2.3 绝对值(二)
2.3 《绝对值(2)》练习
2.3 《绝对值(2)》练习一、基础过关1.绝对值最小的有理数是_______,绝对值等于其本身的数是_______.2.绝对值不大于5的负整数是_______.3.已知:字母x 表示一个数,若x <0,且x =310,则x =____;若x =2-,则x =______. 4.-(-3)=____;-3-=_______.5.若a =0,则a =____.6.若1-x =3,则x =_______.7.绝对值等于6的数是_______.8.绝对值不大于4.5的非负整数是 .9. 看图填空:⑴ a _____b ;;⑷ -a _____b ; ⑸ b _____-c ; ⑹ -a _____c .二、能力提升10.数轴上M、N两点所表示的数分别为m、n,若n m 2=,且MN之间的距离为6,若M、N在原点的左侧,求m+n.11.计算:991100131412131121-++-+-+-12.某牛奶加工厂生产盒装牛奶.根据质量要求,净含量(不含包装)比标准质量250克少,记为负数,比250克多,记为正数.某检验员随意抽查了8盒,结果如下:+0.8,-0.2,+0.91,-0.3,-0.5,+0.4,+1,-0.34.请你用绝对值知识说明:(1)哪一盒最符合标准?(2)若与净含量差距在0.6克内为合格产品,那么合格率是多少?13.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2000厘米的线段AB ,则线段AB 盖住的整点个数是( )A.1998或1999 B.1999或2000 C.2000或2001 D.2001或2002三、聚沙成塔 求代数式c c b b a a ++的所有可能值.。
初中数学知识点精讲精析 绝对值 (2)
2.3 绝对值学习目标1.会借助数轴,理解绝对值和相反数的概念。
2.知道| a|的含义以及互为相反数的两个数在数轴上的位置关系。
3.会求一个数的绝对值和相反数,能用绝对值比较两个负数的大小。
知识详解1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0。
相反数的理解:①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数③0的相反数为0是相反数定义的重要组成部分。
(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数。
一个有理数a,它的相反数是多少呢?有理数a的相反数是-a.这里a可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a=2时,-a=-2,2与-2是互为相反数;当a=-1时,-a=-(-1),因为-1的相反数是1,所以-(-1)=1;当a=m+n时,-a=-(m +n),所以m+n的相反数是-(m+n).(3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等。
2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4②绝对值是一个距离。
(2)绝对值的表示方法一个数a的绝对值记作|a|,读作a的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|。
(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0。
用式子表示为:|a|=⎩⎪⎨⎪⎧ a ,a>0,0,a =0,-a ,a<0.3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大。
七年级上2.3绝对值教案
绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义 .通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力.教学过程:一、创设情境,复习导入1.今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题.(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行20千米,到了游乐园,下午她又向西行30千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?① +20千米,-30千米;②(20+30)×0.15=7.5升2.在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数.这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了.你还能举出其他类似的例子吗?3.小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈.教师巡视,偶尔参加其中一组的讨论,但不直接肯定或否定学生的问题,而是引导鼓励学生思考、交流,请各小组派代表汇报讨论结果.我们小组举的例子是:我爸爸喜欢炒股,一天他支出10 000元购买A股票,同一天他又抛出B股票收入15 000元,规定支出为负,那么爸爸两次的交易额用有理数如何表示?如果交易所每次交易按总额的千分之一收费,那么爸爸的这两次交易需交多少交易费?4.在实际生活中存在不关注相反意义的例子,刚才我们所举例子中的计算,都不必考虑它们的正、负性,看来我们的确很有必要给上面涉及的量取一个名字.我们把这个量叫做有理数的绝对值.