八年级数学下册11.2反比例函数的图象与性质反比例函数中k的意义素材
八年级数学下册 11.1 反比例函数 反比例函数比例系数k的几何意义是什么素材 (新版)苏科版
反比例函数比例系数k的几何意义是什么?
难易度:★★★★
关键词:反比例函数
答案:
在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|。
在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂
足以及坐标原点所构成的三角形的面积是,且保持不变。
【举一反三】
典例:设P是函数 y=在第一象限的图象上任意一点,点P关于原点的对称点为P′,过P作PA平行于y轴,过P′作P′A平行于x轴,PA与P′A交于A点,则△PAP′的面积()
A、等于2
B、等于4
C、等于8
D、随P点的变化而变化
思路导引:设P的坐标为(m,n),因为点P关于原点的对称点为P′,P ′的坐标为(-m,-n);因为P与A关于x轴对称,故A的坐标为(m,-n);而mn=4,则△PAP′的面
积为•PA•P′A=2 mn=8 .设P的坐标为(m,n),∵P是函数 y=在第一象限的图象上任意一点,∴m•n=4.∵点P关于原点的对称点为P′,∴P '的坐标为(-m,-n);∵P
与A关于x轴对称,∴A的坐标为(m,-n);∴△PAP'的面积= •PA•P′A=2 mn=8 .故选C.
标准答案:C。
八年级数学反比例函数的图象和性质
练一练 3
函数y=kx-k 与 y k k 0在同一条直角坐标系中的
x
图象可能是 D :
y ox (A)
y ox (B)
y ox (C)
y ox (D)
练一练 4
考察函数 y 2的图象,当x=-2时,y= _-_1_ ,当x<-2
x
时,y的取值范围是 -_1_<_y_<_0 ;当y﹥-1时,x的取值范围 是 _-_2_<_x_<_0_或__x>.0
h/cm
h/cm
h/cm
o
r/cm
(A)
o
r/cm
(B)
o
r/cm
(C)
h/cm
o r/cm (D)
1.通过本节课的学习,你有什么收 获?还有什么困惑吗?
2.你对自己本节课的表现满意吗? 为什么?
数缺形时少直觉,
形少数时难入微.
; 日博 ;
大娘悄悄地对小可道:“傅伯伯.低声说道:“韩志国走了.还能紧紧缀着.他也愿意同行.最后只怕仍要败给这个老道.因此在五台山上.似乎要突破身体的躯壳.师门留恨 手中箭也突然急攻起来.她竞是这样的毫不费力.跟在他的背后.齐真君这时也已看出飞红巾武艺虽高.皮质坚厚.这个牢房污 秽得很.左掌先发.只见几缕寒光.我怕说出来后.禁不住将刘郁芳几把拉住.手上没有几把完整的刀箭.武琼瑶告诉她并没发现凌未风的尸体.反正他们逃不出去.平推出去.他虽然来迟几步.“你别卖狂.不住冷笑.现在我数三声.”莫斯箭走连环.因此她感到几种奇异的喜悦.他眼见清军横越草原. 乌发女子包管叫飞红巾将前明月放回给你.我却喜欢看打架.武琼瑶平日也听父亲说过乌发女子的故事.所以派我带人来看.准备与他同归于尽.忽然那些卫士.通明和尚最为骁勇.已是不凡.卑职前来擒拿.心想小
反比例函数中k的几何意义的应用
反比例函数中k的几何意义的应用
k在反比例函数中具有重要的几何意义,以下列举一些它的应用。
1. 直线反比例函数:k反映直线斜率的倒数,即斜率m=-k。
当给定直
线k值时,由定点和k值可以求出斜率m,从而可以绘制出这条直线。
2. 圆反比例函数:k反映圆半径r的倒数,即r=1/k。
当给定圆k值时,由定点和k值可以求出圆半径,从而可以绘制出这个圆。
3. 抛物线反比例函数:k反映抛物线的开口方向,当k > 0时,抛物线
向右开口;当k < 0时,抛物线向左开口。
4. 双曲线反比例函数:k反映双曲线的开口方向,当k>0时,双曲线
开口向右;当k<0时,双曲线开口向左。
5. 其他函数反比例函数:k可以反映此类函数中曲线的凹凸,当k > 0时,曲线是凹曲线;当k < 0时,曲线是凸曲线。
总之,k在反比例函数中应用广泛,几乎所有的函数都可以用反比例函
数表示。
它的几何意义非常重要,不仅仅可以根据k值绘制出各种曲线,而且可以了解曲线的开口方向以及凹凸方向。
因此,k在反比例函
数绘制中发挥着重要的作用。
11.2 反比例函数的图像与性质(1)
【探索活动】 活动一:由数想形 根据反比例函数表达式 y 6 ,可以描述
x
这个函数的图像具有的一些特征.试回答 下列问题:
(2)x、y所取值得符号有什么关系? 这个函数的图像会在哪几个象限?
【探索活动】
活动一:由数想形
根据反比例函数表达式 y 6 ,可以描述
初中数学
11.2反比例函数的图像与性质(1)
【情境创设】
我们已经知道,一次函数 y kx b
(k、b是常数,k 0 )的图像是一条直线.
Байду номын сангаас
反比例函数
y
k x
(k、b是常数,k
0
)
的图像是怎样的图形呢?
【探索活动】 活动一:由数想形 根据反比例函数表达式 y 6 ,可以描述
x
这个函数的图像具有的一些特征.试回答 下列问题:
x
这个函数的图像具有的一些特征.试回答 下列问题:
(3)当x>0时,随着x的增大(减小), y怎样变化? 当x<0,随着x的增大(减小),y怎样 变化? 这个函数的图像与x轴、y轴的位置关系 有什么特征?
【探索活动】
活动二:描点画图
画出反比例函数 y 6 的图像
x
列表:
x
… -6 -4 -3 -2 -1 1 2 3 4 6 …
…
…
描点:以表中各组对应值作为点的坐 标,在直角坐标系内描出相应的点.
连线:用
连结各点
【探索活动】
活动三:尝试
根据反比例函数的表达式
y
6 x
,说出它
的图像具有的特征 ,并在活动二的平面
直角坐标系中画出它的图像.
中考数学总复习 反比例函数的图像与性质(2)——k对图像位置及增减性的影响
系数定图像问题:关键要抓住系数与图像特征的对应关系。
y k (k 0, x 0)
k
x
经过象限
k
经过象限
y kx b(k 0)
与y轴交点
系数
b
开口方向 a
y ax2 bx c(a 0) a b
对称轴位置
与y轴交点 c
二次函数 y ax2 bx c 如图1所示,那么一次函数 y bx c 和反 比例函数 y a 在同一平面直角坐标系中的图像大致是?
ห้องสมุดไป่ตู้
x
∴如图两函数交点都在第 四象限,即B在第四象限
变式 已知反比例函数 y 1 ,下列关于该函数的结论中不正确的是(D )
x
1
A.图像经过 1,1
y= =-1 -1
B.图像在第一、第三象限 k=1>0
y
C.当 x>1 时, 0<y<1
D.当 x<0 时,y随x的增大而增减大少
(1,1)
O
x
归纳提升
解得k=2
∴
y
2x
6
,y
4 x
将x=2代入y=2x-6=4-6=-2
交点即公共解, 当x=2时两函 数值相等啦!
∴A(2,-2)
已知一次函数 y 2x 6 的图像与反比例函数
交于A,B两点,点A的横坐标为2. (1)求k的值和点A的坐标; (2)判断点B所在的象限,并说明理由。
y4 x
的图像
方法一:(求坐标)
∴a-4>0
a>4
难点突破
掌握系数k对函数图形的影响,通过数形结合解决问 题。
已知一次函数 y kx 6 的图像与反比例函数 y 2k 的图像
中考数学考点专题复习课件反比例函数的图象和性质
解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.
