七年级下数学期中试卷12
北师大版七年级下册数学《期中考试试题》及答案
所以DE∥BC()
所以∠B+∠BDE=180°()
因为∠DEF=∠B(已知)
所以∠DEF+∠BDE=180°()
所以___∥___()
所以∠1=∠2().
23.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,
A. y=8.2xB. y=100-8.2xC. y=8.2x-100D. y=100+8.2x
8.如图,由∠1=∠2,则可得出()
A.AB∥CDB.AD∥BCC.A D∥BC且AB∥CDD.∠3=∠4
9.已知一个长方形的长为a,宽为b,它的面积为6,周长为10,则a2+b2的值为( )
A 37B. 30C. 25D. 13
10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()
A B. C. D.
11.如图,AD是△ABC的中线,△ABC的面积为10cm2,则△ABD的面积是()cm2.
A.5B.6C.7D.8
12.如图①,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图像如图②所示,则当x=9时,点R应运动到( )
[详解]解:∵骆驼的体此题考查常量和变量问题,函数的定义:设x和y是两个变量,若对于每个值x的每个值,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,x是自变量.
3.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()
6.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()
浙教版数学七年级下学期《期中考试试卷》含答案解析
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题
1.下列方程中,属于二元一次方程的是()
A.2x=yB.2x﹣3y=zC.2x2﹣x=5D.3﹣a= +1
2.用科学记数方法表示 ,得()
A. B. C. D.
故答案为:12.
[点睛]本题考查二元一次方程组的应用,巧设未知数,根据矩形的对边相等列出方程组是解题的关键.
三、解答题
17.(1)计算:
(2)化简:
[答案](1)3;(2) ;
[解析]
[分析]
(1)根据零指数幂、负整数指数幂的运算法则计算;
(_______④_______)
∴___________⑤_______(______⑥_______)
22.如图,将一张长方形纸板按图中虚线裁剪成 块,其中有 块是边长都为 厘米的大正方形, 块是边长都为 厘米的小正方形, 块是长为 厘米,宽为 厘米的一模一样的小长方形,且 ,设图中所有裁剪线(虚线部分)长之和为 厘米.
故yx=( )-2=9.
故答案为9.
[点睛]此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
14.如图,将一条对边互相平行的纸带进行折叠,折痕为 ,若 时,则 _________度.
[答案]
[解析]
[分析]
利用平行线的性质以及翻折不变性即可解决问题.
[详解]由翻折可知:∠DMN=∠NMD′= (180°-42°)=69°,
3.如图,在平移三角尺画平行线的过程中,理由是( )
A.两直线平行,同位角相等
B.两直线平行,内错角相等
北师大版七年级下册数学期中试卷(含答案)
2021-2022学年七年级(下)期中数学试卷一、选择题(本大题共12小题,共36分)1.下列计算正确的是()A. 2x2⋅3x3=6x6B. 2x2+3x3=5x5C. (−2x3)2=4x6D. 6x6÷3x2=2x32.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.假设一种可入肺的颗粒物的直径约为0.0000018米(即1.8微米),用科学记数法表示该颗粒物的直径为()A. 18×10−5米B. 1.8×10−6米C. 1.8×10−5米D. 0.18×10−5米3.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A. 太阳光强弱B. 水的温度C. 所晒时间D. 热水器4.如图,能够判断DE//BC的条件是()A. ∠1=∠2B. ∠4=∠CC. ∠1+∠3=180°D. ∠3+∠C=180°5.下列各式中,不能用平方差公式计算的是()A. (−x−y)(x−y)B. (−x+y)(−x−y)C. (x+y)(−x+y)D. (x−y)(−x+y)6.已知(m+n)2=36,(m−n)2=16,求mn的值()A. 7B. 6C. 5D. 47.滕州某布店新进了一批花布,卖出的数量x(米)与售价y(元)的关系如表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…那么y与x的关系式是()A. y=8x+0.3B. y=(8+0.3)xC. y=8+0.3xD. y=8+0.3+x8.如图,直线a//b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A. 45°B. 55°C. 35°D. 65°9.如图,AB//CD,∠1=∠2,∠3=130°,则∠2等于()A. 30°B. 25°C. 35°D. 40°10.下列说法中正确的是()A. 互为补角的两个角不相等B. 两个相等的角一定是对顶角C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D. 一个锐角的补角比这个角的余角大90°11.任意给定一个非零数,按下列程序计算,最后输出的结果是()A. mB. m2C. m+1D. m−112.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()第2页,共16页A. B.C. D.二、填空题(本大题共6小题,共24分)13.已知2m=a,4n=b,m,n为正整数,则23m+4n=________.14.如图,AD//BC,∠D=100°,CA平分∠BCD,则∠DAC=______度.15.如果(x−1)(3x+m)的积中不含x的一次项,则常数m的值为______.16.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=66°,则∠AED′的度数为______.17.定义一种新运算:a※b=a(a−b),例如5※3=5×(5−3)=10.根据定义给出以下运算结果:①2x※x=2x2;②(3−5x)※(6−5x)=15x−9;③(a※b)−(b※a)=b2−a2;④若a=b,则(a※b)※b=0.其中正确的是______(填写所有正确结果的序号).18.在平面内,若两条直线的最多交点数记为a1,三条直线的最多交点数记为a2,四条直线的最多交点数记为a3,…,依此类推,则1a1+1a2+1a3+⋯+1a10=______.三、解答题(本大题共7小题,共60分)19.计算:)−2;(1)(−1)2020+(−2)3+(π−1)0+(−14(2)(x−y)(x+2y)−(−x+y)2.20.先化解再求值:(3a−b)2+(a+2−b)(a+2+b)−(a+2)2,其中a=1,b=−3.321.如图,AB//CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,∠B=62°.求∠E的度数.请你在横线上补充其推理过程或理由.解:因为AB//CD(已知)所以∠1=∠CFE(理由:______)因为AE平分∠BAD(已知)所以______=∠2(角平分线的定义)又因为______=∠E(已知)所以∠2=∠E(等量代换)所以______.(内错角相等,两直线平行)所以∠B+______=180°(理由:______)因为∠B=62°(已知)∠BAD=______.所以∠2=12所以______.22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(结果不用化简):①方法1:______;方法2:______.②请你写出代数式:(m+n)2,(m−n)2,mn之间的等量关系;(2)根据(1)题中的等量关系,解决问题:若a−b=5,ab=−6,求(a+b)2;(3)实际上有许多代数恒等式可以用图形的面积来表示.如图③,写出它表示的代数恒等式.第4页,共16页23.已知:∠DAC+∠ACB=180°,∠1=∠2,∠3=∠4,∠ACF=24°,∠DAC=4∠5.(1)求证:CE平分BCF;(2)求∠5的大小.24.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园.如图是他们离家路程s(km)与小明离家时间t(ℎ)的关系图,请根据图回答下列问题:(1)图中自变量是______,因变量是______;(2)小明家到滨海公园的路程为______km,小明在中心书城逗留的时间为______ℎ;(3)小明出发______小时后爸爸驾车出发;(4)图中A点表示______;(5)小明从中心书城到滨海公园的平均速度为______km/ℎ,小明爸爸驾车的平均速度为______km/ℎ;(补充:爸爸驾车经过______追上小明;)(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为______.25.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系并说明理由;(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?答案和解析1.【答案】C解:A、2x2⋅3x3=6x5,故A错误,不符合题意;B、2x2与3x3不是同类项,不能合并,故B错误,不符合题意;C、(−2x3)2=4x6,故C正确,符合题意;D、6x6÷3x2=2x4,故D错误,不符合题意;故选:C.根据单项式乘除法法则,积的乘方与幂的乘方,同类项概念逐个判断.本题考查整式的运算,解题的关键是掌握整式运算的相关法则.2.【答案】B解:0.0000018米的悬浮颗粒物,用科学记数法表示该颗粒物的直径为1.8×10−6米,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:B.函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.本题主要考查常量与变量的知识,解题的关键是对函数的定义以及对自变量和因变量的认识和理解,难度不大.4.【答案】C解:A、∵∠1=∠2,∴EF//AC,故不符合题意;第6页,共16页B、∵∠4=∠C,∴EF//AC,故不符合题意;C、∵∠1+∠3=180°,∴DE//BC,故符合题意;D、∵∠3+∠C=180°,∴EF//AC,故不符合题意;故选:C.根据平行线的判定定理即可得到结论.本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.5.【答案】D解:A、含y的项符号相同,含x的项符号相反,能用平方差公式计算;B、含x的项符号相同,含y的项符号相反,能用平方差公式计算;C、含y的项符号相同,含x的项符号相反,能用平方差公式计算;D、含y的项符号相反,含x的项符号相反,不能用平方差公式计算.故选:D.根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.本题考查了平方差公式,注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有,熟记公式结构是解题的关键.6.【答案】C解:∵(m+n)2=m2+2mn+n2,(m−n)2=m2−2mn+n2,∴(m+n)2−(m−n)2=4mn,将(m+n)2=36,(m−n)2=16代入,得36−16=4mn,∴mn=5.故选:C.根据(m+n)2−(m−n)2=4mn即可求出mn的值.本题考查了完全平方公式,推导出(m+n)2−(m−n)2=4mn是解决本题的关键.7.【答案】B解:∵16+0.6=2(8+0.3);24+0.9=3(8+0.3);32+1.2=4(8+0.3),...∴y=(8+0.3)x;故选:B.根据表格可知布的数量(米)与售价(元)的关系为售价=8.3×数量.本题考查了函数关系式,正确得出数字变化规律是解题的关键.8.【答案】B解:如图,∵∠1=35°,∴∠3=180°−35°−90°=55°,∵a//b,∴∠2=∠3=55°.故选:B.根据平角的定义求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.本题考查了平行线的性质,熟记性质并准确识图是解题的关键.9.【答案】B解:∵AB//CD,∠3=130°,∴∠GAB=∠3=130°,∵∠BAE+∠GAB=180°,∴∠BAE=180°−∠GAB=180°−130°=50°,∵∠1=∠2,∴∠2=12∠BAE=12×50°=25°.故选:B.先根据平行线的性质求出∠GAB的度数,再根据邻补角的定义求出∠BAE的度数,最后根据∠1=∠2求出∠2即可.本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同位角相等.10.【答案】D解:A、互为补角的两个角和为180°,但两个角要么不相等,要么相等,都是90°,故本选项不正确;B、对顶角相等,但相等的角不一定是对顶角,故本选项不正确;C、点到直线的距离,是指垂线段的长度,而不是垂线段,故本选项不正确;D、设锐角为x,则余角为90°−x,补角为180°−x,所以一个锐角的补角比这个角的余角大180°−x−(90°−x)=90°,故本选项是正确的.故选:D.A、根据补角的定义来推断即可;第8页,共16页B、根据对顶角的定义来判断即可;C、根据垂线段的定义来判断即可;D、根据余角、补角的定义来判断即可.本题考查的是余角、补角、对顶角、垂线段的定义,解题的关键是熟练掌握余角、补角、对顶角、垂线段的定义.11.【答案】C解:根据题意可列出代数式:(m2−m)÷m+2=m−1+2=m+1.故选:C.根据题意可列出代数式:(m2−m)÷m+2=m−1+2=m+1.列代数式时,要注意是前面整个式子除以m,应把前面的式子看成一个整体.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.12.【答案】D【解析】【分析】本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.【解答】解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s时点P在线段BD上的最小值,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.13.【答案】a3b2【解析】【分析】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【解答】解:∵2m=a,4n=b,m,n为正整数,∴22n=b,∴23m+4n=(2m)3×(22n)2=a3b2.故答案为a3b2.14.【答案】40解:∵AD//BC,∴∠BCD=180°−∠D=80°,∠DAC=∠ACB,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.故答案为40.利用两直线平行,同旁内角互补以及角平分线的定义进行做题.本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.15.【答案】3解:∵(x−1)(3x+m)=3x2+mx−3x−m=3x2+(m−3)x−m,∴m−3=0,∴m=3,故答案为:3.利用多项式乘以多项式的法则进行计算,合并同类项后使x的一次项的系数为0,得出关于m 的方程,解方程即可得出m的值.本题考查了多项式乘多项式,掌握多项式乘多项式的法则是解决问题的关键.16.【答案】48°第10页,共16页解:∵AD//BC,∠EFB=66°,∴∠DEF=66°,又∵∠DEF=∠D′EF,∴∠D′EF=66°,∴∠AED′=180°−2×66°=48°.故答案为:48°.先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.本题考查的是平行线的性质以及折叠的性质,用到的知识点为:两直线平行,内错角相等.17.【答案】①②④解:①2x※x=2x(2x−x)=2x2,故运算结果正确;②(3−5x)※(6−5x)=(3−5x)(3−5x−6+5x)=−3(3−5x)=15x−9,故运算结果正确;③(a※b)−(b※a)=a(a−b)−b(b−a)=a2−ab−b2+ab=a2−b2,故原来的运算结果错误;④若a=b,则(a※b)※b=[a(a−b)]※b=0※b=0×(0−b)=0,故运算结果正确.故答案为:①②④.各项利用题中新定义进行计算判断即可.此题考查了有理数的混合运算,熟练掌握新定义的运算法则是解本题的关键.18.【答案】2011解:∵2条直线最多交点有1个,即3条直线最多交点有(1+2)个,第12页,共16页4条直线最多交点有(1+2+3)个,……∴n 条直线最多交点有(1+2+3+⋯…+n −1)个,即n(n−1)2个(n 为大于等于2的正整数), ∴1a 1+1a 2+1a 3+⋯+1a 10 =12×12+13×22+14×32+⋯+111×102 =22×1+23×2+24×3+⋯+211×10 =2×(1−12+12−13+13−14+⋯+110−111)=2×1011=2011,故答案为:2011.利用两条、三条、四条直线最多交点个数,推理出n 条直线最多交点个数即可.本题考查的是相交线的最多交点数,解题的关键是找到直线条数与最多交点个数的规律.19.【答案】解:(1)原式=1−8+1+16=10;(2)原式=(x 2+2xy −xy −2y 2)−(x 2−2xy +y 2)=x 2+xy −2y 2−x 2+2xy −y 2=3xy −3y 2.【解析】(1)根据有理数的乘方、零指数幂和负整数指数幂的性质计算即可;(2)根据多项式的乘法和完全平方公式分别计算,再合并即可.本题考查实数和整式的运算,熟练掌握有理数的乘方、零指数幂和负整数指数幂的性质以及完全平方公式是解题关键.20.【答案】解:原式=9a 2−6ab +b 2+(a +2)2−b 2−(a 2+4a +4)=9a 2−6ab +b 2+a 2+4a +4−b 2−a 2−4a −4=9a 2−6ab ,当a =13,b =−3时,原式=9×(13)2−6×13×(−3)=1+6=7.【解析】直接利用平方差公式以及完全平方公式化简,再合并同类项,把已知代入得出答案.此题主要考查了整式的混合运算—化简求值,正确运用乘法公式化简是解题关键.21.【答案】两直线平行,同位角相等∠1∠CFE AD//BE∠BAD两直线平行,同旁内角互补59°∠E=59°解:因为AB//CD(已知),所以∠1=∠CFE(理由:两直线平行,同位角相等),因为AE平分∠BAD(已知),所以∠1=∠2(角平分线的定义),又因为∠CFE=∠E(已知),所以∠2=∠E(等量代换),所以AD//BE(内错角相等,两直线平行),所以∠B+∠BAD=180°(理由:两直线平行,同旁内角互补),因为∠B=62°(已知),∠BAD=59°,所以∠2=12所以∠E=59°.故答案为:两直线平行,同位角相等;∠1;∠CFE;AD//BE;∠BAD;两直线平行,同旁内角互补;59°;∠E=59°.由平行线的性质可得∠1=∠CFE,再由角平分线的定义得∠1=∠2,从而有∠2=∠E,则可判定AD//BE,从而可求∠E的度数.本题主要考查平行线的判定与性质,解答的关键是结合图形分析清楚角与角之间的关系.22.【答案】(m−n)2(m+n)2−4mn解:(1)根据题意可得,①方法1:阴影部分正方形的边长为m−n,则面积为:(m−n)2,方法2:用边长为m+n的大正方形面积减去4个长为m,宽为n的小长方形面积,(m+n)2−4mn;故答案为:(m−n)2,(m+n)2−4mn;(2)(m+n)2=(m−n)2+4mn;(a+b)2=(a−b)2+4ab=52+4×(−6)=49;(3)根据题意可得;(2m+n)(m+n)=2m2+3mn+n2.(1)①方法1:阴影部分正方形的边长为m−n,根据正方形的面积计算方法进行计算即可得出答案;方法2:用边长为m+n的大正方形面积减去4个长为m,宽为n的小长方形面积,列式计算即可得出答案;(2)根据(1)中两次计算面积相等可得,(m+n)2=(m−n)2+4mn;等量代换即可得出答案;(3)根据题意大长方形的长为2m+n,宽为m+n,应用多项式乘多项式法则进行计算即可得出答案.本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式的几何背景的计算方法进行求解是解决本题关键.23.