普通专升本高等数学试题及答案51897
2024年成人高考专升本《数学》考卷真题及答案
2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。
2. 等差数列1, 3, 5, 7, 的前10项和是______。
3. 不等式3x 4 < 2x + 5的解集是______。
4. 圆柱的体积公式是______。
5. 积分∫(x^3 + 1)dx的值是______。
三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。
3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。
4. 求圆柱的表面积。
5. 计算积分∫(x^4 + 1)dx。
四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。
专升本高等数学一考试真题及参考答案.doc
专升本高等数学(一)考试真题及参考答案
专升本高等数学(一)考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题设b≠0,当x→0时,sinbx是x2的( )
A.高阶无穷小量
B.等价无穷小量
C.同阶但不等价无穷小量
D.低阶无穷小量
参考答案:D
参考答案:C
第3题函数f(x)=x3-12x+1的单调减区间为( )
A.(-∞,+∞)
B.(-∞,-2)
C.(-2,2)
D.(2,+∞)
参考答案:C
参考答案:A 第5题
参考答案:B
参考答案:D 第7题
参考答案:B 参考答案:A 参考答案:B
参考答案:A
二、填空题:本大题共10小题。
每小题4分,共40分,将答案填在题中横线上。
参考答案:1
参考答案:2
第13题设y=x2+e2,则dy=________
参考答案:(2x+e2)dx
第14题设y=(2+x)100,则Y’=_________.
参考答案:100(2+z)99
参考答案:-In∣3-x∣+C
参考答案:0
参考答案:1/3(e3一1)
参考答案:y2cosx
第19题微分方程y’=2x的通解为y=__________.
参考答案:x2+C
参考答案:1
三、解答题:本大翘共8个小题,共70分。
解答应写出推理,演算步骤。
第21题
第22题第23题第24题
第25题
第26题设二元函数z=x2+xy+y2+x-y-5,求z的极值.
第27题第28题。
专升本高等数学(含答案)
高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。
A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。
专升本高等数学习题集及答案(完整资料).doc
此文档下载后即可编辑 此文档下载后即可编辑第一章 函数一、选择题1. 下列函数中,【 C 】不是奇函数 A. x x y +=tan B. y x =C. )1()1(-⋅+=x x yD.x xy 2sin 2⋅=2. 下列各组中,函数)(x f 与)(x g 一样的是【 】 A. 33)(,)(x x g x x f == B.x x x g x f 22tan sec )(,1)(-== C.11)(,1)(2+-=-=x x x g x x fD.2ln )(,ln 2)(x x g x x f ==3. 下列函数中,在定义域内是单调增加、有界的函数是【 】 A. +arctan y x x = B. cos y x = C. arcsin y x = D. sin y x x =⋅4. 下列函数中,定义域是[,+]-∞∞,且是单调递增的是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x =5. 函数arctan y x =的定义域是【 】A. (0,)πB.(,)22ππ-C.[,]22ππ-D. (,+)-∞∞6. 下列函数中,定义域为[1,1]-,且是单调减少的函数是【 】A. arcsin y x =B. arccos y x =C. arctan y x =D. arccot y x = 7. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]-8. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 9. 下列各组函数中,【 A 】是相同的函数A.2()ln f x x =和 ()2ln g x x =B. ()f x x =和()g x =C.()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x =10. 设下列函数在其定义域内是增函数的是【 】A. ()cos f x x =B. ()arccos f x x =C. ()tan f x x =D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】A. (,)22ππ-B. (0,)πC.(,)-∞+∞D. [1,1]-12. 下列函数是奇函数的是【 】A. arcsin y x x =B. arccos y x x =C. arccot y x x =D. 2arctan y x x = 13. 函数53sin ln x y =的复合过程为【 A 】A.x w w v v u u y sin ,,ln ,35====B.x u u y sin ln ,53==C.x u u y sin ,ln 53==D.x v v u u y sin ,ln ,35===二、填空题1. 函数5arctan 5arcsin x x y +=的定义域是___________.2.()arcsin3xf x =的定义域为 ___________.3. 函数1()arcsin3x f x +=的定义域为 ___________。