二、合作交流、探索新知1. 绝对值的概念⑴ 如图,在数轴上,+3和-3虽然符号不同,但表示这两个数的点到原点的距离都是3, 我们把这个距离叫做+3和-3 的绝对值.+3的绝对值就是数轴上表示+3的点到原点的距离,+3的绝对值是3,记作:3+=3 -3的绝对值就是数轴上表示-3的点到原点的距离, -3的绝对值是3,记作:3-=3 ⑵ 一个数a 的绝对值是数轴上表示数a 的点到原点的距离, 数a 的绝对值,记作:a2. 探索绝对值意义⑴ 学生探索:求6,-6,21,-21,2.5,-2.5的绝对值 小组讨论:互为相反数的两个数的绝对值有什么关系?规律总结:互为相反数的两个数的绝对值相等⑵ 学生抢答:55= 2.32.3= 212122= 55=- 2.32.3=-212122=- 00=学生小组讨论得出: 一个正数的绝对值是它的本身. 即:若a >0,则a =a一个负数的绝对值是它的相反数. 即:若a <0,则a =-a0的绝对值是0 . 即:若a =0,则a =0(3)学生活动:在数轴上自己标出五个数,让同桌指出它们的绝对值,引导学生观察,讨论得出:任何一个数的绝对值都是非负数(正数和0). a ≥0a =⎪⎩⎪⎨⎧<-=>)0()0(0)0(a a a a a a =⎩⎨⎧<-≥)0()0(a a a a三、 举一反三,灵活应用例1.求下列各数的绝对值:-4,-121,0,+2,+341 解:44=-;212111=-; 00=; 22=+; 414133=+. 注:通过此题,复习巩固绝对值的概念,表示法,意义例2,计算① 9.104.35-+---+ ② 236532--++- 解: 原式=5-3.4-0+1.9 解: 原式=236532-+=3.5 =0注:通过此题,复习巩固绝对值的意义例3.求出绝对值是12,74,0的有理数 解: ① ∵1212=+ 1212=-∴绝对值是12的有理数是±12 ② ∵7474=+ 7474=- 绝对值是74的有理数是±74 ③∵00=∴绝对值是0的有理数是0小结:绝对值等于一个正数的数有两个,它们互为相反数;绝对值等于0的数有一个,是0;没有绝对值等于负数的数,绝对值是个非负数. a ≥0四、达标反馈1. 填空(1) 数轴上离开原点2个单位长的点所表示的数是___(2) 数轴上到原点的距离等于1.5的点所表示的数是 ______(3) 正数的绝对值是_________,负数的绝对值是___________, 零的绝对值是______(4) 从数轴上看,一个数的绝对值就是表示这个数离开原点的________(5) 49是______的相反数,它是_______的绝对值(6) 如果一个数的绝对值等于31,那么这个数是________ (7) 绝对值小于3的整数有___,它们的和为___(8) 若a a +=0,则a _____02.选择题 ⑴ -a -是一个A .正数B .负数C .正数或零D .负数或零⑵ 如果一个数的绝对值是5.2 ,那么这个数是A .5.2B .一5.2C .5.2或-5.2D .以上都不对⑶ 任何有理数的绝对值都是A .正数B .负数C .有理数D .正数或零⑷ 一个数的绝对值是它本身,那么这个数是A .正数B .正数或零C .零D .有理数五、学习小结:1、 绝对值的概念、意义① 数轴上的点到原点的距离叫做这个点表示的有理数的绝对值② 正数的绝对值是它的本身负数的绝对值是它的相反数0的绝对值是0 ③ a =⎪⎩⎪⎨⎧<-=>)0()0(0)0(a a a a a a =⎩⎨⎧<-≥)0()0(a a a a④ 绝对值是非负数 a ≥0⑤ 有理数可理解为由性质符号和绝对值组成⑥ 互为相反数的两个数可理解为符号相反、绝对值相同的两个数2、 学会发现、探索、合作交流,体会数形结合,分类讨论等数学思想方法六、设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义.通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力.。
北师大版七年级上册第二章2.3《绝对值》教案
此外,在实践活动环节,学生们在分组讨论和实验操作中表现出较高的积极性,但我也注意到,有些小组在讨论过程中偏离了主题。为了提高讨论的效率,我应该在活动前给出更明确的讨论要求和指导,确保学生在讨论中能够紧扣主题。
(2)掌握绝对值的性质:非负性、对称性、传递性等。
举例:非负性,即任何数的绝对值都是非负数;对称性,即|-a| = |a|;传递性,若|a| = |b|,则a = b或a = -b。
(3)计算含有绝对值符号的表达式:能够正确计算形如|a±b|的表达式。
举例:若a = 3,b = -4,则|3 - (-4)| = |3 + 4| = 7。
五、教学反思
在本次《绝对值》的教学中,我尝试了多种方法引导学生理解绝对值的概念和性质。从学生的反馈来看,大部分同学能够掌握绝对值的基本知识,但我也发现了一些问题。
首先,对于绝对值概念的理解,部分同学仍然存在困难。在导入新课环节,虽然我通过提问和举例引导学生思考,但部分同学似乎还没有完全将绝对值与距离联系起来。在今后的教学中,我需要在这个环节多花一些时间,让学生充分体会绝对值与数轴之间的联系。
2.教学难点
(1)理解绝对值与数轴的关系:学生需要理解数轴上的点与其绝对值之间的联系,明确绝对值表示距离的概念。
难点解析:对于刚接触绝对值的学生来说,理解数轴上的距离与绝对值的关系可能存在困难,需要通过具体实例和数轴演示来帮助学生理解。
(2)绝对值性质的理解与运用:学生需要掌握并运用绝对值的性质解决相关问题。
苏科版数学七年级上册2.3绝对值与相反数(二)教案
——相反数
二.深化主题,提炼定义
1.议一议:观察下列各对有理数,你发现了什么?
