九年级教学九年级教学二次函数单元测试卷2
(人教版数学)初中9年级上册-单元检测-22 二次函数 单元检测题3 含答案
人教版九年级数学上册第22章《二次函数》单元测试及答案 (2)一.选择题(每小题3分,共30分)1.下列函数关系中,可以看做二次函数y =ax 2 +bx +c (a ≠0)模型的是( ) A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率1%,这样我国人口总数随年份的关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系.2.抛物线y =x 2 –2x –3 的对称轴和顶点坐标分别是( )A .x =1,(1,-4)B .x =1,(1,4)C .x =-1,(-1,4)D .x =-1,(-1,-4)3.对称轴平行于y 轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( )A .y =-2x 2 + 8x +3B .y =-2x -2 –8x +3C .y = -2x 2 + 8x –5D .y =-2x -2 –8x +24.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .ab >0,c >0B .ab >0,c <0C .ab <0,c >0D .ab <0,c <05.把二次函数y =213212---x x 的图象向上平移3个单位,再向右平 移4个单位,则两次平移后的图象的解析式是( )A .x y (21-=- 1)2 +7 B .x y (21-=+7)2 +7 C .x y (21-=+3)2 +4 D .x y (21-=-1)2 +16.下列各点中是抛物线3)4(312--=x y 图像与x 轴交点的是( )A . (5,0)B . (6,0)C . (7,0)D . (8,0)7. 在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )8. 已知二次函数y =2x 2+8x +7的图象上有有点A 1(2)y -,,B 21(5)3y -,,C 31(1)5y -,,则 y 1、y 2、y 3的大小关系为( )A . y 1 > y 2> y 3B . y 2> y 1> y 3C . y 2> y 3> y 1D . y 3> y 2> y 1 9.二次函数y =ax 2+bx +c的图象如图所示,则点M c b a ⎛⎫⎪⎝⎭,在( )Oyx9题x yO x yO xyOxyOA .第一象限B .第二象限C .第三象限D .第四象限 10.关于二次函数y =ax 2+bx +c 图像有下列命题:(1)当c =0时,函数的图像经过原点;(2)当c >0时,函数的图像开口向下时,方程ax 2 +bx + c =0 必有两个不等实根; (3)当b =0时,函数图像关于原点对称.其中正确的个数有( )A .0个B .1个C .2个D .3个 二.填空题(每题3分,共21分)11.已知抛物线y =ax 2 +bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.12.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2 – 4x – 1的顶点坐标是_______,对称轴是__________.13.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______.14.当m=_________时,函数y = (m 2 -4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.15.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________16.抛物线c bx ax y ++=2如右图所示,则它关于y 轴对称的抛物线的解析式是__________.17.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线x =4乙:与x 轴两个交点的横坐标都是整数.丙:与y 轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式__________________.三.解答题(共52分)18.(6分) (1)如果二次函数y =x 2 - x + c 的图象过点(1,2),求这个二次函数的解析式,并写出该函数图象的对称轴.19.(10分)有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-.(1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.20.(10分) 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:yO 331 yO xx (元) 15 20 30 … y (件)252010…若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日销售利润最大,每件产品的销售价应定为多少元?此时,每日销售的利润是多少元? 21.(12分) 某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天12时这头骆驼的体温是多少?⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式.22.(12分)在平面直角坐标系中,给定以下五点A (-2,0),B (1,0)C (4,0),D (-2,29),E (0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示).(1)问符合条件的抛物线还有哪几条.....不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.参考答案: 1.C 2.A3.C 点拨:使用待定系数法求解二次函数解析式. 4.C5.A 点拨:此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.(平移含两个方向:一是左右平移,二是上下平移.左右平移时,对应点纵坐标不变;上下平移时,对应点横坐标不变.) 6.C 7.B8.C (本题涉及到比较坐标值大小的问题,可先将一般式y =2x 2+8x +7化成顶点式22(2)1y x =+-便得顶点(-2,-1).因为抛物线开口向上,故当x =-2时,y 1=-1为最小值;又因为115135-> ,由函数图象分布规律,易知对应的y 2>y 3.综上得y 2>y 3>y 1 ) 9.D10.C 11.y =252212++-x x 12.y = 2(x –1)2 –3 , (1,-3), x = 113.①,0,114. 3 , y =5x 2+3 ,y 轴(或x =0) ,(0,3) x =0时y 有最小值3 15.y =-x 2 –2x + 3 (满足条件即可)16. y =x 2+4x +3 点拨:这是一道很容易出错的题目.根据对称点坐标来解.因为点(1,0),(3,0),(0,3)关于y 轴的对称点是(-1,0),(-3,0),(0,3).所以关于y 轴对称的抛物线就经过点(-1,0),(-3,0),(0,3)然后利用待定系数法求解即可. 17.抛物线的解析式为:222218181818113377775555y x x y x x y x x y x x =-+=-+-=-+=-+-或或或(从四个答案中填写一个即可) 点拨:本题是一个开放性题目,主要考查数形结合法,待定系数法以及抛物线与x 轴y 轴的交点坐标等有关性质.根据题意中二次函数图象的特点,用数形结合法画出其示意图,对称轴x =4.可由面积来求.18. (1)y = x 2–x + 2, x = 21;19.解:(1)设所求二次函数的解析式为c bx ax y ++=2,则⎪⎪⎩⎪⎪⎨⎧-=++-=+⋅+⋅=+-+-43005)2()2(22c b a c b a c b a ,即⎪⎩⎪⎨⎧-=+=--=1423b a b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a 故所求的解析式为:322--=x x y . 2)函数图象如图所示.由图象可得,当输出值y 为正数时, 输入值x 的取值范围是1-<x 或3>x . 20.解:一次函数的解析式为 y =k x +b 则y O x15252020k b k b +=⎧⎨+=⎩解的K=-1 b =40 即:一次函数解析式为y =-x +40(2)设每件产品的销售价应定为x 元,所获销售利润为w 元 w=(x -10)(40-x )=-x 2+50x -400=-(x -25)2+225产品的销售价应定为25元,此时每日获得的最大销售利润为225元.21、⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时⑵第三天12时这头骆驼的体温是39℃ ⑶()()的取值范围不写不扣分x x x x y 22102421612≤≤++-= 22.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ;③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC . (2)在(1)中存在抛物线DBC ,它与直线AE 不相交设抛物线DBC 的解析式为y =ax 2+bx +c ,将D (-2,29),B (1,0),C (4,0)三点坐标分别代入,得:4a -2b +c =29,a +b +c =0,16a +4b +c =0.解这个方程组,得:a =41,b =-45,c =1.∴抛物线DBC 的解析式为y =41x 2-45x +1【另法:设抛物线为y =a (x -1)(x -4),代入D (-2,29),得a =41也可.】 又设直线AE 的解析式为y =m x +n .将A (-2,0),E (0,-6)两点坐标分别代入,得: -2m+n=0,解这个方程组,得m=-3,n=-6. n=-6.∴直线AE 的解析式为y =-3x -6.。
九年级数学《二次函数》单元测试卷(含答案)
正确;∵ b2- 4ac>0,且对称轴在 y 轴左侧,故图象与 x 轴的交点有一个在 y 轴的右侧,∴
①③正确.
10. C
11. - 5 12.4 13. y=- 2x2- 4x+ 5 14.(2 ,- 1) 15.四
16. y=- 12x2+ 4x
解析: S△AEF = S 正方形 ABCD -S△ABE- S△ADF - S△ECF ,即
25.已知,如图 22-11 抛物线 y=ax2+ 3ax+ c(a>0) 与 y 轴交于点 C,与 x 轴交于 A, B 两点,点 A 在点 B 左侧.点 B 的坐标为 (1,0), OC=3OB.
(1)求抛物线的解析式; (2)若点 D 是线段 AC 下方抛物线上的动点,求四边形 ABCD 面积的最大值; (3)若点 E 在 x 轴上,点 P 在抛物线上.是否存在以 A, C, E, P 为顶点且以 AC 为一 边的平行四边形?若存在,求点 P 的坐标;若不存在,请说明理由.
5 23.解: (1) 把 (-5,0), 0, 2 ,(1,6)分别代入抛物线,解得
a=
12,b=
3,
c=
52,∴
y=
1 2
x2+
3
x+
5 .
2
(2)
令
1 2
x2+
3x+
5 2
=
2x-
3,整理后,得
12x2+ x+ 121= 0,∵ Δ<0 ,∴抛物线与直线无交点.
(3)
令
1 2
x2+
3x+
5 2
《二次函数》检测题
(满分: 120 分 时间: 100 分钟 )
一、选择题 (本大题共 10 小题,每小题 3 分,共 30 分 )
人教版九年级数学第二十二章《二次函数》单元测试题(含答案)
人教版九年级数学第二十二章《二次函数》单元测试题(含答案)(时间:100分钟 总分:120分)一、选择题(每题3分,共24分)1.下列各式中,y 是关于x 的二次函数的是 ( )A .y =4x +2B .21y ax +=C .2354y x x +=﹣D .y =21x2.把抛物线22y x =-向上平移1个单位,向右平移2个单位,得到( )A .22(1)2y x =-+-B .22(2)2y x =-++C .22(2)1y x =--D .22(2)1y x =--+ 3.抛物线()2235y x =--的顶点坐标是 ( )A .(3,5)--B .(3,5)-C .(3,5)-D .(3,5)4.二次函数2y ax bx c =++(a ≠0)中x ,y 的部分对应值如下表: x … ﹣2 ﹣1 01 2 … y … 0 ﹣4 ﹣6 ﹣6 ﹣4 …则该二次函数图象的对称轴为 ( )A .y 轴B .直线x =12C .直线x =1D .直线x =325.抛物线21y x x =--经过点(m ,3),则代数式21m m --的值为( )A .0B .1C .2D .36.已知抛物线223y x x -=--过A (-2,1y ),B (-3,2y ),C (2,3y )三点,则y 1、y 2、y 3大小关系是 ( )A .123y y y >>B .213y y y >>C .132y y y >>D .321y y y >>7.已知函数y =a 2x ﹣2ax ﹣1(a 是常数,a ≠0),下列结论正确的是( )A .若a >0,则当x ≥1时,y 随x 的增大而减小B .若a <0,则当x ≤1时,y 随x 的增大而增大C .当a =1时,函数图像过点(﹣1,1)D .当a =﹣2时,函数图像与x 轴没有交点8.如图,抛物线y =ax 2+bx +1的顶点在直线y =kx +1上,对称轴为直线x =1,有以下四个结论:①ab <0,②b <13,③a =﹣k ,④当0<x <1时,ax +b >k ,其中正确的结论是 ( )A .①②③B .①③④C .①④D .②③二、填空题(每题3分,共24分)9.抛物线y =4(x ﹣3)2+7的对称轴是直线x =_____.10.抛物线221y x x =--与y 轴的交点的坐标为________.11.已知函数()212y x =--+,当1x >时,y 随x 的增大而______(填写“增大”或“减小”).12.已知抛物线2y x bx c =++的部分图像如图所示,则方程20x bx c ++=的解是___________13.已知二次函数26y x x k =--的图象与x 轴有两个不同的交点,求k 的取值范围______.14.如图,过点D (1,3)的抛物线y =-x 2+k 的顶点为A ,与x 轴交于B 、C 两点,若点P 是y 轴上一点,则PC +PD 的最小值为____.15.已知二次函数2y ax bx c ++=的图像如图所示,则当0≤x ≤3时,函数值y 的取值范围是______.16.如图,点A 、B 的坐标分别为 ()1,4 和 ()4,4,抛物线2()y a x m n =++的顶点在线段AB 上,与x 轴交于C ,D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标的最大值为____.三、解答题(每题8分,共72分)17.已知二次函数y =x 2+bx +c ,当x =1时y =3;当x =﹣1时,y =1,求这个二次函数的解析式.18.已知二次函数223y x x =--.(1)将223y x x =--化成2()y a x h k =-+的形式;(2)写出该二次函数图象的顶点坐标.19.如图,抛物线的顶点为C (1,9),与x 轴交于A ,B (4,0)两点.(1)求抛物线的解析式;(2)抛物线与y 轴交点为D ,求BCD S △.20.已知二次函数2224y x x k =++-与x 轴有两个交点.(1)求实数k 的取值范围.(2)若此二次函数有最小值3-,求k 的值.21.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x 元,平均月销售量为y 件.(1)求出y 与x 的函数关系式.(2)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?22.平面直角坐标系xOy 中,已知抛物线y =2x +bx +c 经过(﹣1,2m +2m +1)、(0,2m +2m +2)两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线y =2x +bx +c 与x 轴有公共点,求m 的值;(3)设(a ,1y )、(a +2,2y )是抛物线y =2x +bx +c 上的两点,请比较2y ﹣1y 与0的大小,并说明理由.23.如图,在平面直角坐标系中,抛物线2y ax bx =+(a≠0)经过原点,并交x轴正半轴于点A.已知OA=6,且方程29ax bx +=恰好有两个相等的实数根.(1)求该抛物线的表达式;(2)若将图象在x 轴及其上方的部分向右平移m 个单位交于点P ,B ,1B 是该图象两个顶点,若1PBB 恰好为等腰直角三角形,求m 的值.24.如图,抛物线213222y x x =-++与x 轴交于点A 、点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)求直线BD 的解析式;(3)当点P 在x 轴上运动时,直线l 交BD 于点M ,试探究m 为何值时,使得以C 、Q 、M 、D 为顶点的四边形是平行四边形.25.已知抛物线2y ax bx =+过点A (1,4)、B (3-,0),过点A 作直线AC ∥x 轴,交抛物线于另一点C ,在x 轴上有一点D (4,0),连接CD .(1)求抛物线的表达式;(2)若在抛物线上存在点Q ,使得CD 平分∠ACQ ,请求出点Q 的坐标;(3)在直线CD 的下方的抛物线上取一点N ,过点N 作NG ∥y 轴交CD 于点G ,以NG 为直径画圆在直线CD 上截得弦GH ,问弦GH 的最大值是多少?参考答案1.C .2.D .3.C .4.B .5.D .6.A .7.B .8.B .9.3.10.(01)-,.11.减小.12.11x =-或23x =13.9k >-.14.3215.13y -≤≤16.8.17.解:将点(1,3),(﹣1,1)代入函数解析式得:1311b c b c ++=⎧⎨-+=⎩ ,解得11b c =⎧⎨=⎩ ;故此函数的解析式为y =x 2+x +1.18.解:(1)223y x x =--,2214y x x =-+-,2(1)4y x=--;(2)∵二次函数顶点式为2(1)4y x=--,∴二次函数图象的顶点坐标为(14),-.19.(1)解:∵抛物线的顶点为C(1,9),∴设抛物线的解析式为y=a(x-1)2+9,∵抛物线与x轴交于点B(4,0),∴a(4-1)2+9=0,解得:a=-1,∴抛物线的解析式为y=-(x-1)2+9=-x2+2x+8;(2)解:过点C作CE⊥y轴于点E,∵抛物线与y轴交点为D,∴D(0,8),∵B(4,0),C(1,9),∴CE=1,OE=9,OD=8,OB=4,∴S△BCD= S梯形OBCE-S△ECD-S△OBD=12(1+4)×9-12×1×1-12×4×8=6.20.(1)解:∵二次函数与x轴有两个交点,∴Δ0>,即224(24)0k -->, 解得52k <.(2)解:2224y x x k =++-,整理得:2(1)25y x k =++-,∵10>,∴1x =-时,y 有最小值25k -,∵此二次函数有最小值3-,∴253k -=-,解得1k =.21.(1)解:∵单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元,设销售单价为x 元,∴3060x ≤≤, 平均月销售量为y 件,则602080220010x y x -=⨯+=-+, ∴2200y x =-+()3060x ≤≤;(2)解:设销售这种童装每月获得的利润为W ,根据题意得()30450W x y =--()30(2200)450x x =--+-222606450x x =-+-()32652000x =--+3060x ≤≤,20-<,∴W 随x 增大而增大,∴当x =60时,W 最大,最大为()22606520001950-⨯-+=(元),答:当销售单价为60元时,销售这种童装每月获得的利润最大,最大为1950元.22.(1)∵抛物线y =x 2+bx +c 经过(﹣1,m 2+2m +1)、(0,m 2+2m +2)两点,∴2212122b c m m c m m ⎧-+=++⎨=++⎩, ∴2222b c m m =⎧⎨=++⎩, 即:b =2,c =222m m ++,(2)由(1)得y =22222x x m m ++++,令y =0,得222x x m +++2m +2=0,∵抛物线与x 轴有公共点,∴∆=4﹣4(2m +2m +2)≥0,∴()21m +≤0,∵()21m +≥0,∴m +1=0,∴m =﹣1;(3)由(1)得,y =22222x x m m ++++,∵(a ,1y )、(a +2,2y )是抛物线的图象上的两点,∴221222y a a m m =++++,()()22222222y a a m m ++++++=,∴()()222221222222[]22y y a a m m a a m m +++++++++=-+⎡⎤-⎣⎦ =4(a +2)当a +2≥0,即a ≥﹣2时,210y y -≥,当a +2<0,即a <﹣2时,210y y -<.23.(1)解:6OA =,()6,0A ∴,将()6,0A 代入2y ax bx =+得:3660a b +=,解得6b a =-,26y ax x a ∴-=,方程29ax bx +=恰好有两个相等的实数根, ∴这个方程根的判别式2360b a =+∆=,即236360a a +=, 解得1a =-或0a =(不符题意,舍去), 则抛物线的解析式为26y x x =-+.(2)解:抛物线()22639y x x x =-+=--+向右平移m 个单位后的抛物线的解析式为()239y x m =---+,()()13,9,3,9B B m ∴+,1BB m ∴=, 1PBB 恰好为等腰直角三角形,∴只能是1190,BPB BP B P ∠=︒=, 如图,过点P 作1PH BB ⊥于点H ,1122m PH BH BB ∴===, 3,922m m P ⎛⎫∴+- ⎪⎝⎭, 将点3,922m m P ⎛⎫+- ⎪⎝⎭代入抛物线()239y x =--+得:2339922m m ⎛⎫-+-+=- ⎪⎝⎭, 解得2m =或0m =(不符题意,舍去), 即m 的值为2.24.(1)令y =0,则有:2132022x x -++=,解方程得:11x =-,24x =,根据图形可知:点A 的坐标为(-1,0),B 点坐标为(4,0),令x =0,则有2132222y x x =-++=,则C 点坐标为:(0,2),即点A 的坐标为(-1,0),B 点坐标为(4,0),C 点坐标为:(0,2);(2)∵C 点坐标为:(0,2),点C 与点D 关于x 轴对称,∴D 点坐标为:(0,-2),设直线BD 的解析式为y kx b =+,∵B 点坐标为(4,0),D 点坐标为:(0,-2),∴402k b b +=⎧⎨=-⎩,解得122k b ⎧=⎪⎨⎪=-⎩, ∴直线BD 的解析式为122y x =-,即直线BD 的解析式为122y x =-;(3)∵C 点坐标为:(0,2),D 点坐标为:(0,-2),∴CD =2-(-2)=4,∵根据题意有:MQ ⊥x 轴,CD ⊥x 轴,∴CD QM ∥,即当CD =QM 时,即可得以点C 、D 、M 、Q 四点围成的四边形是平行四边形, ∵P 点坐标为:(m ,0),则根据题意可知,点Q 、点P 、点M 三点的横坐标均为m ,又∵点M 在直线122y x =-上,点Q 在抛物线213222y x x =-++上, ∴设M 点坐标为:1,22m m ⎛⎫- ⎪⎝⎭,Q 点坐标为:213,222⎛⎫-++ ⎪⎝⎭m m m , ∴2213112242222MQ m m m m m ⎛⎫=-++--=-++ ⎪⎝⎭, 当CD =QM 时,即2142m m -++=4时,以点C 、D 、M 、Q 四点围成的四边形是平行四边形,分情况讨论:当24124m m -++=时,即有2102m m -+=,解得:m =2或者m =0,当m =0时,CD 与QM 重合不符合题意,舍去,即此时m =2,满足要求;当24124m m -++=-时,即有21802m m -++=, 解得:117m =+或者117m =-,综上所述:满足条件的m 值为:2,117+,117-.25.(1)∵抛物线2y ax bx =+过点A (1,4)、B (3-,0),∴4930a b a b +=⎧⎨-=⎩,解得13a b =⎧⎨=⎩,∴抛物线的表达式为23y x x =+;(2)当y =4时,234x x +=,解得14x =-,21x =,∴C 点的坐标为(4,4)C -, ∵A (1,4),∴1(4)5AC =--=,∵D (4,0),∴()()2241045AD =-+-=,过点C 作CE ∥AD ,交x 轴于E ,交二次函数于点Q ,如图1,∵CE ∥AD ,AC ∥ED ,∴四边形CEDA 是平行四边形,∵5AC AD ==,∴四边形CEDA 是菱形,∴CD 平分∠ACQ ,∴5ED AD ==,∴(1,0)E -,设直线CE 的解析式为y mx n =+,∴044m n m n -+=⎧⎨-+=⎩,解得4343m n ⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线CE 的解析式为4433y x =--,联立直线CE 与抛物线表达式成方程组,得:244333y x y x x⎧=--⎪⎨⎪=+⎩,解得1144x y =-⎧⎨=⎩,221389x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∴18(,)39Q --; (3)设直线CD 的表达式为y kx c =+,将(4,4)C -,(4,0)D 代入得:4440k c k c -+=⎧⎨+=⎩,解得:122k c ⎧=-⎪⎨⎪=⎩,∴直线CD 的表达式为122y x =-+,设2(,3)N t t t +,则1(,2)2G t t -+,∴222177812(3)2()22416NG t t t t t t =-+-+=--+=-++,∵10<-,∴当74t =-时,NG 取得最大值,最大值为8116,以NG 为直径画⊙O ',取GH 的中点F ,连接O F ',则O F CD '⊥,如图2所示,∵直线CD 的表达式为122y x =-+,NG ∥y 轴,O F CD '⊥,∴tan ´12GF GO F O F '∠==,∴22512G G F O =+',∴2552G GH GF '===,∴弦GH 的最大值为58181516=。