2024年山东成人高考专升本高等数学(一)真题及答案
2024年山东成人高考专升本高等数学(一)真题及答案1. 【选择题】当x→0时,ln(1+x2)为x的( )A. 高阶无穷小量B. 等价无穷小量C. 同阶但不等价无穷小量D. 低阶无穷小量正确答案:A参考解析:2. 【选择题】A.B.C.D.正确答案:C参考解析:3. 【选择题】设y(n-2)=sinx,则y(n)=A. cosxB. -cosxC. sinxD. -sinx正确答案:D参考解析:4. 【选择题】设函数f(x)=3x3+ax+7在x=1处取得极值,则a=A. 9B. 3C. -3D. -9正确答案:D参考解析:函数f(x)在x=1处取得极值,而f'(x)=9x2+a,故f'(1)=9+a=0,解得a=-9.5. 【选择题】A.B.C.D.正确答案:B参考解析:6. 【选择题】A. sin2xB. sin2xC. cos2xD. -sin2x正确答案:B参考解析:7. 【选择题】A.B.C.D.正确答案:D参考解析:8. 【选择题】函数f(x,y)=x2+y2-2x+2y+1的驻点是A. (0,0)B. (-1,1)C. (1,-1)D. (1,1)正确答案:C参考解析:由题干可求得f x(x,y)=2x-2,f y(x,y)=2y+2,令f x(x,y)=0,f y(z,y)=0,解得x=1,y=-1,即函数的驻点为(1,-1).9. 【选择题】下列四个点中,在平面x+y-z+2=0上的是A. (-2,1,1)B. (0,1,1)C. (1,0,1)D. (1,1,0)正确答案:A参考解析:把选项中的几个点带入平面方程,只有选项A满足方程,故选项A是平面上的点.10. 【选择题】A.B.C.D.正确答案:B 参考解析:11. 【填空题】参考解析:12. 【填空题】参考解析:13. 【填空题】参考解析:14. 【填空题】参考解析:15. 【填空题】参考解析:16. 【填空题】参考解析:17. 【填空题】参考解析:18. 【填空题】参考解析:19. 【填空题】参考解析:20. 【填空题】过点(1,0,-1)与平面3x-y-z-2=0平行的平面的方程为____.参考解析:平面3x-y-z-2=0的法向量为(3,-1,-1),所求平面与其平行,故所求平面的法向量为(3,-1,-1),由平面的点法式方程得所求平面方程为3(x-1)-(y-0)-(z+1)=0,即3x-y-z-4=0.21. 【解答题】参考解析:22. 【解答题】参考解析:23. 【解答题】求函数f(x)=x3-x2-x+2的单调区间.参考解析:24. 【解答题】求曲线y=x2在点(1,1)处的切线方程.参考解析:25. 【解答题】参考解析:26. 【解答题】参考解析:27. 【解答题】参考解析:28. 【解答题】证明:当x>0时,e x>1+x.参考解析:设f(x)=e x-1-x,则f'(x)=e x-1.当x>0时,f'(x)>0,故f(x)在(0,+∞)单调递增.又因为f(x)在x=0处连续,且f(0)=0,所以当x>0时,f(x)>0.因此当x>0时,e x-1-x>0,即e x>1+x.。
数学专升本考试试题(含答案解析)
数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。
2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。
又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。
联立两个方程,得到d = 2,故选A。
3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。
4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。
专升本试题及答案数学
专升本试题及答案数学一、选择题(每题2分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:\(3x - 2\),当 \(x = 5\) 时。
A. 13B. 15C. 11D. 17答案:A3. 函数 \(y = 2^x\) 的图像是:A. 一条直线B. 一个抛物线C. 一个指数函数D. 一个对数函数答案:C4. 求和 \(1 + 2 + 3 + \ldots + 100\) 的值是:A. 5050B. 5000C. 4950D. 5100答案:A5. 如果 \(a\) 和 \(b\) 是两个非零实数,那么 \(a^2 - b^2\) 可以分解为:A. \((a + b)(a - b)\)B. \((a - b)^2\)C. \((a + b)^2\)D. \((a - b)(a + b)\)答案:A6. 圆的面积公式是:A. \(\pi r^2\)B. \(2\pi r\)C. \(\pi r\)D. \(\pi d\)答案:A7. 计算 \(\sin 30^\circ\) 的值。
A. 0.5B. 0.866C. 0.25D. 0.707答案:A8. 集合 \(\{1, 2, 3, 4\}\) 和 \(\{3, 4, 5, 6\}\) 的交集是:A. \(\{1, 2\}\)B. \(\{3, 4\}\)C. \(\{5, 6\}\)D. \(\{1, 2, 3, 4, 5, 6\}\)答案:B9. 直线 \(y = 2x + 3\) 与 \(x\) 轴的交点是:A. \((0, 3)\)B. \((-1.5, 0)\)C. \((1.5, 0)\)D. \((0, -3)\)答案:D10. 以下哪个选项是复数?A. \(2 + 3i\)B. \(-4\)C. \(\sqrt{4}\)D. \(\pi\)答案:A二、填空题(每题3分,共30分)1. 计算 \(\sqrt{49}\) 的值是 ________。