5与-5、-2.5与2.5, 与-
归纳1:成对出现。(即有两个数)
2:符号不同。(位于原点两旁)
3:到原点的距离相等。
像5与-5、-2.5与2.5, 与- ……符号不同、绝对值相等的两个数互为相反数,其中一个是另一个的相反数,如5与-5互为相反数,即5是-5的相反数,-5是5的相反数。
教学内容
教师活动内容、方式
学生活动方式
设计意图
一.创设情境,引入课题
1.请将下列4个数分成两类,并说出为什么要这样分类
5,-2,-5,+2
(允许学生有不同的分法,只要能说出道理,都要给予鼓励)
2.出示教材P22图2—8,观察数轴上A、B两点的位置
及其到原点的距离,你有何发现?
归纳:1)A、B两点到原点的距离相等,都等于5
④写已知数的相反数,只要在这个数的前面添一个负号()
3.试一试:说出下列式子的含义
-(-5)的意义-()的意义
-(-3)的意义- 的意义
你能根据它们的含义自己总结出简化符号的规律并化简吗?
1,相反数的定义
2,互为相反数的数在数轴上表示的点的特征
3,怎样求一个数的相反数?怎样表示一个数的相反数?
:
教材P23T1,2,3,4
课题
§2.3绝对值与相反数(2)
课型
新授课
教学目标
1掌握相反数的概念,能求出已知数的相反数,进一步理解数轴上的点与
数的对应关系;
2通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3体验数形结合的思想。
六年级数学上册2.3绝对值 优秀课件鲁教版五四制(2)
1.观察数轴上-4与-2的位置,-4在-2的 边,根据 利用数轴比较有理数的大小可知,-4 2; 2.计算-4和-2的的绝对值,谁的绝对值大? 3.由以上两题可得,-4的绝对值 ,但-4却 。 总结:
例1:比较下列各组负数的大小
(1)-1和-5
5 (2 ) 6
(2)和-2.7
分析:利用绝对值的大小来比较这两个负数的大小
呢?
2.你还能说出几对具有这种特征的数吗? 总结:如果两个数只有符号不同,那么称其中一个数是 另一个数的相反数,也称这两个数互为相反数。 3. 在数轴上 3到原点的距离是 ,-3到原点的 距离是 ,所以在数轴上表示 的两 个点 到原点的距离相等 。
跟踪练习: 1.
2.
3.a的相反数是 ,-a表示 表示 的相反数 .
预习诊断
相反数: 1.如果两个数 ,那么称其中一个数 为另一个数的相反数,也称这两个 数 . 2.-10的相反数是 . 0的相反数是 . 1.2相反数是 . 绝对值: 1.在数轴上,4到原点的距离是 , 4的绝对 值就是 . 记作|4|= . 2. -4 绝对值是 ,|-1.5|= .
合作探究
探究一:相反数 1.观察你所画的数轴,思考: 数3与-3有什么相同点和不同点? 5与-5,3 2 和3 2
情景导入
知识回顾:1.数轴及数轴的画法 2.请同学们画数轴,并在数轴上 3 3 ,5和-5Байду номын сангаас 标出下列各数:3和-3, 和 2 2
1、借助数轴理解相反数的意义,掌握求一个 有理数的相反数的方法。 2、借助数轴理解绝对值的意义,知道︱a︱ 的含义(这里a表示有理数);掌握求一个数 的绝对值的方法。 3、会利用绝对值比较两个负数的大小。
探究三:绝对值 1.观察同学们一开始画的数轴,找出3与-3到原点的 3 3 -3 3 距离。
武汉市实验中学七年级数学上册 第二章 有理数及其运算 2.3 绝对值教学设计2 北师大版
绝对值2教学目标知识目标:(1)理解绝对值的概念及表示法。
(2)理解数的绝对值的几何意义。
能力目标:(1)掌握求一个数的绝对值及有关的简单计算,(2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。
情感目标:让学生经历绝对值的产生过程,体会数形结合思想。
教学重点、难点重点:绝对值的概念和求一个数的绝对值。
难点:绝对值的几何意义。
教学过程一、新课引入我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。
乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。
例如有2位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10 Km到达A处,另一位同学乘上乙出租车向西行驶10 Km到达B处。
二、合作学习把全班同学分4---5组分组讨论完成下面的三个问题1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正)2:思考两位同学付费额度是否一样?为什么?3:结论付费额度与行驶方向有没有关系?然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价)这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。
