一级水处理设计计算
水处理设计常用计算
水处理设计常用计算计计算等。
下面将分别介绍这些计算的具体方法和公式。
1.流量计算流量计算是水处理设计中最基础、最常用的计算之一、根据给定的污水处理量或饮用水需求量,可以通过以下公式计算出管道的设计截面尺寸和水泵的需求功率等参数。
1.1.管道截面积计算在水处理系统中,流量通常通过管道输送。
为了确保管道能够满足给定的流量要求,需要计算管道的截面积。
根据管道的水流速度和流量要求,可以使用以下公式计算管道的截面积:A=Q/V其中,A是管道的截面积,Q是流量,V是流速。
1.2.水泵功率计算当流量超过一定数值时,需要使用水泵来提供足够的压力和流量。
水泵的功率可以通过以下公式计算:P=(Q×ρ×H)/η其中,P是水泵的功率,Q是流量,ρ是水的密度,H是扬程,η是水泵的效率。
2.化学计量计算在水处理设计中,经常需要用到化学计量计算。
这种计算主要用于计算化学药剂的投加量,以满足水质标准的要求。
以下是一些常用的化学计量计算方法:2.1.化学药剂计量计算在给定的流量和目标浓度下,可以通过以下公式计算出化学药剂的投加量:D=Q×C/η其中,D是化学药剂的投加量,Q是流量,C是化学药剂的目标浓度,η是投加系统的投加率。
2.2.化学药剂的稀释计算有时需要将高浓度药剂稀释为目标浓度以满足投加要求。
稀释液体的计算可以使用以下公式:V2=(C1×V1)/C2其中,V1和C1分别是初始溶液的体积和浓度,V2和C2分别是目标溶液的体积和浓度。
3.沉淀池设计计算沉淀池是污水处理系统中用于去除悬浮颗粒的设备。
以下是沉淀池设计中常用的计算方法:3.1.沉降速度计算沉淀池通过引入沉降作用使悬浮颗粒沉淀到底部。
沉淀速度可以通过以下公式计算:Vd=(g×(ρp-ρw)×d^2)/(18×μ)其中,Vd是沉淀速度,g是重力加速度,ρp是颗粒的密度,ρw是水的密度,d是颗粒的直径,μ是水的黏度。
水处理计算公式范文
水处理计算公式范文水处理计算公式是用于计算水处理过程中的各种参数和指标的数学公式。
水处理是一系列的物理、化学或生物过程,旨在改善水的质量,使其适用于特定的用途,如饮用水、工业用水、农业用水等。
下面将介绍几个常用的水处理计算公式。
1.清洗水需求量(CWR)计算公式:CWR=[(Q×T)/C]×100其中,CWR为清洗水需求量(L),Q为每分钟进水流量(L/min),T 为清洗时间(min),C为清洗浓度(%)。
清洗水需求量是在水处理过程中,为了清洗设备而需要的水量。
通过计算清洗水需求量,可以合理规划清洗水的使用量。
2. 混凝剂(coagulant)投加量计算公式:C=(V×M)/Q其中,C为混凝剂投加量(mg/L),V为混凝剂体积(mL),M为混凝剂质量(mg),Q为水样体积(L)。
混凝剂投加量的计算公式是为了确定混凝剂的适当投加量,以达到最佳的混凝效果。
混凝剂通常用于去除水中的悬浮物、胶体等杂质。
3. 净水效率(water treatment efficiency)计算公式:E = [(Cin –Cout) / Cin] × 100其中,E为净水效率(%),Cin为进水浓度(mg/L),Cout为出水浓度(mg/L)。
净水效率是衡量水处理过程中去除污染物的能力的指标。
通过计算净水效率可以评估水处理过程的效果,并进行相应的调整和改进。
4.消毒剂剂量计算公式:D=(C×V)/Q其中,D为消毒剂剂量(mg/L),C为消毒剂浓度(mg/L),V为消毒剂体积(mL),Q为水样体积(L)。
消毒剂剂量的计算公式是为了确定适当的消毒剂投加量,以达到对水中的病原体进行有效灭活的目的。
5. 溶解氧浓度(dissolved oxygen concentration)计算公式:DO=(P–Pv)/H其中,DO为溶解氧浓度(mg/L),P为大气压力(mmHg),Pv为饱和水蒸气压力(mmHg),H为溶解氧浓度与溶解氧分压之间的线性关系。
水处理常用计算公式
水处理常用计算公式碳源计算公式01碳源选择通常反硝化可利用的碳源分为快速碳源(如甲醇、乙酸、乙酸钠等)、慢速碳源(如淀粉、蛋白质、葡萄糖等)和细胞物质。