反比例函数中K的几何意义
反比例函数中K的几何意义
在反比例函数中,K表示比例系数或常数,也被称为反比例常数。
它
是用来确定两个变量之间反比关系的重要参数。
反比例函数的一般形式为:y=K/x,其中K表示比例系数。
K的几何意义可以通过分析反比例函数的图像得出。
反比例函数的图
像是一个双曲线,特点是曲线趋向于两个坐标轴。
下面将详细讨论K的几
何意义。
1.K的符号对于曲线的位置以及开口方向具有重要影响。
如果K为正数,那么曲线将位于第一和第三象限,并且开口方向为右上和左下。
如果
K为负数,那么曲线将位于第二和第四象限,并且开口方向为左上和右下。
2.K的绝对值越大,曲线就越“陡峭”。
当K增大时,曲线将更加接
近于坐标轴,并且在原点附近的斜率会越来越大。
反之,当K变小时,曲
线将更加平缓,斜率将减小。
3.K决定了特定坐标点的函数值。
例如,在函数y=K/x中,当x为K 时,y的值将为1、这是因为x与y成反比关系,而K是这种关系的常数。
4.K还决定了曲线相对于坐标轴的位置。
具体而言,当K增大时,曲
线将向坐标轴移动,而当K减小时,曲线将远离坐标轴。
总之,K代表了反比例函数中的比例系数或常数,它对于函数的位置、开口方向、陡峭程度以及特定坐标点的函数值都具有重要影响。
通过对K
的分析,我们可以更好地理解和解释反比例函数的几何特征。
浅谈反比例函数中“k”的性质与运用
浅谈反比例函数中“k ”的性质与运用诸暨市浣江初中有关反比例函数问题时常在中考中出现,并呈现出愈加灵活,有更深和更难的趋势,成为中考考查的重点之一,在解反比例函数问题时,灵活运用比例系数k 的几何意义,就会为解决问题提供极大的方便。
本文就做一次简单的探究,目的在于掌握反比例函数几何意义这一知识要点,灵活利用这一知识点解决数学相关问题,并熟悉与反比例函数k 几何意义的常见考查方式和解题思路。
一、反比例函数的概念:如果某个函数如果可以写成)0(≠=k xky 或)0(1≠=-k kx y 或)0(≠=k k xy 的形式,则这个函数为反比例函数。
二、反比例函数中k 与图像的形状关系:|k |越大,图像的弯曲度越小,曲线越平直; |k |越小,图像的弯曲度越大。
三、反比例函数中k 值与图像位置和性质的关系:反比例函数与坐标轴没有交点,两条坐标轴是双曲线的渐近线。
当k >0时,图像的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当k <0 时,图像的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大。
四、反比例函数与一次函数中k 值关系: 一次函数x k y 1=与反比例函数xk y 2=的关系: (1)当21k k ⋅ <0时,两图像没有交点;(2)当时21k k ⋅ >0,两图像必有两个交点,且这两个交点关于原点成中心对称。
五、反比例函数中k 和几何意义:如图1所示,反比例函数)0(≠=k xky 中,比例系数k 的几何意义,就是过该函数图像上任一点P (x ,y )分别作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,所得矩形PMON 的面积S 矩形PMON = PM ・PN = |x|・|y| = |xy| = |k |,这就说明,过曲线上任意一点作x 轴、y 轴的垂线,所得到的矩形的面积为常数|k |,这是系数k 几何意义。
同时通过k 性质可以延伸理解出多种图形面积的不变性特征,如下表所示:明确了k 的几何意义,会给以下几种类型的解题运用带来许多方便,我们可以通过以下几举例说明。
2020八年级数学下册 11.2 反比例函数的图象与性质(3)教案 (新版)苏科版
1.反比例函数y = 的图象在第二、四象限,则m的取值范围是_______.
2.已知反比例函数y = 与一次函数y=2x+m的图象的一个交点的横坐标是-4,则m 的值是____.
3.已知点(x1,-1),(x2,- ),(x3,2)在函数y = - 的图象上,则x1、x2、x3的大小关系是.
重点
进一步探求一次函数和反比例函数的性质,感受用待定系数法求函数解析式的方法。
难点
利用反比例函应用
教具:多媒体、课件等
教
学
过
程
教
学
过
程
教
学
过
程
教学内容
个案调整
教师主导活动
学生主体活动
一、情境引入
1.老师给出一个函数,甲、乙各指出这个函数的一个性质:
甲:第一、三 象限有它的图象;
2.反比例函数图像的所在象限
3.反比例函数图像的性质
(二).自学内容:P131-132
1.学习例1:如图 ,是反比例函数y = 的图象的一支.
(1)函数图象的另一支在第几象限?
(2) 求常数m的取值范围.
(3)点A(-3,y1)、B(-1,y2)、C(2,y3)都在这个反比例函数的图象上,比较y1、、y2和y3的大小.
4.点A(-2,a),B(-1,b),C(3,c)在双曲线y= (k>0)上,则a,b,c的大小关是.
四、展示应用
1.对于反比例函数y = (k>0),当x1< 0< x2<x3时,其对应的值y1、y2、y3的大小关系是
2.已知反比例函数y = 的图象具有以下特征:在同一象限内, y随x增大而增大,
(1)求n的取值范围.
人教版八年级数学下册反比例函数知识点归纳(重点)
人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
反比例函数中K的几何意义
反比例函数中K的几何意义作者:杨高朋来源:《世界家苑》2019年第02期摘要:反比例函数是数学知识的重点和难点之一,理解起来难度较大,也是考试活动中重点考察内容之一。
“K”是反比例函数的重要组成部分,在整个反比例函数中具有重要的几何意义,加大对“K”值的了解,有助于学生学生在日常数学知识学习过程中灵活展开数形结合,高效、精确解决数学问题,更能够为学生进行其他数学知识的学习奠定良好基础。
鉴于此,本文详细探讨了反比例函数中K的几何意义以及反比例函数在集合图形中的应用,以供参考。
关键词:反比例函数;K;几何意义初等函数中,反比例函数占据基础地位,学生通过对反比例函数的特点、性质等的深刻理解,对于以后更加顺利、快捷的进行三角函数以及二次函数等数学知识点的学习具有促进作用。
而系数“K”在反比例函数中具备较强的几何意义,能够将“数形结合”的数学思想充分的体现出来。
因此,学生在积极进行反比例函数学习的过程中,深入进行“K”几何意义的探讨与分析具有重要意义。
1 反比例函数中K的几何意义在y=k/x(k≠0)这一反比例函数函数当中,要想对系数k的几何意义进行全面掌握,就必须掌握以下几点:第一,应促使学生明确当y=k/x这一双曲线距离坐标轴越远时,就会产生越大的|k|值;第二,在对一般情况下和特殊情况下的反比例函数进行分析的过程中,能够对方程所形成的过程产生深刻认知,在此基础上学生才可以灵活应用反比例函数表达式进行图形面积的计算,在这一过程中,学生可以通过观察图像面积的方式,对反比例函数中K值进行确定。
例如,图一所示例题中“在y=k/x(k≠0)这一反比例函数函数当中,其中K值呈现出重要的几何意义,即在y=k/x这一反比例函数中取P点(P属于任意一点),假设PM、PN分别为P与x轴和y轴之间的垂线,在此基础上形成的PMON这一矩形,以S=PM·PN=|y|·|x|=|xy|=|k|,将O、P相连,得出S△POM=S△PON=k/2”。
八年级数学苏科版下册 第十一单元 《11.2反比例函数的图像与性质》教学设计 教案
《11.2反比例函数的图像与性质》一、教材分析(一)教材的地位及作用《反比例函数的图像和性质》是苏科版数学教材八年级下册第十一章第二节内容,本课为第一课时.是在学习了反比例函数的概念后对反比例的进一步研究,主要介绍了反比例函数的图像是双曲线和双曲线的作法.八年级上册学习的一次函数图像的作法为本课的学习提供了方法的引领,本课是学生第一次接触曲线形的图像,是继续研究反比例性质、学习二次函数的基础,在教材中起着承上启下的重要作用.(二)教学目标1.知道反比例函数的图像是双曲线,能用描点法画出反比例函数的图像;2.类比一次函数,经历列表、描点、连线画双曲线的过程,理解图像能更直观的反应函数的特征,体会数形结合的思想.(三)教学重点、难点教学重点:反比例函数图像的画法.教学难点:体会解析式与图像的联系,正确地画出双曲线.二、学情分析学生在八年级上册学习过一次函数,知道作函数图像列表、描点、连线的基本步骤,反比例函数概念的学习为研究反比例函数的图形奠定了知识的基础.但是反比例函数的图像是学生第一次接触曲线型的图像,而且是两个分支的图像,这对他们来说有一定的难度.在教学时可采用先引导学生思考然后画图,充分交流讨论,暴露学生的思维过程,针对错误进行评析,借助课件动态直观展示图像的生成过程,帮助他们突破难点.三、教学过程(一)问题导学1.我们已经学习了反比例函数,它的一般形式是什么?2.请大家类比一次函数的学习,我们认识了函数后,接下来研究什么?3.一次函数的图像是一条直线,反比例函数的图像是什么呢?【设计意图】类比一次函数,知道研究函数一般先理解其概念,然后研究其图像和性质,让学生构建函数的认知结构.用问题串的方式自然地引出课题,激发学生的求知欲.(二)合作探究活动一:思考 以反比例函数xy 6=为例, 1.自变量x 可以取任何实数吗?(学生发现x 不可以为0.)那这个函数的图像与y 轴有交点吗?因变量y 可以取任何实数吗?这个函数的图像与x 轴有交点吗?2.若x 取正,那y 呢?若x 取负,那y 呢?这个函数的图像会在哪几个象限?3.当x >0时,随着x 的增大,y 怎样变化? 当x <0时,随着x 的增大,y 怎样变化?4.通过以上问题,你能估计反比例函数xy 6=图像的基本概貌吗? (先思考,再小组交流.这里不要求学生准确描述,鼓励其用自己的语言来描述函数图像.)