高等数学试题及答案专升本
高等数学试题及答案专升本高等数学试题及答案(专升本)一、选择题(每题4分,共40分)1. 极限lim(x→0) (sin x)/x 的值是()。
A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = x^2 + 3x - 4的导数是()。
A. 2x + 3B. 2x - 3C. x^2 + 3D. x^2 - 3答案:A3. 曲线y = x^3 - 3x + 2在点(1, 0)处的切线斜率是()。
A. 1B. -1C. 3D. -3答案:B4. 不定积分∫(3x^2 - 2x + 1)dx 的结果是()。
A. x^3 - x^2 + x + CB. x^3 + x^2 - x + CC. x^3 - x^2 + x + CD. x^3 + x^2 - x + C答案:C5. 函数y = e^x 的原函数是()。
A. e^x + CB. e^(-x) + CC. e^x - CD. e^(-x) - C答案:A6. 已知函数f(x) = 2x + 1,g(x) = 3x - 2,则f[g(x)]的表达式是()。
A. 6x - 3B. 6x + 1C. 9x - 5D. 9x + 1答案:C7. 函数y = ln(x) 的反函数是()。
A. e^yC. x^yD. y^x答案:A8. 函数y = x^2 在区间[-2, 2]上的最大值是()。
A. 0B. 4C. -4D. 2答案:B9. 函数y = x^3 - 3x^2 + 2x 的极值点是()。
A. x = 0B. x = 1C. x = 2答案:B10. 曲线y = x^2 + 2x + 1与直线y = 3x + 2的交点个数是()。
A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 2x - 3) 的值是 _______。
答案:112. 函数f(x) = x^3 - 6x^2 + 11x - 6的二阶导数是 _______。
普通专升本高等数学试题及答案精编版
)Байду номын сангаас
A.xe -x 2 B.-xe -x 2 C.2e -x 2 D.-2e -x 2
二、填空题(本大题共 10 小题,每空 3 分,共 30 分)
请在每小题的空格中填上正确答案。错填、不填均无分。
1
1
6.设函数 f(x) 在区间 [0, 1]上有定义,则函数 f(x+ )+f(x- )的定义域是
x-1
f (x) (
)
A.ln x-2 B.ln x+2 C.ln 2-x D.ln x+2
x+2
x-2
x+2
2-x
0
et e t 2 dt
2. lim x
()
x0
1 cos x
A.0
3 .设 y f ( x0
B.1
C. -1
D.
x) f ( x0 ) 且函数 f ( x) 在 x x0 处可导,则必有
……………………………………………………………最新资料推荐…………………………………………………
高等数学试题及答案
一、单项选择题(本大题共 5 小题,每小题 2 分,共 10 分)
在每小题列出的四个备选项中只有一个是符合题目要求的,
请将其代码填写在题后的括号内。 错选、多选或未选均无分。 1 . 设 f(x)=lnx , 且 函 数 (x) 的 反 函 数 1(x)= 2(x+1) , 则
V
21.答案: r0
3
2
,h0
V
4V
3
r02
2
22.答案:
4
23. 答案: 1
五、应用题(本题 9 分)
24. 答案:(1) y=2x-1 ( 2) 1 , 12 30
专升本高数试题及详解答案
专升本高数试题及详解答案一、选择题(本题共5小题,每小题3分,共15分)1. 下列函数中,不是偶函数的是()。
A. y = x^2B. y = |x|C. y = cos(x)D. y = sin(x)2. 函数f(x) = 2x^3 - 6x^2 + 9x + 5在区间(-∞,+∞)内的最大值是()。
A. 5B. 9C. 12D. 无法确定3. 设曲线y = x^2上点P(-1, 1),则过点P的切线方程为()。
A. y = -2x - 1B. y = -x - 2C. y = x - 2D. y = 2x + 14. 以下哪个级数是收敛的?()A. ∑((-1)^n)/nB. ∑n^2C. ∑(1/n)D. ∑((-1)^(n+1))/n^25. 若函数f(x)在点x=a处连续,则必有()。
A. f(a)存在B. f(a) = 0C. lim(x->a-) f(x) = f(a)D. lim(x->a+) f(x) = f(a)二、填空题(本题共5小题,每小题2分,共10分)1. 若函数f(x) = 3x - 5,则f(2) = _______。
2. 曲线y = x^3在点(1,1)处的切线斜率为 _______。
3. 设数列{an}是等差数列,且a3 = 7,a5 = 13,则该数列的公差d= _______。
4. 若级数∑an收敛,则级数∑(an/2^n) _______(填“收敛”或“发散”)。
5. 利用定积分的几何意义,计算曲边梯形的面积,若y = 2x + 1在[0, 2]上的面积为 _______。
三、解答题(本题共4小题,共75分)1. (15分)求函数f(x) = x^2 - 4x + 3的单调区间,并证明。
2. (15分)设函数f(x) = ln(x + 2),求f(x)的n阶导数f^(n)(x)。
3. (20分)计算定积分∫[0, 4] (2x^2 - 3x + 1) dx,并说明其几何意义。
