20100330高二数学(条件概率和事件的相互独立性)

合集下载

《条件概率与独立事件》参考教案

《条件概率与独立事件》参考教案

年级:高二科目:数学授课人:
教 学 过

教 学 过 程
(|) B A P A B B AB B 在发生的条件下包含的样本点数=
在发生的条件下样本点数包含的样本点数=
包含的样本点数
AB P AB B P B 包含的样本点数/总数()


包含的样本点数/总数()例盒中
有球如表任取一球 玻璃 木质 总计
红 2 3 5
蓝 4 7 11
总计 6 10 16
若已知取得是蓝球,问该球是玻璃球的概率
例1 A:取得是蓝球,B:取得是玻璃球
例2
变式:
若已知取得是玻璃球,求取得是篮球的概率
例3
在5道题中有3道理科题和2道文科题。

如果不放回的依次抽取2道题,求:
(1) 第1次抽到理科题的概率;
(2) 第
1次和第2次都抽到理科题的概率;
)
|(A B P )
()
(A P AB P =
11
416
11164=
=
)
|(B A P )
()(B P AB P =
6
416
6164=
=
()
,()()r
r p AB n A m m p B A n
=⋅=
即p。

事件的相互独立性、条件概率与全概率公式-高考数学复习

事件的相互独立性、条件概率与全概率公式-高考数学复习
“两次取出的球的数字之和是7”,则(

A. 甲与丙相互独立
B. 甲与丁相互独立
C. 乙与丙相互独立
D. 丙与丁相互独立
目录
解析:
1
事件甲发生的概率 P (甲)= ,事件乙发生的概率 P
6
1
5
5
(乙)= ,事件丙发生的概率 P (丙)=
= ,事件丁发生的概
6
6×6
36
6
1
率 P (丁)=
= .事件甲与事件丙同时发生的概率为0, P (甲
)=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+
0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人需
使用设备的概率 P 2=0.6×0.5×0.5×0.4=0.06,故所求的概率 P =
3
2
3
5
( )·P ( )·P ( )=(1- )(1- )(1- )= .
4
3
8
96
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙
三人中,至少有一人答对这道题”是对立事件,
5
91
所以所求事件的概率为 P ( M )=1- = .
96
96
目录
解题技法
1. 求相互独立事件同时发生的概率的步骤
2∪…∪ An =Ω,且 P ( Ai )>0, i =1,2,…, n ,则对任意的事

件 B ⊆Ω,有 P ( B )=
∑ P ( Ai ) P ( B | Ai )
i=1
,我们称上面
的公式为全概率公式.
目录
1. 判断正误.(正确的画“√”,错误的画“×”)

知识条件概率事件相互独立性(理)(基础)

知识条件概率事件相互独立性(理)(基础)

条件概率事件的相互独立性【学习目标】1.了解条件概率的概念和概率的乘法公式.2.能运用条件概率解决一些简单的实际问题.3.了解两个事件相互独立的概念,会判断两个事件是否为相互独立事件.4.能运用相互独立事件的概率解决一些简单的实际问题.【要点梳理】要点一、条件概率的概念1.定义设A、B为两个事件,且()0P A>,在已知事件A发生的条件下,事件B发生的概率叫做条件概率。

用符号(|)P B A表示。

(|)P B A读作:A发生的条件下B发生的概率。

要点诠释在条件概率的定义中,事件A在“事件B已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率.2.P(A|B)、P(AB)、P(B)的区别P(A|B)是在事件B发生的条件下,事件A发生的概率。

P(AB)是事件A与事件B同时发生的概率,无附加条件。

P(B)是事件B发生的概率,无附加条件.它们的联系是:() (|)()P ABP A BP B=.要点诠释一般说来,对于概率P(A|B)与概率P(A),它们都以基本事件空间Ω为总样本,但它们取概率的前提是不相同的。

概率P(A)是指在整个基本事件空间Ω的条件下事件A发生的可能性大小,而条件概率P(A|B)是指在事件B发生的条件下,事件A发生的可能性大小。

例如,盒中球的个数如下表。

从中任取一球,记A=“取得篮球”,B=“取得玻璃球”。

基本事件空间Ω包含的样本点总数为16,事件A包含的样本点总数为11,故11 ()P A=。

如果已知取得玻璃球的条件下取得篮球的概率就是事件B发生的条件下事件A发生的条件概率,那么在事件B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,即把样本空间压缩到玻璃球全体。

而在事件B 发生的条件下事件A 包含的样本点数为蓝玻璃球数,故42(|)63P A B ==。

高考数学复习知识点讲解教案第62讲 随机事件的相互独立性与条件概率

高考数学复习知识点讲解教案第62讲 随机事件的相互独立性与条件概率

概率的积,则事件,为相互独立事件.
2.求两个相互独立事件同时发生的概率的步骤
(1)首先确定两个事件是相互独立的;
(2)确定两个事件可以同时发生;
(3)求出每个事件发生的概率,再求积.
变式题(1)
(多选题)[2023·新课标Ⅱ卷] 在信道内传输0,1信号,信号
的传输相互独立.发送0时,收到1的概率为 0 < < 1 ,收到0的概率为1 − ;
由相互独立事件的概率公式得,所求概率为 1 −
2 ,故B正确.
对于C,采用三次传输方案,发送1,1,1,收到的译码为1,
则收到的信号可能为 1,1,0 , 1,0,1 , 0,1,1 , 1,1,1 ,
故所求概率为3ሺ1 −
2

+ 1−
3 ,故C错误.
对于D,若采用三次传输方案,发送0,收到的译码为0,
5
1 2
别为 , ,则该谜题被破解的概率为___.
6
2
3
[解析] 设“甲独立地破解出该谜题”为事件,“乙独立地破解出该谜题”为事件,
“该谜题被破解”为事件,且事件与相互独立,
则 = 1 − = 1 − 1 −
1
2
× 1−
2
3
=
5
.
6
3.[教材改编]
交通部门对某地上、下班时间拥堵状况统计调查,发现该地区上
4.结合古典概型,会利用乘法公式计算概率.
◆ 知识聚焦 ◆
1.事件的相互独立性
(1)定义:对任意两个事件与,如果

=____________成立,则称事件与
事件相互独立.
(2)判断方法:
①根据定义;

事件的相互独立性、条件概率与全概率公式

事件的相互独立性、条件概率与全概率公式

2.条件概率
(1)概念:一般地,设 A,B 为两个随机事件,且 P(A)>0,我们
PAB
称 P(B|A)= PA 为在事件 A 发生的条件下,事件 B 发生的条
件概率,简称条件概率.
提醒: P(B|A)与 P(A|B)的意义不同,“|”后面的表示条件,一般 情况下,二者不相等.
第四节 事件的相互独立性、条件概率与全概率公式
②有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为(男,
男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),
(女,男,女),(女,女,男),(女,女,女),
由等可能性知这 8 个元素的概率均为18,这时 A 中含有 6 个元素, B 中含有 4 个元素,AB 中含有 3 个元素.于是 P(A)=68=34,P(B)=48= 12,P(AB)=38,显然有 P(AB)=38=P(A)P(B)成立.
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
(2)性质:设 P(B|A)>0,则 ①P(Ω|A)= 1 ; ②任何事件的条件概率都在 0 和 1 之间,即 0≤P(B|A)≤1 ; ③如果 B 和 C 是两个互斥事件,则 P(B∪C|A)= P(B|A)+P(C|A) ; ④设 B 和 B 互为对立事件,则 P( B |A)= 1-P(B|A) .
降雨为 A B + A B,
所以 P(A B + A B)=P(A B )+P( A B)
=P(A)P( B )+P( A )P(B)=0.2×0.7+0.8×0.3=0.38.]
第四节 事件的相互独立性、条件概率与全概率公式
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业

高二数学 事件的相互独立性

高二数学 事件的相互独立性

高二数学事件的相互独立性1.教学目标1.1地位、作用《事件的相互独立性》是高中数学选修2-3第二章的内容,这节课是在学生学习了排列、组合、等可能性事件概率、互斥事件概率,条件概率的基础上进行的.通过本节学习不仅要掌握相互独立事件的定义及其同时发生的概率乘法公式和公式的应用,为后继学习独立重复试验等概率知识以及今后学习相关知识奠定良好基础, 而且更重要的是让学生真正意识到集体的力量大于个人的力量,虚心求教的必要性,养成谦虚求教的良好治学态度,适时地对学生进行德育教育.1.2 学情分析➢认知分析:现在是高二的第二学期,学生已有一定的数学分析能力,为此教学应从设疑入手,引导其探索,提出解决问题的方法,重在进一步培养其分析问题、解决问题的能力和创新意识。

➢能力分析:学生已经具备了一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养.➢情感分析:多数学生对数学学习有兴趣,能够积极参与研究,但在合作交流方面,有待加强.综上所述,确定本节课的教学目标如下:➢知识目标:理解相互独立事件的意义,掌握相互独立事件同时发生的概率乘法公式,并能应用该公式计算一些独立事件同时发生的概率,进一步理解偶然性与必然性之间的辩证关系。

➢能力目标:培养学生的动手能力、探究性学习的能力、创新意识和实践能力,发展学生“用数学”的意识和能力.➢情感目标:培养学生关注人文、虚心求教的情感,帮助学生体验数学学习活动中的发现与快乐,激发他们的学习兴趣.2.重点、难点:教学重点:相互独立事件的意义和相互独立事件同时发生的概率公式.教学难点:对事件独立性的判定,以及能正确地将复杂的概率问题分解转化为几类基本的概率模型.3.教学方法与教学手段教学方法:启发式教学为主;讲授为辅。

教学手段:多媒体辅助教学。

4.教学过程(1)创设情境,让学生的思维“动”起来[问题] 从“三个臭皮匠,顶上一个诸葛亮”这句古话中你能得到什么启发?从数学的角度,你能做出解释吗?给出引例:诸葛亮vs臭皮匠(略)(这一环节的设计意图是:课堂教学刚开始时如果能引起学生的学习兴趣,激发学生的求知欲望,就会形成强大的内驱力,可以很快促使学生积极思维,迅速拉近教师和学生的距离。

条件概率及互相独立事件-高考数学知识点

条件概率及互相独立事件-高考数学知识点

条件概率及互相独立事件-高考数学知识点条件概率及互相独立事件一、条件概率
条件概率是一种带有附加条件的概率。

是指若事件A与事件B是相依事件,即事件A的概率随事件B是否发生而变化,同样,事件B的概率与随事件A是否发生而变化,则在事件A已发生的条件下,事件B出现的概率称为事件B的条件概率。