【设计意图】由于反比例函数的图像是曲线,且分成两支,学生初次接触有一定的难度,故而在作图前先思考,“由数想形”,根据函数表达式中x 、y 的取值范围及相互关系,初步估计图形的基本概貌——位置(象限、与坐标轴的交点等)、趋势(上升、下降等).一方面渗透数形结合的数学思想,另外这也是探究未知函数的性质与图像的一种方法. 活动二:画xy 6=的图像 1.我们的估计正确不正确,可以怎样来验证?(学生回答,画出函数的图像)2.回忆一次函数的图像画法,你认为画函数图像的步骤是什么?3.需要把 x 的所有值全部列举出来吗?你认为选取哪些值合适呢?为什么?(根据学生回答示范列表)4.请大家根据表格描点、画图.(在事先准备好的网格坐标系中画图)5.请将自己所作的图像与小组内的同学交流,找出自己与同学作图的不同并分析原因;(教师巡视并选出几个有代表性错误的图像和一幅正确图像)6.利用实物展台展示学生作图,你们认为这些图像正确吗?结合学生错误进行讨论、分析.(如连线没有向两方无限延伸,连线与坐标轴相交,两个分支用线连接,用线段将相邻两点连接等错误)7.利用几何画板展示图像的动态生成过程;8.先说说反比例函数xy 6=的图像的特征,再比较与一次函数的图像有哪些不 同,请与同学交流.【设计意图】引导学生正确地列表,这样才能更直观地显示出图像的特征,然后放手让学生自己尝试作图,暴露他们的思维过程.通过对典型错误的分析和正确图像的比较以及课件的直观展示,帮助学生更深刻地理解图像的基本特征如:连线必须是光滑的,是两个分支,延伸部分有逐渐靠近坐标轴的趋势但永远不可能与坐标轴相交等,体会图像的种种特征是由反比例的解析式的特点决定的,感受数形结合的思想. 活动三:画xy 6-=的图像 1.不画图,你能说说反比例函数xy 6-=图像的特征吗?说明理由. 2.请在网格坐标系中画出反比例函数xy 6-=的图像. (此处大多学生应该是用描点法画图,可能有学生利用x y 6-=与xy 6=的关系来画图,鼓励多种方法画图.)3.对照图像,刚才对函数xy 6-=图像特征的表述正确吗? 4.观察x y 6=与x y 6-=的图像,它们有什么共同特征? 5.根据学生回答板书双曲线及其基本特征.【设计意图】让学生经历类比、猜想、观察、归纳的过程,培养学生的思维,帮助学生更好地理解双曲线的特征,自主建构双曲线模型,体会数形结合的思想,积累数学活动经验.(三)练习巩固 同桌两人分别画出函数x y 4=与xy 4-=的图像(一人画一个),并请同桌说出你所作的函数图像的特点.【设计意图】通过小游戏的方式调动学生的学习积极性,巩固作图的技能,加深对双曲线特征的理解.(四)小结反思请与同学交流:1.今天这节课你有什么收获?2.你认为最重要、最关键的知识是什么?3.你是用什么方法获得新知识的?4.你还有什么疑惑需要提出来和大家讨论吗?【设计意图】没有反思就没有进步,用问题串的方式引导学生将回顾本课所学知识并内化到自己的认知结构中,总结探究的方法,积累数学活动经验,感受数形结合、类比的思想.(五)分层拓学1.必做题:2.选做题:观察课堂所画的四个反比例函数图像,你能将它们分类吗?分类标准是什么?你能类比一次函数给出反比例函数的增减性吗?【设计意图】分层的练习既面向全体又关注个体差异,选做题让学有余力的学生有了施展的舞台,同时又为下节课的学习做好铺垫.六、板书设计。
八年级数学反比例函数的图解和性质
三、练习
(一)填空
1、当m 时,反比例函数y=(1-2m)/x的图象在一、 三象限。 2、若反比例函数y=K/x的图象在二、四象限,则直 线y=kx-3不经过第 象限。 3、当k>0时,反比例函数y=(k+1)/x的图象在 象 限。 4、当k<0时,反比例函数y=-k/x的图象在 象 限。 5、反比例函数y=(k2 +1)/x的图象在 象 限。
-2
2
-3
3
-6
6
6
-6
3
-3
2
-2
1.5
-1.5
… … …
Y=3/x … Y=-3/x …
-0.75 -1
0.75 1
-1.5 -3
1.5 3
3
-3
1.5
2
0.75
-1.5 -2 -0.75
… …
y y﹦6∕x y=-6/x
y
o
x
o
x
gx = hx =
6 x 数的概念 1、什么是反比例函数?其 自变量的取值范围是什么, 你能说明为什么吗? 2、试举出几个反比例的例 子。
反比例函数定义:
形如Y=K/X(K≠0)的函数叫反 比例函数。注意反比例函数的另 两种形式:y=kx-1 xy=k (k≠0)
回顾: 一般反比例函数解析式中有 几个待定系数?需要几组X和Y 的对应值可以求出其解析式? 例 1: 已知Y与X的平方成反比例,并 且当X=3时,Y=4;求X=6时, Y的值.
下列( )是函数y=kx-k和y=k/x的大致图象
y
o x
y y o x o x
y o
x
A
B
C
11.2 反比例函数的图像与性质(2)
八年级 下 册 课程标准苏科版实验教科书
11.2 反比例函数的图象与性质(2)
射阳县实验初中初二数学备课组
苏科版数学八年级下册
5.在反比例函数 的图像上有两点(x1,y1) 和(x2,y2),若x1<0<x2时,y1>y2,则k的 取值范围是______ k 1 6.正比例函数y=2kx与反比例函数y= x 在同 一坐标系的图像不可能是( )
k 4、已知反比例函数 y x 的图象如右图,则函数 y kx 2 的图象是下图中 的( )
y y 2 O -2 A x O B x C y 2 x
自 学 检 查
苏科版数学八年级下册
y x
O
y
-2 D
x
合 作 交 流
y
A(1,6) B(2,3)
苏科版数学八年级下册
A(-1,6)
y
B(-2,3) o
1、反比例函数的图象经过点(-1,2),那么 这个反比例函数的解析式为____,图象在第 ___象限; 1 2、双曲线经过点B( , 16),点C(-2,m)在 2 这个函数的图象上,则此双曲线的关系式是__ __;分布在第____象限,m=____ ; 1 m2 2 3、若关于y=(m- )x 是反比例函数,且它 2 的图像分布在第二、四象限,则m的值为____;
k>0,在每个象限y随x的增大而减小 k<0,在每个象限y随x的增大而增大
苏科版数学八年级下册
k 例1 已知反比例函数 y 的图象经过点 x A(2,-4) (1)求其函数关系式 (2)这个函数的图象分布在哪些象限?y 随x的增大而如何变化? (3)画出它的图象;
1 (4)点B( ,-16)、C(-3,5)是 2
苏科版八年级下册数学《11.2反比例函数的图象与性质》(3)
15
10
5
14
������12
10 8 6
B
4 2
OC 5 2 4 6 8
P
10 ������
8
典型例题 ������ 6
例2.如图,平面直角坐标系中,
B A 点C是x轴上任意一点,AB∥ ������轴,
4 ������
分别交������ = 3(������>0)、������ = ������
2
C4
A
15
6
4
1
20
25
B
30
2
2
4
1
������ 6 ������ 6
解决问题
5
4
������
如 图 , ������ 、 ������ 两 点 在 反 比 例 函 数 ������ = ������1的图象上,������、������两点在
������
C k2
y= x
3
E
2
A k1
1
y= x
3
B
A
S= ������1 - ������2 2
221
C 5
O8
2
6
������4
4
6
2
8
S= 5 ������
������110 −������28
2
A
5
10
5 ������
10
C122
B
8
4
15 6
S=������20 4 1
−������22
2
25
O 5
������ 1 4
2
C3
3
2 4
11.3 反比例函数的图象与性质知识讲解20202021学年八年级数学下册基础知识专项讲练苏科版
专题11.3 反比例函数的图象与性质(知识讲解)【学习目标】1. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.2. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.3. 会解决一次函数和反比例函数有关的问题.【要点梳理】要点一、反比例函数的定义一般地,形如kyx= (k为常数,0k¹)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.特别说明:(1)在kyx=中,自变量x是分式kx的分母,当0x=时,分式kx无意义,所以自变量x的取值范围是,函数y的取值范围是0y¹.故函数图象与x轴、y轴无交点.(2)kyx= ()可以写成()的形式,自变量x的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)kyx= ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数kyx=中,只有一个待定系数k,因此只需要知道一对x y、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式. 用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为:kyx= (0k¹);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k的值;(4)把求得的k值代回所设的函数关系式kyx=中.要点三、反比例函数的图象和性质 1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.