2024年成人高考专升本《数学》试卷真题附答案
2024年成人高考专升本《数学》试卷真题附答案一、选择题(每小题5分,共30分)1. 设集合A={x|x^24x+3<0},B={x|x^24x+3≥0},则A∪B=______。
A. RB. (∞, 3]C. (3, +∞)D. 空集2. 函数f(x)=x^33x+2的导数f'(x)的零点个数是______。
A. 1B. 2C. 3D. 43. 若等差数列{an}的通项公式为an=2n1,则数列{an^2}的前5项和是______。
A. 55B. 60C. 65D. 704. 设函数f(x)=ln(x+1),则f(x)在区间(0, +∞)上是______。
A. 单调递增B. 单调递减C. 先增后减D. 先减后增5. 已知三角形ABC的边长分别为a、b、c,且满足a^2+b^2=c^2,则三角形ABC是______。
A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形6. 若直线y=2x+3与圆x^2+y^2=9相切,则圆的半径是______。
A. 3B. 2C. 1D. √2二、填空题(每小题5分,共20分)7. 已知函数f(x)=x^24x+3,则f(x)的极小值为______。
8. 已知等比数列{an}的公比为q,且a1+a2+a3=14,a1a2a3=8,则q=______。
9. 已知抛物线y=x^24x+3的顶点坐标为______。
10. 已知直线y=2x+3与圆x^2+y^2=9相切,则切点坐标为______。
三、解答题(每小题10分,共30分)11. 解不等式组:x2y≤4,2x+y≥6。
12. 已知等差数列{an}的前n项和为Sn=n^2+3n,求an。
13. 已知函数f(x)=x^33x+2,求f(x)的单调区间和极值。
四、证明题(10分)14. 已知等差数列{an}的公差为d,证明:an+1an1=2d。
五、应用题(10分)15. 已知一个长方体的长、宽、高分别为a、b、c,且满足a^2+b^2+c^2=36,求长方体的最大体积。
专升本统一考试数学卷+答案 (6)
普通高等学校招生全国统一考试数学(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.已知函数)(x f y =的图像关于点(-1,0)对称,且当∈x (0,+∞)时,x x f 1)(=,则当∈x (-∞,-2)时)(x f 的解析式为()A .x1-B .21+x C .21+-x D .x-212.已知θ是第三象限角,m =|cos |θ,且02cos 2sin>+θθ,则2cos θ等于()A .21m +B .21m +-C .21m -D .21m--3.已知抛物线x y 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点()A .(2,5)B .(-2,5)C .(5,-2)D .(5,2)4.过抛物线)0(22>=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若p x x 321=+,则||PQ 等于()A .4pB .5pC .6pD .8p5、设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差为()A.pB.2(1)p p - C.(1)p p -- D.(1)p p -6、下列级数中发散的是()A .∑∞=021n nB .∑∞=+131n n n C .1)1(1+-∑∞=n nn nD .nn n1)1(1∑∞=-7、已知AA A A A A n A 表示的行列式,表示,且阶方阵,为**)(42==的伴随矩阵),则=n ()A .2B .3C .4D .58、已知向量⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=110,000,121321a a a ,则()A .1a 线性相关B .21,a a 线性相关C .21,a a 线性无关D .321,,a a a 线性相关9、学习小组有10名同学,其中6名男生,4名女生,从中随机选取4人参加社会实践活动,则这4人全为男生的概率是()A .141B .143C .74D .7110、已知=+===)(,8.0)|(,4.0)(,3.0)(B A P A B P B P A P 则()A .0.7B .0.46C .0.38D .0.2411.全集设为U ,P 、S 、T 均为U 的子集,若 P (TU)=(TU)S 则()A .SS T P = B .P =T =SC .T =UD .P SU=T 12.设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M U,则实数m 的取值范围是()A .m <2B .m ≥2B .C .m ≤2D .m ≤2或m ≤-4二、填空题(共4小题,每小题5分;共计20分)1.在二项式9)x +的展开式中,常数项是___________,系数为有理数的项的个数是___________.2.在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____,cos ABD ∠=___________.3.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.4.已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为F1,F2,过F1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB=,120F B F B ⋅=,则C 的离心率为____________.