【答案】(1)证明:∵∠DAC+∠ACB=180°,∴AD//BC,∵∠1=∠2,∴AD//EC,∴EF//BC,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CE平分∠BCF;(2)解:∵∠DAC+∠ACB=180°,∠DAC=4∠5,∠4=∠5,∴4∠5+2∠5+∠ACF=180°,∵∠ACF=24°,∴∠5=26°.【解析】(1)根据平行线的判定与性质、角平分线的定义求解即可;(2)根据角的和差求解即可.此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.24.【答案】(1)t,s;(2)30,1.7;(3)2.5;(4)2.5小时后小明继续坐公交车到滨海公园;ℎ;(5)12,30,23(6)s=15t(0≤t≤0.8)第14页,共16页解:(1)由图可得,自变量是t,因变量是s,故答案为:t,s;(2)由图可得,小明家到滨海公园的路程为30km,小明在中心书城逗留的时间为2.5−0.8=1.7(ℎ);故答案为:30,1.7;(3)由图可得,小明出发2.5小时后爸爸驾车出发;故答案为:2.5;(4)由图可得,A点表示2.5小时后小明继续坐公交车到滨海公园;故答案为:2.5小时后小明继续坐公交车到滨海公园;(5)小明从中心书城到滨海公园的平均速度为30−124−2.5=12(km/ℎ),小明爸爸驾车的平均速度为303.5−2.5=30(km/ℎ);爸爸驾车经过1230−12=23ℎ追上小明;故答案为:12,30,23ℎ;(6)小明从家到中心书城时,他的速度为120.8=15(km/ℎ),∴他离家路程s与坐车时间t之间的关系式为s=15t(0≤t≤0.8),故答案为:s=15t(0≤t≤0.8).(1)根据图象进行判断,即可得出自变量与因变量;(2)根据图象中数据进行计算,即可得到路程与时间;(3)根据梯形即可得到爸爸驾车出发的时间;(4)根据点A的坐标即可得到点A的实际意义;(5)根据相应的路程除以时间,即可得出速度;(6)根据小明从家到中心书城时的速度,即可得到离家路程s与坐车时间t之间的关系式.本题主要考查了函数图象,以及行程问题的数量关系的运用,解答时理解清楚函数图象的意义是解答此题的关键.25.【答案】解:(1)AB//CD.理由如下:∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°∴AB//CD;(2)∠BAE与∠MCD存在确定的数量关系:∠BAE+12∠MCD=90°.理由如下:过E作EF//AB,∵AB//CD,∴EF//AB//CD∴∠BAE=∠AEF,∠FEC=∠DCE∵∠E=90°,∴∠BAE+∠ECD=90°∵∠MCE=∠ECD,∠MCD=90°.∴∠BAE+12【解析】(1)结论是AB//CD.利用同旁内角互补两直线平行进行证明即可;∠MCD=90°.过E作EF//AB,先利用平(2)∠BAE与∠MCD存在确定的数量关系:∠BAE+12行线的传递性得出EF//AB//CD,再利用平行线的性质及已知条件可推得答案.本题考查了平行线的判定与性质,属于基础知识与基本证明方法的考查,难度不大.第16页,共16页。
2024年下学期期中考试七年级数学试卷(问卷)
2024年下学期期中考试七年级数学试卷(问卷)(考试时间120分钟满分120分)一、选择题(每小题3分,共30分)1.-2相反数和绝对值分别是( )A . -2,-2B .2,-2C .-2,2D . 2,22.2024年10月30日凌晨,神州十九号载人飞船在酒泉卫星发射中心点火发射.若火箭发射点前5秒记为秒,那么火箭发射点火后10秒应记为( )A .秒B .秒C .秒D .秒3.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为( )A . B .C .D .4.式子,,,,中,单项式有( )A .1个B .2个C .3个D . 4个5.下列变形正确的是( )A .B .C .D .6.将 按从小到大的顺序排列,正确的是( )A .B .C .D .7.如图,若数轴上的两点,表示的数分别为a ,b ,则下列结论正确的是( )A .B .C .D .8.下列说法中正确的有( )①一个数前面加上“﹣”号就是负数;②非负数就是正数;③0既不是正数,也不是负数;④正数和负数统称为有理数;⑤正整数与负整数统称为整数;⑥正分数与负分数统称为分数;⑦0是最小的整数;⑧最大的负数是.A .5个B .4个C .3个D .2个5-10+5-5+10-21000000021000000092.110⨯90.2110⨯82.110⨯72.110⨯2a +25b 2x 13x +8m 5(3)35+-=+8(5)9(5)89+-+=-++[6(3)]5[6(5)]3+-+=+-+1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭()22313333----,,,()22313333-<-<-<-()23213333-<-<-<-()22313333-<-<-<-()22313333-<-<-<-A B 0a b ->0ab-<21a b +>-0ab >1-9. 当a <0时,下列等式①a 2023<0;②a 2023=-(-a )2023;③a 2024=(-a )2024;④a 2023=-a 2023中成立的有( )A .4个B .3个C .2个D .1个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 023个图中共有正方形的个数为 ( )A .6067B .6061C .2024D .2023二、填空题(每小题3分,共24分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款元.12.的次数是.13.把多项式按字母的降幂排列: .14.若,则.15.若单项式与单项式是同类项,则它们的和为.16.已知a 、b 互为相反数,c 、d 互为倒数,的绝对值是2024,则的值为.17.若多项式8x 2-3x +5与多项式x 3+mx 2-5x +7相减后,结果中不含x 2项,则常数m 的值是 .18.下列说法中,正确的是 .(请写出正确的序号)①若,则;②2-|x -2024|的最大值为2;③若,则是负数;④三点在数轴上对应的数分别是-2、x 、6,若相邻两点的距离相等,则;⑤若代数式的值与无关,则该代数式值为2024;⑥若,则的值为1.三、解答题(共66分)2235bc π-235632x x y x --+x |4||1|0a b -++=a b =32m x y 15n xy +-m 2321a bm cd m ++-+11a a=-0a <a b >()()a b a b +-A B C 、、2x =29312016x x x +-+-+x 0,0a b c abc ++=>b c a c a ba b c+++++19.(4分)把下列各数填在相应的集合里:,正数集合:{ }负数集合:{ }整数集合:{ }分数集合:{}20.(每小题4分,共8分)计算:(1)(2) 21.(8分)已知多项式.(1) 求;(2) 如果A + 2B + C = 0,求多项式C .22.(8分)在某次抗洪抢险中,人民解放军驾驶加满油的冲锋舟,沿着东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(向东记作正数,向西记作负数,单位:):+14,-9,+8,-7,13,-6,+12,-5.(1) 请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2) 若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23. (8分)按照“双减”政策,为丰富课后托管服务内容,学校准备订购一批篮球和跳绳. 经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的付款.已知要购买篮球50个,跳绳x 条().(1) 若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款元;(用含x 的代数式表示)(2) 当时,请通过计算说明此时用哪种方案购买较为合算?(3) 当时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?6133,2,5.6,, 3.14,9,0,,475-------()12342637⎛⎫-+⨯- ⎪⎝⎭()24110.5124⎡⎤--÷⨯+-⎣⎦22324,23=-+-=--+A x x y xy B x x y xy 23A B -km 90%50x >150x =150x =24.(10分)已知有理数满足互为相反数,,.(1) 若,请在数轴上表示出有理数.(2) 若,用“”或“”填空:______0;______0;______0.(3) 若,化简式子:.25.(10分)观察下列各式:,,.(1) 猜想:______;(2) 用你发现的规律计算:;(3) 拓展:计算: .26.(10分)阅读材料∶我们知道,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1) 把 看成一个整体,化简 .(2) 已知 求的值.(3) 若,求代数式 的值。
2021-2022学年上海市闵行区七宝中学七年级(下)期中数学试题及答案解析
2021-2022学年上海市闵行区七宝中学七年级(下)期中数学试卷一、选择题(本大题共4小题,共12.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,数轴上表示1,√2的对应点分别为点A,B,点B关于点A对折后的点为C,则点C所表示的数是( )A. 1−√2B. 2−√2C. √2−1D. √2−22. 下列图形中,∠1和∠2是同位角的图有( )A. 0个B. 1个C. 2个D. 3个3. 如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线.∠BAC=50°,∠ABC=60°.则∠DAE+∠ACD等于( )A. 75°B. 80°C. 85°D. 90°4. 下列说法正确的是( )A. 1的平方根是1B. 3次方根是本身的数有0和13C. −m的3次方根是−√mD. a<0时,−a的平方根为±√a二、填空题(本大题共14小题,共28.0分)5. 81的算术平方根是________.6. 计算:2512×√49=______.7. 近似数9.650×106精确到______位.8. 比较大小:√3−14 ______15(用“>”、“<”“=”).9. √117−3的小数部分是______.10. 如果0≤x ≤1,化简:√(x −1)2−|−3+x|=______.11. 已知下列各数(1)√254,(2)−6,(3)0.777777777,(4)0.24⋅,(5)−57,(6)0.2020020002…(两个2之间依次多1个零),(7)π−14,其中,属于无理数的是:______.(填写序号)12. 若∠1与∠2是对顶角,∠3与∠2互余,且∠3=37°,那么∠1=______.13. 如图,∠1:∠2:∠3=1:3:6,则∠4=______.14. 如图:直线AB、CD、EF相交于点O,且∠AOC=33°,∠AOE=142°,直线CD与直线EF 夹角的大小为______.15. 在同一平面内,设a,b,c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为______.16. 如图:若AB//DE,∠ABC=x°,∠CDE=2x°,∠BCD=33°,则∠CDE=______.17. 已知5a+2的立方根是3,3a+b−1的算术平方根是4,c是√13的整数部分,则3a−b+ c的平方根为______.18. 如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE=∠EOC,将射线OE绕点О逆时针旋转α°(0°<α<360°)到OF,若∠AOF=120°时,α的度数是______°.三、计算题(本大题共1小题,共10.0分)19. 已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC//BD,求证:AD//BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF//BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.四、解答题(本大题共9小题,共50.0分。
江苏省南京市鼓楼区2022-2023学年七年级下学期期中数学试卷
2022-2023学年江苏省南京市鼓楼区七年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2022年北京冬残奥会会徽上半部分整体形如汉字“飞”的书法形态,巧妙地描绘出一个向前滑行、冲向胜利的运动员的形象.下列四个图案中,能由左图平移得到的是()A.B.C.D.2.(2分)下列运算中正确的是()A.a3+a3=a6B.a6÷a2=a3C.(a2)3=a5D.a4•a2=a63.(2分)如图,三根木条相交成∠1,∠2.固定木条b,c,使得∠1=35°.转动木条a,当a∥b时,∠2的大小为()A.35°B.55°C.90°D.145°4.(2分)如图,AB∥CD,CE⊥BE,则∠B与∠C一定满足的关系是()A.∠B=∠C B.∠B=2∠C C.∠B+∠C=90°D.∠B+∠C=180°5.(2分)若(a+b)(p+q)能运用平方差公式计算,则p,q满足的条件可能是()①p=a,q=b;②p=a,q=﹣b;③p=﹣a,q=b;④p=﹣a,q=﹣b.A.①③B.①④C.②③D.②④6.(2分)把12cm长的铁丝截成三段,每段长度为整数.若将这三段铁丝首尾顺次相接组成三角形,则不同的三角形有()A.4种B.3种C.2种D.1种二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)近年来,我国研发的北斗芯片实现了22纳米制程的突破,22纳米等于0.000000022米.用科学记数法表示0.000000022是.8.(2分)南京大报恩寺琉璃塔地基平面可以看成八边形,它的每个内角都相等,则每个内角的度数是°.9.(2分)若3x=4,3y=5,则3x+y=.10.(2分)“有两个角互余的三角形是直角三角形”的逆命题是.11.(2分)已知a=﹣(0.3)2,b=3﹣1,,比较a、b、c的大小,并用“<”号连接:.12.(2分)我们学习的“幂的运算”有四种:①同底数幂的乘法,②同底数幂的除法,③幂的乘方,④积的乘方.在“(a3b)2=(a3)2b2=a6b2”的运算过程中,远用了上述幂的运算中的(填序号).13.(2分)若关于x的多项式x2﹣6x+k是完全平方式,则k=.14.(2分)如图,AB∥EF,CD平分∠ACE,若∠A=155°,∠E=105°,则∠ACD=°.15.(2分)若20.52=202+a,则a的值是.16.(2分)如图,在线段AB上取一点C,分别以AC、BC为边作正方形ACDE、正方形CBFG.若这两个正方形的面积和为13,△ACG的面积为3,则AB的长度是.三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(9分)计算:(1);(2)(m2)3•m÷m3;(3)水珠不断地滴在一块石头上,经过40年,石头上形成了一个深为4×10﹣2m的小洞.求平均每年小洞增加的深度.18.(8分)计算:(1)x2•(﹣2xy2)2;(2)a(a2﹣1)﹣a(a2﹣a﹣1).19.(6分)先化简再求值:(3﹣4a)(3+4a)+(3+4a)2.其中a=﹣2.20.(6分)如图,点D,E,F分别是△ABC的边BC、CA,AB上的点,DE∥BA,∠FDE=∠A,求证DF ∥CA.21.(6分)如图,点A、B、C是方格纸中的格点.(1)画出AC边上的中线BD;(2)画出AB边上的高线CE;(3)画出∠BAC的平分线AF.22.(5分)如图1,将两个含30°角的三角尺(△ABC与△ADE)摆放在一起,AD、BC交于点F、BC、DE交于点G.(1)求证∠BAF=∠CGE.小明的证明途径可以用下面的框图2表示,请填写其中的空格.(2)当∠BAD=°时,AE∥BC.23.(7分)研究一个问题:多边形的一个外角与它不相邻的内角之和具有怎样的数量关系?【回顾】如图①,请直接写出∠ACD与∠A、∠B之间的数量关系:.【探究】如图②,∠DCE是四边形ABCD的外角,求证∠DCE=∠A+∠B+∠D﹣180°.【结论】若n边形的一个外角为x°,与其不相邻的内角之和为y°,则x,y与n的数量关系是.24.(6分)已知k为整数,且k≥0.(1)若a为正奇数,则a可以用含k的代数式表示为.A.2k B.2k﹣1 C.2k+1(2)若a,b为连续的奇数,且a<b.试说明:ab+1能被4整除.25.(7分)要度量作业纸上两条相交直线a、b所夹锐角α的大小,发现其交点不在作业纸内,无法直接度量.(1)小明的方案:画直线c与a、b相交,如图①,测得∠1=m°,∠2=n°,则a=°(用含m、n的代数式表示);(2)小刚的方案:画直线c与a、b相交,再画∠1、∠2相邻的外角的角平分线交于点O,如图②,则得∠O=p°,则α=°(用含p的代数式表示);(3)你还有什么方法,请在图③中补全,写出必要的文字说明.26.(8分)如图,在△ABC和△FBC中,∠A≤∠F.点F与A位于线段BC所在直线的两侧,分别延长AB、AC至点D、E.【特殊化思考】若∠A=∠F时,请尝试探究:(1)当F在∠A内部时,请直接写出∠ECF、∠DBF与∠A的数量关系为;(2)当F在∠A外部时,请直接写出∠ECF、∠DBF与∠A的数量关系为;(3)若CG平分∠ECF,BH平分∠FBD.无论点F在∠A内部(如图③)还是∠A外部(如图④)时,都有CG∥BH,请选择一幅图进行证明;说明:选择图③证明得3分,选择图④证明得4分.【一般化探究】若∠A<∠F时,请尝试探究:(4)若射线CG、BH分别是∠ECF,∠DBF的n等分线(n为大于2的正整数),且,.当CG∥BH时,直接写出∠A与∠F需满足的条件:.。
下学期初中七年级数学期中试题
下学期初中七年级数学期中试题兴趣是推动学生学习的动力,学生如果能在学习数学中产生兴趣,就会形成较强的求知欲,就能积极主动地学习,今天小编就给大家看看七年级数学,一起来学习吧初中七年级数学下册期中试题一、选择题,下列各题中只有一个选项是正确的,请将正确答案的番号选填在答卷相应题号内。
(本大题共12个小题,每题3分,共36分)1.在数,π,,0.3333…, 中,其中无理数有A.1个B.2个C.3个D.4个2.下面四个图形中,∠1与∠2是对顶角的图形的个数是A.0B.1C.2D.33. 的算术平方根是A.±4B.4C.±2D.24.下列各组数中互为相反数的是A.-2 与B.-2 与C.-2 与D.2与5.下列说法正确的是A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数6.方程用含x的代数式表示y为A. B. C. D.7.如图所示下列条件中,不能判定AB//DF的是A.∠A+∠2=180°B.∠A=∠3C.∠1=∠4D.∠1=∠A8.若点M(3,-2)与点N(x、y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为A.(4,-2)B.(3,-1)C.(3,-1)或(3,-3)D.(4,-2)或(2,-2)9.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数所列的方程组正确的是A. B.C. D.10.如图,已知AB//CD//EF,BC//AD,AC平分∠BAD,那么图中与∠AGE相等的角有A.5个B.4个C.3个D.2个11.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=60°,则∠AED′=A.50°B.55°C.60°D.65°12.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,5) 、A1(2,5) 、A2(4,5) 、A3(8,5) 、B(2,0) 、B1(4,0) 、B2(8,0) 、B3(16,0):若按此规律,将△OAB进行n次变换,得到△OAnBn。