特别说明:(1)若点(a b ,)在反比例函数k y x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ¹) 中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.3、反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小; (2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y值随x 值的增大而增大;特别说明:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.要点四:反比例函数()中的比例系数k 的几何意义过双曲线xk y =(0k ¹) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k .过双曲线xk y =(0k ¹) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k . 特别说明:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.类型一、反比例函数的解析式1、已知函数121,y y y y =-与x 成正比例,2y 与x 成反比例,且当1x =时,2y =;当2x =-时,7y =-.(1)求y 关于x 的函数解析式;(2)求当3x =时的函数值.【答案】(1)24y x x =-;(2)1113【分析】(1)设111(0)y k x k =¹,222(0)k y k x=¹,然后表示出y 、x 的函数关系式,再把两组数据代入函数解析式进行计算即可得解;(2)把自变量3x =代入函数解析式进行计算即可得解.解:(1)1y Q 与x 成正比例,\设111(0)y k x k =¹,2y Q 与x 成反比例,\设222(0)k y k x=¹,12y y y =-Q ,21k y k x x \=-,Q 当1x =时,2y =;当2x =-时,7y =-.\12212272k k k k -=ìïí-+=-ïî,解得1242k k =ìí=î,24y x x \=-;(2)当3x =时,21431133y =´-=.【点拨】本题考查了待定系数法求反比例函数解析式,已知自变量求函数值的方法,是基础题,表示出y 、x 的函数关系式是解题的关键.举一反三:【变式】如图,一次函数1y x =+与反比例函数k y x=的图像相交于点()2,3A 和点B .(1)求反比例函数的解析式;(2)过点B 作BC x ^轴于C ,求ABC S V ;(3)是否在y 轴上存在一点D ,使得BD CD +的值最小,并求出D 坐标.【答案】(1)6y x=;(2)5;(3)存在,()0,1D -【分析】(1)将A 的坐标代入反比例函数解析式中,求出k 的值,即可确定出反比例函数解析式;(2)将反比例函数解析式与一次函数解析式联立组成方程组,求出方程组的解,根据B 所在的象限即可得到B 的坐标;三角形ABC 的面积可以由BC 为底边,A 横坐标绝对值与B 横坐标绝对值之和为高,利用三角形的面积公式求出即可.(3)作C 关于y 轴的对称点C′,连接BC′交y 轴上一点D ,连接CD ,求出BC′的直线解析式,即可求出D 的坐标.解:(1)∵一次函数1y x =+与反比例函数k y x=相交于()2,3A 6k x y =×=6y x\=(2)如图:16y x y x =+ìï\í=ïî,∴123,2x x =-=.∴()3,2B --过B 作BC x ^轴12552ABC S \=´´=V (3)存在.作C 关于y 轴的对称点C ¢,连接BC ¢交y 轴上一点D ,连接CD ,()3,0C ¢设BC ¢的直线方程(0)y mx n m =+¹3032m n m n +=ìí-+=-î∴131m n ì=ïíï=-î113y x \=-令0,1x y ==-∴()0,1D-【点拨】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:因式分解法解一元二次方程,待定系数法确定函数解析式,坐标与图形性质,以及三角形面积公式,待定系数法是数学中重要的思想方法,学生做题时注意灵活运用.类型二、反比例函数的图象分布2、 反比例函数3k y x +=的图象在二、四象限,则k 的取值范围是( )A .3k >-B .3k <-C .3k …D .3k -…【答案】B 【分析】根据反比例函数的图象和性质,函数位于二、四象限,k+3<0,解不等式即可得出结果.解:∵3k y x+=的图象在二,四象限,∴k+3<0,即 k < -3.故选:B .【点拨】本题考查反比例函数3k y x+=(k≠0)的性质:当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.举一反三:【变式】 反比例函数y=1m x -的图象在第一、三象限,则m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <1【答案】C【解析】试题解析:∵反比例函数y=1m x-的图象在第一、三象限,∴m-1>0,解得m >1.故选C .【点拨】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.3.已知关于x 的函数y =kx +k 和y =-k x(k ≠0)它们在同一坐标系中的大致图象是A .B .C .D .【答案】A【分析】先根据反比例函数的性质判断出k 的取值,再根据一次函数的性质判断出k 取值,二者一致的即为正确答案.解:当k >0时,反比例函数的系数-k <0,反比例函数过二、四象限,一次函数过一、二、三象限,原题没有满足的图形;当k <0时,反比例函数的系数-k >0,所以反比例函数过一、三象限,一次函数过二、三、四象限,只有A 满足.故选:A .【点拨】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.举一反三:【变式】 一次函数y kx k =-与反比例函数k y x=在同一直角坐标系中的图像可能是( )A .B .C .D .【分析】根据k>0时,k<0时,分析一次函数y kx k =-与反比例函数k y x=的图象所在的象限,即可得到答案.【详解】当k>0时,一次函数y kx k =-的图象经过第一、三、四象限,反比例函数k y x= 的图象的两个分支在第一、三象限;当k<0时,一次函数y kx k =-的图象经过第一、二、四象限,反比例函数ky x =的图象的两个分支在第二、四象限;正确的图象为:B,故选:B.【点拨】此题考查一次函数的图象所在的象限,反比例函数所在的象限,正确掌握比例系数与函数图象所在的象限的关系是解题的关键.类型三、反比例函数的图象的增减性4、 若点()11,A a y -,()21,B a y +在反比例函数(0)k y k x=<的图象上,且12y y >,则a 的取值范围是( )A .1a <-B .11a -<<C .1a >D .1a <-或1a >【答案】B【分析】由反比例函数(0)k y k x=<,可知图象经过第二、四象限,在每个象限内,y 随x 的增大而增大,由此分三种情况①若点A 、点B 在同在第二或第四象限;②若点A 在第二象限且点B 在第四象限;③若点A 在第四象限且点B 在第二象限讨论即可.【详解】解:∵反比例函数(0)k y k x=<,∴图象经过第二、四象限,在每个象限内,y 随x 的增大而增大,①若点A 、点B 同在第二或第四象限,∵12y y >,∴a-1>a+1,此不等式无解;②若点A 在第二象限且点B 在第四象限,∵12y y >,∴1010a a -ìí+î<>,解得:11a -<<;③由y1>y2,可知点A 在第四象限且点B 在第二象限这种情况不可能.综上,a 的取值范围是11a -<<.故选:B .【点拨】本题考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键,注意要分情况讨论,不要遗漏.举一反三:【变式】 关于反比例函数1p y x-=的下列说法:①若其图象在第三、一象限,则1p <;②若其图象上两点()11,M x y 、()22,N x y ,当120x x <<时,12y y >,则1p >;③其图象与坐标轴没有公共点.其中正确的说法是( )A .①B .①②C .①②③D .②③【答案】C【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.解:∵反比例函数1p y x-=,∴若其图象在第三、一象限,则1-p >0,得p <1,故①正确;若其图象上两点M (x1,y1)、N (x2,y2),当x1<0<x2时,y1>y2,则1-p <0,得p >1,故②正确;其图象与坐标轴没有公共点,故③正确;故选:C .【点拨】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.举一反三:【变式】反比例函数(0)k y k x=¹的图象如图所示,以下结论错误的是( )A .0k >B .若点()1,3M 在图象上,则3k =C .在每个象限内,y 的值随x 值的增大而减小D .若点()1,A a -,()2,B b 在图象上,则a b >【答案】D【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解: ∵反比例函数的图象位于一、三象限,∴k >0故A 正确;当点M (1,3)在图象上时,代入可得k=3,故B 正确;当反比例函数的图象位于一、三象限时,在每一象限内,y 随x 的增大而减小,故C 正确;将A (-1,a ),B (2,b )代入(0)k y k x=¹中得到,得到a=-k ,2k b = ∵k >0∴a <b ,故D 错误,故选:D .