说明在数轴上的A(+10)、B(-10)两点到原点(书店)的距离是一样的,都是10。
同样数轴上+5和-5两点到原点的距离也是一样的。
我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
(注意是离开原点的距离)如数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5,记作55=- ;+5的绝对值也是5,记作55=+ 。
其实际意义是:数轴上+5这个点到原点的距离为5。
(强调绝对值符号的书写格式) 三、课内练习1、求下列各数的绝对值: -1.6 580 -10 +10 同时说出它们的几何意义。
2、说出下列各数的绝对值: -7 -2.05 0 1000 97 97-由上述两题可概括出:(在教师的引导下让学生得出结论)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。
北师大版数学七年级上册2.3《绝对值》教学设计
北师大版数学七年级上册2.3《绝对值》教学设计一. 教材分析《绝对值》是北师大版数学七年级上册第2.3节的内容。
本节主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决相关问题。
教材通过引入数轴的概念,让学生直观地理解绝对值的含义,并通过举例说明绝对值的性质。
教材还提供了丰富的练习题,帮助学生巩固所学知识。
二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数轴有一定的了解。
但他们对绝对值的概念和性质可能还不够清晰,需要通过实例和练习来加深理解。
此外,学生可能对解决含绝对值的问题感到困惑,需要教师的引导和解答。
三. 教学目标1.了解绝对值的概念,掌握绝对值的性质。
2.能够运用绝对值解决相关问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.绝对值的概念和性质。
2.解决含绝对值的问题。
五. 教学方法采用问题驱动法、实例教学法和练习法。
通过提问引导学生思考,通过实例讲解让学生理解绝对值的概念和性质,通过练习题让学生巩固所学知识。
六. 教学准备1.PPT课件:包含绝对值的概念、性质和例题。
2.练习题:含不同类型的问题,以便学生巩固所学知识。
3.数轴教具:用于直观地展示绝对值。
七. 教学过程1.导入(5分钟)提问:什么是绝对值?引导学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(15分钟)讲解绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值。
呈现绝对值的性质,如正数的绝对值是正数,负数的绝对值是正数,零的绝对值是零等。
3.操练(15分钟)展示例题,让学生跟随教师一起解答。
例如:求|3|、|-5|、|0|的值。
让学生独立完成练习题,检测学生对绝对值的掌握程度。
4.巩固(10分钟)让学生分组讨论,用自己的语言总结绝对值的性质。
每组选代表进行汇报,教师点评并总结。
5.拓展(10分钟)提问:绝对值在实际生活中有什么应用?让学生举例说明,引导学生将所学知识与生活实际相结合。
北师大版初中数学七年级上册-2.3绝对值课件(共17张PPT)
【小组讨论3】阅读教材第31页例2, 特别地,0的相反数是0。 绝对值是4的数有______个,它们分别是 2、在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。 -5,0,5, -4, -1, 0, , -400, +0.
(1)│+2│= ——,│ (2)│0│= ——;
比较大小: (1) -1和-5 (2)-5/6和-2.7
思考:比较两负数的大小,一般有哪些步骤?
【反思小结】
比较两负数的大小的步骤: (1)分别求出两负数的绝对值; (2)比较这两个数的绝对值大小; (3)根据“两个负数比较大小,绝对值大的
反而小”作出判断.
达标检测 反思目标
1.一个数在数轴上表示的点距原点6个单位长 度, 且在原点的左边,则这个数是________.
3、相反数的表示方法:如6的相反数是-6,即在6的前面添加一个“-”号,那么-3的相反数就可以表示成-(-3)=+3. (2)求出(1)中各数的绝对值,并比较它们的大
记作|a| 距原点 个单位长度的数是________和________,
绝对值是4的数有______个,它们分别是 探究点一:相反数的概念
距原点 5 个单位长度的数是________和________,
2
距原点最近的是__________.
【展示点评】像2,52
,0分别是±2,± 5
2
,0的绝对值.
在数轴上,一个数所对应的点与原点的距离叫该数的绝对值.
如:+2的绝对值是2,记作|+2|=2;-2的绝对值是2,记作|-2| =2.
2│= ——,│-8.