最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列数是无理数的有()A.B.﹣1C.0D.2、下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.平面内有且只有一条直线与已知直线平行3、已知点P(﹣2,5),Q(n,5)且PQ=4,则n的值为()A.2B.2或4C.2或﹣6D.﹣64、星城长沙是湖南省省会城市,也是长江中游地区重要的中心城市,以下能准确表示长沙地理位置的是()A.在北京的西南方B.东经112.59°,北纬28.12°C.距离北京1478千米处D.东经112.59°5、如图,点E在BA的延长线上,能证明BE∥CD是()A.∠EAD=∠B B.∠BAD=∠ACDC.∠EAD=∠ACD D.∠EAC+∠ACD=180°6、已知方程2x m+1+3y2n﹣1=7是二元一次方程,则m,n的值分别为()A.﹣1,0B.﹣1,1C.0,1D.1,17、若是方程组的解,则a值为()A.1B.2C.3D.48、已知方程,用含x的代数式表示y,正确的是()A.B.C.D.9、明代数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问君多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程组为()A.B.C.D.10、如图,在数轴上的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.3﹣C.﹣3D.6﹣二、填空题(每小题3分,满分18分)11、在实数0,﹣1,﹣,π中,最小的是.12、在平面直角坐标系中,点(5,﹣6)到x轴的距离为.13、如图,将含30°角的直角三角板的直角顶点放在直尺的一边上,已知∠1=35°,则∠2的度数是.14、满足方程组的x,y互为相反数,则m=.15、如图,将长方形ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点M,若∠AEB′=30o,则∠DFE的度数为.16、已知关于x,y的二元一次方程组的解为,则关于x,y的方程组的解为.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知某正数的两个不同的平方根是3a﹣14和a+2;b是的整数部分;(1)求2a+b的值;(2)求3a﹣2b的平方根.19、解关于x,y的方程组时,甲正确地解出,乙因为把c抄错了,误解为,求a,b,c的值.20、若关于x,y的方程组与方程组的解相同.(1)求两个方程组的相同解;(2)求(3a﹣b)2022的值.21、如图,D,E分别在△ABC的边AB,AC上,F在线段CD上,且∠1+∠2=180°,DE∥BC.(1)求证:∠3=∠B;(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.22、某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,恰好每辆车都坐满且两种车都要租,请你设计出所有的租车方案.23、已知点P(2a﹣2,a+5),分别根据下列条件求出点P的坐标.(1)点P在y轴上;(2)点Q的坐标为(2,5),且直线PQ∥x轴;(3)点P到x轴的距离与到y轴的距离相等.24、如图1,在平面直角坐标系中,A(0,a),B(b,0),且(a﹣6)2+=0,过A,B两点分别作y轴,x轴的垂线交于C点.(1)求C点的坐标;(2)P,Q为两动点,P,Q同时出发,其中P从C出发,在线段CB,BO 上以2个单位长度每秒的速度沿着C→B→O运动,到达O点P停止运动;Q 从B点出发以1个单位长度每秒速度沿着线段BO向O点运动,到O点Q停止运动.设运动时间为t秒,当点P在线段BO上运动时,t取何值,P,Q,C三点构成的三角形面积为1?(3)如图2,连接AB,点M(m,n)在线段AB上,且m,n满足|m﹣n|=1 0,点N在y轴负半轴上,连接MN交x轴于K点,记M,B,K三点构成的三角形面积为S1,记N,O,K三点构成的三角形面积分别记为S2,若S1=S2,求N点的坐标.25、如图1,在长方形OABC中,O为平面直角坐标系的原点,OA=2,OC=4,点B在第一象限.(1)点B的坐标为;(2)如图2,点P是线段CB延长线上的点,连接AP,OP,则∠POC,∠A PO,∠P AB三个角满足的关系是什么?并说明理由;(3)在(2)的基础上,已知:∠P AB=20°,∠POC=50°,在第一象限内取一点F,连接OF,AF,满足∠P AB=2∠F AP,∠POC=2∠FOP,请直接写出的值.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、-12、6 13、55°14、1 15、、75°16、三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣3﹣18、(1)8 (2)a﹣2b的平方根为19、a=2.5,b=1,c=220、(1)(2)121、(1)略(2)72°22、(1)每辆小客车能坐20人,每辆大客车能坐45人(2)方案1:租用小客车11辆,大客车4辆;方案2:租用小客车2辆,大客车8辆23、(1)P(0,6)(2)P(﹣2,5)(3)P的坐标为(12,12)或(﹣12,﹣12)或(﹣4,4)或(4,﹣4)24、(1)C(﹣12,6)(2)t=或(3)N(0,﹣3)25、(1)B(4,2)(2)∠POC=∠APO+∠PAB的值为或2或(3)。
安徽省合肥市2021-2022学年七年级下学期期中(统考)数学试卷(解析版)
2021-2022学年七下期中(统考)数学试卷(解析版)温馨提示:本试卷沪科版6.1~8.4、共4页八大题、23小题,满分150分,时间120分钟(抄袭可耻)一、选择题(本大题共10小题,每小题4分,满分40分)1、下列四个实数中,无理数是()A.1.010010001 B 1310【答案】D【解析】∵1.010010001、13、3.1410故选D2、下列运算正确的是()A (-a5)2=a10B 2a•3a2=6a2C -2a+a=-3aD -6a6÷2a2=-3a3【答案】A【解析】∵B 2a•3a2=6a3,C -2a+a=-a,D -6a6÷2a2=-3a4,∴B、 C、 D错误; A (-a5)2=a10,正确;故选A3、若一个数的立方根等于它本身,则这个数是()A.0B.1C.-1D.0、±1【答案】D【解析】若一个数的立方根等于它本身,则这个数是0、 1、 -1;故选D4、某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0. 000000001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A. 1.5×10-9秒B. 15×10-9秒C. 1.5×10-8秒D. 15×10-8秒【答案】C【解析】∵0.000000001秒×15==0.000000015秒=1.5×10-8秒,故选C517)A.3B.4C.5D.6【答案】B【解析】,∵42=16,52=2517最接近的是4故选B6、下列说法不一定成立的是()A.若a>b、则a+c>b+cB.若a+c>b+c、则a>bC.若a>b、则ac2>bc2D.若ac2>bc2、则a>b【答案】C【解析】根据不等式性质可知:A、 C、 D正确;C、若c=0,ac2=bc2,∴若a>b、则ac2>bc2不一定成立。
故选C710404x=10.2中的x等于()A.1040.4B.10.404C.104.04D. 1.0404【答案】C【解析】10404,∴1022=10404,∴10.22=104.04,∴x=104.04,故选C8、将(mx+3)(2-3x)展开后,结果不含x的次项,则m的值为()A 0 B92 C -92D32【答案】B【解析】∵(mx+3)(2-3x)=2mx-3mx2+6-9x=-3mx2+(2m-9)x+6,结果不含x的次项,则2m-9=0,即m=92故选B9、如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A. a >0B. a <0C. a >-1D. a <-1【答案】D【解析】∵不等式(a+1)x >a+1的解集为x <1,那么a+1<0,即a <-1故选D10、对任意两个实数a 、b 定义两种运算:a ▲b=(()a a b b a b ≥⎧⎨<⎩若)若,a ▼b=(()b a b a a b ≥⎧⎨<⎩若)若并且定义运算顺序仍然是先做括号内的,例如(-2)▲3=3、(-2)▼3=-2、((-2)▲3))▼2=252327 ) 55【答案】A【解析】5232755故选A二、填空题(本大题共4小题,每小题5分,满分20分)11、 9的平方根是【答案】±3【解析】9的平方根是±3故答案:±312、 如果a m =5、a n =2,则a 2m+n 的值为【答案】50【解析】a 2m+n =(a m )2×a n =52×2=50故答案:5013、 请写出一个比2小的无理数:【答案】3【解析】∵3223故答案:314、若记[x]表示任意实数的整数部分,例如:[4.2]=4、2、…,则1234…… 4950(其中“+”、“-”依次相间)的值为【答案】-3【解析】1234……4950=1-1+1-2+2-2+2-2+3-3+3-3+……+7-7=-1-2+3-4+5-6+7-7=-3故答案:-3三、(本大题共2小题,每小题8分,总计16分)15、解不等式组:3(1)511233x x x x -<+⎧⎪+⎨≥-⎪⎩ 【答案】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【解析】3(1)511233x x x x -<+⎧⎪⎨+≥-⎪⎩①②,解不等式①得:x >-2;解不等式②得:x ≤2 则不等式组的解集为-2<x ≤2;16、计算:(a+3)(a-2)-a (a-1)【答案】【分析】直接利用乘法公式以及整式的混合运算法则化简【解析】原式=a 2+a-6-a 2+a=2a-6四、(本大题共2小题,每小题8分,总计16分)17、已知(x-2)23y +,求(x+y )2022的值。
河北省廊坊市安次区第五中学2022-2023学年七年级下学期期中数学试卷(含解析)
2022-2023学年河北省廊坊五中七年级(下)期中数学试卷一、选择题(本大题共16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)±3是9的( )A.平方B.立方根C.平方根D.算术平方根2.(3分)在实数、、、π、中,无理数的个数是( )A.1个B.2个C.3个D.4个3.(3分)平面直角坐标系内有一点P(﹣2025,﹣2025),则点P在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)在下面的四幅图案中,能通过已知图案平移得到的是( )A.B.C.D.5.(3分)在平面直角坐标系中,将点A(1,﹣2)向上平移4个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)6.(3分)在数轴上标注了四段范围,如图,则表示的点落在( )A.段①B.段②C.段③D.段④7.(3分)下列命题中,是真命题的是( )A.无限小数都是无理数B.若=,则a=bC.y轴上的点,纵坐标为0D.过一点有且只有一条直线与已知直线平行8.(3分)下列各方程组中,属于二元一次方程组的是( )A.B.C.D.9.(3分)已知是二元一次方程3x﹣my=5的一组解,则m的值为( )A.﹣2B.2C.﹣D.10.(3分)下列命题中,是真命题的是( )A.两条直线被第三条直线所截,同位角相等B.相等的角是对顶角C.同旁内角相等,两直线平行D.内错角相等,两直线平行11.(2分)如图,轮船航行到C处时,观测到小岛B的方向是北偏西37°,那么同时从B观测轮船的方向是( )A.南偏西37°B.东偏西37°C.南偏东37°D.南偏东53°12.(2分)若点A在第四象限且到x轴的距离为3,到y轴的距离为4,则点A的坐标为( )A.(﹣4,3)B.(3,﹣4)C.(﹣3,4)D.(4,﹣3)13.(2分)如图是某次行车路线,共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120°,第三次转过的角度145°,则第二次转过的角度是( )A.75°B.85°C.60°D.35°14.(2分)如图,已知AB∥CD,CE平分∠ACD,交AB于点B,∠ABE=140°,则∠A为( )A.110°B.120°C.135°D.100°15.(2分)下列句子,是命题的是( )A.美丽的天空B.相等的角是对顶角C.作线段AB=CD D.你喜欢运动吗?16.(2分)如图,AB∥CD,FG⊥CD于N,∠EMB=α,则∠EFG等于( )A.180°﹣α B.90°+α C.180°+α D.270°﹣α二、填空题(本大题共3个小题,共12分。
北师大版七年级(下)期中数学试卷(含解析)
北师大版七年级数学(下)期中试卷一.选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如果一个角是50°,那么它的余角的度数是()A.40°B.50°C.100°D.130°2.(3分)甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣8米C.8×10﹣9米D.8×10﹣7米3.(3分)下列长度的3条线段,能首尾依次相接组成三角形的是()A.1,3,5B.3,4,6C.5,6,11D.8,5,24.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.a3﹣a2=a C.(2a+1)(2a﹣1)=4a﹣1 D.(﹣2a3)2=4a65.(3分)下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(x+a)(﹣a+x)C.(﹣x﹣b)(x﹣b)D.(a+b)(﹣a﹣b)6.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短7.(3分)请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS8.(3分)某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.9.(3分)下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个10.(3分)如图,△ABC中,∠A=α°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD 的平分线相交于点A2,依此类推,∠A n﹣1BC与∠A n﹣1CD的平分线相交于点A n,则∠A n的度数为()A.B.C.D.二.填空题(本大题共4个小题,每小题4分,共16分)11.(4分)三角形的三个内角的比为1:3:5,那么这个三角形的最大内角的度数为.12.(4分)若a+b=2,a2﹣b2=6,则a﹣b=.13.(4分)将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=.14.(4分)如果4x2+mx+9是一个完全平方式,则m的值为.三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.(10分)计算:①;②(﹣ab2)3•(﹣9a3b)÷(﹣3a3b5).16.(8分)先化简,在求值:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x),其中x=2,y=﹣1.17.(6分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()18.(8分)如图,在Rt△ABE中,∠AEB=90°,C为AE延长线上的一点,D为AB边上的一点,DC交BE于F,若∠ADC=80°,∠B=30°,求∠C的度数.19.(10分)如图所示,小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况.(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)10时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?20.(12分)以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.一.填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知a﹣b=4,则a2﹣b2﹣8b的值为.22.(4分)如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠CFC′=150°,则∠AED′=.23.(4分)已知代数式x2+2x+5可以利用完全平方公式变形为(x+1)2+4,进而可知x2+2x+5的最小值是4.依此方法,代数式y2﹣y+5的最小值是.24.(4分)在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45°;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则△FDC周长等于AB的长.正确结论的序号是.25.(4分)有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你的观察,归纳发现规律,写出9×10×11×12+1的结果是;(2)式子(n﹣1)n(n+1)(n+2)+1=.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.(8分)已知x2+y2+4x﹣6y+13=0,求代数式[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)的值,要求先化简后求值.27.(10分)(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA =∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.28.(12分)如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图②,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角尺OMN绕点O按每秒15°的速度沿逆时针方向旋转一周,在旋转的过程中,在第秒时,边MN恰好与边CD平行;在第秒时,直线MN恰好与直线CD垂直.(直接写出结果)试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.2.解:0.00 000 008=8×10﹣8,故选:B.3.解:A、3+1<5,不能构成三角形;B、3+4=7>6,能构成三角形;C、5+6=11,不能构成三角形;D、5+2=7<8,不能构成三角形.故选:B.4.解:A、根据完全平方公式,得(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、两项不是同类项,不能合并,故本选项错误;C、根据平方差公式,得(2a+1)(2a﹣1)=4a2﹣1,故本选项错误;D、(﹣2a3)2=4a6,故本选项正确.故选:D.5.解:A答案(x+a)(x﹣a)=x2﹣a2,能用平方差公式;B答案(x+a)(﹣a+x)=(x+a)(x﹣a)=x2﹣a2,能用平方差公式;C答案(﹣x﹣b)(x﹣b)=﹣(x+b)(x﹣b)=﹣(x2﹣b2)=b2﹣x2,能用平方差公式;D答案(a+b)(﹣a﹣b)=﹣(a+b)2,不能用平方差公式.故选:D.6.解:常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:A.7.解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,在△ODC和△O′D′C′中,∵,∴△COD≌△C'O'D'(SSS),∴∠D′O′C′=∠DOC.故选:D.8.解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.9.解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”股本选项错误;(5)这是平行公理,故本选项正确;故选:A.10.解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1=α,∴∠A1=α°,同理可得∠A1=2∠A2,即∠A=22∠A2=α°,∴∠A2=α°,∴∠A=2n∠A n,∴∠A n=α°•()n=()°.故选:C.二.填空题(本大题共4个小题,每小题4分,共16分)11.解:设三角形三个角的度数分别为x,3x,5x,所以x+3x+5x=180°,解得x=20°,所以5x=100°.故答案为100°.12.解:∵(a+b)(a﹣b)=a2﹣b2,∴2×(a﹣b)=6,∴a﹣b=3.故答案为:3.13.证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.故答案为:90°.14.