【点拨】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键类型四、反比例函数与一次函数的综合5、如图,一次函数1y kx b =+的图象与反比例函数2m y x=的图象交于点()()3,2,,6A B n --两点.(1)求一次函数与反比例函数的解析式;(2)求AOB V 的面积;【答案】(1)124y x =--,26y x=-;(2)8【分析】(1)将点A 坐标代入反比例函数求出m 的值,从而得到点A 的坐标以及反比例函数解析式,再将点B 坐标代入反比例函数求出n 的值,从而得到点B 的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB 与y 轴相交于点C ,根据一次函数解析式求出点C 的坐标,从而得到点OC 的长度,再根据S △AOB=S △AOC+S △BOC 列式计算即可得解.【详解】解:()1把()32A -,代入2m y x=得326m =-´=-,\反比例函数解析式为26y x=-,把()6B n -,代入26y x=-得66n -=-,∴解得1n =,B \点坐标为()16-,,把()()3216A B --,,,代入1y kx b =+得326k b k b -+=ìí+=-î,解方程组得24k b =-ìí=-î,\一次函数解析式为24y x =--;()2当0x =时,244y x =--=-,则AB 与y 轴的交点坐标为C ()04-,,ABO AOC BOC 11S =S +S =43+4122D D \´´´´V ()143182=´´+=.【点拨】本题考查反比例函数与一次函数解析式问题.掌握反比例函数与一次函数解析式的求法,会利用分割法求两函数的交点与原点构成三角形的面积是解题关键.举一反三:【变式】 已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点(),M m n (在A 点左侧)是双曲线k y x=点上的动点,过点B 作//BD y 轴交x 轴于点D .过()0,N n -作//NC x 轴交双曲线k y x =于点E ,交BD 于点C .(1)若点D 坐标是()8,0-,求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.【答案】(1)()8,2A ;B ()8,2--;k=16;(2)2233y x =+【分析】(1)根据D 点的横坐标为-8,求出点B 的横坐标代入14y x =中,得2y =-,得出B 点的坐标,即可得出A 点的坐标,再根据求出即可;(2)根据111122,,2222D D ======DCNO DBO OEN S mn k S mn k S mn k ,即可得出k 的值,进而得出B ,C 点的坐标,再求出解析式即可.解:(1)∵(),80D -,∴B 点的横坐标为8-,代14y x =入中,得2y =-.∴B 点坐标为()8,2--.∵A 、B 两点关于原点A 对称,∴()8,2A .∴8216k xy ==´=;(3)∵()0,N n -,B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,2,2n B m æö--ç÷èø,()2,C m n --,(),E m n --.22DCNO S mn k ==矩形,1122DBO S mn k ==△,1122OEN S mn k ==△,∴4DBO OEN DCNO OBCE S S S S k =--==V V 矩形四边形.∴4k =.∵2,2n B m æö--ç÷èø在双曲线4y x =与直线14y x =上,∴()()2421242n m n m ìæö-´-=ç÷ïïèøíï´-=-ïî,解得1122m n =ìí=î或2222m n =-ìí=-î(舍去)∴()4,2C --,()2,2M .设直线CM 的解析式是y ax b =+,把()4,2C --和()2,2M 代入得:4222a b a b -+=-ìí+=î,解得23a b ==.∴直线CM 的解析式是2233y x =+.【点拨】本题考查反比例函数解析式,一次函数解析式,掌握反比例函数解析式,一次函数解析式待定系数求法,关键是点B 横纵坐标关系,以及4DBO OEN DCNO OBCE S S S S k =--==V V 矩形四边形构造方程组解决问题.类型五、反比例函数的面积问题6、 如图,直线3y x =-,与反比例函数k y x =的图象交于点A 与点(),4B m -.(1)求反比例函数的表达式;(2)求不等式3k x x-³的解集;(3)若Р是第一象限内双曲线上的一个动点,连接OP ,过点Р作y 轴的平行线交直线AB 于点C ,若POC D 的面积为3,求点Р的坐标.【答案】(1)4y x =;(2)4x ³,或10x -<<;(3)()2,2,或()1,4,或45,5æöç÷èø【分析】(1)先求出点B 的坐标,然后利用待定系数法将B代入反比例函数解析式中即可求出其表达式;(2)求出点A 与点B 坐标后观察函数图象即可求解;(3)设点P 的坐标为()4,0P a a a æö>ç÷èø,用a 表示出△POC 的面积,从而列出关于a 的方程,解方程即可.解:()143m -=-,得1m =-,()1,4B \--.()144k \=-´=-,∴反比例函数的表达式为4y x=;()2由43x x-=,得124,1x x ==-,∴A(4,1),B(-1,-4),\不等式3k x x-³的解集为4x ³或10x -<<.()3设()4,0P a a a æö>ç÷èø,则,)3C a a -(,()1143322POC p S PC x a a aD ==--=,由436a a a æö-+=ç÷èø,得122,1a a ==;由436a a a æ-öç÷èø-=,得345,2a a ==-.0,a >Q \点P 的坐标为)2,2(,或()1,4,或45,5æöç÷èø【点拨】本题主要考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数的表达式,一次函数图象上点的坐标特征,三角形面积.本题属于中考常考题型.举一反三:【变式】 如图,一次函数y ax b =+经过(3,0),(0,6)A B 两点,且与反比例函数k y x=的图象相交于,C E 两点,CD x ^轴,垂足为D ,点D 的坐标为(2,0)D -.(1)从一次函数与反比例函数的解析式;(2)求CDE △的面积.【答案】(1)26y x =-+,20y x-=;(2)CDE △的面积为35.【分析】(1)利用待定系数法即可求出一次函数的解析式,然后求出点C 的坐标,即可求出反比例函数的解析式;(2)联合两个解析式,求出点E 的坐标,根据三角形的面积公式即可求出答案.【详解】解:(1)Q 一次函数y ax b =+经过(3,0),(0,6)A B 两点,3006a b b +=ì\í+=î,解得:26a b =-ìí=î,所以一次函数的解析式为:26y x =-+.将2x =-代入上式,得点C 的坐标为(2,10)-.代入k y x=,得:20k =-,所以反比例函数的解析为:20y x -=. (2)联立方程组2620y x y x =-+ìï-í=ïî. 解得11210x y =-ìí=î,1154x y =ìí=-î,\点E 的坐标为(5,4)E -.CDE \V 的面积为:111073522CDE E C S CD x x D =´´-=´´=.【点拨】本题考查了应用待定系数法求一次函数和反比例函数解析式,以及求三角形的面积,解题的关键是掌握反比例函数和一次函数的性质进行解题.类型六、反比例函数与几何综合7、 如图,已知点A 在反比例函数()0k y k x=<的图象上,点B 在直线4y x =-的图象上,点B 的纵坐标为1-,AB x ^轴,且92OAB S D =()1求k 的值;()2点P 在y 轴上,AOP V 是等腰三角形,求点P的坐标.【答案】(1)-12;(2)点P 的坐标为()()()12340,5, 0,5,0,8,250,8P P P P æö--çè-÷ø【分析】()1可先求得B 点坐标,再结合△OAB 的面积可求得AB 的长,则可求得A 点坐标,把A 点坐标代入反比例函数解析式可求得k 的值;()2分三种情况: ①OP=OA ;②AP=OA ;③AP=OP 三种情况进行讨论 解:()1Q 点B 在直线4y x =-的图象上,点B 的纵坐标为1-,41,x \-=-3,x \=3,(1).B \-设点A 的坐标为(3,)t ,则1,1t AB t <-=--.92OAB S D =Q ()191322t \--´=,解得4,t =-\点A 的坐标为(3,4)-.4,123k k -=-\=12y x\=-()2分三种情况:①点O 为顶点时:如图1,12OP OP OA ==.∵点A 的坐标为(3,4)-,∴5OA =;∴125==OP OP ()()120,5,0,5P P \-.②点A 为顶点时:如图2.35,AP OA ==作AH y ^轴于H ,则34==HP HO ;()30,8P \-③点P 为顶点时:如图3.44AP OP =作OA 的垂直平分线PQ ,交y 轴于点4P ,∵点A 的坐标为(3,4)-,∴OA 的表达式为43y x =-;∴OA 的中点坐标为3,22æö-ç÷èø,设PQ 的表达式为34y x b =+,将3,22æö-ç÷èø代入得,258b =-4P Q \的表达式为32548y x =-.4250,8P æö\-ç÷èø综上得出,点P 的坐标为()()()1234250,5,0,5,0,8,0,8P P P P æö---ç÷èø.