九年级数学第二章二次函数单元测试试卷(含答案)
3.若y =(2-m)23m x -是二次函数,且开口向上,则m 的值为( )A. BCD .05.如果二次函数y ax bx c =++2(a >0)的顶点在x 轴上方,那么( )A .b 2-4ac ≥0B .b 2-4ac <0C .b 2-4ac >0D .b 2-4ac =06.已知h 关于t 的函数关系式为h =12gt 2(g 为正常数,t 为时间), 则如图2中函数的图像为( )8.关于二次函数y =x 2+4x -7的最大(小)值,叙述正确的是( )A .当x =2时,函数有最大值B .x =2时,函数有最小值C .当x =-1时,函数有最大值D .当x =-2时,函数有最小值二、填空题(每题3分,共24分)10.抛物线y =x 2+8x -4与直线x =4的交点坐标是__________. 12.已知抛物线22b x x y ++=经过点1()4a -,和1()a y -,,则1y 的值是 . 15.函数y =9-4x 2,当x =_________时有最大值________.16.两数和为10,则它们的乘积最大是_______,此时两数分别为________.三、解答题(共52分)18.已知抛物线C 1的解析式是5422+-=x x y ,抛物线C 2与抛物线C 1关于x 轴对称,求抛物线C 2的解析式.20.已知抛物线y =x 2-2x -8.(1)试说明该抛物线与x 轴一定有两个交点.(2)若该抛物线与x 轴的两个交点分别为A 、B (A 在B 的左边),且它的顶点为P , 求△ABP 的面积.21.已知:如图3,在Rt △ABC 中,∠C =90°,BC =4,AC =8,点D 在斜边AB 上, 分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE =x ,DF =y .(1)用含y 的代数式表示AE .(2)求y 与x 之间的函数关系式,并求出x 的取值范围.(3)设四边形DECF 的面积为S ,求出S 的最大值. 0t h A 0t h B 0t h D0t h C 图 2 D EA22.(2005年浙江省丽水市中考试题)某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图4所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米.(1) 以O为原点,OC所在的直线为y轴建立平面直角坐标系,请根据以上的数据,求出抛物线y=ax2的解析式;(2)计算一段栅栏所需立柱的总长度(精确到0.1米).。
第26章《二次函数》单元测试(2)
第26章《二次函数》单元测试一、选择题(每题3分,共30分)1.若直线y =3x +m 经过第一、三、四象限,则抛物线y =(x -m )2+1的顶点必在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2.抛物线的顶点为(1,9),它与x 轴交于A (-2,0),B 两点,则B 点坐标为( )(A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0)3.抛物线y =2(x +3) (x -1)的对称轴是( )(A )x =1 (B )x =-1 (C )x =12(D )x =-2 4.函数y =(m -n ) x 2+mx +n 是二次函数的条件是( )(A) m 、n 是常数,且m ≠0 (B) m 、n 是常数,且m ≠n(C) m 、n 是常数,且n ≠0 (D) m 、n 可以为任意实数5.直线y =mx +1与抛物线y =2x 2-8x +k +8相交于点(3,4),则m 、k 值为( )(A) ⎩⎨⎧m =1k =3 (B)⎩⎨⎧m =-1k =2 (C) ⎩⎨⎧m =1k =2 (D) ⎩⎨⎧m =2k =16.抛物线y =2x 2如何平移可得到抛物线y =2(x -4)2-1( )(A )向左平移4个单位,再向上平移1个单位(B )向左平移4个单位,再向下平移1个单位(C )向右平移4个单位,再向上平移1个单位(D )向右平移4个单位,再向下平移1个单位7.烟花厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h (m )与飞行时间t (s )的关系式是h =-52t 2+20x +1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( ) (A )3s (B )4s (C )5s (D )6s8.如图所示是二次函数y =-12x 2+2的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( ) (A )4 (B )163(C )2π (D )8 9.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) (A )x =10,y =14 (B )x =14,y =10 (C )x =12,y =15 (D )x =15,y =1210.若A (-134,y 1),B (-54,y 2),C (14,y 3)为二次函数y =x 2+4x -5的图象上的三点,则y 1,y 2,y 3的大小关系是( )(A )y 1<y 2<y 3 (B )y 2<y 1<y 3 (C )y 3<y 1<y 2 (D )y 1<y 3<y 2(第18题)(第19题)二、填空题(每题3分,共30分)1.若抛物线y =x 2+(m -1)x +(m +3)的顶点在y 轴上,则m = .2.不论x 取何值y =-x 2+6x +c 的函数值总为负数,•则c 的取值范围为 .3.抛物线y =x 2-4x +3•的顶点及它与x 轴的交点三点连线所围成的三角形面积是 .4.已知二次函数y =x 2-4x -3,若-1≤x ≤6,则y 的取值范围为_______.5.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离S (m )与车速x (km/h )•之间有下述的函数关系式:S =0.01x +0.002x 2,现该车在限速140km/h 的高速公路上出了交通事故,事后测得刹车距离为46.5m ,请推测:刹车时,汽车 超速(填“是”或“否”)6.已知二次函数y =x 2-2x -3与x 轴交于A 、B 两点,在x 轴上方的抛物线上有一点C ,且△ABC 的面积等于10,则C 点坐标为 .7.直线y =2x +2与抛物线y =x 2+3x 的交点坐标为________. 8.已知二次函数y =ax 2+bx +c (a ≠0)的顶点坐标(-1,-3.2)及部分图象,由图象可知关于x 的一元二次方程ax 2+bx +c =0的两个根分别是x 1=1.3和x 2= . 9.如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是 .10.老师给出一个二次函数,甲、乙、丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限; 乙:当x <2时,y 随x 的增大而减小;丙:函数的图象与坐标轴...只有两个交点. 已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数__________________.三、解答题(共60分)1.已知一抛物线与x 轴的交点是A(-2,0)、B (1,0),且经过点C (2,8)。
(必考题)初中数学九年级数学下册第二单元《二次函数》测试卷(有答案解析)(2)
一、选择题1.已知y 是x 的二次函数,y 与x 的部分对应值如表所示,若该二次函数图象向左平移后通过原点,则应平移( ) x … 1-0 1 2 … y…343…A .1个单位B .2个单位C .3个单位D .4个单位2.在二次函数2y ax bx c =++中,函数值y 与自变量x 的部分对应值如下表 则m 的值为( ). x -2 -1 0 1 2 3 4 y72-1-2m27A .1B .-1C .2D .-23.关于二次函数2241=-+y x x ,下列说法正确的是( ) A .图象的对称轴在y 轴左侧 B .图象的顶点在x 轴下方 C .当0x >时,y 随x 的增大而增大D .y 有最小值是14.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<; ②13a c =-;③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有A .1个B .2个C .3个D .4个5.抛物线221y x =--的顶点坐标是( ) A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)6.如图,现要在抛物线y =x (﹣x +2)上找点P (m ,n ),针对n 的不同取值,所找点P 的个数,四人的说法如下,甲:若n =﹣1,则点P 的个数为2;乙:若n =0,则点P 的个数为1;丙:若n =1,则点P 的个数为1;丁:若n =2,则点P 的个数为0.其中说法正确的有( )A .0个B .1个C .2个D .3个7.下列函数中,当0x >时,y 随x 增大而增大的是( ) A .2y x=B .22y x =+C . 1y x =-+D .22 y x =--8.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①a >0;②b >0; ③方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3;其中结论正确的个数是( )A .4个B .3个C .2个D .1个9.如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2﹣4ac >0; ③8a +c <0; ④5a +b +2c >0,正确的是( )A .①②③B .②③④C .①②④D .②③10.已知二次函数223y x x =--+,下列叙述中正确的是( ) A .图象的开口向上B .图象的对称轴为直线1x =C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小11.将抛物线()2214y x =--+向右平移3个单位,再向下平移2个单位,得到抛物线的解析式为( ) A .()2241y x =-++ B .()2221y x =--+ C .()2246y x =--+D .()2242y x =--+12.在平面直角坐标系中,下列二次函数的图象开口向上的是( ) A .22y x =B .221y x x =-++C .22y x x =-+D .20.5y x x =-+二、填空题13.将二次函数()2y a x m k =++(0a ≠)的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的表达式是()214y x =-+,则原函数的表达式是________. 14.如图,已知在边长为6的正方形FCDE 中,A 为EF 的中点,点B 在边FC 上,且2BF =,连接AB ,P 是AB 上的一动点,过点P 作PM DE ⊥,PN DC ⊥,垂足分别为M ,N ,则矩形PNDM 面积的最大值是______.15.如图,二次函数2y ax bx c =++与反比例函数ky x=的图象相交于点()()()1231,1,3,A y B y C y -、、三个点,则不等式2k ax bx c x++>的解是____.16.已知二次函数y =a (x ﹣2)2+c (a >0),当自变量x 分别取﹣1、4、6时,对应的函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系是_____(用“<”号连接). 17.二次函数y =x 2+2x ﹣4的图象的对称轴是_____,顶点坐标是_____.18.计算机可以帮助我们又快又准地画出函数的图像.用“几何画板”软件画出的函数2(3)y x x =-和3y x =-的图像如图所示.若m ,n 分别满足方程2(3)1x x -=和31x -=根据图像可知m ,n 的大小关系是___________.19.将抛物线2610y x x =-+先向左平移2个单位长度,再向下平移1个单位长度,得到的抛物线与x 轴的交点坐标是______.20.已知点()4,A m -,()2,B m ,()6,C n 均在抛物线2y x bx c =++上,则m ,n 的大小关系是m __________n .三、解答题21.如图,在平面直角坐标系中,抛物线216y x bx c =++经过原点O ,与x 轴交于点()5,0A ,y 轴上有一点()0,10B .(1)求抛物线的函数表达式及它的对称轴;(2)在抛物线的对称轴上,是否存在点M ,使以,,A B M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.22.已知关于x 的二次函数2(1)1y kx k x =+--(k 为常数且0k ≠).(1)无论k 取何值,此函数图象一定经过y 轴上一点,该点的坐标为___________; (2)试说明:无论k 取何值,此函数图象一定经过点(1,0)-;(3)原函数是否存在最小值1-?若存在,请求出此时k 的值;若不存在,请说明理由. 23.如图,抛物线2y x bx c =+-与x 轴交于A (-1,0),B (3,0)两点,直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求抛物线及直线AC 的函数表达式;(2)点M 是线段AC 上的点(不与A ,C 重合)过M 作MF //y 轴交抛物线于F ,若点M 的横坐标为m ,请用含m 的代数式表示MF 的长.24.在二次函数y =ax 2+bx +c (a≠0)中,函数y 与自变量x 的部分对应值如表: x … 0 1 23 4…y … 3 0 ﹣1 0 m …m 的值;并利用所给的坐标网格,画出该函数图象; (2)将这个二次函数向左平移2个单位,再向上平移1个单位,求平移后的函数解析式.25.如图,抛物线与x 轴相交于点A (﹣3,0)点B (1,0),与y 轴交于点C (0,3);(1)求这条抛物线的解析式;(2)点P 为抛物线一点,若S △PAB =10,求出此时点P 的坐标; (3)求∠ACB 的正切值.26.如图,已知抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C 且AB =6,抛物线的对称轴为直线x =1(1)抛物线的解析式;(2)x 轴上A 点的左侧有一点E ,满足S △ECO =4S △ACO ,求直线EC 的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==,进而可得点()1,4是二次函数的顶点,故设二次函数解析式为()214y a x =-+,然后代入点()1,0-可得二次函数解析式,最后问题可求解.【详解】解:由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==, ∴点()1,4是二次函数的顶点,设二次函数解析式为()214y a x =-+,代入点()1,0-可得:1a =-,∴二次函数解析式为()214y x =--+,∵该二次函数图象向左平移后通过原点, ∴设平移后的解析式为()214y x b =--++,代入原点可得:()2014b =--++,解得:123,1b b ==-(舍去), ∴该二次函数的图象向左平移3个单位长度; 故选C . 【点睛】本题主要考查二次函数的图象与性质及平移,熟练掌握二次函数的图象与性质及平移是解题的关键.2.B解析:B 【分析】根据二次函数的性质,结合题意,将0x =、1y =-代入到2y ax bx c =++,得c 的值;将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,通过求解二元一次方程,即可得到a 、b 的值,从而得到二次函数解析式,经计算即可得到答案. 【详解】根据题意,将0x =、1y =-代入到2y ax bx c =++,得1c =- ∴21y ax bx =+-将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,得1212a b a b --=⎧⎨+-=-⎩∴1a =,2b =- ∴221y x x =--当2x =时,222211m =-⨯-=- 故选:B . 【点睛】本题考查了二次函数、二元一次方程组的知识;解题的关键是熟练掌握二次函数、二元一次方程组的性质,从而完成求解.3.B解析:B 【分析】首先把一般式写成顶点式y=2(x-1)2-1,从而可得对称轴x=1,顶点坐标为(1,-1),再利用二次函数的性质进行分析即可. 【详解】解:y=2x 2-4x+1=2(x 2-2x )+1=2(x 2-2x+1)-1=2(x-1)2-1, A 、图象的对称轴为x=1,在y 轴的右侧,故说法错误; B 、顶点点坐标为(1,-1),顶点在x 轴下方,故说法正确; C 、当x >1时,y 的值随x 值的增大而增大,故说法错误; D 、y 的最小值为-1,故说法错误; 故选:B . 【点睛】此题主要考查了二次函数的性质,关键是掌握配方法把二次函数解析式写成顶点式,掌握二次函数性质.4.D解析:D 【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:①由抛物线的开口方向向上可推出a >0, ∵图像与x 轴的交点A 、B 的横坐标分别为-1,3, ∴对称轴x =1, ∴当x =1时,y <0, ∴a +b +c <0; 故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0, 又∵b =﹣2a , ∴a ﹣(﹣2a )+c =0, ∴c =﹣3a , ∴13a c =- ∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E ,,要使△ABD 是等腰直角三角形, 则AD =BD ,∠ADB =90°, ∵DE ⊥x 轴, ∴点E 是AB 的中点, ∴DE =BE ,即|244ac b a-|()312--==2,又∵b =﹣2a ,c =﹣3a , ∴|()()24324a a a a⨯---|=2,a >0,解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC , Ⅰ、当AB =BC =4时, 在Rt △OBC 中, ∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7, 即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 33c =-=. Ⅱ、当AB =AC =4时, 在Rt △OAC 中, ∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15, 即c 2=15,∵抛物线与y 轴负半轴交于点C , ∴c <0,c=,∴a 3c =-=Ⅲ、当AC =BC 时, ∵OC ⊥AB , ∴点O 是AB 的中点, ∴AO =BO ,这与AO =1,BO =3矛盾, ∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确. 故答案选:D 【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2ba=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.5.C解析:C 【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标. 【详解】 解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1), 故选:C . 【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 6.D解析:D【分析】把P 点的坐标代入函数的解析式,再根据根的判别式或解方程逐个判断即可.【详解】解:甲:当n =﹣1时,m (﹣m +2)=﹣1,整理得:m 2﹣2m ﹣1=0,△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,即此时点P 的个数为2,故甲的说法正确;乙:当n =0时,m (﹣m +2)=0,解得:m =0或2,即此时点P 的个数为2,故乙的说法错误;丙:当n =1时,m (﹣m +2)=1,整理得:m 2﹣2m +1=0,△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,即此时点P 的个数为1,故丙的说法正确;丁:当n =2时,m (﹣m +2)=2,整理得:m 2﹣2m +2=0,△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,即此时点P 的个数为0,故丁的说法正确;所以正确的个数是3个,故选:D .【点睛】本题考查了二次函数的图象上点的坐标特征和一元二次方程的根的判别式、解一元二次方程,能熟记根的判别式的内容是解此题的关键.7.B解析:B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【详解】解:A 、2y x=,反比例函数,k=2>0,分别在一、三象限,在每一象限内,y 随x 的增大而减小,不符合题意; B 、22y x =+,a=1>0,开口向上,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而增大,符合题意;C 、1y x =-+,一次函数,k=-1<0,故y 随着x 增大而减小,不符合题意;D 、22y x =--,a=-1<0,开口向下,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而减小,不符合题意.故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.8.B解析:B【分析】根据抛物线与系数的关系判断即可.【详解】解:抛物线开口向下,a<0,故①错误;对称轴在y 轴右侧,a 、b 异号,b >0,故②正确;抛物线与x 轴交点为(﹣1,0),对称轴为直线x =1,根据对称性,另一个交点为(3,0),故③正确;根据图象可知,x 的取值范围是﹣1<x <3时;抛物线在x 轴上方,故④正确; 故选:B .【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.9.B解析:B【分析】由函数图像与对称轴的方程结合可判断①,由抛物线与x 轴有两个交点,可判断②,由抛物线的对称轴为:1,2b x a=-= 可得2,b a =-结合图像可得当2x =-时,42y a b c =-+<0, 可判断③,由图像可得当2x =时,4+2y a b c =+>0,当1x =-时,y a b c =-+>0,两式相加可得:52a b c ++>0,可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a==->0, b ∴>0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴<0,故①不符合题意;抛物线与x 轴有两个交点,24b ac ∴->0, 故②符合题意;抛物线的对称轴为:1,2b x a=-= 2,b a ∴=-当2x =-时,42y a b c =-+<0,()422a a c ∴-⨯-+<0,8a c ∴+<0,故③符合题意;当2x =时,4+2y a b c =+>0,当1x =-时,y a b c =-+>0,两式相加可得:52a b c ++>0,故④符合题意;故选:.B【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.10.D解析:D【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论.