不同的外加碳源对系统的反硝化影响不同,即使外加碳投加量相同,反硝化效果也不同。
与慢速碳源和细胞物质相比,甲醇、乙醇、乙酸、乙酸钠等快速碳源的反硝化速率最快,因此应用较多。
表 1 对比了四种快速碳源的性能。
02碳源投加量计算1)氮平衡进水总氮和出水总氮均包括各种形态的氮。
进水总氮主要是氨氮和有机氮,出水总氮主要是硝态氮和有机氮。
进水总氮进入到生物反应池,一部分通过反硝化作用排入大气,一部分通过同化作用进入活性污泥中,剩余的出水总氮需满足相关水质排放要求。
2)碳源投加量计算同化作用进入污泥中的氮按BO D5去除量的5%计,即0.05(S i-Se),其中Si、S e分别为进水和出水的BO D5浓度。
反硝化作用去除的氮与反硝化工艺缺氧池容大小和进水B O D5浓度有关。
反硝化设计参数的概念,是将其定义为反硝化的硝态氮浓度与进水BO D5浓度之比,表示为Kd e(k gN O3--N/kg BOD5)。
由此可算出反硝化去除的硝态氮[N O3--N]=K de Si。
从理论上讲,反硝化1k g 硝态氮消耗 2.86kg BO D5,即:K d e=1/2.86(k g N O3--N/k gB OD5)=0.35(kg N O3--N/kg BO D5)污水处理厂需消耗外加碳源对应氮量的计算公式为:N=Ne计-N sN e计=N i-Kd eS i-0.05(S i-Se)式中:N—需消耗外加碳源对应氮量,mg/L;N e 计—根据设计的污水水质和设计的工艺参数计算出能达到的出水总氮,mg/L;N s—二沉池出水总氮排放标准,mg/L;K d e—0.35,kgN O3--N/k gB OD5;S i—进水B OD5浓度,mg/L;S e—出水B OD5浓度,mg/L;N e计需通过建立氮平衡方程计算,生化反应系统的氮平衡见图1。
水处理设计计算手册(超滤反渗透)完整版
水处理技术手册(内部资料,务需外传)编辑:审核:*****水务有限公司贰零二一年一月目录一.常用管道的允许流速 (3)二.流速、流量与管道直径的关系 (3)三.原水箱设计规则 (3)四.管道与流量的关系参考数据表 (4)五.管道内外径的关系 (4)六.原水泵设计规则 (4)七.絮凝剂、助凝剂加药设计规则(可参照exsell表格) (5)八.机械过滤器设计规则 (5)九.活性炭过滤器设计参数 (6)十.反洗水泵设计规则 (7)十一.罗茨鼓风机的选择 (7)十二.5um精密过滤器的参考数据 (7)十三.阻垢加药的设计 (8)十四.反渗透系统的设计 (8)十五.反渗透清洗系统的选择 (8)十六.中间水箱的有效容量设计规则 (9)十七.鼓风填料式除碳器的设计 (9)十八.混床的运行设计及再生工艺过程技术数据 (11)十九.混床再生周期及耗酸碱量的计算 (12)二十.各类交换床常用运行流速 (13)二十一.树脂再生周期及耗盐量的计算 (14)二十二.过滤器滤料填充计算公式及参考数据 (14)二十三.无油空压机的选择 (17)二十四.换热器的设计原理 (17)二十五.超滤系统 (17)二十六.EDI装置 (18)一.常用管道的允许流速二.流速、流量与管道直径的关系Q = π×(D÷2)2 ×V×3600Q-------------------流量(单位:m3/h)D-------------------管道直径(单位:m)V-------------------水流速(单位:m/s)3600---------------单位换算系数(单位:s/h)三.原水箱设计规则1.预处理采用全自动表头出力为1吨及1吨以下系统可按预处理每小时处理量的80%~100%;出力为1吨以上系统可按预处理每小时处理量的50%~80%;2.预处理不采用全自动表头,且反冲从原水箱抽水;原水箱可按照预处理每小时处理量1~2倍选型;3.预处理不采用全自动表头,且反冲不从原水箱抽水;原水箱可按照预处理每小时处理量的50%~100%;4.对于大型设备,修筑原水池时,原水池的容量一般按原水2个小时处理量来选择。
水处理计算方法
1. 工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。