条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。

条件概率表示为P(A|B),读作“在 B 条件下 A 的概率”。

P(A|B)=P(AB)/P(B),P(B|A)=P(AB)/P(A)
二、独立事件
相互独立事件: 事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

三、热定预测
预测高考可能会对独立事件的概率、n次独立事件的概率、n次独立重复试验的概率、二项分布重点考察。

解答题仍会保持中等难度,分值约为10分。

条件概率与互相独立事件在高二的课程中就已经还是涉及。

人教版高中数学教案-条件概率与事件的相互独立性

人教版高中数学教案-条件概率与事件的相互独立性

2. 2.1條件概率與事件的相互獨立性教學目標:1、通過對具體情景的分析,瞭解條件概率的定義。

理解兩個事件相互獨立的概念。

2,掌握一些簡單的條件概率的計算。

能進行一些與事件獨立有關的概率的計算。

3,通過對實例的分析,會進行簡單的應用教學重點:條件概率定義的理解教學難點:概率計算公式的應用教學設想:引導學生形成 “自主學習”與“合作學習”等良好的學習方式教學過程:概念:1,對於兩個事件A 與B ,如果P(A)>0,稱P(B ︱A)=P(AB)/P(A),為在事件A 發生的條件下,事件B 發生的條件概率.2,如果兩個事件A 與B 滿足等式 P(AB)=P(A)P(B),稱事件A 與B 是相互獨立的,簡稱A 與B 獨立。

例1.一張儲蓄卡的密碼共有6位元數位,每位元數位都可從9~0中任選一個,某人在銀行自動提款機上取錢時,忘記了密碼的最後一位元數位.求(1) 任意按最後一位元數字,不超過2次就對的概率;(2) 如果他記得密碼的最後一位元是偶數,不超過2次就按對的概率.解:設第i 次按對密碼為事件i A (i=1,2) ,則112()A A A A =表示不超過2次就按對密碼.(1)因為事件1A 與事件12A A 互斥,由概率的加法公式得 1121911()()()101095P A P A P A A ⨯=+=+=⨯. (2)用B 表示最後一位按偶數的事件,則112(|)(|)(|)P A B P A B P A A B =+14125545⨯=+=⨯. 例2.一個家庭中有兩個小孩,假定生男、生女是等可能的,已知這個家庭有一個是女孩,問這時另一個小孩是男孩的概率是多少?解:一個家庭的兩個孩子有四種可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。

這個家庭中有一個女孩的情況有三種:{(男,女)},{(女,男)},{(女,女)}。

在這種情況下“其中一個小孩是男孩”占兩種情況,因此所求概率為2/3.例3.甲、乙兩名籃球運動員分別進行一次投籃,如果兩人投中的概率都是6.0,計算:(1)兩人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“兩人各投一次,都投中”就是事件AB發生,因此所求概率為P(AB )=P(A)P(B)=0.6×0.6=0.36(2)分析:“兩人各投一次,恰有一人投中”包括兩種情況:甲投中,乙未投中;甲未擊中,乙擊中。

6.条件概率与事件的独立性

6.条件概率与事件的独立性

6、条件概率与事件的独立性一、基础知识1.条件概率(1)条件概率的定义:设A 、B 为两个事件,如果在事件B 已经发生的条件下考虑事件A 发生的概率,则这种概率称为在事件B 发生的条件下,事件A 发生的条件概率。

记作P(A|B)(2)条件概率的公式:)()()()()|(B n AB n B P AB P B A P == 2.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立.3.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅4.互斥事件与相互独立事件是有区别的:互斥事件与相互独立事件研究的都是两个事件的关系,但互斥的两个事件是一次实验中的两个事件,相互独立的两个事件是在两次试验中得到的,注意区别。

二、典例分析题型一:条件概率【例1】在100件产品中有95件合格品,5件不合格品.现在从中不放回的取两次,每次任取一件,试求:(1)第一次取到不合格品的概率;(2)在第一次取到不合格品后,第二次再次取到不合格品的概率.【变式1】在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求: (l )第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率。

【变式2】甲、乙两城市都位于长江下游,根据一百余年气象记录,知道甲、乙两市一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,求:(1)乙市为雨天时,甲市也为雨天的概率;(2)甲市为雨天时,乙市也为雨天的概率.【变式3】一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。

条件概率和事件的独立性(精)

条件概率和事件的独立性(精)

1. 了解条件概率和两个事件相互独立的概率,掌握求条件概率的步骤,会求条件概率 .2. 掌握独立事件的概率求法 .一、条件概率及其性质1. 对于两个事件 A 和 B ,在已知事件 A 发生的条件下,事件 B 发生的概率叫做条件概率,用符号 |(A B P 来表示,其公式为( ( |(A P AB P A B P =. 2. 条件概率的性质① 1 |(0≤≤A B P ;②如果 B 和 C 是两个互斥事件,则 |( |( |(A C P A B P A C B P +=⋃.二、相对独立事件1. 对于事件 A 、 B ,若 A 的发生与 B 的发生互不影响,则称 A 、 B 是相互独立事件 .2. 若 A 与 B 相互独立,则 ( |(B P A B P =, |( (A B P AB P =· ( (AB P A P =.3. 若 A 与 B 相互独立,则 A 与 B , A 与 B , A 与 B 也都相互独立 .4. 若 ( ( (B P A P AB P =,则 A 、 B 相互独立 .三、二项分布1. 独立重复试验是指在相同的条件下可重复进行的, 各次之间相互独立的一种试验, 在这种试验中每一次试验只有两种可能的结果, 即或发生, 或不发生, 且任何一次试验中发生的概率是一样的 .2. 在 n 次独立重复试验中, 事件 A 发生 k 次的概率为 k n k k n p p C -- 1((, 3, 2, 1, 0=k ……, n (p 为事件 A 发生的概率 ,事件 A发生的次数是一个随机变量 X ,其分布列为二项分布,知识梳理考纲要求记为 , (~p n B X .[究疑点 ]1.怎样判定条件概率?提示:在题目中出现“已知” “在……前提下 (条件下” 等字眼下时一般为条件概率 . 题目中没有出现上述字眼, 但已知事件的出现影响所求事件的概率时, 也需注意是否为条件概率 ..2. A 、 B 相互独立与 A 、 B 相互对立A 、B 相互独立⇔ ( ( (B P A P AB P =.A 、B 相互对立⇔φ=⋂B A 且 U B A =⋃.若 0 (>A P 且 0 (>B P ,则 A 、 B 相互独立与 A 、 B 相互对立不能同时成立 .因为 A 、 B 相互独立⇒0 ( ( (>=B P A P AB P , A 、 B 相互对立⇒0 ( (==φP AB P .s【考点一】条件概率的计算★ 1、 (2011辽宁从 1, 2, 3, 4, 5中任取两个不同的数,事件A =“取到的两个数之和为偶数” ,事件B =“取到的两个数之均为偶数” ,则 |(A B P = (【考点二】事件的独立性★ 2、 (2010辽宁甲、乙两个实习生每人加工一个零件, 加工为一等品的概率分别为 32和 43, 两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(★★ 3、 (2010重庆某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率 2516,则该队员每次罚球命中率为 ________. ★★★ 4、 (2010北京某同学参加 3门课程的考试。

高考数学《事件的相互独立性、条件概率与全概率公式》课件

高考数学《事件的相互独立性、条件概率与全概率公式》课件
的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一 人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜, 比赛结束. 经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率;
解 甲连胜四场的概率为116.
索引
(2)求需要进行第五场比赛的概率; 解 根据赛制,至少需要进行四场比赛,至多需要进行五场比赛. 比赛四场结束,共有三种情况: 甲连胜四场的概率为116;乙连胜四场的概率为116; 丙上场后连胜三场的概率为18. 所以需要进行第五场比赛的概率为 1-116-116-81=34.
称条件概率.
(2)两个公式
n(AB)
①利用古典概型,P(B|A)=___n_(__A_)___;
②概率的乘法公式:P(AB)=_____P_(_A_)_P_(_B_|_A_)________.
索引
3.全概率公式
一般地,设 A1,A2,…,An 是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且
n
P(Ai)>0,i=1,2,…,n,则对任意的事件 B⊆Ω,有 P(B)=_i∑=_1_P_(__A_i)__P__(__B_|A__i),
否通过每关相互独立.一选手参加该节目,则该选手能进入第三关的概率为
( C)
1
2
A.2
B.3
5
1
C.6
D.12
Байду номын сангаас
索引
解析 设Ai=“第i次通过第一关”,Bi=“第i次通过第二关”,其中i=1,2;
由题意得,选手能进入第三关的事件为 A1B1+A-1A2B1+A1B-1B2+A-1A2B-1B2,
所求概率为
件实施两次打击,若没有受损,则认为该构件通过质检.若第一次打击后该构

