到的零件为次品”,事件2A = “第二次抽到的零件为次品”,事件A = “抽到的两个零件中有次品”,事件B = “抽到的两个零件都是正品”,则( )A .12()()P A P A =B .P (A )12()()P A P A =+C .()P AB P =(A )P +(B )D .P (B )12(1())(1())P A P A =-⋅-〖解 析〗12111001()50C P A C ==,2492111()509950P A ⨯+⨯==⨯,所以A 正确. 因为12A A ≠∅,12A A A =,故P (A )1212()()()P A P A P A A =+-,所以B 错误.因为AB ≠∅,AB =Ω,即A 、B 为对立事件,故()P A B P =(A )P +(B ),所以C 正确.P (B )2982100989710099A A ⨯==⨯,124949[1()][1()]5050P A P A P --=⨯≠(B ),所以D 错误. 〖答 案〗AC12.某学校规定,若五个工作日内学校某天有超过3个人的体温测量值高于37.5C ︒,则需全员进行核酸检测.该校统计了五个工作日内每天体温超过37.5C ︒的人数,则根据这组数据的下列信息,能断定该校不需全员进行核酸检测的是( ) A .中位数是1,平均数是1 B .中位数是1,众数是0 C .中位数是2,众数是2D .平均数是2,方差是0.8〖解 析〗A .因为中位数是1,设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为a ,b ,1,c ,d ,因为平均数是1,所以15a b c d ++++=,若4d =,则0a b c ===,不合题意,故正确; B .设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为0,0,1,2,4, 满足中位数是1,众数是0,但有一天超过3,故错误;C .设五个工作日内每天体温超过37.5C ︒的人数为从小到大的顺序为0,2,2,3,4, 满足中位数是2,众数是2,但有一天超过3,故错误;D .设五个工作日内每天体温超过37.5C ︒的人数为a ,b ,c ,d ,e , 因为平均数是2,方差是0.8,则10a b c d e ++++=,222221[(2)(2)(2)(2)(2)]0.85a b c d e -+-+-+-+-=, 即22222(2)(2)(2)(2)(2)4a b c d e -+-+-+-+-=,则4e ,若4e =,从方差角度来说2a b c d ====,不满足10a b c d e ++++=, 所以4e <,故正确.〖答 案〗AD三、填空题:本题共4小题,每小题5分,共20分.13.在ABC ∆中,BC =,2AC =,34BCA π∠=,则AB = . 〖解 析〗在ABC ∆中,由余弦定理得:2222cos AB AC BC AC BC BAC =+-⋅∠334222cos4222cos 622244ππ=+-⨯=+-⨯=-⨯=,所以AB〖答 14.如图,边长为2的正方形A B C D ''''是用斜二测画法得到的四边形ABCD 的直观图,则四边形ABCD 的面积为 .〖解 析〗根据题意,正方形A B C D ''''的边长为2,其面积224S '=⨯=,则四边形ABCD 的面积S ='=〖答 案〗15.将一枚质地均匀的骰子连续抛掷两次,则点数之和为8的概率是 .〖解 析〗连续投掷2次,骰子点数的样本空间为6636⨯=,2次点数之和为8的有:(2,6),(3,5),(4,4),(6,2),(5,3),故有5种,其概率为536. 〖答 案〗53616.如图,ABCD 是棱长为6的正四面体,E ,F 为线段AB 的三等分点,G ,H 为线段CD 的三等分点,过点E ,F ,G ,H 分别作平行于平面BCD ,平面ACD ,平面ABD ,平面ABC 的截面,则正四面体ABCD 被这四个截面截去四个角后所得几何体的体积为 .〖解 析〗如图,取BCD ∆中心O ,连接OA ,因为ABCD 是棱长为6的正四面体, 所以OA ⊥平面BCD ,根据几何关系:6,BO AB AO ===所以正四面体ABCD 的体积为:11166332A BCD BCD V S OA -∆=⋅=⨯⨯⨯=因为平面//EMN 平面BCD ,E 为线段AB 的三等分点,所以19EMN BCD S S ∆∆=,三棱锥A EMN -的高13h OA =,所以11327A EMN EMN A BCD V S h V -∆-=⋅===, 所以正四面体ABCD 被这四个截面截去四个角后所得几何体的体积为4A BCD A EMN V V ---=.〖答 案〗3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在ABC ∆中,3AB =,2AC =,3A π=,点D ,E 分别在边AB ,BC 上,且AD DB =,2BE EC =,设DE xAB y AC =+.(1)求x ,y 的值; (2)求||DE . 解:(1)AD DB =,2BE EC =,∴12DB AB =,22()33BE BC AC AB ==-, ∴1212()2363DE BE BD AB AC AB AB AC =-=--=-+,DE xAB y AC =+,16x ∴=-,23y =.(2)ABC ∆中,3AB =,2AC =,3A π=,∴22121412149()942326336963236DE AB AC =-+=⨯+⨯-⨯⨯⨯⨯⨯=, ∴7||6DE =. 18.(12分)某学校派出甲、乙、丙三名同学参加英语演讲比赛,已知甲、乙、丙三人晋级的概率分别为13,34,23,且三人是否晋级彼此独立.(1)求甲、乙、丙三人中至少有一人晋级的概率; (2)求甲、乙、丙三人中恰有两人晋级的概率. 解:(1)设甲乙丙三人至少一人晋级的事件为A .依题意P (A )132171(1)(1)(1)34318=----=.(2)设甲乙丙三人至少一人晋级的事件为B .依题意P (B )132********(1)(1)(1)34343333436=-⨯⨯+-⨯⨯+-⨯⨯=.19.(12分)如图,在正三棱柱111ABC A B C -中,M ,N 分别为棱1AA ,BC 的中点.(1)证明://AN 平面1BMC ; (2)证明:平面1BMC ⊥平面11BB C C . 证明:(1)取1BC 的中点D ,连接ND ,MD ,则11////ND CC AA ,1122ND CC AM ===,得四边形AMDN 为平行四边形,//AN MD ∴,又MD ⊂平面1BMC ,AN ⊂/平面1BMC ,//AN ∴平面1BMC ; (2)在正三棱柱111ABC A B C -中,可得1BB ⊥平面ABC ,AN ⊂平面ABC ,1BB AN ∴⊥,又ABC ∆为正三角形,N 为棱BC 的中点.AN BC ∴⊥,又1BCBB B =,BC ,1BB ⊂平面11BB C C ,AN ∴⊥平面11BB C C ,由(1)可知//AN MD ,MD ∴⊥平面11BB C C ,MD ⊂平面1BMC ,∴平面1BMC ⊥平面11BB C C .20.(12分)学校统计了高三年级1000名学生的某次数学考试成绩,已知所有学生的成绩均在区间[100,150]内,且粮据统计结果绘制出如下频率分布表和频率分布直方图.(1)求图中a 的值;(2)试估计这1000名学生此次数学考试成绩的中位数.解:(1)由题设频率直方表如下:100.15a ∴=,解得0.015a =.(2)由(1)知:0.05100.20.50.05100.40.6a a +=<<++=,∴中位数位于[120,130)内,令中位数为x ,则0.0510(120)0.040.2(120)0.040.5a x x ++-⨯=+-⨯=, 解得127.5x =.21.(12分)如图1,在梯形ABCD 中,//AB CD ,AD DC ⊥,224AB AD CD ===,将ADB ∆沿DB 折成如图2所示的三棱锥P DBC -,且平面PDB ⊥平面DBC .(1)证明:PD BC ⊥;(2)设N 为线段PC 的中点,求直线DN 与平面PBC 所成角的正切值.(1)证明:在梯形ABCD 中,BD =,BC =4CD =, 所以222BD BC CD +=,即BD BC ⊥, 取BD 的中点M ,连接PM ,CM , 因为PD PB =,所以PM BD ⊥,又平面PDB ⊥平面DBC ,平面PDB ⋂平面DBC BD =,所以PM ⊥平面DBC , 因为BC ⊂平面DBC ,所以PM BC ⊥, 因为BDPM M =,BD ,PM ⊂平面PBD ,所以BC ⊥平面PBD ,因为PD ⊂平面PBD ,所以PD BC ⊥.(2)解:由(1)知,PD BC ⊥,PD PB ⊥,因为BC PB B =,BC ,PB ⊂平面PBC ,所以PD ⊥平面PBC ,所以PND ∠即为直线DN 与平面PBC 所成角,在PBD ∆中,12PM BD == 在BCM ∆中,2228210CM BC BM =+=+=,由(1)知,PM ⊥平面DBC ,因为CM ⊂平面DBC ,所以PM CM ⊥,所以PC ==因为N 为线段PC 的中点,所以12PN PC ==tan PD PND PN ∠===,故直线DN 与平面PBC 22.(12分)如图,边长为2的等边ABC ∆所在平面内一点D 满足(0)CD t AB t =>,点P 在边BC 上,||PB m =.PDB ∆a AB =,b AC =.(1)用a ,b 及m 表示PC ;(2)求CB PD ⋅的最小值.解:(1)因为ABC ∆是边长为2的等边三角形,||PB m =,所以,||2PC m =-, 所以2222222222m m m m m PC BC AC AB b a -----==-=-; (2)因为2222()2222m m m m PD PC CD b a ta b t a ----=+=-+=--,CB AB AC a b =-=-, 1222,||||22a b a b ⋅=⨯⨯===, 所以,22222()[()]24()4()2()22222m m m m m CB PD a b b t a m t t -----⋅=-⋅--=----+- 224t m =+-,设三角形PBD 在PB 边上的高为h ,则12mh =h 因为(0)CD t AB t =>,所以//,60CD AB BCD ∠=︒,所以11222sin 6022BCD S t ∆=⨯=⨯⨯︒,即2t m=,所以,44224242244CB PD t m m m m m ⋅=+-=+-⋅=,当且仅当42m m=,即m所以CB PD ⋅的最小值为4.。

2021-2022学年山东省潍坊市高一下学期期末考试数学试题(解析版)

2021-2022学年山东省潍坊市高一下学期期末考试数学试题(解析版)

山东省潍坊市2021-2022学年高一下学期期末考试数学试题一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在正方体1111ABCD A B C D -中,与棱1AA 异面的棱有( ) A .8条B .6条C .4条D .2条〖解 析〗如图所示,正方体1111ABCD A B C D -中,与棱1AA 异面的棱有:BC ,CD ,11C D ,11B C . 〖答 案〗C2.下列命题正确的是( ) A .若向量//a b ,//b c ,则//a c B .模相等的两个平行向量是相等向量C .方向不同的两个向量不可能是共线向量D .若向量(3,6)a =--,则a 分别在x 轴,y 轴上的投影的数量之和为9-〖解 析〗A .若a 与c 不共线,0b =,满足//a b ,//b c ,则得不出//a c ,A 错误; B .模相等方向相反时,这两个向量不相等,B 错误; C .方向相反的两个向量共线,C 错误;D.(3,6)a =--在x 轴上的投影为3-,在y 轴上的投影为6-,D 正确.〖答 案〗D3.下列各式化简结果为12的是( ) A .212cos 75-︒ B .sin15cos15︒︒C .sin14cos16sin76cos74︒︒+︒︒D .tan20tan25tan20tan25︒+︒+︒︒〖解 析〗对于A ,原式1(1cos150)cos150cos30=-+︒=-︒=︒=,故错误; 对于B ,原式1111sin302224=︒=⨯=,故错误;对于C ,原式1sin14cos16cos14sin16sin(1416)sin302=︒︒+︒︒=︒+︒=︒=,故正确; 对于D ,原式tan(2025)(1tan20tan25)tan20tan25=︒+︒-︒︒+︒︒tan45(1tan20tan25)tan20tan251tan20tan25tan20tan251=︒-︒︒+︒︒=-︒︒+︒︒=,故错误.〖答 案〗C4.定义域是复数集的子集的函数称为复变函数,2()f z z =就是一个多项式复变函数.给定多项式复变函数()f z 之后,对任意一个复数0z ,通过计算公式1()n n z f z +=,n N ∈,可以得到一列值0z ,1z ,2z ,⋯,n z ,⋯.若2()f z z =,01z i =-,当3n 时,(n z = ) A .122n -B .22nC .122n +D .14n -〖解 析〗依题意,21(1)2z i i =-=-,22(2)4z i =-=-,243(4)2z =-=, 当3n 时,0n z >,由21n n z z +=,得:212log 2log n n z z +=,而23log 4z =,则2122n nlog z log z +=,当4n 时,252622422323242521n n n log z log z log z log z log z log z log z log z log z log z -=⨯⨯⨯⨯⋅⋅⋅⨯31422n n --=⨯=, 23log 4z =满足上式,∴当3n 时,12log 2n n z -=,122n n z -=.〖答 案〗A5.在ABC ∆中,若3AB =,4BC =,30C =︒,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定〖解 析〗3AB =,4BC =,AB BC <,C A ∴<,A ∴必为大于30︒的角,故A 可以为锐角,也可以是钝角,∴此三角形有二解.〖答 案〗B 6.若tan 2θ=-,则sin cos2(sin cos θθθθ=- )A .65-B .25-C .25D .65〖解 析〗因为tan 2θ=-,所以sin cos2sin cos θθθθ-22sin ()sin cos cos sin θθθθθ-=-sin (cos sin )(cos sin )sin cos θθθθθθθ+-=-2sin cos sin θθθ=--222sin cos sin sin cos θθθθθ--=+22tan 1tan tan θθθ--=+2441-=+25=-. 〖答 案〗B7.如图,在平行四边形ABCD 中,E ,F 分别为线段AD ,CD 的中点,且AF CE G =,则( )A .12AF AD AB =-B .2133AG AD AB =- C .1()2EF AD AB =+D .3BG GD =〖解 析〗E ,F 分别为线段AD ,CD 的中点,∴12EF AC =, AC AD AB =+,∴1()2EF AD AB =+,故选项C 正确; 12AF AD DF AD AB =+=+,故选项A 错误; 221333AG AF AD AB ==+,故选项B 错误; 2BG GD =,故选项D 错误.〖答 案〗C8.已知函数()cos (0)f x x x ωωω=>,若()f x 的图像在区间(0,)π上有且只有2个最低点,则实数ω的取值范围为( ) A .137(,]62B .725(,]26C .814(,]33D .28(,]33〖解 析〗函数()cos (0)2cos()3f x x x x πωωωω=>=+,若()f x 的图像在区间(0,)π上有且只有2个最低点,(33x ππω+∈,)3πωπ+, 353ππωππ∴<+,求得81433ω<. 〖答 案〗C二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.已知正四棱台上、下底面边长分别为2,4,侧棱长为2,则( )A .正四棱台的高为2BC .正四棱台的表面积为20+D〖解 析〗对于A ,正四棱台上下底面对角线长为,∴正四棱台的高h ==错误;对于B ,正四棱台的斜高h '==B 正确;对于C ,正四棱台侧面积为14(24)2⨯⨯+4,16,∴正四棱台的表面积41620S =++=+C 正确;对于D ,正四棱台的体积1(416)3V =D 正确.〖答 案〗BCD10.设1z ,2z ,3z 为复数,且30z ≠,则下列命题正确的是( ) A .若12||||z z =,则12z z =± B .若1323z z z z =,则12z z = C .若2313||z z z =,则13z z =D .若21z z =,则1323||||z z z z =〖解 析〗当11z =,2z i =时,12||||z z =,但12z z ≠±,故选项A 错误;1323z z z z =,且30z ≠,12z z ∴=,故选项B 正确;当1z i =,3z i =-时,2313||z z z =,但13z z ≠,故选项C 错误; 若21z z =,则1313||||||z z z z =⋅,23231313||||||||||||||z z z z z z z z =⋅=⋅=⋅, 故选项D 正确. 〖答 案〗BD11.已知函数()cos(2)12f x x π=+,则下列说法正确的是( )A .函数()f x 的最小正周期为2πB .函数()f x 的图像关于直线1124x π=对称C .函数()f x 的图像关于点7(,0)24π-对称D .函数()f x 在(0,)4π上单调递减〖解 析〗对于函数()cos(2)12f x x π=+,对于A :函数的最小正周期为22ππ=,故A 错误; 对于B :当1124x π=时,1124()cos 12424f ππ==-,故B 正确; 对于C :当724x π=-时,7142()cos()cos()02424242f ππππ--=+=-=,故C 正确; 对于D :当(0,)4x π∈时,72(,)121212x πππ+∈,故函数在该区间上单调递减,故D 正确.〖答 案〗BCD12.在ABC ∆中,P ,Q 分别为边AC ,BC 上一点,BP ,AQ 交于点D ,且满足AP tPC =,BQ QC λ=,BD DP μ=,AD mDQ =,则下列结论正确的为( )A .若12t =且3λ=时,则23m =,9μ=B .若2μ=且1m =时,则13λ=,12t =C .若121tλ-=时,则121t μ-=D .(1)(1)(1)(1)t mt m μλμλ=++++ 〖解 析〗由题意得:1t AC AP t +=,1m AQ AD m+=,BQ QC λ=, ()AQ AB AC AQ λ-=-,即111AQ AC AB λλλ=⋅+⋅++, 即11111m t AD AP AB m t λλλ++=⋅⋅+⋅++, 所以111111t m mAD AP AB t m m λλλ+=⋅⋅+⋅++++,因为B ,D ,P 三点共线,所以1111111t m mt m m λλλ+⋅⋅+⋅=++++,当12t =,且3λ=时,11312111311312m m m m +⋅⋅+⋅=++++,解得23m =,1BP BD μμ+=,1BC BQ λλ+=,AP tPC =, ∴()BP BA t BC BP -=-,即111t BP BC BA t t=⋅+⋅++, 即11111t BD BC BA t t μλμλ++=⋅⋅+⋅++,所以111111t BD BC BA t t λλλλλλ+++=⋅⋅+⋅++,因为A ,D ,Q 三点共线,所以1111111t t t λμμλμμ+⋅⋅+⋅=++++, 当12t =,且3λ=时,131121113111122μμμμ+⋅⋅+⋅=++++,解得9μ=,故A 正确; 若2μ=且1m =时,11211t t λλλ+⋅+=++,,113112t t t λλ+⋅+=++,解得12λ=,13t =,故B 错误; 1111111t t t λμμλμμ+⋅⋅+⋅=++++,变形为1111t t t t λλλμ++=+++①, 若121t λ-=时,则2t t λλ-=,代入①式得1111t μ-=+, 假设1111t μ-=+成立,则121t t=+,解得2t =-,此时10λ=,显然无解,故假设不成立,故C 错,同理可得1111111m m m λμμλμμ++⋅⋅+⋅=+++,1111111m t m m t m μμμ++⋅⋅+⋅=+++,所以111111(1)(1)t m m t m m μμμμμ-⋅=-=++++++,111111(1)(1)m m m m m λμμλμμ-⋅=-=++++++, 所以(1)(1)(1)(1)t mt m μλμλ=++++.故D 正确. 〖答 案〗AD三、填空题:本大题共4小题,每小题5分,共20分.把〖答 案〗填在答题卡的相应位置. 13.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,若222sin a c b B +-=,则B = .〖解析〗因为222sin a c b B +-=,所以由余弦定理可得2cos sin ac B B =,所以可得tan B =, 又(0,)B π∈,则3B π=.〖答 案〗3π14.已知正三棱柱111ABC A B C -的底面边长为1,侧棱长为2,则其外接球的表面积为 . 〖解 析〗如图,设正三棱柱111ABC A B C -的上下底面中心分别为E ,F ,则由正三棱柱与球的对称性可知EF 的中点O 即为正三棱柱111ABC A B C -的外接球心, OA ∴即为外接球的半径R ,设正三角形ABC 的截面小圆半径为r ,又正三棱柱111ABC A B C -的底面边长为1,∴由正弦定理可得12sin 60r =︒,∴r =,又12EF AA ==,1OF ∴=,在Rt AOF ∆中由勾股定理可得222r OF R +=,∴2113R +=,∴243R =,∴正三棱柱111ABC A B C -的外接球的表面积为24164433R πππ=⨯⨯=. 〖答 案〗163π 15.如图所示,为测算某自然水域的最大宽度(即A ,B 两点间的距离),现取与A ,B 两点在同一平面内的两点C ,D ,测得C ,D 间的距离为1500米,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A ,B 两点的距离为 米.〖解 析〗由题意可知在ADC ∆中,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, 则1801501515DAC ∠=︒-︒-︒=︒,故1500AD DC ==, 在BDC ∆中,15120135DCB ACD ACB ∠=∠+∠=︒+︒=︒, 故1801351530DBC ∠=︒-︒-︒=︒,故由sin sin BD CDDCB DBC=∠∠得1500sin 21sin 2CD DCB BD DBC ∠===∠,在ADB ∆中,2222cos135AB AD BD AD BD =+-⋅⋅︒,22215002150051500=++⨯⨯=⨯,故AB =). 〖答案〗16.在平面直角坐标系xOy 中,给定1(A x ,1)y ,2(B x ,2)y ,假设O ,A ,B 不在同一直线上,利用向量的数量积可以方便的求出OAB ∆的面积为12211||2S x y x y =-.已知三点(1,1)A ,(3,4)B -,2(,8)1tC t +,则ABC ∆面积的最大值为 . 〖解 析〗依题意,在ABC ∆中,1(OA x =,1)y ,2(OB x =,2)y , 则ABC ∆的面积为12211||2S x y x y =-, 当(1,1)A ,(3,4)B -,2(1t C t +,8)时,(4,3)AB =-,2(11t AC t =-+,7) 则ABC ∆面积22113|3(1)28||25|2121ABC t t S t t ∆=-+=+++, 显然ABC ∆面积取最大值时,必有0t >,因此,当0t >时,213131353(25)(25)(25)1212242ABC t S t t t t ∆=+=+=++⨯, 当且仅当1t =时取“=”, 所以ABC ∆面积的最大值为534. 〖答 案〗534四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知(3,)A m ,(2,1)B ,(2,1)C -,(,2)D n -是复平面内的四个点,其中m ,n R ∈,且向量AC ,BD 对应的复数分别为1z ,2z ,且1262z z i -=-+. (1)求1z ,2z ; (2)若复数12z tz z +=,t R ∈,在复平面内对应的点Z 在第四象限,求实数t 的取值范围. 解:(1)由已知可得(5,1)AC m =--,(2BD n =-,3)-, 则15(1)z m i =-+-,223z n i =--,所以123(4)62z z n m i i -=--+-=-+,则3642n m -=-⎧⎨-=⎩,解得2m =,9n =,所以15z i =--,273z i =-, (2)因为125(5)(73)(327)(223)73(73)(73)58z t i t t i i t t iz z i i i +--+-+-+-++-+====--+ 在复平面内对应的点在第四象限,则32702230t t -+>⎧⎨-+<⎩,解得322273t <<,即实数t 的范围为3222(,)73. 18.(12分)已知向量(1,2)a =,(2,5)b =-,2()c a tb t R =+∈. (1)若c b ⊥,求t 的值;(2)若c 与a 的夹角为锐角,求t 的取值范围. 解:(1)c b ⊥,(22,45)c t t =-+,∴2(22)5(45)0c b t t ⋅=--++=,∴1629t =-; (2)c 与a 的夹角为锐角,∴0c a ⋅>,且c 与a 不共线,∴222(45)0452(22)0t t t t -++>⎧⎨+--≠⎩,解得54t >-且0t ≠,t ∴的取值范围为:504t t t ⎧⎫-≠⎨⎬⎩⎭且.19.(12分)在ABC ∆中,点P 在边BC 上,3C π=,4AP =,记AC 的长为m ,PC 的长为n ,且16mn =. (1)求APB ∠;(2)若ABC ∆的面积为sin PAB ∠. 解:(1)在APC ∆中,由于3C π=,AC m =,PC n =,16AC PC mn ⋅==,所以利用余弦定理2222cos3AP AC PC AC PC π=+-⋅⋅,整理得:22216()3m n mn m n mn =+-=+-,解得8m n +=,故4m n ==, 则:AC PC AP ==,所以APC ∆为等边三角形,所以23APB π∠=. (2)由ABC S ∆=,所以1sin 2AC BC ⋅⋅⋅=7BC =,则3BP =;如图所示:作AD BC ⊥交BC 于点D ,由(1)可知:在等边三角形APC 中,AD =2PD =,在Rt ABD ∆中,AB = 在ABP ∆中,利用正弦定理:sin sin AB PBAPB PAB=∠∠,整理得:3sin74PAB ∠==.20.(12分)某景区为提升游客观赏体验,搭建一批圆锥形屋顶的小屋(如图1).现测量其中一个屋顶,得到圆锥SO 的底面直径AB 长为12m ,母线SA 长为18m (如图2).(1)现用鲜花铺设屋顶,如果每平方米大约需要鲜花50朵,那么装饰这个屋顶(不含底面)大约需要多少朵鲜花(参考数据: 3.14)π≈;(2)若C 是母线SA 的一个三等分点(靠近点)S ,从点A 到点C 绕屋顶侧面一周安装灯光带,求灯光带的最小长度.解:(1)圆锥的侧面展开图的面积为:618339.12S rl ππ==⨯⨯≈, 需要的鲜花为:339.125016956⨯=(朵); (2)圆锥的侧面展开图如图:122183ASC ππ∠==,18SA =,6SC =,在SAC ∆中,AC ==即灯光带的最小长度为米.21.(12分)已知函数5()sin(2)2cos()sin()644f x x x x πππ=--++. (1)求函数()f x 的单调递增区间;(2)若函数()y f x k =-在区间11[,]612ππ-上有且仅有两个零点,求实数k 的取值范围. 解:(1)5()sin(2)2cos()sin()644f x x x x πππ=--++ sin 2cos cos2sin 2cos()sin()6644x x x x ππππ=-+++12cos2sin(2)22x x x π=-++12cos2cos22x x x =-+12cos22x x =+sin(2)6x π=+, 令222262k x k πππππ-+++,k Z ∈,所以36k x k ππππ-++,k Z ∈,所以函数()f x 的单调递增区间为:[3k ππ-+,]6k ππ+,k Z ∈.(2)函数()y f x k =-在区间11[,]612ππ-上有且仅有两个零点, 即曲线sin(2)6y x π=+与直线y k =在区间11[,]612ππ-上有且仅有两个交点, 由11[,]612x ππ∈-,可得2[66x ππ+∈-,2]π, 当11[,]612x ππ∈-时,()sin(2)[16f x x π=+∈-,1], 设26t x π=+,则sin y t =,[6t π∈-,2]π,当(1k ∈-,1)(02-⋃,1)时,曲线sin y t =与直线y k =区间[6t π∈-,2]π上有且仅有两个交点.22.(12分)已知函数()sin()(0f x x ωϕω=+>,||)ϕπ<,()f x 图像上相邻的最高点与最低点的横坐标相差2π,3x π=-是()f x 的一条对称轴,且()(1)6f f π>. (1)求()f x 的〖解 析〗式;(2)将函数()f x 的图像向右平移12π个单位得到函数()t x 的图像,若存在1x ,2x ,⋯,m x 满足1205m x x x π<<⋯<,且1223|()()||()()|t x t x t x t x -+-+⋯+1|()()|20(2m m t x t x m --=,*)m N ∈,求m 的最小值;(3)令()()cos2h x f x x =-,()[()]g x h h x =,若存在[,]123x ππ∈使得2()(2)()30g x a g x a +-+-成立,求实数a 的取值范围.解:(1)由题意,周期22T ππ=⨯=,故22,()sin(2)f x x πωϕπ===+, 且2()()32k k Z ππϕπ⨯-+=+∈,即7()6k k Z πϕπ=+∈, 因为||ϕπ<,故766ππϕπ=-=或75266ππϕπ=-=-, 故()sin(2)6f x x π=+或5()sin(2)6f x x π=-.当()sin(2)6f x x π=+时,()sin(2)1,(1)sin(2)16666f f ππππ=⨯+==+<, 故()sin(2)6f x x π=+成立;当5()sin(2)6f x x π=-时, 55()sin(2)1,(1)sin(2)16666f f ππππ=⨯-=-=->-.综上有()sin(2)6f x x π=+; (2)由题意,()sin[2()]sin 2126t x x x ππ=-+=,根据题意,要使m 的值尽量小, 则1|()()|m m t x t x --要尽量大.又1|()()|2m m t x t x --,结合()sin 2t x x =的图象可得,当12345673579110,,,,,,444444x x x x x x x ππππππ=======, 8910111213151719,,,,54444x x x x x πππππ=====时, m 的取值最小为12,(3)由(1)()2sin(2)6f x x π=+,所以1()()cos2sin(2)cos2cos2cos262h x f x x x x x x x π=-=+-=+-12cos2sin(2)26x x x π=-=-, 当[,]123x ππ∈时,0262x ππ-, 0()1h x ∴,所以,2()2666h x πππ---,所以,1()[()]sin[2()][,sin(2)]626g x h h x h x ππ==-∈--, ∴1()1[,1sin(2)]26g x π+∈+-,2223ππ<<,∴2362πππ<-<sin(2)16π<-<, 由2()(2)()30g x a g x a +-+-,可得2()2()3[()1]g x g x a g x +++,所以,22()2()3[()1]22()1()1()1()1g x g x g x a g x g x g x g x ++++==+++++,由基本不等式可得2()12[()()1g x g x g x ++++,当且仅当1()1[,1sin(2)]26g x π++-时,等号成立,所以,22a .即a ∈)+∞.。