解:如果4x2+mx+9是一个完全平方式,则m的值为±12,故答案为:±12三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.解:①原式=1﹣1+9=9;②原式=(﹣a3b6)•(﹣9a3b)÷(﹣3a3b5)=9a6b7÷(﹣3a3b5)=﹣3a3b2.16.解:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x)=[4x2+4xy+y2﹣y2﹣4xy﹣8xy]÷(2x)=(4x2﹣8xy)÷(2x)=2x﹣4y,当x=2,y=﹣1时,原式=2×2﹣4×(﹣1)=4+4=8.17.证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.18.解:∵在Rt△ABE中,∠AEB=90°,∠B=30°∴∠A=90°﹣∠B=60°,∵在△ADC中,∠A=60°,∠ADC=80°∴∠C=180°﹣60°﹣80°=40°,答:∠C的度数为40°.19.解:(1)图象表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;(2)根据图象可知,他到达离家最远的地方是在12时,离家30千米;(3)根据图象可知,30﹣15=15(千米).故:10时到12时他行驶了15千米;(4)根据图象可知,他可能在12时到13时间内休息,并吃午餐;(5)根据图象可知,30÷(15﹣13)=15(千米/时).故:他由离家最远的地方返回时的平均速度是15千米/时.20.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.一.填空题(本大题共5个小题,每小题4分,共20分)21.解:∵a﹣b=4,∴a=b+4,∴a2=(b+4)2=b2+8b+16,∴a2﹣b2﹣8b=b2+8b+16﹣b2﹣8b=16.故答案为16.22.解:∵∠CFC′=150°,∴∠EFC′==105°.∵ED′∥FC′,∴∠D′EF=180°﹣105°=75°,∴∠AED′=180°﹣2×75°=180°﹣150°=30°.故答案为:30°.23.解:y2﹣y+5=y2﹣y++=(y﹣)2+≥,则代数式y2﹣y+5的最小值是.故答案为:.24.解:∵△ABC中,AD,BE分别为BC、AC边上的高,∴AD⊥BC,而△ABF和△ACF有一条公共边,∴S△ABF:S△AFC=BD:CD,∴③正确;∵∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC,∴FD=CD,∴∠FCD=∠CFD=45°,∴①正确;若AE=EC,BE⊥AC,可得AB=BC,无法证得AB=BC,故②错误.若BF=2EC,根据①得BF=AC,∴AC=2EC,即E为AC的中点,∴BE为线段AC的垂直平分线,∴AF=CF,BA=BC,∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,即△FDC周长等于AB的长,∴④正确.故答案为①③④.25.解:(1)通过观察分析可得,每列的连续四个做积的自然数中第一个数乘以第四个自然数的积再加上1得到的和,就等于每列中间做平方的底数,所以9×10×11×12+1=(9×12+1)2=(109)2,每列中的最后一组式子括号里的数为四个做乘积的自然中的第一个自然数的平方然后加上3乘以这个自然数再加上1得到和,所以9×10×11×12+1=(109)2=(92+3×9+1)2.(2)根据(1)分析的规律可得,(n﹣1)n(n+1)(n+2)+1=[(n﹣1)(n+2)+1]2=(n2+n﹣1)2.故答案为:(1)9×10×11×12+1=(109)2=(92+3×9+1)2,(2)(n2+n﹣1)2.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)=(x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2)÷(2x)=(﹣2x2+2xy)÷(2x)=﹣x+y,∵x2+y2+4x﹣6y+13=0,∴(x2+4x+4)+(y2﹣6y+9)=0,∴(x+2)2+(y﹣3)2=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,当x=﹣2,y=3时,原式=﹣(﹣2)+3=2+3=5.27.(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC=BC•h=12,S△ACF=CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.28.解:(1)∵∠BON=∠N=30°,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(2)如图,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷15°=5秒,或t=255°÷15°=17秒;MN⊥CD时,旋转角为90°+(180°﹣60°﹣45°)=165°,或360°﹣(60°﹣45°)=345°,所以,t=165°÷15°=11秒,或t=345°÷15°=23秒.故答案为:5或17;11或23.。
2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷+答案解析
2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中正确的是()A. B. C. D.3.如图,下列两个角是内错角的是()A.与B.与C.与D.与4.在实数,,,,,0,,中,无理数有个()A.1B.2C.3D.45.若是二元一次方程的一个解,则m的值为()A. B. C.1 D.6.下列命题中,真命题是()A.互补的角是邻补角B.同旁内角互补C.过直线外一点,有且只有一条直线与已知直线平行D.如果两条直线都与第三条直线垂直,那么这两条直线也相互垂直7.已知,则下列不等式中不成立的是()A. B. C. D.8.《孙子算经》中有一道题,原文是:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,根据题意列方程组得()A. B. C. D.9.如图,直线AB,CD交于点O,已知于点平分,若,则的度数是()A. B. C. D.10.如图,是由8个大小相同的小长方形无缝拼接而成的一个大长方形,已知大长方形的周长为2a,则小长方形的周长为()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
11.x的2倍与4的差不大于3,用不等式表示为__________.12.如图,点E在DC的延长线上,请添加一个恰当的条件__________,使13.如图,,则AC__________填>,<,,理由是__________.14.已知二元一次方程组,则的值为__________.15.若是关于x、的二元一次方程,则__________.16.已知:实数a,b满足,则的平方根是__________.17.如图,在公园的长方形草地内修建了宽为2米的道路后,剩余的草地面积是__________平方米.18.如图,第一象限内有两点,,将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是__________.三、解答题:本题共10小题,共80分。
人教版七年级数学下册期中测试卷(含答案)
人教版七年级数学下学期期中测试卷(含答案)班级:姓名:学号:分数:(考试时间:120分钟试卷满分:120分)一、选择题(1—6题每题2分,7-16题每题3分,共42分)1.如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位2.为认真贯彻落实党的十八大和中央政治局关于八项规定的精神,厉行节约、反对铺张浪费,某市严格控制“三公”经费支出,共节约“三公”经费5.05亿元.用科学记数法表示为()A.505×106元B.5.05×107元C.50.5×107元D.5.05×108元3.下列运算正确的是()A.a2+a3=a5B.(a3)2=a5C.(a+3)2=a2+9 D.﹣2a2•a=﹣2a34.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.5.在下图中,∠1=∠2,能判断AB∥CD的是()A.B.C.D.6.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°7.在多项式x2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是()A.x B.3x C.6x D.9x8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定10.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣11.若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD的度数为()A.30°B.40°C.50°D.60°12.已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.613.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.6614. 已知则( )A. B. C. D.5215.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为A. B. C. D.16.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D →E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C.D.二.填空题(每题3分,共12分)17.长为3m+2n,宽为5m-n的长方形的面积为__________.18.已知:OE平分∠AOD,AB∥CD,OF⊥OE于O,∠D = 50°,则∠BOF=________。
北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)
仁和中学2023-2024学年度第二学期期中考试初一年级数学试卷一、选择题(每题2分,共20分)1. 不等式的解集在数轴上表示正确的是( )A. B.C.D.【答案】D【解析】【分析】本题主要考查了一元一次不等式的求解,在数轴上表示不等式解集;解不等式,即可得出合适的选项.【详解】解:解不等式,可得,故不等式解集在数轴上表示为:故选:D .2. 下列命题中,假命题是( )A. 同角的补角相等B. 同一平面内,过一点有且只有一条直线与已知直线垂直C. 如果,,那么D. 两条直线被第三条直线所截,同旁内角互补【答案】D【解析】【分析】利用同角的补角的性质、垂直的定义、平行线的性质等知识分别判断后即可.【详解】解:A 、同角的补角相等,是真命题,故本选项不符合题意;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故本选项不符合题意;C 、如果,,那么,是真命题,故本选项不符合题意;D、两条平行直线被第三条直线所截,同旁内角互补,故原命题是假命题,故本选项符合题意;的10x +<10x +<10x +<1x <-10x +<a b =b c =a c=a b =b c =a c =【点睛】考查了命题与定理的知识,解题的关键是了解同角的补角的性质、垂直的定义、平行线的性质等知识,难度不大.3. 下列各组数值中,哪个是方程的解( )A. B. C. D. 【答案】B【解析】【分析】将四个选项分别代入原方程,能使方程左右两边相等的未知数的值是方程的解.【详解】解:将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项符合题意;将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项不符合题意.故选:.【点睛】本题主要考查了二元一次方程的解.正确利用二元一次方程的解的意义是解题的关键.4. 如图,,射线在内部,下列说法一定成立的是( )A. 和互余B. 和互补C. 和互为对顶角D. 和相等21x y +=21x y =⎧⎨=⎩13x y =-⎧⎨=⎩13x y =⎧⎨=-⎩22x y =⎧⎨=-⎩ 21x y =⎧⎨=⎩5=≠A ∴ 13x y =-⎧⎨=⎩1==B ∴13x y =⎧⎨=-⎩1=-≠C ∴ 22x y =⎧⎨=-⎩2=≠D ∴B AO OB ⊥OC AOB ∠1∠2∠1∠2∠1∠2∠1∠2∠【解析】【分析】本题考查了角的互余概念、对顶角的定义,准确理解角的互余概念,对顶角的定义是解题的关键.【详解】解:∵,∴,又∵射线在内部,∴,∴和互余,故选A5. 如图,下列条件中,能判断的是( )A. B. C. D. 【答案】A【解析】【分析】由平行线的判定方法,即可判断.【详解】解:A.,由内错角相等,两直线平行,能判断,故A 符合题意;B.不是被截成的内错角,不能判断,故B 不符合题意;C. 不是被截成的内错角,不能判断,故C 不符合题意;D.不是被截成的同旁内角,不能判断,故D 不符合题意;故选:A .【点睛】本题考查平行线的判定,熟练掌握:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行,是解题的关键.6. 如图,由可以得到的结论是( )AO OB ⊥90AOB ∠=︒OC AOB ∠1290∠∠+=︒1∠2∠AB CD 12∠=∠13∠=∠14∠=∠13180∠+∠=︒12∠=∠AB CD 13∠∠、AB CD 、()AD BC AB CD 14∠∠、AB CD 、()AD BC AB CD 13∠∠、AB CD 、()AD BC AB CD AB CD ∥A. B. C. D. 【答案】B【解析】【分析】由平行线的性质,角平分线的定义逐项判断可求解【详解】解:A .当平分时,,故此选项不符合题意;B .当时,,故此选项符合题意;C .当时,,故此选项不符合题意;D .当平分时,,故此选项不符合题意.故选:B .【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.掌握平行线的性质是解题的关键.也考查了角平分线的定义.7. 将一个长方形的长减少,宽变成现在的2倍,设这个长方形的长为,宽为,则下列方程中正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据长方形的长减少宽变成现在的2倍,列出方程即可.【详解】解:设这个长方形的长为,宽为,根据题意得:,故C 正确.故选:C .【点睛】本题主要考查了列二元一次方程,解题的关键是找出题目中的等量关系.8. 实数,对应的位置如图所示,下列式子正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据数轴得出a 和b 的范围,进而得出,,根据有理数运算法则逐一判断即可.【详解】解:由数轴可得:,,∴,,12∠=∠14∠=∠23∠∠=34∠∠=AC BAD ∠12∠=∠AB CD ∥14∠=∠AD BC ∥23∠∠=AC BCD ∠34∠∠=5cm cm x cm y 52x y+=52x y +=+52x y -=52x y -=+5cm=cm x cm y 52x y -=a b 22a b <22a b -<-50a +<44a b +<+a b <a b >54a -<<-3<<4b a b <a b >∴,,,,故A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查了利用数轴判断式子的正负,有理数运算和符号之间的关系,乘、除法注意:同号得正,异号得负.9. 如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为千克,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】由图可得,小丽的重量为50千克,且进入电梯后,警示音没有响起,小欧的重量分别为70千克.且进入电梯后,警示音响起,分别列出不等式即可求解.【详解】由题意可知:当电梯乘载的重量超过400千克时警示音响起,小丽进入电梯前,电梯内已乘载的重量为x 千克,由图可知:小丽的重量为50千克,且进入电梯后,警示音没有响起,所以此时电梯乘载的重量,解得因为小欧的重量为70千克.且进入电梯后,警示音响起,所以此时电梯乘载的重量,解得因此的取值范围是故选:A【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是根据题意找到不等关系.22a b >22a b ->-50a +>44a b +<+x x 280350x <≤280400x <≤330350x <≤330400x <≤50400x +≤350x ≤5070400x ++>280x >x 280350x <≤10. 已知关于的不等式组有以下说法:①当时,则不等式组的解集是;②若不等式组的解集是,则;③若不等式组无解,则;④若不等式组的整数解只有,0,1,2,则.其中正确的说法有( )A. ①③B. ②④C. ①②③D. ①②③④【答案】C【解析】【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:关于的不等式组,①当时,则不等式组的解集是,故本小题正确,符合题意;②若不等式组的解集是,则,故本小题正确,符合题意;③若不等式组无解,则,故本小题正确,符合题意;④若不等式组的整数解只有,0,1,2,则,故本小题错误,不符合题意;故选:C .【点睛】本题考查的是由不等式组的解集情况求参数,熟知解一元一次不等式组的基本步骤是解题的关键.二、填空题(每题2分,共20分)11. 用不等式表示“的3倍与7的差小于11”为______.【答案】【解析】【分析】首先表示“的3倍”为,再表示“与7的差”为,最后再表示“小于11”为.【详解】解:∵“的3倍”为,再表示“与7的差”为,∴用不等式表示“的3倍与7的差小于11”为:,故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”、“至少”、“最多”等等,正确选择不等号.x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-2m =x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-23m <≤m 3711m -<m 3m 37m -3711m -<m 3m 37m -m 3711m -<3711m -<12. 已知方程的三个解为方程的三个解为则方程组的解为______.【答案】【解析】【分析】根据方程组解的定义,能够同时满足方程组中的两个方程的解是方程组的解观察得出两个方程的解中相同的解为方程组的解.【详解】解:根据方程组的解的定义,能够同时满足方程组中的两个方程的解是方程组的解,可知是这两个方程中所有的解中能同时满足两个方程的解,∴方程组的解为,故答案为:.【点睛】此题主要是考查了方程组的解的定义,能够熟练掌握同时满足方程组中的两个方程的解是方程组的解是解答此题的关键.13. 如图,利用工具测量角,则的大小为______.【答案】##30度【解析】【分析】根据对顶角的性质解答即可.【详解】解:量角器测量的度数为,根据对顶角相等的性质,可得,故答案为:.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.的24x y -+=1,2;x y =-⎧⎨=⎩0,4;x y =⎧⎨=⎩1,6,x y =⎧⎨=⎩1x y +=2,3;x y =-⎧⎨=⎩1,2;x y =-⎧⎨=⎩0,1.x y =⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩1∠30︒30︒130∠=︒30︒14. 如图,将含有的直角三角板的两个顶点分别放在直尺的一组对边上,如果,那么______°.【答案】40【解析】【分析】首先根据题意求出,然后根据平行线的性质求解即可.【详解】解:如图,∵∴ ∵∴.故答案为:40.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15. 下列命题中,①对顶角相等;②内错角相等;③平行于同一条直线的两条直线平行;④若,则.是真命题的是______.【答案】①③【解析】【分析】根据对顶角的性质判断①;根据平行线的性质判断②;根据平行公理的推论判断③;根据平方根定义判断④.【详解】解:①对顶角相等,是真命题;②内错角不一定相等,是假命题;③平行于同一条直线的两条直线互相平行,是真命题;60︒120∠=︒2∠=140EBC ABC ∠=∠-∠=︒120∠=︒140EBC ABC ∠=∠-∠=︒EB CD∥240EBC ∠=∠=︒22a b >a b >④若,则a 不一定大于b ,是假命题;故答案为:①③.