【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误;B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误;C.2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误;D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确;故选:D .【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.11.D解析:D【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-2(x-1)2+4向右平移3个单位,再向下平移2个单位长度后得到抛物线的解析式为:y=-2(x-1-3)2+4-2,即y=-2(x-4)2+2;故选:D .【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.12.A解析:A【分析】二次函数y =ax 2+bx +c (a ≠0),①当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上;②当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下,据此判断即可.【详解】解:A 、∵a >0, ∴2y =的图象开口向上,故本选项符合题意;B 、∵a =﹣1<0,∴y =﹣x 2+2x +1的图象开口向下,故本选项不符合题意;C 、∵a =﹣2<0,∴y =﹣2x 2+x 的图象开口向下,故本选项不符合题意;D 、∵a =﹣0.5<0,∴y =﹣0.5x 2+x 的图象开口向下,故本选项不符合题意;故选:A .【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题13.【分析】根据二次函数表达式是易得新抛物线的顶点然后得到经过平移后的原抛物线的顶点根据平移不改变二次项的系数可得原抛物线解析式【详解】解:∵平移后抛物线的解析式是∴此抛物线的顶点为(14)∵向左平移3 解析:()226y x =++【分析】根据二次函数表达式是()214y x =-+易得新抛物线的顶点,然后得到经过平移后的原抛物线的顶点,根据平移不改变二次项的系数可得原抛物线解析式.【详解】解:∵平移后抛物线的解析式是()214y x =-+,∴此抛物线的顶点为(1,4),∵向左平移3个单位,再向上平移2个单位可得原抛物线顶点,∴原抛物线顶点为(-2,6),∴原抛物线的解析式是()226y x =++. 故答案为:()226y x =++.【点睛】本题考查了二次函数图象与性质,掌握二次函数图象的平移与坐标的变化规律是解题的关键. 14.24【分析】以FE 为x 轴以FC 为y 轴先建立平面直角坐标系求出AB 的解析式为设P (a )用含a 的式子表示出PMPN 根据矩形面积公式列式根据二次函数的性质即可求解【详解】解:以FE 为x 轴以FC 为y 轴建立平解析:24【分析】以FE 为x 轴,以FC 为y 轴,先建立平面直角坐标系,求出A B 的解析式为223AB y x =--,设P (a ,223a --),用含a 的式子表示出PM ,PN ,根据矩形面积公式列式,根据二次函数的性质即可求解.【详解】解:以FE 为x 轴,以FC 为y 轴,建立平面直角坐标系,∵边长为6的正方形FCDE 中,A 为EF 的中点,2BF =,∴A (-3,0),B (0,-2),C (0,-6),E (-6,0),设A B 的解析式为AB y kx b =+,则032k b b =-+⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩, ∴223AB y x =--(30x -≤≤), 设P (a ,223a --)(30a -≤≤),则PM=6+a ,PN=()2226433a a ----=-,∴()2PNDM 22=642433S a a a ⎛⎫+-=-+ ⎪⎝⎭矩形, ∴当a =0时,矩形PNDM 面积的最大值是24.故答案为:24.【点睛】本题考查了二次函数的应用问题,用待定系数法求一次函数的解析式,矩形的面积,正方形的性质等知识点,能灵活运用知识点是解此题的关键.15.或【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分找出x 的范围即可【详解】解:不等式的解对应图象上面为二次函数图象比反比例函数图象高的部分∴不等式的解为或故答案为:或【点睛】本 解析:10x -<<或13x <<【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分,找出x 的范围即可.【详解】 解:不等式2k ax bx c x++>的解对应图象上面为二次函数图象比反比例函数图象高的部分,∴不等式2k ax bx c x++>的解为10x -<<或13x <<, 故答案为:10x -<<或13x <<.【点睛】本题考查利用函数图象解不等式,即比较图象的高低.16.y2<y1<y3【分析】利用二次函数图象上点的坐标特征可分别求出y1y2y3的值结合a >0即可得出4a+c <9a+c <16a+c 即y2<y1<y3【详解】解:当x =﹣1时y1=a (﹣1﹣2)2+c =解析:y 2<y 1<y 3.【分析】利用二次函数图象上点的坐标特征可分别求出y 1,y 2,y 3的值,结合a >0,即可得出4a+c <9a+c <16a+c ,即y 2<y 1<y 3.【详解】解:当x =﹣1时,y 1=a (﹣1﹣2)2+c =9a +c ;当x =4时,y 2=a (4﹣2)2+c =4a +c ;当x =6时,y 3=a (6﹣2)2+c =16a +c .∵a >0,∴4a +c <9a +c <16a +c ,∴y 2<y 1<y 3.故答案为:y 2<y 1<y 3.本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征,分别求出y 1,y 2,y 3的值是解题的关键.17.直线x =﹣1(﹣1﹣5)【分析】把一般式化为顶点式计算即可;【详解】∵y =x2+2x ﹣4=(x+1)2﹣5∴该函数图象的对称轴是直线x =﹣1顶点坐标为(﹣1﹣5)故答案为:直线x =﹣1(﹣1﹣5)【解析:直线x =﹣1 (﹣1,﹣5)【分析】把一般式化为顶点式计算即可;【详解】∵y =x 2+2x ﹣4=(x +1)2﹣5,∴该函数图象的对称轴是直线x =﹣1,顶点坐标为(﹣1,﹣5),故答案为:直线x =﹣1,(﹣1,﹣5).【点睛】本题主要考查了二次函数对称轴和顶点坐标的求解,准确计算是解题的关键.18.【分析】利用函数图象通过确定函数和的图象与直线的交点位置可得到m 与n 的大小【详解】解:方程的解为函数的图象与直线的交点的横坐标的解为一次函数与直线的交点的横坐标如图由图象得故答案为:【点睛】本题考查 解析:m n <【分析】利用函数图象,通过确定函数2(3)y x x =-和3y x =-的图象与直线1y =的交点位置可得到m 与n 的大小.【详解】解:方程2(3)1x x -=的解为函数2(3)y x x =-的图象与直线1y =的交点的横坐标,31x -=的解为一次函数3y x =-与直线1y =的交点的横坐标,如图,由图象得m n <.故答案为:m n <.本题考查了函数图象的应用,会利用图象的交点的坐标表示方程或方程组的解是解题的关键.19.【分析】先把抛物线解析式整理出顶点式形式再根据规律求出平移后的抛物线再求出抛物线与轴的交点坐标即可【详解】解:∵∴抛物线向左平移2个单位长度再向下平移个单位长度得:∴平移后的抛物线顶点坐标为(10) 解析:()1,0【分析】先把抛物线解析式整理出顶点式形式,再根据规律求出平移后的抛物线,再求出抛物线与x 轴的交点坐标即可.【详解】解:∵22610=(3)1y x x x =-+-+,∴抛物线2610y x x =-+向左平移2个单位长度,再向下平移1个单位长度,得: 222610=(3+2)11(1)y x x x x =-+-+-=-∴平移后的抛物线顶点坐标为(1,0),即所得到的抛物线与x 轴的交点坐标为(1,0).故答案为:(1,0).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式,本题巧妙之处在于抛物线顶点坐标在x 轴上.20.【分析】由点AB 的坐标利用二次函数的对称性可求出b 的值利用二次函数图象上点的坐标特征可找出m 和n 的大小关系【详解】解:∵二次函数y=x2+bx+c 的图象经过点A (-4m )B (2m )∴∴b=2∵点A(解析:m n <【分析】由点A 、B 的坐标利用二次函数的对称性可求出b 的值,利用二次函数图象上点的坐标特征可找出m 和n 的大小关系.【详解】解:∵二次函数y=x 2+bx+c 的图象经过点A (-4,m )、B (2,m ), ∴42122b -+-==-, ∴b=2, ∵点A(-4,m),C (6,n )在二次函数y=x 2+bx+c 的图象上,∴m=16-8+c=8+c ;n=36+12+c=48+c ,∴m <n ,故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数图象上点的坐标特征得到m ,n 的大小是解题的关键.三、解答题21.(1)抛物线解析式为:21566y x x =-,抛物线的对称轴为:x=52;(2)使以,,A B M 为顶点的三角形是等腰三角形点M 的坐标为;M15102⎛ ⎝⎭,,M2510+22⎛ ⎝⎭, ,M 3522⎛ ⎝⎭,,M4522⎛⎫ ⎪ ⎪⎝⎭,-. 【分析】(1)抛物线经过原点O ,与x 轴交于点()5,0A ,代入抛物线得0125506c b =⎧⎪⎨⨯+=⎪⎩解方程组即可;(2)OA=5,对称轴与x 轴交点为OA 中点, AB 中点在对称轴上,AB 只能作等腰三角形的腰,分两种情况①当AB=BM ,②AB=AM ,求出AB =M (5,2m ),【详解】解:(1)抛物线216y x bx c =++经过原点O ,与x 轴交于点()5,0A , 把O (0,0),()5,0A 代入抛物线得0125506c b =⎧⎪⎨⨯+=⎪⎩, 解得:056c b =⎧⎪⎨=-⎪⎩, 抛物线解析式为:21566y x x =-, 抛物线的对称轴为:x=55612226b a --=-=⨯;(2)∵OA=5,对称轴x 52=,对称轴与x 轴交点为OA 中点,对称轴平行y 轴,AB 中点在对称轴上, ∴AB 只能作等腰三角形的腰, 分两种情况: ①AB=BM ,AB=222210555OA OB +=+=,设M (5,2m ),BM=()225+102m ⎛⎫- ⎪⎝⎭, ∴()225+10=552m ⎛⎫- ⎪⎝⎭, ()247510=4m -, 51910=m -±, 1251951910,1022m m =-=+, M 155191022⎛⎫- ⎪ ⎪⎝⎭,,M 2551910+22⎛⎫ ⎪ ⎪⎝⎭,,②AM=AB ,M (5,2m ),22552m ⎛⎫-+ ⎪⎝⎭ ∴2255=552m ⎛⎫-+ ⎪⎝⎭ 2475=4m , 519=m ±,M 355192⎛⎫ ⎪ ⎪⎝⎭,,M 455192⎛⎫ ⎪ ⎪⎝⎭,-,使以,,A B M 为顶点的三角形是等腰三角形点M 的坐标为;M 155191022⎛- ⎝⎭,,M 255192⎛ ⎝⎭, ,M 355192⎛ ⎝⎭,,M 455192⎛ ⎝⎭,. 【点睛】本题考查抛物线的解析式与对称轴,等腰三角形的性质,勾股定理,掌握待定系数法求抛物线解析式的方法与对称轴公式,等腰三角形的性质,勾股定理,关键是分类考虑①当AB=BM ,②AB=AM ()225+10=552m ⎛⎫- ⎪⎝⎭2255=552m ⎛⎫-+ ⎪⎝⎭ 22.(1)(0,1)-;(2)见解析;(3)当1k =时,函数存在最小值1-.【分析】(1)()21y k x x x +=--,由20x x +=,可得1=0x x =-,,当x=0,求得y=-1即可;(2)当x=-1,将1x =-代入,得2(1)(1)(1)10y k k =-+-⋅--=即可; (3),(1),1a k b k c ==-=-,由最值公式2244(1)144ac b k k a k----==-,整理得2(1)k =0,解得:121k k ==即可.【详解】解:(1)()21y k x x x +=--,∴20x x +=,∴()10x x +=,所以1=00x x +=,,当x=0,y=-1, 恒过(0,1)-,当10x +=,x=-1,y=0,恒过(-1,0);(2)将1x =-代入,得2(1)(1)(1)10y k k =-+-⋅--=,故不论k 取何值,此函数图象一定经过点(1,0)-;(3)2(1)1y kx k x =+--,,(1),1a k b k c ==-=-,2244(1)144ac b k k a k----==-, 整理得2(1)k =0,解得:121k k ==,0k >,开口向上,符合题意.∴当1k =时,函数存在最小值1-.【点睛】本题考查抛物线的性质,抛物线过定点,抛物线最小值,掌握抛物线的性质,求抛物线过定点的方法,以及最值得求法是解题关键.23.(1)223y x x =--,1y x =--;(2)22MF m m =-++【分析】(1)把点A 和点B 的坐标代入抛物线解析式求出b 和c 的值即可求出抛物线解析式;再把点C 的横坐标代入已求出的抛物线解析式可求出其纵坐标,进而可求出直线AC 的表达式;(2)已知点M 的横坐标为m ,点M 又在直线AB 上,所以可求出其纵坐标,而点F 在抛物线上,所以可求出其纵坐标,进而可用m 的代数式表示MF 的长.【详解】解:(1)把A (-1,0)、B (3,0)代入y=x 2+bx-c 得:01093b c b c --⎧⎨+-⎩==, 解得:23b c =-⎧⎨=⎩, ∴解析式为:y=x 2-2x-3,把x=2代入y=x 2-2x-3得y=-3,∴C (2,-3),设直线AC 的解析式为y=kx+n ,把A (-1,0)、C (2,-3)代入得023k n k n -+=⎧⎨+=-⎩, 解得:11k n =-⎧⎨=-⎩, ∴直线AC 的解析式为1y x =--;(2)∵点M 在直线AC 上,∴M 的坐标为(m ,-m-1);∵点F在抛物线y=x2-2x-3上,∴F点的坐标为(m,m2-2m-3),∴MF=(-m-1)-( m2-2m-3)=-m2+m+2.【点睛】本题考查了待定系数法求二次函数的解析式、待定系数法求一次函数的解析式、二次函数图象上点的坐标特征.在(1)中注意待定系数法的应用步骤,在(2)中用m表示出点M、F的坐标是解题的关键.24.(1)y=x2﹣4x+3,m的值为3,见解析;(2)y=x2【分析】(1)由二次函数图象经过点(1,0),(3,0),设出交点式,利用待定系数法求函数解析式,进一步代入点得出m的值;然后利用表中的点描点,画出函数图象即可;(2)将抛物线解析式化为顶点式,再根据“上加下减、左加右减”的原则进行解答即可.【详解】解:(1)抛物线y=ax2+bx+c(a≠0)过点(1,0),(3,0),可设抛物线解析式为y =a(x﹣1)(x﹣3)∵过点(0,3),∴3=3a,解得a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,当x=4时,y=16﹣16+3=3,∴抛物线的解析式为y=x2﹣4x+3,m的值为3,函数图象如下:(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴将函数y=x2﹣4x+3向左平移2个单位,再向上平移1个单位,得y=(x﹣2+2)2﹣1+1,即y=x2,所以平移后的函数解析式为y=x2.【点睛】本题考查了待定系数法、抛物线的平移和画函数图象,解题关键是熟练运用待定系数法,掌握抛物线平移规律.25.(1)y=-x 2-2x+3;(2)点P 的坐标为(2,-5)或(-4,-5);(3)∠ACB 的正切值为2.【分析】(1)设抛物线解析式()()31y a x x =+-,由抛物线与y 轴交于点C (0,3),-3=3,a a =-1即可;(2)设P 点的纵坐标为h ,由S △PAB =10,可得5h =,当h=5时,点P 为抛物线一点,2+220x x +=,=4-80∆<无解,当h=-5时, 2+280x x -=,=4+32=360∆>,解方程可求点P 的坐标为(2,-5)或(-4,-5);(3)过B 作BD ⊥AC 于D ,在Rt △BOC 中OB=1,OC=3,由勾股定理,AC=S △ABC =11AB OC=AC BD 22⋅⋅即1143=22⨯⨯⨯,可求tan ∠ACB=BD =CD 计算即可. 【详解】解:(1)∵抛物线与x 轴相交于点A (﹣3,0)、点B (1,0),设抛物线解析式为()()31y a x x =+-,∵抛物线与y 轴交于点C (0,3),∴-3=3,a a =-1,∴y=-x 2-2x+3;(2)设P 点的纵坐标为h ,∵AB=1+3=4, S △PAB =10, ∵ABP 1S =AB 2102h h ∆⋅==, ∴5h =,当h=5时,点P 为抛物线一点,∴2235x x --+=,∴2+220x x +=,=4-80∆<无解,当h=-5时,∴2235x x --+=-,∵2+280x x -=,=4+32=360∆>,∴()()240x x -+=,∴122,4x x ==-,∴点P 的坐标为(2,-5)或(-4,-5);(3)过B 作BD ⊥AC 于D ,在Rt △BOC 中OB=1,OC=3,∴22OB +OC =1+9=10在Rt △AOC 中,AO=3,∴22OA +OC =9+9=32∵S △ABC =11AB OC=AC BD 22⋅⋅即1143=32BD 22⨯⨯⨯, ∴BD=22在Rt △BDC 中,由勾股定理22DC=BC BD =2-∴由正切定义tan ∠ACB=BD 22=CD 2, ∴∠ACB 的正切值为2.【点睛】本题考查抛物线的解析式,三角形面积求法,三角函数等知识,掌握抛物线的解析式,三角形面积求法,三角函数等知识是解题关键.26.(1)2142y x x =-++;(2)142y x =+. 【分析】(1)已知了抛物线的对称轴以及AB 的长,即可得到A 、B 的坐标,代入抛物线的解析式中求得待定系数的值,即可得出抛物线的解析式;(2)由于△ECO 和△ACO 的高都为OC ,根据等高三角形的面积比等于底边比可知:OE :OA =4:1,据此可求出E 点坐标,然后根据E 、C 坐标可用待定系数法求出直线EC 的解析式.【详解】解:(1)∵抛物线的对称轴为直线x =1,12a =-, ∴12b a-=, ∴1b =,∵AB =6,∴A (−2,0),B (4,0),将B (4,0),1b =代入解析式212y x bx c =-++得4c =, ∴抛物线的解析式为:2142y x x =-++; (2)S △ECO =12EO•OC ,S △ACO =12AO•OC , ∵S △ECO =4S △ACO ,且OA=2,∴EO =4AO =8,∵点E 在A 点的左侧,∴E (−8,0),由抛物线的解析式得:C (0,4),设直线EC 的解析式为:y =kx +b ,将E (−8,0),C (0,4),代入得:804k b b -+=⎧⎨=⎩, 解得124k b ⎧=⎪⎨⎪=⎩,∴直线EC 的解析式为142y x =+. 【点睛】本题综合考查了二次函数的图象与性质、待定系数法求函数解析式等知识,熟练掌握二次函数的图象与性质并能准确利用待定系数法求函数解析式是解题的关键.。
九年级上册第二十二章《二次函数》单元测试卷(含答案解析)
第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案) 1.下列函数中,是二次函数的为( )A . y =2x +1B . y =(x −2)2−x 2C . y =2x 2 D . y =2x(x +1) 2.二次函数y=2(x ﹣1)2+3的图象的对称轴是( ) A . x=1 B . x=﹣1 C . x=3 D . x=﹣33.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )A . y=(x +2)2﹣5B . y=(x +2)2+5C . y=(x ﹣2)2﹣5D . y=(x ﹣2)2+5 4.(已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2﹣4ac >0;④a ﹣b +c >0,其中正确的个数是( )A . 1B . 2C . 3D . 45.已知二次函数y =ax 2−bx −2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( )A . 34或1 B . 14或1 C . 34或12D . 14或346.下列具有二次函数关系的是( )A . 正方形的周长y 与边长xB . 速度一定时,路程s 与时间tC . 三角形的高一定时,面积y 与底边长xD . 正方形的面积y 与边长x7.给出下列四个函数:y=,2x,y=2x,1,y=3x ,x,0,,y=,x 2+3,x,0),其中y 随x 的增大而减小的函数有( )A . 3个B . 2个C . 1个D . 0个8.在直角坐标系xOy 中,二次函数C 1,C 2图象上部分点的横坐标、纵坐标间的对应值如下表:则关于它们图象的结论正确的是()A.图象C1,C2均开口向下B.图象C1的顶点坐标为(2.5,,8.75,C.当x,4时,y1,y2D.图象C1,C2必经过定点(0,,5,9.如图,二次函数y=ax 2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是()A.①②③B.①②④C.①③④D.②③④10.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.11.如图,抛物线y=−23x2+103x+4分别交x轴于A,B两点,与y轴交于点C,动点P从D(0,2)出发,先到达x轴上的某点E,再到达抛物线对称轴上的某点F,最后运动到点C,求点P运动的最短路径长为()A.√61B.8C.7D.912.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.216二、填空题13.二次函数y,kx2,x,2经过点(1,5),则k,_________.14.若函数y,(m,3)x m2+2m-13是二次函数,则m,______.15.若抛物线y=x2−6x+m与x轴没有交点,则m的取值范围是______,16.已知抛物线y=ax2+bx+c,a,0)的顶点为(2,4),若点(﹣2,m,,,3,n)在抛物线上,则m_____n(填“,”,“=”或“,”,,17.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.三、解答题18.在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)19.二次函数y=,m+1,x2,2,m+1,x,m+3,,1)求该二次函数的对称轴;,2)过动点C,0,n)作直线l,y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;,3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m,20.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:,1,求y与x之间的函数关系式;,2,设商场每天获得的总利润为w(元),求w与x之间的函数关系式;,3,不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?21.已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.22.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.23.如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案1.D【解析】【分析】先把它们整理成一般形式,再根据二次函数的定义解答.【详解】A选项:一次函数,错误;B选项:原函数可化为:y=-4x+4,一次函数,错误;C选项:不是整式,错误;D选项:原函数可化为:y=2x2+2x,正确.故选:D.【点睛】考查二次函数的定义,一般地,把形如y=ax2+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数.2.A【解析】【分析】由抛物线解析式可求得其顶点坐标及对称轴.【详解】∵y,2,x−1,2,3,∴抛物线顶点坐标为(1,3),对称轴为x,1,故选:A,【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y,a,x−h,2,k 中,对称轴为x,h,顶点坐标为(h,k,,3.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;<1,②∵a>0,x=﹣b2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax 2+bx +c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定. 5.A 【解析】 【分析】首先根据题意确定a,b 的符号,然后进一步确定a 的取值范围,根据a,b 为整数确定a,b 的值,从而确定答案. 【详解】依题意知a,0,b2a ,0,a+b,2=0, 故b,0,且b=2,a, a,b=a,,2,a,=2a,2, 于是0,a,2, ∴,2,2a,2,2, 又a,b 为整数, ∴2a,2=,1,0,1, 故a=12,1,32, b=32,1,12,∴ab=34或1,故选A,【点睛】根据开口和对称轴可以得到b 的范围。