【数学】上海市普陀区曹杨第二中学2022-2023学年高一下学期期末考试试卷 (解析版)

【数学】上海市普陀区曹杨第二中学2022-2023学年高一下学期期末考试试卷 (解析版)

上海市普陀区曹杨第二中学2020-2021学年高一下学期期末考试数学试题一,填空题1.已知复数z=1﹣i,则Im z= .【结果】﹣1【思路】∵复数z=1﹣i,∴Im z=﹣1,故结果为:﹣1.2.已知复数z满足,且|z+i|=1,则z= .【结果】1﹣i【思路】设复数z=a+bi(a,b∈R),∵,∴a+bi+a﹣bi=2,∴a=1,∴z=1+bi,∵|z+i|=|1+(b+1)i|==1,∴b=﹣1,∴z=1﹣i,故结果为:1﹣i.3.已知向量=(2,4),=(﹣1,1),则2﹣= .【结果】(5,7)【思路】∵向量=(2,4),=(﹣1,1),∴2﹣=2(2,4)﹣(﹣1,1)=(5,7).故结果为:(5,7).4.若cos(θ+)=1,则cosθ= .【结果】【思路】因为cos(θ+)=1,所以sin(θ+)=0,所以cosθ=cos[(θ+)﹣]=cos(θ+)cos+sin(θ+)sin=1×+0×=.故结果为:.5.若向量,,,则= .【结果】0【思路】向量,,,可得,所以1+2+4=5,所以=0.故结果为:0.6.已知{a n}为等差数列,{a n}地前5项和S5=20,a5=6,则a10= .【结果】11【思路】∵{a n}为等差数列,∴S5=5a3=20,∴a3=4,∵a5=6,a3=4,∴2d=a5﹣a3=6﹣4=2,即d=1,∴a10=a5+5d=6+5=11.故结果为:11.7.已知{a n}为等比数列,首项和公比均为,则{a n}前10项和为 .【结果】【思路】依据题意,{a n}为等比数列,首项和公比均为,则S10==。

故结果为:.8.设O为坐标原点,A(2,0),B(﹣3,4),则向量在上地投影为 ﹣3 .【结果】-3【思路】因为A(2,0),B(﹣3,4),所以,所以在上地投影为.故结果为:﹣3.9.已知正方形ABCD地边长为3,点E,F分别在边BC,DC上,BC=3BE,,若,则实数λ地值为 .【结果】【思路】,,所以,解得.故结果为:.10.已知数列{a n}为等比数列,函数过定点(a1,a2),设b n=log2a n,数列{b n}地前n项和为S n,则S n地最大值为 1 .【结果】1【思路】函数过定点(a1,a2),令x=2=0,解得x=2,当x=2时,y=1,所以a1=2,a2=1,由于数列{a n}为等比数列,,所以公比q=,所以,则b n=log2a n=2﹣n,由于b1=1,b2=0,b3=﹣1,......,所以S n地最大值为:S2=b1+b2=1.故结果为:1.11.已知函数,则地值为 .【结果】2020【思路】依据题意,函数,则f(1﹣x)=(1﹣x﹣)3+1=﹣(x﹣)3+1,故f(x)+f(1﹣x)=2,则=f()+f()+f()+f()+……+f()+f()=2×1010=2020。

高一下学期数学期末试卷含答案(共5套)

高一下学期数学期末试卷含答案(共5套)

高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。

浙江省杭州市2022-2023学年高一下学期期末数学试题(解析版)

浙江省杭州市2022-2023学年高一下学期期末数学试题(解析版)

2022学年第二学期杭州市高一年级教学质量检测数学试题卷考生须知:1.本试卷分试题卷和答题卡两部分.满分150分,考试时间120分钟.2.答题前,必须在答题卡指定位置上用黑笔填写学校名、姓名、试场号、座位号、准考证号,并用2B 铅笔将准考证号所对应的数字涂黑.3.答案必须写在答题卡相应的位置上,写在其他地方无效.一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.)1. 设集合{}{}21,2,3,4,230AB xx x ==−−≤∣,则A B = ( )A. {}1,2,3,4B. {}1,2,3C. {}1,2D. {}1【答案】B 【解析】【分析】先求出集合B ,再求两集合的交集.【详解】由2230x x −−≤,得(1)(3)0x x +−≤,解得13x −≤≤, 所以{}13B x x =−≤≤,因为{}1,2,3,4A =,所以A B = {}1,2,3, 故选:B2. 若i 23i z ⋅=+(i 是虚数单位),则z =( )A. 2B. 3C.D. 【答案】C 【解析】【分析】先求得32i z =−,再根据模长公式即可求解. 【详解】因为()()()23i i 23i32i ii i z +−+===−−,所以z =.故选:C3. 军事上角的度量常用密位制,密位制的单位是“密位”1密位就是圆周的16000所对的圆心角的大小,.若角1000α=密位,则α=( ) A.π6B.π4C.π3D.5π12【答案】C 【解析】【分析】由密位制与弧度的换算公式可得,10002π6000α=×,从而可得解. 【详解】因为1密位等于圆周角的16000, 所以角1000α=密位时,1000π2π60003α=×=, 故选:C .4. 已知平面α⊥平面β,直线l α⊄,则“l β⊥”是“//l α”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件和必要条件的定义结合面面垂直的性质分析判断. 【详解】设m αβ= ,在平面α内作a m ⊥, 因为平面α⊥平面β,所以a β⊥, 因为l β⊥,所以a ∥l , 因为l α⊄,a α⊂, 所以//l α,而当平面α⊥平面β,直线l α⊄,//l α时,l 与平面β可能垂直,可能平行,可能相交不垂直, 所以“l β⊥”是“//l α”的充分而不必要条件, 故选:A5. 杭州亚运会火炬如图(1)所示,小红在数学建模活动时将其抽象为图(2)所示的几何体.假设火炬装满燃料,燃烧时燃料以均匀的速度消耗,记剩余燃料的高度为h ,则h 关于时间t 的函数的大致图象可能是( )A. B.C. D.【答案】A 【解析】【分析】根据火炬的形状:中间细、上下粗来分析剩余燃料的高度h 随时间t 变化的下降速度. 【详解】由图可知,该火炬中间细,上下粗,燃烧时燃料以均匀的速度消耗, 燃料在燃烧时,燃料的高度一直在下降,刚开始时下降的速度越来越快, 燃料液面到达火炬最细处后,燃料的高度下降得越来越慢, 结合所得的函数图象,A 选项较为合适. 故选:A.6. 雷峰塔位于杭州市西湖景区,主体为平面八角形体仿唐宋楼阁式塔,总占地面积3133平方米,项目学习小组为了测量雷峰塔的高度,如图选取了与底部水平的直线BC ,测得ABC ∠、ADC ∠的度数分别为α、β,以及D 、B 两点间的距离d ,则塔高AC =( )A. ()sin sin sin d αββα−B. ()sin sin cos d αββα−C.()tan tan tan d αββα−D.()sin cos sin d αββα−【答案】A 【解析】【分析】利用正弦定理可求得AD ,进而可得出sin AC AD β=,即为所求. 【详解】在ABD △中,BAD ADC ABC βα∠=∠−∠=−,由正弦定理可得sin sin BD AD BAD ABC=∠∠,即()sin sin d AD βαα=−,得()sin sin d AD αβα=−, 由题意可知,AC BC ⊥,所以,()sin sin sin sin d AC AD ADC αββα=∠=−.故选:A.7. 已知函数()()πe π,e xf x xg x =+=(e 为自然对数的底数),则( ) A. ()()()0,,x f x g x ∞∀∈+> B. 0e ,e ππx∃∈,当0x x =时,()()f x g x = C. ()()e ,e π,πx f x g x∀∈<D. ()2π0e ,x ∞∃∈+,当0x x >时,()()f x g x <【答案】D 【解析】【分析】观察到()(),f x g x 分别为一次函数和指数函数,则数形结合,依次判定即可.【详解】由题,假设当1x x =时,()()f x g x =,作出示意图如图所示:则1(0,)x x ∈时,()()f x g x >, 当1(,)x x ∈+∞时,()()f x g x <,则A 选项错误;因为e 1e π9π<<<,()()π1e π,1e f g =+=,()()11f g >,故C 选项错误,且()()()()()39393π99e π10e,9 1.299128,e .2f g f g=+>=<><<=,则结合图像可知,当ee ππx <<时,()()f x g x >恒成立,故B 选项错误; 对于D 选项,x →+∞时,由图可知()()f x g x <,则D 选项正确.故选:D.8. 设函数()()ππ3πsin 0,,0,1288f x x f f ωϕωϕ=+><−==,且()f x 在区间π,1224π− 上单调,则ω的最大值为( ) A. 1 B. 3C. 5D. 7【答案】B 【解析】【分析】根据π08f−= 与3π18f =可得()()211221,k k k k ω=−+∈Z ,再根据单调性可得8ω≤,验证7ω=, 5ω=与3ω=即可.【详解】由π08f−=,得()11ππ8k k ωϕ−+=∈Z , 由3π18f =,得()223πππ82k k ωϕ+=+∈Z , 两式作差,得()()211221,k k k k ω=−+∈Z ,因为()f x 在区间π,1224π−上单调,所以π12π2412π2ω+≤⋅,得8ω≤.当7ω=时,()117ππ8k k ϕ−+=∈Z ,因为π2ϕ<,所以π8ϕ=−, 所以()πsin 78f x x=−. 24ππ,12x∈−,π17π7π,8246x −∈− ,因为17ππ242−<−,所以()f x 在区间π,1224π−上不单调,不符合题意; 当5ω=时,()115ππ8k k ϕ−+=∈Z ,因π2ϕ<,所以3π8ϕ=−, 所以()3πsin 58f x x=−. 24ππ,12x∈−,3π19π5π,8246x −∈−− ,因为19ππ242−<−,所以()f x 在区间π,1224π−上不单调,不符合题意; 当3ω=时,()113ππ8k k ϕ−+=∈Z ,因为π2ϕ<,所以3π8ϕ=,所以()3πsin 38f x x=+. 24ππ,12x∈−,3πππ3,882x +∈ ,所以()f x 在区间π,1224π−上单调,符合题意,所以ω的最大值是3.故选:B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,有选错的得0分,部分选对的得2分.) 9. 已知函数()2121x x f x −=+,则( )为A. 函数()f x 的图象关于原点对称B. 函数()f x 的图象关于y 轴对称C. 函数()f x 的值域为()1,1−D. 函数()f x 是减函数【答案】AC 【解析】【分析】求函数()f x 的奇偶性可判断AB ;分离参数可得()2121x f x =−+,根据指数函数的值域可判断C ;根据单调性的定义可判断D.【详解】()f x 的定义域为R ,()2121x x f x −=+,则()()21212121x x x x f x f x −−−−−==−=−++,所以()f x 为奇函数,()f x 的图象关于原点对称,A 正确,B 错误;()21212121x x x f x −==−++,因为211x +>,所以10121x<<+,20221x <<+, 所以211121x −<−<+,故()f x 的值域为()1,1−,C 正确; 设21x x >,则()()212122112121x x f x f x−=−−− ++()()()2112122222221212121x x x x x x −−=++++, 因为21x x >,所以2112220,210,210x x x x −>+>+>, 所以()()210f x f x −>,即()()21f x f x >, 所以函数()f x 是增函数,故D 错误, 故选:AC.10. 如图,O 是正六边形ABCDEF 的中心,则( )A. AB AF AO −=B. 3AC AE AD +=C. OA OC OB OD ⋅=⋅D. AD 在AB上的投影向量为AB【答案】CD 【解析】【分析】根据向量的线性运算法则,可判定A 、B 不正确,结合向量的数量积的定义域运算,可判定C 正确,结合向量的投影的定义与运算,可判定D 正确. 【详解】根据题意,结合平面向量的线性运算法则,可得:对于A 中,由B F AO FB A A =−≠,所以A 不正确;对于B 中,由232AO OC AO OE A AC AE O OC OE AO O A D O =+++=+=+++,所以B 不正确;对于C 中,设正六边形的边长为a ,可得111cos1202OA OC ⋅=××=−,111cos1202OB OD ⋅=××=− ,所以OA OC OB OD ⋅=⋅ ,所以C 正确;对于D 中,如图所示,连接BD ,可得BD AB ⊥,可得cos AD DAB AB ∠=,所以AD 在向量AB 上的投影向量为AB AB AB AB⋅= ,所以D 正确. 故选:CD.11. 如图,质点A 和B 在单位圆O 上逆时针作匀速圆周运动.若A 和B 同时出发,A 的角速度为1rad /s ,起点位置坐标为12 ,B 的角速度为2rad /s ,起点位置坐标为()1,0,则( )A. 在1s 末,点B 的坐标为()sin2,cos2B. 在1s 末,扇形AOB 的弧长为π13− C. 在7πs 3末,点,A B 在单位圆上第二次重合 D. AOB 面积的最大值为12 【答案】BCD 【解析】【分析】求出1s 末点A 和B 的坐标可判断选项AB;求出7πs 3末点A 和B 的坐标,结合诱导公式可判断C ;根据三角形面积公式可判断D.【详解】在1s 末,点B 的坐标为()sin2,cos2,点A 的坐标为ππcos 1,sin 133 ++;π13AOB ∠=−,扇形AOB 的弧长为π13−;设在s t 末,点,A B 在单位圆上第二次重合, 则π7π22π33t t t −==+=,故在7πs 3末,点,A B 在单位圆上第二次重合; 1sin 2AOBS AOB =∠△,经过5π6s 后,可得π2AOB ∠=,AOB 面积的可取得最大值12. 故选:BCD.12. 圆锥内半径最大的球称为该圆锥的内切球,若圆锥的顶点和底面的圆周都在同一个球面上,则称该球为圆锥的外接球.如图,圆锥PO 的内切球和外接球的球心重合,且圆锥PO 的底面直径为2a ,则( )A. 设内切球的半径为1r ,外接球的半径为2r ,则212r r =B. 设内切球的表面积1S ,外接球的表面积为2S ,则124S S =C. 设圆锥的体积为1V ,内切球的体积为2V ,则1294V V =D. 设S 、T 是圆锥底面圆上的两点,且ST a =,则平面PST 截内切球所得截面的面积为2π15a【答案】ACD 【解析】【分析】作出圆锥的轴截面,依题意可得PAB 为等边三角形,设球心为G (即为PAB 的重心),即可求出PAB 的外接圆和内切圆的半径,即可为圆锥的外接球、内切球的半径,即可判断A 、B ,由圆锥及球的体积公式判断C , ST所对的圆心角为π3(在圆O 上),设ST 的中点为D ,即可求出OD ,不妨设D 为OB 上的点,连接PD ,过点G 作GE PD ⊥交PD 于点E ,利用三角形相似求出GE ,即可求出截面圆的半径,从而判断D.【详解】作出圆锥的轴截面如下:因为圆锥PO 的内切球和外接球的球心重合,所以PAB 为等边三角形, 又2PB a =,所以OP ,设球心为G (即为PAB 的重心),所以23PGPO ==,13OG PO ==,即内切球的半径为1r OG ==,外接球的半径为2r PG ==,所以212r r =,故A 正确;设内切球表面积1S ,外接球的表面积为2S ,则214S S =,故B 错误; 设圆锥的体积为1V,则3121ππ3V a a , 内切球的体积为2V,则3324π3V a ==,所以1249V V =,故C 正确; 设S 、T 是圆锥底面圆上的两点,且ST a =,则 ST所对的圆心角为π3(在圆O 上),的设ST的中点为D,则πsin3OD a==,不妨设D为OB上的点,连接PD,则PD过点G作GE PD⊥交PD于点E,则PEG POD∽,所以GE PGOD PD=,=,解得GE=,所以平面PST截内切球截面圆的半径r所以截面圆的面积为22π15πar=,故D正确;故选:ACD【点睛】关键点睛:本题解答的关键是由题意得到圆锥的轴截面三角形为等边三角形,从而确定外接球、内切球的半径.二、填空题(本大题共4小题,每小题5分,共20分.)13. 设函数()12,01,02xx xf xx>=<,若()12f a=,则=a__________.【答案】14##0.25【解析】【分析】分段求解方程和指数方程,则问题得解.【详解】当0a>时,1212a=,14a∴=,当a<0时,1122a=,1a∴=(舍).14a∴=.故答案为:14. 14. 将曲线sin y x =上所有点向左平移(0)ϕϕ>个单位,得到函数sin y x =−的图象,则ϕ的最小值为__________. 【答案】π 【解析】【分析】先利用三角函数图象变换规律求出平移后的解析,再由两函数图象相同列方程可求得结果.【详解】将曲线sin y x =上所有点向左平移(0)ϕϕ>个单位,可得sin()y x ϕ=+, 因为sin()y x ϕ=+与sin y x =−的图象相同, 所以π2π,k k ϕ=+∈Z , 因为0ϕ>,所以ϕ的最小值为π, 故答案为:π15. 已知正三棱柱111ABC A B C 的各条棱长都是2,则直线1CB 与平面11AA B B 所成角的正切值为__________;直线1CB 与直线1A B 所成角的余弦值为__________. 【答案】 ①. ②. 14##0.25【解析】【分析】空1:取AB 中点D ,连接1,CD B D ,则可得1CB D ∠为直线1CB 与平面11AA B B 所成角,然后在1CB D 中求解即可;空2:分别取111,,BC BB A B 的中点,,E F G ,连接,,EF FG EG ,则可得EFG ∠(或其补角)为直线1CB 与直线1A B 所成角,然后在EFG 中求解即可. 【详解】空1:取AB 的中点D ,连接1,CD B D , 因为ABC 为等边三角形,所以CD AB ⊥, 因为1BB ⊥平面ABC ,CD ⊂平面ABC , 所以1BB CD ⊥,因为1BB AB B ∩=,1,BB AB ⊂平面11AA B B , 所以CD ⊥平面11AA B B ,的所以1CB D ∠直线1CB 与平面11AA B B 所成角, 因为正三棱柱111ABC A B C 的各条棱长都是2,所以12CD DB ===所以11tan CD CB D DB ∠=所以直线1CB 与平面11AA B B空2:分别取111,,BC BB A B 的中点,,E F G ,连接,,EF FG EG ,则EF ∥1B C,11122EF B C ==×, FG ∥1A B,11122FG A B ==×,所以EFG ∠(或其补角)为直线1CB 与直线1A B 所成角, 连接,DG DE,则EG =,在EFG 中,由余弦定理得2221cos 24EF FG EG EFG EF FG +−∠==−⋅, 因为异面直线所成的角的范围为0,2π,所以直线1CB 与直线1A B 所成角的余弦值为14,14.为16. 对于函数()()yf x x I ∈,若存在0x I ∈,使得()00f x x =,则称0x 为函数()y f x =的“不动点”.若存在0x I ∈,使得()()0ff x x=,则称0x 为函数()y f x =的“稳定点”.记函数()y f x =的“不动点”和“稳定点”的集合分别为A 和B ,即(){}()(){}|,|A x f x x B x f f x x ====.经研究发现:若函数()f x 为增函数,则A B =.设函数())R f x a ∈,若存在[]0,1b ∈使()()f f b b =成立,则a 的取值范围是__________. 【答案】10,4【解析】【分析】先判断())R f x a ∈是增函数,再根据题意可得()f b b =,代入可得2a b b =−,再结合二次函数的性质即可求解a 的取值范围.【详解】因为())R f x a ∈是增函数,所以()()ff b b =等价于()f b b =b =,所以2a b b =−,而2a b b =−在10,2上单调递增,在1,12上单调递减, 所以max 14a =,而当0b =时,0a =;当1b =时,0a =,即min 0a =, 所以a 的取值范围为10,4.故答案为:10,4三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在平面直角坐标系中,已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34,55P−. (1)求sin α的值;(2)若角β满足()sin αβ+,求cos β的值.【答案】(1)45−(2【解析】【分析】(1)根据某个角正弦的定义,直接求解即可;(2)首先由同角的三角函数的平方关系求出()cos αβ+,根据()cos cos βαβα =+− 及两角差的余弦公式,代入计算即可. 【小问1详解】由角α的终边过点34,55P −,得4sin 5y r α===−.【小问2详解】由角α的终边过点34,55P − ,得3cos 5x r α==, 由()sin αβ+()1cos 2αβ+=±, ()()()cos cos cos cos sin sin βαβααβααβα =+−=+++ ,当()1cos 2αβ+=时,134cos 255β =×+−=当()1cos 2αβ+=−时,134cos 255β =−×+−综上所述,cos β=.18. 某工厂产生的废气经过滤后排放,过滤过程中废气的污染物数量mg /L P 与时间h t 间的关系为0e kt P P −=(其中0,P k 是正常数).已知在前5个小时消除了10%的污染物.(1)求k 的值(精称到0.01); (2)求污染物减少50%需要花的时间(精确到0.1h )?参考数据:ln20.693,ln3 1.099,ln5 1.609===. 【答案】(1)0.02 (2)34.7【解析】【分析】(1)由题意可得5000.9e kP P −=,求解即可;(2)由题意可得0.02000.5e tP P −=,求解即可.【小问1详解】 由0ektP P −=知,当0=t 时,0P P =;当5t =时,()0110%PP =−;即5000.9ekP P −=,所以1ln0.95k =−,即()()1911ln 2ln3ln102ln3ln2ln50.0251055k =−=−×−=−×−−≈; 【小问2详解】当00.5P P =时,0.02000.5e tP P −=,即0.020.5e t −=,则50ln234.7t≈.故污染物减少50%需要花的时间约为34.7h .19. 我们把由平面内夹角成60°的两条数轴,Ox Oy 构成的坐标系,称为“@未来坐标系”.如图所示,21,e e分别为,Ox Oy 正方向上的单位向量.若向量12OP xe ye =+ ,则把实数对(),x y 叫做向量OP的“@未来坐标”,记{,}OP x y =.已知{}{}1122,,,x y x y 分别为向是,a b的@未来坐标.(1)证明:{}{}{}11221212,,,x y x y x x y y +=++;(2)若向量,a b 的“@未来坐标”分别为{}1,2,{}2,1,求向量,a b的夹角的余弦值.【答案】(1)证明见解析 (2)1314【解析】【分析】(1)因为{}{}111122122122,,,x y a x y x y b e e e y e x ==+==+,则{}{}()()111221122221,,x y e y x x y e x y e e +=+++计算即可证明;(2)由题意可得12122,2b e a e e e =+=+,根据向量夹角公式即可求解.因为{}{}111122122122,,,x y a x y x y b e e e y e x ==+==+, 所以{}{}()()111221122221,,x y e y x x y e x y e e +=+++()()211122x x y y e e =+++{}1212,x x y y =++【小问2详解】12122,2b e a e e e =+=+ ,()()221212121213222252a b e e e e e e e e ⋅+⋅+++⋅ ,122a e e =+=== ,212b e e =+===,所以13cos ,14a b a ba b⋅==. 20. 在四边形ABCD 中,//,sin 2sin AB CD AD ADC CD ABC ∠∠⋅=⋅.(1)求证:2BC CD =.(2)若33AB CD ==,且sin sin60AD ADB AB ∠°⋅=⋅,求四边形ABCD 的面积. 【答案】(1)证明见解析(2)若60ABD ∠= ,则四边形ABCD, 若120ABD ∠= ,则四边形ABCD【解析】【分析】(1)由条件结合正弦定理证明sin sin AD ADC BC ABC ⋅∠=⋅∠,由此证明结论; (2)由条件结合正弦定理求ABD ∠,由余弦定理求BD ,结合三角形面积公式求结论.在ACD 中,由正弦定理得sin sin AD ADC AC ACD ∠⋅∠⋅,因为AB CD ,所以ACD CAB ∠=∠, 所以sin sin AD ADC AC CAB ∠⋅∠⋅, ABC 中,由正弦定理得,即sin sin AC CAB BC ABC ∠⋅=⋅∠, 所以sin sin AD ADC BC ABC ⋅∠=⋅∠. 又sin 2sin AD ADC CD ABC ⋅∠=⋅∠, 所以sin 2sin BC ABC CD ABC ⋅∠=⋅∠, 所以2BC CD =.【小问2详解】在ABD △中,由正弦定理得sin sin sin60AD ADB AB ABD AB ∠∠⋅=⋅=⋅ , 所以sin sin60ABD ∠= , 所以60ABD ∠= 或120 ,①当60ABD ∠= 时,则60BDC ∠= ,在BCD △中,由余弦定理得,230BD BD −−=,又0BD >,解得BD =此时四边形ABCD 的面积()1S sin602AB CD BD =+××= ②当120ABD ∠= 时,则120BDC ∠= , 在BCD △中,由余弦定理得,230BD BD +−=,解得BD =,在此时四边形ABCD 的面积()1sin1202S AB CD BD =+××=21. 生活中为了美观起见,售货员用彩绳对长方体礼品盆进行捆扎.有以下两种捆扎方案:方案(1)为十字捆扎(如图(1)),方案(2)为对角捆扎(如图(2)).设礼品盒的长AB ,宽BC ,高1AA 分别为30cm,20cm,10cm .(1)在方案(2)中,若111110cm LA A E IC C H FB BG ======,设平面LEF 与平面GHI 的交线为l ,求证://l 平面ABCD ;(2)不考虑花结用绳,对于以上两种捆扎方式,你认为哪一种方式所用彩绳最少,最短绳长为多少cm ? 【答案】(1)证明见解析 (2)方案(2),最短绳长为100cm 【解析】【分析】(1)先证明LE IH ∥,从而可证LE 平面IHG ,进而得LE l ∥,从而可证l 平面1111D C B A ,从而可证//l 平面ABCD ;(2)方案1中,绳长为()()3010220102140cm +×++×=;方案2中,将长方体盒子展开在一个平面上,在平面展开图中彩绳是一条由F 到F ′的折线,从而可计算最短绳长. 【小问1详解】连接,LI EH ,在长方体中,111110cm LA A E IC C H FB BG ======, 则111110cm,20cm B LD B E ID H ====,所以LE IHLI EH ==,所以LE IH =,LI EH =,所以四边形LEHI 是平行四边形,LE IH ∴∥,又LE ⊄ 平面,IHG LE ⊂平面LEF LE ∴ 平面IHG ; 又LE ⊂ 平面LEF ,平面LEF ∩平面,GHI l LE l =∴∥; 又l ⊄ 平面1111,A B C D LE ⊂平面1111,A B C D l ∴ 平面1111D C B A , 又l ⊄ 平面,ABCD l ∴ 平面ABCD ; 【小问2详解】方案1中,绳长为()()3010220102140cm +×++×=; 方案2中,将长方体盒子展开在一个平面上,在平面展开图中彩绳是一条由F 到F ′的折线,如图所示,在扎紧的情况下,彩绳长度的最小值为FF ′长度,因为FB F B =′′′,所以100cm FF BB ′′′===,所以彩绳的最短长度为100cm .22. 已知函数()()1(0),(0)f x x x g x x x x=+>=>. (1)直接写出()()()()1f x g x g x f x −<−+的解集;(2)若()()()123f x f x g x ==,其中12x x <,求()()123f x x g x ++的取值范围;(3)已知x 为正整数,求()()()()22121h x m x m x m ∗=+−+∈N的最小值(用m 表示).【答案】(1)()2,+∞; (2)()()12392f x xg x ++>;(3)()min 322,1,8,2,()24,333,3m m h x m m m m m m ∗−= −= ∈ −=−+−+> N . 【解析】【分析】(1)转化为求解()1110x x x<−>,分01x <≤与1x >讨论即可求解; (2)根据韦达定理得()122t x x t +=>,再根据对勾函数的性质即可求解; (3)根据二次函数的性质分类讨论即可求解.【小问1详解】∵()()1(0),(0)f x x x g x x x x=+>=>, ∴()()()()1f x g x g x f x −<−+即为()1110x x x <−>, 当01x <≤时,110x −≤,故()1110x x x<−>,显然不成立; 当1x >时,110x −>,故()1110x x x <−>,即()210x x<>,解得2x >. 综上所述,()()()()1f x g x g x f x −<−+的解集为()2,+∞.【小问2详解】设()()()123f x f x g x t ===,则3x t =, 令1x t x+=,整理得:210x tx −+=, 故12x x t +=,且2Δ40t =−>,得2t >. ∴()()12312f x x g x t t ++=+在2+)∞(, 上单调递增, 所以11922222t t +>×+=, 即()()12392f x xg x ++>. 【小问3详解】 ()()()()()222222111211,11m mh x m x m x m x m m + +=+−+=+−− ++2121,11m m m m +=−+++ ()2,111m m m ∗∗∈∴−∈≤+N N ,, ①1m =时,()min 211,()121m h x h m −+=∴==−+; ②2m =时,()min 251,()2813m h x h m −+=∴==−+; ③3m =时,()()min 251,()232412m h x h h m −+=∴===−+; ④3m >时,2121,1111212m m m m m <−<−+<−+++, ∴()32min ()133h x h m m m m =−=−+−+. 综上所述,()min 322,1,8,2,()24,333,3m m h x m m m m m m ∗−= −= =∈ −=−+−+> N。