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16. 如果关于的不等式的解集为,则的值是___________.【答案】1【解析】【分析】解不等式得,结合关于的不等式的解集为,得出,解之可得答案.详解】解:∵,∴,则, ∵关于的不等式的解集为,∴, 解得,故答案为:1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17. 在一本书上写着方程组的解是,其中的值被墨渍盖住了,但我们可解得的值为___________.【答案】【解析】【分析】根据,代入中,解得;把,代入中,即可求出的值.【22a b >x 3223x a a +≤-1x ≤-a 253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-3223x a a +≤-325x a ≤-253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-1a =43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩y p 321x =3x y +=2y =1x =2y =4x py +=p【详解】解:∵方程组的解是,∴代入中,解得,把,代入,得解得.故答案为:.【点睛】本题考查二元一次方程组的知识,解题的关键是代入中,求出.18. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 是135°,则第二次的拐角∠B 是________, 根据是________________.【答案】①. 135° ②. 两直线平行,内错角相等【解析】【分析】由两次转弯后,和原来的方向相同可知拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:如图:∵两次转弯后,和原来的方向相同,∴AC∥BD,∴∠B=∠A=135°(两直线平行,内错角相等).故答案为135°;两直线平行,内错角相等.【点睛】本题考查了平行线性质的应用,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.19. 如图,四边形纸片,.折叠纸片,使点D 落在上的点处,点C 落在点处,折痕为.若,则______.43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩1x =3x y +=2y =1x =2y =4x py +=124p +=32p =321x =3x y +=2y =ABCD AD BC ∥ABCD AB 1D 1C EF 102EFC ∠=︒1AED ∠=︒【答案】24【解析】【分析】根据平行线的性质可得,再根据折叠的性质可得,然后利用平角的定义求解即可.【详解】∵,∴,∵,∴,∵折叠纸片,使点D 落在上的点处,∴,∴,故答案为:24.【点睛】本题考查了折叠的性质,平行线的性质,平角的定义等知识点,熟练掌握其性质是解决此题的关键.20. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:累计工作时长最多件数(时)种类(件)12345678甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;180EFC DEF ∠+∠=︒178DEF D EF ∠=∠=︒AD BC ∥180EFC DEF ∠+∠=︒102EFC ∠=︒18010278DEF ∠=︒-︒=︒ABCD AB 1D 178DEF D EF ∠=∠=︒1180787824AED ∠=︒-︒-︒=︒(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】①. 160②. 180【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x+y=8,x,y均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(共60分,第21-24题,每题3分,第25题5分,第26-27题,每题4分,第28题6分,第29-31题,每题5分,第32-33题7分)21. 解方程组【答案】【解析】【分析】利用加减消元法求解可得;【详解】解:,得∴把代入①,得∴所以,原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,解决本题的关键是要掌握消元的方法,即代入消元法与加减消元法.22. 解方程组:【答案】【解析】【分析】方程组整理后,方程组利用加减消元法求解即可.【详解】整理得,得,解得,将代入①得:342,328.x y x y +=⎧⎨-=⎩21x y =⎧⎨=-⎩342,328.x y x y +=⎧⎨-=⎩①②-①②66y =-1y =-1y =-()3412x +⨯-=2x =2,1.x y =⎧⎨=-⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩12x y =⎧⎨=⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩24321x y x y +=⎧⎨-=-⎩①②2⨯+①②77x =1x =1x =214y ⨯+=∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.23. 解不等式,并把解集在数轴上表示出来.【答案】,图见解析【解析】【分析】先去括号,再移项、合并同类项、最后系数化为1即可,再在数轴上把解集表示出来.【详解】解:去括号得,,去括号得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,是基础知识要熟练掌握.24. 解不式组:并求出它的整数解.【答案】,整数解为3或4【解析】【分析】本题考查了解一元一次不等式组,不等式组的整数解.熟练掌握解一元一次不等式组,不等式组的整数解是解题的关键.先分别求出两个不等式的解集,进而可得不等式组的解集,最后求整数解即可.【详解】解:,,,12x y =⎧⎨=⎩()3157x x +-≤2x ≥-3357x x +-≤3573x x -≤-24x -≤2x ≥-()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩24x <≤()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩()224x x -->224x x -+>,,,,解得,,∴不等式组的解集为,整数解为3或4.25. 完成下列计算,并在括号内填写推理依据.如图,,直线分别交、于点E 和点F ,过点E 作交直线于点G .若,计算的度数.解:∵,∴ ( ).∵,∴ ().∴ .【答案】;两直线平行,内错角相等;垂直定义;;;【解析】【分析】由平行线的性质得,由垂直的定义得,进而可求的度数.【详解】解:∵,∴(两直线平行,内错角相等).∵,∴(垂直定义).∴.1213x x +≥-()1231x x +≥-1233x x +≥-4x -≥-4x ≤24x <≤AB CD MN AB CD EG MN ⊥CD 60EGF ∠=︒MEB ∠AB CD 60EGF ︒=∠=EG MN ⊥90MEG ∠=︒MEB ∠=-906030=︒-︒=︒BEG ∠MEG ∠BEG ∠60BEG EGF ︒∠=∠=90MEG ∠=︒MEB ∠AB CD 60BEG EGF ︒∠=∠=EG MN ⊥90MEG ∠=︒906030MEB MEG BEG ︒︒︒∠=∠-∠=-=故答案为:;两直线平行,内错角相等;垂直定义;;.【点睛】本题考查了平行线的性质,垂直的定义,数形结合是解答本题的关键.26. 如图,在三角形中,平分,求的度数.【答案】【解析】【分析】根据平行线的性质可得,根据角平分线的性质可得,则,最后根据三角形的一个外角定于与它不相邻两个内角之和,即可解答.【详解】解:∵,∴,∵平分,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的外角定理,解题的关键是掌握两直线平行,内错角相等;三角形的一个外角定于与它不相邻两个内角之和.27. 如图,点B 、C 在线段异侧,E 、F 分别是线段、上的点,和分别交于点G 和点H .已知,,.求证:.BEG ∠MEG ∠BEG ∠ABC CD ,,80ACB DE BC AED ∠∠=︒∥EDC ∠40︒BCD EDC ∠=∠ECD BCD ∠=∠ECD EDC ∠=∠DE BC ∥BCD EDC ∠=∠CD ACB ∠ECD BCD ∠=∠ECD EDC ∠=∠80AED ∠=︒180402EDC ∠=⨯︒=︒AD AB CD EC BF AD AEG AGE ∠=∠DGC C ∠=∠180BEC BFD ∠+∠=︒EC BF ∥【答案】见解析【解析】【分析】先证明出,从而得到,得到,再根据条件,得出,再根据平行线的判定求解即可.【详解】证明:证明:∵,,又∵∴,∴∴∵∴∴.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.28. 围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.【答案】(1)A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;(2)A 种材质的围棋最多能采购10套;(3)商店销售完这30套围棋能实现利润为1300元的目标;理由见解析.【解析】AEG C ∠=∠AB CD ∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD ∠=∠AEG AGE ∠=∠DGC C ∠=∠DGC AGE∠=∠AEG C ∠=∠AB CD∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD∠=∠EC BF ∥【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据表格中的销量和收入列方程组求解即可;(2)设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,根据“用不多于5400元的金额再采购A 、B 两种材质的围棋共30套”列不等式求解即可;(3)设销售利润为w ,根据题意列出一次函数解析式,然后利用一次函数的性质求解.【小问1详解】解:设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,由题意得:,解得:,答:A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;【小问2详解】解:设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,由题意得:,解得:,所以a 的最大值为10,答:A 种材质的围棋最多能采购10套;【小问3详解】解:商店销售完这30套围棋能实现利润为1300元的目标;理由:设销售利润为w ,由题意得:,∵,∴w 随a 的增大而增大,∵a 的最大值为10,∴当时,w 取最大值1300,即商店销售完这30套围棋能实现利润为1300元的目标.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用以及一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程组、不等式以及一次函数解析()30a -3518004103100x y x y +=⎧⎨+=⎩250210x y =⎧⎨=⎩()30a -()200170305400a a +-≤10a ≤()()()25020021017030101200w a a a =-+--=+100>10a =式.29. 已知:如图,点D 在线段上,过点D 作交线段于点E ,连接,过点D 作于点F ,过点F 作交线段于点G .(1)依题意补全图形;(2)用等式表示与的数量关系,并证明.【答案】(1)见解析;(2),证明见解析.【解析】【分析】(1)根据题意画出图形即可;(2)根据平行线的性质得出,,等量代换得出,根据,可知,进而可得出结论.【小问1详解】解:图形如下:【小问2详解】解:,证明:∵,∴,∵,∴,∴,∵,∴,∴,AB DE BC ∥AC CD DF BC ⊥FG CD ∥AB CDE ∠DFG ∠90CDE DFG ∠+∠=︒12∠=∠23∠∠=13∠=∠DF BC ⊥3490∠+∠=°90CDE DFG ∠+∠=︒DE BC ∥12∠=∠CD FG ∥23∠∠=13∠=∠DF BC ⊥3490∠+∠=°1490∠+∠=︒即.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.30. 解答题:解方程组时,由于,的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,不仅计算量大,而且易出现运算错误,而采用下面的解法则比较简单:①②得,所以③,③①得,解得,从而,所以原方程组的解是.请你运用上述方法解方程组:.【答案】【解析】【分析】仿照例子,利用加减消元法可解方程组求解.【详解】解:,得:,∴③,③①得:,解得:,将代入③得:,∴原方程组的解为.90CDE DFG ∠+∠=︒323538303336x y x y +=⎧⎨+=⎩①②x y -222x y +=1x y +=35⨯-33x =-=1x -2y =12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩①②-②①333x y +=1x y +=2018⨯-22x =-=1x -=1x -2y =12x y =-⎧⎨=⎩【点睛】本题主要考查二元一次方程组解法,解二元一次方程组由代入消元法和加减消元法.31. 先阅读绝对值不等式和的解法,再解答问题:①因为,从数轴上(如图1)可以看出只有大于而小于6的数的绝对值小于6,所以的解集为.②因为,从数轴上(如图2)可以看出只有小于的数和大于6的数的绝对值大于6,所以的解集为或.(1)的解集为_________,的解集为_________;(2)已知关于x ,y 的二元一次方程组的解满足,其中m 是负整数,求m 的值.【答案】(1),或(2)【解析】【分析】本题考查了绝对值的意义,不等式组的解集,加减消元法解二元一次方程组等知识.理解题意是解题的关键.(1)根据题意求解集即可;(2)加减消元法解二元一次方程组得,由题意知,,即,,可求,然后作答即可.【小问1详解】解:由题意知,的解集为,的解集为或;故答案为:,或;【小问2详解】解:,的||6x <||6x >||6x <6-||6x <66x -<<||6x >6-||6x >6x <-6x >||2x <||5x >254482x y m x y m -=+⎧⎨+=-+⎩||3x y +≤22x -<<5x <-5x >1-42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩472333m m +-≤23m -≤323m -≤-≤15m -≤≤||2x <22x -<<||5x >5x <-5x >22x -<<5x <-5x >254482x y m x y m -=+⎧⎨+=-+⎩①②得,,解得,,将代入①得,,解得,,∴,∵,∴,即,∴,解得,,∵m 是负整数,∴m 的值为.32. 已知:如图,直线,点A 、B 在直线a 上(点A 在点B 左侧),点C 、D 在直线b 上(点C 在点D 左侧),和相交于点E .(1)求证:;(2)分别作和的角平分线相交于点F .① 结合题意,补全图形;② 用等式表示和的数量关系,并证明.【答案】(1)见解析(2)①见解析;②;见解析【解析】【分析】(1) 过点E 作,证明 ,,可得,从而可得答案;2⨯-②①921y m =-73y m =-73y m =-72543x m m ⎛⎫--=+ ⎪⎝⎭423x m =+42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩||3x y +≤472333m m +-≤23m -≤323m -≤-≤15m -≤≤1-a b ∥AD BC BED BAD BCD ∠=∠+∠BAD ∠BCD ∠AFC ∠BED ∠12AFC BED ∠=∠EM AB ∥BAD AEM ∠=∠BCD MEC ∠=∠AEC BAD BCD ∠=∠+∠(2)①根据题意补全图形即可;②过点F 作,可得 ,证明,可得,结合、分别平分和,可得,结合,从而可得答案.【小问1详解】过点E 作,∴ ,∵,∴,∴,∵,∴,∵,∴.【小问2详解】①补全图形如图所示:②;证明:过点F 作,∴∵,∴,FN AB ∥AFN BAF ∠=∠NFC FCD ∠=∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠EM AB ∥BAD AEM ∠=∠AB CD ∥EM CD ∥BCD MEC ∠=∠AEC AEM MEC ∠=∠+∠AEC BAD BCD ∠=∠+∠AEC BED ∠=∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠FN AB ∥AFN BAF ∠=∠AB CD ∥FN CD ∥∴,∵,∴,∵、分别平分和,∴,∵,∴.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,熟练的利用平行线的性质进行证明是解本题的关键.33. 给出如下定义:如果一个未知数的值使得方程和不等式(组)同时成立,那么这个未知数的值称为该方程与不等式(组)的“关联解”.例如:已知方程和不等式,对于未知数,当时,使得,同时成立,则称是方程与不等式 的“关联解”.(1)判断是否是方程与不等式的“关联解”_____(填是或否);判断是方程与不等式(组)①,②,③中_______的“关联解”;(只填序号)(2)如果是关于的方程与关于的不等式组的“关联解”,那么____,的取值范围是_______;(3)如果是关于方程与关于的不等式组的“关联解”,求的取值范围.【答案】(1)否;①;(2);;(3).【解析】的NFC FCD ∠=∠AFC AFN NFC ∠=∠+∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠321x -=40x +>x 1x =3121⨯-=41450x +=+=>1x =321x -=40x +>3x =260x -=()234x +<=1x -231x +=1322x -<132x ->2050x x ->⎧⎨-<⎩2x =x 20x a -=x ()11212x x a b +⎧>-⎪⎨⎪+-≤⎩=a b x m =x 24x n -=x 121n m x m n x ⎧-+>-⎪⎨⎪-->-⎩m 4a =3b ≥-36m <<【分析】(1)根据“关联解”的定义求解即可;(2)根据“关联解”的定义,将代入方程即可求出,再解不等式得:,即可得出答案;(3)根据“关联解”的定义得出不等式组,求解即可【小问1详解】解:当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,成立,则是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式组 的“关联解”;故答案为:否;①;【小问2详解】解:根据题意可得:,解得:,不等式组解不等式得:,即,解得:;故答案为:;;【小问3详解】2x =4a =②8122b +-≥4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩3x =2360⨯-=()2334+<3x =260x -=()234x +<=1x -()2131⨯-+=13122--<=1x -231x +=1322x -<=1x -()2131⨯-+=1132-->=1x -231x +=132x ->=1x -()2131⨯-+=120150-->⎧⎨--<⎩=1x -231x +=2050x x ->⎧⎨-<⎩220a ⨯-=4a =()11212x x a b +⎧>-⎪⎨⎪+-≤⎩①②②212b a x +-≤8122b +-≥3b ≥-4a =3b ≥-解:根据题意可得:,∴,不等式组为,化简得:,解不等式组得:.【点睛】本题考查解一元一次不等式组,方程的解,正确理解新定义是解题的关键.24m n -=42-=m n 4122412m m m m m m -⎧-+>-⎪⎪⎨-⎪-->-⎪⎩4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩36m <<。