高考数学科学复习创新方案:事件的相互独立性、条件概率与全概率公式

高考数学科学复习创新方案:事件的相互独立性、条件概率与全概率公式

事件的相互独立性、条件概率与全概率公式[课程标准]1.结合有限样本空间,了解两个随机事件独立性的含义.结合古典概型,利用独立性计算概率.2.了解条件概率,能计算简单随机事件的条件概率.3.结合古典概型,了解条件概率与独立性的关系.4.会利用乘法公式和全概率公式计算概率.1.相互独立事件(1)定义:对任意两个事件A与B,如果P(AB)=01P(A)P(B)成立,则称事件A与事件B相互独立,简称独立.(2)性质:如果事件A与B相互独立,那么A与B-,A-与B,A-与B-也都02相互独立.2.条件概率设A,B为两个随机事件,且P(A)>0,称P(B|A)=03P(AB)为在事件AP(A)发生的条件下,事件B发生的条件概率,简称条件概率.3.乘法公式对任意两个事件A与B,若P(A)>0,则P(AB)=04P(A)P(B|A).4.条件概率的性质设P(A)>0,则(1)P(Ω|A)=051;(2)如果B和C是两个互斥事件,则P(B∪C|A)=06P(B|A)+P(C|A);(3)如果B-与B互为对立事件,则P(B-|A)=071-P(B|A).5.全概率公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=错误!.1.事件间的关系及表示(1)A,B中至少有一个发生的事件为A∪B.(2)A,B都发生的事件为AB.(3)A,B都不发生的事件为A-B-.(4)A,B恰有一个发生的事件为(A B-)∪(A-B).(5)A,B至多有一个发生的事件为(AB)∪(A-B)∪(A-B-).2.条件概率的计算常采用缩小样本空间法求解.3.乘法公式可以推广为P(A1A2A3)=P(A1)·P(A2|A1)P(A3|A1A2),其中P(A1)>0,P(A1A2)>0.4.贝叶斯公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,P(B)>0,有P(A i|B)=P(A i)P(B|A i)P(B)=错误!,i=1,2,…,n.1.(人教A必修第二册习题10.2T2改编)若P(AB)=19,P(A-)=23,P(B)=13,则事件A与B的关系是()A.事件A与B互斥B.事件A与B对立C.事件A与B相互独立D.事件A与B既互斥又相互独立答案C解析∵P (A )=1-P (A -)=1-23=13,∴P (AB )=P (A )P (B )=19≠0,∴事件A 与B 相互独立、事件A 与B 不互斥,故不对立.故选C.2.(2023·舟山模拟)甲、乙去同一家药店购买一种医用外科口罩,已知这家药店出售A ,B ,C 三种医用外科口罩,甲、乙购买A ,B ,C 三种医用口罩的概率分别如下:购买A 种医用外科口罩购买B 种医用外科口罩购买C 种医用外科口罩甲0.20.4乙0.30.3则甲、乙购买的是同一种医用外科口罩的概率为()A .0.44B .0.40C .0.36D .0.32答案D解析由表可知,甲购买A 种医用外科口罩的概率为0.4,乙购买B 种医用外科口罩的概率为0.4,所以甲、乙购买的是同一种医用外科口罩的概率为P =0.4×0.3+0.2×0.4+0.4×0.3=0.32.故选D.3.(人教A 必修第二册10.2例2改编)甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为()A .0.12B .0.42C .0.46D .0.88答案D解析设“甲被录取”记为事件A ,“乙被录取”记为事件B ,则两人至少有一人被录取的概率P =1-P (A -B -)=1-[1-P (A )][1-P (B )]=1-0.4×0.3=0.88.故选D.4.(多选)某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()A .P (B |A )=13B .P (B |A )=38C .P (A |B )=34D .P (A |B )=35答案BC解析由题意知P (A )=415,P (B )=215,P (AB )=110,∴P (B |A )=P (AB )P (A )=110415=38,P (A |B )=P (AB )P (B )=34.故选BC.5.(人教A 必修第二册习题10.1T 16改编)从1~100共100个正整数中,任取一数,已知取出的这个数不大于50,则此数是2或3的倍数的概率为________.答案3350解析设事件C 为“取出的数不大于50”,事件A 为“取出的数是2的倍数”,事件B 为“取出的数是3的倍数”.则P (C )=12,且所求概率为P (A ∪B |C )=P (A |C )+P (B |C )-P (AB |C )=P (AC )P (C )+P (BC )P (C )-P (ABC )P (C )=2+16100-3350.多角度探究突破角度事件独立性的判定例1(2021·新高考Ⅰ卷)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则() A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案B解析设甲、乙、丙、丁事件发生的概率分别为P(A),P(B),P(C),P(D),则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16.对于A,甲、丙同时发生的概率P(AC)=0≠P(A)P(C);对于B,甲、丁同时发生的概率P(AD)=16×6=1 36=P(A)P(D);对于C,乙、丙同时发生的概率P(BC)=16×6=136≠P(B)P(C);对于D,丙、丁同时发生的概率P(CD)=0≠P(C)P(D).若两事件X,Y相互独立,则P(XY)=P(X)P(Y),因此B正确.故选B.角度相互独立事件的概率例2(2023·河北省级联考)甲、乙、丙三人进行网球比赛,约定赛制如下:累计负两场被淘汰;比赛前抽签决定首先比赛的两个人,另一个人当裁判,没有平局;每场比赛结束时,负的一方在下一场当裁判;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获得冠军,比赛结束.已知在每场比赛中,双方获胜的概率都为12,各局比赛的结果相互独立,经抽签,第一场比赛甲当裁判.(1)求前三场比赛结束后,丙被淘汰的概率;(2)求只需四场比赛就决出冠军的概率.解(1)设事件A为“甲胜乙”,则P(A)=12,P(A-)=1-12=12,设事件B为“甲胜丙”,则P(B)=12,P(B-)=1-12=12,设事件C为“乙胜丙”,则P(C)=12,P(C-)=1-12=12,前三场比赛结束后,丙被淘汰可用事件C A-C∪CAB来表示,所以前三场比赛结束后,丙被淘汰的概率为P1=P(C A-C)+P(CAB)=12×12×12+12×12×12=14.(2)若最终的冠军为甲,则只需四场比赛就决出冠军可用事件CABA∪C-BAB 来表示,P(CABA∪C-BAB)=P(CABA)+P(C-BAB)=P(C)P(A)P(B)P(A)+P(C-)P(B)P(A)P(B)=1 2×12×12×12+12×12×12×12=18.若最终的冠军为乙,则只需四场比赛就决出冠军可用事件C A-C A-来表示,P(C A-C A-)=P(C)P(A-)P(C)P(A-)=12×12×12×12=116.若最终的冠军为丙,则只需四场比赛就决出冠军可用事件C-B-C-B-来表示,P(C-B-C-B-)=P(C-)P(B-)P(C-)P(B-)=12×12×12×12=116.所以只需四场比赛就决出冠军的概率为P2=18+116+116=14.1.两个事件相互独立的判断方法(1)定义法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)充要条件法:事件A,B相互独立的充要条件是P(AB)=P(A)P(B).2.求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.1.(2023·益阳期末)在一个质地均匀的正八面体中,八个面分别标有数字1到8,任意抛掷一次这个正八面体,观察它与地面接触的面上的数字.记事件A=“与地面接触的数字为奇数”,事件B=“与地面接触的数字不大于4”,事件C=“与地面接触的数字为1或5或7或8”.(1)判断事件A,B是否独立并证明;(2)证明事件A,B,C满足P(ABC)=P(A)·P(B)P(C),但不满足A,B,C两两独立.解(1)由已知,得样本空间为Ω={1,2,3,4,5,6,7,8},所以A={1,3,5,7},B={1,2,3,4},C={1,5,7,8},A∩B={1,3},B∩C={1},A∩C={1,5,7},A∩B∩C={1},因为P(A)=12,P(B)=12,P(AB)=14=P(A)P(B),所以事件A,B相互独立.(2)证明:因为P(A)=P(B)=P(C)=12,P(ABC)=18,P(BC)=18,P(AC)=38,所以P(ABC)=P(A)P(B)P(C),但是P(BC)≠P(B)P(C),且P(AC)≠P(A)P(C),所以事件A,B,C满足P(ABC)=P(A)P(B)P(C),但不满足A,B,C两两独立.2.(2024·黄冈模拟)为了普及垃圾分类知识,某校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p,乙同学答对每题的概率都为q(p>q),且在考试中每人各题答题结果互不影响.已知每题甲、乙两人同时答对的概率为12,恰有一人答对的概率为512.(1)求p和q的值;(2)求甲、乙两人共答对3道题的概率.解(1)设事件A:“甲同学答对第一题”,事件B:“乙同学答对第一题”,则P(A)=p,P(B)=q.设事件C:“甲、乙两人均答对第一题”,事件D:“甲、乙两人恰有一人答对第一题”,则C=A∩B,D=(A∩B-)∪(A-∩B).∵甲、乙两人答题互不影响,且每人各题答题结果互不影响,∴A与B相互独立,A∩B-与A-∩B互斥,∴P(C)=P(A∩B)=P(A)P(B)=pq,P(D)=P(A∩B-)+P(A-∩B)=P(A)[1-P(B)]+[1-P(A)]P(B).由题意,得pq=12,p(1-q)+q(1-p)=512,解得p=34,q=23或p=23,q=34.∵p>q,∴p=34,q=23.(2)设事件A i:“甲同学答对了i道题”,事件B i:“乙同学答对了i道题”,i=0,1,2.由题意,得P(A1)=14×34+34×14=38,P(A2)=34×34=916,P(B1)=23×13+13×23=49,P(B2)=23×23=49.设事件E:“甲、乙两人共答对3道题”,则E=(A1∩B2)∪(A2∩B1),∴P(E)=P(A1∩B2)+P(A2∩B1)=38×49+916×49=512,∴甲、乙两人共答对3道题的概率为512.考向二条件概率例3(1)(2023·贵州师大附中模拟)某市卫健委为调查研究某种流行病患者的年龄分布情况,随机调查了大量该病患者,年龄分布如图.已知该市此种流行病的患病率为0.1%,该市年龄位于区间[40,60)的人口占总人口的28%.若从该市居民中任选一人,此人年龄位于区间[40,60),则此人患这种流行病的概率为(以样本数据中患者的年龄位于各区间的频率作为患者年龄位于该区间的概率)()A .0.28B .0.00054C.713500D.2714000答案D解析设“该居民年龄位于区间[40,60)”为事件A ,“该居民患这种流行病”为事件B ,由题意知,P (A )=0.28,P (B )=0.001,P (A |B )=0.54.因为P (A |B )=P (AB )P (B ),所以P (AB )=P (A |B )P (B )=0.54×0.001=0.00054,所以P (B |A )=P (AB )P (A )=0.000540.28=2714000.故选D.(2)在100件产品中有95件合格品,5件不合格品,现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.答案499解析解法一(应用条件概率公式求解):设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则所求的概率为P (B |A ),因为P (AB )=A 25A 2100=1495,P (A )=C 15C 1100=120,所以P (B |A )=P (AB )P (A )=1495120=499.解法二(缩小样本空间求解):第一次取到不合格品后,也就是在第二次取之前,还有99件产品,其中有4件不合格品,因此第二次取到不合格品的概率为499.(3)在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个球,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.解设“摸出第一个球是红球”为事件A ,“摸出第二个球是黄球”为事件B ,“摸出第二个球是黑球”为事件C .则P(A)=110,P(AB)=1×210×9=145,P(AC)=1×310×9=130.所以P(B|A)=P(AB)P(A)=145÷110=29,P(C|A)=P(AC)P(A)=130÷110=13.所以P(B∪C|A)=P(B|A)+P(C|A)=29+13=59.所以所求概率为59.条件概率的三种求法定义法先求P(A)和P(AB),再由P(B|A)=P(AB)P(A)求P(B|A)样本点法借助古典概型概率公式,先求事件A包含的样本点数n(A),再求事件AB所包含的样本点数n(AB),得P(B|A)=n(AB)n(A)缩样法缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简1.(2023·全国甲卷)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.1答案A解析报名两个俱乐部的人数为50+60-70=40,记“某人报足球俱乐部”为事件A,“某人报乒乓球俱乐部”为事件B,则P(A)=5070=57,P(AB)=4070=47,所以P(B|A)=P(AB)P(A)=4757=0.8.故选A.2.质监部门对某种建筑构件的抗压能力进行检测,对此建筑构件实施两次击打,若没有受损,则认为该构件通过质检.若第一次击打后该构件没有受损的概率为0.85,当第一次没有受损时第二次在实施击打也没有受损的概率为0.80,则该构件通过质检的概率为()A.0.4B.0.16C.0.68D.0.17答案C解析设A i表示第i次击打后该构件没有受损,i=1,2,则由已知可得P(A1)=0.85,P(A2|A1)=0.80,因此由乘法公式可得P(A1A2)=P(A1)P(A2|A1)=0.85×0.80=0.68,即该构件通过质检的概率为0.68.故选C.3.52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为________;已知第一次抽到的是A,则第二次抽到A的概率为________.答案12211 17解析由题意,设第一次抽到A的事件为B,第二次抽到A的事件为C,则P(B)=452=113,P(BC)=452×351=1221,∴P(C|B)=P(BC)P(B)=1221113=117.例4(2023·韶关模拟)作为一种益智游戏,中国象棋具有悠久的历史,中国象棋的背后,体现的是博大精深的中华文化.为了推广中国象棋,某地举办了一次地区性的中国象棋比赛,小明作为选手参加.除小明以外的其他参赛选手中,50%是一类棋手,25%是二类棋手,其余的是三类棋手.小明与一、二、三类棋手比赛获胜的概率分别是0.3,0.4和0.5.(1)从参赛选手中随机选取一位棋手与小明比赛,求小明获胜的概率;(2)如果小明获胜,求与小明比赛的棋手为一类棋手的概率.解(1)设事件A i=“小明与i(i=1,2,3)类棋手相遇”,根据题意P(A1)=0.5,P(A2)=0.25,P(A3)=0.25,记事件B=“小明获胜”,则有P(B|A1)=0.3,P(B|A2)=0.4,P(B|A3)=0.5,由全概率公式得,小明在比赛中获胜的概率为P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.5×0.3+0.25×0.4+0.25×0.5=0.375,所以小明获胜的概率为0.375.(2)小明获胜时,与小明比赛的棋手为一类棋手的概率为P(A1|B)=P(A1B)P(B)=P(A1)P(B|A1)P(B)=0.5×0.30.375=0.4.“化整为零”求多事件的全概率问题(1)如图,P(B)=错误!(A i)P(B|A i).(2)已知事件B的发生有各种可能的情形A i(i=1,2,…,n),事件B发生的可能性,就是各种可能情形A i发生的可能性与已知在A i发生的条件下事件B发生的可能性的乘积之和.(2023·南平高级中学期中)某学校为了迎接党的二十大召开,增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱中有5个选择题和3个填空题,乙箱中有4个选择题和3个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了2个题目,求第二题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了2个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.