2021-2022学年山西省高一下学期期末考试数学试题(解析版)

2021-2022学年山西省高一下学期期末考试数学试题(解析版)

山西省2021-2022学年高一下学期期末考试数学试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x y lnx ==,集合{|sin B y y x ==,}x A ∈,则(A B = )A .[1-,)∞B .(0,1]C .(0,1)D .(0,)+∞〖解 析〗{|}(0,)A x y lnx ===+∞,集合{|sin B y y x ==,}[1x A ∈=-,1],(0A B ∴=,1],〖答 案〗B2.某次体育考试,甲、乙的成绩达到优秀的概率分别为0.4,0.9,两人的成绩互不影响,则甲、乙两人的成绩都未达到优秀的概率为( ) A .0.06B .0.36C .0.28D .0.64〖解 析〗甲、乙达到优秀的概率分别是0.4、0.9, 则甲、乙未达到优秀的概率分别是10.4-和10.9-, 又甲、乙两人考试成绩互不影响,相互独立.∴甲、乙都未达到优秀的概率为(10.4)(10.9)0.06P =-⨯-=.〖答 案〗A3.若复数z 满足1z i =-+,则下列说法正确的是( ) A .z 的虚部为iB .z 的共轭复数为1z i =+C .z 在复平面内对应的点在第三象限D .||z =〖解 析〗1z i =-+,z ∴的虚部为1,1z i =--,z 在复平面内对应的点(1,1)-在第二象限,|||1|z i =--=ABC 错误,D 正确.〖答 案〗D4.数据22,24,32,33,35,28,56,x 的第65百分位数为35,则x 的取值可以是() A .20B .25C .30D .35〖解 析〗865% 5.2⨯=,∴这组数据的第65百分位数是第6项数据35,35x ∴.〖答 案〗D5.在ABC ∆中,角A ,B ,C 所对边分别为a ,b ,c ,3A π=,2b =,8c =,则2sin 2sin sin a b cA B C-+-+值等于( )AB. CD〖解 析〗由余弦定理得22212cos 464228522a b c bc A =+-=+-⨯⨯⨯=,解得a =ABC ∆外接圆半径为R ,则22sin 4sin 2sin 2sin 2sin sin sin 2sin sin sin a b c R A R B R C a R A B C A B C A -+-+=====-+-+. 〖答 案〗C6.设平面向量a ,b 满足||12a =,(1,22)b =,18a b ⋅=,则b 在a 方向上的投影向量为() A .18aB .18bC .12aD .12b〖解 析〗||12a =,18a b ⋅=,∴b 在a 方向上的投影向量1811||||12128a b a a a a a ⋅=⋅=⋅⋅=. 〖答 案〗A7.正三棱锥P ABC -的底面边长等于球O 的半径,且正三棱锥P ABC -的高等于球O 的直径,则球O的体积与正三棱锥P ABC -体积的比值为( ) ABC D . 〖解析〗设球O 的半径为r,球O 的体积为3143V r π=,正三棱锥P ABC -的底面积2212S r =,2h r =,棱锥的体积为232123V r =⨯=.所以12V V 〖答 案〗C8.已知点P 在ABC ∆的边BC 上,2AP PC CA ===,ABC ∆,则sin (PAB ∠= )A B C D〖解 析〗因为2AP PC CA ===,故等边三角形APC 的面积212sin 602APC S ∆=⨯⨯︒=,又ABC ∆1sin1202ABP S PA PB ∆=⋅⋅︒=, 解得3PB =,故5BC =,所以在ABC ∆中,22226019AB BC AC BC AC =+-⋅⋅︒=,故AB =,所以sin sin AB BPAPB PAB=∠∠3sin PAB =∠,解得:sin PAB ∠=. 〖答 案〗D9.如图是一个正方体的展开图,如果将它还原为正方体,则下列说法中正确的是( )A .直线CD 与直线GH 异面B .直线CD 与直线EF 共面C .直线AB 与直线EF 异面D .直线GH 与直线EF 共面〖解 析〗如图,点C 与点G 重合,故A 错误;//CE BD ,且CE BD =,∴四边形CDBE 是平行四边形,//CD EF ∴,CD ∴与EF 是共面直线,故B 正确;AB EF B =,AB ∴与EF 相交,故C 错误;EF ,GH 不在一个平面内,且EF 与GH 既不平行也不相交,EF ∴,GH 是异面直线,故D 错误.〖答 案〗B10.甲、乙两盒中皆装有若干个不同色的小球,从甲盒中摸出一个红球的概率是13,从乙盒中摸出一个红球的概率是12,现小明从两盒各摸出一个球,每摸出一个红球得3分,摸出其他颜色小球得0分,下列结论错误的是( ) A .小明得6分的概率为16B .小明得分低于6分的概率为13C .小明得分不少于3分的概率为23D .小明恰好得3分的概率为12〖解 析〗设“从甲盒中摸出一个红球”为事件1A ,“从乙盒中摸出一个红球”为事件2A , 则11()3P A =,21()2P A =,且1A ,2A 独立. 对选项A ,小明得(6分)的概率为111326⨯=,故A 正确;对选项B ,小明得分低于(6分)的概率为15166-=,故B 错误; 对选项C ,小明得分不少于(3分)的概率为122121()()1323P A P A -=-⨯=,故C 正确;在D 中,小明恰好得(3分)的概率为1121132322⨯+⨯=,故D 正确.〖答 案〗B11.下列四个等式中正确的是( )A.tan 205tan35205tan35︒+︒︒︒=B .2tan811tan8ππ=-C .221cos sin 882ππ-=D.14sincos1818π=〖解 析〗对于A,tan 205tan35tan 240tan(20535)1tan 205tan35︒+︒︒=︒+︒==-︒︒,tan 205tan35205tan35∴︒+︒︒⋅︒A 错误,对于B ,原式22tan1118tan 224218tan πππ=⋅==-,故B 错误,对于C,原式cos4π==,故C 错误, 对于D,7cos 2(coscossinsin )4cos11818183183181sincossincossin sin 18181818299ππππππππππππ---=== 4cos()4sin2994sin sin 99πππππ-===,故D 正确. 〖答 案〗D12.若点P 是棱长为2的正方体1111ABCD A B C D -表面上的动点,点M 是棱11A D 的中点,AP DM ⊥,则线段AP 长度的最大值为( )AB.C .3D.〖解 析〗分别取1DD ,1CC 中点E ,F ,连接EA ,EF ,FB ,首先EF 与CD 平行且相等,CD 与AB 平行且相等,因此EF 与AB 平行且相等,四边形EFBA 是平行四边形,在同一平面内,易得ADE ∆≅△1DD M ,1EAD MDD ∠=∠,所以190EAD MDA MDD MDA ∠+∠=∠+∠=︒,所以MD AE ⊥, 又AB ⊥平面11ADD A ,MD ⊂平面11ADD A ,所以AB MD ⊥, 又AEAB A =,AB ,AE ⊂平面ABFE ,所以MD ⊥平面ABFE .而MD AP ⊥,则P ∈平面ABFE ,所以P 点轨迹是矩形ABEF (除A 点), 四边形ABFE 是矩形,当P 与F 重合时,AF3=.〖答 案〗C二、填空题:本大题共4小题,每小题5分,共20分.13.若幂函数()y f x =的图象过点1(2,)4,则此函数的〖解 析〗式为 .〖解 析〗设幂函数为a y x =,幂函数()y f x =的图象过1(2,)4,∴124a =,解得2a =-.21()f x x∴=.〖答 案〗21x14.如图,作用于同一点O 的三个力1F ,2F ,3F 处于平衡状态,已知1||1F =,2||F ,1F 与2F 的夹角为34π,则3F 的大小为 .〖解 析〗三个力1F ,2F ,3F 处于平衡状态,123F F F ∴+=-,1||1F =,2||F =,1F 与2F 的夹角为34π,∴22223121212()21221(1F F F F F F F =+=++⋅=++⨯=, 3F ∴的大小为1.〖答 案〗115.关于函数()sin()sin 6f x x x π=+-①其表达式可写成()cos(2)6f x x π=-+;②曲线()y f x =关于直线12x π=-对称;③()f x 在区间[,]63ππ上单调递增;④(0,)2πα∃∈,使得()(3)f x f x αα+=+恒成立.其中正确的是 (填写正确的序号), 〖解 析〗函数11cos21()sin()sin cos )sin sin26224x f x x x x x x x π-=+=+=+11sin2sin(2)423x x x π==-, 对于①:由于11()sin(2)cos(2)2326f x x x ππ=-=-+,故①正确;对于②:函数()f x 满足11()sin()12222f ππ-=-=-,故②正确; 对于③:由于[,]63x ππ∈,故2[0,]33x ππ-∈,故函数在该区间上单调递增,故③正确;对于④,当4πα=时,使得3()()44f x f x ππ+=+恒成立,故④恒成立. 〖答 案〗①②③④16.如图所示,边长为a 的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将ADE ,EBF ,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若四面体A EFD '的四个顶点在同一个球面上,且该球的表面积为6π,则a = .〖解 析〗由题意可知△A EF '是等腰直角三角形,且90EA F ∠'=︒,又易知A E A D '⊥',A F A D '⊥',A E A F A ''=',A E ',A F '⊂平面A EF ',所以A D '⊥平面A EF ',将三棱锥的底面A EF '扩展为边长为2a的正方形, 然后扩展为底面边长为2a,高为a 的正四棱柱, 则三棱锥A EFD '-的外接球与正四棱柱的外接球相同,正四棱柱的对角线的长度就是外接,所以外接球的半径为R =,故球的表面积为222344)62S R a ππππ==⋅==,所以2a =. 〖答 案〗2三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(10分)已知函数2()(22)x f x m m m =--⋅是指数函数.(1)求实数m 的值;(2)解不等式22(2)(1)mm x x +<-.解:(1)由题意函数2()(22)x f x m m m =--⋅是指数函数,可知222101m m m m ⎧--=⎪>⎨⎪≠⎩,求得3m =.(2)由(1)得,不等式即3322(2)(1)x x +<-,32y x =在[0,)+∞上单调递增,∴201021x x x x+⎧⎪-⎨⎪+<-⎩,解得122x -<-, 故原不等式的解集为1[2,)2--.18.(12分)为减少水资源的浪费,某市政府计划对居民生活用水费用实施阶梯式水价制度.为了确定一个较为合理的用水标准,有关部门通过随机抽样调查的方式,获得过去一年4000户居民的月均用水量数据(单位:吨),并根据获得的数据制作了频率分布表:(1)求m ,n ,p ,q 的值;(2)求所获得数据中“月均用水量不低于30吨”发生的频率;(3)若在第4,5,6组用按比例分配的分层抽样的方法随机抽取6户做问卷调查,并在这6户中任选2户进行座谈会,求这2户中恰有1户是“月均用水量不低于50吨”的概率. 解:(1)由表中数据可得,4000(0.04610)1840m =⨯⨯=,0.046100.46n =⨯=,0.018100.0018p =÷=,40000.00624q =⨯=.(2)所获得数据中“月均用水量不低于30吨”发生的频率为0.0180.0120.0060.036++=.(3)用分层抽样的方法在4,5,6,组随机抽取6户做回访调查的人数分别为3,2,1, 设上述6户分别为A ,B ,C ,D ,E ,F ,在这6户中任选2户进行座谈会,分别有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种,其中这2户中恰有1户是“月均用水量不低于50吨”的事件为AF ,BF ,CF ,DF ,EF ,共5种, 故所求概率为51153P ==. 19.(12分)如图所示,在四棱锥P ABCD -中,//AB CD ,E 是线段PB 的中点,F 是线段DC 上的点,且12DF AB =.(1)证明://EF 平面PAD ;(2)若AB ⊥平面PAD ,PD AD =,PH AD ⊥,且PHAD H =.记直线PB 与平面ABCD所成角为α,直线PB 与平面PAD 所成角为β,比较cos α与sin β的大小,并说明理由. (1)证明:取PA 的中点M ,连接DM ,EM ,E 是PB 的中点,//EM AB ∴,且12EM AB =, 又//AB CD ,12DF AB =, //EM DF ∴,且EM DF =,∴四边形EFDM 为平行四边形,//EF DM ∴,DM ⊂平面PAD ,EF ⊂/平面PAD ,//EF ∴平面PAD .(2)解:连接BH ,AB ⊥平面PAD ,PH ⊂面PAD ,PH AB ∴⊥,又PH AD ⊥,ABAD A =,AB ,AD ⊂平面ABCD ,PH ∴⊥平面ABCD ,即PBH ∠为直线PB 与平面ABCD 所成的角,∴cos cos BHPBH PBα=∠=, AB ⊥平面PAD ,BPA ∴∠为直线PB 与平面PAD 所成角,又PA ⊂平面PAD ,PA AB ∴⊥,即sin sin ABBPA PBβ=∠=, 在PAD ∆中,PD AD =,H ∴与A 不重合,AB BH ∴≠, 在Rt ABH ∆中,AB BH <,sin cos βα∴<.20.(12分)已知复数1z a bi =+,a R ∈,b R ∈,0b ≠,2114z z z =+,221z -<. (1)求实数a 的取值范围; (2)若1122z z ω-=+,求22||z ω-的最小值. 解:(1)2122221444()()a b z z a b i z a b a b =+=++-++ 221z -<,2z ∴是实数,∴224bb a b=+,即224a b +=,22z a ∴=, 221z -<,221a ∴-<,即112a-<, 1z ∴的实部的取值范围为1(1,]2-;(2)2212212244422(2)842z a bi a b bi bi biz a bi a b a a ω--+-++=====+++++++, 222222()22(2)bi b z a a a a ω--=-=-++, 224a b +=,∴2222424222(2)5(2)22a a z a a a a a aω---=+=+=++-+++, 1(1,]2a ∈-,20a ∴+>,∴当42(2)2a a=++时,即2a =-22zω-取到最小值5, 又50>,故22||z ω-的最小值为5.21.(12分)如图,在四边形ABCD 中,3AB =,AD BCD ∆是以D 为直角顶点的等腰直角三角形,BAD θ∠=,(,)2πθπ∈.(1)当cos θ=时,求AC ; (2)当四边形ABCD 的面积取最大值时,求BD .解:(1)由题干可知,在ABD ∆中,3AB =,AD =cos θ=.则由余弦定理可得到:2222cos 1414620BD AB AD AB AD θθ=+-⋅=-=+=.解得BD =又因为(,)2πθπ∈,故sin θ==.再根据正弦定理得sin sin BD ABBAD ADB =∠∠3sin ADB =∠. 解得3sin 5ADB ∠=,由题意知在BCD ∆中,D 为直角,且BCD ∆是等腰直角三角形,所以2CDB π∠=且CD BD ==故得到3cos cos()sin 25ADC ADB ADB π∠=∠+=-∠=-.在ACD ∆中,由余弦定理得AC =(2)根据第一问可得:214BD θ=-,2113sin 722ABCD ABD BCD S S S BD θθθ∆∆=+=⨯+⨯=+-1572cos )7sin()2θθθϕ=-=+-.此时sin ϕ=cos ϕ= 又因为(0,)2πϕ∈,当2πθϕ-=时,四边形ABCD 的面积取得最大值.即2πθϕ=+,解得sin θ=cos θ=所以21414(26BD θ=-=-=.即BD22.(12分)如图,在三棱柱111?ABC A B C 中,平面11ACC A ⊥平面ABC ,160A AC ACB ∠=∠=︒,12C C AC BC ==,D 是BC 的中点.(1)证明:平面11A B D ⊥平面11BB C C ;(2)若2BC =,分别求过1A ,1B ,D 三点的截面将该三棱柱分得的两部分的体积. (1)证明:在三棱柱111ABC A B C -中,取AC 的中点H ,连接1A H ,HD ,1A C , 因为H ,D 分别为AC ,BC 的中点,所以//HD AB ,所以11//HD A B , 所以平面11A HDB 即为平面11A B D ,因为160A AC ∠=︒,1AA AC =,所以△1A AC 为正三角形,所以1A H AC ⊥, 又平面11ACC A ⊥平面ABC ,平面11ACC A ⋂平面ABC AC =,1A H ⊂平面11ACC A , 所以1A H ⊥平面ABC ,又BC ⊂平面ABC ,所以1A H BC ⊥, 在ABC ∆中,2AC BC =,60ACB ∠=︒,由余弦定理可得2222cos AB AC BC AC BC ACB =+-⋅∠,即AB , 所以222AC AB BC =+,即AB BC ⊥,因为//HD AB ,所以BC HD ⊥, 因为1A HHD H =,1A H ⊂平面11A HDB ,HD ⊂平面11A HDB ,所以BC ⊥平面11A HDB ,又BC ⊂平面11BB C C ,所以平面11A HDB ⊥平11BB C C ,即平面11A B D ⊥平面11BB C C ; (2)解:因为2BC =,所以14AC AA ==,因为H ,D 分别为AC ,BC 的中点,且11111//,2HD A B HD A B =, 所以111HDC A B C -是三棱台,因为ABC ∆中,,2AB BC AB BC ⊥==,所以11222ABC S AB BC ∆=⋅=⨯=,所以111A B C S =14HDC ABC S S ∆∆==,又1A H ⊥平面ABC ,且1A H =111HDC A B C -的体积1111111111()33HDC A B C HDC A B C V A H S S S S∆∆=++⋅=⨯+ 173=⨯,所以剩余几何体的体积111111212752ABC A B C HDC A B C V V V --=-=⨯⨯=,所以过A ,1B ,D 三点的截面将该三棱柱分得的两部分的体积分别为5和7.山西省2021-2022学年高一下学期期末考试数学试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x y lnx ==,集合{|sin B y y x ==,}x A ∈,则(A B = )A .[1-,)∞B .(0,1]C .(0,1)D .(0,)+∞〖解 析〗{|}(0,)A x y lnx ===+∞,集合{|sin B y y x ==,}[1x A ∈=-,1],(0A B ∴=,1],〖答 案〗B2.某次体育考试,甲、乙的成绩达到优秀的概率分别为0.4,0.9,两人的成绩互不影响,则甲、乙两人的成绩都未达到优秀的概率为( ) A .0.06B .0.36C .0.28D .0.64〖解 析〗甲、乙达到优秀的概率分别是0.4、0.9, 则甲、乙未达到优秀的概率分别是10.4-和10.9-, 又甲、乙两人考试成绩互不影响,相互独立.∴甲、乙都未达到优秀的概率为(10.4)(10.9)0.06P =-⨯-=.〖答 案〗A3.若复数z 满足1z i =-+,则下列说法正确的是( ) A .z 的虚部为iB .z 的共轭复数为1z i =+C .z 在复平面内对应的点在第三象限D.||z =〖解 析〗1z i =-+,z ∴的虚部为1,1z i =--,z 在复平面内对应的点(1,1)-在第二象限,|||1|z i =--=ABC 错误,D 正确.〖答 案〗D4.数据22,24,32,33,35,28,56,x 的第65百分位数为35,则x 的取值可以是() A .20B .25C .30D .35〖解 析〗865% 5.2⨯=,∴这组数据的第65百分位数是第6项数据35,35x ∴.〖答 案〗D5.在ABC ∆中,角A ,B ,C 所对边分别为a ,b ,c ,3A π=,2b =,8c =,则2sin 2sin sin a b cA B C-+-+值等于( )AB. CD〖解 析〗由余弦定理得22212cos 464228522a b c bc A =+-=+-⨯⨯⨯=,解得a =ABC ∆外接圆半径为R ,则22sin 4sin 2sin 2sin 2sin sin sin 2sin sin sin a b c R A R B R C a R A B C A B C A -+-+=====-+-+. 〖答 案〗C6.设平面向量a ,b 满足||12a =,(1,22)b =,18a b ⋅=,则b 在a 方向上的投影向量为()A .18aB .18bC .12aD .12b〖解 析〗||12a =,18a b ⋅=,∴b 在a 方向上的投影向量1811||||12128a b a a a a a ⋅=⋅=⋅⋅=. 〖答 案〗A7.正三棱锥P ABC -的底面边长等于球O 的半径,且正三棱锥P ABC -的高等于球O 的直径,则球O的体积与正三棱锥P ABC -体积的比值为( ) ABC D . 〖解析〗设球O 的半径为r ,球O 的体积为3143V r π=,正三棱锥P ABC -的底面积2212S r =,2h r =,棱锥的体积为232123V r =⨯=.所以12V V〖答 案〗C8.已知点P 在ABC ∆的边BC 上,2AP PC CA ===,ABC∆,则sin (PAB ∠= )ABCD 〖解 析〗因为2AP PC CA ===,故等边三角形APC的面积212sin 602APC S ∆=⨯⨯︒=,又ABC ∆1sin1202ABP S PA PB ∆=⋅⋅︒=, 解得3PB =,故5BC =,所以在ABC ∆中,22226019AB BC AC BC AC =+-⋅⋅︒=, 故AB =, 所以sin sin AB BPAPB PAB=∠∠3sin PAB=∠,解得:sin PAB ∠=. 〖答 案〗D9.如图是一个正方体的展开图,如果将它还原为正方体,则下列说法中正确的是( )A .直线CD 与直线GH 异面B .直线CD 与直线EF 共面C .直线AB 与直线EF 异面D .直线GH 与直线EF 共面〖解 析〗如图,点C 与点G 重合,故A 错误;//CE BD ,且CE BD =,∴四边形CDBE 是平行四边形,//CD EF ∴,CD ∴与EF 是共面直线,故B 正确;AB EF B =,AB ∴与EF 相交,故C 错误;EF ,GH 不在一个平面内,且EF 与GH 既不平行也不相交,EF ∴,GH 是异面直线,故D 错误.〖答 案〗B10.甲、乙两盒中皆装有若干个不同色的小球,从甲盒中摸出一个红球的概率是13,从乙盒中摸出一个红球的概率是12,现小明从两盒各摸出一个球,每摸出一个红球得3分,摸出其他颜色小球得0分,下列结论错误的是( ) A .小明得6分的概率为16B .小明得分低于6分的概率为13C .小明得分不少于3分的概率为23D .小明恰好得3分的概率为12〖解 析〗设“从甲盒中摸出一个红球”为事件1A ,“从乙盒中摸出一个红球”为事件2A , 则11()3P A =,21()2P A =,且1A ,2A 独立. 对选项A ,小明得(6分)的概率为111326⨯=,故A 正确;对选项B ,小明得分低于(6分)的概率为15166-=,故B 错误; 对选项C ,小明得分不少于(3分)的概率为122121()()1323P A P A -=-⨯=,故C 正确;在D 中,小明恰好得(3分)的概率为1121132322⨯+⨯=,故D 正确.〖答 案〗B11.下列四个等式中正确的是( )A.tan 205tan35205tan35︒+︒︒︒=B .2tan811tan8ππ=-C .221cos sin 882ππ-=D.14sincos1818π=〖解 析〗对于A,tan 205tan35tan 240tan(20535)1tan 205tan35︒+︒︒=︒+︒==-︒︒,tan 205tan35205tan35∴︒+︒︒⋅︒A 错误,对于B ,原式22tan1118tan 224218tan πππ=⋅==-,故B 错误, 对于C,原式cos4π==,故C 错误, 对于D,7cos 2(coscossinsin )4cos11818183183181sincossincossin sin 18181818299ππππππππππππ---=== 4cos()4sin2994sin sin 99πππππ-===,故D 正确. 〖答 案〗D12.若点P 是棱长为2的正方体1111ABCD A B C D -表面上的动点,点M 是棱11A D 的中点,AP DM ⊥,则线段AP 长度的最大值为( )AB.C .3D.〖解 析〗分别取1DD ,1CC 中点E ,F ,连接EA ,EF ,FB ,首先EF 与CD 平行且相等,CD 与AB 平行且相等,因此EF 与AB 平行且相等,四边形EFBA 是平行四边形,在同一平面内,易得ADE ∆≅△1DD M ,1EAD MDD ∠=∠,所以190EAD MDA MDD MDA ∠+∠=∠+∠=︒,所以MD AE ⊥, 又AB ⊥平面11ADD A ,MD ⊂平面11ADD A ,所以AB MD ⊥, 又AEAB A =,AB ,AE ⊂平面ABFE ,所以MD ⊥平面ABFE .而MD AP ⊥,则P ∈平面ABFE ,所以P 点轨迹是矩形ABEF (除A 点),四边形ABFE 是矩形,当P 与F 重合时,AF 3=.〖答 案〗C二、填空题:本大题共4小题,每小题5分,共20分.13.若幂函数()y f x =的图象过点1(2,)4,则此函数的〖解 析〗式为 .〖解 析〗设幂函数为a y x =,幂函数()y f x =的图象过1(2,)4,∴124a =,解得2a =-.21()f x x∴=.〖答 案〗21x14.如图,作用于同一点O 的三个力1F ,2F ,3F 处于平衡状态,已知1||1F =,2||F ,1F 与2F 的夹角为34π,则3F 的大小为 .〖解 析〗三个力1F ,2F ,3F 处于平衡状态,123F F F ∴+=-,1||1F =,2||F =,1F 与2F 的夹角为34π,∴22223121212()21221(12F F F F F F F =+=++⋅=++⨯-=,3F ∴的大小为1.〖答 案〗115.关于函数()sin()sin 6f x x x π=+-①其表达式可写成()cos(2)6f x x π=-+;②曲线()y f x =关于直线12x π=-对称;③()f x 在区间[,]63ππ上单调递增;④(0,)2πα∃∈,使得()(3)f x f x αα+=+恒成立.其中正确的是 (填写正确的序号), 〖解 析〗函数11cos21()sin()sin cos )sin sin26224x f x x x x x x x π-=+=+=+11sin2sin(2)423x x x π==-, 对于①:由于11()sin(2)cos(2)2326f x x x ππ=-=-+,故①正确;对于②:函数()f x 满足11()sin()12222f ππ-=-=-,故②正确; 对于③:由于[,]63x ππ∈,故2[0,]33x ππ-∈,故函数在该区间上单调递增,故③正确;对于④,当4πα=时,使得3()()44f x f x ππ+=+恒成立,故④恒成立. 〖答 案〗①②③④16.如图所示,边长为a 的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将ADE ,EBF ,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若四面体A EFD '的四个顶点在同一个球面上,且该球的表面积为6π,则a = .〖解 析〗由题意可知△A EF '是等腰直角三角形,且90EA F ∠'=︒,又易知A E A D '⊥',A F A D '⊥',A E A F A ''=',A E ',A F '⊂平面A EF ',所以A D '⊥平面A EF ',将三棱锥的底面A EF '扩展为边长为2a的正方形, 然后扩展为底面边长为2a,高为a 的正四棱柱, 则三棱锥A EFD '-的外接球与正四棱柱的外接球相同,正四棱柱的对角线的长度就是外接,所以外接球的半径为R =,故球的表面积为222344)62S R a ππππ==⋅==,所以2a =. 〖答 案〗2三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(10分)已知函数2()(22)x f x m m m =--⋅是指数函数. (1)求实数m 的值;(2)解不等式22(2)(1)mm x x +<-.解:(1)由题意函数2()(22)x f x m m m =--⋅是指数函数,可知222101m m m m ⎧--=⎪>⎨⎪≠⎩,求得3m =.(2)由(1)得,不等式即3322(2)(1)x x +<-,32y x =在[0,)+∞上单调递增,∴201021x x x x+⎧⎪-⎨⎪+<-⎩,解得122x -<-,故原不等式的解集为1[2,)2--.18.(12分)为减少水资源的浪费,某市政府计划对居民生活用水费用实施阶梯式水价制度.为了确定一个较为合理的用水标准,有关部门通过随机抽样调查的方式,获得过去一年4000户居民的月均用水量数据(单位:吨),并根据获得的数据制作了频率分布表:(1)求m,n,p,q的值;(2)求所获得数据中“月均用水量不低于30吨”发生的频率;(3)若在第4,5,6组用按比例分配的分层抽样的方法随机抽取6户做问卷调查,并在这6户中任选2户进行座谈会,求这2户中恰有1户是“月均用水量不低于50吨”的概率.解:(1)由表中数据可得,4000(0.04610)1840m=⨯⨯=,0.046100.46n=⨯=,0.018100.0018p=÷=,40000.00624q=⨯=.(2)所获得数据中“月均用水量不低于30吨”发生的频率为0.0180.0120.0060.036++=.(3)用分层抽样的方法在4,5,6,组随机抽取6户做回访调查的人数分别为3,2,1,设上述6户分别为A,B,C,D,E,F,在这6户中任选2户进行座谈会,分别有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种,其中这2户中恰有1户是“月均用水量不低于50吨”的事件为AF,BF,CF,DF,EF,共5种,故所求概率为51153P==.19.(12分)如图所示,在四棱锥P ABCD-中,//AB CD,E是线段PB的中点,F是线段DC上的点,且12DF AB=.(1)证明://EF 平面PAD ;(2)若AB ⊥平面PAD ,PD AD =,PH AD ⊥,且PHAD H =.记直线PB 与平面ABCD所成角为α,直线PB 与平面PAD 所成角为β,比较cos α与sin β的大小,并说明理由. (1)证明:取PA 的中点M ,连接DM ,EM ,E 是PB 的中点,//EM AB ∴,且12EM AB =, 又//AB CD ,12DF AB =, //EM DF ∴,且EM DF =,∴四边形EFDM 为平行四边形,//EF DM ∴,DM ⊂平面PAD ,EF ⊂/平面PAD ,//EF ∴平面PAD .(2)解:连接BH ,AB ⊥平面PAD ,PH ⊂面PAD ,PH AB ∴⊥,又PH AD ⊥,ABAD A =,AB ,AD ⊂平面ABCD ,PH ∴⊥平面ABCD ,即PBH ∠为直线PB 与平面ABCD 所成的角,∴cos cos BHPBH PBα=∠=, AB ⊥平面PAD ,BPA ∴∠为直线PB 与平面PAD 所成角,又PA ⊂平面PAD ,PA AB ∴⊥,即sin sin ABBPA PBβ=∠=, 在PAD ∆中,PD AD =,H ∴与A 不重合,AB BH ∴≠, 在Rt ABH ∆中,AB BH <,sin cos βα∴<.20.(12分)已知复数1z a bi =+,a R ∈,b R ∈,0b ≠,2114z z z =+,221z -<. (1)求实数a 的取值范围;(2)若1122z z ω-=+,求22||z ω-的最小值. 解:(1)2122221444()()a b z z a b i z a b a b =+=++-++ 221z -<,2z ∴是实数,∴224bb a b=+,即224a b +=,22z a ∴=, 221z -<,221a ∴-<,即112a-<, 1z ∴的实部的取值范围为1(1,]2-;(2)2212212244422(2)842z a bi a b bi bi biz a bi a b a a ω--+-++=====+++++++, 222222()22(2)bi b z a a a a ω--=-=-++, 224a b +=,∴2222424222(2)5(2)22a a z a a a a a aω---=+=+=++-+++,1(1,]2a ∈-,20a ∴+>,∴当42(2)2a a=++时,即2a =-22z ω-取到最小值5, 又50>,故22||zω-的最小值为5.21.(12分)如图,在四边形ABCD 中,3AB=,AD BCD ∆是以D 为直角顶点的等腰直角三角形,BAD θ∠=,(,)2πθπ∈.(1)当cos θ=时,求AC ; (2)当四边形ABCD 的面积取最大值时,求BD .解:(1)由题干可知,在ABD ∆中,3AB=,AD=cos θ=. 则由余弦定理可得到:2222cos 1414620BD AB AD AB AD θθ=+-⋅=-=+=.解得BD =又因为(,)2πθπ∈,故sin θ==.再根据正弦定理得sin sin BD ABBAD ADB =∠∠3sin ADB=∠. 解得3sin 5ADB ∠=,由题意知在BCD ∆中,D 为直角,且BCD ∆是等腰直角三角形,所以2CDB π∠=且CD BD ==故得到3cos cos()sin 25ADC ADB ADB π∠=∠+=-∠=-.在ACD ∆中,由余弦定理得AC =(2)根据第一问可得:214BD θ=-,2113sin 722ABCD ABD BCD S S S BD θθθ∆∆=+=⨯+⨯=+-1572cos )7sin()2θθθϕ=-=+-.此时sin ϕ=cos ϕ= 又因为(0,)2πϕ∈,当2πθϕ-=时,四边形ABCD 的面积取得最大值.即2πθϕ=+,解得sin θ=cos θ=所以21414(26BD θ=-=-=.即BD22.(12分)如图,在三棱柱111?ABC A B C 中,平面11ACC A ⊥平面ABC ,160A AC ACB ∠=∠=︒,12C C AC BC ==,D 是BC 的中点.(1)证明:平面11A B D ⊥平面11BB C C ;(2)若2BC =,分别求过1A ,1B ,D 三点的截面将该三棱柱分得的两部分的体积.(1)证明:在三棱柱111ABC A B C -中,取AC 的中点H ,连接1A H ,HD ,1A C , 因为H ,D 分别为AC ,BC 的中点,所以//HD AB ,所以11//HD A B , 所以平面11A HDB 即为平面11A B D ,因为160A AC ∠=︒,1AA AC =,所以△1A AC 为正三角形,所以1A H AC ⊥, 又平面11ACC A ⊥平面ABC ,平面11ACC A ⋂平面ABC AC =,1A H ⊂平面11ACC A , 所以1A H ⊥平面ABC ,又BC ⊂平面ABC ,所以1A H BC ⊥, 在ABC ∆中,2AC BC =,60ACB ∠=︒,由余弦定理可得2222cos AB AC BC AC BC ACB =+-⋅∠,即AB , 所以222AC AB BC =+,即AB BC ⊥,因为//HD AB ,所以BC HD ⊥, 因为1A HHD H =,1A H ⊂平面11A HDB ,HD ⊂平面11A HDB ,所以BC ⊥平面11A HDB ,又BC ⊂平面11BB C C ,所以平面11A HDB ⊥平11BB C C ,即平面11A B D ⊥平面11BB C C ; (2)解:因为2BC =,所以14AC AA ==,因为H ,D 分别为AC ,BC 的中点,且11111//,2HD A B HD A B =, 所以111HDC A B C -是三棱台,因为ABC ∆中,,2AB BC AB BC ⊥==,所以11222ABC S AB BC ∆=⋅=⨯=,所以111A B C S =14HDC ABC S S ∆∆==,又1A H ⊥平面ABC ,且1A H =111HDC A B C -的体积1111111111()33HDC A B C HDC A B C V A H S S S S∆∆=++⋅=⨯+ 173=⨯,所以剩余几何体的体积111111212752ABC A B C HDC A B C V V V --=-=⨯⨯=,所以过A ,1B ,D 三点的截面将该三棱柱分得的两部分的体积分别为5和7.。