2020-2021学年鲁教版(五四制)七年级数学下期中复习试卷含答案
鲁教五四新版七年级下册数学期中复习试卷一.选择题(共12小题,满分48分,每小题4分)1.方程组的解为,则被遮盖的前后两个数分别为()A.1、2B.1、5C.5、1D.2、42.下列四个命题:①±4是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有()个.A.1B.2C.3D.43.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°4.下列说法正确的是()A.篮球队员在罚球线上投篮一次,则“投中”是随机事件B.明天的降水概率为40%,则“明天下雨”是确定事件C.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是必然事件D.a是实数,则“|a|≥0”是不可能事件5.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.6.某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英中学队在8场比赛中得到12分,若设该队胜的场数为x,负的场数为y,则可列方程组为()A.B.C.D.7.池塘中放养了鲤鱼2000条,鲢鱼若干条,在几次随机捕捞中,共捕到鲤鱼200条,鲢鱼300条,估计池塘中原来放养了鲢鱼()A.10000条B.2000条C.3000条D.4000条8.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠D FB=∠CGE.其中正确的结论是()A.②③B.①②④C.①③④D.①②③④9.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.32°B.45°C.60°D.64°10.下列各题中合并同类项,结果正确的是()A.3a+2b=5ab B.4x2y﹣2xy2=2xyC.7a+a=7a2D.5y2﹣3y2=2y211.已知直线y=kx+2与直线y=x交于点P,且点P的横坐标为2,下列结论:其中正确的是()①关于x的方程kx+2=0的解为x=3;②对于直线y=kx+2,当x<3时,y>0;③方程组的解为,A.①②B.①③C.②③D.①②③12.把一副三角板放在水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.90°B.105°C.120°D.135°二.填空题(共6小题,满分24分,每小题4分)13.方程组的解是.14.有6张看上去无差别的卡片,上面分别写着0,π,,,0.1010010001,﹣随机抽取1张,则取出的数是无理数的概率是.15.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为.16.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.17.把命题“对顶角相等”改写成“如果…那么…”的形式:.18.将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是;(2)2022应排在A,B,C,D,E中的位置上.三.解答题(共7小题,满分78分)19.(6分)如图,已知,AB⊥BC,AD∥BC,∠BAC=∠D=60°.(1)试求∠C和∠DEC的度数;(2)说明直线AC与DE的关系,并说明理由.20.(15分)解方程组(1);(2);21.(9分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?22.(12分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.23.(12分)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.(12分)如图:已知在平面直角坐标系中点A(a,b)点B(a,0),且满足|2a﹣b|+(b﹣4)2=0.(1)求点A、点B的坐标.(2)已知点C(0,b),点P从B点出发沿x轴负方向以1个单位每秒的速度移动.同时点Q从C点出发,沿y轴负方向以2个单位每秒的速度移动,某一时刻,如图所示且S阴=S四边形OCAB,求点P移动的时间?(3)在(2)的条件下,AQ交x轴于M,作∠ACO,∠AMB的角平分线交于点N,判断是否为定值,若是定值求其值;若不是定值,说明理由.25.(12分)快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∴被遮盖的前后两个数分别为:5,1故选:C.2.解:①∵4是64的立方根,∴①是假命题;②∵5是25的算术平方根,∴②是真命题;③∵如果两条直线都与第三条直线平行,那么这两条直线也互相平行,∴③是真命题;④∵在平面直角坐标系中,与两坐标轴距离都是2的点有且只有4个,∴④是假命题;真命题的个数有2个,故选:B.3.解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.4.解:A.篮球队员在罚球线上投篮一次,则“投中”是随机事件,此选项正确;B.明天的降水概率为40%,则“明天下雨”是随机事件,此选项错误;C.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是随机事件,此选项错误;D.a是实数,则“|a|≥0”是必然事件,此选项错误;故选:A.5.解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.6.解:依题意得:.故选:C.7.解:由题意可得,2000÷×=2000×=3000(条),即估计池塘中原来放养了鲢鱼3000条,故选:C.8.解:∵EG∥BC,∴∠CEG=∠BCA,∵CD平分∠ACB,∴∠BCA=2∠DCB,∴∠CEG=2∠DCB,故①正确,∵CG⊥EG,∴∠G=90°,∴∠GCE+∠CEG=90°,∵∠A=90°,∴∠BCA+∠ABC=90°,∵∠CEG=∠ACB,∴∠ECG=∠ABC,∵∠ADC=∠ABC+∠DCB,∠GCD=∠ECG+∠ACD,∠ACD=∠DCB,∴∠ADC=∠GCD,故②正确,假设AC平分∠BCG,则∠ECG=∠ECB=∠CEG,∴∠ECG=∠CEG=45°,显然不符合题意,故③错误,∵∠DFB=∠FCB+∠FBC=(∠ACB+∠ABC)=45°,∠CGE=45°,∴∠DFB=∠CG E,故④正确,故选:B.9.解:如图所示:由折叠的性质得:∠D=∠B=32°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+64°,∴∠1﹣∠2=64°.故选:D.10.解:(A)原式=3a+2b,故A错误;(B)原式=4x2y﹣2xy2,故B错误;(C)原式=8a,故C错误;故选:D.11.解:当x=2时,y=x=,则P(2,),把P(2,)代入y=kx+2得2k+2=,解得k=﹣,∴直线y=kx+2的解析式为y=﹣x+2,当y=0时,﹣x+2=0,解得x=3,∴关于x的方程kx+2=0的解为x=3,所以①正确;当y>0,﹣x+2>0,解得x<3,所以②正确;∵直线y=kx+2与直线y=x交点为P(2,),∴方程组的解为,所以③正确.故选:D.12.解:作直线OE平行于直角三角板的斜边.可得:∠A=∠AOE=60°,∠C=∠EOC=45°,故∠1的度数是:60°+45°=105°.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:将x=1代入x+y=5,∴y=4,∴方程组的解为:,故答案为:,14.解:在0,π,,,0.1010010001,﹣中,无理数有π,,共2个,∴取出的数是无理数的概率是=;故答案为:.15.解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=(180°﹣70°)=55°,∵∠A=55°,∴∠ADE=∠EDA′=180°﹣55°﹣55°=70°,∴∠A′DB=180°﹣140°=40°,故答案为40°.16.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.17.解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.18.解:(1)观察发现:峰n中,A位置的绝对值可以表示为:5n﹣3;B位置的绝对值可以表示为:5n﹣2;C位置(峰顶)的绝对值可以表示为:5n﹣1;D位置的绝对值可以表示为:5n;E位置的绝对值可以表示为:5n+1;∴处在峰5位置的有理数是5×5﹣1=24;(2)根据规律,∵2022=5×405﹣3,∴2022应排在A的位置.故答案为:(1)24;(2)A.三.解答题(共7小题,满分78分)19.解:如图所示:(1)∵AB⊥BC,∴∠B=90°,又∵∠BAC=60°,∠BAC+∠C=90°,∴∠C=30°,又∵AD∥BC,∴∠D=∠DEC,(2)AC⊥DE,理由如下,∵∠D=60°,又∵∠DEC +∠C +∠EFC =180°,∴∠EFC =90°,∴AC ⊥DE .20.解:(1),①×2+②得:﹣9y =﹣9,解得:y =1,把y =1代入②得:x =1, 则方程组的解为; (2)方程组整理得:, ①×2+②得:11x =22,解得:x =2,把x =2代入①得:y =3, 则方程组的解为. 21.解:公平.画树状图得:从表中可以得到:P 积为奇数==,P 积为偶数==, ∴小明的积分为×2=,小刚的积分为×1==.22.解:∵EF ∥AD ,AD ∥BC ,∴EF ∥BC ,∴∠ACB +∠DAC =180°,∵∠DAC =120°,∴∠ACB =60°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.23.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.24.解:(1)∵|2a﹣b|+(b﹣4)2=0.∴2a﹣b=0,b﹣4=0,∴a=2,b=4,∴点A的坐标为(2,4)、点B的坐标(2,0);(2)方法一:如图2,设P点运动时间为ts,则t>2,所以P点坐标为(2﹣t,0),Q 点坐标为(0,4﹣2t),设直线AQ的解析式为y=kx+4﹣2t,把A(2,4)代入得2k+4﹣2t=4,解得k=t,∴直线AQ的解析式为y=tx+4﹣2t,直线AQ与x轴交点坐标为(,0),∴S阴影=(+t﹣2)×4+××(2t﹣4),而S阴=S四边形OCAB,∴(+t﹣2)×4+××(2t﹣4)=×2×4,整理得t2﹣3t=0,解得t1=0(舍去),t2=3,∴点P移动的时间为3s;方法二:过P点作PM⊥AC于M,QN⊥AB于N,如图,易得四边形OPMC和四边形ACQN都为矩形,S阴影=S矩形OPMC+S矩形ACQN﹣S△AMC﹣S△AQN=4(t﹣2)+2×2t﹣×t×4﹣×2t×2,∵S阴=S四边形OCAB,∴4(t﹣2)+2×2t﹣×t×4﹣×2t×2=×2×4,解得t=3;(3)为定值.理由如下:如图3,∵∠ACO,∠AMB的角平分线交于点N,∴∠ACN=45°,∠1=∠2,∵AC∥BP,∴∠CAM=∠AMB=2∠1,∵∠ACN+∠CAM=∠N+∠1,∴45°+2∠1=∠N+∠1,∴∠N=45°+∠1,∵∠AMB=∠APB+∠PAQ,∴∠APB+∠PAQ=2∠1,∵∠AQC+∠OMQ=90°,而∠OMQ=2∠1,∴∠AQC=90°﹣2∠1,∴==.25.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。
七年级数学下册期中考试卷(附答案)
七年级数学下册期中考试卷(附答案)一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,属于一元一次方程的是()A.2x﹣1=0 B.1﹣x=y C.=4 D.1﹣x2=02.二元一次方程x+2y=5的非负整数解的个数是()A.4 B.3 C.2 D.13.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.>D.﹣a>﹣b4.小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A.5×2+2x≥30 B.5×2+2x≤30 C.2×2+2x≥30 D.2×2+5x≤305.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.7<m<8 B.7≤m<8 C.7≤m≤8 D.7<m≤86.下列方程的变形正确的是()A.由3+x=5,得x=5+3 B.由x=0,得x=2C.由7x=﹣4,得x=﹣D.由3=x﹣2,得x=﹣2﹣37.如图,八块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的宽等于()A.5cm B.10cm C.15cm D.45cm8.《孙子算经》是中国古代重要的数学著作,书中记载有这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”译文:“现有一根木头,不知道它的长短.用一根绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木长x尺、绳子长y尺,可列方程组为()A.B.C.D.9.不等式组的整数解是()A.15 B.16 C.17 D.15,1610.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.25 B.36 C.49 D.81二.填空题(共5小题,满分15分,每小题3分)11.关于x的一元一次方程2mx﹣1=3﹣x有解,则m的值为.12.已知方程,用含y的代数式表示x,那么.13.若|x﹣2|+|y+1|=0,则x﹣2y的值为.14.如果4m、m、6﹣2m这三个数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.15.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.三.解答题(共8小题,满分75分)16.(16分)解方程与方程组:(1)=1;(2).17.(10分)解不等式和不等式组,并把解集在数轴上表示出来(1)3x﹣1<7﹣x(2)(3).18.(6分)规定新运算:x*y=ax+by,其中a、b是常数.已知2*1=4,﹣1*3=﹣9.(1)求a、b的值;(2)若,求m,n的值.(3)若3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,且3x+4y<6,求t的最小整数值.19.(7分)在关于x,y的二元一次方程组中;(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最小值?是多少?20.(8分)已知关于x,y的方程组的解满足2x+3y>0,试求m的取值范围.21.(9分)已知关于x的方程2x﹣3=+x的解满足|x|﹣1=0,求m的值.22.(9分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知购买1个篮球和2个足球共需316元;购买2个篮球和3个足球共需534元.(1)购买1个篮球和1个足球各需多少元?(2)学校准备购进篮球和足球共40个,并且总费用不超过4200元,则篮球最多可购买多少个?23.(10分)某公司要将一批物资一次性运往目的地.若用m辆载重量为5吨的汽车装运,则还剩余21吨物资,若用m辆载重量为8吨的汽车装运,则最后一辆汽车只要载2吨.(1)求m的值;(2)若同时使用载重为5吨和8吨的两种汽车运输,且每辆载重量5吨的汽车的运费为700元,每辆载重量8吨的汽车的运费为1000元,请你设计一种租车方案,每辆汽车都满载且租车的总费用最少.参考答案与解析一.选择题1.【答案】解:A、该方程符合一元一次方程的定义,故本选项符合题意.B、该方程中含有两个未知数,不是一元一次方程,故本选项不符合题意.C、该方程是分式方程不是一元一次方程,故本选项不符合题意.D、该方程的未知数的最高此时是2,不是一元一次方程,故本选项不符合题意.故选:A.2.【答案】解:由x+2y=5,得x=5﹣2y.∵x,y都是非负整数;∴y=0,1,2;相应的x=5,3,1.故选:B.3.【答案】解:A、∵a>b;∴a﹣5>b﹣5;故本选项符合题意;B、∵a>b;∴;故本选项不符合题意;C、a>b,当a=2,b=1时,可得;故C不符合题意;D、∵a>b;∴﹣a<﹣b;故本选项不符合题意;故选:A.4.【答案】解:设小明还能买x支签字笔;依题意得:2×2+5x≤30.故选:D.5.【答案】解:解不等式x﹣m<0,得:x<m;解不等式6﹣2x≤﹣2,得:x≥4;则不等式组的解集为4≤x<m;∵不等式组的整数解共有4个;∴不等式组的整数解为4、5、6、7;故选:D.6.【答案】解:(A)由3+x=5,得x=5﹣3,故A错误;(B)由x=0,得x=0,故B错误;(D)由3=x﹣2,得x=3+2,故D错误;故选:C.7.【答案】解:设每块小长方形地砖的长为xcm,宽为ycm;依题意得:;解得:;即每块小长方形地砖的宽等于15cm;故选:C.8.【答案】解:根据题意得:;故选:A.9.【答案】解:由①得x<由②得x>;所以不等式组的解集是<x<;则整数解是16.故选:B.10.【答案】解:设小长方形的长为x,宽为y,则大长方形的长为3x,宽为3y;根据题意得:;解得:;∴(3x+3y)2=(3×2+3×1)2=81.故选:D.二.填空题11.【答案】解:由2mx﹣1=3﹣x,可得(2m+1)x=4;∵关于x的一元一次方程2mx﹣1=3﹣x有解;解得:m≠﹣.故答案为:≠﹣.12.【答案】解:方程x﹣8=y;整理得:x﹣40=5y;解得:x=5y+40;故答案为:x=5y+4013.【答案】解:∵|x﹣2|+|y+1|=0;∴x﹣2=0,y+1=0;解得x=2,y=﹣1;∴x﹣2y=2﹣2×(﹣1)=2+2=4;故答案为:4.14.【答案】解:根据题意得:4m<m,m<6﹣2m,4m<6﹣2m;解得:m<0,m<2,m<1;∴m的取值范围是m<0.故答案为:m<0.15.【答案】解:设该商品的标价为每件x元;由题意得:80%x﹣10=2;解得:x=15.答:该商品的标价为每件15元.故答案为:15.三.解答题16.【答案】解:(1)去分母,得4(2x+1)﹣3(x﹣1)=12;去括号,得8x+4﹣3x+3=12;移项,得8x﹣3x=12﹣4﹣3;合并同类项,得5x=5;系数化为1,得x=1;(2);②﹣①,得3x=﹣9;解得:x=﹣3;把x=﹣3代入①,得﹣3+y=1;解得:y=4;所以方程组的解是.17.解:(1)3x﹣1<7﹣x;3x+x<7+1;4x<8;x<2;在数轴上表示为;(2)∵由①得:x≥;由②得:x>;∴不等式组的解集为:x>;在数轴上表示不等式组的解集为:;(3)∵由①得:x≤4;由②得:x>0;∴不等式组的解集为:0<x≤4;在数轴上表示不等式组的解集为:.18.【答案】解:(1)∵2*1=4,﹣1*3=﹣9,x*y=ax+by;∴;①+②×2,得7b=﹣14;解得:b=﹣2;把b=﹣2代入①,得2a﹣2=4;解得:a=3;(2)∵,a=3,b=﹣2,x*y=ax+by;∴;①×2﹣②,得﹣3n=﹣6;解得:n=2;把n=2代入②,得6m﹣2=4;解得:m=1;(3)∵3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,x*y=ax+by,a=3,b=﹣2;∴;①+②,得3x+4y=﹣2﹣3t;∵3x+4y<6;∴﹣2﹣3t<6;∴﹣3t<6+2;∴﹣3t<8;∴t>﹣;∴t的最小整数值是﹣2.19.【答案】解:(1)当a=3时,方程组为;①+②×2,得5x=5;∴x=1.把x=1代入②,得y=1.∴;(2);①+②,得3x+y=a+1;∴S=a(3x+y)=a(a+1)=a2+a=(a+)2﹣.当a=﹣时,S最小,最小值是﹣.20.【答案】解:;①+②×4,得6x+9y=9﹣m;∴2x+3y=>0;∴m<9.21.【答案】解:∵|x|﹣1=0,即|x|=1;解得x=﹣1或x=1;若x=﹣1,则2×(﹣1)﹣3=;解得m=﹣12;若x=1,则2×1﹣3=+1;解得m=﹣6;∴m=﹣12或m=﹣6.22.【答案】解:(1)设购买1个篮球需要x元,购买1个足球需要y元;依题意得:;解得:.答:购买1个篮球需要120元,购买1个足球需要98元.(2)设购买篮球m个,则购买足球(40﹣m)个;依题意得:120m+98(40﹣m)≤4200;解得:m≤12.又∵m为整数;∴m可以取的最大值为12.答:篮球最多可购买12个.23.【答案】解:(1)5m+21=8(m﹣1)+2解得m=9;(2)设使用载重为5吨的汽车x辆,使用载重为8吨的汽车y辆则5x+8y=66;x,y都是正整数或.使用载重为5吨的汽车2辆,使用载重为8吨的汽车7辆总费用最少为8400元。