【点拨】本题考查反比例函数和几何、反比例函数和一次函数相结合等知识,解题的关键是灵活运用所学知识解决问题,学会利用分类讨论的数学思想,属于中考常考题型.举一反三:【变式】 如图,直线AD :33y x =+与坐标轴交于A D 、两点,以AD 为边在AD 右侧作正方形ABCD ,过C 作CG y ^轴于G 点.过点C 的反比例函数(0)k y k x=¹与直线AD 交于,E F 两点.(1)求证:△AOD ≌△DGC ;(2)求E 、F 两点坐标;(3)填空:不等式33k x x+>的取值范围是_________.【答案】(1)证明见解析;(2)()()1,6,2,3E F --;(3)20x -<<或1x >.【分析】(1)由题意易得,90AD CD ADC =Ð=°,进而可得ADO DCG Ð=Ð,然后问题可求证;(2)由直线AD 的解析式可求出()()1,0,0,3A D -,由(1)可得1,3DG OA CG OD ====,则有2OG =,然后联立一次函数与反比例函数解析可求解;(3)由(2)及图像可直接进行求解.(1)证明:Q 正方形ABCD ,,90AD CD ADC \=Ð=°,90AOD DGC Ð=Ð=°Q ,90ADO GDC DCG GDC \Ð+Ð=Ð+Ð=°,ADO DCG \Ð=Ð,AOD DGC \V V ≌;(2)解:330y x =+=Q 时,1x =-,()()1,0,0,3A D \-,由()1可知1,3DG OA CG OD ====,2OG \=,即()3,2C ,即6y x=,联立336y x y x =+ìïí=ïî,解得:122,1x x =-=;()()1,6,2,3E F \--;(3)由图像及(2)可得:不等式33k x x+>的取值范围是20x -<<或1x >;故答案为20x -<<或1x >.【点拨】本题主要考查反比例函数与一次函数的综合及正方形的性质,熟练掌握反比例函数与一次函数的综合及正方形的性质是解题的关键.。
中考数学考点12反比例函数的图像与性质及实际应用总复习(解析版)
反比例函数的图像与性质及实际应用【命题趋势】在中考中.反比例函数的图像与性质常以选择题和填空形式考查;反比例函数解析式主要在反比例函数综合题中与一次函数、几何图形结合考查。
【中考考查重点】一、结合具体情境体会反比例函数的意义.能根据已知条件确定反比例函数的表达式;二、能画出反比例函数的图像.根据图像和表达式探索并理解k>0和k<0时.图像的变化情况;三、结合具体情境体会反比例函数的意义四、能用反比例函数解决简单实际问题考点一:反比例函数的概念一般地.形如.叫做反比例函数.自变量x的取值概念范围是≠0的一切实数【提分要点】反比例函数图像上的点的横纵坐标之积是定值k1.(2021秋•南召县期末)下列函数是y关于x的反比例函数的是()A.y=B.y=C.y=﹣D.y=﹣【答案】C【解答】解:A、不是y关于x的反比例函数.故此选项不合题意;B、不是y关于x的反比例函数.故此选项不合题意;C、是y关于x的反比例函数.故此选项符合题意;D、不是y关于x的反比例函数.是正比例函数.故此选项不合题意;故选C2.(2021•门头沟区一模)在物理实验室实验中.为了研究杠杆的平衡条件.设计了如下实验.如图.铁架台左侧钩码的个数与位置都不变.在保证杠杆水平平衡的条件下.右侧采取变动钩码数量即改变力F.或调整钩码位置即改变力臂L.确保杠杆水平平衡.则力F与力臂L满足的函数关系是()A .正比例函数关系B .反比例函数关系C .一次函数关系D .二次函数关系【答案】B【解答】解:∵确保杠杆水平平衡.∴力F 与力臂L 满足的函数关系是反比例函数关系. 故选:B .3.(2021秋•越秀区校级期末)函数y =(m ﹣1)x |m |﹣2是反比例函数.则m的值为 .【答案】-1【解答】解:由题意得:|m |﹣2=﹣1且.m ﹣1≠0;解得m =±1.又m ≠1; ∴m =﹣1. 故填m =﹣1. 考点二:反比例函数的图像与性质概念kk >0k <0图像所在象限一、三二、四增减性 在每个象限内.y 随x 的增大而减少在每个象限内.y 随x 的增大而增大图像特征图像无限接近于坐标轴.但不与坐标轴相交;关于直线y=±x 成轴对称;关于原点成中心对称4.(2021秋•南开区期末)若反比例函数y=的图象在其所在的每一象限内.y随x 的增大而减小.则k的取值范围是()A.k<﹣2B.k>﹣2C.k<2D.k>2【答案】B【解答】解:∵反比例比例函数y=的图象在其每一象限内.y随x的增大而减小.∴k+2>0.解得k>﹣2.故选:B.5.(2021秋•揭阳期末)点(x1.y1)、(x2.y2)、(x3.y3)在反比例函数y=﹣的图象上.且x1<0<x2<x3.则有()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1【答案】B【解答】解:∵k<0.∴函数图象在二.四象限.由x1<0<x2<x3可知.横坐标为x1的点在第二象限.横坐标为x2.x3的点在第四象限.∵第四象限内点的纵坐标总小于第二象限内点的纵坐标.∴y1最大.在第二象限内.y随x的增大而增大.∴y2<y3<y1.故选:B.6.(2020秋•浦东新区校级期末)已知函数y=kx.y随x的增大而减小.另有函数.两个函数在同一平面直角坐标系内的大致图象可能是()A.B.C.D.【答案】B【解答】解:∵函数y=kx中y随x的增大而减小.∴k<0.且函数的图象经过第二、四象限.∴函数的反比例系数大于零.∴反比例函数图象经过第一、三象限.故选:B.7.(2020秋•孝义市期末)近视眼镜的度数y(度)与镜片焦距x(米)之间具有如图所示的反比例函数关系.若要配制一副度数小于400度的近视眼镜.则镜片焦距x的取值范围是()A.0米<x<0.25米B.x>0.25米C.0米<x<0.2米D.x>0.2米【答案】B【解答】解:根据题意.近视眼镜的度数y(度)与镜片焦距x(米)成反比例.设y=.∵点(0.5.200)在此函数的图象上.∴k=0.5×200=100.∴y=(x>0).∵y<400.∴<400.∵x>0.∴400x>100.∴x>0.25.即镜片焦距x的取值范围是x>0.25米.故选:B.考点三:反比例函数系数k的几何意义8.(2021秋•铁西区期末)如图.A是反比例函数y=的图象上一点.过点A作AB⊥y 轴于点B.点C在x轴上.且S△ABC=2.则k的值为()A.4B.﹣4C.﹣2D.2【答案】B【解答】解:设点A的坐标为(x.y).∵点A在第二象限.∴x<0.y>0.∴S△ABC=AB•OB=|x|•|y|=﹣xy=2.K的几何意义在反比例函数上任取一点P(x.y),过这个点分别作x轴.y轴的垂线PM、PN.于坐标轴围成的矩形PMON的面积S=PM·PN===k基本图形面积基本图形面积∴xy=﹣4.∵A是反比例函数y=的图象上一点.∴k=xy=﹣4.故选:B.9.(2021•铜仁市)如图.矩形ABOC的顶点A在反比例函数y=的图象上.矩形ABOC 的面积为3.则k=.【答案】3【解答】解:∵矩形ABOC的面积为3.∴|k|=3.又∵k>0.∴k=3.故答案为:3.考点四:反比例函数解析式的确定待定系数法1.设所求反比例函数解析式为:2.找出反比例函数图像上一点P(a,b).并将其代入解析式得k=ab;3.确定反比例函数解析式利用k得几何意义题中已知面积时.考虑利用k得几何意义.由面积得.再综合图像所在象限判段k得正负.从而得出k的值.代入解析式即可10.(2021秋•房山区期末)若反比例函数的图象经过点(3.﹣2).则该反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣【答案】B【解答】解:设反比例函数的解析式为y=(k≠0).函数的图象经过点(3.﹣2).∴﹣2=.得k=﹣6.∴反比例函数解析式为y=﹣.故选:B.11.(2021秋•泰山区期中)如果等腰三角形的面积为6.底边长为x.底边上的高为y.则y与x的函数关系式为()A.y=B.y=C.y=D.y=【答案】A【解答】解:∵等腰三角形的面积为6.底边长为x.底边上的高为y.∴xy=6.∴y与x的函数关系式为:y=.故选:A.12.(2021•江西模拟)小明学习了物理中的杠杆平衡原理发现:阻力×阻力臂=动力×动力臂.现已知某一杠杆的阻力和阻力臂分别为2400N和1m.则动力F(单位:N)关于动力臂l(单位:m)的函数图象大致是()A.B.C.D.【答案】A【解答】】解:∵阻力×阻力臂=动力×动力臂.已知阻力和阻力臂分别是2400N和1m.∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:2400×1=Fl.则F=.是反比例函数.A选项符合.故选:A.1.(2021秋•隆回县期中)下面的函数是反比例函数的是()A.y=B.y=C.y=D.y=【答案】C【解答】解:A.y不是关于x的反比例函数.故本选项不符合题意;B.y是x的是正比例函数.不是反比例函数.故本选项不符合题意;C.y是关于x的反比例函数.故本选项符合题意;D.y不是关于x的反比例函数.故本选项不符合题意;故选:C.2.(2021秋•大东区期末)如果反比例函数的图象经过点P(﹣3.﹣1).那么这个反比例函数的表达式为()A.y=B.y=﹣C.y=x D.y=﹣x【答案】A【解答】解:设反比例函数解析式为y=(k≠0).∵函数经过点P(﹣3.﹣1).∴﹣1=.解得k=3.∴反比例函数解析式为y=.故选:A.3.(2021春•海淀区校级月考)某物体对地面的压力为定值.物体对地面的压强p(Pa)与受力面积S(m2)之间的函数关系如图所示.这一函数表达式为()A.B.C.D.