福建厦门2024年高一下学期7月期末质检数学试题(解析版)

福建厦门2024年高一下学期7月期末质检数学试题(解析版)

厦门市2023—2024学年第二学期高一期末质量检测数学试题满分:150分 考试时间:120分钟考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若()1i 13i z −=+,则z =( )A. 2i +B. 22i +C. 12i +D. 12i −+【答案】D 【解析】【分析】利用复数的四则运算求解出复数即可.【详解】因()1i 13i z −=+, 所以22(13i)(1i)13i i 3i (1i)(1i)1i z+++++=−+−i 4i 22i 1122−=−+−=,故D 正确. 故选:D2. 为了解某校高一年级学生体育锻炼情况,用比例分配的分层随机抽样方法抽取50人作为样本,其中男生20人.已知该校高一年级女生240人,则高一年级学生总数为( ) A. 600 B. 480C. 400D. 360【答案】C 【解析】【分析】用分层抽样的概念,和样本估计总体的思想解题即可.【详解】抽取50人作为样本,其中男生20人.则女生30人.则男女比例为:2:3.该校高一年级女生240人,则男生160人. 高一年级学生总数为400人.为故选:C .3. 在梯形ABCD 中//AB CD ,AB AD ⊥,222AB AD CD ===,以AD 所在直线为旋转轴,其余各边旋转一周形成的面所围成的几何体的体积为( ) A.5π3B.7π3C. 5πD. 7π【答案】B 【解析】【分析】由已知可得AD 为直角梯形的直角边,则绕AD 旋转可得几何体为圆台,进而可得圆台体积. 【详解】已知可得AD 为直角梯形的直角边,则绕AD 旋转可得几何体为圆台, 可知圆台上底面半径为1CD =,下底面半径2AB =,高1h AD ==,所以体积()()22ππ7π1421333VCD AB CD AB AD =++⋅⋅=++×=, 故选:B.4. 甲、乙两人参加某项活动,甲获奖的概率为0.5,乙获奖的概率为0.4,甲、乙两人同时获奖的概率为0.2,则甲、乙两人恰有一人获奖的概率为( ) A. 0.3 B. 0.5C. 0.7D. 0.9【答案】B 【解析】. 【详解】设甲获奖为事件A ,乙获奖为事件B , 所以()0.5P A =,()0.4P B =,()0.2P AB =,因为()()()0.2P A P B P AB ==,所以事件A 与事件B 相互独立, 根据题意,甲、乙两人恰有一人获奖的概率为()()()()0.50.60.50.40.30.20.5P P A P B P A P B =+=×+×=+=,故选:B.5. 如图,甲在M 处观测到河对岸的某建筑物在北偏东15 方向,顶部P 的仰角为30 ,往正东方向前进150m 到达N 处,测得该建筑物在北偏西45 方向.底部Q 和,M N 在同一水平面内,则该建筑物的高PQ为( )A.B.C.D.【答案】A 【解析】【分析】分析题意结合正弦定理得到MQ =再由题意得到PQ ⊥面MNQ ,利用线面垂直的性质得到PQ MQ ⊥,最后利用锐角三角函数的定义求解即可.【详解】由题意得45MNQ ∠= ,75QMN ∠= ,30PMQ ∠= ,150MN =,在MQN △中,由三角形内角和定理得60MQN ∠=,=MQ =PQ ⊥面MNQ ,所以PQ MQ ⊥,在MQP △=,解得PQ =A 正确. 故选:A6. 已知,,αβγ是三个不重合的平面,,m n αβαγ∩=∩=,则( ) A. 若m //n ,则β//γB. 若m n ⊥,则βγ⊥C. 若,αβαγ⊥⊥,则m //nD. 若,αγβγ⊥⊥,则m n ⊥ 【答案】D 【解析】【分析】构造长方体模型,通过举反例可以判断A 、B 、C 是错误的,在利用排除法即可得到正确答案.【详解】如图,构造长方体模型,对于A ,设平面ADD A ′′为平面α,平面ABCD 为平面β,平面D A BC ′′为平面γ, 则直线AD 为m ,直线A D ′′为n ,易知,此时m //n ,但BC βγ= ,故A 错误; 对于B ,设平面ADD A ′′为平面α,平面AB C D ′′为平面β,平面DBBD ′为平面γ,则直线AD 为m ,直线DD ′为n ,易知,此时m ⊥n ,但平面AB C D ′′与平面DBBD ′不垂直,故B 错误;对于C ,设平面ADD A ′′为平面α,平面ABCD 为平面β,平面DCC D ′′为平面γ, 则直线AD 为m ,直线DD ′为n ,此时m ⊥n ,故C 错误;因为,,m αγβγαβ⊥⊥∩=,所以m γ⊥, 又n γ⊂,所以m n ⊥,D 正确; 故选:D.7.若i z z =−,则 ) A. 1B.C.D. 2【答案】A 【解析】【分析】设i ,z x y x y ∈=+R ,,结合条件求出,x y ,再求模即可.【详解】设i ,z x y x y ∈=+R ,,则i i (1)i z x y z x y −=−+−=+−,,又i z z =−−,则=解得12x y = =,即1i 2z=,故1z =.故选:A8. 向量12,,e e a 满足121212π01,3,e e e e a e a e ⋅===−−= ,,则a 的最大值为( )A.B.C.D.【答案】B 【解析】【分析】令11OE e = ,22OE e = ,OA a =,则由已知条件可得12E E =12π3E AE ∠=,利用正弦定理求出12E AE 外接圆的半径,再结合图形可求得结果.【详解】令11OE e = ,22OE e = ,OA a =,则122112,a e a e OA OE E A OA OE E A =−=−−=−= , 因为120e e ⋅=,121==e e ,所以12E E =. 因为12π,3a e a e −−= ,所以12π3E AE ∠=.所以过1E ,A ,2E 的圆C的半径121122sin E E r E CE AE ===∠连接OC 交12E E 于点D ,连接1CE ,则11212OD DEE E ===CD,所以OC =, 所以OA最大值为OC r +, 故选:B.的【点睛】关键点点睛:此题考查向量的加减法运算,考查求向量的模,解题的关键是令11OE e =,22OE e = ,OA a =,然后根据已知条件画出图形,结合图形求解,考查数形结合思想和计算能力,属于较难题.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 某学校开展消防安全知识培训,对甲、乙两班学员进行消防安全知识测试,绘制测试成绩的频率分布直方图,如图所示:( )A. 甲班成绩的平均数<甲班成绩的中位数B. 乙班成绩的平均数<乙班成绩的中位数C. 甲班成绩的平均数<乙班成绩的平均数D. 乙班成绩的中位数<甲班成绩的中位数 【答案】BC 【解析】【分析】根据甲、乙两班的频率分布直方图直接求出甲、乙两班的平均数、中位数即可得解. 【详解】对于A ,由甲班频率分布直方图可得甲班成绩的平均数为x =甲()0.01667.50.06472.50.0477.50.03282.50.02487.50.01692.50.00897.55×+×+×+×+×+×+×× 79.1=,甲班成绩分在[)65,75内频率之和()0.0160.06450.40.5+×=<, 成绩分在[)65,80内频率之和为()0.0160.0640.0450.60.5++×=>, 所以甲班成绩的中位数为0.50.4755=77.579.10.045−+×<×,故A 错误;对于B ,由乙班频率分布直方图可得乙班成绩的平均数为x =乙()0.01697.50.06492.50.0487.50.03282.50.02477.50.01672.50.00867.55×+×+×+×+×+×+×× 85.9=,乙班成绩分在[)65,85内频率之和为()0.008+0.0160.024+0.03250.40.5+×=<, 成绩分在[)65,90内频率之和为()0.008+0.0160.024+0.032+0.0450.60.5+×=>, 所以乙班成绩的中位数为0.50.4855=87.585.90.045−+×>×,故B 正确;对于C ,由A 、B 可知甲班平均数小于乙班平均数,故C 正确; 对于D ,由A 、B 可知甲班中位数小于乙班的中位数,故D 错误. 故选:BC.10. 在梯形ABCD 中,2,2,2AD BC AD AB AN ND === ,则( ) A. 12DC AB AD =−B. 0AB BD ⋅=C. 0AC CD ⋅=D. AN 在AC 上的投影向量为23AC【答案】ACD 【解析】【分析】根据向量即平面几何知识即可求解.【详解】取AD 的中点E ,连接,,,BE CE AC BD ,12AE AD =根据题意可知,//AD BC 且2AD BC =,则BC AE =,BC ED =,所以四边形AECB 为平行四边形,所以12DC EB AB AE AB AD ==−=−,故A 正确;因为题意没有说明BC 与CD 的大小关系,所以不能证明AC BD ⊥,故B 错误;为因为12AE AD =,12BC AD =,且12AB AD = ,所以AB AE =,所以四边形AECB 为菱形,所以AC BE ⊥,因为//BE CD , 所以AC CD ⊥,所以0AC CD ⋅=,故C 正确; 过N 作AC 的垂线,垂足为F ,连接NF ,因为AC CD ⊥且AC NF ⊥,2AN ND =,所以23AN AC =,AN 在AC 上的投影向量为23AC ,故D 正确;故选:ACD.11. 在长方体1111ABCD A B C D −中,11,AB AD AA ===,动点P 满足[]()1,0,1BP BC BB λµλµ=+∈,则( )A. 当0λ=时,AC DP ⊥B. 当1λ=时,AC 与DP 是异面直线C. 当1µ=时,三棱锥1P ABB −的外接球体积的最大值为4π3D. 当12µ=时,存在点P ,使得DP ⊥平面1ACD 【答案】ACD 【解析】【分析】用线面垂直证明线线垂直,即可判断A ;当1λ=,0µ=时, AC 与DP 有交点,即可判断B ;当1λ=时,点P 与1C 重合,此时三棱锥1P ABB −的体积最大,从而得到外接球体积最大,即可得解C ;当0λ=时,112BP BB =,即P 为1BB 的中点时,DP ⊥平面1ACD ,证明即可判断D.【详解】对于A ,当0λ=时,1BP BB µ=,在长方体中,易知1BB ABCD AC ABCD ⊥⊂平面,平面,所以1BB AC ⊥,又1AC DB DB BB B ⊥=,,所以1AC DBB ⊥平面 又1DP DBB ⊂平面,所以AC DP ⊥,故A 正确;对于B ,当1λ=,0µ=时,BP BC =,此时,又AC 与DP 相交于点C ,故B 错误;对于C ,当1µ=时,1BP BC BB λ=+,当1λ=时,点P 与1C 重合,此时三棱锥1P ABB −的高最大,由于底面1ABB 的面积是定值,所以此时三棱锥1P ABB −的体积最大,即三棱锥1P ABB −的外接球体积最大。

安徽省黄山市2021-2022学年高一下学期期末考试数学试卷(解析版)

安徽省黄山市2021-2022学年高一下学期期末考试数学试卷(解析版)