北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)
北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。
2022-2023学年广西南宁市银海区三雅学校七年级(下)期中数学试卷(含解析)
2022-2023学年广西南宁市银海区三雅学校七年级(下)期中数学试卷一.选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.如图是德胜中学的校徽,将它通过平移可得到的图形是( )A.B.C.D.2.下列命题中,真命题是( )A.负数没有立方根B.邻补角是互补的角C.带根号的数一定是无理数D.同位角相等3.下列方程组中是二元一次方程组的是( )A.B.C.D.4.4的平方根是( )A.±16B.±C.±2D.5.下列各数314,,0.,,2.1313313331…(相邻两个1之间3的个数逐次多1),,,其中无理数的个数为( )A.2个B.3个C.4个D.5个6.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)7.已知是关于x,y的二元一次方程y=ax+5的一个解,那么a的值为( )A.3B.2C.﹣2D.﹣38.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为( )A.92°B.98°C.102°D.108°9.若m<0,则点P(﹣3,2m)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限10.下列条件:①∠C=∠BFD,②∠AEC=∠C,③∠BEC+∠C=180°,其中能判断AB ∥CD的是( )A.①②③B.①③C.②③D.①11.已知关于x,y的二元一次方程组的解满足x+y=3,则k的值为( )A.1B.5C.7D.812.如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y为时,输入值x为3或9;②当输入值x为16时,输出值y为;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是( )A.①②B.②④C.①④D.①③二.填空题(本题共6小题,每小题2分,共12分.)13. 8.(请在横线上填上“>”、“<”或“=”)14.在平面直角坐标系中,点M(﹣1,3)到x轴的距离为 .15.若,则(a+b)2023= .16.在平面直角坐标系中,已知点A(2,1),直线AB与x轴平行,若AB=4,则点B的坐标为 .17.如图,有一块长为44m、宽为24m的长方形草坪,其中有三条直道将草坪分为六块,则分成的六块草坪的总面积是 m2.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2022的坐标为 .三、解答题(本题共8小题,共72分.解答题应写出文字说明或演算步骤.)19.+﹣﹣|﹣5|;20.如图,直线AB、CD、EF相交于点O,CD⊥EF,OG平分∠BOF,∠AOE=50°.求∠DOG的度数;21.解方程组:(1);(2).22.三角形ABC在平面直角坐标系中的位置如图所示,点O为坐标原点,A(﹣1,4),B (﹣4,﹣1),C(1,1).将三角形ABC向右平移3个单位长度,再向下平移2个单位长度得到三角形A1B1C1,使得点A与点A1对应,点B与点B1对应,点C与点C1对应.(1)画出平移后的三角形A1B1C1,并写出点A1,B1,C1的坐标;(2)求三角形A1B1C1的面积.23.某中学初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人,1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若计划租用A型车m辆,租用B型车n辆,请你设计租车方案,能一次运送所有学生,且恰好每辆车都坐满.24.已知:如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠B=40°,∠1=60°,求∠OFE的度数.25.阅读理解.∵<<,即2<<3.∴1<﹣1<2,∴﹣1的整数部分为1,∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)2的平方根,提示:()2=17;(3)若c是立方根等于本身的数,且c<0,求2a﹣b﹣4c的值.26.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣4,2)、(1,﹣4),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发,以个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的?若存在,求t的值并求此时点P的坐标;若不存在说明理由.参考答案一.选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.如图是德胜中学的校徽,将它通过平移可得到的图形是( )A.B.C.D.【分析】根据平移的意义对每个选项分析即可得到结论.解:A.是通过折叠得到的图形,故本选项不符合题意;B.是通过旋转180°得到的图形,故本选项不符合题意;C.是通过平移得到的图形,故本选项符合题意;D.是通过旋转90°得到的图形,故本选项不符合题意,故选:C.【点评】本题主要考查了图形的平移,熟练掌握平移的性质和旋转的异同点是解决问题的关键,2.下列命题中,真命题是( )A.负数没有立方根B.邻补角是互补的角C.带根号的数一定是无理数D.同位角相等【分析】根据立方根概念,邻补角概念,无理数定义,平行线性质逐项判断.解:负数有立方根,故A是假命题,不符合题意;邻补角是互补的角,故B是真命题,符合题意;带根号的数不一定是无理数,故C是假命题,不符合题意;两直线平行,同位角相等,故D是假命题,不符合题意;故选:B.【点评】本题考查命题与定理,解题的关键是掌握教材上相关的概念与定理.3.下列方程组中是二元一次方程组的是( )A.B.C.D.【分析】根据二元一次方程组的定义逐个判断即可.解:A.方程组是二元一次方程组,故本选项符合题意;B.方程组是三元一次方程组,不是二元一次方程组,故本选项不符合题意;C.方程组是二元二次方程组,不是二元一次方程组,故本选项不符合题意;D.方程组中的第二个方程不是整式方程,不是二元一次方程组,故本选项不符合题意;故选:A.【点评】本题考查了二元一次方程组的定义,能熟记二元一次方程组的定义是解此题的关键,满足下列条件的方程组是二元一次方程组:①每个方程都是整式方程,②方程组中共含有两个不同的未知数,③所含未知数的项的最高次数是1.4.4的平方根是( )A.±16B.±C.±2D.【分析】根据平方根的定义,求数4的平方根即可.解:4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.下列各数314,,0.,,2.1313313331…(相邻两个1之间3的个数逐次多1),,,其中无理数的个数为( )A.2个B.3个C.4个D.5个【分析】分别根据无理数、有理数的定义即可判定选择项.解:在314,,0.,,2.1313313331…(相邻两个1之间3的个数逐次多1),,中,无理数有,2.1313313331…(相邻两个1之间3的个数逐次多1),,共3个.故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.解:如图,棋子“炮”的坐标为(3,﹣2).故选:C.【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.7.已知是关于x,y的二元一次方程y=ax+5的一个解,那么a的值为( )A.3B.2C.﹣2D.﹣3【分析】把代入方程y=ax+5得到关于a的一元一次方程,解之即可.解:把代入方程y=ax+5得:2=a+5,解得a=﹣3,故选:D.【点评】本题考查了二元一次方程的解,正确掌握代入法是解题的关键.8.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为( )A.92°B.98°C.102°D.108°【分析】依据l1∥l2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°﹣∠3﹣∠4=98°.解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣52°﹣30°=98°,故选:B.【点评】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.9.若m<0,则点P(﹣3,2m)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】首次根据m<0判断点P纵坐标2m为负,然后根据平面直角坐标系中象限内点的坐标的特点,即可得出点P所在的象限.解:∵m<0,∴2m<0,∴点P(﹣3,2m)所在的象限是第三象限.故选:C.【点评】本题考查了平面直角坐标系中象限内点的坐标的特点,正确理解题意是解题的关键.10.下列条件:①∠C=∠BFD,②∠AEC=∠C,③∠BEC+∠C=180°,其中能判断AB ∥CD的是( )A.①②③B.①③C.②③D.①【分析】根据平行线的判定定理对各选项进行逐一判断即可.解:①由“同位角相等,两直线平行”知,根据∠C=∠BFD能判断BF∥EC.②由“内错角相等,两直线平行”知,根据∠AEC=∠C能判断AB∥CD.③由“同旁内角互补,两直线平行”知,根据∠BEC+∠C=180°能判断AB∥CD.故选:C.【点评】本题考查的是平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.11.已知关于x,y的二元一次方程组的解满足x+y=3,则k的值为( )A.1B.5C.7D.8【分析】方程组中两方程相加求出,然后根据x+y=3列式求出k的值即可.解:,①+②得:5x+5y=2k+1,∴,∵x+y=3,∴,∴k=7,故选:C.【点评】此题考查了二元一次方程组的解以及二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.理解方程组的解的概念是解题的关键.12.如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y为时,输入值x为3或9;②当输入值x为16时,输出值y为;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是( )A.①②B.②④C.①④D.①③【分析】根据运算规则即可求解.解:①x的值不唯一.x=3或x=9或81等,故①说法错误;②输入值x为16时,,,即y=,故②说法正确;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y,如输入π2,故③说法错误;④当x=1时,始终输不出y值.因为1的算术平方根是1,一定是有理数,故④原说法正确.其中错误的是①③.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二.填空题(本题共6小题,每小题2分,共12分.)13. > 8.(请在横线上填上“>”、“<”或“=”)【分析】应用放缩法,判断出与8的大小关系即可.解:∵>,=8,∴>8.故答案为:>.【点评】此题主要考查了实数大小比较的方法,注意放缩法的应用.14.在平面直角坐标系中,点M(﹣1,3)到x轴的距离为 3 .【分析】根据点到x轴的距离等于纵坐标的绝对值解答.解:点P(﹣1,3)到x轴的距离3.故答案为:3.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值是解题的关键.15.若,则(a+b)2023= 1 .【分析】根据算术平方根和绝对值的非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解:∵,而≥0,|b+1|≥0,∴a﹣2=0,b+1=0,解得a=2,b=﹣1,∴(a+b)2023=12023=1.故答案为:1.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.在平面直角坐标系中,已知点A(2,1),直线AB与x轴平行,若AB=4,则点B的坐标为 (6,1)或(﹣2,1) .【分析】根据平行于x轴的点的坐标特征:纵坐标相等,及平面直角坐标系中,方向不同,点的坐标也不同,得出点B的坐标具有两种情况.【解答】解;如图,∵点A(2,1),直线AB与x轴平行,∴直线AB上的点的纵坐标都为1;∵AB=4,∴当点B在点A的右侧时,x=x+3=2+4=5,即B'(6,1),当点B在点A的左侧时,x=x﹣3=2﹣4=﹣2,即B''(﹣2,1);∴综上所述,点B的坐标为(6,1)或(﹣2,1).故答案为:(6,1)或(﹣2,1).【点评】本题的关键点和难点是:1.知道平行于x轴的点的坐标特征,纵坐标相等.2.分类讨论思想,在平面直角坐标系中,由于组成要素数轴具有方向性,因为当条件不明确时,需分类讨论.在解决关于平面是直角坐标系的问题中,分类讨论思想应用广泛.17.如图,有一块长为44m、宽为24m的长方形草坪,其中有三条直道将草坪分为六块,则分成的六块草坪的总面积是 880 m2.【分析】草坪的面积等于矩形的面积﹣三条路的面积+三条路重合部分的面积,由此计算即可.解:S=44×24﹣2×24×2﹣2×44+2×2×2=880(m2).故答案为:880.【点评】本题考查了生活中的平移现象,解答本题的关键是求出草坪总面积的表达式.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2022的坐标为 (1011,1) .【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2022的坐标.解:∵2022÷4=505……2,则A2022的坐标是(505×2+1,1)=(1011,1).故答案为:(1011,1).【点评】本题考查了坐标与图形变化﹣平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.三、解答题(本题共8小题,共72分.解答题应写出文字说明或演算步骤.)19.+﹣﹣|﹣5|;【分析】先计算零次幂、负整数指数幂、绝对值和特殊角的三角函数值,再计算乘法,最后计算加减.解:+﹣﹣|﹣5|=+5﹣4+﹣5=2﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法,并能进行正确地计算.20.如图,直线AB、CD、EF相交于点O,CD⊥EF,OG平分∠BOF,∠AOE=50°.求∠DOG的度数;【分析】首先垂直的定义可得∠COF=90°,根据对顶角相等可得∠BOD=∠AOC=20°,根据补角的定义可得∠BOF=70°,再根据角平分线的定义以及角的和差关系算出∠DOG的度数.解:∵CD⊥EF(已知),∴∠COF=90°(垂直的定义),∵∠BOF=∠AOE=50°(对顶角相等),∴∠BOD=∠DOF﹣∠BOF=40°,又∵OG平分∠BOF(已知),∴∠BOG=∠BOF==25°(角平分线的定义),∴∠DOG=∠BOG+∠BOD=25°+40°=65°.【点评】此题主要考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.21.解方程组:(1);(2).【分析】(1)应用代入消元法,求出方程组的解即可;(2)应用加减消元法,求出方程组的解即可.解:(1),由①,可得:x=y+2③,③代入②,可得:2(y+2)+y=7,解得y=1,把y=1代入③,可得x=1+2=3,∴原方程组的解是.(2),由①,可得4x﹣3y=12③,②×3﹣③×4,可得﹣7x=﹣42,解得x=6,把x=6代入②,可得3×6﹣4y=2,解得y=4,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.22.三角形ABC在平面直角坐标系中的位置如图所示,点O为坐标原点,A(﹣1,4),B (﹣4,﹣1),C(1,1).将三角形ABC向右平移3个单位长度,再向下平移2个单位长度得到三角形A1B1C1,使得点A与点A1对应,点B与点B1对应,点C与点C1对应.(1)画出平移后的三角形A1B1C1,并写出点A1,B1,C1的坐标;(2)求三角形A1B1C1的面积.【分析】(1)作出A、B、C的对应点A1,B1,C1并两两相连即可,根据图形得出坐标即可;(2)根据长方形面积减去周围三角形面积即可.解:(1)△A1B1C1为所求作的三角形,如图所示:A1(2,2),B1(﹣1,﹣3),C1(4,﹣1).(2)三角形A1B1C1的面积=.【点评】本题考查作图——平移变换,熟练掌握由平移方式确定坐标的方法及由直角三角形的边所围成的图形面积的算法是解题关键.23.某中学初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人,1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若计划租用A型车m辆,租用B型车n辆,请你设计租车方案,能一次运送所有学生,且恰好每辆车都坐满.【分析】(1)设A型车每辆可载学生x人,B型车每辆可载学生y人,由题意:2辆A 型车和1辆B型车可以载学生100人,1辆A型车和2辆B型车可以载学生110人.列出二元一次方程组,解方程组即可;(2)由题意:租用A型车m辆,租用B型车n辆,能一次运送所有学生350名,且恰好每辆车都坐满.列出二元一次方程,求出正整数解即可.解:(1)设A型车每辆可载学生x人,B型车每辆可载学生y人,由题意得:,解得:,答:A型车每辆可载学生30人,B型车每辆可载学生40人;(2)由题意得:30m+40n=350,整理得:3m+4n=35,∵m、n为正整数,∴或或,∴共有3种租车方案:①A型车1辆,B型车8辆;②A型车5辆,B型车5辆;③A型车9辆,B型车2辆.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.24.已知:如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠B=40°,∠1=60°,求∠OFE的度数.【分析】(1)根据平行线的性质和已知得出∠1=∠C,根据平行线的判定推出即可;(2)根据平行线的性质求出∠D,根据三角形的外角性质推出即可.【解答】(1)证明:∵AB∥DC,∴∠A=∠C,∵∠1=∠A,∴∠1=∠C,∴FE∥OC;(2)解:∵AB∥DC,∴∠D=∠B,∵∠B=40°∴∠D=40°,∵∠OFE是△DEF的外角,∴∠OFE=∠D+∠1,∵∠1=60°,∴∠OFE=40°+60°=100°.【点评】本题考查了平行线的性质和判定,三角形的内角和定理的应用,主要考查学生的推理能力和计算能力,题目比较好,难度适中.25.阅读理解.∵<<,即2<<3.∴1<﹣1<2,∴﹣1的整数部分为1,∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)2的平方根,提示:()2=17;(3)若c是立方根等于本身的数,且c<0,求2a﹣b﹣4c的值.【分析】(1)根据被开方数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.解:(1)∴<<,∴4<5,∴1<﹣3<2,∴a=1,b=﹣4;(2)(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是±=±4.(3)∵c是立方根等于本身的数,且c<0,∴c=﹣1,∴2a﹣b﹣4c=2×1﹣+4﹣4×(﹣1)=10﹣.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.26.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣4,2)、(1,﹣4),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发,以个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的?若存在,求t的值并求此时点P的坐标;若不存在说明理由.【分析】(1)利用点A、C的坐标和矩形的性质易得B(﹣4,﹣4),D(1,2),然后根据矩形面积公式计算矩形ABCD的面积;(2)分类讨论:当点P在线段AN上时,作PQ∥AM,如图,利用平行线的性质易得∠QPM=∠AMP,∠QPO=∠PON,则∠MPO=∠AMP+∠PON;当点P在线段NB上时,同样方法可得∠MPO=∠AMP﹣∠PON;(3)由于AM=4,AP=t,根据三角形面积公式得到S△AMP=t,再利用三角形AMP的面积等于长方形面积的可计算出t=10,则AP=5,然后根据点的坐标的表示方法写出P点坐标.解:(1)∵点A、C坐标分别为(﹣4,2)、(1,﹣4),而四边形ABCD为矩形,∴B(﹣4,﹣4),D(1,2);矩形ABCD的面积=(1+4)×(2+4)=30;(2)当点P在线段AN上时,作PQ∥AM,如图,∵AM∥ON,∴AM∥PQ∥ON,∴∠QPM=∠AMP,∠QPO=∠PON,∴∠QPM+∠QPO=∠AMP+∠PON,即∠MPO=∠AMP+∠PON;当点P在线段NB上时,同样方法可得∠MPO=∠AMP﹣∠PON;(3)存在.∵AM=4,AP=t,∴S△AMP=×4×t=t,∵三角形AMP的面积等于长方形面积的,∴t=30×=10,∴AP=×10=5,∵AN=2,∴P点坐标为(﹣4,﹣3).【点评】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.也考查了三角形面积公式和矩形的性质.。