流量=管截面积X流速=0.002827X管径^2X流速(立方米/小时)^2:平方。
管径单位:mm管径=sqrt(353.68X流量/流速)sqrt:开平方饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。
如果需要精确计算就要先假定流速,再根据水的粘度、密度及管径先计算出雷诺准数,再由雷诺准数计算出沿程阻力系数,并将管路中的管件(如三通、弯头、阀门、变径等)都查表查出等效管长度,最后由沿程阻力系数与管路总长(包括等效管长度)计算出总管路压力损失,并根据伯努利计算出实际流速,再次用实际流速按以上过程计算,直至两者接近(叠代试算法)。
因此实际中很少友人这么算,基本上都是根据压差的大小选不同的流速,按最前面的方法计算。
2. 管道的水力计算包括长管水力计算和短管水力计算。
区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。
(水头损失可以理解为固体相对运动的摩擦力)以常用的长管自由出流为例,则计算公式为H=(v^2*L)/(C^2*R),其中H为水头,可以由压力换算,L是管的长度,v是管道出流的流速,R是水力半径R=管道断面面积/内壁周长=r/2,C是谢才系数C=R^(1/6)/n,n是糙率,其大小视管壁光洁程度,光滑管至污秽管在0.011至0.014之间取。
呵呵,计算这个比较麻烦,短管计算更麻烦,公式不好打。
总之,只知道压力和管径,无法算得流速的,因为管道起始端压力一定,管道的流速和管长和糙率成反比。
3. 我公司的一个车间内自来水量不够,现需增加。
开车时用水量在60个立方以上,但现在肯定达不到不知道是增加管径好,还是加个增压泵好?我的流体力学书丢了,现在没法算出60个立方,压力0.1MPa(表压)时,选用多少管径比较节能?主管道大概有55米,每根次管道是3米到30米不等。
请高手帮我算下,或者给出公式。
水处理相关工艺计算公式
水处理相关工艺计算公式水处理是指通过一系列工艺和设备对水进行处理和净化,使之达到特定的品质要求,以适用于各种不同的用途。
对于水处理工艺的计算公式,主要涉及到以下几个方面:流量计算、水质计算、反应速率计算和设备选型等。
1.流量计算:-平均流量计算:平均流量(Q)是指一定时间内通过给定截面的液体体积与时间的比值。
计算公式为:Q=V/t,其中Q为平均流量,V为通过给定截面的液体体积,t为经过的时间。
-流速计算:流速(v)是指液体通过单位截面的速度。
计算公式为:v=Q/A,其中v为流速,Q为流量,A为给定截面的面积。
2.水质计算:-溶解氧计算:溶解氧(DO)是指在一定温度和压力下水中溶解的氧气的浓度。
溶解氧的计算公式为:DO=(C/P)*100,其中DO为溶解氧的浓度,C为溶解氧的含量,P为水的总压力。
-悬浮物浓度计算:悬浮物是指在水中悬浮的固体颗粒。
悬浮物浓度的计算公式为:C=(m/V)*100,其中C为悬浮物的浓度,m为悬浮物的质量,V为水的体积。
3.反应速率计算:-反应速率计算:反应速率是指单位时间内反应物消耗或生成的量。
反应速率的计算公式为:r=ΔC/Δt,其中r为反应速率,ΔC为反应物消耗或生成的量的变化量,Δt为时间的变化量。
-反应速率常数计算:反应速率常数是指在给定条件下反应速率与反应物浓度的关系。
反应速率常数的计算公式为:k=r/C,其中k为反应速率常数,r为反应速率,C为反应物的浓度。
4.设备选型:-净水设备选型:净水设备的选型需要考虑水源的特性、处理效果要求、处理量等因素。
常用的净水设备包括过滤器、反渗透膜、离子交换器等。
选型公式一般采用经验公式或计算公式,如根据水质特点和处理要求来确定所需的设备型号和数量。
-污水处理设备选型:污水处理设备的选型需要考虑污水特性、处理工艺要求、处理量等因素。
常用的污水处理设备包括曝气池、沉淀池、MBR等。
选型公式一般采用设计原则和经验公式,例如根据污水COD浓度和处理效果来确定曝气池的尺寸和风量。
水处理设备常用计算公式
水处理设备常用计算公式1.流量计算公式:流量=速度×面积在水处理设备中,常常需要计算流量以确定设备的处理能力。