人教版九年级上册数学第22章《二次函数》单元测试卷(含答案)
人教版九年级上册数学第二单元二次函数单元测试卷一.选择题(共10小题)1.二次函数y=x2+px+q,当0≤x≤1时,设此函数最大值为8,最小值为t,w=s-t,(s为常数)则w的值()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关2.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①abc>0;②4a+2b+c>0;③9a-b+c=0;④若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为-8.其中正确的结论有()个A.2 B.3 C.4 D.53.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.4.将抛物线y=x2-4x-4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2-13 B.y=(x-5)2-5C.y=(x-5)2-13 D.y=(x+1)2-55.如果二次函数y=x2+2x+t与一次函数y=x的图象两个交点的横坐标分别为m、n,且m <1<n,则t的取值范围是()A.t>-2 B.t<-2 C.t>14D.t<146.已知抛物线y=-x2+mx+2m,当x<1时,y随x的增大而增大,则抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限7.定义:在平面直角坐标系中,点P(x,y)的横、纵坐标的绝对值之和叫做点P(x,y)的勾股值,记[P]=|x|+|y|.若抛物线y=ax2+bx+1与直线y=x只有一个交点C,已知点C在第一象限,且2≤[C]≤4,令t=2b2-4a+2020,则t的取值范围为()A.2017≤t≤2018B.2018≤t≤2021C.2021≤t≤2020D.2020≤t≤20212随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个B.2个C.3个D.4个9.将函数y=-x2+2x+m(0≤x≤4)在x轴下方的图象沿x轴向上翻折,在x轴上方的图象保持不变,得到一个新图象.新图象对应的函数最大值与最小值之差最小,则m的值为()A.2.5 B.3 C.3.5 D.410.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,-3}=-3,min{-4,-2}=-4.则min{-x2+1,-x}的最大值是()A.√5−12B.√5+12C.1 D.0二.填空题(共6小题)11.抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是12.对于任意实数m,抛物线y=x2+4mx+m+n与x轴都有交点,则n的取值范围是13.当-1≤x≤3时,二次函数y=x2-4x+5有最大值m,则m=14.在平面直角坐标系中,已知A(-1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为15.已知抛物线y=ax2+bx+c(a<0)的对称轴为x=-1,与x轴的一个交点为(2,0),若关于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有个16.对于一个函数,如果它的自变量x与函数值y满足:当-1≤x≤1时,-1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=-x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,-1)和点B(-1,1),则a的取值范围是三.解答题(共7小题)17.已知抛物线C:y=x2+mx+n(m,n为常数).(1)如图,若抛物线C的顶点坐标为P(1,2),求m,n的值;(2)在(1)的条件下,设点Q(a,b)在抛物线C上,且点Q离y轴的距离不大于2,直接写出b的取值范围;(3)将抛物线C向左平移2个单位得到抛物线C1,将抛物线C向右平移2个单位得到抛物线C2,若C1与C2的交点坐标为(1,3),求抛物线C的函数解析式.18.在平面直角坐标系xOy中,抛物线y=x2-2x-3与x轴相交于A,B(点A在点B的左边),与y轴相交于C.(1)求直线BC的表达式.(2)垂直于y轴的直线l与直线BC交于点N(x1,y1),与抛物线相交于点P(x2,y2),Q (x3,y3).若x1<x2<x3,结合函数图象,求x1+x2+x3的取值范围.19.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象.图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第26天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于600元的天数共有多少天?试销售期间,日销售最大利润是多少元?20.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每涨价1元,其销售量要减少10件.(1)为在月内赚取8000元的利润,售价应定为每件多少元?(2)要想获得的利润最大,该商场应当如何定价销售?21.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:(1)求y关于x的函数解析式;(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?22.如图,在平面直角坐标系中,抛物线y=-√33x2−2√33x+√3与x轴交于A,B两点,与y轴交于点C.(1)若点P为直线AC上方抛物线上的动点,当△PAC的面积最大时,求此时P点的坐标;(2)若点Q是抛物线对称轴上的动点,点M是抛物线上的动点,当以点M、A、C、Q为顶点的四边形是平行四边形时,直接写出此时Q点的坐标.x2+2x+2的顶点为A,且与y轴于点B,将抛物线C1沿y=a 23.如图,抛物线C1:y=-12对称后,得到抛物线C2与y轴交于点C.(1)求A、B两点坐标;(2)若抛物线C2上存在点D,使得△BCD为等腰直角三角形,求出此时抛物线C2的表达式.参考答案一、选择题二、填空题11、k≤54且k≠112、n≤−16413、1014、4 15、3 16、−12≤a<0或0<a≤12三、解答题17、18、19、20、21、22、23、教育教学文档 欢迎下载1、最困难的事就是认识自己。
2023-2024学年九年级数学上册《第二十二章 二次函数》单元测试卷及答案(人教版)
2023-2024学年九年级数学上册《第二十二章二次函数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数表达式中,一定为二次函数的是()A.y=2x−5B.ℎ=12t2C.y=ax2+bx+c D.y=x2+1x2.抛物线y=2x2−4x+1的对称轴是直线()A.x=−3B.x=−32C.x=1D.x=−13.同一坐标系中作y=3x2,y=−3x2,y=13x2的图像,它们的共同特点是()A.关于y轴对称,抛物线开口向上B.关于y轴对称,抛物线开口向下C.关于y轴对称,抛物线的顶点在原点D.关于x轴对称,抛物线的顶点在原点4.已知二次函数y=3(x+2)2的图象上有三点A(1,y1),B(2,y2),C(−3,y3)则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1 5.将y=x2+6x+7进行配方,正确的结果是()A.y=(x−3)2−2B.y=(x−3)2+2C.y=(x+3)2−16D.y=(x+3)2−26.对于二次函数y=x2−4x−1的图象,下列说法错误的是()A.开口向上B.与x轴有两个交点C.抛物线的顶点坐标是(2,-5)D.当x≥2时,y随x的增大而减小7.如图所示二次函数y=ax2+bx+c的图象的一部分,图象过点(﹣3,0),对称轴为直线x=﹣1,以下结论:①2a﹣b=0;②abc<0;③当﹣3<x<1时,y>0;④对于a的每一个确定值,若一元二次方程ax2+bx+c=t(t为常数,t≥0)的根为整数,则t的值只有3个.其中正确的有()A.4个B.3个C.2个D.1个8.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数解析式是y=−112x2+23x+53,则该运动员此次掷铅球的成绩是()A.6m B.12m C.8m D.10m二、填空题9.如果函数y=(k-2)x k2−2k+2+kx+1是关于x的二次函数,那么k的值是。
最新人教版初中数学九年级数学上册第二单元《二次函数》测试题(有答案解析)(2)
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①② B .②③C .①④D .③④2.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小3.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个4.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位 C .先向右平移4个单位,在向上平移1个单位 D .先向右平移4个单位,在向下平移1个单位5.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x =7.二次函数2y ax bx c =++()0a ≠的图象如图所示,观察得出了下面4条信息:①0abc >;②0a b c -+>;③230a b -=;④240b ac ->.你认为其中正确的结论有( )A .1B .2C .3D .48.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .49.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7-6- 5- 4-3-2-y27- 13-3-353A .5B .3-C .13-D .27-11.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .12.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题13.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.14.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.15.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()332,C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)16.如图,是一座拱形桥的竖直截面图,水面与截面交于AB 两点,拱顶C 到AB 的距离为4m ,AB=12m ,DE 为拱桥底部的两点,且DE ∥AB ,点E 到AB 的距离为5cm ,则DE 的长度为______________ m .17.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.18.将抛物线y =2(x ﹣1)2+3绕着点A (2,0)旋转180°,则旋转后的抛物线的解析式为_____.19.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________20.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)三、解答题21.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题: (1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元? (3)求到哪个月末时,该果园累积利润可达到30万元?22.已知抛物线的解析式为y =﹣3x 2+6x+9. (1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.23.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值; (2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴.24.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李林从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站ABCDEx (千米) 8 9 10 11.5 13 1y (分钟)1820222528(1)求1关于的函数表达式.(2)李林骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用22121178y x x -+=来描述,请问:李林应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间. 25.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0).(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长.26.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0. (1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤,解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.D解析:D 【分析】根据二次函数的性质进行判断即可. 【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误;B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0, ∴函数图象与x 轴有两个交点, 故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大, 故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确, 故选:D . 【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.3.B解析:B 【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断. 【详解】解:①∵由二次函数的图象可知:抛物线的开口向上, ∴a >0;又∵二次函数的图象与y 轴的交点在负半轴, ∴c <0;∴ac <0,即①正确; ②由图象知,对称轴x =2ba-=1,则b =﹣2a <0.故②正确;③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确; ④由图象可知当x >1时,y 随x 的增大而增大;故④错误. 综上所述,正确的结论是:①②③. 故选:B . 【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.4.C解析:C 【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况. 【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C . 【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.C解析:C 【分析】根据图像判断二次函数的系数a 、b 、c 的正负性,即可求得. 【详解】∵二次函数图像开口向下 ∴a <0又∵二次函数图形与y 轴交点在y 正半轴上 ∴c >0∵对称轴在y 轴左侧∴02ba -< ∴b <0∴ac <0,bc <0∴点(,)A ac bc 在第三象限 故选C 【点睛】本题考查二次函数的图像与性质,掌握二次函数图像与系数的关系是解题关键.6.D【分析】直接利用二次函数对称轴求法得出答案. 【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.7.C解析:C 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行分析,进而对所得结论进行判断. 【详解】①由二次函数2y ax bx c =++的图象开口向上可知a >0,图象与y 轴交点在负半轴,c <0,对称轴b 1x=-=2a 3,2b=-a 3<0,因此0abc >,故正确; ②由图象可知x =−1时,y =a−b +c >0,故正确;③对称轴b 1x=-=2a 3,2+30a b =,故错误; ④由图象与x 轴有两个交点,可知240b ac ->,故正确. 所以①②④三项正确, 故选:C . 【点睛】本题考查了二次函数与系数的关系,解答本题关键是掌握二次函数y =ax 2+bx +c 系数符号的确定.8.C解析:C 【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下 ∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.C解析:C 【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论. 【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确. 故选:C . 【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.10.D解析:D 【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案. 【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-, ∴当1x =时,27y =-.故选:D . 【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键.11.D解析:D 【分析】先根据各项中一次函数与二次函数的图象判断a 、c 的正负,二者一致的即为正确答案. 【详解】解:A 、由一次函数图象可得:a >0,c <0,由二次函数图象可得a <0,c >0,矛盾,故本选项不符合题意;B 、由一次函数图象可得:a >0,c >0,由二次函数图象可得a >0,c <0,矛盾,故本选项不符合题意;C 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a >0,c >0,矛盾,故本选项不符合题意;D 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a <0,c >0,故本选项符合题意;故选:D .【点睛】本题考查了一次函数与二次函数的图象与性质,属于常考题型,熟练掌握二者的图象是解题的关键.12.C解析:C【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大,∴A 、B 、D 都不正确,C 正确,故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).二、填空题13.【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标再根据图象法即可得【详解】由图象可知抛物线的对称轴为与x 轴的一个交点坐标为则其与x 轴的另一个交点坐标为结合图象得:当时故答案为:【点睛】本题 解析:13x【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标,再根据图象法即可得.【详解】由图象可知,抛物线的对称轴为1x =,与x 轴的一个交点坐标为(1,0)-,则其与x 轴的另一个交点坐标为(3,0),结合图象得:当0y <时,13x ,故答案为:13x.【点睛】 本题考查了二次函数的对称性、二次函数与不等式,熟练掌握二次函数的对称性是解题关键.14.【分析】连接OB 过点B 作BD ⊥x 轴于D 根据正方形的性质求得∠BOA=45°OB=根据三角函数和勾股定理可得点B 的坐标为()代入抛物线即可求解【详解】如图连接OB 过点B 作BD ⊥x 轴于D ∵四边形OABC解析:6-【分析】连接OB ,过点B 作BD ⊥x 轴于D ,根据正方形的性质求得∠BOA=45°,OB=,根据三角函数和勾股定理可得点B 的坐标为(),代入抛物线()20y axa =<即可求解.【详解】如图,连接OB ,过点B 作BD ⊥x 轴于D ,∵四边形OABC 是边长为2的正方形,∴∠BOA=45°,OB=∵AC 与x 轴负半轴的夹角为15°,∴∠AOD=45°﹣15°=30°,∴BD= 12,, ∴点B 的坐标为(), ∵点B 在抛物线()20y axa =<的图象上,则:(2a =解得:6a =,故答案为6a =-故答案为:6-.【点睛】本题主要考查根据坐标求解析式,涉及到正方形的性质、勾股定理、三角函数值,解题的关键是熟练掌握所学知识求得点B 的坐标.15.【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是 解析:231y y y <<【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】 根据二次函数图象的对称性可知,332(),C y 中,|323||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.16.18【分析】先建立平面直角坐标系以直线DE 为x 轴y 轴为经过点C 且垂直于AB 的直线设AB 与y 轴交于H 求出OC 的长然后设该抛物线的解析式为:根据条件求出解析式再令y=0求出x 的值即可得到DE 的长度【详解解析:18【分析】先建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于H ,求出OC 的长,然后设该抛物线的解析式为:2y ax k =+,根据条件求出解析式,再令y =0,求出x 的值,即可得到DE 的长度.【详解】解:如图所示,建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于点H ,∵AB=12,∴AH=BH=6,由题可知:OH=5,CH=4,∴OC=5+4=9,∴B (6,5),C (0,9)设该抛物线的解析式为:2y ax k =+,∵顶点C (0,9),∴抛物线29y ax =+,代入B (6,5)得5=36a +9,解得19a =-, ∴抛物线解析式为2199y x =-+, 当y=0时,21099x =-+, 解得x =±9, ∴E (9,0),D (-9,0),∴OE=OD=9,∴DE=OD+OE=9+9=18,故答案为:18.【点睛】本题主要考查二次函数的综合应用问题,解答本题的关键是正确地建立平面直角坐标系,是一道非常典型的试题.17.【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴从而求出m 的值再根据二次函数的解析式即可得出答案【详解】二次函数的顶点在y 轴上此二次函数的对称轴为y 轴即解得二次函数的解析式为其顶点坐标为故答案 解析:()0,2【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴,从而求出m 的值,再根据二次函数的解析式即可得出答案.二次函数()232y x m x m =-+-+的顶点在y 轴上, ∴此二次函数的对称轴为y 轴,即()2023m x -=-=⨯-, 解得2m =,∴二次函数的解析式为232y x =-+,∴其顶点坐标为()0,2,故答案为:()0,2.【点睛】本题考查了二次函数的顶点坐标和对称轴,熟练掌握二次函数的对称性是解题关键. 18.y =﹣2(x ﹣3)2﹣3【分析】由题意根据抛物线的顶点变换规律得到新抛物线解析式的顶点坐标进而由此写出旋转后的抛物线所对应的函数表达式即可【详解】解:抛物线y =2(x ﹣1)2+3的顶点为(13)设绕解析:y =﹣2(x ﹣3)2﹣3【分析】由题意根据抛物线的顶点变换规律得到新抛物线解析式的顶点坐标,进而由此写出旋转后的抛物线所对应的函数表达式即可.【详解】解:抛物线y =2(x ﹣1)2+3的顶点为(1,3),设绕着点A (2,0)旋转180°得到(x ,y ), ∴12x +=2,32y +=0, 解得x =3,y =﹣3,∴绕着点A (2,0)旋转180°得到(3,﹣3),故旋转后的抛物线解析式是y =﹣2(x ﹣3)2﹣3.故答案为:y =﹣2(x ﹣3)2﹣3.【点睛】本题考查二次函数图象与几何变换,由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 19.