2021-2022学年上海市闵行区莘松中学七年级下学期期中考试数学试卷 含答案
2021-2022学年上海市闵行区莘松中学七年级(下)期中数学试卷一、选择题:(本大题共4题,每题3分,满分12分)1.数0.01001000100001,,π,﹣,,0.中,无理数的个数是()A.1个B.2个C.3个D.4个2.在近似数0.2017中,共有()有效数字.A.5个B.4个C.3个D.2个3.下列说法正确的是()A.如果两条直线被第三条直线所截,那么内错角相等B.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离C.同旁内角相等的两条直线平行D.经过一点有且只有一条直线与已知直线平行4.如图,点E在BC的延长线上,在下列四个条件中,不能判断AB∥CD的是()A.∠1=∠2B.∠B=∠DCEC.∠3=∠4D.∠D+∠DAB=180°二、填空题:(本大题共14题,每题3分,满分42分)5.36的平方根是.6.比较大小:﹣﹣2.(填“>”、“=”或“<”)7.把写成幂的形式是.8.已知n<<n+1,那么整数n=.9.计算:=.10.计算:=.11.数轴上表示数﹣3和的两点之间的距离为.12.如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,那么点B到直线CD的距离是线段的长.13.如图:AB∥CD,AE平分∠CAB,∠DEA=125°,则∠CAE=°.14.如图,与∠1构成内错角的角是.15.如图,直线AC与直线DE相交于点O,若∠BOC=35°,BO⊥DE,垂足为O,则∠AOD=度.16.在△ABC中,如果∠A:∠B:∠C=1:3:5,那么△ABC是三角形(按角分类).17.如图所示,∠DBA=140°,∠A与∠C的度数之比为2:5,则∠A=度.18.如图,在△ABC中,∠B=40°,∠C=30°,点D在BC上,将△ACD沿直线AD翻折后,点C落在点E处,联结DE,如果DE∥AB,那么∠CAD的度数是度.三、计算(19,20每题7分)19.计算:.20.计算:.21.如图所示,线段AD垂直于BC,BC、AD分别平分∠ABD和∠BDC,∠BAC=70°,求∠ACD的度数.22.已知:如图,△ABC是等边三角形,点D、E分别在边AB、BC的延长线上,且AD=BE,联结DC、AE.(1)试说明△BCD≌△ACE的理由;(2)如果BE=2AB,求∠BAE的度数.23.如图已知点E是△ABC的边BC的延长线上的一点,点D是∠ABC内的一动点.(1)如图1,当∠ABC=∠ECD时,则∠A=.(填相等的角)(2)如图2,当∠ACD=∠ABC时,请写出与∠A相等的角,并说明为什么?(3)如图3当AB∥DC,BD平分∠ABC,AC平分∠BCD时,试判断线段AC和射线BD的位置关系,并说明理由.参考答案一、选择题:(本大题共4题,每题3分,满分12分)1.数0.01001000100001,,π,﹣,,0.中,无理数的个数是()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:0.01001000100001是有限小数,属于有理数;是分数,属于有理数;0.是循环小数,属于有理数;无理数有,π,,共3个.故选:C.【点评】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.在近似数0.2017中,共有()有效数字.A.5个B.4个C.3个D.2个【分析】有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字,据此可得答案.解:在近似数0.2017中,共有4有效数字,分别为2、0、1、7,故选:B.【点评】本题主要考查有效数字,有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.3.下列说法正确的是()A.如果两条直线被第三条直线所截,那么内错角相等B.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离C.同旁内角相等的两条直线平行D.经过一点有且只有一条直线与已知直线平行【分析】根据平行线的判定以及平行线的性质以及点到直线的距离定义逐项分析即可.解:A、如果两条平行的直线被第三条直线所截,那么同位角才相等,故该选项不合题意;B、从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故该选项符合题意;C、同旁内角互补的两条直线平行,故该选项不合题意;D、经过直线外一点有且只有一条直线与已知直线平行,故该选项不合题意;故选:B.【点评】本题考查了平行线的性质和判定以及点到直线的距离定义,属于基础性题目.4.如图,点E在BC的延长线上,在下列四个条件中,不能判断AB∥CD的是()A.∠1=∠2B.∠B=∠DCEC.∠3=∠4D.∠D+∠DAB=180°【分析】直接利用平行线的判定方法分析得出答案.解:A、∵∠1=∠2,∴AB∥CD,故此选项不合题意;B、∵∠B=∠DCE,∴AB∥CD,故此选项不合题意;C、∵∠3=∠4,∴AD∥CB,故此选项符合题意;D、∵∠D+∠DAB=180°,∴AB∥CD,故此选项不合题意.故选:C.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.二、填空题:(本大题共14题,每题3分,满分42分)5.36的平方根是±6.【分析】根据平方根的定义求解即可.解:36的平方根是±6,故答案为:±6.【点评】本题考查了平方根的定义,解答本题的关键是掌握一个正数的平方根有两个,且互为相反数.6.比较大小:﹣<﹣2.(填“>”、“=”或“<”)【分析】求出2=<,再根据实数的大小比较法则比较即可.解:∵2=,∴﹣<﹣2,故答案为:<.【点评】本题考查了实数的大小比较法则的应用,注意:两个负数比较大小,其绝对值大的反而小.7.把写成幂的形式是.【分析】根据分数指数幂公式,逆推即可得到答案.解:,故答案为:.【点评】本题考查了分数指数幂,正确理解分数指数幂的含义以及会逆向推理是解题的关键.8.已知n<<n+1,那么整数n=4.【分析】依据被开方数越大,对应的算术平方根越大,可估算出的大小.解:∵16<24<25,∴<<,∵n为整数,∴4<<5,即4<<4+1,∴n=4.故答案为:4.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.9.计算:=5.【分析】先计算平方差,再根据分数指数幂的意义,计算求值即可.解:(法一)原式=25=(52)=5=5.(法二)原式===5.故答案为:5.【点评】本题考查了分数指数幂,掌握分数指数幂的运算法则是解决本题的关键.10.计算:=5.【分析】直接利用二次根式的乘除运算法则计算得出答案.解:原式=××=5.故答案为:5.【点评】此题主要考查了二次根式的乘除运算,正确掌握相关运算法则是解题关键.11.数轴上表示数﹣3和的两点之间的距离为.【分析】根据数轴上A、B两点之间的距离AB=|a﹣b|=|b﹣a|的表达式即可求解;解:数轴上表示数﹣3和的两点之间的距离为|﹣3﹣|=.故答案为:.【点评】本题考查的是数轴上两点之间的距离,解此类题目关键是熟记两点之间的距离公式.12.如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,那么点B到直线CD的距离是线段BD的长.【分析】根据点到直线的距离,即可解答.解:∵CD⊥AD,垂足为点D,∴点B到直线CD的距离是线段BD的长,故答案为:BD.【点评】本题考查了点到直线的距离,解决本题的关键是熟记点到直线的距离.13.如图:AB∥CD,AE平分∠CAB,∠DEA=125°,则∠CAE=55°.【分析】根据平行线的性质两直线平行,同旁内角互补,可计算∠EAB的度数,再根据角平分线的性质可得,∠CAE=∠EAB,即可得出答案.解:∵AB∥CD,∠DEA=125°,∴∠EAB=180°﹣∠DEA=180°﹣125°=55°,又∵AE平分∠CAB,∴∠CAE=∠EAB=55°.故答案为:55.【点评】本题主要考查了平行线及角平分线的性质,熟练应用相关性质进行计算是解决本题的关键.14.如图,与∠1构成内错角的角是∠DEF或∠DEC.【分析】根据内错角的定义即可判断,注意有两解.解:∠1与∠DEF可以看成直线AB与直线EF被直线DE所截的内错角,∠1与∠DEC可以看成直线AB与直线AC被直线DE所截的内错角,故答案为∠DEF或∠DEC.【点评】本题考查内错角、同位角、同旁内角等知识,解题的关键是理解内错角的定义,属于基础题.15.如图,直线AC与直线DE相交于点O,若∠BOC=35°,BO⊥DE,垂足为O,则∠AOD=55度.【分析】由垂直的定义可求得∠COE,再利用对顶角可求得答案.解:∵BO⊥DE,∴∠BOE=90°,∴∠COE=∠BOE﹣∠BOC=90°﹣35°=55°,∴∠AOD=∠COE=55°,故答案为:55.【点评】本题主要考查垂的定义和对顶角的性质,由垂直的定义求得∠COE是解题的关键.16.在△ABC中,如果∠A:∠B:∠C=1:3:5,那么△ABC是钝角三角形(按角分类).【分析】设∠A=x°,则∠B=3x°,∠C=5x°,利用三角形内角和定理可求出x的值,进而可得出∠C的度数,由该值大于90°即可得出△ABC是钝角三角形.解:设∠A=x°,则∠B=3x°,∠C=5x°,依题意得:x+3x+5x=180,解得:x=20,∴∠C=5x°=100°,100°>90°,∴△ABC是钝角三角形.故答案为:钝角.【点评】本题考查了三角形内角和定理,牢记三角形内角和是180°是解题的关键.17.如图所示,∠DBA=140°,∠A与∠C的度数之比为2:5,则∠A=40度.【分析】依据三角形外角性质进行计算,即可得到∠A的度数.解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C,又∵∠DBA=140°,∠A与∠C的度数之比为2:5,∴∠A=140°×=40°,故答案为:40.【点评】本题主要考查了三角形外角性质的运用,即三角形的一个外角等于和它不相邻的两个内角的和.18.如图,在△ABC中,∠B=40°,∠C=30°,点D在BC上,将△ACD沿直线AD翻折后,点C落在点E处,联结DE,如果DE∥AB,那么∠CAD的度数是40度.【分析】在△ABC中,利用三角形内角和定理可求出∠BAC的度数,由折叠的性质可得出∠CAD=∠EAD,∠E =30°,由DE∥AB,利用平行线的性质可得出∠BAE=30°,再结合∠BAC=∠BAE+∠CAD+∠EAD,即可求出∠CAD的度数.解:在△ABC中,∠B=40°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=110°.由折叠的性质可知:∠CAD=∠EAD,∠E=∠C=30°.∵DE∥AB,∴∠BAE=∠E=30°,∴∠BAC=∠BAE+∠CAD+∠EAD,即110°=30°+2∠CAD,∴∠CAD=40°.故答案为:40.【点评】本题考查了三角形内角和定理以及平行线的性质,根据三角形内角和定理及平行线的性质,找出110°=30°+2∠CAD是解题的关键.三、计算(19,20每题7分)19.计算:.【分析】根据二次根式的加减法的计算法则进行计算即可.解:原式=2﹣3+﹣3=﹣6.【点评】本题考查二次根式的加减法,掌握二次根式加减法的计算法则是正确计算的前提.20.计算:.【分析】直接利用零指数幂的性质以及二次根式的性质分别化简得出答案.解:原式=﹣1+1﹣3=﹣2.【点评】此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.21.如图所示,线段AD垂直于BC,BC、AD分别平分∠ABD和∠BDC,∠BAC=70°,求∠ACD的度数.【分析】本题通过AD⊥BC,得到∴∠OBD+∠BDO=90°,又因为BC、AD分别平分∠ABD和∠BDC,∠ABO =∠OBD,∠BDO=∠ODC,进而推出AB∥CD,在根据平行线的性质得到答案即可.解:∵AD⊥BC,∴∠OBD+∠BDO=90°,∵BC、AD平分∠ABD和∠BDC,∴∠ABO=∠OBD,∠BDO=∠ODC,∴∠ABO+∠OBD+∠BDO+∠ODC=180°,∴∠ABD+∠BDC=180°,∴AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC=70°,∴∠ACD=110°.【点评】本题考查了垂直的定义,角平分线的定义,平行线的性质,熟记基础知识是解题的关键.22.已知:如图,△ABC是等边三角形,点D、E分别在边AB、BC的延长线上,且AD=BE,联结DC、AE.(1)试说明△BCD≌△ACE的理由;(2)如果BE=2AB,求∠BAE的度数.【分析】(1)由等边三角形的性质得出AB=BC=AC,∠ABC=∠ACB=60°.可证明△BCD≌△ACE(SAS);(2)证得AC=CE,得出∠CAE=∠E,可求出∠E=30°,由三角形的内角和定理可求出答案.解:(1)∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠ACB=60°.∴∠DBC=∠ECA.∵AD=BE,∴AD﹣AB=BE﹣BC,即BD=CE.在△BCD和△ACE中,,∴△BCD≌△ACE(SAS);(2)∵BE=2BC,∴BC=CE,∵AC=BC,∴AC=CE,∴∠CAE=∠E,∵∠ACB=∠CAE+∠E=60°,∴∠E=30°,∵∠ABE+∠E+∠BAE=180°,∴∠BAE=180°﹣∠ABE﹣∠E=90°.【点评】本题主要考查等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键.23.如图已知点E是△ABC的边BC的延长线上的一点,点D是∠ABC内的一动点.(1)如图1,当∠ABC=∠ECD时,则∠A=∠ACD.(填相等的角)(2)如图2,当∠ACD=∠ABC时,请写出与∠A相等的角,并说明为什么?(3)如图3当AB∥DC,BD平分∠ABC,AC平分∠BCD时,试判断线段AC和射线BD的位置关系,并说明理由.【分析】(1)由∠ABC=∠ECD根据平行线的判定定理可得,AB∥CD,再根据平行线的性质即可得出答案;(2)根据三角形的外角和定理可知,∠ACE=∠A+∠ABC,由已知∠ACD=∠ABC,进行计算即可得出答案;(3)根据平行线的性质,两直线平行,同旁内角互补,可得出∠ABC+∠BCD=180°,由角平分线的性质可得∠OBC=∠ABC,,可得出∠OBC+∠OCB=90°,即可得出答案.解:(1)∵∠ABC=∠ECD,∴AB∥CD,∴∠A=∠ACD.故答案为∠ACD;(2)∵∠ACE=∠A+∠ABC,∠ACE=∠ACD+∠DCE,又∵∠ACD=∠ABC,∴∠A=∠DCE;(3)AC⊥BD.证明:∵AB∥CD,∴∠ABC+∠BCD=180°,∵BD平分∠ABC,AC平分∠BCD,∴∠OBC=∠ABC,,∴=90°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°,∴AC⊥BD.【点评】本题主要考查了平行线的性质,三角形外角和定理及角平分线的性质,熟练应用相关的性质进行计算是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下数学期中试卷12
一、选择题(30分)
1、如图,四个图形中的∠1和∠2,不是同位角的是()
A.B.C.D.
2、如图,AB∥CD,∠P=40°,∠D=100°,
则∠ABP的度数是()
A.140°B.40°
C.100°D.60°
3、已知点A(m,n)在第一象限,那么点B(-n,-m)在()
A.第一象限B.第二象限C.第三象限D.第四象限
4、已知点M(3,-2),它与点N(x,y)在同一条平行于x轴的直线上,且MN=4,那么点N的坐标是()
A.(7,-2)或(-1,-2)B.(3,2)或(3,-6)
C.(7,2)或(-1,-6)D.(4,-2)或(-4,-2)
5、如图,已知∠MOQ是直角,∠QON是锐角,
OR平分∠QON,OP平分∠MON,则∠POR的度数为()
A.B.60°
C.D.45°
6、在以下实数:,,π2,3.1411,,,0.020020002…(每两个2之间零的个数依次增加1)中,无理数有()A.2个B.3个C.4个D.5个
7、A(-3,4)和B(4,-1)是平面直角坐标系中的两点,则由A点移到B点的路线可能是()
A.先向上平移5个单位长度,再向右平移7个单位长度
B.先向上平移5个单位长度,再向左平移7个单位长度
C.先向左平移7个单位长度,再向上平移5个单位长度
D.先向右平移7个单位长度,再向下平移5个单位长度
8、有以下说法:①△ABC在平移的过程中,对应线段一定相等;
②△ABC在平移过程中,对应线段一定平行;
③△ABC在平移过程中,周长保持不变;
④△ABC在平移过程中,对应边中点的连线的长度等于平移的距离.正确的是()
A.①②③④B.①③④C.②③④D.①②③
9、下列说法中错误的是()
A.数轴上的点与全体实数一一对应B.a,b为实数,若a<b,则
C.a,b为实数,若a<b,则D.实数中没有最小的数
10、若2m-4与3m-1是同一个数的平方根,则m的值是()
A.-3 B.-1 C.1 D.-3或1
二、填空题(30分)
11、如图,其中共有________对对顶角.
第11题第12题第15题
12、如图,已知AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC =________.
13、绝对值等于的数是________;-x的相反数是________;的相反数是________;的相反数是________.绝对值是________.
14、在直角坐标系中,点A在x轴上,且到原点的距离为5,则A点的坐标为________;过点(3,-4)且平行于x轴的直线与y轴的交点坐标为________.
15、如图,∠α与∠β有共同的顶点,且它们的两边分别垂直,已知,那么,∠α=________度,∠β=________度.
16、命题“互为邻补角的两个角的平分线相互垂直”的题设是________ ,结论是________ .
17、若,,则,.
18、垂直于y轴的直线上有A和B两点,若A(2,2),AB的长为,则点B的坐标为________.
19、如果点A(2m,3-n)在第二象限,那么点B(m-1,n-4)在第_______象限.
20、已知长方形ABCD在平面直角坐标系的位置如图,将长方形ABCD沿x轴向左平移,使C点和坐标原点重合,再沿y轴向下平移,使D
点与坐标原点重合,此时B点的坐标是________.
三、解答题(40分)
21、计算(1)(2)
22、已知点A、B在平面直角坐标系中的位置如图所示,求△AOB的面积
23、若一个立方体木块的体积是0.125m3,现将它锯成8个同样大小的立方体小木块,求每个小立方体木块的表面积.
24、如图,在平面直角坐标系中,一个方格的边长为1个单位长度,三角形MNQ是三角形ABC经过某种变换后得到的图形.(1)请分别写出点A与点M,点8与点N,点C与点Q的坐标,并观察它们之间的关系;(2)已知点P是三角形ABC内一点,其坐标为(-3,2),探究其在三角形MNQ中的对应点R的坐标,并猜想线段AC和线段MQ的关系.
25、数学活动课上,张老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论
纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:已知,其中x是一
个整数,且0<y<1,请你求出的值.
26、如图①②,将两个相同三角板的两个直角顶点O重合在一起,如图①②放置.
(1)若∠BOC=60°,如图①猜想∠AOD的度数;
(2)若∠BOC=70°,如图②猜想∠AOD的度数;
(3)猜想∠AOD和∠BOC的关系,请写出理由.。