2.比较大小: -80( )-81 -2016( )0.1 2.5( )0 -6666( )0
2.3绝对值 教案 2022—2023学年鲁教版(五四制)六年级数学上册
2.3 绝对值教案 2022—2023学年鲁教版(五四制)六年级数学上册一、教学目标•理解绝对值的概念•掌握绝对值的计算方法•能够应用绝对值解决实际问题二、教学内容1. 绝对值的概念•通过生活中的例子引出绝对值的概念•解释绝对值的定义和意义2. 绝对值的计算•正数的绝对值等于本身•负数的绝对值是其相反数3. 绝对值的应用•计算带有绝对值的数的运算结果•解决实际问题:求温度变化、解决距离问题等三、教学过程1. 导入教师通过提问和举例的方式引出绝对值的概念,让学生了解绝对值在日常生活中的应用。
2. 教学教师讲解绝对值的定义和计算方法,并通过示例演示如何计算绝对值。
同时,教师提供足够的练习机会,让学生在课堂上进行练习。
3. 拓展教师通过一些拓展练习让学生巩固和深化对绝对值的理解,并引导学生探索绝对值在实际问题中的应用。
4. 总结教师带领学生总结绝对值的概念、计算方法和应用,并与学生一起回顾本节课的重点内容。
四、教学重点与难点•教学重点:绝对值的概念、计算方法和应用•教学难点:绝对值在实际问题中的应用五、教学资源•教材:鲁教版(五四制)六年级数学上册•板书:绝对值的概念、计算方法和应用示例六、教学评价•观察学生的参与度和回答问题的能力•检查学生在课堂练习中的表现•分析学生解决实际问题的能力七、教后反思通过本节课的教学,学生对绝对值的概念有了初步的了解,并能够熟练计算绝对值。
在应用方面,学生需要进一步培养解决实际问题的能力。
下节课要提供更多的实际问题,让学生进行更多的探索和实践。
2.3 绝对值 讲义 2021-2022学年北师大版数学七年级上册
北师大版七年级(上)第二章有理数及其运算2.3 绝对值【本节学习要点】1.了解相反数的概念,并会表示一个数或式子的相反数;2.会化简一个数的符号;3.理解绝对值的意义;4.会用绝对值的法则求一个数的绝对值,并会求含绝对值的四则运算;5.能利用"几个非负数的和为零,则每个非负数都为零"求字母的值.【知识呈现】1.相反数∶只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0.注意∶①相反数是成对出现的;②相反数只有符号不同,若一个为正,则另一个为负;③0 的相反数是它本身;相反数为本身的数是0.(2)相反数的性质与判定∶互为相反数的两数和为0,和为0的两数互为相反数,即 a,b互为相反数,则 a+b =0.(3)相反数的几何意义∶在数轴上,表示互为相反数的两个点关于原点对称. (4)相反数的求法①求一个数的相反数,只要在它的前面添上负号"-"即可求得(如∶a的相反数是-a);②求多个数的和或差的相反数是,要用括号括起来再添"-",然后化简∶(如;a+b 的相反数是-(a+b)=-a -b,a-b的相反数是-(a-b)= -a+b=b-a;③求前面带"-"的单个数,也应先用括号括起来再添“-”然后化简(如∶-5的相反数是-(-5)=5;(5)多重符号的化简规律∶"+"号的个数不影响化简的结果,可以直接省略;"-"号的个数决定最后化简结果;即∶"-"的个数是奇数时,结果为负,"-"的个数是偶数时,结果为正.如 -(- 3)= 3,-[-(-7)] = - 7,-(+1)=-1.2.绝对值∶(1)绝对值的几何定义∶一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作a.(2)绝对值的代数定义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0 的绝对值是0.可用字母表示为∶①如果a>0,那么a=a;②如果a<0,那么a= -a;③如果a=0,那么a=0.(3)绝对值的性质∶任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性.所以,a取任何有理数,都有a≥0.①0的绝对值是0;绝对值是0的数是0.即∶a=0、a=0;②一个数的绝对值是非负数,绝对值最小的数是0. 即∶a≥0;③任何数的绝对值都不小于原数.即∶a≥α;④绝对值是相同正数的数有两个,它们互为相反数. 即∶若x=a(a>0),则x= ±a;⑤互为相反数的两数的绝对值相等.即∶a-=a或若a+b=0,则a=b;⑥绝对值相等的两数相等或互为相反数.即∶a=b,则a=b或a= -b;⑦若几个数的绝对值的和等于0,则这几个数就同时为0.即a+b=0,则a=0且b=0.(非负数的常用性质∶若几个非负数的和为0,则有且只有这几个非负数同时为0)【纠错核心点拨】1.绝对值刻画的是一个数所对应的点到原点的距离,因为距离一定是非负的,所以a≥0.2.绝对值等于0的数只有0,绝对值等于正数的数一定有两个,它们互为相反数,位于原点两侧,与原点距离相同.3.相反数等于本身的数只有0,绝对值等于本身的数有正数和0.4.