已知第三支部从乙箱中取出的这个题目是选择题,求第二支部从甲箱中取出的是2个选择题的概率.解(1)设事件A i表示“第i次从乙箱中取到填空题”,i=1,2,P(A1)=37,P(A2|A1)=26=13,P(A2|A-1)=36=12.由全概率公式得,第2次抽到填空题的概率为P (A 2)=P (A 1)P (A 2|A 1)+P (A -1)P (A 2|A -1)=37×26+47×36=37.(2)设事件A 为“第三支部从乙箱中取出1个选择题”,事件B 1为“第二支部从甲箱中取出2个题都是选择题”,事件B 2为“第二支部从甲箱中取出1个选择题1个填空题”,事件B 3为“第二支部从甲箱中取出2个题都是填空题”,则B 1,B 2,B 3彼此互斥,且B 1∪B 2∪B 3=Ω,P (B 1)=C 25C 28=514,P (B 2)=C 15C 13C 28=1528,P (B 3)=C 23C 28=328,P (A |B 1)=69,P (A |B 2)=59,P (A |B 3)=49,P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A |B 3)=514×69+1528×59+328×49=712.所求概率即是A 发生的条件下B 1发生的概率P (B 1|A )=P (B 1A )P (A )=P (B 1)P (A |B 1)P (A )=514×69712=2049.课时作业一、单项选择题1.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该生各项均合格的概率为(假设各项标准互不影响)()A.49B.190C.45D.59答案B解析该生各项均合格的概率为13×16×15=190.2.某机场某时降雨的概率为15,在降雨的情况下飞机准点的概率为110,则某时降雨且飞机准点的概率为()A.1 2B.1 4C.1 25D.1 50答案D解析记事件A=“飞机准点”,事件B=“某时降雨”.根据题意,P(B)=15,在降雨的情况下飞机准点的概率为P(A|B)=110,所以某时降雨且飞机准点的概率为P(AB)=P(B)P(A|B)=15×110=150.故选D.3.(2023·武汉三模)已知P(B)=0.4,P(B|A)=0.8,P(B|A-)=0.3,则P(A)=()A.3 4B.3 8C.1 3D.1 5答案D解析P(B)=P(AB∪A-B)=P(A)P(B|A)+P(A-)P(B|A-),即0.4=0.8P(A)+0.3[1-P(A)],解得P(A)=0.2=15.故选D.4.(2024·南京模拟)现有甲、乙、丙、丁四位同学到夫子庙、总统府、中山陵、南京博物馆4处景点旅游,每人只去一处景点,设事件A为“4个人去的景点各不相同”,事件B为“只有甲去了中山陵”,则P(A|B)=()A.3 128B.27 256C.1 128D.2 9答案D解析甲、乙、丙、丁四位同学到夫子庙、总统府、中山陵、南京博物馆4处景点旅游,共有44=256(种)不同的方案,事件A“4个人去的景点各不相同”的方案有A44=24(种),事件B“只有甲去了中山陵”的方案有33=27(种),事件AB同时发生的方案有A33=6(种),P(AB)=6256=3128,P(B)=27256,所以P(A|B)=P(AB)P(B)=6 27=29.故选D.5.(2023·昆明模拟)已知事件A,B,C满足A,B是互斥事件,且P(A∪B|C)=1 2,P(BC)=112,P(C)=14,则P(A|C)=()A.16B.112C.14D.13答案A解析由题意,得P(B|C)=P(BC)P(C)=13,由A,B是互斥事件知,P(A∪B|C)=P(A|C)+P(B|C),所以P(A|C)=P(A∪B|C)-P(B|C)=12-13=16.故选A.6.(2023·深圳模拟)在A,B,C三个地区爆发了流感,这三个地区分别有6%,5%,4%的人患了流感,假设这三个地区的人口数之比为5∶6∶9,现从这三个地区中任意选取一人,则此人是流感患者的概率为()A.0.032B.0.048C.0.05D.0.15答案B解析设事件D为“此人是流感患者”,事件A1,A2,A3分别表示此人来自A,B,C三个地区,由已知可得P(A1)=55+6+9=0.25,P(A2)=65+6+9=0.3,P(A3)=95+6+9=0.45,P (D |A 1)=0.06,P (D |A 2)=0.05,P (D |A 3)=0.04,由全概率公式,得P (D )=P (A 1)P (D |A 1)+P (A 2)P (D |A 2)+P (A 3)P (D |A 3)=0.25×0.06+0.3×0.05+0.45×0.04=0.048.故选B.7.(2023·锦州二模)如图,用K ,A 1,A 2三类不同的元件连接成一个系统,当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作,已知K ,A 1,A 2正常工作的概率依次是12,23,23,在系统正常工作的前提下,只有K 和A 1正常工作的概率是()A.49B.34C.14D.19答案C解析设事件A 为“系统正常工作”,事件B 为“只有K 和A 1正常工作”,因为并联元件A 1,A 2能正常工作的概率为1=89,所以P (A )=12×89=49,又因为P (AB )=P (B )=12×23×=19,所以P (B |A )=P (AB )P (A )=14.故选C.8.某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为()A.89B.7381C.881D.19答案C解析因为该射手每次射击击中目标的概率是23,所以每次射击未击中目标的概率为13,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“该射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A -4A -5)+P (A -1A 2A 3A 4A -5)+P (A -1A -2A 3A 4A 5)+13×13+=881.故选C.二、多项选择题9.有一道数学难题,学生甲解出的概率为12,学生乙解出的概率为13,学生丙解出的概率为14.若甲、乙、丙三人独立去解答此题,则()A .恰有一人解出的概率为1124B .没有人能解出的概率为124C .至多一人解出的概率为1724D .至少两人解出的概率为2324答案AC解析对于A ,恰有一人解出的概率为12××13×××14=1124,A 正确;对于B ,没有人能解出的概率为=14,B 错误;对于C ,由A ,B 知,至多一人解出的概率为1124+14=1724,C 正确;对于D ,至少两人解出与至多一人解出是对立事件,所以至少两人解出的概率为1-1724=724,D 错误.故选AC.10.(2024·镇江开学考试)一质地均匀的正四面体四个表面上分别标有数字1,2,3,4,抛掷该正四面体两次,记事件A 为“第二次向下的数字为奇数”,事件B为“两次向下的数字之积为偶数”,则下列说法正确的是()A.事件A与事件B是对立事件B.P(AB)=14C.P(A|B)=13D.事件A与事件B不相互独立答案BCD解析因为抛掷该正四面体两次的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种,其中事件A有(1,1),(1,3),(2,1),(2,3),(3,1),(3,3),(4,1),(4,3),共8种,事件B有(1,2),(1,4),(2,1),(2,2),(2,3),(2,4),(3,2),(3,4),(4,1),(4,2),(4,3),(4,4),共12种,事件AB有(2,1),(2,3),(4,1),(4,3),共4种,所以A与B可同时发生,则事件A与事件B不是对立事件,故A错误;P(AB)=416=14,故B正确;P(B)=12 16=34,则P(A|B)=P(AB)P(B)=1434=13,故C正确;因为P(A)=816=12,则P(AB)≠P(A)P(B),所以A,B不相互独立,故D正确.故选BCD.11.(2023·湖北直辖县级单位统考模拟)有3台车床加工同一型号的零件,第1台加工的次品率为5%,第2,3台加工的次品率均为3%,加工出来的零件混放在一起,第1,2,3台车床加工的零件数分别占总数的15%,25%,60%.随机取一个零件,记A=“零件为次品”,B i=“零件为第i台车床加工的”(i=1,2,3),下列结论正确的是()A.P(A)=0.03B.C.P(B1|A)=P(B2|A)D.P(B1|A)+P(B2|A)=P(B3|A)答案BC解析对于A ,因为P (A )=0.05×0.15+0.03×0.25+0.03×0.60=0.033,故A 错误;对于B ,(B i )=0.15+0.25+0.60=1,故B 正确;对于C ,因为P (B 1|A )=P (B 1)P (A |B 1)P (A )=0.15×0.050.033=522,P (B 2|A )=P (B 2)P (A |B 2)P (A )=0.25×0.030.033=522,所以P (B 1|A )=P (B 2|A ),故C 正确;对于D ,由C 项分析可得P (B 1|A )+P (B 2|A )=511,又因为P (B 3|A )=P (B 3)P (A |B 3)P (A )=0.60×0.030.033=611,故D 错误.故选BC.三、填空题12.(2023·合肥一模)接种流感疫苗能有效降低流行感冒的感染率,某学校25的学生接种了流感疫苗,已知在流感高发时期,未接种疫苗的感染率为14,而接种了疫苗的感染率为110.现有一名学生确诊了流感,则该名学生未接种疫苗的概率为________.答案1519解析设事件A =“感染流行感冒”,事件B =“未接种疫苗”,则P (A )=35×14+25×110=19100,P (AB )=35×14=320,故P (B |A )=P (AB )P (A )=1519.13.(2023·东莞三模)在孟德尔豌豆试验中,子二代的基因型为DD ,Dd ,dd ,其中D 为显性基因,d 为隐性基因,且这三种基因型的比为1∶2∶1,如果在子二代中任意选取两株豌豆进行杂交实验,那么子三代中基因型为dd 的概率是________.答案14解析由题意,子二代作杂交试验的基因配型有6种可能,分别设为A i (i =1,2,3,4,5,6),设事件B 为“子三代的基因型为dd ”,则事件A 1A 2A 3A 4A 5A 6配型DD ×DD DD ×Dd Dd ×Dd Dd ×dd DD ×dd dd ×dd P (A i )11614141418116P (B |A i )14121由全概率公式得P (B )=∑6i =1P (A i )P (B |A i )=14×14+14×12+116×1=14.14.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析甲队以4∶1获胜,甲队在第5场(主场)获胜,前4场中有一场输.若在主场输一场,则概率为2×0.6×0.4×0.5×0.5×0.6;若在客场输一场,则概率为2×0.6×0.6×0.5×0.5×0.6.∴甲队以4∶1获胜的概率P =2×0.6×0.5×0.5×0.6×(0.6+0.4)=0.18.四、解答题15.(2023·聊城期末)某学校在元宵节前夕举行“灯谜竞猜”活动,活动分一、二两关,分别竞猜5道、20道灯谜.现有甲、乙两位选手独立参加竞猜,在第一关中,甲、乙都猜对了4道,在第二关中,甲、乙分别猜对12道、15道.假设猜对每道灯谜都是等可能的.(1)从第一关的5道灯谜中任选2道,求甲都猜对的概率;(2)从第二关的20道灯谜中任选一道,求甲、乙两人恰有一个人猜对的概率.解(1)设事件A =“任选2道灯谜,甲都猜对”,用1,2,3,4,5表示第一关的5道灯谜,其中1,2,3,4表示甲猜对的4道,则样本空间为Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},A ={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},所以n (Ω)=10,n (A )=6,根据古典概型的计算公式,得P (A )=n (A )n (Ω)=35.(2)设事件B =“任选一道灯谜,甲猜对”,事件C =“任选一道灯谜,乙猜对”,事件D =“任选一道灯谜,甲、乙两人恰有一个人猜对”,根据题意可得,P (B )=1220,P (B -)=820,P (C )=1520,P (C -)=520.因为D =B -C ∪B C -,且B -C ,B C -互斥,又甲、乙两位选手独立参加竞猜,所以B ,C 相互独立,从而B -,C ,B ,C -也相互独立.所以P (D )=P (B -C ∪B C -)=P (B -C )+P (B C -)=P (B -)P (C )+P (B )P (C -)=820×1520+1220×520=920.即甲、乙两人恰有一个人猜对的概率为920.16.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响.(1)求甲、乙两球都落入盒子的概率;(2)求甲、乙两球至少有一个落入盒子的概率.解(1)因为两球是否落入盒子互不影响,所以甲、乙两球都落入盒子的概率为12×13=16.(2)=13,所以甲、乙两球至少有一个落入盒子的概率为1-13=23.17.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.解(1)记事件S:甲连胜四场,则P(S)=116.(2)记事件A为甲输,事件B为乙输,事件C为丙输,则四局内结束比赛的概率为P′=P(ABAB)+P(ACAC)+P(BCBC)+P(BABA)==14,所以需要进行第五场比赛的概率为P=1-P′=34.(3)记事件M为甲最终获胜,记事件N为丙最终获胜.则甲最终获胜的样本点包括BCBC,ABCBC,ACBCB,BABCC,BACBC,BCACB,BCABC,BCBAC,所以甲最终获胜的概率为P(M)+=932.由对称性可知,乙最终获胜的概率和甲最终获胜的概率相等,所以丙最终获胜的概率为P(N)=1-2×932=7 16.18.已知某电器市场由甲、乙、丙三家企业占有,其中甲厂产品的市场占有率为40%,乙厂产品的市场占有率为36%,丙厂产品的市场占有率为24%,甲、乙、丙三厂产品的合格率分别为45,23,34.(1)现从三家企业的产品中各取一件抽检,求这三件产品中恰有两件合格的概率;(2)现从市场中随机购买一台电器,求买到的是合格品的概率.解(1)记甲、乙、丙三家企业的一件产品,产品合格分别为事件B1,B2,B3,则三个事件相互独立,恰有两件产品合格为事件D,则D=B1B2B-3+B1B-2B3+B-1B2B3,P(D)=P(B1B2B-3)+P(B1B-2B3)+P(B-1B2B3)=45×23×14+45×13×34+15×23×34=1330.故从三家企业的产品中各取一件抽检,则这三件产品中恰有两件合格的概率是1330.(2)记事件B为购买的电器合格,记随机买一件产品,买到的产品为甲、乙、丙三个品牌分别为事件A1,A2,A3,P(A1)=25,P(A2)=925,P(A3)=625,P(B|A1)=45,P(B|A2)=23,P(B|A3)=34,P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=25×45+925×23+625×34=3750.故从市场中随机购买一台电器,买到的是合格品的概率为3750.19.(2023·南京、盐城一模)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型:有完全相同的甲、乙两个袋子,袋子里有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球,乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率;②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.解设试验一次,“取到甲袋”为事件A1,“取到乙袋”为事件A2,“试验结果为红球”为事件B1,“试验结果为白球”为事件B2.(1)P(B1)=P(A1)P(B1|A1)+P(A2)P(B1|A2)=12×910+12×210=1120.所以首次试验结束的概率为1120.(2)①因为B1,B2是对立事件,P(B2)=1-P(B1)=920所以P(A1|B2)=P(A1B2)P(B2)=P(B2|A1)P(A1)P(B2)=110×12920=19,所以选到的袋子为甲袋的概率为19.②由①,得P(A2|B2)=1-P(A1|B2)=1-19=8 9,所以方案一取到红球的概率为P1=P(A1|B2)P(B1|A1)+P(A2|B2)P(B1|A2)=19×910+89×210=518,方案二取到红球的概率为P2=P(A2|B2)P(B1|A1)+P(A1|B2)P(B1|A2)=89×9 10+1 9×210=3745,因为3745>518,所以方案二取到红球的概率更大.即选择方案二,第二次试验结束的概率更大.。