三、大题:(满分70分)1、已知O 是坐标轴原点,双曲线222:1(0)x C y a a -=>与抛物线21:4D y x =交于两点A ,B 两点,AOB ∆的面积为4.(1)求C 的方程;(2)设1F ,2F 为C 的左,右焦点,点P 在D 上,求12PF PF ⋅的最小值.2、一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.(Ⅰ)请画出该几何体的直观图,并求出它的体积;(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A 1B 1C 1D 1?如何组拼?试证明你的结论;(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD—A 1B 1C 1D 1的棱CC 1的中点为E,求平面AB 1E 与平面ABC 所成二面角的余弦值.3.设数列{an}的前n 项和为Sn ,且满足Sn=2-an ,n=1,2,3,….(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an ,求数列{bn}的通项公式;(Ⅲ)设cn=n(3-bn),求数列{cn}的前n 项和Tn.4.如图,在三棱柱ABC-A1B1C1中,AA1C1C 是边长为4的正方形.平面ABC ⊥平面AA1C1C ,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC ;(Ⅱ)求二面角A1-BC1-B1的余弦值;(Ⅲ)证明:在线段BC1存在点D ,使得AD ⊥A1B ,并求1BDBC 的值.5.设正项数列{an}的前n 项和为Sn ,已知Sn ,an+1,4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=,设bn 的前n 项和为Tn ,求证:Tn.6.某工厂对A 、B 两种型号的产品进行质量检测,从检测的数据中随机抽取6次,记录数据如下:A :8.3,8.4,8.4,8.5,8.5,8.9B :7.5,8.2,8.5,8.5,8.8,9.5(注:数值越大表示产品质量越好)正视图侧视图俯视图(Ⅰ)若要从A 、B 中选一种型号产品投入生产,从统计学角度考虑,你认为生产哪种型号产品合适?简单说明理由;(Ⅱ)若将频率视为概率,对产品A 今后的4次检测数据进行预测,记这4次数据中不低于8.5分的次数为ξ,求ξ的分布列及期望E ξ.参考答案:一、选择题:1-5题答案:BDCAD 6-10题答案:BBBAB 11-12题答案:AD 二、填空题:1、2、12272,5103.0.184.2三、大题:1、【解析】(1)不妨设20(4,)A y y ,则200(4,)A y y -,则23000124442AOB S y y y ∆=== ,解得01y =,∴(4,1)A ,将其代入双曲线222:1(0)x C y a a -=>得222411a -=,解得a =,∴双曲线C 的方程为2218x y -=;(2)由(1)可知29c =,∴3c =,∴1(3,0)F -,2(3,0)F ,设2(4,)P t t ,则21(34,)PF t t =--- ,22(34,)PF t t =-- ,∴224222121577(34,)(34,)169(4)864PF PF t t t t t t t ⋅=-----=+-=+-,又2[0,)t ∈+∞,∴212min 1577()()9864PF PF ⋅=-=- ,即当0t =时,12PF PF ⋅ 取得最小值,且最小值为9-.【评注】本题考查圆锥曲线的共同特征,解题的关键是巧设点的坐标,解出A ,B 两点的坐标,列出三角形的面积关系也是本题的解题关键,运算量并不算太大.2、解:(Ⅰ)该几何体的直观图是有一条侧棱垂直于底面的四棱锥.如右图中的四棱锥C1-ABCD 。
2024年成人高考专升本《数学》考试真题附答案
2024年成人高考专升本《数学》考试真题附答案一、选择题(每题1分,共5分)A. 牛顿B. 欧拉C. 高斯D. 希尔伯特2. 设函数f(x)在区间(∞, +∞)内连续,且f(x) = f(x),则f(x)是()A. 奇函数B. 偶函数C. 周期函数D. 非奇非偶函数A. 交换两行B. 两行相加C. 两行互换D. 两行相乘4. 若函数y = f(x)在点x0处可导,则f'(x0)表示()A. 曲线在点(x0, f(x0))处的切线斜率B. 曲线在点(x0, f(x0))处的法线斜率C. 函数在点x0处的极值D. 函数在点x0处的拐点5. 设A、B为两个事件,若P(A) = 0.4,P(B) = 0.6,P(A∩B) =0.2,则P(A|B) = ()A. 0.2B. 0.4C. 0.5D. 0.6二、判断题(每题1分,共5分)1. 任何实数的平方都是非负数。
()2. 若矩阵A的行列式为零,则A不可逆。
()3. 函数的极值点必定在导数为零的点处取得。
()4. 概率论中的大数定律表明,随机事件的频率会随着试验次数的增加而稳定在概率附近。
()5. 线性方程组的解一定是唯一的。
()三、填空题(每题1分,共5分)1. 若函数f(x) = x^3 3x,则f'(x) = _______。
2. 矩阵A = [[1, 2], [3, 4]]的行列式值是 _______。
3. 在平面直角坐标系中,点(1, 2)到原点的距离是 _______。
4. 设随机变量X服从正态分布N(μ, σ^2),则μ表示 _______。
5. 若函数f(x)在区间[a, b]上连续,且f(a)·f(b) < 0,则根据闭区间上连续函数的零点定理,至少存在一点ξ∈(a, b),使得f(ξ) = _______。