安徽省黄山市2021-2022学年高一下学期期末考试数学试题一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1.若2ai b i +=-,其中a ,b R ∈,i 是虚数单位,则复数z a bi =+的虚部为( ) A .i -B .1-C .2iD .2〖解 析〗2ai b i +=-,则12a b =-⎧⎨=⎩,故12z a bi i =+=-+的虚部为2.〖答 案〗D2.以下说法正确的是( ) A .零向量与任意非零向量平行 B .若//,//a b b c ,则//a cC .若0(a λλ=为实数),λ则必为零D .若a 和b 都是单位向量,则a b =〖解 析〗A ,规定:零向量与任意向量平行,A ∴正确,B ,若0b =时,满足//a b ,//b c ,但a 与c 不一定共线,B ∴错误,C ,当0a =时,满足0a λ=,C ∴错误,D ,当a 与b 方向不相同时,a b ≠,D ∴错误.〖答 案〗A3.已知m ,n 是不同的直线,α,β是不重合的平面,则下列命题错误的序号是 ①若//m α,//m n ,则//n α ②若m α⊥,n β⊥,则n m ⊥ ③若m α⊥,//m β则αβ⊥④若αβ⊥,m α⊂,则(m β⊥ ) A .①②③B .①③④C .①②④D .②③④〖解 析〗①若//m α,//m n ,则//n α或n α⊂,故①错误;②若m α⊥,n β⊥,由α与β的位置关系不确定,则n 与m 的位置关系不确定,故②错误; ③若//m β,则β内存在直线l 与m 平行,m α⊥,则l α⊥,可得αβ⊥,故③正确; ④若αβ⊥,m α⊂,则m β⊂或//m β或m 与β相交,相交也不一定垂直,故④错误.∴命题错误的序号是①②④.〖答 案〗C4.如图,△O A B '''是水平放置的OAB ∆的直观图,则OAB ∆的周长为( )A .12B .10+C .7+D .11〖解 析〗根据题意,OAB ∆的图形如图:其中90AOB ∠=︒,4OB =,6OA =,则AB =则OAB ∆的周长为10+〖答 案〗B5.现有以下两项调查:①从100台刚出厂的电视机中抽取3台进行质量检查;②某社区有1000户家庭,其中高收入家庭100户,中等收入家庭820户,低收入家庭80户,为了调查家庭每年生活费的开支情况,计划抽取一个容量为50的样本,则完成这两项调查最适宜采用的抽样方法分别是( ) A .①②都采用简单随机抽样 B .①②都采用分层随机抽样C .①采用简单随机抽样,②采用分层随机抽样D .①采用分层随机抽样,②采用简单随机抽样〖解 析〗①从100台刚出厂的电视机中抽取3台进行质量检查采用简单随机抽样即可; 收入对家庭每年生活费的开支影响很大, 故②采用分层随机抽样较合适. 〖答 案〗C6.袋子里装有大小质地都相同的2个白球,1个黑球,从中不放回地摸球两次,用A 表示事件“第1次摸得白球”, B 表示事件“第2次摸得白球”,则A 与B 是( ) A .互斥事件 B .相互独立事件 C .对立事件D .不相互独立事件〖解 析〗互斥事件是指在一定条件下不可能同时发生的事件,由此判断A 和B 不互斥,则也不对立.由题意可知:P (A )35=,P (B )12=.故事件A 发生对事件B 的概率有影响,故A 和B 不是相互独立事件. 〖答 案〗D7.某省在新高考改革方案中规定:每位考生必选语文、数学、英语3科,再从物理、历史2科中选1科,从化学、生物、地理、政治4科中选2科,甲考生随机选择,最后他选择物理、化学、地理这个组合的概率是( ) A .310B .25C .112D .120〖解 析〗所有选科种数为:122412C C ⋅=.故概率112P =. 〖答 案〗C8.已知O 是ABC ∆所在平面内的一点,A ∠,B ∠,C ∠所对的边分别为3a =,2b =,4c =,若0aOA bOB cOC ++=,过O 作直线l 分别交AB 、AC (不与端点重合)于P 、Q ,若AP AB λ=,AQ AC μ=,若PAO ∆与QAO ∆的面积之比为32,则(λμ= )A .56B .13C .43 D .34〖解 析〗因为PAO ∆与QAO ∆的面积之比为32,可得32OP OQ =-,故2()3)0OA AB OA AC λμ+++=,即22()33()0OA OB OA OA OC OA λμ+-++-=, 整理得(523)230OA OB OC λμλμ--++=,因为0aOA bOB cOC ++=,且OA ,OB ,OC 均不共线, 故2234λμ=,解得34λμ=.〖答案〗D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.复数21izi+=-,i是虚数单位,则下列结论正确的是()A.52 z z⋅=B.z的共轭复数为13 22i +C.z的实部与虚部之和为2D.z在复平面内的对应点位于第一象限〖解析〗2(2)(1)131(1)(1)22i i iz ii i i+++===+-+-,对于A,13135()()22222z z i i⋅=+-=,故A正确,对于B,1322z i=-,故B错误,对于C,z的实部与虚部之和为13222+=,故C正确,对于D,z在复平面内的对应点13(,)22位于第一象限,故D正确.〖答案〗ACD10.下列说法正确的有()A.掷一枚质地均匀的骰子一次,事件M=“出现奇数点”,事件N=“出现3点或4点”,则M和N相互独立B.袋中有大小质地相同的3个白球和2个红球.从中依次不放回取出2个球,则“两球同色”的概率是3 10C.甲,乙两名射击运动员进行射击比赛,甲的中靶率为0.8,乙的中靶率为0.9,则“至少一人中靶”的概率为0.98D.柜子里有三双不同的鞋,如果从中随机地取出2只,那么“取出的鞋不成双”的概率是45〖解 析〗对于A :掷一枚质地均匀的的骰子一次,1()2P M =,1()3P N =,1()6P MN =,即()()()P MN P M P N =故事件M 和N 相互独立,A 正确;对于B :若“两球同色”则都是白球或者都是红球,则“两球同色”的概率是22322525C C C +=,B 错误;对于C :“至少一人中靶”的概率为1(10.9)(10.8)0.98---=,C 正确;对于D :柜子里有三双不同的鞋,如果从中随机地取出2只,共有15312-=种, 取出的鞋成双的只有3种,那么“取出的鞋不成双”有15312-=种,所以“取出的鞋不成双”的概率是124155=,D 正确. 综上可知正确的有ACD . 〖答 案〗ACD11.下列命题正确的是( )A .设m ,n 为非零向量,则“存在负数λ,使得m n λ=”是“0m n ⋅<”的充分不必要条件B .点D 是ABC ∆边BC 的中点,若2||||||AB AC ADAB AC AD +=,则BA 在BC 的投影向量是BD C .点D 是ABC ∆边BC 的中点,若点P 是线段AD 上的动点,且满足BP BA BC λμ=+,则λμ的最大值为18D .已知平面内的一组基底1e ,2e ,则向量12e e +,12e e -不能作为一组基底 〖解 析〗对于A ,存在负数λ,使得m n λ=,所以20m n n λ⋅=<,充分性成立; 当0m n ⋅<时,不一定有“存在负数λ,使得m n λ=”,必要性不成立; 所以是充分不必要条件,选项A 正确. 对于B ,||AB AB ,||AC AC ,||ADAD 分别表示平行于AB ,AC ,AD 的单位向量, 由平面向量加法可知:||||AB ACAB AC +为BAC ∠ 的平分线表示的向量,因为2||||||AB AC ADAB AC AD +=,所以AD 为BAC ∠的平分线, 又因为AD 为BC 的中线,所以AD BC ⊥,如图1所示:BA 在BC 的投影为||||cos ||||||BD BC B BA BD BA =⨯=, 所以BD 是BA 在BC 的投影向量,选项B 正确; 对于C ,如图2所示:因为P 在AD 上,即A ,P ,D 三点共线, 设(1)BP tBA t BD =+-,01t ,又因为12BD BC =,所以12t BP tBA BC -=+, 因为BP BA BC λμ=+,则12t t λμ=⎧⎪⎨-=⎪⎩,01t ,令21111()2228t y t t λμ-==⋅=--+, 12t =时,λμ取得最大值为18,选项C 正确.对于D ,平面内的一组基底1e ,2e ,则向量12e e +,12e e -不共线,可以作为一组基底,选项D 错误. 〖答 案〗ABC12.在棱长为2的正方体1111ABCD A B C D -中,已知点P 在面对角线AC 上运动,点E ,F ,G 分别为11A D ,11A B ,1BB 的中点,点M 是该正方体表面及其内部的一动点,且//BM 平面1AD C ,则下列选项正确的是( ) A .1//D P 平面11A BC B .平面1PDB ⊥平面11A BCC .过E ,F ,G 三点的平面截正方体1111ABCD A B C D -D .动点M 的轨迹所形成区域的面积是〖解 析〗对于A ,11//AC AC ,11//AD BC ,1AC AD A =,1111A C BC C =,∴平面1//AD C 平面11A BC ,1D P ⊂平面1AD C ,1//D P ∴平面11A BC ,故A 正确;1111AC B D ⊥,111DD AC⊥,1111DD B D D =,11AC ∴⊥平面11DD B ,111B D AC ⊥,同理,11B D BC ⊥,1111BC A C C =,1B D ∴⊥平面11A BC ,1B D ∴⊂平面1PDB ,∴平面1PDB ⊥平面11A BC ,故B 正确;对于C ,如图,作出过E ,F ,G 三点的平面截面图形,,∴截面面积为26S ==C 错误; 对于D ,如图,棱长为2的正方体1111ABCD A B C D -中, 点M 是该正方体表面及其内部的一动点,且//BM 平面1AD C ,由面面平行的性质得当BM 始终在一个与平面1AD C 平行的平面内,即满足题意, 作出过点B 的平面与平面1AD C 平行,连接1A B ,1BC ,11A C ,则平在11//A BC 平面1AD C ,∴动点M 的轨迹所形成区域的面积是1112A BC S=⨯=D 正确. 〖答 案〗ABD三、填空题(本大题共4小题,每小题5分,共20分.请在答题卷的相应区域答题.) 13.已知向量a ,b ,c 满足,0,||2,||3,||5a b c a b c ++====,则a b ⋅= . 〖解 析〗0a b c ++=,∴()c a b =-+,∴22()c a b =+,∴2222c a b a b =++⋅,又||2a =,||3b =,||5c =, ∴25492a b =++⋅,∴6a b ⋅=.〖答 案〗614.已知复数z 满足2022(1)1z i i -=-,则复数z = . 〖解 析〗202245052()1i i i =⋅=-,2022(1)12z i i -=-=-,∴222(1)111(1)(1)i z i i i i i -+====+---+. 〖答 案〗1i +15.某同学5次上学途中所花的时间(单位:分钟)分别为x ,y ,8,10,12.已知这组数据的平均数为10x y -的值为 .〖解 析〗根据题意,数据x ,y ,8,10,12的平均数为10,,即其方差为2;则1(81012)105x y ++++=,221(64100144)10025x y ++++-=, 变形可得2220202x y x y +=⎧⎨+=⎩,则有2222()()198xy x y x y =+-+=, 则222()24x y x y xy -=+-=,则有2x y -=±. 〖答 案〗2±16.如图,已知平行四边形ABCD 中,AC AB m ==,120BAD ∠=︒,将ABC ∆沿对角线AC 翻折至△1AB C 所在的位置,若二面角1B AC D --的大小为120︒,则过A ,1B ,C ,D 四点的外接球的表面积为 .〖解 析〗如图,平行四边形ABCD 中,AC AB m ==,120BAD ∠=︒,∴平行四边形ABCD 是边长为m 的菱形,且其中60ADC ∠=︒,BCA ∴∆与ACD ∆都是边长为m 的等边三角形,将ABC ∆沿对角线AC 翻折至△1AB C 所在的位置后,取AC 的中点H ,连接1B H ,DH ,则1B H AC ⊥且DH AC ⊥,∴二面角1B AC D --的平面角即为1120B HD ∠=︒,分别取BCA ∆与ACD ∆的中心E ,F ,即1B H 与DH 上靠近H 的三等分点E ,F ,再分别过E ,F 作平面BCA ,平面ACD 的垂线,且两垂线交于点O , 则易证点O 即为过A ,1B ,C ,D 四点的外接球的球心,∴球的半径R OC =,1133HF HD ==,2CF DF HF ==,连接OH ,则易知OH 平分1B HD ∠,60OHF ∴∠=︒,12OF m ∴=,∴在Rt CFO ∆中,由勾股定理可得22222221173412R OC CF OF m m m ==+=+=, ∴所求的外接球的表面积为2227744123R m m πππ=⨯=. 〖答 案〗273m π四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.请在答题卷的相应区域答题.)17.(10分)已知复数12z x i =-,21z yi =-,其中i 是虚数单位,x ,y 为实数. (1)若1x =-,1y =,求12||z z -的值;(2)若212z z =,求x ,y 的值.解:(1)1x =-,1y =,112z i ∴=--,21z i =-,122z z i ∴-=--,12||z z ∴-(2)212z z =,22(1)x i yi ∴-=-,即2212x i y yi -=--,即2122x y y⎧=-⎨--⎩,解得0x =,1y =.18.(12分)已知向量(3,2)a =,(,1)b x =-. (1)当(2)a b b -⊥时,求|2|a b +;(2)当(8,1)c =--,//()a b c +,求向量a 与b 的夹角α. 解:(1)向量(3,2)a =,(,1)b x =-,∴2(32,0)a b x +=+,2(6,5)a b x -=-,(2)a b b -⊥,∴(2)0a b b -⋅=,即(6x -,5)(x ⋅,1)0-=,2650x x -+=,解得1x =或5x =,当1x =,则,则2(5,0)a b +=,∴|2|5a b +=, 当5x =,|2|13a b +=, 综上所述,2513a b +=或.(2)(8,1)c =--,(3,2)a =,(,1)b x =-,则(8,2)b c x +=--,//()a b c +,3(2)2(8)0x ∴⨯--⨯-=,解得5x =,∴||13a =,||26b =,352(1)13a b ⋅=⨯+⨯-=,∴13cos ||||13a b a b α⋅==⨯,[0α∈,]π,∴4πα=.19.(12分)如图,在三棱柱111ABC A B C -中,O 为AB 的中点,CA CB =,1AB AA =,160CAB BA A ∠=∠=︒.(1)证明:AB ⊥平面1A OC ;(2)若ABC ∆1OA OC ⊥,求三棱锥11A A BC -的体积. (1)证明:由题意得:ABC ∆,1ABA ∆均为等边三角形,O 为AB 的中点, 所以AB OC ⊥,1AB OA ⊥, 又1OCOA O =,所以AB ⊥平面1A OC ;(2)解:因为ABC ∆由正弦定理得2sin AB ACB =∠12,AA BAB S ==因为1OA OC ⊥,OC AB ⊥,1OA AB O =,所以OC ⊥平面1AA B ,因为1//CC 平面11AA B B ,所以1C 到平面11A B B 的距离等于C 到平面11A B B 的距离,即OC1111111133A BC A C AAB AA BV V S OC --==⋅==.20.(12分)某校有高中生3600人,其中男女生比例约为5:4,为了获得该校全体高中生的身高信息,采取了以下两种方案:方案一:采用比例分配的分层随机抽样方法,抽取了样本容量为n 的样本,得到频数分布表和频率分布直方图.方案二:按照性别分类进行简单随机抽样,抽取了男、女生样本容量均为25的样本,计算得到男生样本的均值为172,方差为16,女生样本的均值为160,方差为20.(1)根据图表信息,求n ,q 的值并补充完整频率分布直方图,估计该校高中生的身高均值;(同一组中的数据以这组数据所在区间中点的值为代表)(2)计算方案二总样本的均值及方差;(3)你觉得是用方案一还是方案二总样本的均值作为总体均值的估计比较合适?(说明理由)解:(1)因为身高在区间[155,165)的频率为0.040100.4⨯=,频数20,所以20500.4n ==,504206416q =----=, 所以身高在区间[165,175)的频率为160.3250=,在区间[175,185)的频率为60.1250=,由此可补充完整频率分布直方图:由频率分布直方图可知,样本的身高均值为:1500.008101600.04101700.032101800.012101900.00810⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯ 126454.421.615.2167.2=++++=;估计该校高中生的身高均值为167.2cm ;(2)男生样本记为1x ,2x ,...,25x ,其均值记为x ,方差记为2x s ; 女生样本记为1y ,2y ,...,25y ,其均值记为y ,方差记为2y s , 则总样本均值252525172251601662525252550z x y ⨯+⨯=+==++,又因为252511()250i i i i x x x x ==-=-=∑∑,所以2525112()()2()()0i i i i x x x z x z x x ==--=--=∑∑,同理可得2512()()0j j y y y z =--=∑,所以总样本方差2525222111[()()]50i j i j s x z y z ===-+-∑∑252522111[()()]50i j i j x x x z y y y z ===-+-+-+-∑∑ 22221{25[()]25[()]}50x y s x z s y z =+-++- 221{25[16(172166)]25[20(160166)]}50=+-++-54=; (3)用方案一比较合适, 因为方案一是按比例抽取样本,所以样本的代表性比较强,能够更好地反映总体的情况.21.(12分)如图所示,正四棱锥P ABCD -中,O 为底面正方形的中心,已知侧面PAD与底面ABCD 所成的二面角的大小为60︒,E 是PB 的中点.(1)请在棱AB 与BC 上各找一点M 和N ,使平面//MNE 平面PAC ,作出图形并说明理由;(2)求异面直线PD 与AE 所成角的正切值;(3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由.解:(1)分别取AB ,BC 的中点M ,N ,连接MN ,NE ,则平面//MNE 平面PAC ,证明:在ABF ∆中,M ,E 分别为AB ,PB 的中点,所以//ME AP ,同理,//NE PC , 又ME ⊂平面MNE ,ME ⊂/平面PAC ,所以//ME 平面PAC ,同理//NE 平面PAC 又MENE E =,所以平面//MNE 平面PAC ,(2)连接AE ,OE ,因为//OE PD ,所以OEA ∠为异面直线PD 与AE 所成的角或其补角,因为AO BD ⊥,AO PO ⊥,POBD O =,PO ,BD ⊂平面PBD ,所以AO ⊥平面PBD ,又OE ⊂平面PBD ,所以AO OE ⊥,所以12OE PD ==,所以tan AO AEO EO ∠=则异面直线PD 与AE (3)存在点F 符合题意,且14AF AD =, 证明:取OB 得中点Q ,连接QF ,QE ,EF ,在POB ∆中,Q ,E 分别为BP ,BO 的中点,所以//QE PO ,所以QE ⊥平面ABCD ,因为BC ⊂平面ABCD ,所以QE BC ⊥, 又在ABD ∆中,14QB DB =,14AF AD =, 所以//QF AB ,所以QF BC ⊥,又QF QE Q =,所以BC ⊥平面QEF ,所以BC EF ⊥,在PFB ∆中,PF =,BF , 所以PFB ∆是等腰三角形,所以FE PB ⊥, 又PBBC B =,所以FE ⊥平面PBC ,所以存在点F 符合题意, 所以存在这样的F 点,且14AF AD =. 22.(12分)如图,设ABC ∆中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知1c =且12sin cos sin sin sin 4c A B a A b B b C =-+,1cos 2A =.(1)求ABC ∆的面积;(2)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且AEF ∆的面积为ABC ∆面积的14,求AG EF ⋅的取值范围. 解:(1)因为12sin cos sin sin sin 4c A B a A b B b C =-+,所以221224a cb ac a b bc ac +-⨯=-+,化简得4c b =,又1c =,所以4b =.所以11sin 4122ABC S bc A ∆==⨯⨯(2)设||,||AE x AF y ==,因为D 为中点,所以2AB ACAD +=, 因为AEF ∆的面积为ABC ∆面积的14,所以1sin 2AEF S xy A ∆=,即1xy =,设AG AD λ=,则22AG AD AB AC λλλ==+,又E ,G ,F 共线,设(1)AG AE AF μμ=+-,则(1)(1)4y AG AE AF x AB AC μμμμ-=+-=+, 所以2(1)42x y λμμλ⎧=⎪⎪⎨-⎪=⎪⎩,解得4y x y μ=+,所以1144AG AB AC x y x y =+++,又4y EF AC xAB =-,所以1196()()4442(4)y y xAG EF AB AC AC xAB x y x y x y -⋅=+⋅-=+++, 又1xy =,化简得22296963212(4)2(41)44(41)y x x AG EF x y x x --⋅===-++++,又4y ,所以114x ,所以310AG EF⋅,当1x =时等号成立.6920AG EF ⋅, 当14x =时等号成立,综上3691020AG EF⋅,即3[10,69]20.安徽省黄山市2021-2022学年高一下学期期末考试数学试题一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1.若2ai b i +=-,其中a ,b R ∈,i 是虚数单位,则复数z a bi =+的虚部为( ) A .i -B .1-C .2iD .2〖解 析〗2ai b i +=-,则12a b =-⎧⎨=⎩,故12z a bi i =+=-+的虚部为2.〖答 案〗D2.以下说法正确的是( ) A .零向量与任意非零向量平行 B .若//,//a b b c ,则//a cC .若0(a λλ=为实数),λ则必为零D .若a 和b 都是单位向量,则a b =〖解 析〗A ,规定:零向量与任意向量平行,A ∴正确,B ,若0b =时,满足//a b ,//b c ,但a 与c 不一定共线,B ∴错误,C ,当0a =时,满足0a λ=,C ∴错误,D ,当a 与b 方向不相同时,a b ≠,D ∴错误.〖答 案〗A3.已知m ,n 是不同的直线,α,β是不重合的平面,则下列命题错误的序号是 ①若//m α,//m n ,则//n α ②若m α⊥,n β⊥,则n m ⊥ ③若m α⊥,//m β则αβ⊥④若αβ⊥,m α⊂,则(m β⊥ ) A .①②③B .①③④C .①②④D .②③④〖解 析〗①若//m α,//m n ,则//n α或n α⊂,故①错误;②若m α⊥,n β⊥,由α与β的位置关系不确定,则n 与m 的位置关系不确定,故②错误; ③若//m β,则β内存在直线l 与m 平行,m α⊥,则l α⊥,可得αβ⊥,故③正确; ④若αβ⊥,m α⊂,则m β⊂或//m β或m 与β相交,相交也不一定垂直,故④错误.∴命题错误的序号是①②④.〖答 案〗C4.如图,△O A B '''是水平放置的OAB ∆的直观图,则OAB ∆的周长为( )A .12B .10+C .7+D .11〖解 析〗根据题意,OAB ∆的图形如图:其中90AOB ∠=︒,4OB =,6OA =,则AB =则OAB ∆的周长为10+〖答 案〗B5.现有以下两项调查:①从100台刚出厂的电视机中抽取3台进行质量检查;②某社区有1000户家庭,其中高收入家庭100户,中等收入家庭820户,低收入家庭80户,为了调查家庭每年生活费的开支情况,计划抽取一个容量为50的样本,则完成这两项调查最适宜采用的抽样方法分别是( ) A .①②都采用简单随机抽样 B .①②都采用分层随机抽样C .①采用简单随机抽样,②采用分层随机抽样D .①采用分层随机抽样,②采用简单随机抽样〖解 析〗①从100台刚出厂的电视机中抽取3台进行质量检查采用简单随机抽样即可; 收入对家庭每年生活费的开支影响很大, 故②采用分层随机抽样较合适. 〖答 案〗C6.袋子里装有大小质地都相同的2个白球,1个黑球,从中不放回地摸球两次,用A 表示事件“第1次摸得白球”, B 表示事件“第2次摸得白球”,则A 与B 是( ) A .互斥事件 B .相互独立事件 C .对立事件D .不相互独立事件〖解 析〗互斥事件是指在一定条件下不可能同时发生的事件,由此判断A 和B 不互斥,则也不对立.由题意可知:P (A )35=,P (B )12=.故事件A 发生对事件B 的概率有影响,故A 和B 不是相互独立事件. 〖答 案〗D7.某省在新高考改革方案中规定:每位考生必选语文、数学、英语3科,再从物理、历史2科中选1科,从化学、生物、地理、政治4科中选2科,甲考生随机选择,最后他选择物理、化学、地理这个组合的概率是( ) A .310B .25C .112D .120〖解 析〗所有选科种数为:122412C C ⋅=.故概率112P =. 〖答 案〗C8.已知O 是ABC ∆所在平面内的一点,A ∠,B ∠,C ∠所对的边分别为3a =,2b =,4c =,若0aOA bOB cOC ++=,过O 作直线l 分别交AB 、AC (不与端点重合)于P 、Q ,若AP AB λ=,AQ AC μ=,若PAO ∆与QAO ∆的面积之比为32,则(λμ= )A .56B .13C .43 D .34〖解 析〗因为PAO ∆与QAO ∆的面积之比为32,可得32OP OQ =-,故2()3)0OA AB OA AC λμ+++=,即22()33()0OA OB OA OA OC OA λμ+-++-=, 整理得(523)230OA OB OC λμλμ--++=,因为0aOA bOB cOC ++=,且OA ,OB ,OC 均不共线, 故2234λμ=,解得34λμ=.〖答 案〗D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.复数21izi+=-,i是虚数单位,则下列结论正确的是()A.52 z z⋅=B.z的共轭复数为13 22i +C.z的实部与虚部之和为2D.z在复平面内的对应点位于第一象限〖解析〗2(2)(1)131(1)(1)22i i iz ii i i+++===+-+-,对于A,13135()()22222z z i i⋅=+-=,故A正确,对于B,1322z i=-,故B错误,对于C,z的实部与虚部之和为13222+=,故C正确,对于D,z在复平面内的对应点13(,)22位于第一象限,故D正确.〖答案〗ACD10.下列说法正确的有()A.掷一枚质地均匀的骰子一次,事件M=“出现奇数点”,事件N=“出现3点或4点”,则M和N相互独立B.袋中有大小质地相同的3个白球和2个红球.从中依次不放回取出2个球,则“两球同色”的概率是3 10C.甲,乙两名射击运动员进行射击比赛,甲的中靶率为0.8,乙的中靶率为0.9,则“至少一人中靶”的概率为0.98D.柜子里有三双不同的鞋,如果从中随机地取出2只,那么“取出的鞋不成双”的概率是45〖解析〗对于A:掷一枚质地均匀的的骰子一次,1()2P M=,1()3P N=,1()6P MN=,即()()()P MN P M P N=故事件M和N相互独立,A正确;对于B:若“两球同色”则都是白球或者都是红球,则“两球同色”的概率是22322525C CC+=,B错误;对于C:“至少一人中靶”的概率为1(10.9)(10.8)0.98---=,C正确;对于D :柜子里有三双不同的鞋,如果从中随机地取出2只,共有15312-=种, 取出的鞋成双的只有3种,那么“取出的鞋不成双”有15312-=种,所以“取出的鞋不成双”的概率是124155=,D 正确. 综上可知正确的有ACD . 〖答 案〗ACD11.下列命题正确的是( )A .设m ,n 为非零向量,则“存在负数λ,使得m n λ=”是“0m n ⋅<”的充分不必要条件B .点D 是ABC ∆边BC 的中点,若2||||||AB AC ADAB AC AD +=,则BA 在BC 的投影向量是BD C .点D 是ABC ∆边BC 的中点,若点P 是线段AD 上的动点,且满足BP BA BC λμ=+,则λμ的最大值为18D .已知平面内的一组基底1e ,2e ,则向量12e e +,12e e -不能作为一组基底 〖解 析〗对于A ,存在负数λ,使得m n λ=,所以20m n n λ⋅=<,充分性成立; 当0m n ⋅<时,不一定有“存在负数λ,使得m n λ=”,必要性不成立; 所以是充分不必要条件,选项A 正确. 对于B ,||AB AB ,||AC AC ,||ADAD 分别表示平行于AB ,AC ,AD 的单位向量, 由平面向量加法可知:||||AB ACAB AC +为BAC ∠ 的平分线表示的向量, 因为2||||||AB AC ADAB AC AD +=,所以AD 为BAC ∠的平分线, 又因为AD 为BC 的中线,所以AD BC ⊥,如图1所示:BA 在BC 的投影为||||cos ||||||BD BC B BA BD BA =⨯=, 所以BD 是BA 在BC 的投影向量,选项B 正确; 对于C ,如图2所示:因为P 在AD 上,即A ,P ,D 三点共线, 设(1)BP tBA t BD =+-,01t ,又因为12BD BC =,所以12t BP tBA BC -=+, 因为BP BA BC λμ=+,则12t t λμ=⎧⎪⎨-=⎪⎩,01t ,令21111()2228t y t t λμ-==⋅=--+,12t =时,λμ取得最大值为18,选项C 正确.对于D ,平面内的一组基底1e ,2e ,则向量12e e +,12e e -不共线,可以作为一组基底,选项D 错误. 〖答 案〗ABC12.在棱长为2的正方体1111ABCD A B C D -中,已知点P 在面对角线AC 上运动,点E ,F ,G 分别为11A D ,11A B ,1BB 的中点,点M 是该正方体表面及其内部的一动点,且//BM 平面1AD C ,则下列选项正确的是( ) A .1//D P 平面11A BC B .平面1PDB ⊥平面11A BCC .过E ,F ,G 三点的平面截正方体1111ABCD A B CD -D .动点M 的轨迹所形成区域的面积是〖解 析〗对于A ,11//AC AC ,11//AD BC ,1AC AD A =,1111A C BC C =,∴平面1//AD C 平面11A BC ,1D P ⊂平面1AD C ,1//D P ∴平面11A BC ,故A 正确;1111AC B D ⊥,111DD AC⊥,1111DD B D D =,11AC ∴⊥平面11DD B ,111B D AC ⊥,同理,11B D BC ⊥,1111BC A C C =,1B D ∴⊥平面11A BC ,1B D ∴⊂平面1PDB ,∴平面1PDB ⊥平面11A BC ,故B 正确;对于C ,如图,作出过E ,F ,G 三点的平面截面图形,,∴截面面积为26S ==C 错误; 对于D ,如图,棱长为2的正方体1111ABCD A B C D -中, 点M 是该正方体表面及其内部的一动点,且//BM 平面1AD C ,由面面平行的性质得当BM 始终在一个与平面1AD C 平行的平面内,即满足题意, 作出过点B 的平面与平面1AD C 平行,连接1A B ,1BC ,11A C ,则平在11//A BC 平面1AD C ,∴动点M 的轨迹所形成区域的面积是1112A BC S=⨯=D 正确. 〖答 案〗ABD三、填空题(本大题共4小题,每小题5分,共20分.请在答题卷的相应区域答题.) 13.已知向量a ,b ,c 满足,0,||2,||3,||5a b c a b c ++====,则a b ⋅= . 〖解 析〗0a b c ++=,∴()c a b =-+,∴22()c a b =+,∴2222c a b a b =++⋅,又||2a =,||3b =,||5c =, ∴25492a b =++⋅,∴6a b ⋅=.〖答 案〗614.已知复数z 满足2022(1)1z i i -=-,则复数z = . 〖解 析〗202245052()1i i i =⋅=-,2022(1)12z i i -=-=-,∴222(1)111(1)(1)i z i i i i i -+====+---+. 〖答 案〗1i +15.某同学5次上学途中所花的时间(单位:分钟)分别为x ,y ,8,10,12.已知这组数据的平均数为10x y -的值为 .〖解 析〗根据题意,数据x ,y ,8,10,12的平均数为10,,即其方差为2;则1(81012)105x y ++++=,221(64100144)10025x y ++++-=,变形可得2220202x y x y +=⎧⎨+=⎩,则有2222()()198xy x y x y =+-+=, 则222()24x y x y xy -=+-=,则有2x y -=±. 〖答 案〗2±16.如图,已知平行四边形ABCD 中,AC AB m ==,120BAD ∠=︒,将ABC ∆沿对角线AC 翻折至△1AB C 所在的位置,若二面角1B AC D --的大小为120︒,则过A ,1B ,C ,D 四点的外接球的表面积为 .〖解 析〗如图,平行四边形ABCD 中,AC AB m ==,120BAD ∠=︒,∴平行四边形ABCD 是边长为m 的菱形,且其中60ADC ∠=︒,BCA ∴∆与ACD ∆都是边长为m 的等边三角形,将ABC ∆沿对角线AC 翻折至△1AB C 所在的位置后,取AC 的中点H ,连接1B H ,DH ,则1B H AC ⊥且DH AC ⊥,∴二面角1B AC D --的平面角即为1120B HD ∠=︒,分别取BCA ∆与ACD ∆的中心E ,F ,即1B H 与DH 上靠近H 的三等分点E ,F , 再分别过E ,F 作平面BCA ,平面ACD 的垂线,且两垂线交于点O , 则易证点O 即为过A ,1B ,C ,D 四点的外接球的球心,∴球的半径R OC =,1133HF HD ==,2CF DF HF ==,连接OH ,则易知OH 平分1B HD ∠,60OHF ∴∠=︒,12OF m ∴=,∴在Rt CFO ∆中,由勾股定理可得22222221173412R OC CF OF m m m ==+=+=, ∴所求的外接球的表面积为2227744123R m m πππ=⨯=. 〖答 案〗273m π四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.请在答题卷的相应区域答题.)17.(10分)已知复数12z x i =-,21z yi =-,其中i 是虚数单位,x ,y 为实数. (1)若1x =-,1y =,求12||z z -的值;(2)若212z z =,求x ,y 的值.解:(1)1x =-,1y =,112z i ∴=--,21z i =-,122z z i ∴-=--,12||z z ∴-(2)212z z =,22(1)x i yi ∴-=-,即2212x i y yi -=--,即2122x y y ⎧=-⎨--⎩,解得0x =,1y =.18.(12分)已知向量(3,2)a =,(,1)b x =-. (1)当(2)a b b -⊥时,求|2|a b +;(2)当(8,1)c =--,//()a b c +,求向量a 与b 的夹角α. 解:(1)向量(3,2)a =,(,1)b x =-,∴2(32,0)a b x +=+,2(6,5)a b x -=-,(2)a b b -⊥,∴(2)0a b b -⋅=,即(6x -,5)(x ⋅,1)0-=,2650x x -+=,解得1x =或5x =,当1x =,则,则2(5,0)a b +=,∴|2|5a b +=, 当5x =,|2|13a b +=, 综上所述,2513a b +=或.(2)(8,1)c =--,(3,2)a =,(,1)b x =-,则(8,2)b c x +=--,//()a b c +,3(2)2(8)0x ∴⨯--⨯-=,解得5x =,∴||13a =,||26b =,352(1)13a b ⋅=⨯+⨯-=,∴13cos ||||13a b a b α⋅==⨯,[0α∈,]π,∴4πα=.19.(12分)如图,在三棱柱111ABC A B C -中,O 为AB 的中点,CA CB =,1AB AA =,160CAB BA A ∠=∠=︒.(1)证明:AB ⊥平面1A OC ;(2)若ABC ∆1OA OC ⊥,求三棱锥11A A BC -的体积. (1)证明:由题意得:ABC ∆,1ABA ∆均为等边三角形,O 为AB 的中点, 所以AB OC ⊥,1AB OA ⊥, 又1OCOA O =,所以AB ⊥平面1A OC ;(2)解:因为ABC ∆由正弦定理得2sin AB ACB =∠12,AA BAB S ==因为1OA OC ⊥,OC AB ⊥,1OA AB O =,所以OC ⊥平面1AA B ,因为1//CC 平面11AA B B ,所以1C 到平面11A B B 的距离等于C 到平面11A B B 的距离,即OC1111111133A BC A C AAB AA BV V S OC --==⋅==. 20.(12分)某校有高中生3600人,其中男女生比例约为5:4,为了获得该校全体高中生的身高信息,采取了以下两种方案:方案一:采用比例分配的分层随机抽样方法,抽取了样本容量为n 的样本,得到频数分布表和频率分布直方图.方案二:按照性别分类进行简单随机抽样,抽取了男、女生样本容量均为25的样本,计算得到男生样本的均值为172,方差为16,女生样本的均值为160,方差为20.(1)根据图表信息,求n,q的值并补充完整频率分布直方图,估计该校高中生的身高均值;(同一组中的数据以这组数据所在区间中点的值为代表)(2)计算方案二总样本的均值及方差;(3)你觉得是用方案一还是方案二总样本的均值作为总体均值的估计比较合适?(说明理由)解:(1)因为身高在区间[155,165)的频率为0.040100.4⨯=,频数20,所以20500.4n==,504206416q=----=,所以身高在区间[165,175)的频率为160.32 50=,在区间[175,185)的频率为60.12 50=,由此可补充完整频率分布直方图:由频率分布直方图可知,样本的身高均值为:1500.008101600.04101700.032101800.012101900.00810⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯ 126454.421.615.2167.2=++++=;估计该校高中生的身高均值为167.2cm ;(2)男生样本记为1x ,2x ,...,25x ,其均值记为x ,方差记为2x s ; 女生样本记为1y ,2y ,...,25y ,其均值记为y ,方差记为2y s , 则总样本均值252525172251601662525252550z x y ⨯+⨯=+==++,又因为252511()250i i i i x x x x ==-=-=∑∑,所以2525112()()2()()0i i i i x x x z x z x x ==--=--=∑∑,同理可得2512()()0j j y y y z =--=∑,所以总样本方差2525222111[()()]50i j i j s x z y z ===-+-∑∑252522111[()()]50i j i j x x x z y y y z ===-+-+-+-∑∑ 22221{25[()]25[()]}50x y s x z s y z =+-++- 221{25[16(172166)]25[20(160166)]}50=+-++-54=; (3)用方案一比较合适, 因为方案一是按比例抽取样本,所以样本的代表性比较强,能够更好地反映总体的情况.21.(12分)如图所示,正四棱锥P ABCD -中,O 为底面正方形的中心,已知侧面PAD 与底面ABCD 所成的二面角的大小为60︒,E 是PB 的中点.(1)请在棱AB 与BC 上各找一点M 和N ,使平面//MNE 平面PAC ,作出图形并说明理由;(2)求异面直线PD 与AE 所成角的正切值;(3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由.解:(1)分别取AB ,BC 的中点M ,N ,连接MN ,NE ,则平面//MNE 平面PAC ,证明:在ABF ∆中,M ,E 分别为AB ,PB 的中点,所以//ME AP ,同理,//NE PC , 又ME ⊂平面MNE ,ME ⊂/平面PAC ,所以//ME 平面PAC ,同理//NE 平面PAC 又MENE E =,所以平面//MNE 平面PAC ,(2)连接AE ,OE ,因为//OE PD ,所以OEA ∠为异面直线PD 与AE 所成的角或其补角, 因为AO BD ⊥,AO PO ⊥,POBD O =,PO ,BD ⊂平面PBD ,所以AO ⊥平面PBD ,又OE ⊂平面PBD ,所以AO OE ⊥,所以12OE PD ==,所以tan AO AEO EO ∠=则异面直线PD 与AE (3)存在点F 符合题意,且14AF AD =, 证明:取OB 得中点Q ,连接QF ,QE ,EF ,在POB ∆中,Q ,E 分别为BP ,BO 的中点,所以//QE PO ,所以QE ⊥平面ABCD ,因为BC ⊂平面ABCD ,所以QE BC ⊥,又在ABD ∆中,14QB DB =,14AF AD =, 所以//QF AB ,所以QF BC ⊥,又QFQE Q =,所以BC ⊥平面QEF ,所以BC EF ⊥,在PFB ∆中,PF =,BF , 所以PFB ∆是等腰三角形,所以FE PB ⊥,又PB BC B =,所以FE ⊥平面PBC ,所以存在点F 符合题意,所以存在这样的F 点,且14AF AD =. 22.(12分)如图,设ABC ∆中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知1c =且12sin cos sin sin sin 4c A B a A b B b C =-+,1cos 2A =.(1)求ABC ∆的面积;(2)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且AEF ∆的面积为ABC ∆面积的14,求AG EF ⋅的取值范围. 解:(1)因为12sin cos sin sin sin 4c A B a A b B b C =-+, 所以221224a cb ac a b bc ac +-⨯=-+,化简得4c b =,又1c =,所以4b =.所以11sin 4122ABC S bc A ∆==⨯⨯ (2)设||,||AE x AF y ==,因为D 为中点,所以2AB AC AD +=, 因为AEF ∆的面积为ABC ∆面积的14,所以1sin 2AEF S xy A ∆=,即1xy =, 设AG AD λ=,则22AG AD AB AC λλλ==+,又E ,G ,F 共线,设(1)AG AE AF μμ=+-,则(1)(1)4y AG AE AF x AB AC μμμμ-=+-=+, 所以2(1)42x y λμμλ⎧=⎪⎪⎨-⎪=⎪⎩,解得4y x y μ=+,所以1144AG AB AC x y x y =+++, 又4y EF AC xAB =-,所以1196()()4442(4)y y x AG EF AB AC AC xAB x y x y x y -⋅=+⋅-=+++, 又1xy =,化简得22296963212(4)2(41)44(41)y x x AG EF x y x x --⋅===-++++, 又4y ,所以114x ,所以310AG EF ⋅,当1x =时等号成立.6920AG EF ⋅, 当14x =时等号成立,综上3691020AG EF ⋅,即3[10,69]20.。