高二数学事件的独立性3

高二数学事件的独立性3

X
Y
Z
思考:若系统连接成下面的系统,则该系统正常工作的 概率为多少?
Y X
Z
例3:加工某一零件需要两道工序,若第一, 二道工序的不合格品率分别为3%和5%,假定 各道工序是互不影响的,问:加工出来的零 件是不合格品的概率是多少?
(五)讨论研究
概率 P(A B)
P(A B)
P(A B)
P(A B) P(A B A B)
一般地,若事件A,B满足P(A︱B)=P(A), 则称事件A,B独立。
1)当A,B独立时,B,A也是独立的,即A与 B独立是相互的。
2)当A,B独立时
P(A︱B)=P(A)
或 P(AB)=P(A)P(B)
或 A事件的发生不影响 事件B的发生概率
和壮扭公主组成了一个巨大的灌木丛明魂圣!这个巨大的灌木丛明魂圣,身长二百多米,体重七十多万吨。最奇的是这个怪物长着十分刺激的明魂!这巨圣有着橙白色 镜子造型的身躯和浅橙色细小积木一样的皮毛,头上是深黄色粉条形态的鬃毛,长着暗青色蒜头造型的冰块秋影额头,前半身是金橙色章鱼造型的怪鳞,后半身是显赫 的羽毛。这巨圣长着暗绿色蒜头一般的脑袋和深蓝色馅饼造型的脖子,有着春绿色菊花模样的脸和葱绿色钉子一般的眉毛,配着亮蓝色电闸形态的鼻子。有着鹅黄色鸟 网模样的眼睛,和天青色小旗造型的耳朵,一张鹅黄色烟囱造型的嘴唇,怪叫时露出海蓝色牛怪一般的牙齿,变态的金橙色柴刀一样的舌头很是恐怖,浅橙色面条一样 的下巴非常离奇。这巨圣有着活似蜘蛛一般的肩胛和美如长号形态的翅膀,这巨圣不大的暗橙色鸭蛋一样的胸脯闪着冷光,酷似豆包形态的屁股更让人猜想。这巨圣有 着如同小号造型的腿和墨蓝色 竹席一般的爪子……平常的深黄色柿子一样的五条尾巴极为怪异,湖青色熊胆一般的车灯圣祖肚子有种野蛮的霸气。暗橙色扫帚形态的 脚趾甲更为绝奇。这个巨圣喘息时有种亮蓝色蛋黄一样的气味,乱叫时会发出墨绿色教鞭模样的声音。这个巨圣头上暗黄色路灯形态的犄角真的十分罕见,脖子上极似 菱角形态的铃铛的确绝对的富贵科学。这时那伙校精组成的巨大牛毛号耳怪忽然怪吼一声!只见牛毛号耳怪耍动闪闪发光的肚子,整个身体一边旋转一边像巨大的怪物 一样膨胀起来……突然,整个怪物像巨大的暗黄色种子一样裂开……二条水蓝色榛子模样的恶毒巨根急速从里面伸出然后很快钻进泥土中……接着,一棵浅橙色钢球模 样的受伤巨大怪芽疯速膨胀起来……一簇簇葱绿色槟榔模样的残疾巨大枝叶疯速向外扩张……突然!一朵暗黄色凤凰模样的变质巨蕾恐怖地钻了出来……随着淡绿色瓷 瓶模样的僵死巨花狂速盛开,无数鹅黄色蘑菇模样的病态花瓣和葱绿色花蕊飞一样伸向远方……突然,无数葱绿色蛋壳模样的奇寒果实从巨花中窜出,接着飞一样射向 魔墙!只见每个巨大果实上都骑着一个牛毛号耳怪的小替身,而那伙校精的真身也混在其中……“哇!真有教条性!”壮扭公主道。“还多少带点权利性!咱们让他们 看看什么高层次!嘻嘻!”月光妹妹和壮扭公主一边说着一边念动咒语……只见巨大灌木丛明魂圣猛然间长啸一声!巨大果实的飞速顿时变得慢如蛆爬,只见刀片豺腿 圣耍动显赫的天蓝色的细小花豹模样的羽毛,整个身体快速变成一枚巨大的缤纷奇蛋,这枚奇蛋一边旋转一边射出万道奇光……突然,整个奇蛋像巨大的淡绿色花蕾一 样绽开……三十