四、简答题(每题2分,共10分)1. 简述罗尔定理的条件和结论。
2. 什么是矩阵的秩?如何求矩阵的秩?3. 简述导数的物理意义。
高等数学专升本试卷(含答案)
高等数学专升本试卷(含答案) 高等数学专升本试卷题号得分考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一.选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1.函数y=1-x+arccos(x+1)的定义域是()A。
x<1B。
(-3,1)C。
{x|x<1} ∩ {-3≤x≤1}D。
-3≤x≤12.极限lim(sin3x/x) x→∞等于()A。
0B。
3C。
1D。
不存在3.下列函数中,微分等于ln(2x)+c的是() A。
xlnx+cB。
y=ln(lnx)+cC。
3D。
14.d(1-cosx)=()∫(1-cosx)dxA。
1-cosxB。
-cosx+cC。
x-sinx+cD。
sinx+c5.方程z=(x^2+y^2)/ab表示的二次曲面是(超纲,去掉)()A。
椭球面B。
圆锥面C。
椭圆抛物面D。
柱面.第1页,共9页二.填空题(只须在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1.lim(x→2) (x^2+x-6)/(x^2-4) = _________________.2.设函数f(x)={ex。
x>a+x。
x≤aa=__________________.3.设函数y=xe,则y''(x)=__________________.4.函数y=sinx-x在区间[0,π]上的最大值是______________________.5.|sin(π/4)| = _______________.6.设F(x)=∫(π/4)^(x+1)(sin(t)+1)dt=_______________________.7.设F(x)=∫(a,-a) (f(x)+f(-x))dx=____________________________.8.设a=3i-j-2k,b=i+2j-k,则a·b=______________________.9.设z=(2x+y),则(∂z/∂x) (0,1) = ____________________.10.设D= (∂z/∂x) (0,1) = ____________________.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
专升本自考高数试题及答案
专升本自考高数试题及答案专升本自考高等数学试题一、选择题(每题3分,共30分)1. 下列函数中,不是周期函数的是()A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = 2x^3 - 3x^2 + 5在x = 1处的导数是()A. 9B. 3C. -3D. -93. 定积分∫[0,1] x^2 dx的值是()A. 1/3B. 1/4C. 1/2D. 2/34. 二元函数z = x^2 + y^2的梯度向量在点(1,1)处是()A. (2, 2)B. (-2, 2)C. (1, 1)D. (-1, -1)5. 微分方程dy/dx = x^2 - y^2的解是()A. y = x^2 + CB. y = x^2 - CC. y = x + CD. y = x - C6. 利用傅里叶变换求解不定积分∫sin(2x) dx,结果为()A. -1/2 cos(2x)B. -1/4 cos(2x)C. -1/2 sin(2x)D. -1/4 sin(2x)7. 以下哪项不是拉格朗日乘数法的基本条件()A. 函数在约束条件下有最大值或最小值B. 约束条件是可微的C. 函数在约束条件下的梯度与约束条件的梯度正交D. 函数在约束条件下的值必须为正8. 以下哪个级数是收敛的()A. ∑(-1)^n / nB. ∑n^2C. ∑(1/n)^2D. ∑(1/n)9. 函数f(x) = ln(x)在区间(0, 1)上的最大值是()A. 0B. -1C. 1D. 不存在10. 以下哪个矩阵是可逆的()A. [1, 2; 2, 4]B. [1, 0; 0, 1]C. [2, 3; 4, 5]D. [0, 1; 1, 0]二、填空题(每题4分,共20分)11. 极限lim (x→0) (x^2 sin(1/x)) 的值是_________。
12. 微分方程dy/dx + 2y = 4x的通解形式是 y = __________。
普通专升本高等数学试题与答案
. 学习帮手 .高等数学试题及答案一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( )....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()02lim1cos t t xx e e dtx-→+-=-⎰( )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________.7.()()2lim 1_________n n a aq aq aq q →∞++++<=. 学习帮手 .8.arctan lim _________x x x→∞=9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,61tadt a e π==-⎰则___________.14.设2cos xz y=则dz= _______.15设{}2(,)01,01yDD x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1xy x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x +→18.求不定积分()()1.51ln 51dx x x ++⎰19.计算定积分I=220.a a x dx -⎰20.设方程2zx 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