湖南省长沙市长沙县2021-2022学年高一下学期期末考试数学试卷(解析版)

湖南省长沙市长沙县2021-2022学年高一下学期期末考试数学试卷(解析版)

湖南省长沙市长沙县2021-2022学年高一下学期期末考试数学试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,四边形ABCD 中,AB DC =,则相等的向量是( )A .AD 与CBB .OB 与ODC .AC 与BDD .AO 与OC〖解 析〗四边形ABCD 中,AB DC =,∴四边形ABCD 是平行四边形,∴AO OC =.〖答 案〗D2.设复数z 满足2z i =-(其中i 为虚数单位),则||(z = )A B C .5 D〖解 析〗2z i =-,||z ∴= 〖答 案〗A3.圆柱内有一个球O ,该球与圆柱的上、下底面及母线均相切,已知圆柱的体积为16π,则球O 的体积为( ) A .323πB .12πC .16πD .643π〖解 析〗设圆柱的内切球的半径为R ,则圆柱的底面圆的半径为R ,高为2R ,∴圆柱的体积为2216R R ππ⋅=,38R ππ∴=, ∴圆柱的内切球O 的体积为343233R ππ=. 〖答 案〗A4.为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型、绘画4个兴趣小组,小明要随机选报其中的2个,则该试验中样本点的个数为( ) A .3B .5C .6D .9〖解 析〗要组建数学、计算机、航空模型、绘画4个兴趣小组,小明要随机选报其中的2个,∴则该试验中样本点的个数为246C =个. 〖答 案〗C5.“治国之道,富民为始”共同富裕是社会主义的本质要求,是中国式现代化的重要特征,是人民群众的共同期盼.共同富裕是全体人民通过辛勤劳动和相互帮助最终达到丰衣足食的生活水平,是消除两极分化和贫穷基础上的普遍富裕.请你运用数学学习中所学的统计知识加以分析,下列关于个人收入的统计量中,最能体现共同富裕要求的是( ) A .平均数小,方差大 B .平均数小,方差小 C .平均数大,方差大D .平均数大,方差小〖解 析〗方差反映的是一组数据的波动情况,方差越大说明数据偏离平均水平的程度越大,平均数是整体的平均水平,是一组数据的集中程度的刻画,所以最能体现共同富裕要求的是平均数大,方差小. 〖答 案〗D6.设l ,m ,n 均为直线,其中m ,n 在平面α内,则“l α⊥”是“l m ⊥且l n ⊥” 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件〖解 析〗l ,m ,n 均为直线,m ,n 在平面α内, l l m α⊥⇒⊥且l n ⊥(由线面垂直性质定理). 反之,如果l m ⊥且l n ⊥推不出l α⊥,也即//m n 时,l 也可能平行于α. 由充分必要条件概念可知,命题中前者是后者成立的充分非必要条件. 〖答 案〗A7.如图所示,在平行四边形ABCD 中,14AE AB =,14CF CD =,G 为EF 的中点,则(DG = )A .1122AD AB - B .1122AB AD - C .3142AD AB - D .3142AB AD - 〖解 析〗在平行四边形ABCD 中,14AE AB =,14CF CD =,∴14DE AE AD AB AD =-=-,3344DF DC AB ==, G 为EF 的中点,∴131111()288222DG DF DE AB AB AD AB AD =+=+-=-.〖答 案〗B8.人类通常有O ,A ,B ,AB 四种血型,某一血型的人可以给哪些血型的人输血,是有严格规定的.设X 代表O ,A ,B ,AB 中某种血型,箭头左边表示供血者,右边表示受血者,则输血规则如下:①X →X ;②O →X ;③X →AB .已知我国O ,A ,B ,AB 四种血型的人数所占比例分别为41%,28%,24%,7%,在临床上,按照上述规则,若受血者为A 型血,则一位供血者能为这位受血者正确输血的概率为( ) A .0.31B .0.48C .0.65D .0.69〖解 析〗若受血者为A 型血,则O 型血和A 型血可以为这位受血者输血,所以一位供血者能为这位受血者正确输血的概率为0.41+0.28=0.69. 〖答 案〗D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列命题错误的是( ) A .//a b ,//b a αα⊂⇒ B .//a α,//b a b α⊂⇒ C .//a α,////a b b α⇒D .a α⊂/,//a b ,//b a αα⊂⇒〖解 析〗由//a b ,b α⊂,得a α⊂或//a α,故A 错误; 由//a α,b α⊂,得//a b 或a 与b 异面,故B 错误; 由//a α,//a b ,得b α⊂或//b α,故C 错误; 由a α⊂/,//a b ,b α⊂,得//a α,故D 正确. 〖答 案〗ABC10.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且2a =、3b =、4c =,下面说法错误的是( )A .sin :sin :sin 2:3:4ABC = B .ABC ∆是锐角三角形C .ABC ∆的最大内角是最小内角的2倍D .ABC ∆内切圆半径为12〖解 析〗因为2a =,3b =,4c =,sin :sin :sin ::2:3:4A B C a b c ∴==,故A 正确;可得c 为最大边,C 为最大角,由余弦定理可得22249161cos 022234a b c C ab +-+-===-<⨯⨯,可得C 为钝角,即ABC ∆的形状是钝角三角形.故B 错误;对于C ,由22291647cos 2248b c a A bc +-+-===,由227171cos22cos 12()1cos 8324A A C =-=⨯-=≠-=,故2A C ≠,故C 错误;由1cos 4C =-,sin C ∴=,11sin 2322ABC S ab C ∆∴==⨯⨯ 设ABC ∆内切圆半径为r ,∴1()2ABC a b c r S ∆++⋅=,r ∴=D 错误. 〖答 案〗BCD11.下列命题中是真命题的有( )A .有A ,B ,C 三种个体按3:1:2的比例分层抽样调查,如果抽取的A 个体数为9,则样本容量为30B .一组数据1,2,3,3,4,5的平均数、众数、中位数相同C .若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是甲D .某一组样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在区间[114.5,124.5]内的频率为0.4〖解 析〗对于A ,由分层抽样原理知,样本容量为9183312n ==++,所以选项A 错误; 对于B ,数据1,2,3,3,4,5的平均数为1(123345)36x =⨯+++++=,众数为6,中位数也是3,所以它们的平均数、众数和中位数相同,选项B 正确; 对于C ,甲组数据的方差为5,乙组数据为5,6,9,10,5; 它的平均数是1(569105)75x =⨯++++=,方差为2222221[(57)(67)(97)(107)(57)] 4.45s =⨯-+-+-+-+-=,这两组数据中较稳定的是乙,所以选项C 错误;对于D ,由题意知样本容量为10,样本数据落在区间[114.5,124.5]内的频数是4, 所以频率为0.4,选项D 正确. 〖答 案〗BD12.如图所示是正方体的平面展开图,那么在正方体中( )A .AC EF ⊥B .EF 和BC 所成的角是60︒ C .直线AC 和平面ABE 所成的角是30︒D .如果平面ABC ⋂平面CEF l =,那么直线//EF 直线l〖解 析〗如图,把正方体的平面展开图还原成正方体ADBG FCEH -,在正方体ADBG FCEH -中,可知//AC EG ,AC EG EF FG ===, 故异面直线AC 与EF 所成的角即为EG 与EF 所成的角为60︒,故A 项错误; 同理,EF 与BC 所成的角即为FG 与EF 所成的角为60︒,故B 项正确; 在正方体ADBG FCEH -中,AC CH =,HC EF ⊥,HC EB ⊥,EF EB E =,故HC ⊥平面ABEF ,则点C 到平面ABE 的距离为1122HC AC =,设直线AC 与平面ABE 所成的角为θ,则112sin 2HCAC θ==,故30θ=︒,故C 项正确; 在正方体ADBG FCEH -中,//AC EG ,//AB EF ,AC AB A =,EG EF E =,则平面//ABC 平面EFG ,平面EFG ⋂平面CEF 于直线EF ,平面ABC ⋂平面1CEF =,故直线//EF 直线l ,故D 项正确. 〖答 案〗BCD三、填空题:本大题共4小题,每小题5分,共20分.13.我国2021年9月至2022年3月的居民消费指数(上年同月100)=分别为100.7,101.5,102.3,101.5,100.9,100.9,101.5,则这组数据的第20百分位数是 .〖解 析〗将这组数据按从小到大排列为100.7,100.9,100.9,101.5,101.5,101.5,102.3,由20%7 1.4⨯=,可知这组数据的第20百分位数为第2项数据,即100.9. 〖答 案〗100.914.甲、乙、丙三人中任选两名代表,则甲被选中的概率是 .〖解 析〗由题意:甲、乙、丙三人中任选两名代表,共有三种情况:甲和乙、甲和丙、乙和丙,因每种情况出现的可能性相等,所以甲被选中的概率为23. 〖答 案〗2315.已知正方体1111ABCD A B C D -的棱长为1,则点B 到直线1AC 的距离为 . 〖解 析〗如图,连接1AC ,过B 作1BH AC ⊥,则BH 即为点B 到直线1AC 的距离,在正方体1111ABCD A B C D -中,AB ⊥平面11BCC B ,1AB BC ∴⊥,在直角1ABC ∆中,11AB BC AC BH ⨯=⨯,且111,AB BC AC ===所以BH =,点B 到直线1AC .〖答 16.已知AD 是ABC ∆的中线,若120A ∠=︒,2AB AC =-,则||AD 的最小值是 . 〖解 析〗2||||cos AB AC AB AC A =-=,120A ∠=︒,||||4AB AC ∴=1||(2AD =)AB AC +,2221||(||||24AD AB AC ∴=++221)(||||4)4AB AC AB AC =+-1(2||||4)14AB AC -= ∴||1min AD =.〖答 案〗1四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知复数134z i =+,22z i =-,i 为虚数单位.(1)若12z z z =,求z 的共轭复数; (2)若复数12z az +在复平面上对应的点在第一象限,求实数a 的取值范围. 解:(1)134z i =+,22z i =-,∴12234(34)32222z i i i z i z i i ++====-+--,∴322z i =--.(2)123423(42)z az i ai a i +=+-=+-在复平面上对应的点在第一象限,420a ∴->,解得2a <,故实数a 的取值范围为(,2)-∞.18.(12分)从1~30这30个整数中随机选择一个数,设事件M 表示选到的数能被2整除,事件N 表示选到的数能被3整除.求下列事件的概率: (1)这个数既能被2整除也能被3整除; (2)这个数能被2整除或能被3整除; (3)这个数既不能被2整除也不能被3整除.解:(1)1~30这30个整数中既能被2整除也能被3整除的有5个, 51()306P MN ∴==; (2)1~30这30个整数中能被2整除的有15个,能被3整除的有10个, 151()302P M ∴==,101()303P N ==, 1112()()()()2363P MN P M P N P MN ∴=+-=+-=; (3)事件“这个数既不能被2整除也不能被3整除”与事件“这个数能被2整除或能被3整除”互为对立事件, 21()1()133P MN P MB ∴=-=-=. 19.(12分)已知向量(6,1)a =,(2,3)b =-,(2,2)c =,(3,)d k =-. (1)求2a b c +-;(2)若(2)//()a c c kb ++,求实数k 的值.(3)若a 与d 的夹角是钝角,求实数k 的取值范围. 解:(1)(6,1)a =,(2,3)b =-,(2,2)c =,∴2(6a b c +-=,1)(4+-,6)(2-,2)(0=,5).(2)2(10,5)a c +=,(22,23)c kb k k +=-+,又(2)//()a c c kb ++,10(23)5(22)0k k ∴+--=,解得14k =-.(3)a 与d 的夹角是钝角,∴cos ,0||||a da d a d ⋅<>=<⋅,且cos ,1a d <>≠-,∴6(3)0a d k ⋅=⨯-+<,且361k -≠,解得18k <且12k ≠-, 故实数k 的取值范围为11(,)(,18)22-∞--.20.(12分)在锐角ABC ∆中,A ,B ,C 的对边分别为a ,b ,c 2sin c A =. (1)求角C 的大小;(2)若c =6ab =,求ABC ∆的周长.解:(12sin c A =及正弦定理得sinsin a Ac C =,因为sin 0A >,故sin C =.又ABC ∆为锐角三角形,所以3C π=. (2)由余弦定理222cos73a b ab π+-=,6ab =,得2213a b +=,解得:23a b =⎧⎨=⎩或32a b =⎧⎨=⎩,ABC ∴∆的周长为5a b c ++=. 21.(12分)“垃圾分类”相关管理条例的出台,最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境.某部门在某小区年龄处于〖20,45〗岁的人中随机地抽取x 人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图所示各年龄段人数的频率分布直方图和表中的统计数据.组数分组“环保族”人数占本组的频率第一组 〖20,25) 45 0.75 第二组 〖25,30) 25 y 第三组 〖30,35) 20 0.5 第四组 〖35,40) z 0.2 第五组 〖40,45) 30.1(1)求x、y、z的值;(2)根据频率分布直方图,估计这x人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);(3)从年龄段在〖25,35〗的“环保族”中采取分层抽样的方法抽取9人进行专访,并在这9人中选取2人作为记录员,求选取的2名记录员中至少有一人年龄在〖30,35〗中的概率.解:(1)由题意得:x==200,y==0.625,z=200×0.03×5×0.2=6,(2)根据频率分布直方图,估计这x人年龄的平均值为:22.5×0.3+27.5×0.2+32.5×0.2+37.5×0.15+42.5×0.15=30.75;(3)从年龄段在〖25,35〗的“环保族”中采取分层抽样的方法抽取9人进行专访,从〖25,30)中选:9×=5人,分别记为A,B,C,D,E,20 从〖30,35〗中选:9×=4人,分别记为a,b,c,d,在这9人中选取2人作为记录员,所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,a),(A,b),(A,c),(A,d),(B,C),(B,D),(B,E),(B,a),(B,b),(B,c),(B,d),(C,D),(C,E),(C,a),(C,b),(C,c),(C,d),(D,E),(D,a),(D,b),(D,c),(D,d),(E,a),(E,b),(E,c),(E,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共36 种,选取的2名记录员中至少有一人年龄在〖30,35〗包含的基本事件有:(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),(C,a),(C,b),(C,c),(c,d),(D,a),(D,b),(D,c),(D,d),(E,a),(E,b),(E,c),(E,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共26种,因此,选取的2名记录员中至少有一人年龄在〖30,35〗中的概率=.22.(12分)如图,四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,侧面11ADD A 为矩形,22AB AD ==,160D DB ∠=︒,1BD AA ==(1)证明:平面ABCD ⊥平面11BDD B ; (2)求三棱锥11D BCB -的体积.(1)证明:ABD ∆中,因为2AB =,1AD =,BD = 所以222AB AD BD =+,所以AD BD ⊥, 又侧面11ADD A 为矩形,所以1AD DD ⊥, 又1BDDD D =,BD ,1DD ⊂平面11BDD B ,所以AD ⊥平面11BDD B ,又AD ⊂平面ABCD ,所以平面ABCD ⊥平面11BDD B ;(2)解:因为//AD BC ,AD ⊥平面11BDD B ,所以BC ⊥平面11BDD B ,易得1BC =,11B D =,1B B =,1160D B B ∠=︒,所以△11BB D 的面积1112BB D S==,三棱锥11D BCB -的体积11111111133D BCB C BB D BB D V V SBC --==⋅==.。