几个非负数的和为0,这几个非负数分别为0,现在学习的非负数就只有绝对值.【例题演练】例1:下列各对数中互为相反数的是(B)A.-5与 -(+5)B.-(-7)与 +(-7)C.-(+2)与 +(-2)D.- ⅓与 -(-3)(2)化简下列各数的符号① -(-2); ②+(- ½)③-[-(-4)]; ④-[-(+3.5)];⑤-{-[-(+5)}. ⑥-{-[-(-5)]};解∶①2; ②.- ½③-4; ④3.5; ⑤-5; ⑥5例2:把-|-3.5|,|-2|,-|+1.5|,|0|,|-3.5|在数轴上表示出来,并按从小到大的顺序排列出来.解∶因为-|-3.5|=-3.5,|-2|=2,-|+1.5|=-1.5,|0|=0,|-3.5|=3.5.将各数在数轴上表示如图按从小到大的顺序排列出来为∶-|-3.5|<-|+1.5|<|0|<|-2|<|-3.5|例3例3(1)如果|x-2|=1,那么x是 3或1 .(2)已知|a-2|+|b-4|+|c-9|=0,求2a+3b-c 的值答∶|a-2|≥0,|b-4|≥0,|c-9|≥0且|a-2|+|b-4|+|c-9| =0,则a-2=0,b-4=0,c-9=0,所以a=2,b=4,c=9,所以2a+3b-c=2×2+3×4-9=7.【课后练习】 1.21-的相反数为 21 ,a-b 的相反数 -a+b ,2x+y 的相反数是 -2x-y .2.如图,如果点A ,B 表示的数是互为相反数,那么点C 表示的数是( D )A.-3B.-4C.-5D.-63.化简下列各数∶①-(-100); ②-[+(-5)] ③-[-(+21)]④+(-2.8); ⑤[-(-12)]; ⑥-[-(-5)].解∶①100; ②5; ③21 ④-2.8 ⑤12 ⑥-54.计算|-2|+|-(-3)|= 5 ; -|-6| < -(-6).(填">""<"或"=");5.(2020·编写)|a|=-a ,则a 一定是(C )A.负数B.正数C.零或负数D.非负数6.化简|6-2π|=2π-6 |π-4|+|3-π|= 17.如果|x-5|=3,x= 8或2 若|a-3|+|b-2|=0,则a+b= 58.已知|3x-6|+|2y+4|+221-Z =0,求x ,y ,z 的值;解∶|3x -6|≥0,|2y+4|≥0,221-Z ≥0且|3x-6|+|2y+4|+221-Z =0, 则3x-6=0,2y+4=0 221-Z =0,所以x=2,y= -2,z=2.。
北师大版七年级上第二章2.3绝对值
北师大版七年级上第二章2.3绝对值知识点总结绝对值有两个意义分别是代数意义和几何意义。
代数意义即非负数的绝对值是它本身,非正数的绝对值是它相反数。
数学语言:|a|=a(a≥0)或|a|=-a(a≤0)eg1.|808|=808,|-2018|=2018。
eg2.|m-4|=m-4(m≥4)或4-m(m≤4)。
不管是一个单纯的数或字母还是复杂代数式,只要穿上绝对值的外衣,结果一定是非负数。
几何意义?几何意义,代表距离。
在数轴上,一个数到原点的距离叫做该数的绝对值。
eg1.|a|表示点a到原点距离。
eg2.|a-b|表示点a到点b的距离。
eg3.|a+b|表示点a到点-b的距离。
eg4.|m-3|表示点m到点3 的距离。
eg5.|m+3|表示点m到点-3 的距离。
是不是说,两个点之间的距离,就是两个点所代表的数做差,然后加上绝对值。
说的很对哦。
下面对绝对值常考题型之一进行讲解。
绝对值化简(去绝对值号)方法总结:1.判断绝对值里面的代数式是正,是负还是0。
减法:右减左为正。
加法:符号同绝对值大的。
2.绝对值与绝对值相连的符号不变,将绝对值号变成括号。
应用绝对值代数意义,填写括号内容。
3.去括号,合并同类项化简。
一、定义1.代数定义:正数的绝对值是它本身,负数的绝对值是它相反数,零的绝对值还是零2.几何定义:在数轴上a的绝对值是表示a的点到原点的距离二、重点、难点三、性质:非负性四、题型(一)代数意义:(二)几何意义:初中数学与小学阶段相比,最重要的一个变化就是要求孩子们要学会很多的数学思想,并在以后的解题中能够熟练应用。
因此对于刚进入初一的同学们来说,体会接触到的每一个数学思想,尤为重要。
“绝对值”就是其中比较重要的一个。
所涉及的数学思想包括“整体思想、分类讨论、数形结合”等。
1.绝对值的概念一个数a的绝对值就是数轴上表示数a的点与原点的距离。
记作|a|。
绝对值的概念就体现了“数形结合”的思想——“数”与“数轴”的结合。
北师大版2.3《绝对值》教学设计
2.3绝对值(教学设计)姓名:____________【学习目标】1、掌握有理数的绝对值概念及表示方法;2、熟练掌握有理数绝对值的求法和有关的简单计算;掌握利用绝对值比较两个负数的大小;3、在绝对值概念形成过程中,渗透数形结合等思想方法,培养概括能力和论证能力。
【学习重点】正确理解绝对值的概念。
【学习难点】绝对值的几何意义,负数大小比较。