【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值.解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点,∴△=b 2-4a=0,若a=1,则b 可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.20.下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c 由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答.【详解】解:设一般式y=ax 2+bx+c ,由题意得:2=c 2=42142a b c a b c ⎧⎪++⎨⎪-=-+⎩解得3=-83=42a b c ⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a <0,则该函数图像开口向下. 故答案为:下.【点睛】 本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键.三、解答题21.(1)2122y x x =-;(2)第8个月该果园所获利是5.5万元;(3)截止到第10月末该果园累积利润可达30万元.【分析】 (1)通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出y 与x 之间的函数关系式;(2)分别把x =7,x =8,代入函数解析式2122y x x =-,再把总利润相减就可得出; (3)把y =30代入2122y x x =-的函数关系式里,求得月份. 【详解】 解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:2(2)2ya x ∵所求函数关系式的图象过(0,0), 于是得:20(02)2=--a ,解得12a =, ∴所求函数关系式为:21(2)22y x =--,即2122y x x =-. (2)把7x =代入2122y x x =-, 得1492710.52y =⨯-⨯=, 把8x =代入2122y x x =-, 得16428162y =⨯-⨯=, 第8个月该果园所获利润是:16﹣10.5=5.5万元,答:第8个月该果园所获利是5.5万元.(3)把30y =代入2122y x x =-, 化简得 24600x x --=,解得12106x x ==-,(舍去).答:截止到第10月末该果园累积利润可达30万元.【点睛】此题主要考查了二次函数的性质在实际生活中的应用,读懂题目意思,确定变量,建立函数模型,尤其是注意本题图象中所给的信息是解决问题的关键.22.(1)x =1;(2)与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【分析】(1)根据对称轴公式,可以求得该抛物线的对称轴;(2)令x=0求出相应的y 值,再令y=0,求出相应的x 的值,即可得到该抛物线与x 轴,y 轴的交点坐标.【详解】解:(1)∵抛物线的解析式为y =﹣3x 2+6x+9,∴该抛物线的对称轴为直线x =﹣2b a =﹣62(3)⨯-=1, 即该抛物线的对称轴为直线x =1;(2)∵抛物线的解析式为y =﹣3x 2+6x+9,∴当x =0时,y =9,当y =0时,x =﹣1或x =3,即该抛物线与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 23.(1)94a =;(2)2x = 【分析】(1)由根的判别式进行计算,即可求出答案;(2)先求出k 的值,然后代入计算,即可求出对称轴.【详解】解:(1)抛物线23y x x a =++与x 轴只有一个交点, 0∴∆=,即940a -=, ∴94a =. (2)点()3,0在抛物线()233y x k x k =-++-上, ()203333k k ∴=-⨯++-,9k ∴=,∴抛物线的解析式为:23129y x x =-+-,∴对称轴为:1222(3)x =-=⨯-. 【点睛】 本题考查了一元二次方程根的判别式,二次函数的性质,解题的关键是掌握所学的知识,正确的求出参数的值.24.(1)122y x =+;(2)应在B 站出地铁,时间最短,为79min 2.【分析】(1)根据数据表,运用待定系数法解答即可;(2)设李华从文化宫回到家所需的时间为y ,则y=12y y +列出y 与x 的二次函数解析式,最后运用二次函数求最值解答即可.【详解】解:(1)设1y kx b =+,将(8,18),(9,20)代入得:188209k b k b =+⎧⎨=+⎩,解得22k b =⎧⎨=⎩, 所以122y x =+;(2)设李华从文化宫回到家所需的时间为y ,则22121122117898022y y x x x x x +=++-+=-+2179(9)22x =-+ 则当9x =时,12y y +取最小值792, 则应在B 站出地铁,时间最短,为79min 2. 【点睛】 本题主要考查了运用待定系数法求一次函数的解析式、二次函数的应用等知识点,根据题意,确定二次函数的解析式是解答本题的关键.25.(1)二次函数的解析式为223y x x =--;(2)375(,)28P ,四边形ABPC 的面积的最大值为758;(3)Q(1,-2),三角形QAC + 【分析】(1)根据待定系数法把A 、C 两点坐标代入2y x bx c =++可求得二次函数的解析式;(2)由抛物线解析式可求得B 点坐标,由B 、C 坐标可求得直线BC 解析式,可设出P 点坐标,用P 点坐标表示出四边形ABPC 的面积,根据二次函数的性质可求得其面积的最大值及P 点坐标;(3)求出点A 关于直线x=1对称点B ,再求直线BC 与对称轴交点Q ,将AQ+CQ 转化为BC ,在RtΔAOC 中求AC ,在R tΔBOC 中求BC 即可.【详解】(1)()()1,0,0,3A C --在曲线上, ∴103b c c -+=⎧⎨=-⎩, 解得:23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)在223y x x =--中,令y=0,得x=3或x=-1,∴B(3,0),且C(0,-3),设BC 的直线为y=kx+b , 330b k b =-⎧⎨+=⎩, 解得31b k =-⎧⎨=⎩, ∴经过点B ,C 的直线为y=x-3,设点P 的坐标为()2,23x x x --,如图,过点P 作PD x ⊥轴,垂足为D ,与直线BC 交于点E ,则(),3E x x -,∵23375(x )228ABC BCP ABPC S S S ∆∆=+=--+四边形, ∴当32x =时,四边形ABPC 的面积的最大值为758; (3) ∵点A 关于直线x=1对称点B (3,0),∴直线BC 与对称轴的交点为Q ,则Q 为QA+QC 最小时位置,有(2)BC 的直线为y=x-3,当x=1,y=1-3=-2,∴Q(1,-2), ()221310AC =+-=2232AQ CQ CB OC OB +==+=∴三角形QAC 1032【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理,掌握这些知识与方法,会用它们解决问题是关键.26.(1)证明见解析;(2)a>1或a<﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x2+(2k-1)x+2=0得到k=2,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x2+(2k-1)x+2﹣y=0恒成立,由此列出关于x、y的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k=1时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k2-12k+9=(2k-3)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根(2)解:令y=0,则(k-1)x2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x的一元二次方程,得x1=﹣2,x2=11-k,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴1-k=-1,k=2.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)依题意得(k-1)x2+(2k-1)x+2﹣y=0恒成立,即k(x2+2x)-x2-x﹣y+2=0恒成立,得:x2+2x=0;x1=0,y1=2;x2=-2,y2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.。
第一章 二次函数单元培优测试卷2(含答案)2024-2025学年浙教版九年级上册数学
二次函数培优卷2一、选择题(每题3分,共30分)1.一次函数y=ax+b与二次函数y=a x2+bx在同一坐标系中的图象大致为( )A.B.C.D.2.已知函数y=x2―2x―1,下列结论正确的是( )A.函数图象过点(―1,1)B.函数图象与x轴无交点C.当x≥1时,y随x的增大而减小D.当x≤1时,y随x的增大而减小3.二次函数y=k x2―6x+3的图象与x轴有交点,则k的取值范围是( )A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠04.抛物线y=12x2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是( )A.y=12(x+1)2﹣2B.y=12(x﹣1)2+2C.y=12(x﹣1)2﹣2D.y=12(x+1)2+25.已知关于x的一元二次方程a x2+bx+1=0有一个根是―1,函数y=a x2+bx+1的图象顶点在第二象限,设t=5a―4b,则t的取值范围是( )A.t<―4B.t<―5C.t>―4D.t>―56.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为( )A.直线x=1B.直线x=﹣2C.直线x=﹣1D.直线x=﹣47.设一元二次方程(x―1)(x―2)=m(m>0)的两根分别为α,β,且α<β,则α,β满足( )A.1<α<β<2B.1<α<2<βC.α<1<β<2D.α<1且β>28.已知二次函数y=x2+2(m―2)x―m+2的图象与x轴最多有一个公共点,若y=m2―2tm―3的最小值为3,则t的值为( )A.―12B.32或―32C.―52或―32D.―529.对于每个非零自然数n,抛物线y=x2―2n+1n(n+1)x+1n(n+1)与x轴交于A n、B n两点,以A n B n表示这两点间的距离,则A1B1+A2B2+…+A2015B2015的值是( )A.1B.12015C.20142015D.2015201610.如图,在平面直角坐标系中,直线y1=mx+n与抛物线y2=a x2+bx―3相交于点A,B,结合图象,判断下列结论:①当―2<x<3时,y1>y2;②x=3是方程a x2+bx―3=0的一个解;③x=12时,函数y=―a x2+(m―b)x+n+3有最大值;④对于抛物线y2=a x2+bx―3,当―2<x<3时,y2的取值范围是0<y2<5.其中正确结论的个数是( ).A.1个B.2个C.3个D.4个二、填空题(每题4分,共24分)11.已知抛物线y=ax2+bx+c的开口向下,对称轴为直线x=1,若点A(2,y1)与B(3,y2)是此抛物线上的两点,则y1 y2(填“>”或“<“).12.二次函数y=a x2+bx的图象如图,若一元二次方程a x2+bx=m有实数根,则m的最小值为 13.若二次函数y=x2+2x―b的图象与坐标轴有两个公共点,则b满足的条件是 .14.飞机着陆后滑行的距离s(米)与滑行时间t(秒)的关系满足s=―32+bt.当滑行时间为10秒2t时,滑行距离为450米,则飞机从着陆到停止,滑行的时间是 秒.15.如图,正方形ABCD的边长为2,E为边AD上一动点,连接BE,CE,以CE为边向右侧作正方形CEFG.(1)若BE=5,则正方形CEFG的面积为 .(2)连接DF,DG,则△DFG面积的最小值为 .16.已知二次函数y=a x2+bx+c,当―1≤x≤1时,―1≤y≤1.(1)若b=0,c=1,则a= .(2)若抛物线y=a x2+bx+c经过点A(1,―1)和点B(―1,1),则a的取值范围是 .三、综合题(17-18每题8分,19-21每题12分,22题14分,共66分)17.如图①,一个可调节高度的喷灌架喷射出的水流可以近似地看成抛物线.图②是喷射出的水流在平面直角坐标系中的示意图,其中喷灌架置于点O处,喷水头的高度(喷水头距喷灌架底部的距离)设置的是1米,当喷射出的水流距离喷水头水平距离为8米时,达到最大高度5米.(1)求水流运行轨迹的函数解析式;(2)若在距喷灌架12米处有一棵3.5米高的果树,问:水流是否会碰到这棵果树?请通过计算说明.18.在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸花边.(1)若丝绸花边的面积为650cm2,求丝绸花边的宽度;(2)已知该工艺品的成本是40元/件,如果以单价100元/件销售,那么每天可售出200件,另每天所需支付的各种费用2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,同时,为了完成销售任务,该公司每天至少要销售800件,那么该公司应该把销售单价定为多少元,才能使每天所获销售利润最大?最大利润是多少?19.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系.图中的抛物线C1:y=―112x 2+76x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=―18x2+bx+c运动.(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围.20.如图,已知抛物线y =―13x 2+bx +4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为A (―2,0).(1)求抛物线的解析式;(2)求线段BC 所在直线的解析式;(3)在抛物线的对称轴上是否存在点P ,使△ACP 为等腰三角形?若存在,求出符合条件的P 点坐标;若不存在,请说明理由.21.直线y =―23x+c 与x 轴交于点A (3,0),与y 轴交于点B ,抛物线y =―43x 2+bx+c 经过点A ,B .M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .(1)求点B 的坐标;(2)求抛物线的解析式;(3)点M 在线段OA 上运动,①求线段PN 的最大长度.②连接AN ,求△ABN 面积的最大值.22.如图,抛物线y=a x2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD ⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处.(1)求抛物线解析式;(2)连接BE,求△BCE的面积;(3)抛物线上是否存在一点P,使∠PEA=∠BAE?若存在,求出P点坐标:若不存在,请说明理由.答案解析部分1-5.【答案】ADDDB6-10.【答案】CDDDC11.【答案】>12.【答案】-313.【答案】―1或014.【答案】2015.【答案】5;3216.【答案】(1)―2(2)―12≤a<0或0<a≤1217.【答案】(1)解:由题可知:抛物线的顶点为(8,5),设水流形成的抛物线为y=a(x―8)2+5,将点(0,1)代入可得a=―116,∴抛物线为:y=―116(x―8)2+5.(2)解:不能,理由如下:当x=12时,y=4>3.5,∴水流不会碰到这棵果树.18.【答案】(1)解:设花边的宽度为xcm,根据题意得:(60﹣2x)(40﹣x)=60×40﹣650,解得:x=5或x=65(舍去).答:丝绸花边的宽度为5cm(2)解:设每件工艺品定价x元出售,获利y元,则根据题意可得:y=(x﹣40)[200+20(100﹣x)]﹣2000=﹣20(x﹣75)2+22500;∵销售件数至少为800件,故40<x≤70∴当x=70时,有最大值,y=22000当售价为70元时有最大利润22000元19.【答案】(1)解:根据题意可知:点A(0,4),点B(4,8)代入抛物线C2:y=―18x2+bx+c 得,{c=4―18×42+4b+c=8,解得:{c=4b=32,∴抛物线C2的函数解析式y=―18x 2+32x+4;(2)解:∵运动员与小山坡的竖直距离为1米,∴(―18x 2+32x+4)―(―112x2+76x+1)=1,解得:x1=―4(不合题意,舍去),x2=12,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)解:∵点A(0,4),∴抛物线C2:y=―18x2+bx+4,∵抛物线C1:y=―112x 2+76x+1=―112(x―7)2+6112,∴坡顶坐标为(7,6112),∵当运动员运动到坡顶正上方,且与坡顶距离超过3米时,∴y=―18×72+7b+4≥6112+3,解得:b≥3524.20.【答案】(1)解:将点A(―2,0)代入y=―13x2+bx+4中,得―13×(―2)2―2b+4=0,解得:b=43,∴抛物线的解析式为y=―13x 2+43x+4;(2)解:当x=0时,y=4,∴点C的坐标为(0,4),当y=0时,―13x 2+43x+4=0,解得:x 1=―2,x 2=6,∴点B 的坐标为(6,0),设直线BC 的解析式为y =kx +n ,将点B (6,0),点C (0,4)代入解析式y =kx +n ,得:{6k +n =0n =4,解得:{k =―23n =4,∴直线BC 的解析式为y =―23x +4;(3)解:∵抛物线y =―13x 2+43x +4与x 轴相交于A (―2,0)、B (6,0)两点,∴抛物线的对称轴为x=6+(―2)2=2,假设存在点P ,设P (2,t ),则AC=22+42=20,AP=[2―(―2)]2+t 2=16+t 2,CP=22+(t ―4)2=t 2―8t +20,∵△ACP 为等腰三角形,故可分三种情况:①当AC=AP 时,20=16+t 2,解得:t=±2,∴点P 的坐标为(2,2)或(2,-2);②当AC=CP 时,20=t 2―8t +20,解得:t=0或t=8,∴点P 的坐标为(2,0)或(2,8),设直线AC 的解析式为y=mx+n ,将点A (-2,0)、C (0,4)代入得{―2m +n =0n =4,解得:{m =2n =4,∴直线AC 的解析式为y=2x+4,当x=2时,y=4+4=8,∴点(2,8)在直线AC 上,∴A 、C 、P 在同一直线上,点(2,8)应舍去;③当AP=CP 时,16+t 2=t 2―8t +20,解得:t=12,∴点P 的坐标为(2,12);综上可得,符合条件的点P 存在,点P 的坐标为:(2,2)或(2,-2)或(2,0)或(2,12).21.【答案】(1)解:将A (3,0)代入y =―23x+c ,得c =2,∴直线解析式为y =―23x+2,当x =0时,y =2,∴B (0,2);(2)解:将A (3,0),B (0,2)代入y =―43x 2+bx+c ,∴{c =2―12+3b +c =0,解得{b =103c =2,∴y =―43x 2+103x+2;(3)解:①∵M (m ,0),∴N (m ,―43m 2+103m+2),P (m ,―23m+2),∴PN =―43m 2+103m+2﹣(―23m+2)=―43(m ―32)2+3,∵0<m <3,∴m =32时,PN 有最大值3;②△ABN 的面积=12×3PN =﹣2(m ―32)2+92,∴△ABN 面积的最大值为92.22.(1)解:∵△ACD 沿CD 所在直线翻折,点A 落在点E 处,A (3,0),D (1,0)∴E (―1,0)∵点A 、点E 都在抛物线y =a x 2+bx +3上∴{9a +3b +3=0a ―b +3=0,解得{a =―1b =2∴抛物线的解析式为y =―x 2+2x +3(2)解:∵抛物线y =―x 2+2x +3与y 轴交于点B∴当x =0时,y =3∴B (0,3) 设直线AB 的解析式为y =kx +b (k ≠0)把A、B两点的坐标代入得{3k+b=0b=3,解得{k=―1 b=3∴直线AB的解析式为y=―x+3∵点C在直线AB上,CD⊥x轴于点D(1,0)当x=1时,y=―1+3=2∴C(1,2)∴AE=4,OB=3,CD=2∴S△BCE=S△ABE―S ACF=12×4×3―12×4×2=2答:△BCE的面积为2.(3)解:抛物线上存在一点P,使∠PEA=∠BAE,∵A(3,0),B(0,3)∴OA=OB=3∴△AOB为等腰直角三角形,则有∠BAE=45∘∵点P在抛物线上∴设点P的坐标为(m,―m2+2m+3)①当点P在x轴上方时记为P1,过P1做P1M⊥x轴于点M在Rt△EMP1中,∵∠P1EA=∠BAE=45∘∴EM=P1M,即m+1=―m2+2m+3,解得:m1=2,m2=―1(舍去)当m=2时,―m2+2m+3=3∴点P1的坐标为(2,3)②当点P在x轴下方时记为P2过P2做P2N⊥x轴于点N在R1△EN P2中,即∵∠P2EN=∠BAE=45∘∴EN=P2N,即m+1=―(―m2+2m+3),解得:m1=4,m2=―1(舍去)当m=4时,―m2+2m+3=―5∴点P2的坐标为(4,―5)综上,符合条件的P点坐标是(2,3)或(4,―5).。
【九年级】九年级数学下第二章二次函数单元测试题(北师大有答案)
【九年级】九年级数学下第二章二次函数单元测试题(北师大有答案)第二章二次函数一、多项选择题1.二次函数y=x2+4x?5的图象的对称轴为()a、 x=?4b。
x=4c。
x=?2d。
x=2二.二次函数y=(x?1)2?2的顶点坐标是()a、(1,2)b.(1,2)c.(1,2)d.(1,2)3.要得到函数y=2x2-1的图象,应将函数y=2x2的图象()a、沿x轴B向左平移1个单位。
沿x轴向右平移1个单位c.沿y轴向上平移1个单位d.沿y轴向下平移1个单位4.如果a(?3,Y1),B(?1,Y2)和C(2,Y3)是二次函数,y=x2?2倍?那么Y1,Y3在图像上的关系是三个点()a.y1<y2<y3b.y2<y1<y3c.y3<y2<y1d.y3<y1<y25.如果二次函数y=AX2+BX+C已知且AC<0,则其图像通过()a.一、二、三象限b.二、三、四象限c.一、三、四象限d.一、二、三、四象限6.如果方程AX2+BX+C=0的两个根是-3和1,那么二次函数y=AX2+BX+C的图像的对称轴是一条直线()a.x=-3b.x=-2c.x=-1d.x=17.如果函数y=2x2的图像向左移动1个单位,向上移动3个单位,则得到的抛物线为()a.y=2(x?1)2?3b.y=2(x?1)2+3c.y=2(x+1)2?3d.y=2(x+1)2+38.二次函数y=3(x?H)2+k的图像如图所示。
以下判断正确()a.h>0,k>0b.h>0,k<0c.h<0,k>0d.h<0,k<09.Y=x2+(1-A)x+1是x的二次函数。
当x的值范围为1时≤ 十、≤ 当x=1时,Y 取最大值,实数a的取值范围为()a.a=5b.a≥5c.a=3d.a≥310.抛物线y=?3x2+2x?1.与坐标轴的交点数为()a.0个b.1个c.2个d.3个11.如图所示,二次函数y=AX2+BX+C的图像与y轴的正半轴相交,其顶点坐标为(0.5,1)。
新人教版初中数学九年级数学上册第二单元《二次函数》检测卷(答案解析)(2)