高考数学总复习考点知识与题型专题讲解75 事件的相互独立性与条件概率 全概率公式

高考数学总复习考点知识与题型专题讲解75 事件的相互独立性与条件概率  全概率公式

高考数学总复习考点知识与题型专题讲解§10.5事件的相互独立性与条件概率、全概率公式考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.知识梳理1.相互独立事件(1)概念:对任意两个事件A与B,如果P(AB)=P(A)·P(B)成立,则称事件A与事件B相互独立,简称为独立.(2)性质:若事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=n(AB) n(A);②概率的乘法公式:P(AB)=P(A)P(B|A).3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑i =1nP (A i )P (B |A i ). 常用结论1.如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).2.贝叶斯公式:设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,P (B )>0,有P (A i |B )=P (A i )P (B |A i )P (B )=P (A i )P (B |A i )∑k =1n P (A k )P (B |A k ),i =1,2,…,n . 思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( √ )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( √ )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( √ ) 教材改编题1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为12,23,则谜题没被破解出的概率为( )A.16 B.13 C.56D.1答案 A解析设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,则P(A)=12,P(B)=23,故P(A)=12,P(B)=13,所以P(A B)=12×13=16,即谜题没被破解出的概率为1 6.2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是()A.128 B.110 C.19 D.27答案 D解析当第一次抽到次品后,还剩余2件次品,5件合格品,所以第二次抽到次品的概率为2 7.3.智能化的社区食堂悄然出现,某社区有智能食堂A,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A食堂,那么第二天去A食堂的概率为0.6;如果第一天去B食堂,那么第二天去A食堂的概率为0.5,则居民甲第二天去A食堂用餐的概率为________.答案0.55解析由题意得,居民甲第二天去A食堂用餐的概率P=0.5×0.6+0.5×0.5=0.55.题型一相互独立事件的概率例1(1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案 B解析事件甲发生的概率P(甲)=16,事件乙发生的概率P(乙)=16,事件丙发生的概率P(丙)=56×6=536,事件丁发生的概率P(丁)=66×6=16.事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件甲与事件丁同时发生的概率为16×6=136,P(甲丁)=P(甲)P(丁),故B正确;事件乙与事件丙同时发生的概率为16×6=136,P(乙丙)≠P(乙)P(丙),故C错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为________;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为________.答案0.50.1解析记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),则P(X=2)=P(A1A2)+P(AA2)=P(A1)P(A2)+P(A1)P(A2)1=0.5×0.4+0.5×0.6=0.5.由乙先发球,得P(X=4且甲获胜)=P(A1A2A3A4)+P(A1A2A3A4)=P(A1)P(A2)P(A3)P(A4)+P(A1)P(A2)P(A3)·P(A4)=0.4×0.5×0.4×0.5+0.6×0.5×0.4×0.5=0.1.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;(2)这三列火车恰好有一列火车正点到达的概率;(3)这三列火车至少有一列火车正点到达的概率.解用A,B,C分别表示这三列火车正点到达的事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A)=0.2,P(B)=0.3,P(C)=0.1.(1)由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为P1=P(A BC)+P(A B C)+P(AB C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)恰好有一列火车正点到达的概率为P2=P(A B C)+P(A B C)+P(A B C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)三列火车至少有一列火车正点到达的概率为P3=1-P(A B C)=1-P(A)P(B)P(C)=1-0.2×0.3×0.1=0.994.题型二条件概率例2(1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为()A.35B.25C.27D.15答案 D解析 设事件A 为“从七巧板中取出两块,取出的是三角形”,事件B 为“两块板恰好是全等三角形”,则P (AB )=2C 27=221,P (A )=C 25C 27=1021, 所以P (B |A )=P (AB )P (A )=2211021=15. (2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为( ) A.78 B.56 C.34 D.2021答案 A解析 记事件A :这人一次性饮酒4.8两未诱发这种疾病,事件B :这人一次性饮酒7.2两未诱发这种疾病,则事件B |A :这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病, 则B ⊆A ,AB =A ∩B =B ,P (A )=1-0.04=0.96,P (B )=1-0.16=0.84,故P (B |A )=P (AB )P (A )=P (B )P (A )=0.840.96=78. 思维升华 求条件概率的常用方法(1)定义法:P(B|A)=P(AB) P(A).(2)样本点法:P(B|A)=n(AB) n(A).(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2(1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为()A.14 B.25 C.12 D.35答案 C解析设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,所以P(A)=35,P(AB)=310,则P(B|A)=P(AB)P(A)=31035=12.(2)某射击运动员每次击中目标的概率为45,现连续射击两次.①已知第一次击中,则第二次击中的概率是________;②在仅击中一次的条件下,第二次击中的概率是________.答案①45②12解析①设第一次击中为事件A,第二次击中为事件B,则P(A)=4 5,由题意知,第一次击中与否对第二次没有影响,因此已知第一次击中,则第二次击中的概率是4 5.②设仅击中一次为事件C,则仅击中一次的概率为P(C)=C12×45×15=825,在仅击中一次的条件下,第二次击中的概率是P(B|C)=15×45825=12.题型三全概率公式的应用例3(1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为()A.79160 B.35 C.2132 D.58答案 C解析设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率P(A)=P(B)P(A|B)+P(B)P(A|B)=58×0.9+38×0.25=21 32.(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为()A.0.48 B.0.49 C.0.52 D.0.51答案 D解析设事件A=“发送的信号为0”,事件B=“接收的信号为1”,则P(A)=P(A)=0.5,P(B|A)=0.07,P(B|A)=0.95,因此P(B)=P(A)P(B|A)+P(A)P(B|A)=0.5×(0.07+0.95)=0.51.思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3(1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78 B.0.8 C.0.82 D.0.84答案 C解析设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=________,P(B)=________.答案1 2 9 28解析 P (B |A 2)=24=12,由题知P (A 1)=37,P (A 2)=27,P (A 3)=27,则P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)=37×14+27×24+27×14=928.课时精练1.若P (AB )=19,P (A )=23,P (B )=13,则事件A 与B 的关系是( ) A .事件A 与B 互斥 B .事件A 与B 对立 C .事件A 与B 相互独立D .事件A 与B 既互斥又相互独立 答案 C解析 ∵P (A )=1-P (A )=1-23=13, ∴P (A )P (B )=19, ∴P (AB )=P (A )P (B )≠0,∴事件A 与B 相互独立,事件A 与B 不互斥也不对立.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是()A.0.819 2 B.0.972 8C.0.974 4 D.0.998 4答案 B解析4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为()A.0.8 B.0.625 C.0.5 D.0.1答案 A解析设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,则在发生中度雾霾的情况下,刮四级以上大风的概率为P(B|A)=P(AB)P(A)=0.20.25=0.8.4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为()A.0.36 B.0.352C.0.288 D.0.648答案 D解析由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为C12×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为()A.0.625 B.0.75 C.0.5 D.0.25答案 A解析记事件A为“该考生答对题目”,事件B1为“该考生知道正确答案”,事件B2为“该考生不知道正确答案”,则P(A)=P(A|B1)·P(B1)+P(A|B2)·P(B2)=1×0.5+0.25×0.5=0.625.6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”;B表示事件“医生乙派往①村庄”;C表示事件“医生乙派往②村庄”,则()A.事件A与B相互独立B.事件A与C相互独立C.P(B|A)=5 12D.P(C|A)=5 12答案 D解析将甲、乙、丙、丁4名医生派往①,②,③三个村庄进行义诊包含C24A33=36(个)样本点,它们等可能,事件A含有的样本点个数为A33+C23A22=12,则P (A )=1236=13, 同理P (B )=P (C )=13,事件AB 含有的样本点个数为A 22=2,则P (AB )=236=118, 事件AC 含有的样本点个数为C 22+C 12C 12=5,则P (AC )=536, 对于A ,P (A )P (B )=19≠P (AB ),即事件A 与B 不相互独立,故A 不正确;对于B ,P (A )P (C )=19≠P (AC ),即事件A 与C 不相互独立,故B 不正确; 对于C ,P (B |A )=P (AB )P (A )=16,故C 不正确; 对于D ,P (C |A )=P (AC )P (A )=512,故D 正确. 7.(2022·石家庄模拟)某电视台举办知识竞答闯关比赛,每位选手闯关时需要回答三个问题.第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得0分;第三个问题回答正确得30分,回答错误得-20分.规定,每位选手回答这三个问题的总得分不低于30分就算闯关成功.若某位选手回答前两个问题正确的概率都是23,回答第三个问题正确的概率是12,且各题回答正确与否相互之间没有影响,则该选手仅回答正确两个问题的概率是 ________;该选手闯关成功的概率是 ________. 答案 4912解析 该选手仅回答正确两个问题的概率是P 1=23×23×⎝ ⎛⎭⎪⎫1-12+23×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-23×23×12=49,该选手要闯关成功,则只有第3个问题回答正确或者第1,3两个问题回答正确或者第2,3两个问题回答正确或者三个问题都回答正确,所以闯关成功的概率为⎝ ⎛⎭⎪⎫1-232×12+23×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-23×23×12+23×23×12=12. 8.某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________. 答案 16解析 设事件A 为“周二晚上值班”,事件B 为“周三晚上值班”,则P (A )=C 16C 27=27,P (AB )=1C 27=121,故P (B |A )=P (AB )P (A )=16. 9.(2022·襄阳模拟)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率. 解 (1)该款芯片生产在进入第四道工序前的次品率P =1-⎝ ⎛⎭⎪⎫1-110×⎝ ⎛⎭⎪⎫1-19×⎝ ⎛⎭⎪⎫1-18=310.(2)设“该款智能自动检测合格”为事件A ,“人工抽检合格”为事件B , 则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )=P (AB )P (A )=710910=79.10.(2023·佛山模拟)男子冰球比赛上演的是速度与激情的碰撞.2022北京冬奥会男子冰球主要比赛场馆是位于北京奥林匹克公园的“冰之帆”国家体育馆.本届冬奥会男子冰球有12支队伍进入正赛,中国首次组队参赛.比赛规则:12支男子冰球参赛队先按照往届冬奥会赛制分成三个小组(每组4个队).正赛分小组赛阶段与决赛阶段: 小组赛阶段各组采用单循环赛制(小组内任意两队需且仅需比赛一次);决赛阶段均采用淘汰制(每场比赛胜者才晋级),先将12支球队按照小组比赛成绩进行排名,排名前四的球队晋级四分之一决赛(且不在四分之一决赛中相遇),其余8支球队按规则进行附加赛(每队比赛一次,胜者晋级),争夺另外4个四分之一决赛席位,随后依次是四分之一决赛、半决赛、铜牌赛、金牌赛.(1)本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排多少场比赛? (2)某机构根据赛前技术统计,率先晋级四分之一决赛的四支球队(甲、乙、丙、丁队)实力相当,假设他们在接下来的四分之一决赛、半决赛、铜牌赛、金牌赛中取胜的概率都依次为34,12,12,12,且每支球队晋级后每场比赛相互独立.试求甲、乙、丙、丁队都没获得冠军的概率.解(1)根据赛制,小组赛共安排3×C24=18(场)比赛,附加赛共安排8÷2=4(场)比赛,四分之一决赛共安排8÷2=4(场)比赛,半决赛共安排4÷2=2(场)比赛,铜牌赛、金牌赛各比赛一场,共2场,故本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排18+4+4+2+2=30(场)比赛.(2)设甲、乙、丙、丁队获得冠军分别为事件A,B,C,D,都没有获得冠军为事件E,∵晋级后每场比赛相互独立,∴P(A)=34×12×12=316,∵四队实力相当,∴P(B)=P(C)=P(D)=P(A)=3 16,∵事件A,B,C,D互斥,∴甲、乙、丙、丁队都没获得冠军的概率为P(E)=1-P(A∪B∪C∪D)=1-[P(A)+P(B)+P(C)+P(D)]=1-4×316=14.故甲、乙、丙、丁队都没获得冠军的概率为1 4.11.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如图所示,其中编号为i的方框表示第i场比赛,方框中是进行该场比赛的两名棋手,第i场比赛的胜者称为“胜者i”,负者称为“负者i ”,第6场为决赛,获胜的人是冠军.已知甲每场比赛获胜的概率均为23,而乙、丙、丁之间相互比赛,每人胜负的可能性相同.则甲获得冠军的概率为( )A.827B.1627C.3281D.4081 答案 D解析 甲获得冠军,则甲参加的比赛结果有三种情况:1胜3胜6胜;1负4胜5胜6胜;1胜3负5胜6胜,故甲获得冠军的概率为⎝ ⎛⎭⎪⎫233+2×⎝ ⎛⎭⎪⎫233×13=4081.12.(多选)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是( ) A .P (B )=25 B .P (B |A 1)=511C .事件B 与事件A 1相互独立D .A 1,A 2,A 3是两两互斥的事件 答案 BD解析 由题意知,A 1,A 2,A 3是两两互斥的事件,故D 正确;P (A 1)=510=12,P (A 2)=210=15,P(A3)=310,P(B|A1)=12×51112=511,由此知,B正确;P(B|A2)=411,P(B|A3)=411;而P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=12×511+15×411+310×411=922,由此知A,C不正确.13.(2022·全国乙卷)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大答案 D解析设该棋手在第二盘与甲比赛连胜两盘的概率为P甲,在第二盘与乙比赛连胜两盘的概率为P乙,在第二盘与丙比赛连胜两盘的概率为P丙,方法一由题意可知,P甲=2p1[p2(1-p3)+p3(1-p2)]=2p1p2+2p1p3-4p1p2p3,P乙=2p2[p1(1-p3)+p3(1-p1)]=2p1p2+2p2p3-4p1p2p3,P丙=2p3[p1(1-p2)+p2(1-p1)]=2p1p3+2p2p3-4p1p2p3.所以P丙-P甲=2p2(p3-p1)>0,P丙-P乙=2p1(p3-p2)>0,所以P丙最大.方法二(特殊值法)不妨设p1=0.4,p2=0.5,p3=0.6,则该棋手在第二盘与甲比赛连胜两盘的概率P甲=2p1[p2(1-p3)+p3(1-p2)]=0.4;在第二盘与乙比赛连胜两盘的概率P乙=2p2[p1(1-p3)+p3(1-p1)]=0.52;在第二盘与丙比赛连胜两盘的概率P丙=2p3[p1(1-p2)+p2(1-p1)]=0.6.所以P丙最大.14.(2023·舟山模拟)根据以往的临床记录,某种诊断癌症的试验有如下的效果:若以A 表示事件“试验反应为阳性”,以C表示事件“被诊断者患有癌症”,则有P(A|C)=0.95,P(A|C)=0.95,现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即P(C)=0.005,则P(C|A)=________.(精确到0.001)答案0.087解析∵P(A|C)=0.95,∴P(A|C)=1-P(A|C)=0.05,∵P(C)=0.005,∴P(C)=0.995,由全概率公式可得,P(A)=P(A|C)P(C)+P(A|C)P(C),∵P(AC)=P(C|A)P(A)=P(A|C)P(C),∴P(C|A)=P(A|C)P(C)P(A|C)P(C)+P(A|C)P(C)=0.95×0.0050.95×0.005+0.05×0.995=19218≈0.087.21 / 21。