【答案】B【解答】解:观察图象易知p与S之间的是反比例函数关系.设p=.由于A(20.10)在此函数的图象上.∴k=20×10=200.∴p=.故选:B.4.(2020秋•瓜州县期末)如图.在某温度不变的条件下.通过一次又一次地对气缸顶部的活塞加压.测出每一次加压后气缸内气体的体积V(mL)与气体对气缸壁产生的压强p(kPa)的关系可以用如图所示的反比例函数图象进行表示.下列说法错误的是()A.气压p与体积V表达式为p=.则k>0B.当气压p=70时.体积V的取值范围为70<V<80C.当体积V变为原来的时.对应的气压p变为原来的D.当60≤V≤100时.气压p随着体积V的增大而减小【答案】B【解答】解:当V=60时.p=100.则pV=6000.A.气压p与体积V表达式为p=.则k>0.故不符合题意;B.当p=70时.V=>80.故符合题意;C.当体积V变为原来的时.对应的气压p变为原来的.不符合题意;D.当60≤V≤100时.气压p随着体积V的增大而减小.不符合题意;故选:B.5.(2020秋•东莞市校级期末)已知点(3.y1).(﹣2.y2).(2.y3)都在反比例函数的图象上.那么y1.y2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2【答案】A【解答】解:∵k=﹣6<0.∴图象位于第二、四象限.在每一象限内.y随x的增大而增大.∴y2>0.y3<y1<0.∴y3<y1<y2.故选:A.6.(2021秋•西湖区期中)已知y1和y2均是以x为自变量的函数.当x=m时.函数值分别是M1和M2.若存在实数m.使得M1+M2=1.则称函数y1和y2具有性质P.以下函数y1和y2不具有性质P的是()A.y1=x2+2x和y2=﹣x﹣1B.y1=x2+2x和y2=﹣x+1C.y1=﹣和y2=﹣x﹣1D.y1=﹣和y2=﹣x+1【答案】D【解答】解:A.令y1+y2=1.则x2+2x﹣x﹣1=1.整理得.x2+x﹣2=0.解得x=﹣2或x =1.即函数y1和y2具有性质P.不符合题意;B.令y1+y2=1.则x2+2x﹣x+1=1.整理得.x2+x=0.解得x=0或x=﹣1.即函数y1和y2具有性质P.不符合题意;C.令y1+y2=1.则﹣﹣x﹣1=1.整理得.x2+2x+1=0.解得x1=x2=﹣1.即函数y1和y2具有性质P.不符合题意;D.令y1+y2=1.则﹣﹣x+1=1.整理得.x2+1=0.方程无解.即函数y1和y2不具有性质P.符合题意;故选:D.7.(2021秋•会宁县期末)如图.A.B是反比例函数的图象上关于原点对称的两点.BC ∥x轴.AC∥y轴.若△ABC的面积为6.则k的值是.【答案】3【解答】解:∵反比例函数的图象在一、三象限.∴k>0.∵BC∥x轴.AC∥y轴.∴S△AOD=S△BOE=k.∵反比例函数及正比例函数的图象关于原点对称.∴A、B两点关于原点对称.∴S矩形OECD=2S△AOD=k.∴S△ABC=S△AOD+S△BOE+S矩形OECD=2k=6.解得k=3.故答案为:3.8.(2021春•沙坪坝区校级期末)已知函数y=(m﹣1)是反比例函数.则m的值为.【答案】-1【解答】解:根据题意m2﹣2=﹣1.∴m=±1.又m﹣1≠0.m≠1.所以m=﹣1.故答案为:﹣1.1.(2018•柳州)已知反比例函数的解析式为y=.则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【答案】C【解答】解:根据反比例函数解析式中k是常数.不能等于0.由题意可得:|a|﹣2≠0.解得:a≠±2.故选:C.2.(2020•上海)已知反比例函数的图象经过点(2.﹣4).那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣【答案】D【解答】解:设反比例函数解析式为y=.将(2.﹣4)代入.得:﹣4=.解得k=﹣8.所以这个反比例函数解析式为y=﹣.故选:D.3.(2021•黔西南州)对于反比例函数y=.下列说法错误的是()A.图象经过点(1.﹣5)B.图象位于第二、第四象限C.当x<0时.y随x的增大而减小D.当x>0时.y随x的增大而增大【答案】C【解答】解:∵反比例函数y=.∴当x=1时.y=﹣=﹣5.故选项A不符合题意;k=﹣5.故该函数图象位于第二、四象限.故选项B不符合题意;当x<0.y随x的增大而增大.故选项C符合题意;当x>0时.y随x的增大而增大.故选项D不符合题意;故选:C.4.(2021•济南)反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限.则一次函数y=kx﹣k的图象大致是()A.B.C.D.【答案】D【解答】解:∵反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限.∴k>0.∴﹣k<0.∴一次函数y=kx﹣k的图象图象经过第一、三、四象限.故选:D.5.(2021•宜昌)某气球内充满了一定质量m的气体.当温度不变时.气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=.能够反映两个变量p和V函数关系的图象是()A.B.C.D.【答案】B【解答】解:∵气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=(V.p都大于零).∴能够反映两个变量p和V函数关系的图象是:.故选:B.6.(2021•沈阳)如图.平面直角坐标系中.O是坐标原点.点A是反比例函数y=(k≠0)图象上的一点.过点A分别作AM⊥x轴于点M.AN⊥y轴于点N.若四边形AMON 的面积为12.则k的值是.【答案】-12【解答】解:∵四边形AMON的面积为12.∴|k|=12.∵反比例函数图象在二四象限.∴k<0.∴k=﹣12.故答案为:﹣12.7.(2021•阜新)已知点A(x1.y1).B(x2.y2)都在反比例函数y=﹣的图象上.且x1<0<x2.则y1.y2的关系一定成立的是()A.y1>y2B.y1<y2C.y1+y2=0D.y1﹣y2=0【答案】A【解答】解:∵反比例函数y=﹣中k=﹣1<0.∴函数图象的两个分支分别位于二、四象限.且在每一象限内.y随x的增大而增大.∵x1<0<x2.∴A在第二象限.B在第四象限.∴y1>0.y2<0.∴y1>y2.故选:A.8.(2020•大庆)已知正比例函数y=k1x和反比例函数y=.在同一平面直角坐标系下的图象如图所示.其中符合k1•k2>0的是()A.①②B.①④C.②③D.③④【答案】B【解答】解:①中k1>0.k2>0.故k1•k2>0.故①符合题意;②中k1<0.k2>0.故k1•k2<0.故②不符合题意;③中k1>0.k2<0.故k1•k2<0.故③不符合题意;④中k1<0.k2<0.故k1•k2>0.故④符合题意;故选:B.9.(2021•自贡)已知蓄电池的电压为定值.使用蓄电池时.电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系.它的图象如图所示.下列说法正确的是()A.函数解析式为I=B.蓄电池的电压是18VC.当I≤10A时.R≥3.6ΩD.当R=6Ω时.I=4A【答案】C【解答】解:设I=.∵图象过(4.9).∴k=36.∴I=.∴蓄电池的电压是36V.∴A.B均错误;当I=10时.R=3.6.由图象知:当I≤10A时.R≥3.6Ω.∴C正确.符合题意;当R=6时.I=6.∴D错误.故选:C.10.(2020•河北)如图是8个台阶的示意图.每个台阶的高和宽分别是1和2.每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1.则k=;(2)若L过点T4.则它必定还过另一点T m.则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧.每侧各4个点.则k的整数值有个.【答案】(1)-16 (2)5 (3)7【解答】解:(1)∵每个台阶的高和宽分别是1和2.∴T1(﹣16.1).T2(﹣14.2).T3(﹣12.3).T4(﹣10.4).T5(﹣8.5).T6(﹣6.6).T7(﹣4.7).T8(﹣2.8).∵L过点T1.∴k=﹣16×1=﹣16.故答案为:﹣16;(2)∵L过点T4.∴k=﹣10×4=﹣40.∴反比例函数解析式为:y=﹣.当x=﹣8时.y=5.∴T5在反比例函数图象上.∴m=5.故答案为:5;(3)若曲线L过点T1(﹣16.1).T8(﹣2.8)时.k=﹣16.若曲线L过点T2(﹣14.2).T7(﹣4.7)时.k=﹣14×2=﹣28.若曲线L过点T3(﹣12.3).T6(﹣6.6)时.k=﹣12×3=﹣36.若曲线L过点T4(﹣10.4).T5(﹣8.5)时.k=﹣40.∵曲线L使得T1~T8这些点分布在它的两侧.每侧各4个点.∴﹣36<k<﹣28.∴整数k=﹣35.﹣34.﹣33.﹣32.﹣31.﹣30.﹣29共7个.故答案为:7.1.(2021•抚顺模拟)下列函数中.y是x的反比例函数的是()A.B.C.D.【答案】B【解答】解:A、是正比例函数.不是反比例函数.故此选项不合题意;B、是反比例函数.故此选项符合题意;C、不是反比例函数.故此选项不合题意;D、不是反比例函数.故此选项不合题意;故选:B.2.(2021•卧龙区二模)已知反比例函数.在下列结论中.不正确的是()A.图象必经过点(﹣1.﹣2)B.图象在第一、三象限C.若x<﹣1.则y<﹣2D.点A(x1.y1).B(x2.y2)图象上的两点.且x1<0<x2.则y1<y2【答案】C【解答】解:A.反比例函数.图象必经过点(﹣1.﹣2).原说法正确.故此选项不合题意;B.反比例函数.图象在第一、三象限.