一、选择题1.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .不能确定2.()11,y -()20,y ()34,y 是抛物线22y xx c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<3.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个4.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程0ax bx c ++=(,a ,b ,c 为常数)一个根x 的范围是( )A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x <<D .2.00 2.01x <<5.如图是二次函数y =ax 2+bx +c 的图像,对于下列说法:①abc >0,②240b ac ->,③a +b +c <0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A .1B .2C .3D .4 6.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x =7.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 8.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(2,8)-C .(3,18)-D .(4,20)-9.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)10.将抛物线22y x =先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系式是 ( ) A .2(2-1)-3y x =B .22(-1)-3y x =C .2(21)-3y x =+D .22(1)-3y x =+11.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .12.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( ) A .22(1)5y x =-++ B .22(1)5y x =--+ C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.14.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为______.15.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次不等式220x x m -++>的解集为______________________.16.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.17.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:x 1-0 3 yn33_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a < ;④对于任意实数t ,总有()2496at bt a b +≤+.18.如图,将抛物线y=−12x 2平移得到抛物线m .抛物线m 经过点A (6,0)和原点O ,它的顶点为P ,它的对称轴与抛物线y=−12x 2交于点Q ,则图中阴影部分的面积为______.19.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.20.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接)三、解答题21.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围; (2)请你设计一个方案,使获得的设计费最多,并求出这个费用.22.如图,Rt △OAB 中,∠OAB=90°,O 为坐标原点,边OA 在x 轴上,OA=AB=2个单位长度,把Rt △OAB 沿x 轴正方向平移2个单位长度后得△11AA B . (1)求以A 为顶点,且经过点1B 的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D 、 C 的坐标.23.某班“数学兴趣小组”对函数22||y x x =-的图象和性质进行了探究,探究过程如下,请补充完整.x3- 52- 2- 1- 0 1 252 3y3541- 0 1- 0543请画出该函数图象的另一部分;(2)观察函数图象,写出2条函数的性质__________________; (3)进一步探究函数图象发现:①方程22||0x x -=的实数根为____________; ②方程22||2x x -=有____________个实数根.③关于x 的方程22||x x a -=有4个实数根时,a 的取值范围____________.24.有这样一个问题:探究函数243y x x =-+的图象与性质.小丽根据学习函数的经验,对函数243y x x =-+的图象与性质进行了探究.下面是小丽的探究过程,请补充完整:(1)函数243y x x =-+的自变量x 的取值范围是_______.(2)如图,在平面直角坐标系xOy 中,画出了函数243y x x =-+的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面的函数243y x x =-+,下列四个结论: ①函数图象关于y 轴对称; ②函数既有最大值,也有最小值;③当2x >时,y 随x 的增大而增大,当2x <-时,y 随x 的增大而减小; ④函数图象与x 轴有2个公共点. 所有正确结论的序号是_____.(4)结合函数图象,解决问题:若关于x 的方程243x x k -+=有4个不相等的实数根,则k 的取值范围是____.25.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表: 第x 天售价(元件)日销售量(件)130x ≤≤60x + 30010x -y (1)求y 与x 的函数关系式;(2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元? (3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果. 26.如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线y kx b =+与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)直接写出抛物线的解析式. (2)求证:BF BC =.(3)若1k =,在直线y kx b =+下方抛物线上是否存在点Q ,使得QBF 的面积最大?若存在,求出点Q 的坐标及QBF 的最大面积;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】根据A (-3,0)、O (1,0)两点可确定抛物线的对称轴,再根据开口方向,B 、C 两点与对称轴的远近,判断y 1与y 2的大小关系. 【详解】解:∵抛物线过A (-3,0)、O (1,0)两点, ∴抛物线的对称轴为x=312-+=-1, ∵a <0,抛物线开口向下,离对称轴越远,函数值越小,由()15,B y -、()25,C y 可知C 点离对称轴远,对应的纵坐标值小, 即y 1>y 2. 故选:A . 【点睛】此题主要考查了二次函数图象上点的坐标特征,比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.2.C解析:C 【分析】先判断函数的开口向下,对称轴为x=1,从而得出距离对称轴越远,函数值越小,再结合三点坐标即可判断1y ,2y ,3y 之间的大小关系. 【详解】 解:∵在22y xx c =-++中,21,122b a a =--=-=-, ∴该函数开口向下,对称轴为x=1,且距离对称轴越远,函数值越小, ∵()11,y -、()20,y 、()34,y 三点距离对称轴的距离为:2,1,3, ∴312y y y <<, 故选:C . 【点睛】本题考查比较二次函数值的大小.理解二次函数当a<0时距离对称轴越远的点,函数值越小是解题关键.3.D解析:D 【分析】根据抛物线的开口方向、对称轴、顶点坐标、最值、以及不等式的性质进行判断即可. 【详解】抛物线开口向下,因此a <0,对称轴为x =−b2a=1>0,a 、b 异号,因此b >0,且2a +b =0,抛物线与y 轴的交点在正半轴,因此c >0, 所以:abc <0,因此①正确;当x =2时,y =4a +2b +c >0,因此②正确;当x =−1时,y =a−b +c <0,即,a +c <b ,因此③不正确; ∵a−b +c <0,2a +b =0, ∴−12b−b +c <0,即2c−3b <0,因此④正确; 当x =1时,y 最大值=a +b +c ,当x =n (n≠1)时,y =an 2+bn +c <y 最大值,即:a +b+c >an 2+b +c ,也就是2a+b an +bn(n 1)>≠,因此⑤正确,正确的结论有:①②④⑤, 故选:D . 【点睛】考查二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.4.D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.5.C解析:C 【分析】根据抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上即可求出a 、b 、c 的正负,即可判断①;根据抛物线与x 轴的交点坐标即可判断②;把x=1代入抛物线即可判断③;求出抛物线的对称轴,根据图象即可判断④. 【详解】解:∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-2ba>0,c <0, 即b <0, ∴abc >0, ∴①正确;由抛物线与x 轴有两个交点, ∴△=b 2-4ac >0,故②正确; 由图象可知:x=1时,y=a+b+c <0, 故③正确;由图象可得,当0<x<-2ba时,y 随着x 的增大而减小,故④错误; ∴正确的个数有3个. 故选:C . 【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力.6.D解析:D 【分析】直接利用二次函数对称轴求法得出答案. 【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.7.A解析:A 【分析】根据题意结合函数的图象,得出图中A 、B 、C 的坐标,再利用待定系数法求出函数关系式即可. 【详解】解:50.26 2.24 2.52+==(米) 根据题意和所建立的坐标系可知,A (-5,12),B (0,52),C (52,0), 设排球运动路线的函数关系式为y=ax 2+bx+c ,将A 、B 、C 的坐标代入得:125252255042a b c c a b c ⎧-+=⎪⎪⎪=⎨⎪⎪++=⎪⎩, 解得,1485,,75152a b c =-=-=, ∴排球运动路线的函数关系式为2148575152y x x =--+, 故选:A .【点睛】 本题考查待定系数法求二次函数的关系式,根据题意得出图象所过点的坐标是正确解答的关键.8.C解析:C【分析】先利用配方法求得点M 的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【详解】解:∵22229()9y x mx x m m =--=---,∴点M 为(m ,29m --),∴点M′的坐标为(m -,29m +),∴222299m m m -=++,解得:3m =±;∵0m >,∴3m =;∴点M 的坐标为:(3,18-).故选:C .【点睛】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.9.A解析:A【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y =x +2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2020的坐标.【详解】∵A 点坐标为(1,1),∴直线OA 为y =x ,A 1(−1,1),∵A 1A 2∥OA ,设直线A 1A 2为y =x +b把A 1(−1,1)代入得1=-1+b解得b=2∴直线A 1A 2为y =x +2,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴A 2(2,4),∴A 3(−2,4),∵A 3A 4∥OA ,设直线A 3A 4为y =x +n ,把A 3(−2,4)代入得4=-2+n ,解得n=6∴直线A 3A 4为y =x +6,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴A 4(3,9),∴A 5(−3,9)同理求出A 6(4,16),A 7(-4,16)A 8(5,25),A 9(-5,25)A 10(6,36),A 11(-6,36) …,∴A 2n 为22222,22n n ⎡⎤++⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∴A 2020(1011,10112),故选A .【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.10.B解析:B【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线y =22x 的顶点坐标为(0,0),向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,−3),所以,所得图象的解析式为y =22(1)x -3.故选:B【点睛】本题考查了函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图象的变化是解题的规律.11.C解析:C【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论.【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确.故选:C .【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.12.B解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,抛物线y=2x 2的图象向右平移1个单位所得函数图象的关系式是:y=-2(x-1)2; 由“上加下减”的原则可知,抛物线y=-2(x-1)2的图象向上平移5个单位长度所得函数图象的关系式是:y=-2(x-1)2+5.故选:B .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题13.【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标再根据图象法即可得【详解】由图象可知抛物线的对称轴为与x 轴的一个交点坐标为则其与x 轴的另一个交点坐标为结合图象得:当时故答案为:【点睛】本题 解析:13x【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标,再根据图象法即可得.【详解】由图象可知,抛物线的对称轴为1x =,与x 轴的一个交点坐标为(1,0)-,则其与x 轴的另一个交点坐标为(3,0),结合图象得:当0y <时,13x, 故答案为:13x.【点睛】本题考查了二次函数的对称性、二次函数与不等式,熟练掌握二次函数的对称性是解题关键. 14.;【分析】先令y=0求得点AB 的坐标再求得顶点M 的坐标根据题意即可得出平移的方向和距离进而可求得平移后的解析式【详解】解:令y=0则有解得:x1=1x2=3∴A(10)B(30)∵=(x ﹣2)2﹣1解析:221y x x =++; 【分析】先令y=0求得点A 、B 的坐标,再求得顶点M 的坐标,根据题意即可得出平移的方向和距离,进而可求得平移后的解析式.【详解】解:令y=0,则有2043x x =-+,解得:x 1=1,x 2=3,∴A(1,0),B(3,0),∵243y x x =-+=(x ﹣2)2﹣1,∴顶点M 的坐标为(2,﹣1),∵平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴将原抛物线向上平移1个单位长度,再向左平移3个单位长度,即可得到平移后的抛物线,∴平移后的顶点坐标为(﹣1,0),即平移后的解析式为y=(x+1)2=x 2+2x+1,故答案为:221y x x =++.【点睛】本题考查了二次函数的图像与几何变换,会求抛物线与坐标轴的交点和顶点坐标,熟练掌握抛物线平移的变换规律是解答的关键. 15.【分析】根据二次函数的对称性求出二次函数图象与轴的另一个交点再写出x 轴下方部分的x 的取值范围即可【详解】由图可知对称轴为直线所以二次函数图象与x 轴的另一个交点坐标为(0)由图象可知:函数值大于0的的 解析:13x【分析】根据二次函数的对称性求出二次函数图象与x 轴的另一个交点,再写出x 轴下方部分的x 的取值范围即可.【详解】由图可知,对称轴为直线1x =,所以,二次函数图象与x 轴的另一个交点坐标为(1-,0),由图象可知:函数值大于0的x 的取值范围为:13x, 所以,220x x m -++>的解集为13x. 故答案为:13x.【点睛】本题考查了二次函数与不等式,主要利用了二次函数的对称性以及数形结合的思想,难点在于先求出函数图象与x 轴的另一个交点坐标. 16.【分析】根据题意可确定出AB 两点的坐标从而求出对称轴为x=1依题意要使DE 最小则D 点必在对称轴上从而根据题意画出图形求解即可【详解】解:如图所示使DE 最小则D 点必在对称轴x=1上过点E 作EF ⊥AB 则 解析:2339424y x x =-- 【分析】根据题意可确定出A ,B 两点的坐标,从而求出对称轴为x=1,依题意要使DE 最小则D 点必在对称轴上,从而根据题意画出图形求解即可.【详解】解:如图所示,使DE 最小则D 点必在对称轴x=1上,过点E 作EF ⊥AB ,则AF=BF ,∴AD=BD ,∵BD 为ABC 的AC 边上的高线,∴∠ADB=90°,∴∠DBF=∠BDF=45°,∴DF=BF=2.当x=1时,y=-4a ,∵抛物线开口向上,∴a>0,∴EF=4a .∵DE=1,∴4a-2=1解得:a=34. ∴抛物线解析式为3(1)(3)4y x x =+- 即2339424y x x =-- 故答案为:2339424y x x =--. 【点睛】本题考查了二次函数的综合题,结图象求最值问题,利用好数形结合找出最小值的点是解题的关键.17.①②④【分析】根据表格数据求出二次函数的对称轴为直线x=然后根据二次函数的性质对各小题分析判断即可得解【详解】解:由图表知当x=0时y=3当x=3时y=3∴对称轴为且∴①∵∴异号故①正确;②对称轴为 解析:①②④【分析】根据表格数据求出二次函数的对称轴为直线x=32,然后根据二次函数的性质对各小题分析判断即可得解.【详解】解:由图表知,当x=0时,y=3,当x=3时,y=3∴对称轴为0+33=222b x a =-=,且3c =,3b a =- ∴23y ax bx =++①∵3b a =-,3c =∴a b ,异号,0abc <,故①正确;②对称轴为32x =,且当1x =-时,.y n =将(1)n -,代入23y ax bx =++中得3a b n -+=, ∴3a b n -=-又∵0n <∴-0a b <又∵a b ,异号,∴0a <,0.b >∴23y ax bx =++的图象开口向下, ∵33|2|||22π-->- ∴12y y <,故②正确;③∵3b a =-, 3.a b n -=-∴(3)3a a n --=-∴4 3.a n =-∴4.a n <,故③错误;④当32x =时,y 有最大值, ∴最大值为3492a b c ++ ∴对任意实数t ,总有29342at bt c a b c ++≤++, ∴24()96at bt a b +≤+,故④正确,故答案为:①②④.【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.18.324【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴然后求出点P 的坐标过点P 作PM ⊥y 轴于点M 过点P 作PN ⊥x 轴于点N 根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积然后求解即可 解析:324.【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】解:过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,∵抛物线平移后经过原点O 和点A (6,0),∴平移后的抛物线对称轴为x=3,∴平移后的二次函数解析式为: ()2123y x h =--+, 将(6,0)代入得出:()201263h =-⨯-+,解得:108h =,∴点P 的坐标是(3,108).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S= 3108⨯=324故答案为:324【点睛】本题主要考查二次函数的有关知识,涉及到二次函数的性质及二次函数图象平移的规律,解题的关键是熟练所学知识并学会做辅助线.19.-4≤t<5【分析】先由对称轴求b 的值则二次函数关于的一元二次方程(为实数)在<<的范围内有解△=16+4t≥0在<<在x=-1时y=5当x=4时y=0用y=t 与有交点t 的范围即可求出【详解】∵二次解析:-4≤t<5.【分析】先由对称轴求b 的值,则二次函数2-4y x x =,关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解,△=16+4t≥0,在1-<x <4()22-424y x x x ==--在x=-1时,y=5,当x=4时,y=0,用y=t 与()22-424y x x x ==--有交点,t 的范围即可求出.【详解】∵二次函数2y x bx =+的对称轴为直线2x =, ∴222b b x a =-=-=, ∴b =-4,∴二次函数2-4y x x =,∵关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解, ∴△=16+4t≥0,∴t≥-4,∵()22-424y x x x ==--,在x=-1时,y=5,当x=4时,y=0, ∴y=t 与()22-424y x x x ==--有交点,t 满足条件为-4≤t<5, 则t 的取值范围是-4≤t<5.故答案为:-4≤t<5.【点睛】本题考查二次函数与一元二次方程的关系,掌握二次函数的性质,与一元二次方程的解的条件,利用对称轴会求b 的值,关于x 的一元二次方程240x x t --=(t 为实数)有解,会用△=16+4t≥0,会用y=t 与()22-424y x x x ==--有交点,求t 满足条件是解决问题的关键. 20.>【分析】根据二次函数的性质即可求解【详解】解:由y=x2可知∵a=1>0∴抛物线的开口向上∵抛物线的对称轴为y 轴∴当x >0时y 随x 的增大而增大∵-4<x1<-20<x2<2∴2<-x1<4∴y1>解析:>【分析】根据二次函数的性质即可求解.【详解】解:由y=x 2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y 轴,∴当x >0时,y 随x 的增大而增大,∵-4<x 1<-2,0<x 2<2,∴2<-x 1<4,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上的点的坐标特征及二次函数的性质.当a >0时,开口向上,在对称轴的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0,开口向下,在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小;三、解答题21.(1)S =﹣x 2+6x ,其中0<x <6;(2)矩形一边长为3m 时,面积最大为9m 2,9000元.【分析】(1)根据矩形的面积公式和已知条件列出S 与x 之间的函数关系式并确定自变量x 的取值范围即可;(2)根据(1)得出的关系式,利用配方法求出函数的最大值即可.【详解】解:(1)∵矩形的一边长为x 米,∴另一边长为1222x -米,即(6﹣x )米, ∴S =x (6﹣x )=﹣x 2+6x ,即S =﹣x 2+6x ,其中0<x <6; (2)根据(1)得:S =x (6﹣x )=﹣(x ﹣3)2+9,则矩形一边长为3m 时,面积最大为9m 2.则此时最大费用为9×1000=9000(元).【点睛】本题考查了二次函数在几何图形中的应用,根据题意确定S 与x 之间的函数关系式成为解答本题的关键.22.(1)()2122y x =-;(2)()0,2D ,(3C - 【分析】(1)根据三角形的边长求出点A 和点1B 的坐标,设抛物线解析式为()22y a x =-,代入点1B 坐标求出解析式;(2)令0x =,求出y 的值,得到点D 的坐标,再求出直线OB 的解析式和抛物线联立求出点C 的坐标.【详解】解:∵2OA =,∴()2,0A ,∵14OA =,112A B =,∴()14,2B ,设抛物线解析式为()22y a x =-,把点()14,2B 代入,得42a =,解得12a =, ∴()2122y x =-; (2)令0x =,得1422y =⨯=, ∴()0,2D ,设直线OB 解析式为y kx =,把点()2,2B 代入,得到22k =,解得1k =,∴直线OB 解析式为y x =, 联立直线和抛物线的解析式,得()2122x x -=,解得35x =±, 根据点C 的位置,取35x =-,∴()35,35C --.【点睛】本题考查二次函数,解题的关键是掌握求二次函数的解析式的方法,求抛物线和直线交点的方法.23.(1)见解析;(2)①函数图象是轴对称图形,关于y 轴对称;②当1x >时,y 随x 的增大而增大;(3)①12x =-,20x =,32x =;②2;③10a -<<【分析】(1)描点、连线即可得到函数的图象;(2)根据函数图象得到函数y=x 2-2|x|的图象关于y 轴对称;当x >1时,y 随x 的增大而增大;(3)①根据函数图象与x 轴的交点位置,即可得到结论;②如图,根据y=x 2-2|x|的图象与直线y=2的交点个数,即可得到结论;③根据函数的图象即可得到a 的取值范围是-1<a <0.