专升本统一考试数学卷+答案 (2)
普通高等学校招生全国统一考试数学(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.已知函数)cos()sin()(ϕϕ+++=x x x f 为奇函数,则ϕ的一个取值为()A .0B .4π-C .2πD .π2.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法共有()A .48210A C 种B .5919A C 种C .5918A C 种D .5818A C 种3.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是()A .5,-15B .5,-4C .-4,-15D .5,-164、若直线1l :062=++y ax 与直线2l :01)1(2=-+-+a y a x 垂直,则=a ()A .2B .32C .1D .-25、一个盒子内部有如图所示的六个小格子,现有桔子,苹果和香蕉各两个,将这六个水果随机地放人这六个格子里,每个格子放一个,放好之后每行、每列的水果种类各不相同的概率是() A.B.C. D.6.交换⎰⎰⎰⎰+=12121121),(),(yyydxy x f dy dx y x f dy I 的积分次序,则下列各项正确的是()A.⎰⎰122),(x xdyy x f dx B.⎰⎰122),(x xy x f dy 1C.⎰⎰2122),(x xdyy x f dx D.⎰⎰2122),(x x dyy x f dx 7.设向量21,αα是非齐次线性方程组AX=b 的两个解,则下列向量中仍为该方程组解的是()A.21αα+ B.21αα- C.212αα+ D.212αα-8.已知向量)2,5,4,0(),0,,0,2(),1,1,2,1(321--==-=αααk 线性相关,则=k ()A.-2B.2C.-3D.39.设B A ,为事件,且,2.0)(,4.0)(,6.0)(===AB P B P A P 则=)(B A P ()A.0.2B.0.4C.0.6D.0.810.有两个口袋,甲袋中有3个白球和1个黑球,乙袋中有1个白球和3个黑球.现从甲袋中任取一个球放入乙袋,再从乙袋中任取一个球,则取出白球的概率是()A.163 B.207 C.41 D.2111.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为()A.14B.16C.18D.2012.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有()A.8种B.10种C.12种D.32种二、填空题(共4小题,每小题5分;共计20分)1.设12F F ,为椭圆C:22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________.3.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.4.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.三、大题:(满分70分)1、过点()2,0P -的直线l 与抛物线2:4C y x =交于不同的两点A ,B .(Ⅰ)求直线l 斜率的取值范围;(Ⅱ)若F 为C 的焦点,且0FA FB ⋅=,求ABF 的面积.2、已知函数f(x)=2x -12x +1.求f(f(0)+4)的值;3.已知直线l 的参数方程为,sin cos 2⎩⎨⎧=+-=ααt y t x (t 为参数),以坐标原点为极点,x 轴的正半轴建立极坐标系,曲线C 的极坐标系方程为θθρcos 2sin 2-=.(1)求曲线C 的参数方程;(2)当4πα=时,求直线l 与曲线C 的交点的极坐标.4.如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求∠DEF 的余弦值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学试题及答案
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)
(x)=x-1
,则
[]ϕ=f (x)( )
....A B C D x-2x+22-x x+2 ln
ln ln ln x+2x-2x+22-x
2.()0
2lim
1cos t t x
x e e dt
x
-→+-=-⎰( )
A .0
B .1
C .-1
D .∞
3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( )
.lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆=
4.设函数,1
31,1x x x ⎧≤⎨->⎩
22x f(x)=,则f(x)在点x=1处( )
A.不连续
B.连续但左、右导数不存在
C.连续但不可导
D. 可导
5.设C +⎰2
-x xf(x)dx=e ,则f(x)=( )
2
2
2
2
-x -x -x -x A.xe B.-xe C.2e D.-2e
二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-1
4
)的定义域是__________.