福建省福州2023-2024学年高一下学期7月期末考试 数学含答案

福建省福州2023-2024学年高一下学期7月期末考试 数学含答案

福州2023—2024学年第二学期期末考试高一年级数学(答案在最后)(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.122.已知复数12z i =-,则zz=()A.12B.1C.2D.43.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C .若αβ⊥,//l α,//m β,则l m⊥D.若αβ⊥,//l α,//m β,则//l m4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+= B.1λμ+=- C.0λμ= D.1λμ=-5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.77,3D.77,77.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为610.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQC.若1A BQ △的外心为M ,则11AB A M ⋅为定值2D.若1AQ =,则点Q 的轨迹长度为23π三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,ACB AC AB ACB ∠∠===的角平分线交AB 于D ,则CD =__________.13.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BN BB 的值;如果不存在,请说明理由.19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.福州2023—2024学年第二学期期末考试高一年级数学(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.12【答案】D【解析】【分析】利用百分位的定义求解即可.【详解】将样本数据按从小到大的顺序排列为:9,9,10,10,11,12,13.上四分位数即75%分位数,775% 5.25⨯=,所以该组数据的上四分位数为从小到大排列的第6个数,即12,故选:D.2.已知复数12z i=-,则zz=()A.12B.1C.2D.4【答案】B【解析】【分析】根据条件,利用共轭复数的定义及复数的运算法则,得到34i55zz=--,再利用复数模的定义,即可求出结果.【详解】因为12z i =-,所以12i 14i 434i 12i 555z z ---===--+,得到1z z=,故选:B.3.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C.若αβ⊥,//l α,//m β,则l m ⊥D.若αβ⊥,//l α,//m β,则//l m 【答案】B 【解析】【分析】根据线面平行或垂直的判定及性质定理逐个判断即可.【详解】对于A ,若//αβ,//l α,//m β,则l 与m 可能平行,也可能相交,还可能异面,故A 错误;对于B ,若//l m ,m β⊥,则l β⊥,又//αβ,所以l α⊥,故B 正确;对于C ,D ,αβ⊥,//l α,//m β,则l 与m 可能平行,也可能异面或相交,故C ,D 错误;故选:B .4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+=B.1λμ+=- C.0λμ= D.1λμ=-【答案】A 【解析】【分析】由向量垂直得到数量积为0,再由向量的数量积运算化简可得λ和μ的关系.【详解】因为向量,a b 满足||||a b == ,=0a b ⋅,若()()a b a b λμ+⊥+ ,所以22()()(1)()3()0a b a b a a b b λμμλμλλμ+⋅+=++⋅+=+=,所以0λμ+=.故选:A .5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+【答案】A 【解析】【分析】根据给定条件,在BCD △中,利用正弦定理求出BC ,再利用直角三角形边角关系求解即得.【详解】在BCD △中,由正弦定理得sin sin BC CDBDC CBD =∠∠,sin sin(π)BC s γαγ=--,则sin sin()s BC γαγ=+,在Rt ABC △中,sin sin tan tan tan sin()sin()s s AB BC ACB γγββαγαγ=∠=⋅=++.故选:A6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.277,3D.277,7【答案】D 【解析】【分析】将圆锥侧面沿母线PA 剪开并展开成扇形,最短路线即为扇形中的直线段AB ,利用余弦定理即可求解,过P 作AB 的垂线,垂足为M ,由题意得到AM 为上坡路段,MB 为下坡路段,计算即可.【详解】如图,将圆锥侧面沿母线PA 剪开并展开成扇形,由题可得该扇形半径2PA =,弧长为24π2π33⨯=,故圆心角4π2π323APB ∠==,最短路线即为扇形中的直线段AB ,由余弦定理可得:222cos 7AB PA PB PA PB APB =+-⋅∠=;2227cos 27PB AB PA PBA PB BA +-∠==⋅,过P 作AB 的垂线,垂足为M ,当蚂蚁从A 点爬行到点M 过程中,它与点P 的距离越来越小,故AM 为上坡路段,当蚂蚁从点M 爬行到点B 的过程中,它与点P 的距离越来越大,故MB 为下坡路段,下坡路段长27cos 7MB PB PBA =⋅∠=,故选:D7.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件【答案】C 【解析】【分析】利用列举法与古典概型的概率公式求得各事件的概率,由3434,A A A A =∅≠Ω 即可判断A ;由1313()()()P A P A P A A ≠即可判断B ;由2424()()()P A P A P A A =即可判断C ,由24A A ≠∅ 即可判断D.【详解】依次抛掷两枚质地均匀的骰子,两次的结果用有序数对表示,其中第一次在前,第二次在后,样本空间Ω如下:()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),()()()()()()6,1,6,2,6,3,6,4,6,5,6,6},共36个样本点.则事件1A 包括(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),共6个,11()6P A =,事件2A 包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),,共18个,21()2P A =,事件3A 包括(1,5),(2,4),(3,3),(4,2),(5,1),共5个,35()36P A =,事件4A 包括(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),共6个,461()366P A ==.对于A ,3434,A A A A =∅≠Ω ,所以3A 与4A 不为对立事件,故A 错误;对于B ,事件13A A 包括(2,4),则131()36P A A =,又11()6P A =,35()36P A =,所以131315()()()636P A P A P A A =⨯≠,即1A 与3A 不相互独立,故B 错误;对于C ,事件24A A 包括(1,6),(3,4),(5,2),则241()12P A A =,又21()2P A =,41()6P A =,所以2424111()()()2612P A P A P A A =⨯==,即2A 与4A 相互独立,故C 正确;对于D ,事件24A A 包括(1,6),(3,4),(5,2),则24A A ≠∅ ,即2A 与4A 不为互斥事件,故D 错误.故选:C.【点睛】关键点点睛:利用列举法和古典概型的概率公式求得各事件的概率是解决本题的关键.8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.【答案】D 【解析】【分析】先证得PB ⊥平面PAC ,再求得2AB BC AC ===,从而得-P ABC 为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】PA PB PC == ,BPA CPA CPB ∠=∠=∠,所以AB BC AC ==,故ABC 为等边三角形,P ABC ∴-为正三棱锥,取AC 的中点O ,连接,PO BO ,则,AC BO AC PO ⊥⊥,又,,BO PO O BO PO =⊂ 面PBO ,所以AC ⊥面PBO ,又BP ⊂面PBO ,所以AC PB ⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,又,PA PC ⊂面PAC ,所以,PA PB PC PB ⊥⊥,PA PB PC === ,2AB BC AC ∴===,在APC △中由勾股定理得PA PC ⊥,P ABC ∴-为正方体一部分,2R ==2R =,344π338V R ∴=π=⨯=,故选:D .【点睛】思路点睛:补体法解决外接球问题,可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为6【答案】ABD 【解析】【分析】A 选项,由余弦定理得sin cos 2CC =,求出sin tan 2cos C C C==;B 选项,由正弦定理和sin sin cos cos sin C A B A B =+化简得到sin cos A A =,求出π4A =;C 选项,在A 选项基础上求出sin 5C =,cos 5C =,从而得到sin 10B =,由正弦定理得到b =D 选项,由三角形面积公式求出答案.【详解】A 选项,由余弦定理得222sin sin cos 222a b c ab C CC ab ab +-===,故sin tan 2cos CC C==,A 正确;B 选项,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以sin cos sin sin sin cos cos sin A B B A A B A B +=+,即sin sin cos sin B A A B =,因为()0,πB ∈,所以sin 0B ≠,故sin cos A A =,又()0,πA ∈,故π4A =,B 正确;C 选项,由A 选项可知,sin cos 2C C =,又22sin cos 1C C +=,故25sin 14C =,因为()0,πC ∈,所以sin 0C >,解得sin 5C =,故5si cos n 2C C ==,()sin sin sin cos cos sin 252510=+=+=⨯+⨯=B AC A C A C ,由正弦定理得sin sin a bA B=12=b =C 错误;D 选项,△ABC的面积为11sin 6225ab C ==.故选:ABD10.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数【答案】ACD 【解析】【详解】根据平均数,中位数,众数的概念结合图形分析判断.【分析】图(1)的分布直方图是对称的,所以平均数=中位数=众数,故A 正确;图(2)众数最小,右拖尾平均数大于中位数,故B 错误,C 正确;图(3)左拖尾众数最大,平均数小于中位数,故D 正确.故选:ACD.11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQ 5C.若1A BQ △的外心为M ,则11A B A M ⋅为定值2D.若17AQ =,则点Q 的轨迹长度为23π【答案】ABD 【解析】【分析】由题易证得1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,可判断A ;取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,由面面平行的判定定理可得平面1//A BP 面AMN ,因为AQ ⊂面AMN ,所以AQ//平面1A BP ,当AQ MN ⊥时,AQ 有最小值可判断B ;由三角形外心的性质和向量数量积的性质可判断C ;在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,易知点Q 的轨迹为圆弧23A A 可判断D.【详解】对于A ,因为11//A B D C ,又因为1A B ⊂面1A BP ,1D C ⊄面1A BP ,所以1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,故A 正确;对于B ,取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,则易证明://AM PC ,AM ⊄面1A BP ,PC ⊄面1A BP ,所以//AM 面1A BP ,又因为1//A B MN ,,MN ⊄面1A BP ,1A B ⊄面1A BP ,所以//MN 面1A BP ,MN AM M ⋂=,所以平面1//A BP 面AMN ,AQ ⊂面AMN ,所以AQ//平面1A BP当AQ MN ⊥时,AQ 有最小值,则易求出5,2,AM MN ==2212cos1204122172AN AD DN AD DN ⎛⎫=+-⋅︒=+-⨯⨯⨯-= ⎪⎝⎭,Q M 重合,所以则AQ 的最小值为5AM =,故B 正确;对于C ,若1A BQ △的外心为M ,,过M 作1MH A B ⊥于点H ,2212+2=22A B 则21111==42A B A M A B ⋅ .故C 错误;对于D ,过1A 作111A O C D ⊥于点O ,易知1A O ⊥平面11C D D ,111cos 13OD A D π==在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,则13127A A A A ==,32732OA OA ==-=所以若17AQ =,则Q 在以O 为圆心,2为半径的圆弧23A A 上运动,又因为1131,3,D O D A ==所以323A OA π∠=,则圆弧23A A 等于23π,故D 正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,7,ACB AC AB ACB ∠∠=== 的角平分线交AB 于D ,则CD =__________.【答案】23【解析】【分析】在ABC 中,由余弦定理可得:1BC =,由正弦定理可得21sin 7B =,根据角平分线的性质可得:2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BD B DCB =∠即可求解.【详解】因为在ABC 中,120,2,7ACB AC AB ∠===由余弦定理可得:2222cos AB AC BC AB BC ACB =+-⋅⋅∠,解得1BC =由正弦定理可得:sin sin AC AB B ACB =∠,即27sin 3B =,解得:21sin 7B =,因为ACB ∠的角平分线交AB 于D ,所以60BCD ︒∠=,由角平分线性质可得:BD BCDA AC=,所以2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BDB DCB =∠7321372=23CD =故答案为:2313.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.【答案】()315e -【解析】【分析】先根据题意以及题中数据,可得:向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,由此即可估计出曲边三角形的面积.【详解】由题意以及表中数据可得,向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,所以其频率为63105=,因为矩形区域面积为()111e e -⨯=-,所以这个曲边三角形面积的一个近似值为()315e -.故答案为()315e -【点睛】本题主要考查几何概型,以及定积分在求面积中的应用,属于常考题型.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.【答案】4+4【解析】【分析】根据条件求出正四面体ABCD 的棱长为2,设(01)AF AD λλ=<<,利用几何关系得到空间四边形BCFE 的四条边长之和4L =+,即可求出结果.【详解】如图,将正四面体放置到正方体中,易知正四面体外接球即正方体的外接球,设正四面体ABCD ,所以正方体的边长为a ,易知正方体的外接球直径为体对角线DH 的长,又DH =,所以正四面体的半径22DH R ==,依题有224π3π6πR a ==,得到a =,即正四面体ABCD 的棱长为2,因为//BD 面CEF ,面ABD ⋂面CEF EF =,BD ⊂面ABD ,所以//EF BD ,设(01)AF AD λλ=<<因为2AB AD BD ===,则2AF AE λ==,22BE DF λ==-,在EAF △中,因为π3EAF ∠=,所以2EF λ=,在FDC △中,π3FDC ∠=,2DC =,则FC =,所以空间四边形BCFE 的四条边长之和2222442L λλ=+-++++,又01λ<<,当12λ=时,min 4L =+,故答案为:4+.【点睛】关键点点晴:本题的关键在于设出(01)AF AD λλ=<<后,利用几何关系得出FC =2EF λ=,22BE λ=-,从而得出空间四边形BCFE 的四条边长之和4L =+,转化成求L 的最小值来解决问题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.【答案】(1)0.125;(2)310【解析】【分析】(1)由频率分布直方图各小矩形的面积和等于1,可求得a 的值;(2)再由[)15,17和[)17,19的频率比0.120.153=,确定这5株分别在[)15,17和[)17,19的株数,最后由古典概型的计算公式求得结果即可.【小问1详解】依题意可得()0.050.0750.150.121a ++++⨯=,解得0.125a =;【小问2详解】由(1)可得高度在[)15,17的频率为:20.0500.1⨯=;高度在[)17,19的频率为:20.0750.15⨯=;且0.120.153=,所以分层抽取的5株中,高度在[)15,17和[)17,19的株数分别为2和3,因此记高度在[)15,17植株为,m n ,记高度在[)17,19植株为,,A B C ,则所有选取的结果为(m ,n )、(m ,A )、(m ,B )、(m ,C )、(n ,A )、(n ,B )、(n ,C )、(A ,B )、(A ,C )、(B ,C )共10种情况,令抽取的2株高度均在[)15,17内为事件M ,事件M 的所有情况为(A ,B )、(A ,C )、(B ,C )共3种情况,由古典概型的计算公式得:()310P M =.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.【答案】(1(2)()1,5【解析】【分析】(1)在BCD △中,由正弦定理可得sin CBD ∠,从而求得cos CBD ∠.(2)解法一:由(1)求得sin ADB ∠sin cos 55A A =∠+∠,AB 21tan A =+∠,从而ABD S = 21tan A +∠,再利用ππ22ABD A -∠<∠<,即可求得ABD △面积的取值范围;解法二:作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,求得1A D ,1A B ,2A D ,分别求出1A BD S ,2A BD S ,利用12A BD ABD A BD S S S <<△△△即可求得范围.【小问1详解】在BCD △中,由正弦定理可得sin sin BD CDBCD CBD ∠∠=,所以22sin 5CBD ∠==,又π0,4CBD ⎛⎫∠∈ ⎪⎝⎭,所以cos 5CBD ∠==.【小问2详解】解法一:由(1)可知,πsin sin cos 25ABD CBD CBD ⎛⎫∠=-∠=∠= ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,所以()sin sin ADB A ABD ∠=∠+∠sin cos cos sin A ABD A ABD =∠∠+∠∠sin cos 55A A =∠+∠,在ABD △中,由正弦定理得sin sin AB BDADB A=∠∠,所以sin 2cos sin sin ADB A AAB A A∠∠+∠==∠∠21tan A =+∠,1sin 2ABD S AB BD ABD=⋅⋅∠122112tan 5tan A A⎛⎫=⨯+⨯=+ ⎪∠∠⎝⎭,因为()πADB ABD A ∠=-∠+∠,且ABD △为锐角三角形,所以()π0π2π02ABD A A ⎧<-∠+∠<⎪⎪⎨⎪<∠<⎪⎩,所以ππ22ABD A -∠<∠<,所以πtan tan 2A ABD ⎛⎫∠>-∠⎪⎝⎭πsin cos 12πsin 2cos 2ABD ABD ABD ABD ⎛⎫-∠ ⎪∠⎝⎭===∠⎛⎫-∠ ⎪⎝⎭,所以102tan A<<∠,所以2115tan A<+<∠,即15ABD S <<△,所以ABD △的面积的取值范围为()1,5.解法二:由(1)可知,sin sin cos 25πABD CBD CBD ∠∠∠⎛⎫=-== ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,tan 2ABD ∠=,如图,作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,所以15sin 525A D BD ABD ∠=⋅==,15cos 515A B BD ABD ∠=⋅==,所以112112A BD S =⨯⨯=△,又2tan 5225A D BD ABD ∠=⋅==,所以215552A BD S =⨯=△.由图可知,仅当A 在线段12A A 上(不含端点)时,ABD △为锐角三角形,所以12A BD ABD A BD S S S <<△△△,即15ABD S <<△.所以ABD △面积的取值范围为()1,5.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.【答案】(1)“关关姐”和“页楼哥”回答正确的概率分别为31;52;(2)“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122,,;255三人最终一共获得2枝“黑玫瑰”奖品的概率825【解析】【分析】(1)根据独立事件的乘法公式分别求解即可;(2)综合应用独立事件的乘法公式和互斥事件的概率加法公式分别求解即可.【小问1详解】记=i A “玲儿姐回答正确第i 个问题”,i B =“关关姐回答正确第i 个问题”,i C =“页楼哥回答正确第i 个问题”,1,2i =.根据题意得111111122()()()(1())(1())(1)(1())315P A B P A P B P A P B P B ==--=--=,所以13()5P B =;1111133()()()()510P B C P B P C P C ===,所以11()2P C =;故在第一个问题中,“关关姐”和“页楼哥”回答正确的概率分别为35和12.【小问2详解】由题意知222324(),(),()435P A P B P C ===,“玲儿姐”获得一枝“黑玫瑰”奖品的概率为11212231()()()342P P A A P A P A ====;“关关姐”获得一枝“黑玫瑰”奖品的概率为21212322()()()535P P B B P B P B ====;“页楼哥”获得一枝“黑玫瑰”奖品的概率为31212142()()()255P P C C P C P C ===⨯=;三人最终一共获得2枝“黑玫瑰”奖品的概率为123123123(1)(1)(1)P P P P P P P PP P =-+-+-122132123825525525525=⨯⨯+⨯⨯+⨯=.所以“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122255,,;三人最终一共获得2枝“黑玫瑰”奖品的概率为825.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BNBB 的值;如果不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,112BN BB =.【解析】【分析】(1)连接1AB 与1A B ,两线交于点O ,连接OM ,利用三角形中位线性质得到1//OM B C ,再利用线面平行的判定即可证.(2)应用线面垂直的性质、判定可得BM ⊥平面11ACC A ,从而得到1BM AC ⊥,根据11AC C A MA∠=∠和111190AC C C AC A MA C AC ∠+∠=∠+∠=得到11A M AC ⊥,再利用线面垂直的判定即可证.(3)当点N 为1BB 的中点,设1AC 的中点为D ,连接DM ,DN ,易证四边形BNDM 为平行四边形,从而得到//BM DN ,进而有DN ⊥平面11ACC A ,再利用面面垂直的判定即可证.【小问1详解】连接1AB 与1A B ,两线交于点O ,连接OM,在1B AC △中M ,O 分别为AC ,1AB 的中点,所以1//OM B C ,又OM ⊂平面1A BM ,1B C ⊄平面1A BM ,所以1//B C 平面1A BM .【小问2详解】因为1AA ⊥底面ABC ,BM ⊂平面ABC ,所以1AA BM ⊥.又M 为棱AC 的中点,AB BC =,所以BM AC ⊥.因为1AA AC A = ,1AA ,AC ⊂平面11ACC A ,所以BM ⊥平面11ACC A ,1AC ⊂平面11ACC A ,所以1BM AC ⊥.因为2AC =,所以1AM =.又1AA =,在1Rt ACC V 和1Rt A AM中,11tan tan AC C A MA ∠=∠=,所以11AC C A MA ∠=∠,即111190AC C C AC A MA C AC ∠+∠=∠+∠=,所以11A M AC ⊥,又1BM A M M = ,BM ,1A M ⊂平面1A BM ,所以1AC ⊥平面1A BM .【小问3详解】当点N 为1BB 的中点,即112BN BB =时,平面1AC N ⊥平面11AA C C .证明如下:设1AC 的中点为D ,连接DM ,DN,因为D ,M 分别为1AC ,AC 的中点,所以1//DM CC 且112DM CC =,又N 为1BB 的中点,所以//DM BN 且DM BN =,所以四边形BNDM 为平行四边形,故//BM DN ,由(2)知:BM ⊥平面11ACC A ,所以DN⊥平面11ACC A ,又DN ⊂平面1AC N ,所以平面1AC N ⊥平面11ACC A .19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.【答案】(1)0.178-;可以认为零件的尺寸不随生产过程的进行而系统地变大或变小(2)(i )从这一天抽检的结果看,需对当天的生产过程进行检查;(ii )证明见解析;(iii )均值10.02;标准差0.09【解析】【分析】(1)根据数据和公式即可计算r 的值,根据0.25r <的规则进行判断即可;(2)(i )计算()3,3x s x s -+的值,根据13个零件的尺寸与区间的关系进行判断;(ii )根据已学公式进行变形即可证明;(iii )代入公式计算即可.【小问1详解】由题可得()()16118.5 2.78n i iii i x y nxy x x i ==-=--=-∑∑,40.848s===,18.439=≈所以 2.780.180.84818.439ˆniix ynxyr--=≈-⨯∑,则0.180.25r =<,所以可以认为零件的尺寸不随生产过程的进行而系统地变大或变小【小问2详解】(i )由题可得39.9730.2129.334x s -=-⨯=,39.9730.21210.606x s +=+⨯=,因为第13个零件的尺寸为9.22,9.229.334<,所以从这一天抽检的结果看,需对当天的生产过程进行检查;。

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题+答案解析

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题+答案解析

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题❖一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知i为虚数单位,复数,则()A. B. C. D.2.已知两条不同的直线m,n和两个不同的平面,,下列四个命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则3.高一年级某位同学在五次考试中的数学成绩分别为105,90,104,106,95,这位同学五次数学成绩的方差为()A. B.C.50D.4.在直三棱柱中,,且,则异面直线与所成角的余弦值是()A. B. C. D.5.数据1,2,5,4,8,10,6的第60百分位数是()A. B.C.6D.86.已知圆台的上、下底面圆的半径分别为1和3,高为1,则圆台的表面积为()A. B.C. D.7.某学校高一年级学生有900人,其中男生500人,女生400人,为了获得该校高一全体学生的身高信息,现采用样本量按比例分配的分层随机抽样方法抽取了容量为180的样本,经计算得男生样本的均值为170,女生样本的均值为161,则抽取的样本的均值为是()A. B.166C. D.1688.棱长为2的正方体内有一个棱长为a的正四面体,且该正四面体可以在正方体内任意转动,则a的最大值为()A.1B.C.D.2二、多选题:本题共3小题,共15分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.某单位为了解员工参与一项志愿服务活动的情况,从800位员工中抽取了100名员工进行调查,根据这100人的服务时长单位:小时,得到如图所示的频率分布直方图.则()A.a的值为B.估计员工平均服务时长为45小时C.估计员工服务时长的中位数为小时D.估计本单位员工中服务时长超过50小时的有45人10.正六边形ABCDEF的边长为2,G为正六边形边上的动点,则的值可能为()A. B. C.12 D.1611.如图,正三棱锥和正三棱锥的侧棱长均为,若将正三棱锥绕BD旋转,使得点A,C分别旋转至点M,N处,且M,B,D,E四点共面,点M,E分别位于BD两侧,则()A. B.C.MC的长度为D.点C与点A旋转运动的轨迹长度之比为三、填空题:本题共3小题,每小题5分,共15分。

河南省郑州市2023-2024学年高一下学期7月期末考试 数学含答案

河南省郑州市2023-2024学年高一下学期7月期末考试 数学含答案

2024学年郑州市高一年级(下)期末考试数学(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4.考试结束后,请将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p :0x ∃>,0y >,使得不等式(5x y λ+>++成立,则命题p 成立的一个充分不必要条件可以是()A.52λλ⎧⎪≥⎨⎪⎪⎩⎭B.53λλ⎧⎪≥⎨⎪⎪⎩⎭C.54λλ⎧⎪>⎨⎪⎪⎩⎭D.55λλ⎧⎪>⎨⎪⎪⎩⎭2.已知 1.30.920.9, 1.3,log 3a b c ===,则()A.a c b <<B.c a b <<C .a b c<< D.c b a<<3.将函数()πcos 23f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,得到函数()g x 的图象,则函数()()242h x g x x x =-+-的零点个数为()A.1B.2C.3D.44.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为123,,234且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17245.华罗庚是享誉世界的数学大师,国际上以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华氏算子”“华—王方法”等,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”,告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数图象的特征.已知函数()y f x =的图象如图所示,则()f x 的解析式可能是()A.sin ()2xf x = B.cos ()2xf x = C.()sin 12xf x ⎛⎫= ⎪⎝⎭D.()cos 12xf x ⎛⎫= ⎪⎝⎭6.在ABC 中,D 为BC 上一点,且3BD DC =,ABC CAD ∠=∠,2π3BAD ∠=,则tan ABC ∠=()A.3913B.133C.33D.357.已知π02α<<,()2ππ1sin 2sin 2cos cos 2714αα+=,则α=()A.3π14B.5π28C.π7D.π148.已知z 是复数,z 是其共轭复数,则下列命题中正确的是()A.22z z= B.若1z =,则1i z --1+C.若()212i z =-,则复平面内z 对应的点位于第一象限D.若13i -是关于x 的方程20(R)x px q p q ++=∈,的一个根,则8q =-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.已知函数()()()sin 0,0,π2πf x A x A ωϕωϕ=+>><<的部分图象如图所示,其图象上最高点的纵坐标为2,且图象经过点()π0,1,,13⎛⎫-⎪⎝⎭,则()A.11π6ϕ=B.3ω=C.()f x 在π2π,23⎡⎤⎢⎥⎣⎦上单调递减D.方程()()21f x a a =-<<-在0,π][内恰有4个互不相等的实根10.已知a ,b ,c是平面上三个非零向量,下列说法正确的是()A.一定存在实数x ,y 使得a xb yc =+成立B.若a b a c ⋅=⋅,那么一定有()a b c⊥- C.若()()a c b c -⊥-,那么2a b a b c-=+- D .若()()a b c a b c ⋅⋅=⋅⋅ ,那么a ,b ,c 一定相互平行11.已知函数2()2sin cos 23cos f x x x x =-,则下列结论中正确的有()A.函数()f x 的最小正周期为πB.()f x 的对称轴为ππ32k x =+,k ∈Z C.()f x 的对称中心为ππ(0)3,2k +,k ∈ZD.()f x 的单调递增区间为π5π[π,π]1212k k -++,k ∈Z 三、填空题:本大题共3个小题,每小题5分,共15分.12.已知142x y >->-,,且21x y +=,则19214x y +++的最小值为_________.13.球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为R ,球冠的高是h ,球冠的表面积公式是2πS Rh =,如图2,已知,C D 是以AB 为直径的圆上的两点,π,6π3COD AOC BOD S ∠=∠==扇形,则扇形COD 绕直线AB 旋转一周形成的几何体的表面积为__________.14.已知点O 是ABC 的外心,60BAC ∠=︒,设AO mAB nAC =+,且实数m ,n 满足42m n +=,则mn 的值是___________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知,a b R ∈且0a >,函数4()4x xbf x a+=-是奇函数.(1)求a ,b 的值;(2)对任意(0,)x ∈+∞,不等式()02x mf x f ⎛⎫-> ⎪⎝⎭恒成立,求实数m 的取值范围.16.本学期初,某校对全校高二学生进行数学测试(满分100),并从中随机抽取了100名学生的成绩,以此为样本,分成[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示频率分布直方图.(1)估计该校高二学生数学成绩的平均数和85%分位数;(2)为进一步了解学困生的学习情况,从数学成绩低于70分的学生中,分层抽样6人,再从6人中任取2人,求此2人分数都在[)60,70的概率.17.已知ABC 的面积为9,点D 在BC 边上,2CD DB =.(1)若4cos 5BAC ∠=,AD DC =,①证明:sin 2sin ABD BAD ∠=∠;②求AC ;(2)若AB BC =,求AD 的最小值.18.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r,2AFFB =.(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为33,求平面1A BC 与平面ABCD 的夹角的余弦值.19.已知),cos2a x x =,()2cos ,1b x =- ,记()()R f x a b x =⋅∈(1)求函数()y f x =的值域;(2)求函数()y f x =,[]0,πx ∈的单调减区间;(3)若()π24F x f x m ⎛⎫=+- ⎪⎝⎭,π0,3x ⎛⎤∈ ⎥⎝⎦恰有2个零点12,x x ,求实数m 的取值范围和12x x +的值.2024学年郑州市高一年级(下)期末考试数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。

2023-2024学年四川省内江市高一下学期期末考试数学试题(含解析)

2023-2024学年四川省内江市高一下学期期末考试数学试题(含解析)

2023-2024学年四川省内江市高一下学期期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.某高中生创新能力大赛中8位选手的面试得分分别为90,86,93,91,89,95,92,94,其中位数和极差分别为( )A. 90,8B. 91.5,9C. 91,9D. 91.5,82.若复数z 满足z =i1−2i ,则z 的虚部为( )A. i5B. −25C. −i5D. −153.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄的分布饼状图、90后从事互联网行业者的岗位分布条形图,则下列结论中不一定正确的是( )A. 互联网行业从事技术岗位的人数中,90后比80后多B. 90后互联网行业者中从事技术岗位的人数超过整个从事互联网行业者总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业从业人员中90后占一半以上4.已知函数g (x )=2sin 2x ,函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|<π2)的部分图象如图所示,要得到f (x )的图象,只需将函数g (x )的图象( )A. 向左平移π6个单位B. 向右平移π6个单位C. 向右平移π3个单位D. 向左平移π3个单位5.内江三元塔位于四川省内江市三元村三元山上,是一座具有千年历史的古塔.它始建于唐代,明末倒毁,后在清嘉庆九年(公元1804年)得以重建,历时三年竣工.三元塔的修建寓意着“天开文运,连中三元”,象征着文运昌盛和崇文重教的精神.内江某中学数学兴趣小组准备运用解三角形知识测量塔高时,选取了两个测量基点C与D与塔底B在同一水平面,并测得CD=202米,∠BCD=15∘,∠BDC=120∘,在点C处测得塔顶A的仰角为60∘,则塔高AB=( )A. 106米B. 103米C. 203米D. 60米6.在平行四边形ABCD中,E是对角线AC上靠近点C的三等分点,点F在BE上,若AF=x AB+49AD,则x= ( )A. 45B. 23C. 79D. 587.暑假即将来临,某校为开展学生的社会实践活动,从甲、乙、丙、丁、戊5人中随机选3人去参加“敬老院志愿服务”活动,则乙和丙两人中只有1人入选的概率为( )A. 12B. 23C. 34D. 358.已知向量a,向量b的模长均为2,且|a−b|=|a|.若向量m=a−2c,n=c−b,且m⊥n,则|c|的最大值是( )A. 72+3 B. 52+3 C. 7+32D. 94二、多选题:本题共3小题,共15分。

2021-2022学年江苏省南通市海门区高一下学期期末数学试题(解析版)

2021-2022学年江苏省南通市海门区高一下学期期末数学试题(解析版)