高二数学培优特训:条件概率贝叶斯

高二数学培优特训:条件概率贝叶斯

培优特训:事件的相互独立性、条件概率、全概率及贝叶斯公式知识锦囊1.事件的相互独立性(1)定义:设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.(2)性质:①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ),P (AB )=P (A )P (B ).②如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也相互独立.互斥事件强调两事件不可能同时发生,即P (AB )=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响.2.条件概率前者是在A 发生的条件下B 发生的概率,后者是在B 发生的条件下A 发生的概率.3.条件概率的三种求法定义法先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A )求P (B |A )基本事件法借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A )缩样法缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简4.全概率公式一般地,设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,B Ω=B (A 1+A 2+…+A n )=BA 1+BA 2+…+BA n ,有P (B )=()()1∣niii P A P BA =∑,此公式为全概率公式.(1)计算条件概率除了应用公式P (B |A )=P (AB )P (A )外,还可以利用缩减公式法,即P (B |A )=n (AB )n (A ),其中n (A )为事件A 包含的样本点数,n (AB )为事件AB 包含的样本点数.(2)全概率公式为概率论中的重要公式,它将对一个复杂事件A 的概率的求解问题,转化为了在不同情况下发生的简单事件的概率的求和问题.5.贝叶斯公式一般地,设12,,,n A A A 是一组两两互斥的事件,有12n A A A ⋃⋃⋯⋃=Ω且()0,1,2,,i P A i n >=⋯,则对任意的事件()0B P B ⊆Ω>有()()()()()()()1,1,2,,()i i i i i niii P A P B A P A P B A P B A i nP B P A P BA ====⋯∑∣∣∣∣考点一、独立事件的判断考点二、独立事件的乘法公式正常工作的概率为.党的二十大精神知识竞答活动.已知甲同学答对的概率是12,考点三、条件概率的计算1.已知事件A ,B ,C 满足A ,B 是互斥事件,且()()12P A B C ⋃=,()112P BC =,()14P C =,则()P A C 的值等于()A .16B .112C .14D .132.已知A ,B 为互斥事件,事件C 满足:1()12P BC =,1()6P A C =,1(())2P A B C ⋃=,则()P C =()A .13B .14C .16D .1123.算盘是我国一类重要的计算工具.下图是一把算盘的初始状态,自右向左前四位分别表示个位、十位、百位、千位,上面一粒珠子(简称上珠)代表5,下面一粒珠子(简称下珠)代表1,即五粒下珠的代表数值等于同组一粒上珠的代表数值,例如,个位拨动一粒上珠至梁上,十位未拨动,百位拨动一粒下珠至梁上,表示数字105.现将算盘的千位拨动一粒珠子至梁上,个位、十位、百位至多拨动一粒珠子至梁上,其它位置珠子不拨动.设事件A =“表示的四位数为偶数”,事件B =“表示的四位数大于5050”,则()P B A =()A .13B .512C .23D .564.(多选)为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A 为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是()A .()35P A =B .()310P AB =C .()12P B A =D .()12P B A =5.(多选)甲、乙、丙、丁四名教师分配到A ,B ,C 三个学校支教,每人分配到一个学校且每个学校至少分配一人.设事件M :“甲分配到A 学校”;事件N :“乙分配到B 学校”,则()A .事件M 与N 互斥B .()13P M =C .事件M 与N 相互独立D .()512P M N =6.(多选)记A ,B 为随机事件,下列说法正确的是()A .若事件A ,B 互斥,()12P A =,()13P B =,()56P A B = B .若事件A ,B 相互独立,()12P A =,()13P B =,则()23P A B ⋃=C .若()12P A =,()34P A B =,()38P A B =,则()13P B =D .若()12P A =,()34P A B =,()38P A B =,则()14P B A =7.(多选)设A ,B 是一个随机试验中的两个事件,且()13P A =,()34P B =,()12P A B +=,则()A .()16P AB =B .()34P B A =C .()()P B P B A =D .()712P AB AB +=考点四、全概率公式及应用1.某餐馆在A网站有200条评价,好评率为个网站的信息,这家餐馆的好评率为(A.88%B.88.5%2.有5张奖券,其中3张可以中奖,现有考点五、贝叶斯概率公式及应用。

条件概率和事件的相互独立

条件概率和事件的相互独立
(3)法1 P( B | A) P( AB) 10 1 . 3 2法2 P( A) 5
n( AB) 6 7 1 P( B | A) n( A) 12 2
想一想
你能归纳出求解条件概率的一般步骤吗?
求解条件概率的一般步骤: (1)用字母表示有关事件
(2)求P(AB),P(A)或n(AB),n(A)
P ( AB) n( AB) ( 3 )利用条件概率公式求 P B A P ( A) n( A)
8
1. 掷两颗均匀骰子,问: ⑴ “ 第一颗掷出6点”的概率是多少? ⑵ “掷出点数之和不小于10”的概率又是多少? ⑶ “已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?
11 12 13 14 15 16 33 34 35 36 43 44 45 46 53 54 55 56 63 64 65 66
一般地,设A,B为两个事件,且 P ( A) 0 ,称
P ( AB ) 为事件A发生的条件下,事件B P B A P ( A) 发生的条件概率.
P(B|A)读作A发生的条件下B发生的概率,
n( AB) P B A n( A) P ( AB) P ( A)
B
A∩B
A
P(B|A)相当于把A当做新的样本空间来计算AB发生的概率。
1 P( A B C ) 1 0.5 0.55 0.6 0.835
0.8 P ( D)
所以,合三个臭皮匠之力把握就大过诸葛亮.
23
练习 1:
一个元件能正常工作的概率r称为该元件的可靠性。 由多个元件组成的系统能正常工作的概率称为系统的可 靠性。今设所用元件的可靠性都为r(0<r<1),且各元件能 否正常工作是互相独立的。试求各系统的可靠性。