【详解】解:(1)如图所示;(2)由函数图象知:①函数y=x 2-2|x|的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大;故答案为:①函数y=x 2-2|x|的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大; (3)①由函数图象知:函数图象与x 轴的交点所对应的数为-2,0,2,所以方程x 2-2|x|=0的实数根为12x =-,20x =,32x =;②如图,∵y=x 2-2|x|的图象与直线y=2有两个交点,∴x 2-2|x|=2有2个不相等的实数根;③由函数图象知:∵关于x 的方程x 2-2|x|=a 有4个不相等的实数根,∴a 的取值范围是-1<a <0,故答案为:12x =-,20x =,32x =;2;-1<a <0.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了观察函数图象的能力. 24.(1)x 为任意实数;(2)见解析;(3)①③;(4)13k -<<【分析】(1)根据函数解析式可以写出x 的取值范围;(2)根据函数图象的特点,可以得到该函数关于y 轴对称,从而可以画出函数的完整图象;(3)根据函数图象可以判断各个小题中的结论是否成立;(4)根据函数图象,可以写出关于x 的方程x 2-4|x |+3=k 有4个不相等的实数根时,k 的取值范围.【详解】解:(1)∵函数y =x 2-4|x |+3,∴x 的取值范围为任意实数,故答案为:任意实数;(2)由函数y =x 2-4|x |+3可知,x >0和x <0时的函数图象关于y 轴对称,函数图象如右图所示;(3)由图象可得,函数图象关于y 轴对称,故①正确;函数有最小值,但没有最大值,故②错误;当x >2时,y 随x 的增大而增大,当x <-2时,y 随x 的增大而减小,故③正确; 函数图象与x 轴有4个公共点,故④错误;故答案为:①③;(4)由图象可得,关于x 的方程x 2-4|x |+3=k 有4个不相等的实数根,则k 的取值范围是-1<k <3, 故答案为:-1<k <3.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)y=2101006000x x -++;(2)第五天日销售利润最大,最大日销售利润为6250元;(3)14天【分析】(1)根据日销售利润等于单件利润乘以销售量即可得解;(2)化二次函数一般式为顶点式,即可判断求解;(3)根据题意列不等式求解即可;【详解】解:(1)()()604030010=+--y x x ,2101006000x x =-++;(2)当130x ≤≤时,2101006000=-++y x x ()21056250=--+x ,∵10a =-<0,∴二次函数开口向下,由题可知:函数对称轴为5x =,∴当5x =时,最大值为6250;答:第五天日销售利润最大,最大日销售利润为6250元.(3)∵2101006000=-++y x x ()21056250=--+x , 当5400y ≥时,()210562505400--+≥x ,解得:414x -≤≤,∵130x ≤≤,∴共有14天.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.26.(1)2114y x =+;(2)见解析;(3)存在,最大值为2+,此时Q 点坐标为()2,2.【分析】(1)利用待定系数法求抛物线解析式;(2)设B(x ,2114x +),而F (0,2),利用两点间的距离公式得到BF=2114x +,而BC=2114x +,所以BF=BC ; (3)作//QE y 轴交AB 于点E ,设2114Q t t ⎛⎫+ ⎪⎝⎭,,利用QBF EQF EQB S S S =+△△△和二次函数的性质即可求解.【详解】(1)把点(-2,2),(4,5)代入2y ax c =+得:42165a c a c +=⎧⎨+=⎩, 解得:141a c ⎧=⎪⎨⎪=⎩,所以抛物线解析式为2114y x =+; (2)设B(x ,2114x +),已知F (0,2), ∴2222222221111211444BF x x x x x ⎛⎫⎛⎫⎛⎫=++-=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴2114BF x =+, ∵BC x ⊥轴,∴2114BC x =+, ∴BF BC =; (3)作//QE y 轴交AB 于点E .经过点F (0,2),且1k =时,∴一次函数解析式为2y x =+, 解方程组22114y x y x =+⎧⎪⎨=+⎪⎩,得24x y ⎧=+⎪⎨=+⎪⎩24x y ⎧=-⎪⎨=-⎪⎩则(2B ++, 设2114Q t t ⎛⎫+ ⎪⎝⎭,,则()2E t t +,, ∴221121144EQ t t t t ⎛⎫=+-+=-++ ⎪⎝⎭, ∴QBF EQF EQB S S S =+△△△((2111221224EQ t t ⎛⎫=⋅+⋅=⋅+-++ ⎪⎝⎭)21224t +=--++当2t =时,QBF S △有最大值,最大值为2+,此时Q 点坐标为()22,. 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求函数解析式;要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
(典型题)初中数学九年级数学下册第二单元《二次函数》测试题(包含答案解析)
一、选择题1.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .2.关于二次函数22y x x =-+的最值,下列叙述正确的是( ) A .当2x =时,y 有最小值0. B .当2x =时,y 有最大值0. C .当1x =时,y 有最小值1D .当1x =时,y 有最大值13.如图,现要在抛物线y =x (﹣x +2)上找点P (m ,n ),针对n 的不同取值,所找点P 的个数,四人的说法如下,甲:若n =﹣1,则点P 的个数为2;乙:若n =0,则点P 的个数为1;丙:若n =1,则点P 的个数为1;丁:若n =2,则点P 的个数为0.其中说法正确的有( )A .0个B .1个C .2个D .3个4.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表: x ﹣1 0 1 3 y ﹣1353则代数式﹣2a(4a +2b +c )的值为( ) A .92 B .152C .9D .155.二次函数223y x =-+在14x -≤≤内的最小值是( ) A .3B .2C .-29D .-306.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①a >0;②b >0; ③方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3;其中结论正确的个数是( )A .4个B .3个C .2个D .1个7.二次函数()210y ax bx c a =++>的图象与x 轴的一个交点为()3,0-,对称轴为直线1x =-,一次函数()20y kx n k =+<的图象过点()3,0-和二次函数()210y ax bx c a =++>图象的顶点.下列结论:( )①0abc <;②若31x -<<-,则12y y <; ③若二次函数1y 的值大于0,则1x >;④过动点(),0P m 且垂直于x 轴的直线与函数12,y y 的图象的交点分别为,C D ,当点C 位于点D 上方时,m 的取值范围是3m <-或1m >-. 错误的是( ) A .①B .②C .③D .④8.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<<9.如图,抛物线2y ax bx c =++的顶点位于第二象限,对称轴是直线1x =-,且抛物线经过点(1,0).下面给出了五个结论:①0abc >;②240a b c -+>;③40a c +<;④13a b c -=;⑤326320a b c --<.其中结论正确的有( )A .5个B .4个C .3个D .2个10.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P .若点P 的横坐标为1-,则一次函数()y a b x b =--的图象大致是( )A .B .C .D .11.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2ba =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个12.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④二、填空题13.如图,在平面直角坐标中,对抛物线222y x x =-+在x 轴上方的部分进行循环反复的轴对称或中心对称变换,若点A 是该抛物线的顶点,则经过第2020次变换后所得的A 点的坐标是_________.14.如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为_____cm 215.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,若关于x 的一元二次方程ax 2+bx +c =m 有实数根,则m 的取值范围是_____.16.如图,正方形ABCD 中,AD =4,AE =3DE ,点P 在AB 上运动(不与A 、B 重合),过点P 作PQ ⊥EP ,交CB 于点Q ,则BQ 的最大值是______.17.抛物线23(2)4=---y x 的顶点坐标是______.18.抛物线()20y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为()4,0-,对称轴为1x =-,则0y >时,x 的取值范围________.19.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与y 轴的交点为()0,6;②抛物线的对称轴是在y 轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).20.将抛物线243y x x =-+沿x 轴向左平移2个单位,则平移后抛物线的解析式是__.三、解答题21.喜迎元旦,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.(1)假设设每件商品的售价上涨x 元(x 为正整数),每星期销售该商品的利润为y 元,求y 与x 之间的函数关系式.(2)每件商品的售价上涨多少元时,该商店每星期销售这种商品可获得最大利润?此时,该商品的定价为多少元?获得的最大利润为多少?22.已知二次函数2=++y x bx c -的图象如图所示,它与x 轴的一个交点坐标为(1,0)-,与y 轴的交点坐标为(0,3).(1)求此二次函数的表达式,并用配方法求顶点的坐标; (2)直接写出当函数值0y >时,自变量x 的取值范围.23.东坡区农产品资源极为丰富,其中晚熟柑橘远销北上广等大城市.某水果店购进一批优质晚熟柑橘,进价为5元/千克,售价不低于8元/千克,且不超过20元/每千克,根据销售情况,发现该柑橘在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系. 销售量y (千克) … 42 45 48 51 … 售价x (元/千克)…1815129…(2)设某天销售这种柑橘获利m 元,写出m 与售价x 之间的函数关系式.如果水果店该天获利450元,那么这天柑橘的售价为多少元?24.如图是长方形鸡场平面示意图,一边靠墙(足够长),另外三面用竹篱笆围成,若竹篱笆总长为36m ,设垂直于墙的一边长为xm .(1)若所围的面积为160m 2,求x 的值?(2)求当x 的值是多少时,所围成的鸡场面积最大,最大值是多少?25.某商店将标价为100元/台的品牌学习机在网上直播间销售,两次降价后,价格为81元/台,并且两次降价的百分率相同. (1)求该品牌学习机每次降价的百分率;(2)从第二次降价后的第1天算起,第x 天的销量及网上直播间销售支出劳务费用的相关信息如表所示: 时间(天) x 销量(台)150﹣x 网上直播间售支出劳务费用(元)3x 2﹣50x +600x (天)的利润为y (元),求y 与x 之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少? 26.如图,有四张背面完全相同的卡片A ,B ,C ,D ,其中正面分别写着四个不同的函数表达式,将四张卡片洗匀正面朝下随机放在桌面上.(1)从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率是______;(2)小亮和小强用这四张卡片做游戏,规则如下:两人同时从四张卡片中各随机抽出一张,若抽出的两张卡片上的函数增减性相同,则小亮胜;若抽出的两张卡片上的函数增减性不同,则小强胜.这个游戏公平吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-,∴抛物线一定经过原点, ∴选项A 排除;∵()222y mx m x =+- ,∴对称轴为直线x=22224m m m m---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m-<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合; 故选B. 【点睛】本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.2.D解析:D 【分析】先将二次函数配方成()211y x =--+,即可求解. 【详解】解:()()2221221y x x x x x =-+=----+=,二次函数的图象开口向下,当1x =时,y 有最大值1, 故选:D . 【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键.3.D解析:D 【分析】把P 点的坐标代入函数的解析式,再根据根的判别式或解方程逐个判断即可. 【详解】解:甲:当n =﹣1时,m (﹣m +2)=﹣1, 整理得:m 2﹣2m ﹣1=0,△=(﹣2)2﹣4×1×(﹣1)=8>0, 方程有两个不相等的实数根,即此时点P 的个数为2,故甲的说法正确;乙:当n =0时,m (﹣m +2)=0, 解得:m =0或2,即此时点P 的个数为2,故乙的说法错误; 丙:当n =1时,m (﹣m +2)=1, 整理得:m 2﹣2m +1=0, △=(﹣2)2﹣4×1×1=0, 方程有两个相等的实数根,即此时点P 的个数为1,故丙的说法正确; 丁:当n =2时,m (﹣m +2)=2, 整理得:m 2﹣2m +2=0, △=(﹣2)2﹣4×1×2=﹣4<0, 方程没有实数根,即此时点P 的个数为0,故丁的说法正确; 所以正确的个数是3个, 故选:D . 【点睛】本题考查了二次函数的图象上点的坐标特征和一元二次方程的根的判别式、解一元二次方程,能熟记根的判别式的内容是解此题的关键.4.B解析:B 【分析】由当x=0和x=3时y 值相等,可得出二次函数图象的对称轴为直线x=32,进而可得出2b a -的值,由x=1时y=5,可得出当x=2时y=5,即4a+2b+c=5,再将2b a -=32及4a+2b+c=5代入2ba-(4a+2b+c )中即可求出结论. 【详解】解:∵当x =0和x =3时,y 值相等, ∴二次函数图象的对称轴为直线x =32, ∴3=22b a -. ∵当x =1时,y =5,∴当x =2×32﹣1=2时,y =5, ∴4a +2b +c =5.∴2b a -(4a +2b +c )=32×5=152.故选:B . 【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数的性质及二次函数图象上点的坐标特征,找出2ba和(4a+2b+c )的值是解题的关键. 5.C解析:C 【分析】根据图象,直接代入计算即可解答 【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C . 【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.6.B解析:B 【分析】根据抛物线与系数的关系判断即可. 【详解】解:抛物线开口向下,a<0,故①错误; 对称轴在y 轴右侧,a 、b 异号,b >0,故②正确;抛物线与x 轴交点为(﹣1,0),对称轴为直线x =1,根据对称性,另一个交点为(3,0),故③正确;根据图象可知,x 的取值范围是﹣1<x <3时;抛物线在x 轴上方,故④正确; 故选:B . 【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.7.C解析:C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性,以及一次函数的性质逐个进行判断,即可得出答案.【详解】解:根据题意,∵对称轴12b x a=-=-,0a >, ∴20b a =>, ∵抛物线与x 轴的一个交点为()3,0-,∴另一个交点为()1,0,∴抛物线与y 的负半轴有交点,则0c <,∴0abc <;故①正确;∵一次函数()20y kx n k =+<的图象过点()3,0-和顶点()1,a b c --+,∴若31x -<<-,则12y y <;故②正确;∵抛物线与x 轴的一个交点为()3,0-和()1,0,若二次函数1y 的值大于0,则1x >或3x <-;故③错误;由题意,当12y y >时,有3m <-或1m >-;故④正确;故选:C .【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a 、b 、c 的值决定抛物线的位置,抛物线的对称性是解决问题的关键.8.A解析:A【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,故选A .【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键. 9.A解析:A【分析】由二次函数的图象即可判断a 、b 、c 的符号,即可判断①;由对称轴和与x 轴交点坐标即可求出c=-3a 和b=2a ,即可判断②③④;把()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+-变形之后即可判断⑤;【详解】∵由图象可知开口向下,∴a <0,∵对称轴为x=-1,∴ b <0,抛物线与y 轴的交点在原点上方,∴ c >0,∴ abc >0,故①正确;∵ 抛物线经过点(1,0),对称轴为x=-1,∴ 抛物线与x 轴的另一交点时是(-3,0),∴ a+b+c=0,∵对称轴为x=-1,∴ b=2a ,∴ a+2a+c=0,即c=-3a , ()24443150a b c a a a a -+=-+⨯-=-> ,故②正确;4430a c a a a +=-=< ,故③正确;123a b a a a c -=-=-= ,故④正确; ()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+- , ∵ ()21a -≥0,由图象得:1a ≠ ,∴32632a b c --<0,故⑤正确;故选:A .【点睛】本题考查了二次函数图象的性质、对称轴以及函数值的求法,正确掌握二次函数的性质是解题的关键.10.C解析:C【分析】根据二次函数的图象可以判断a 、b 、-a b 的正负情况,从而得以解决.【详解】解:由二次函数的图象开口向下,且经过第三象限的点P ,点P 的横坐标为1-, 则有0a <,对称轴在y 轴的左边, ∴02b a -<,且122b a ∴0b <,且a b <∴0a b -<,∴一次函数()y a b x b =--的图像向下,并且与y 轴交于正半轴,故选:C .【点睛】本题考查二次函数的性质、一次函数的性质,熟悉相关性质是解答本题的关键. 11.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误; ∵抛物线的对称轴为x=1,∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.12.A解析:A【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a=-=-<0, b ∴<0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12b x a=-=-,2,b a ∴= 即1,2a b = 当1x =时,y a b c =++<0,12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.二、填空题13.【分析】观察图形可知每三次对称为一个循环组依次循环用2020除以3然后根据商和余数的情况确定出变换后的点A 所在的象限然后解答即可【详解】解:∵∴抛物线的顶点坐标为点A 第一次关于x 轴对称后在第四象限第 解析:11,22⎛⎫- ⎪⎝⎭【分析】观察图形可知每三次对称为一个循环组依次循环,用2020除以3,然后根据商和余数的情况确定出变换后的点A 所在的象限,然后解答即可.【详解】解:∵2221122=2()2()22y x x x x x =-+--=--+∴抛物线222y x x =-+的顶点坐标为11,22⎛⎫ ⎪⎝⎭点A 第一次关于x 轴对称后在第四象限,第二次关于原点对称后在第二象限,第三次关于y 轴对称后在第一象限,回到原始位置,所以每3次对称为一个循环组,∵20203=6731÷∴经过第2020次变换后所得的A 点位置第一次变换后的位置相同,在第四象限,坐标为11,22⎛⎫- ⎪⎝⎭故答案为:11,22⎛⎫- ⎪⎝⎭【点睛】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每三次对称为一个循环组依次循环是解题的关键,也是本题的难点.14.15【分析】在Rt△ABC中利用勾股定理可得出AC=6cm设运动时间为t (0≤t≤4)则PC=(6-t)cmCQ=2tcm利用分割图形求面积法可得出S四边形PABQ=S△ABC-S△CPQS四边形P解析:15【分析】在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t≤4),则PC=(6-t)cm,CQ=2tcm,利用分割图形求面积法可得出S四边形PABQ=S△ABC-S△CPQ,S四边形PABQ=(t-3)2+15,则可求出四边形PABQ的面积最小值,此题得解.【详解】解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,∴=6cm.设运动时间为t(0≤t≤4),则PC=(6-t)cm,CQ=2tcm,∴S四边形PABQ=S△ABC-S△CPQ,代入得:S四边形PABQ =12×6×8-12(6-t)×2t变形得:S四边形PABQ =(t-3)2+15,∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故答案为:15.【点睛】本题考查了二次函数的最值以及勾股定理,利用分割图形求面积法,列出二次函数并进行变形求极值是解题的关键.15.m≥﹣3【分析】由于x的一元二次方程ax2+bx+c=m有实数根可得y=ax2+bx+c(a≠0)和y=m有交点由此即可解答【详解】解:∵二次函数y=ax2+bx+c(a≠0)的顶点的纵坐标为-3∴解析:m≥﹣3【分析】由于x的一元二次方程ax2+bx+c=m有实数根,可得y=ax2+bx+c(a≠0)和y=m有交点,由此即可解答.【详解】解:∵二次函数y=ax2+bx+c(a≠0)的顶点的纵坐标为-3,∴当关于x的方程ax2+bx+c=m有实数根时,即抛物线y=ax2+bx+c(a≠0)和直线y=m有交点,∴m≥﹣3故答案为:m≥﹣3【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根可得y =ax 2+bx +c (a ≠0)和y=m 有交点是解决问题的关键.16.【分析】先由正方形的性质及PQ ⊥EP 得出∠AEP=∠BPQ ∠A=∠B=90°从而可判定△APE ∽△BQP 根据相似三角形的性质得出比例等式;再根据AD=4AE=3DE 得出AE 和DE 的长然后设BQ=yA 解析:43【分析】先由正方形的性质及PQ ⊥EP ,得出∠AEP=∠BPQ ,∠A=∠B=90°,从而可判定△APE ∽△BQP ,根据相似三角形的性质得出比例等式;再根据AD=4,AE=3DE ,得出AE 和DE 的长,然后设BQ=y ,AP=x ,则BP=4-x ,将相关数据代入比例等式,变形得出y 关于x 的二次函数,配方,即可得出答案.【详解】解:在正方形ABCD 中,∠A=∠B=90°,且PQ ⊥EP∴∠AEP+∠APE=90°, ∠QPB+∠APE=90°∴∠AEP=∠BPQ又∠A=∠B=90°∴△APE ∽△BQP ∴AE AP BP BQ=, 又AD=4,AE=3DE ,∴AE=334AD =,DE=4-3=1, 设BQ=y ,AP=x ,则BP=4-x , ∴34x x y=- 化简得:21433y x x =-+, 整理得:()214233y x =--+, ∴当x=2时,y 有最大值为43,即BQ 的最大值是43, 故答案为:43. 【点睛】 本题考查了正方形的性质、相似三角形的判定与性质及二次函数的性质,熟练掌握相关性质及定理是解题的关键.17.【分析】根据题目中的抛物线可以写出该抛物线的顶点坐标本题得以解决【详解】解:∵物线∴该抛物线的顶点坐标为(2-4)故答案为:(2-4)【点睛】本题考查了二次函数的性质解题的关键是明确题意利用二次函数 解析:(2,4)-【分析】根据题目中的抛物线,可以写出该抛物线的顶点坐标,本题得以解决.