2021-2022学年江苏省南通市海门区高一下学期期末数学试题一、单选题1.设复数z 满足i 12i z ⋅=+(i 为虚数单位),则复数z 的虚部是( ) A .2 B .2- C .1 D .1-【答案】D【分析】由i 12i z ⋅=+求出复数z ,从而可求出其虚部. 【详解】由i 12i z ⋅=+,得2212i (12i)i(i 2i )2i i iz ++===-+=-, 所以复数z 的虚部是为1-, 故选:D2.现有一组数据8,7,9,9,7,则这组数据的方差是( )A B .25C .45D .1【答案】C【分析】根据方差公式计算. 【详解】解:根据题意,得:8799785++++=,则这组数据8,7,9,9,7的平均数是8,所以这组数据的方差为(2222214[(88)(78)(98)(98)78)55⎤⨯-+-+-+-+-=⎦, 故选:C .3.函数()cos f x x x -图象的一条对称轴方程为( ) A .π6x =B .π3x =C .2π3x =D .7π6x =【答案】C【分析】由和差公式化简函数,由整体法令πππ62x k k -=+∈Z ,,即可求解.【详解】()πcos 2sin 6f x x x x ⎛⎫=-=- ⎪⎝⎭,令πππ62x k k -=+∈Z ,,即2ππ3x k k =+∈Z ,, 故函数图象的一条对称轴方程为2π3x =. 故选:C4.在ABC 中,已知D 是AB 边上一点,且32CD CA CB =+,则( )A .2AD BD =B .12AD DB =C .2AD DB =D .13AD AB =【答案】C【分析】利用向量的减法运算即可得到答案. 【详解】解:32CD CA CB =+, 则有()2CD CA CB CD -=-, 可得2AD DB =. 故选:C.5.如图,直三棱柱111ABC A B C -中,D 是1CC 的中点,则11111D A B C D ABB A V V -- = ( )A .16B .15C .14D .23【答案】C【分析】利用等体积转化计算可得答案. 【详解】因为D 是1CC 的中点, 11111116D A B C D ABC ABC A B C V V V ---∴==,1111111111123D ABB A ABC A B C D A B C D ABC ABC A B C V V V V V -----∴=--=,1111114D A B C D ABB A V V --∴=. 故选:C.6.若π1sin 43α⎛⎫+= ⎪⎝⎭,则sin 2α=( )A .79- B .79C 12- D 22【答案】A【分析】结合二倍角公式、诱导公式,由ππ2242αα⎛⎫=+- ⎪⎝⎭即可转化求值【详解】2ππππ27sin 2sin 2cos 212sin 1424499αααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+=-++=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:A72,侧面积为6π,则该圆台的体积为( ) ABC. D.【答案】B【分析】设圆台的上底面半径为r ',下底面半径为r ,母线为l ,由圆台的侧面积得3r r '+=,再由圆台的高h【详解】设圆台的上底面半径为r ',下底面半径为r ,母线为l , 则圆台的侧面积()π6πS r r l '=+=,可得3r r '+=, 又因为圆台的高h1r r '-=,故有12r r '==,, 圆台的体积()()2211ππ12433V h r r r r ''=++=++=圆台故选:B.8.ABC 中,若,02A B π⎛⎫∈ ⎪⎝⎭,,sin sin sin C A B =,则()tan A B +的取值范围是( )A .4,13⎡⎫--⎪⎢⎣⎭B .4,13⎡⎤--⎢⎥⎣⎦C .41,3⎛⎤ ⎥⎝⎦D .41,3⎡⎤⎢⎥⎣⎦【答案】A【分析】利用三角函数恒等变换进行化简,可得tan tan tan tan A B A B +=,利用基本不等式得tan tan 4A B ≥,利用两角和的正切公式表示()tan A B +,结合以上条件即可求解()tan A B +的取值范围.【详解】∵,02A B π⎛⎫∈ ⎪⎝⎭,,∴cos cos 0A B ≠,∵sin sin sin C A B =,即()sin sin sin A B A B +=, ∴sin cos cos sin sin sin A B A B A B +=,两边同时除以cos cos A B ,得tan tan tan tan A B A B +=, ∵tan ,tan 0A B >,∴tan tan A B +≥,当且仅当tan tan A B =时等号成立, ∴tan tan A B ≥,即tan tan 4A B ≥,tan tan tan tan 1tan()11tan tan 1tan tan 1tan tan A B A BA B A B A BA B++===---,∵tan tan 4A B ≥,∴110tan tan 4A B <≤⋅,∴1311tan tan 4A B -<-≤-⋅,∴411131tan tan A B-≤<--⋅,即()tan A B +的取值范围是4,13⎡⎫--⎪⎢⎣⎭.故选:A .二、多选题9.分别抛掷两枚质地均匀的硬币,设事件A =“第一枚正面朝上”,事件B =“第二枚正面朝上”,下列结论中正确的是( ) A .该试验样本空间共有4个样本点 B .()14P AB =C .A 与B 为互斥事件D .A 与B 为相互独立事件【答案】ABD【分析】由题可得样本空间及事件,A B 样本点,结合互斥事件,独立事件的概念及古典概型概率公式逐项分析即得.【详解】对于A :试验的样本空间为:{(Ω=正,正),(正,反),(反,正),(反,反)},共4个样本点,故A 正确;对于B :由题可知{(A =正,正),(正,反)},{(B =正,反),(反,反)}, 显然事件A ,事件B 都含有“(正,反)这一结果,故()14P AB =,故B 正确; 对于C :事件A ,事件B 能同时发生,因此事件,A B 不互斥,故C 不正确; 对于D :()2142P A ==,()2142P B ==,()14P AB =,所以()()()P AB P A P B =,故D正确. 故选:ABD.10.设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c若c =,30B =,则角A 可能为( ) A .135 B .105 C .45 D .15【答案】BD【分析】由正弦定理求角. 【详解】解:正弦定理得sin sin c b C B=,又c ,30B =,sin C =c b >,则C B >,0180C ︒<<︒,故45C =︒或135︒, 105A =︒或15︒故选:BD .11.向量是近代数学中重要和基本的概念之一,它既是代数研究对象,也是几何研究对象,是沟通代数与几何的桥梁.若向量a ,b 满足2a b ==,23a b +=,则( ) A .2a b ⋅=- B .a 与b 的夹角为π3C .a b a b -<+D .a b -在b 上的投影向量为12b【答案】BC【分析】利用向量的模长公式以及题中条件即可判断A,C,由夹角公式可判断B ,根据投影向量的求法即可判断D. 【详解】2a b ==,23a b +=,22212||2424a b a a b b a b =+=+⋅+=+⋅+,解得2⋅=a b ,故A 错误·cos ,2a b a b a b ⋅==,1cos ,2a b a b a b⋅==,由于()0π,,a b ∈,a ∴与b 的夹角为π3,故B 正确, ()2222424223-a b a ba ab b a b a b -==⋅+=-⋅+=<+-=,故C 正确a b -在b上的投影向量为()21··22b a b b a b b b b b b b b b ⋅-⋅-==-=-,故D 错误, 故选:BC12.在正方体1111ABCD A B C D -中,点P 是线段1B C 上一动点,则下列各选项正确的是( )A .11D P AC ⊥B .1//D P 平面1A BDC .直线1D P 与平面11BCC B 所成角随1PB 长度变化先变小再变大 D .存在点P 使得过A 有4条直线分别与11A B 和AP 所成角大小为30【答案】AB【分析】本题利用立体几何中线面垂直的判定、面面平行的判定对A,B 选项进行判断,C,D 选项需要结合线面角与异面直线成角的相关知识点,通过转化的思想去解决. 【详解】解:对于A :连接1BD ,1D C由正方体的性质可得:11111AC B D AC B C ⊥⊥, 1111B D B C B =,1AC ∴⊥平面11B CD1D P ⊂平面11B CD ,11D P AC ∴⊥,故A 正确;对于B :连接11A B A D BD ,, 易证:1111////BD B D A D B C ,11BD A D D BD A D ⋂=⊂,,平面1A BD 1111111B D B C B B D B C ⋂=⊂,,平面11B CD∴平面1//A BD 平面11B CD1D P ⊂平面11B CD ,1//D P ∴平面1A BD ,故B 正确;对于C :连接1C P ,1D P ⊥平面11BCC B 11D PC ∴∠即为直线1D P 与平面11BCC B 所成角,11111D C tan D PC C P∴∠=当P 从1B 移动至C 的过程中,1B P 增大,1C P 先变小再变大,即11tan D PC ∠先变大再变小,故C 错误; 对于D :11//AB A B ,∴与11A B 成30角的直线与AB 也成30,当P 在C 或1B 时,()max 45PAB ∠=︒,故过A 点的直线中,有2条分别与AB 和AP 所成角大小为30,即过A 有2条直线分别与11A B 和AP 所成角大小为30,故D 错误. 故选:AB.【点睛】熟练利用线面垂直的性质定理,线面平行的判定定理将会对这类难题的较为简单的选项做一个清晰的判断,后面较难的有关线面角,线线角的动态变化要能够学会利用转化的思想去解决.三、填空题13.设i 为虚数单位,复数()cos isin z θθθ=+∈R ,则1z -的最大值为__________. 【答案】2【分析】求出模长,利用三角函数的有界性可得答案. 【详解】()cos isin z θθθ=+∈R ,则1cos 1isin z θθ-=-+=2=,则1z -的最大值为2.故答案为:2.14.设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c 已知6a =,2b =,要使ABC 为钝角三角形,则c 的大小可取__________(取整数值,答案不唯一). 【答案】5(填7也对,答案不唯一)【分析】利用三角形两边和与差点关系,求出48c <<,再分别讨论a 和c 为钝角时,边c 的取值范围,根据题意即可得到答案.【详解】首先由a ,b ,c 构成三角形有48a b c a b =-<<+=,若c 为钝角所对边,有22240c a b >+=,c >若a 为钝角所对边,有2222364a b c c =>+=+,c <, 由b a <,b 不可能为钝角所对边,综上,c 的取值范围是(()440,8,由题意,c 取整数值,故c 的大小可取5或7. 故答案为:5(填7也对,答案不唯一).15.我国古典数学著作《九章算术》中记载,四个面都为直角三角形的四面体称之为鳖臑.现有一个“鳖臑”,PA ⊥底面ABC ,AC BC ⊥,且3PA =,2BC =,3AC =,则该四面体的外接球的表面积为__________. 【答案】16π【分析】根据题意将三棱锥P ABC -还原到长方体中,如图所示,求出长方体的体对角线的长,即可得外接球的直径,从而可求出其表面积. 【详解】解:将三棱锥P ABC -还原到长方体中,如图所示则长方体的外接球的半径为22229344R PA AC BC =++=++=故2R =所以三棱锥P ABC -外接球的表面积为24π16πR =, 故答案为:16π16.如图,P 为矩形ABCD 边AB 中点,M ,N 分别在线段EF 、CD 上,其中4AB =,3BC =,1AE BF ==,若4PM PN ⋅=,则PM PN +的最小值为__________.【答案】25【分析】根据题意建立如图所示的平面直角坐标系,设(,1),(,3)M m N n ,然后表示出,PM PN ,由4PM PN ⋅=可得232n m n -=-,代入PM PN +中求其模,利用基本不等式可求出其最小值.【详解】解:建立如图所示的平面直角坐标系,可知()20P ,,M ,N 分别在线段EF 、CD 上, 设(,1),(,3)M m N n (04,04m n ≤≤≤≤), 则(2,1),(2,3)PM m PN n =-=-,所以(2)(2)32()74PM PN m n mn m n ⋅=--+=-++=, 所以2302n m n -=≥-, (4,4)PM PN m n +=+-,所以2(4)16PM PN m n +=+-+2234162n n n -⎛⎫+-+ ⎪-⎝⎭2245162n n n ⎛⎫-++ ⎪-⎝⎭设2n t -=,则2211621625PM PN t t ⎛⎫+=+++ ⎪⎝⎭当且仅当1,3,3t n m ===时,取等号, 所以PM PN +的最小值为25 故答案为:25四、解答题 17.已知向量()31,a =,4a b ⋅=.(1)当4b =,求;a b +(2)求b 的最小值,并求此时向量a ,b 的夹角大小.【答案】(1)(2)最小值为2,此时a ,b 夹角大小为0【分析】(1)根据模长公式即可求解,(2)根据模长的坐标运算即可利用函数的性质求最值. 【详解】(1)因()31312,a a =⇒=+=因为222||2481628a b a a b b +=+⋅+=++=, 所以27a b +=. (2)解法1:设,a b θ<>=,, 因为40a b ⋅=>, 所以02πθ⎡⎫∈⎪⎢⎣⎭,,由42cos 42cos cos =a b a b b a θθθ⋅==⇔=≥,当且仅当cos 1θ=即0θ=时取等;所以b 最小值为2,此时a ,b 夹角大小为0. 解法2:设(),b x y =,由44a b y ⋅=⇒+=,所以2b x y =+=;故当x =1y =时b 最小值为2, 此时cos ,1,0a b a b a b a b⋅<>==⇒<>=.18.近年来,我国居民体重“超标”成规模增长趋势,其对人群的心血管安全构成威胁.国际上常用身体质量指数()()22kg m BMI =体重身高衡量人体胖瘦程度是否健康.中国成人的BMI数值标准是:18.5BMI <为偏瘦;18.523.9BMI ≤<为正常;2427.9BMI ≤<为偏胖;28BMI ≥为肥胖.下面是社区医院为了解居民体重现状,随机抽取了100个居民体检数据,将其BMI 值分成以下五组:[)12,16,[)16,20,[)20,24,[)24,28,[]28,32,得到相应的频率分布直方图.(1)根据频率分布直方图,求a 的值,并估计该社区居民身体质量指数BMI 的样本数据的50百分位数;(2)现从样本中利用分层抽样的方法从[)16,20,[)24,28的两组中抽取6个人,再从这6个人中随机抽取两人,求抽取到两人的BMI 值不在同一组的概率.【答案】(1)0.04a =,50百分位数为23; (2)815.【分析】(1)由各组频率和为1,可求出a 的值,由百分位数的定义求解, (2)根据分层抽样的定义可求得在[)16,20、[)24,28分别抽取2人和4人,再利用列举法可求得概率.【详解】(1)依据频率直方图意义知, ()0.010.10.080.0241a ++++⨯=,即40.160.04a a =⇔=因为[)12,16,[)16,20两组的频率之和为0.040.160.2+=,而[)20,24的频率为0.4,要求样本数据的50百分位数即求中位数,所以满足频率恰为0.5的位置, 即0.3204230.4+⨯=. (2)由频率直方图知[)16,20的频数为0.1610016⨯=,[)24,28的频数为0.3210032⨯=,所以两组人数比值为1:2,按照分层抽样抽取6人,则在[)16,20、[)24,28分别抽取2人和4人,记[)16,20这组两个样本编号1、2,[)24,28这组编号为3、4、5、6;故从6人随机抽取2人所有可能样本点构成样本空间:()Ω{1,2=,()1,3,()1,4,()1,5,()1,6,()2,3,()2,4,()2,5,()2,6,()3,4,()3,5,()3,6,()4,5,()4,6,()5,6},设事件A =“从6人抽取2人的BMI 数值不在同一组”,则(){1,3A =,()1,4,()1,5,()1,6,()2,3,()2,4,()2,5,()2,6},故()815P A =, 答:从6人抽取两人,两人的BMI 值不在同一组的概率为815. 19.已知sin 24sin 3cos 24cos 1αααα-=-+,π0.2α⎛⎫∈ ⎪⎝⎭, (1)求tan α和sin2α的值;(2)若πsin 2sin 2ββ⎛⎫=+ ⎪⎝⎭,π02β⎛⎫∈ ⎪⎝⎭,,求αβ+的大小. 【答案】(1)tan 3α=,3sin 25α=; (2)3π4【分析】(1)结合二倍角公式,商数关系即可化简求得tan 3α=,以及22tan sin2tan 1ααα=+求值; (2)条件等式由诱导公式可得sin 2cos tan 2βββ=⇒=,即可由和差公式求得()tan αβ+,结合αβ+范围即可.【详解】(1)()()2sin cos 2sin 24sin sin cos 4sin tan 3cos 24cos 12cos 4cos 2cos cos 2αααααααααααααα---====-+--22, 2222sin cos 2tan 3sin2sin cos tan 15ααααααα===++; (2)πsin 2sin 2cos tan 22ββββ⎛⎫=+=⇒= ⎪⎝⎭, ()tan tan tan 11tan tan αβαβαβ++==--, ∵()0,παβ+∈,∴3π4αβ+=. 20.如图,P 是正方形ABCD 所在平面外一点,2PA PC AB ===,且平面PAC ⊥平面ABCD ,E ,F 分别是线段AB ,PC 的中点.(1)求证:;BD PC ⊥(2)求证://EF 平面;PAD(3)求点E 到平面PAD 的距离.【答案】(1)证明见解析(2)证明见解析 (3)63【分析】(1)证明BD ⊥平面PAC 后由线面垂直的性质定理得线线垂直;(2)取PD 中点G ,连接FG ,AG ,证明//EF AG 后可得线面平行;(3)由体积法E PAD P ADE V V --=求点面距.【详解】(1)因为正方形ABCD BD AC ⇒⊥,又平面PAC ⊥平面;ABCD平面PAC 平面ABCD AC =, BC ⊂平面ABCD ,所以BD ⊥平面PAC ,因为PC ⊂平面PAC ,所以BD PC ⊥.(2)取PD 中点G ,连接FG ,AG , 在PDC △中,因为F ,G 分别是PC ,PD 的中点,所以//FG CD ,1;2FG CD = 因为E 是正方形ABCD 边AB 中点,所以//AE CD ,1;2AE CD = 所以//AE GF ,;AE GF =即四边形AEFG 是平行四边形,所以//EF AG ,又因为AG ⊂平面PAD ,EF ⊄平面PAD , 故EF //平面PAD(3)如图,设AC BD O =,连接PO ,因为2PA PC ==,O 为AC 中点,所以PO AC ⊥,又平面PAC ⊥平面ABCD ,平面PAC 平面ABCD AC =,PO ⊂平面PAC ,故PO ⊥平面ABCD ,即PO 是三棱锥P ADE -的高;由正方形ABCD 边22AB AO OD =⇒==222;PO PA OA -=因为Rt Rt POD POA ≌,所以2PA PD ==,设点E 到平面PAD 的距离为d , 因为1133E PAD P ADE PAD ADE V V S d S PO --=⇒⋅=⋅,3142122d ⨯=⨯⨯6d = 所以点E 到平面PAD 6 21.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin A B c b C a b ++=-. (1)若3a =2b =,求角;B(2)设BAC ∠的角平分线AD 交BC 于点D ,若ABC 3AD 长的最大值.【答案】(1)6B π=(2)1【分析】(1)从正弦定理出发进行角换边,再利用余弦定理求得角A ,再利用一次正弦定理求得角度B .(2)利用角平分线性质及面积公式得到bc AD b c =+,再利用基本不等式得出AD 最值. 【详解】(1)解:因为sin sin sin A B c b C a b ++=-, 依据正弦定理sin sin sin a b c A B C ==, 所以222a b c b a b bc c c a b++=⇒-=+-, 即222b c a bc +-=-, 由余弦定理变形知2221cos 222b c a bc A bc bc +--===-, 因为()0A π∈,,所以23A π=.因为a =2b =,则在ABC 中,由正弦定理得:又21sin sin sin sin 2a b B A B B=⇔=⇒=, 因为b a B A <⇔<,所以6B π=. (2)法一:因为1sin 42ABC Sbc BAC bc =∠===, AD 是23BAC π∠=的角平分线, 而ABC ABD ACD S S S =+, 所以111sin 2333sin 222AB AD AC AD AB AC πππ⨯⨯⨯+⨯⨯⨯=⨯⨯⨯, 即()b c AD bc +=, 所以bc AD b c=+, 因为0b >,0c >,b c +≥4bc =,故AD 1;bc b c =≤=+ 当且仅当2b c ==取等,所以AD 最大值为1.答:当2b c ==时,AD 最大值为1.法二:因为1sin 42ABC Sbc BAC bc =∠===, 设ABD θ∠=,03θ⎛⎫∈ ⎪⎝⎭,π, 在ABD △,ACD △中由正弦定理知:sin sin sin sin 3AD c AD c ADB πθθθ=⇔=∠⎛⎫+ ⎪⎝⎭①, sin sin sin sin 333AD b AD b ADC πππθθθ=⇔=∠⎛⎫⎛⎫⎛⎫--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②, 因为4bc =,所以①⋅②得,228sin sin sin sin()33sin ()1cos 21cos 2333bc AD ππθθθθππθθθ⎛⎫-- ⎪⎝⎭===⎛⎫++-+- ⎪ ⎪⎝⎭⎝⎭4sin 224cos 2266341cos 21cos 21cos 2333ππθθπππθθθ⎛⎫⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭===-⎛⎫⎛⎫⎛⎫+-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令1cos 23t πθ⎛⎫=+- ⎪⎝⎭,03θ⎛⎫∈ ⎪⎝⎭,π, 由于3223332t πππθ⎛⎫⎛⎤-∈-⇒∈ ⎪ ⎥⎝⎭⎝⎦,,, 所以264AD t =-,易得此函数在3,22t ⎛⎤∈ ⎥⎝⎦为单调递增函数, 所以当26t πθ=⇔=时,AD 最大值为1.【点睛】本题考查正余弦定理解三角形,利用正弦定理解决范围与最值问题,涉及求余弦定理的值域或最值,利用单调性求最值,属于较难题.22.由两角和差公式我们得到倍角公式2cos22cos 1θθ=-,实际上cos3θ也可以表示为cos θ的三次多项式.(1)试用cos θ表示cos3;θ(2)求sin18的值;(3)已知方程314302x x --=在()11-,上有三个根,记为1x ,2x ,3x ,求证:33312334442x x x ++=. 【答案】(1)3cos34cos 3cos θθθ=-(3)证明见解析【分析】(1)利用两角和差的余弦公式和二倍角的余弦公式展开整理即可证明; (2)利用第(1)问的结论对cos54sin36︒︒=进行代换得到关于sin18︒的方程,解出即可,最后注意检验.(3)利用(1)中结论得到1cos32θ=,再得到三根π5π7π,,999代入式子化简即可. 【详解】(1)解:(1)因为, ()cos3cos 2cos2cos sin 2sin θθθθθθθ=+=-()222cos 1cos 2sin cos θθθθ=-- ()322cos cos 21cos cos θθθθ=---34cos 3cos θθ=- (2)90218318︒︒︒=⨯+⨯所以cos54sin36︒︒=,因为3cos54sin364cos 183cos182sin18cos18︒︒︒︒︒︒=⇔-=,因为cos180︒>,()224cos 1832sin1841sin 1832sin18︒︒︒︒-=⇔--=,即24sin 182sin1810︒︒+-=因为sin180︒>,解得sin18︒=. (3)(3)因(1,1)x ∈-,故可令cos (0)x θθπ=<<, 故由314302x x --=可得: 314cos 3cos 0(0)(*)2θθθπ--=<< 由(1)得:1cos32θ=, 因0θπ<<,故033θπ<<, 故π33θ=,或5π33θ=,或7π33θ= 即方程(*)的三个根分别为π5π7π,,999, 又314302x x --=,故31432x x =+, 于是,()333123123344432x x x x x x ++=+++ π5π7π33cos cos cos 9992⎛⎫=+++ ⎪⎝⎭ 22233cos 3cos 3cos 393992ππππππ⎛⎫⎛⎫⎛⎫=-+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭π2ππ2ππ2ππ2π2π33cos cos sin sin 3cos cos sin sin 3cos 3939393992⎛⎫⎛⎫=++--+ ⎪ ⎪⎝⎭⎝⎭ 12π2π36cos 3cos 2992=⨯-+ 32= 【点睛】本题需要对两角和差的余弦即二倍角的余弦公式运用熟练,推导出三倍角的余弦公式,再利用此公式进行应用证明后面的结论,计算和迁移应用要求高.一定要抓住第(1)问所证明的结论去证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点:和差公式。
点评:此题主要考查两角和的正切公式的灵活应用,我们要注意“ ”的代换,也就是我们常说的1代换。
14.
【解析】画出不等式组表示的可行域(如图阴影部分所示).
表示可行域内的点 与点 连线的斜率.
由 ,解得 ,故得 ;
由 ,解得 ,故得 .
因此可得 ,
结合图形可得 的取值范围为 .
答案:
15.
14.若 满足约束条件 ,则 的取值范围为__________.
15.设数列 满足 , ___________.
16.若函数 满足:对任意一个三角形,只要它的三边长 都在函数 的定义域内,就有函数值 也是某个三角形的三边长.则称函数 为保三角形函数,下面四个函数:① ;② ;③ ;④ 为保三角形函数的序号为___________.
②若 是异面直线时,则直线 可能与 平行;
③若 是异面直线时,则不存在异于 的直线同时与直线 都相交;
④ 两点可能重合,但此时直线 与 不可能相交
A.0 B.1 C.2 D.3
二、填空题
12.已知等比数列 的各项均为正数,且 成等差数列,则 _________.
13. 的值为___________.
三、解答题
17.已知直线 恒过定点 .
(Ⅰ)若直线 经过点 且与直线 垂直,求直线 的方程;
(Ⅱ)若直线 经过点 且坐标原点到直线 的距离等于3,求直线 的方程.
18.如图,在三棱柱 中, 平面 ,底面三角形 是边长为2的等边三角形, 为 的中点.
(Ⅰ)求证: 平面 ;
(Ⅱ)若直线 与平面 所成的角为 ,求三棱锥 的体积.
18.(Ⅰ)证明见解析;(Ⅱ) .
【解析】
【分析】
连接 交 于 点,连接 ,由三角形中位线定理可得 ,再由线面平行的判定可得 平面
直接利用等积法求三棱锥 的体积
【详解】
(Ⅰ)连接 交 于 点,连接 .
因为 分别为 的中点,所以 ,
又 平面 , ,
所以 平面 .
(Ⅱ)等边三角形 中, ,
平面 , ,且 , 平面 .
7.D
【解析】
【分析】
利用三角形面积公式表示出 ,再利用余弦定理表示出 ,变形后代入已知等式,进而求出 ,最后得出 的值
【详解】


代入已知等式 可得:

故选
【点睛】
本题主要考查了余弦定理和同角三角函数间的基本关系,运用三角形面积公式代入化简,属于基础题
8.D
【解析】如图所示,在长宽高分别为 的长方体中, ,
5.A
【解析】
试题分析:两条直线存在两种情况:一,两直线的斜率均不存在,且不重合,二,两直线的斜率均存在且相等但不重合.当两直线斜率均存在时,由题可知无解,当两直线斜率均存在时可知 ,可求得 ,当 时,两直线方程相同,即两直线重合,当 时,两直线方程为 ,两直线没有重合,所以本题的正确选项为A.
考点:两直线平行的性质.
(Ⅱ)①当直线 斜率不存在时,因为直线过点A,所以直线方程为 ,
符合原点到直线 的距离等于3.
②当直线 斜率不存在时,设直线 方程为 ,即
因为原点到直线的距离为3,所以 ,解得
所以直线 的方程为
综上所以直线 的方程为 或 .
【点睛】
本题主要考查了直线的垂直关系的应用及直线方程的求法,点到直线的距离公式,主要分斜率存在和不存在两种情况讨论,属于基础题。

在 中由勾股定理可得:
解得
故选
【点睛】
本题考查了正四棱锥的外接球问题,关键是要找出球心所在位置,然后计算,在计算过程中注意图形的构造,由勾股定理求出结果,较为基础
10.A
【解析】
【分析】
化简 得 ,令 , ,故 ,然后求出结果
【详解】
已知 均为正数,且 ,

令 , ,即
则 的最大值为
故选
【点睛】
本题考查了多元的最值问题,在解答多元问题时将其转化,运用消元的思想,整体换元,然后再运用基本不等式求出结果,本题有一定难度
12.
【解析】
分析:根据等比数列的定义 ,只要计算出公比 即可.
详解:∵ 成等差数列,
∴ ,即 ,解得 (-1舍去),
∴ ,
故选D.
点睛:正整数 满足 ,若数列 是等差数列,则 ,若数列 是等比数列,则 , 时也成立,此性质是等差数列(等比数列)的重要性质,解题时要注意应用.
13.
【解析】
试题分析: 。
高一下学期期末考试数学试题
数学答案
参考答案
1.D
【解析】
【分析】
先求出集合 , ,然后根据交集的定义求出
【详解】

故选
【点睛】
本题主要考查了集合的交集运算,属于基础题
2.D
【解析】因为 ,所以当 时,选项A,B错误,对于选项C,当 时, ,所以选项C错误,对于选项D,函数 在R上为减函数,所以 ,选D.
C.若 , ,则 D.若 , ,则
5.已知直线 平行,则实数 的值为()
A. B. C. 或 D.
6.某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗 原料2千克, 原料3千克;生产乙产品1桶需耗 原料2千克, 原料1千克,每桶甲产品的利润是300元,每桶乙产品的利润是400元,公司在要求每天消耗 原料都不超过12千克的条件下,生产产品甲、产品乙的利润之和的最大值为()
19.如图,在 中,点 在 边上, , .

(Ⅰ)求 的面积.
(Ⅱ)若 ,求 的长.
20.已知函数 .
(Ⅰ)当 时,求 的值域;
(Ⅱ)若将函数 向右平移 个单位得到函数 ,且 为奇函数.
(ⅰ)求 的最小值;
(ⅱ)当 取最小值时,若 与函数 在 轴右侧的交点横坐标依次为 ,求 的值.
21.已知数列 满足 .
(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.
9.C
【解析】
【分析】
由题意作出图形,分别计算出棱锥的高、底面对角线长,然后构造直角三角形,求出结果
【详解】
如图,设正方形 的中点为 ,正四棱锥 的外接球心为
底面正方形的边长为 ,
正四棱锥的体积为
则题中三视图对应的几何体是一个由图中的三棱柱 和三棱锥 组成的组合体,
故其表面积为:

本题选择D选项.
点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.
(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.
17.(Ⅰ) ;(Ⅱ) 或 .
【解析】
【分析】Байду номын сангаас
求出定点 的坐标,设要求直线的方程为 ,将点 的坐标代入方程可求得 的值,即可写出直线 的方程
分直线 斜率存在和不存在两种情况讨论,根据点到直线的距离公式即可得到答案
【详解】
直线 可化为 ,
由 可得 ,所以点A的坐标为 .
(Ⅰ)设直线 的方程为 ,
将点A 代入方程可得 ,所以直线 的方程为 ,
在 中, ,则 或 ,故 错误,故选B.
点睛:本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.
6.C
【解析】
设分别生产甲乙两种产品为 桶, 桶,利润为 元,则根据题意可得
, 作出不等式组表示的平面区域,如图所示,作直线 ,然后把直线向可行域平移,可得 ,此时 最大 ,故选C.
【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.
A. B. C. D.
10.已知 均为正数,且 ,则 的最大值为()
A.2 B.4 C.6 D.8
11.如图,平面 与平面 交于直线 是平面 内不同的两点, 是平面 内不同的两点,且 不在直线 上, 分别是线段 的中点,下列命题中正确的个数为()
①若 与 相交,且直线 平行于 时,则直线 与 也平行;
A.1800元B.2100元C.2400元D.2700元
7.在 中,内角 的对边分别为 ,若 的面积为 ,且 ,则 ()
A. B. C. D.
8.如图为一几何体的三视图,则该几何体的表面积为()
A. B. C. D.
9.已知正四棱锥 (底面四边形 是正方形,顶点 在底面的射影是底面的中心)的各顶点都在同一球面上,底面正方形的边长为 ,若该正四棱锥的体积为 ,则此球的体积为()
(Ⅰ)求 的通项公式;
(Ⅱ)设 为数列 的前 项和,解关于 的不等式 .
22.如图1,在长方形 中, 为 的中点, 为线段 上一动点.现将 沿 折起,形成四棱锥 .
图1图2图3
(Ⅰ)若 与 重合,且 (如图2).
(ⅰ)证明: 平面 ;
(ⅱ)求二面角 的余弦值.
(Ⅱ)若 不与 重合,且平面 平面 (如图3),设 ,求 的取值范围
则 在平面 的射影为 ,
故 与平面 所成的角为 .
在 中, , ,算得 ,

.
【点睛】
本题主要考查了直线与平面垂直的性质定理的应用,几何体的体积的求法,考查了计算能力和逻辑推理能力,注意等积法的应用。
相关文档
最新文档