【知识回顾】1.具有 、 、 的 叫做数轴。
2.3到原点的距离是 ,—5到原点的距离是 ,到原点的距离是6的数有 ,到原点距离是1的数有 。
3.2的相反数是 ,—3的相反数是 , 的相反数是 。
4.用“<”或“>”填空5.在数轴上标出下列各数,并用“<”连接起来。
-3,4,0,32 ,-1,5,-4,-43,2.5【探究新知】问题1、两位同学在书店O 处购买书籍后坐出租车回家,甲车向东行驶了6公里到达A 处,乙车向西行驶了6公里到达B 处。
若规定向东为正,则A 处记做__________,B 处记做__________。
(1) 画出数轴,并在数轴上标出A 、B 的位置;(2) 在数轴上的A、B两点又有什么特征?(3) 在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示- 34 和34的点呢?归纳:一般地,在数轴上一个数a 所对应的点与原点的距离叫做数a 的绝对值,记作: 例如:4的绝对值记作 ,它表示在 上 与 的距离,所以| 4|= 。
—6的绝对值记作 ,它表示在 上 与 的距离,所以|-6|= 。
思考:互为相反数的两个数的绝对值有什么关系?练习:| 7|= |+4.2|= |0∣= |-5.7|= 35-= ∣—2.25∣= ∣25-∣= 问题2、你能从下面发现什么规律?一个数的绝对值与这个数本身有什么关系? (1)|+2|= ,51= , |+8.2|= ; (2)|0|= ; (3)|-3|= , |-0.2|= , |-8.2|= .小结:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是 。
七年级上册第二章《有理数及其运算》第三节“绝对值”
课题:2.3 绝对值一.备课标:(一)内容标准:借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,知道|a|的含义(这里a表示有理数)(二)核心概念:初步学会从数形角度及特殊到一般学习相反数和绝对值的概念。
十大核心概念在本节课中突出培养的是符号意识、数形结合的思想方法、应用意识。
二、备重点、难点:(一)教材分析:本节课是七年级上册第第二章《有理数及其运算》第三节“绝对值”,属于“数与代数”领域中的“数与式”。
相反数的概念是学习绝对值知识的基础,绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。
本节课借助数轴引出相反数、绝对值的概念,并通过计算、观察、交流,发现绝对值的性质特征,利用绝对值来比较两个负数的大小。
应让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证,加深对绝对值的理解。
(二)重点、难点分析:本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。
重点:会求已知数的相反数和绝对值,会用绝对值比较两个负数的大小难点:知道|a|的含义,利用绝对值比较两个负数的大小。
三.备学情:(一)学习条件和起点能力分析:1.学习条件分析:(1)必要条件:上一节课已经学习了有理数的概念和数轴,为绝对值,相反数的概念的建立和比较两个负数的大小积累的必要的学习经验。
(2)支持性条件:通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
2.起点能力分析学生已经掌握了有理数,已经会用数轴的点来表示有理数。
初步获得了分析问题和解决问题的一些基本方法,初步体验解决方法的多样性,初步发展了创新意识。
七年级数学上册教学课件《绝对值》
探究新知
素养考点 求相反数
2.3 绝对值
例 如果a与﹣2互为相反数,那么a等于( B )
A.-拨:求一个数的相反数的方法:求一个具体数的 相反数时,只需改变这个数前面的符号,其他部分不变.
巩固练习
变式训练
下列说法: ①-2是相反数; ② 2是相反数; ③-2是2的相反数; ④-2和2互为相反数. 其中正确的有( B ) A.1个 B.2个 C.3个 D.4个
;
3 6
<
46;
所以−0.5
>
−
2 3
.
连接中考
2.3 绝对值
1. 在0,-1,2,-3这四个数中,绝对值最小的数是( A ) A.0 B.-1 C.2 D.-3
2. |x-3|=3-x,则x的取值范围是_x__≤__3_.
课堂检测
基础巩固题
2.3 绝对值
1. 下列结论正确的是( B )
A.-4与+(-4)互为相反数 C.-23与32互为相反数
问题2:互为相反数的两个数的绝对值又有什么关系呢?
结论: 1.│a│就是数轴上表示数a的点与原点的距离. 2.互为相反数的两个数的绝对值相等.
.探究新知
做一做
|+2|=___2_____, |-2|=____2____, -|-2|=__-_2_____,-|+2|=___-_2____,
|0|=___0_____.