【详解】解:∵物线23(2)4=---y x ,∴该抛物线的顶点坐标为(2,-4),故答案为:(2,-4).【点睛】本题考查了二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答. 18.或【分析】根据抛物线与x 轴的一个交点坐标和对称轴由抛物线的对称性可求抛物线与x 轴的另一个交点再根据抛物线的增减性可求当y <0时x 的取值范围【详解】解:∵抛物线y=ax2+bx+c (a≠0)与x 轴的一解析:4x <-或2x >【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:∵抛物线y=ax 2+bx+c (a≠0)与x 轴的一个交点坐标为(-4,0),对称轴为x=-1, ∴抛物线与x 轴的另一个交点为(2,0),由图象可知,当y >0时,x 的取值范围是x <-4或x >2.故答案为:x <-4或x >2.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,关键是得到抛物线与x 轴的另一个交点.19.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y 轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y 轴的右侧,正确;③由表中数据可知在对称轴左侧,y 随x 增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x ,y 轴的交点坐标等. 20.y=x2-1【分析】先把抛物线写成顶点式再写出平移后的顶点根据顶点式可求平移后抛物线的解析式【详解】解:∴原抛物线顶点坐标为(2-1)向左平移2个单位平移后抛物线顶点坐标为(0-1)∴平移后抛物线解解析:y=x 2-1【分析】先把抛物线写成顶点式,再写出平移后的顶点,根据顶点式可求平移后抛物线的解析式.【详解】解:()22-4+3-2-1y x x x ==,∴原抛物线顶点坐标为(2,-1),向左平移2个单位,平移后抛物线顶点坐标为(0,-1), ∴平移后抛物线解析式为:21y x =-,故答案为:21y x =-.【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移,运用顶点式求抛物线的解析式. 三、解答题21.(1)2101002000(020)y x x x =-++≤<;(2)每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元【分析】(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y 与x 的函数关系式; (2)根据二次函数的性质即可得到结论.【详解】(1)(6050)(20010)y x x =-+-2(10)(20010)101002000(020)x x x x x =+-=-++≤<.(2)2210100200010(52250y x x x =-++=--+)所以,当5x =时,y 取得最大值为2250.答:每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元.【点睛】此题主要考查了根据实际问题列二次函数解析式,根据每天的利润=一件的利润⨯销售量,建立函数关系式,借助二次函数解决实际问题是解题关键.22.2y x 2x 3=-++;()1,4;(2)13x【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ,从而得出抛物线的解析式;(2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过(-1,0)和(0,3)两点, 得103b c c --+=⎧⎨=⎩, 解得23b c =⎧⎨=⎩, ∴抛物线的解析式为2y x 2x 3=-++,∵()222314y x x x =-++=--+, ∴抛物线的顶点坐标为(1,4);(2)令0y =,得2230x x -++=,解得13x =,21x =-,∴此二次函数的图象与x 轴的另一个交点的坐标为(3,0),∵抛物线开口向下,∴当13x时,0y >. 【点睛】本题考查待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练掌握待定系数法求二次函数解析式及抛物线与坐标轴的交点.23.(1)柑橘售价为10元/千克时,当天该柑橘的销售量为50千克;(2)m =-x 2+65x -300;这天柑橘的售价为15元.【分析】(1)用待定系数求出一次函数解析式,再代入自变量的值求得函数值;(2)根据利润=销量×(售价−成本),列出m 与x 的函数关系式,再由函数值求出自变量的值.【详解】解:(1)设该一次函数解析式为y =kx +b ,则1545 951k bk b+=⎧⎨+=⎩,解得:160 kb=-⎧⎨=⎩∴y=-x+60(8≤x≤20).∴当x=10时,y=50.∴柑橘售价为10元/千克时,当天该柑橘的销售量为50千克;(2)由题易知m=y(x-5)=(-x+60)( x-5)=-x2+65x-300当m=450时,则-x2+65x-300=450.整理,得x2-65x+750=0.解得x1=50,x2=15.∵8≤x≤20,∴x=15.所以这天柑橘的售价为15元.【点睛】本题是一次函数与二次函数的应用的综合题,主要考查了用待定系数法求函数的解析式,由函数值求自变量,由自变量的值求函数值,正确求出函数解析式是解题的关键.24.(1)x的值为8或10;(2)当x的值是9时,所围成的鸡场面积最大,最大值是162m2.【分析】由垂直于墙的一边长为xm,平行墙的边长=(36-2x),根据面积列方程,利用面积列函数关系,根据二次项系数为负,配方即可求出最值即可.【详解】解:(1)由题意得:x(36﹣2x)=160,整理得:x2-18x+80=0,解得:x1=8,x2=10,∵0<36﹣2x<36,∴0<x<18,∴x的值为8或10.(2)设长方形鸡场的面积为S,由题意得:S=x(36﹣2x)=﹣2x2+36x=﹣2(x﹣9)2+162,∵﹣2<0,二次函数开口向下,函数有最大值,∴当x=9时,S取得最大值,最大值为162.∴当x的值是9时,所围成的鸡场面积最大,最大值是162m2.【点睛】本题考查了一元二次方程的应用,二次函数,解题关键是找准题目中的等量关系列方程及二次函数解析.25.(1)10%;(2)y=2330+2400x x -+,第5天销售利润最大,最大利润是2475元.【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y 与x 之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.【详解】解:(1)设该品牌学习机每次降价的百分率为x ,根据题意得2100(1)81x -=解得,10.110%x ==,2 1.9x =(舍去)答:该品牌学习机每次降价的百分率为10%;(2)结合表格数据,根据题意得,()()28115061150350600y x x x x ⎡⎤=---+-+⎣⎦=()2201503+50600x x x --- =23000600330x x --+=2330+2400x x -+=23(5)2475x --+∴当x=5时,y 有最大值,最大值是2475答:第5天销售利润最大,最大利润是2475元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.26.(1)12;(2)不公平,见解析 【分析】(1)先判断出A 、B 、C 、D 四个卡片上的函数增减性,在结合概率的定义即可求解(2)根据题意用列表法分别求出小亮和小强同时抽到函数增减性相同的概率,和增减性不同的概率,二者进行比较即可【详解】(1)卡片A 上的函数为12y x =-,为减函数,y 随x 的增大而减小; 卡片B 上的函数为()10y x x=-<,为增函数,y 随x 的增大而增大; 卡片C 上的函数为()230y x x =->,为增函数,y 随x 的增大而增大; 卡片D 上的函数为5y x =-,为减函数,y 随x 的增大而减小;所以从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率为2142=(2)不公平.理由如下,根据题意列表得:卡片由表可知总共有12中等可能的结果,抽出的两张卡片上的函数增减性相同的概率为41123=;抽出的两张卡片上的函数增减性不同的概率是82 123=,2133>,∴不公平.【点睛】本题考查了函数的性质,概率和游戏的公平性,掌握列表或树状图法展示等可能的结果是解题关键.。
九年级数学二次函数2套测试题含答案
九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。
九年级下册数学单元测试卷-第二章 二次函数-北师大版(含答案)
九年级下册数学单元测试卷-第二章二次函数-北师大版(含答案)一、单选题(共15题,共计45分)1、将抛物线y=x2﹣4x﹣3向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()A.y=(x+1)2﹣2B.y=(x﹣5)2﹣2C.y=(x﹣5)2﹣12 D.y=(x+1)2﹣122、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b <a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有()A.1个B.2个C.3个D.4个3、若是二次函数,则m的值为()A.2B.-2C.2或-2D.04、二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如表:给出了结论:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5y 12 5 0 ﹣3 ﹣4 ﹣3 0 5 12⑴二次函数y=ax2+bx+c有最小值,最小值为﹣3;⑵当﹣<x<2时,y<0;⑶二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.05、下列函数中不是二次函数的有()A.y=x(x﹣1)B.y=C.y=﹣x 2D.y=(x+4)2﹣x 26、如图,抛物线与x轴交于点A,B,把抛物线在x轴及其下方的部分记作,将向左平移得到,与x轴交于点B、D,若直线与、共有3个不同的交点,则m的取值范围是()A. B. C.D.7、已知抛物线的顶点坐标是(2,1),且抛物线的图象经过(3,0)点,则这条抛物线的解析式是()A.y=﹣x 2﹣4x﹣3B.y=﹣x 2﹣4x+3C.y=x 2﹣4x﹣3D.y=﹣x 2+4x﹣38、已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤9、对于抛物线y=﹣,下列说法正确的是()A.开口向上,顶点坐标(-5,3)B.开口向上,顶点坐标(5,3) C.开口向下,顶点坐标(-5,3) D.开口向下,顶点坐标(5,3)10、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,下列结论中:①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④2a+b=0,正确的结论有()个A.1B.2C.3D.411、向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a ≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒12、二次函数y=ax2+bx+c(a≠0)中的x与y的部分对应值如下表:x…﹣3 ﹣2 ﹣1 0 1 2 3 4 …y…12 5 0 ﹣3 ﹣4 ﹣3 0 5 …给出以下结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣<x <2时,y<0;(3)已知点A(x1,y1)、B(x2,y2)在函数的图象上,则当﹣1<x1<0,3<x2<4时,y1>y2.上述结论中正确的结论个数为()A.0B.1C.2D.313、抛物线y=ax2(a>0)的图象一定经过()A.第一、二象限B.第二、三象限C.第二、四象限D.第三、四象限14、在某次实验中,测得两个变量m和v之间的4组对应数据如下表,则m与v之间的关系最接近于下列各关系式中的()m 1 2 3 4v 2.01 4.9 10.03 17.1A. B. C. D.15、对于二次函数y=2(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.与x轴有两个交点D.顶点坐标是(1,2)二、填空题(共10题,共计30分)16、设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式________.17、已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣2,0)、B(x1, 0),且1<x1<2,与y轴正半轴的交点在(0,2)的上方,顶点为C.直线y=kx+m(k≠0)经过点C、B.则下列结论:①b>a;②2a﹣b>﹣1;③2a+c<0;④k>a+b;⑤k<﹣1. 其中正确的结论有________(填序号)18、如图,在平面直角坐标系xOy中,抛物线y=-2x2+bx+c与x轴交于A,B两点.若顶点C到x轴的距离为6,则线段AB的长为________.19、二次函数(,,是常数,)的自变量与函数值的部分对应值如表:…0 1 2 ………且当时,与其对应的函数值,有下列结论:①;②和3是关于的方程的两个根;③当时,随的增大而增大;④.其中所有正确结论的序号是________.20、已知二次函数y=-x2+2x+k的部分图象如图所示,则抛物线与x轴的另一个交点坐标为________.21、已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是________.22、已知非负数a、b、c满足a+b=2,,,则d的取值范围为________.23、如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为________.24、如图,在平面直角坐标系中,已知,,,为线段上的动点,以为边向右侧作正方形,连接交于点,则的最大值________.25、抛物线y=-x2+15的顶点坐标是________.三、解答题(共5题,共计25分)26、将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.27、如图,已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.28、抛物线y=﹣x2+bx+c(b,c为常数)与x轴交于点(x1, 0)和(x2, 0),与y 轴交于点A,点E为抛物线顶点.(Ⅰ)当x1=﹣1,x2=3时,求点E,点A的坐标;(Ⅱ)①若顶点E在直线y=x上时,用含有b的代数式表示c;②在①的前提下,当点A的位置最高时,求抛物线的解析式;(Ⅲ)若x1=﹣1,b>0,当P(1,0)满足PA+PE值最小时,求b的值.29、如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形的长,宽各为多少时,菜园的面积最大,最大面积是多少?30、某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:(1)如图建立平面直角坐标系,使抛物线对称轴为y轴,求该抛物线的解析式;(2)若需要开一个截面为矩形的门(如图所示),已知门的高度为1.60米,那么门的宽度最大是多少米(不考虑材料厚度)?(结果保留根号)参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、B5、D6、C7、D8、D9、D10、B11、B12、B13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26章 二次函数 单元测试卷
一、选择题:
1、二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( ) (A )12 (B )11 (C )10 (D )9
2、下列四个函数中,y 的值随着x 值的增大而减小的是( ) (A )x y 2=;(B )()01
>=
x x
y ;(C )1+=x y ;(D )()02>=x x y 3、已知二次函数y=ax 2+bx 的图象经过点A (-1,1),则ab 有 ( ) (A )最小值0; (B )最大值 1; (C )最大值2; (D )有最小值4
1
- 4、抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则( ) (A ) ac+1=b; (B ) ab+1=c; (C )bc+1=a; (D )以上都不是
5、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0), 则S=a+b+c 的变化范围是 ( ) (A )0<S<2; (B) S>1; (C) 1<S<2; (D)-1<S<1
6、如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( ) (A )8; (B )14; (C )8或14; (D )-8或-14
7、把二次函数2
3x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( )
(A )()1232
+-=x y ; (B )()1232
-+=x y ;
(C )()1232
--=x y (D )()1232
++=x y
8、(3)已知抛物线y=ax 2+bx,当a>0,b<0时,它的图象经过(
)
A.一、二、三象限 ;
B.一、二、四象限;C .一、三、四象限; D.一、二、三、四象限. 9、若0<b ,则二次函数12
-+=bx x y 的图象的顶点在 ( ) (A )第一象限;(B )第二象限;(C )第三象限;(D )第四象限
10、已知二次函数2
2
2
)(22b a x b a x y +++-= ,b a , 为常数,当y 达到最小值时,x 的值为( )(A )b a +; (B )
2b a +; (C )ab 2-; (D )2
b
a - 11、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )
12、不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )
A.a>0,△>0;
B.a>0, △<0;
C.a<0, △<0;
D.a<0, △<0
二、填空题:
13、如图,已知点M (p ,q )在抛物线y =x 2-1上,以M 为圆心的圆与x 轴交于A 、B 两点,且A 、B 两点的横坐标是关于x 的方程x 2-2px +q =0的两根,则弦AB 的长等于 。
14、设x 、y 、z 满足关系式x -1=
21+y =3
2
-z ,则x 2+y 2+z 2的最小值为 。
15、已知二次函数y =ax 2(a ≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 。
16、已知二次函数y =-4x 2-2m x +m 2与反比例函数y =x
m 4
2+的图像在第二象限内的一个交点的横坐标是-2,则m 的值是 。
17、已知二次函数22)3()1(-+-=x x y ,当x =_________时,函数达到最小值。
18、有一个抛物线形拱桥,其最大高度为16m ,跨度为40m ,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式是_______________。
19、如图(5),A 、B 、C 是二次函数y=ax 2+bx +c (a ≠0)的图像上三点,根据图中给出的三点的位置,可得a _______0,c ________0, ⊿________0.
20、老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质: 甲:函数的图像不经过第三象限。
乙:函数的图像经过第一象限。
丙:当x <2时,y 随x 的增大而减小。
丁:当x <2时,y >0,
已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数___________________。
21、已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是_____________________________________.(只要写出一个可能的解析式) 22、炮弹从炮口射出后,飞行的高度h (m )与飞行的时间t (s )之间的函数关系是h=v 0tsin α—5t 2,其中v 0是炮弹发射的初速度, α是炮弹的发射角,当v 0=300(s m ), sin α=2
1
时,炮弹飞行的最大高度是___________。
23、抛物线y=-(x-L )(x-3-k)+L 与抛物线y=(x-3)2+4关于原点对称,则L+k=________。
三、解答题:
23、已知二次函数y =x 2+bx +c 的图像与x 轴的两个交点的横坐标分别为x 1、x 2,一元二次方程x 2+b 2x +20=0的两实根为x 3、x 4,且x 2-x 3=x 1-x 4=3,求二次函数的解析式,并写出顶点坐标。
24、2000年度东风公司神鹰汽车改装厂开发出A 型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2001年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A 型农用车的科技含量,每辆农用车的成本价增长率为x ,出厂价增长率为0.75x ,预测年销售增长率为0.6x.(年利润=(出厂价-成本价)×年销售量)
(1)求2001年度该厂销售A 型农用车的年利润y (万元)与x 之间的函数关系。
(2)该厂要是2001年度销售A 型农用车的年利润达到4028万元,该年度A 型农用车的年销售量应该是多少辆?
25、如图有一座抛物线形拱桥,桥下面在正常水位是AB 宽20m ,水位上升3m 就达到警戒线CD ,这是水面宽度为10m 。
(1)在如图的坐标系中求抛物线的解析式。
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
26、汽车在行驶中,由于惯力作用,刹车后还要向前滑行一段距离才能停住,我们称这段距
km乙内的弯离为“刹车距离”,刹车距离是分析事故的一个重要因素,在一个限速40时
道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了,事后现场测量甲车的刹车距离为12m,乙车的刹车距离超过10m,但小于20m,查有关资料知,甲种车
km)之间有下列关系,S甲=0.1x+0.01x2,乙种车的刹的刹车距离S甲(m)与车速x(时
km)的关系如下图表示,请你就两车的速度方面分析相车距离S乙(m)与车速x(时
碰的原因。
27、改革开放以来,某镇通过多种途径发展地方经济,1995年该镇年国民生产总值为2亿元,根据测算,该镇国民生产总产值为5亿元时,可达到小康水平。
(1)若从1996年开始,该镇国民生产总值每年比上一年增加0.6亿元,该镇通过几年可达到
小康水平?
(2)设以2001年为第一年,该镇第x 年的国民生产总值为y 亿元,y 与x 之间的关系是y=
53
2
912++x x (x ≥0)该镇那一年的国民生产总值可在1995年的基础上翻两番(即达到1995年的年国民生产总值的4倍)?
28、已知:二次函数c x b
x y ++-=3
2
与X 轴交于点M (x 1,0)N (x 2,0)两点,与Y 轴交于点H.
(1)若∠HMO=450,∠MHN=1050时,求:函数解析式; (2)若12
2
2
1
=+x x ,当点Q (b ,c )在直线3
1
91+=
x y 上时,求二次函数c x b
x y ++
-=3
2的解析式。
29、已知函数y=-ax 2
+bx+c (a≠0)图象过点P (-1,2)和Q (2,4).
(1)证明:无论a 为任何实数时,抛物线的图象与X 轴的交点在原点两侧;若它的图象与X 轴有两个交点A 、B (A 在B 左)与y 轴交于点C ,且
1=-AO
CO
BO CO ,求抛物线解析式; (2)点M 在(1)中所求的函数图象上移动,是否存在点M ,使AM ⊥BM
?若存在,求出
点M 的坐标,若不存在,试说明理由。
答案: 一、选择题: CBDAA,CDBDB,AB 二、填空题: 13.2; 14.
5914
15. 5224+; 16.-7; 17.2;
18. Y=0.04x 2+1.6x; 19. <、<、>; 20.略;
21. 只要写出一个可能的解析式; 22. 1125m 23.-9. 三、解答题:
24. y=x 2+3x+2 (-3/2,- 1/4)
25. y=-1200x 2+400x+4000;11400,10600; 26. 2
125
y x =-
; 5小时 27.(1)5;(2) 2018;
28.(1) 3
3)33-
1(-x y 2++=x ; (2) y=-x 2+1/3x+4/9 ,y=-x 2-x; 29.略.。