7.()()2lim 1_________n n a aq aq aq q →∞
+++
+<=
8.arctan lim _________x x x
→∞
=
9.已知某产品产量为g 时,总成本是2
g C(g)=9+800
,则生产100
件产品时的边际成本100__g ==MC
10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的
点ξ是_________.
11.函数3229129y x x x =-+-的单调减少区间是___________.
12.微分方程3
'1xy y x -=+的通解是___________. 13.设
2ln 2
,6
1
t a
dt a e π
=
=-⎰
则___________.
14.设2cos x
z y
=则dz= _______.
15
设{}
2(,)01,01y
D
D x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________.
三、计算题(一)(本大题共5小题,每小题5分,共25分)
16.设1x
y x ⎛⎫
= ⎪⎝⎭
,求dy.
17.求极限0ln cot lim ln x x x +→
18.求不定积分
()
()
1.51ln 51dx x x ++⎰
19.计算定积分I=
220
.a
a x dx -⎰
20.设方程2
z
x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
四、计算题(二)(本大题共3小题,每小题7分,共21分) 21.要做一个容积为v 的圆柱形容器,问此圆柱形的底面半径r 和高h 分别为多少时,所用材料最省?
22.计算定积分20
sin x xdx π
⎰
23.将二次积分⎰⎰
π
π=0
x
2
dy y
y sin dx I 化为先对x 积分的二次积分并计算其值。
五、应用题(本题9分) 24.已知曲线2
y x =,求
(1)曲线上当x=1时的切线方程;
(2)求曲线2
y x =与此切线及x 轴所围成的平面图形的面积,以及其绕x 轴旋转而成的旋转体的体积x V .
六、证明题(本题5分)
25.证明:当x>0时,22ln(1)11x x x x ++>+-
参考答案
一、单项选择题(本大题共5小题,每小题2分,共10分)1.答案:B
2.答案:A
3.答案:A
4.答案:C
5.答案:D
二、填空题(本大题共10小题,每空3分,共30分)
6.答案:
13
,
44
⎡⎤
⎢⎥
⎣⎦
7.答案:
1
a
q
-
8.答案:0
9.答案:
1
4
10.答案:
1
3
11.答案:(1,2)
12.答案:
3
1
2
x
Cx
-+
13.答案:ln2
a=
14.答案:
2
1cos
sin2
x
xdx dy
y y
⎛⎫
-+
⎪
⎝⎭
15.答案:()2
1
1
4
e-
-
三、计算题(一)(本大题共5小题,每小题5分,共25分)
16. 答案:()1ln 1x
x dx x ⎛⎫
-+ ⎪⎝⎭
17.答案:-1 18.答案:()2
ln 515
x C ++ 19. 答案:
24
a π
20. 答案:2'
'
x
y z
z
22x Z Z 2e 2e xy z x x -==--,
四、计算题(二)(本大题共3小题,每小题7分,共21分)
21.答案:3
3002
042V V V r h r πππ
=
==, 22.答案:
2
4
π
23. 答案:1
五、应用题(本题9分) 24. 答案:(1)y=2x-1(2)
112,30
π
(2) 所求面积()1
31
2
2001121()124
312y S y dy y y ⎡⎤+=-=+-=⎢⎥⎣⎦⎰
所求体积()1
2220111325630
x V x dx πππππ=-⋅⋅⋅=-=⎰
六、证明题(本题5分) 25.证明:
2222
22222222()ln(1)11
2121'()ln(1)11ln(1)11ln(1)
011
'()ln(1)0
f x x x x x x x x f x x x x x x x x x
x x x x x x x x x f x x x =++-+++
+∴=+++-
+++=+++-
++=++>∴++>∴=++>
故当0x >时()f x 单调递增,则()(0),f x f >即
22ln(1)11x x x x ++>+-
欢迎您的下载,资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,
学习资料等等
打造全网一站式需求。