数学 七年级 上册
2.3 绝对值
2.3 绝对值
导入新知
2.3 绝对值
观察下列每对数,并把它们在数轴上标出: 5和- 5,3和 -3,1.5和-1.5
-5 -3 -1.5
1.5 3
5
七年级数学上册第二章有理数及其运算2.3绝对值教学
-5到原点的距离(jùlí)是5,
所以-5的绝对值是5,
记做|-5|=5
0到原点的距离是0, 所以0的绝对值是0, 记做|0|=0
4到原点的距离(jùlí)是 4,所以4的绝对值是4,
记做|4|=4
│-5│=5
│4│=4
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
第九页,共三十一页。
3米
东
3米
A
3
O
3
B
-3
-2
-1
问题:
1.它们所跑的路线相同吗?
0
1
2
路线(lùxiàn) 不同,正 负性
3 路程一样,到原 点的距离相等(不
管(bùguǎn)方向)
2.它们所跑的路程(lùchéng)(线段OA、OB的长度)一样吗?
第八页,共三十一页。
知识要点
我们(wǒ men)把一个数在数轴上对应的点到原点的距离叫做 这个数的绝对值,用“| |”表示.
4.|-6|的相反数是_____-_6
5.+7.2的相反数的绝对值是___7_.2__
第二十五页,共三十一页。
6.判断:
(1)一个数的绝对值是 2 ,则这数是2 . (2)|5|=|-5|. (3)|-0.3|=|0.3|. (4)|3|>0. (5)|-1.4|>0. (6)有理数的绝对值一定是正数. (7)若a=b,则|a|=|b|. (8)若|a|=|b|,则a=b. (9)若|a|=-a,则a必为负数(fùshù).
第二十三页理数的绝对值一定(D )
A.大于0
B.小于0
C.小于或等于0 D.大于或等于0
2.若|a|+|b-1|=0,则a=____0_, b=_____. 1
2.3 绝对值(二)
-
5 6
的左边,所以-
2.7﹤-
5 6
2、比较下列每组数的大小:
(1) -9和 -3; (2)- 5 和- 3.6
6
做完后比较,你发 现了什么?
绝两 对个 值负 大数 的比 反较 而大 小小 。,
两个负数比较,绝对值大的反而小.
除了利用绝对值比较两个负数的 大小外,还可以用数轴比较。
概念: 在数轴上,一个数所对应的点与原
点的距离叫做该数的绝对值。 性质:
正数的绝对值是它本身; 负数的绝对值是它的相反数; 0 的绝对值是 0.
自学指 导
( 1 )在数轴上表示下列各数,并 比较它们的大小:
- 1.5 , - 3 , - 1 , - 5
( 2 ) 求出(1)中各数的绝对值, 并比较它们的大小
( 3 )你发现了什么?
解:(1)
- 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3;
| -1 | = 1 ; | - 5 | = 5.
1 < 1.5 <3 <5 (3)由以上知:两个负数比较大 小,绝对值大的反而小
自学检测 1. 比较下列每组数的大小
(解法1)一(-1利和用–绝5对;值(比较2)两个- 65负和数-的2大.7小)
解: (1)| -1| = 1,| -5 | = 5 ,1﹤5, 所以 - 1> - 5
(2)因为|
-
5 6
|
=
5 6
,|- 2.7| =2.7,
5 6
﹤2.7,所以
-
5 6
﹥-2.7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(解法1)一(-1利和用–绝5对;值(比较2)两个- 65负和数-的2大.7小)
解: (1)| -1| = 1,| -5 | = 5 ,1﹤5, 所以 - 1> - 5
(2)因为|
-
5 6
|
=
5 6
,|- 2.7| =2.7,
5 6
﹤2.7,所以
-
5 6
﹥-2.7
解法二 (利用数轴比较两个负数的大小) 解:(1)
( 3 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3;
| -1 | = 1 ; | - 5 | = 5.
1 < 1.5 <3 <5 (3)由以上知:两个负数比较大 小,绝对值大的反而小
自学检测 1. 比较下列每组数的大小
概念: 在数轴上,一个数所对应的点与原
点的距离叫做该数的绝对值。 性质:
正数的绝对值是它本身; 负数的绝对值是它的相反数; 0 的绝对值是 0.
自学指 导
( 1 )在数轴上表示下列各数,并 比较它们的大小:
- 1.5 , - 3 , - 1 , - 5
( 2 ) 求出(1)中各数的绝对值, 并比较它们的大小
因为- 5在 –1左边,所以 - 5﹤ - 1
(2)
因为-
2.7在
-
5 6
的左边,所以-
2.7﹤-
5 6
2、比较下列每组数的大小:
(1) -9和 -3; (2)- 5 和- 3.6
6
做完后比较,你发 现了什么?
绝两 对个 值负 大数 的比 反较 而大 小小 。,
两个负数比较,绝对值大的反而小.
除了利用绝对值比较两个负数的 大小外,还可以用数轴比较。