原说法正确.故此选项不合题意;C.若x<﹣1.则y>﹣2.原说法错误.故此选项符合题意;D.点A(x1.y1).B(x2.y2)图象上的两点.且x1<0<x2.则y1<y2.原说法正确.故此选项不合题意;故选:C.3.(2021•富阳区二模)已知反比例函数y=.当﹣2<x<﹣1.则下列结论正确的是()A.﹣3<y<0B.﹣2<y<﹣1C.﹣10<y<﹣5D.y>﹣10【答案】C【解答】解:∵k=10.且﹣2<x<﹣1.∴在第三象限内.y随x的增大而减小.当x=﹣2时.y=﹣5.当x=﹣1时.y=﹣10.∴﹣10<y<﹣5.故选:C.4.(2021•武陟县模拟)某气球内充满了一定质量的气体.当温度不变时.气球内气体的气压P(kpa)是气体体积V(m3)的反比例函数其图象如图所示.当气体体积为1m3时.气压为()kPa.A.150B.120C.96D.84【答案】C【解答】解:设P=.由题意知120=.所以k=96.故P=.当V=1m3时.P==96(kPa);故选:C.5.(2021•云岩区模拟)阿基米德说:“给我一个支点.我就能撬动整个地球”这句话精辟地阐明了一个重要的物理学知识﹣﹣杠杆原理.即“阻力×阻力臂=动力×动力臂”.若已知某一杠杆的阻力和阻力臂分别为1200N和0.5m.则这一杠杆的动力F和动力臂l之间的函数图象大致是()A.B.C.D.【答案】A【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头.已知阻力和阻力臂分别是1200N和0.5m.∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl.则F=.是反比例函数.A选项符合.故选:A.6.(2021•昆明模拟)如图.点P在双曲线第一象限的图象上.P A⊥x轴于点A.则△OP A的面积为()A.2B.3C.4D.6【答案】B【解答】解:∵P A⊥x轴于点A.∴S△AOP=|k|==3.故选:B.7.(2021•乐陵市一模)为预防新冠病毒.某学校每周末用药熏消毒法对教室进行消毒.已知药物释放过程中.教室内每立方米空气中含药量y(mg)与时间t(h)成正比例;药物释放完毕后.y与t成反比例.如图所示.根据图象信息.下列选项错误的是()A.药物释放过程需要小时B.药物释放过程中.y与t的函数表达式是y=tC.空气中含药量大于等于0.5mg/m3的时间为hD.若当空气中含药量降低到0.25mg/m3以下时对身体无害.那么从消毒开始.至少需要经过4.5小时学生才能进入教室【答案】D【解答】解:设正比例函数解析式是y=kt.反比例函数解析式是y=.把点(3.)代入反比例函数的解析式.得:=.解得:m=.当y=1时.代入上式得t=.把t=时.y=1代入正比例函数的解析式是y=kt.得:k=.∴正比例函数解析式是y=t.A.由图象知.y=1时.t=.即药物释放过程需要小时.故A不符合题意;B.药物释放过程中.y与t成正比例.函数表达式是y=t.故B不符合题意;C.把y=0.5mg/m3分别代入y=t和y=得.0.5=t1和0.5=.解得:t1=和t2=3.∴t2﹣t1=.∴空气中含药量大于等于0.5mg/m3的时间为h;故C不符合题意;<0.25.解得t>6.所以至少需要经过6小时后.学生才能进入教室.故D符合题意.故选:D.8.(2021•山西模拟)已知.A(﹣3.n).C(3n﹣6.2)是反比例函数y=(x<0)图象上的两点.则反比例函数的解析式为.【答案】y=﹣【解答】解:∵A(﹣3.n).C(3n﹣6.2)是反比例函数y=(x<0)图象上的两点.∴n=.2=.即m=﹣3n.m=2(3n﹣6).消去m得:﹣3n=2(3n﹣6).解得:n=.把n=代入得:m=﹣4.故答案为:y=﹣.9.(2021•雁塔区校级模拟)已知同一象限内的两点A(3.n).B(n﹣4.n+3)均在反比例函数y=的图象上.则该反比例函数关系式为.【答案】y=【解答】解:∵同一象限内的两点A(3.n).B(n﹣4.n+3)均在反比例函数y=的图象上.∴k=3n=(n﹣4)(n+3).解得n=6或n=﹣2.∵n=﹣2时.A(3.﹣2).B(﹣6.1).∴A、B不在同一象限.故n=﹣2舍去.∵k=3n=18.∴y=.故答案为y=.10.(2021•昭通模拟)若函数y=是关于x的反比例函数.则a满足的条件是.【答案】a≠﹣3【解答】解:由题可得.a+3≠0.解得a≠﹣3.故答案为:a≠﹣3.。
反比例函数的图像与性质:k的意义
11.2反比例函数的性质:“K”的意义教学目标:(一)知识技能:1.理解反比例函数“k”的意义,体会函数三种方式的互相转换;2.会根据“k”的意义在反比例函数的图像上作图;3.逐步提高从函数图像中国获取知识的能力。
(二)过程与方法通过反比例函数的性质与根据题目条件在反比例函数的图像上作图解决问题,培养学生的探究、归纳及概括的能力,在探究的过程中渗透数形结合的思想。
(三)情感态度与价值观1.积极参与探索活动,注意多和同伴交流看法和体会;2.在动手作图的过程中体会乐趣,培养勤于动手乐于探索的习惯。
教学重点、难点1.重点:会通过在反比例函数图像上作图,理解“k”的意义;2.难点:理解反比例函数的性质,并能灵活应用。
教法、学法:教法:在讲解过程中诱导学生自己分析解题;学法:自主探索与他人合作学习相结合。
教学过程:1.求”k”的值(1) 如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=k(x>0) 的图像经过顶点B,则k的值为xA.12 B.20 C.24 D.32(1)题 (2)题(2) 菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是8和6(AC BO >),反比例函数(0)k y x x=<的图像经过C ,则k 的值为 ; 设计意图:在上两堂课上主要是直接给出图像上的点的坐标去求k 的值,这里将难度提高,点的坐标没有直接给出,而是要学生根据已知条件去求出,才能求出k 的值,不仅涉及前面所学知识,而且还巩固了k 的求法。
2. “k ”决定的性质:(3)反比例函数y =的图象如图,给出以下结论:①常数k <1; ②在每一个象限内,y 随x 的增大而减小; ③若点A (﹣1,a )和A ′(1,b )都在该函数的图象上,则a +b =0;④若点B (﹣2,h )、C (,m )、D (3,n )在该函数的图象上,则h <m <n . 其中正确的结论是( )A .①②B . ②③C . ③④D .②④ (4) 若函数k y x=图像经过(2,2),则在下列说法中,错误的是 A .k=4 B. 当x>4时,x<1C.图像的两个分支分布在第一、三象限D.图像的两个分支关于原点成中心对称(5)已知点P (x 1,﹣2)、Q (x 2,2)、R (x 3,3)三点都在反比例函数y =的图象上,则下列关系正确的是( )A . x 1<x 3<x 2B . x <1x 2<x 3C . x 3<x 2<x 1D . x 2<x 3<x 1(6) 函数y =-x +1与函数y =-2x 在同一坐标系中的大致图像是( )(7) 如图,双曲线y =﹣的一个分支为( ) A .①B . ②C . ③D . ④设计意图:复习强化了k 的求法之后再来复习提升k 的性质,通过这几个题目更加强了学生对反比例函数k 的性质的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数中k 的意义
反比例函数x
k
y =
(k ≠0)的比例系数k 的意义,除同学们熟悉的“当k >0时,双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 的增大而减小;当k <0时,双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 的增大而增大”外,还有一个非常重
要的意义,即过反比例函数x
k
y =
(k ≠0)的图像上任意一点作x 轴、y 轴的垂线,与两坐标轴所围成矩形的面积都等于k ;过反比例函数x
k
y =(k ≠0)图像上任意一点作x 轴(或y 轴)
的垂线,且连结坐标原点,与坐标轴所围成三角形的面积都等于2
k .
探究1:若P (x ,y )为反比例函数x
k
y =
(k ≠0)图像上的任意一点如图1所示,过P 作PM ⊥x 轴于M ,作PN ⊥y 轴于N ,求矩形PMON 的面积.
分析:S 矩形PMON =xy x y PN PM =⋅=⋅
∵x
k
y =
, ∴ xy=k, ∴ S =k . 探究2:若Q (x ,y )为反比例函数x
k
y =(k ≠0)图像上的任意一点如图2所示,过Q 作QA
⊥x 轴于A (或作QB ⊥y 轴于B ),连结QO ,则所得三角形的面积为:S △QOA =2
k (或S △QOB =
2
k ).
(本题由同学们自己试着说明理由)
说明:当k >0时,所围成的矩形的面积为k ,三角形的面积为2
k
; 当k <0时,所围成的矩形的面积为-k ,三角形的面积为2
k
-.以上结论与点在反比例函数图像上的位置无关.
应用举例:
例1 如图3,在反比例函数x
y 6
-=(x <0)的图像上任取一点P ,过P 点分别作x 轴、
y 轴的垂线,垂足分别为M 、N ,那么四边形PMON 的面积为 .
解:S 四边形PMON =66=-=k . 例2 反比例函数x
k
y =
的图像如图4所示,点M 是该函数图像上一点,MN ⊥x 轴,垂足为N.如果S △MON =2,求这个反比例函数的解析式.
解:∵S △MON =
2
k =2, ∴k =4, ∴k=±4.
又∵双曲线在第二、第四象限内,∴k <0, ∴k=-4, ∴所求反比例函数的解析式为x
y 4-
=.。