知识讲解 条件概率 事件的相互独立性(理)(基础)

知识讲解 条件概率 事件的相互独立性(理)(基础)

条件概率事件的相互独立性【学习目标】1.了解条件概率的概念和概率的乘法公式.2.能运用条件概率解决一些简单的实际问题.3.了解两个事件相互独立的概念,会判断两个事件是否为相互独立事件.4.能运用相互独立事件的概率解决一些简单的实际问题.【要点梳理】要点一、条件概率的概念1.定义设A、B为两个事件,且()0P A>,在已知事件A发生的条件下,事件B发生的概率叫做条件概率。

用符号(|)P B A表示。

(|)P B A读作:A发生的条件下B发生的概率。

要点诠释在条件概率的定义中,事件A在“事件B已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率.2.P(A|B)、P(AB)、P(B)的区别P(A|B)是在事件B发生的条件下,事件A发生的概率。

P(AB)是事件A与事件B同时发生的概率,无附加条件。

P(B)是事件B发生的概率,无附加条件.它们的联系是:() (|)()P ABP A BP B=.要点诠释一般说来,对于概率P(A|B)与概率P(A),它们都以基本事件空间Ω为总样本,但它们取概率的前提是不相同的。

概率P(A)是指在整个基本事件空间Ω的条件下事件A发生的可能性大小,而条件概率P(A|B)是指在事件B发生的条件下,事件A发生的可能性大小。

例如,盒中球的个数如下表。

从中任取一球,记A=“取得篮球”,B=“取得玻璃球”。

基本事件空间Ω包含的样本点总数为16,事件A包含的样本点总数为11,故11 ()P A=。

如果已知取得玻璃球的条件下取得篮球的概率就是事件B发生的条件下事件A发生的条件概率,那么在事件B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,即把样本空间压缩到玻璃球全体。

而在事件B 发生的条件下事件A 包含的样本点数为蓝玻璃球数,故42(|)63P A B ==。

第6节 事件的相互独立性、条件概率与全概率公式

第6节 事件的相互独立性、条件概率与全概率公式
1
P(B|A)+P(C|A)
1-P(B|A)
2.全概率公式一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=P(Ai)P(B|Ai).我们称上面的公式为全概率公式,全概率公式是概率论中最基本的公式之一.拓展 贝叶斯公式设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意事件B⊆Ω,P(B)>0,有P(Ai|B)==,其中i=1,2,…,n.在贝叶斯公式中,P(Ai)和P(Ai|B)分别称为 概率和 概率.
考点一 相互独立事件的概率
【例 1】11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.

2. (教材改编)天气预报预测,在元旦假期期间甲地的降雨概率是0.2,乙地的降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为( ). A.0.2 B.0.3 C.0.38 D.0.56
C
5.(2022年全国乙卷)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则( ).A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概念生成
一般地,设A,B为两个事件,
P (A B ) 且P(A)>0,称 P (B | A ) = P (A ) 为在事件A发生的条件下,事件B发生 的条件概率,那么P(B|A)与P(A|B)相 等吗?
一般不相等
概念生成
条件概率也是概率,那么P(B|A)的取值 范围是什么?
0≤P(B|A)≤1
对于三个事件A,B,C,若B与C互斥, 则AB与AC也互斥,由此可P[A(B∪C)]与 P(AB)和P(AC)的关系如何?
P[A(B∪C)]=P[(AB)∪(AC)] =P(AB)+P(AC)
概念生成
结合条件概率的定义,如何推导 P[(B∪C)|A]与P(B|A),P(C|A)的关系?
P[(B∪C)|A]=P(B|A)+P(C|A)
概念生成
根据条件概率的定义,条件概率的 计算公式可作哪些简单变形? P(AB)=P(B|A)· P(A)
问题探究
1、先后两次抛掷一枚质地均匀的骰子, 设事件A为“第一次抛掷得到点数是 1”,事件B为“第二次抛掷得到点数 是2”,那么事件A的发生对事件B发生 的概率是否有影响?事件A、B发生的 概率分别是多少?
1 没有影响,都为 . 6
问题探究
2、某三张奖券中只有一张能中奖, 现分别由三名同学有放回地各随机抽取 1张,设事件A为“第一个同学没有抽到 中奖奖券”,事件B为“第三个同学抽 到中奖奖券”,那么事件A的发生对事 件B发生的概率是否有影响?事件A、B 发生的概率分别是多少? 2 1 没有影响, (A ) = , P (B ) = P
课堂小结
2.公式P(AB)=P(A)P(B)可以理解 为:相互独立事件同时发生的概率, 等于它们的概率之积.如果事件A与B不 相互独立,那么事件A与B同时发生的 概率应利用条件概率求解.
课堂小结
3.两个事件互斥与两个事件相互独 立是完全不同的两个概念,若事件A与B 互斥,则P(A∪B)=P(A)+P(B),这是 和事件的加法公式;若事件A与B相互独 立,则P(AB)=P(A)P(B),这是积事件 的乘法公式.
例2 一张储蓄卡的密码共有6位数字,每 位数字都可从0~9中任选一个.某人在银行 自动提款机上取钱时,忘记了密码的最后一 位数字,求: (1)任意按最后一位数字,不超过2次就按 对的概率; (2)如果他记得密码的最后一位是偶数, 不超过2次就按对的概率.
1 5
2 5
课堂小结
1.求条件概率有两种方法,即
布置作业
P54练习:1,2,3. P55练习:1,2,3,4.
P (A B ) n (A B ) P (B | A ) = 或 P (B | A ) = P (A ) n (A )
解题时要适当选取.
2.条件概率的定义反映了P(B|A), P(AB)和P(A)三者之间的关系,若已知 其中两个概率,则可求得另一个概率, 这是条件概率公式的变式应用.
课堂小结
3.互斥事件的并事件的条件概率性 质,类似于互斥事件的概率加法公式, 并可以推广到多个互斥事件的并事件的 条则事件A 与 B ,A 与B, 与 B 相互独立吗?为什么? A
相互独立
问题探究
若事件A1,A2,„,An两两之间相 互独立,则P(A1A2„An)等于什么?如何 证明? P(A1A2„An)=P(A1)P(A2)„P(An)
典例讲评
例1 某商场推出二次开奖活动,凡购 买一定价值的商品可以获得一张奖券, 每张奖券可以分别参加两次抽奖方式相 同的兑奖活动,如果两次兑奖活动的中 奖概率都是0.05,求两次抽奖中下列事 件的概率. (1)两次都中奖; 0.0025 (2)恰有一次中奖; 0.095 (3)至少有一次中奖.0.0975
3
3
问题探究
一般地,对于事件A,B,如果事 件A的发生不影响事件B发生的概率, 那么P(B|A)与P(B)有什么关系?根据 条件概率计算公式可得什么结论? P(B|A)=P(B),P(AB)=P(A) P(B).
问题探究
设A,B为两个事件,如果P(AB) =P(A)P(B),则称事件A与事件B相互 独立.你能列举一个相互独立事件的实 例吗?
1 P(B|A)= 2
1 P(B)= 3
问题探究
在事件A发生的条件下事件B发生, 等价于事件A和B同时发生,即交事件 AB发生.记n(A)和n(AB)分别表示事件A 和事件AB所包含的基本事件个数,那 么P(B|A)与n(A),n(AB)有什么关系?
n (A B ) P (B | A ) = n (A )
问题探究
如果事件A与事件B相互独立,那么 P(AB)=P(A)P(B)一定成立吗?
事件A与B相互独立P(AB)=P(A)P(B) 若A为必然事件或不可能事件,则 对任意事件B,事件A与事件B相互独立 吗? 相互独立
问题探究
事件A与事件B相互独立与P(B|A) =P(B)等价吗? 不等价,因为当P(A)=0时,P(B|A) 没有意义.
典例讲评
例2 先后抛掷一枚硬币若干次,记 “既有正面朝上又有反面朝上”为事件A, “至多有一次正面朝上”为事件B,在下 列情形下,试推断事件A与B是否相互独 立? (1)先后抛掷一枚硬币2次; 不相互独立 (2)先后抛掷一枚硬币3次.相互独立
课堂小结
1.事件A与B相互独立可直观理解为: 事件A的发生对事件B发生的概率没有影 响,同时事件B的发生对事件A发生的概 率也没有影响.在实际应用中,如果事件 A与B是在相同条件下进行的随机试验, 则事件A与B相互独立.
2.2
2.2.2
二项分布及其应用
事件的相互独立性
复习回顾
1.条件概率P(B|A)的含义与计算公 式分别是什么? 含义:在事件A发生的条件下,事件B 发生的条件概率;
P (A B ) n (A B ) = 公式:P (B | A ) = . P (A ) n (A )
复习回顾
2.若事件B与C互斥,则P[(B∪C)|A] 等于什么? P[(B∪C)|A]=P(B|A)+P(C|A)
P (A B ) P (A ) = P (B | A )
理论迁移
例1 在5道题中有3道理科题和2道文科题, 如果不放回地依次抽取2道题,求: (1)第一次抽到理科题的概率; (2)第一次和第二次都抽到理科题的概率; (3)在第一次抽到理科题的条件下,第二 次抽到理科题的概率.
3 5
3 10
1 2
理论迁移
2.2.1条件概率
问题探究
1、三张奖券中只有一张能中奖,现 分别由三名同学无放回地抽取,问最 后一名同学抽到中奖奖券的概率是否 比其它同学小?
2、如果已经知道第一名同学没有抽 到中奖奖券,那么最后一名同学抽到 中奖奖券的概率又是多少?
问题探究
记“第一个同学没有抽到中奖奖券” 为事件A,“第三个同学抽到中奖奖券” 为事件B,用P(B|A)表示当事件A发生时, 事件B发生的概率,那么P(B|A),P(B)分 别等于多少?
相关文档
最新文档