流量的计算公式可以通过测量流体通过一定面积的时间来确定。
其中,速度可以通过测量流体的速度来计算,而面积可以通过设备的尺寸来确定。
2.底部流速计算公式:底部流速=流量/(底部横截面积×空隙率)底部流速是指底部槽体过滤层中流体通过的速度。
在水处理设备中,底部流速的计算可以用来判断底部过滤层的流速是否过高或过低,进而调整设备的运行参数。
3.清洗水量计算公式:清洗水量=过滤面积×清洗水流量×清洗水时间在水处理设备中,为了保持设备的正常运行,清洗是一个必要的步骤。
清洗水量的计算可以帮助确定清洗所需的水量,并进一步优化清洗过程。
4.含氧量计算公式:含氧量=(溶解的氧气质量/溶液的质量)×100%含氧量是指水中溶解氧气的含量。
在水处理设备设计和操作过程中,确定水中的氧气含量对于设备的正常运行至关重要。
5.总固体含量计算公式:总固体含量=(溶解固体的质量/溶液的质量)×100%总固体含量是指水中固体颗粒物的总含量。
在水处理设备中,固体颗粒物的含量对设备的正常运行和处理效果有重要影响。
6.压力损失计算公式:压力损失=摩阻力×每单位长度的管道长度压力损失是指水流通过管道时由于摩擦而造成的压力损失。
在水处理设备设计和操作过程中,确定压力损失对于设备的正常运行和节能优化非常重要。
以上是一些水处理设备常用的计算公式,这些公式可以帮助工程师和操作人员进行操作和设计,提高水处理设备的处理能力和效果。
水处理设备常用计算公式
水处理设备常用计算公式1.流量计算公式流量(Q)是指单位时间内通过水处理设备的液体体积。
常用的流量计算公式为:Q=A×V其中,Q表示流量,A表示截面面积,V表示流速。
在水处理设备中,根据需要处理的液体流量和流速,可以通过该公式计算出所需的截面面积。
2.时间计算公式时间(t)是指液体在水处理设备中停留的时间。
常用的时间计算公式为:t=V/Q其中,t表示时间,V表示液体的体积,Q表示流量。
在水处理设备中,根据所需的停留时间和流量,可以通过该公式计算出所需的液体体积。
3.搅拌功率计算公式搅拌功率是指搅拌设备(如搅拌器、搅拌罐等)所需的功率。
常用的搅拌功率计算公式为:P=ρ×N^3×D^5其中,P表示搅拌功率,ρ表示液体的密度,N表示搅拌器的转速,D表示搅拌器的直径。
在水处理设备中,根据所需的搅拌功率、液体密度和搅拌器参数,可以通过该公式计算出所需的搅拌器转速和直径。
4.滤液含固率计算公式滤液含固率是指滤液中固体的质量占比。
常用的滤液含固率计算公式为:含固率=(W-W0)/V其中,含固率表示滤液中固体的质量占比,W表示滤液的总质量,W0表示滤液中固体的质量,V表示滤液的体积。
在水处理设备中,通过测量滤液的总质量、固体的质量和体积,可以通过该公式计算出滤液的含固率。
5.化学药剂计量计算公式化学药剂的计量是指根据所需的处理效果和水质参数,计算出所需添加的化学药剂的量。
常用的化学药剂计量计算公式为:药剂量=Q×C/D其中,药剂量表示所需添加的化学药剂的量,Q表示流量,C表示药剂的浓度,D表示药剂的投加量。
在水处理设备中,根据所需的处理效果、水质参数和药剂的浓度,可以通过该公式计算出所需添加的化学药剂的量。
这些是水处理设备中常用的计算公式,通过这些公式可以有效地进行水处理设备的设计和运行。
但需要注意的是,由于水处理设备的复杂性和实际情况的差异,对于不同的处理工艺和设备类型,可能需要使用特定的计算公式进行计算。
水处理计算公式范文
水处理计算公式范文水处理是一项重要的工艺过程,用于去除水中的杂质和污染物,使其符合特定的水质要求。
水处理计算公式是描述各个步骤中的关键参数和计算方法的方程式。
本文将从常见的水处理过程入手,介绍一些常用的水处理计算公式。
1.硬度计算公式硬度是水中可溶解的钙和镁离子的浓度。
硬度的计算公式为:硬度(mg/L)= M(Ca2+)× 2.497 + M(Mg2+)× 4.118其中,M(Ca2+)和M(Mg2+)分别表示钙离子和镁离子的浓度(mg/L)。
2.消毒剂投加量计算公式在水处理中,常用的消毒剂包括氯化物、臭氧、二氧化氯等。
消毒剂投加量的计算公式为:投加量(mg/L)= 工作浓度(mg/L)× 流量(L/s)× 时间(s)其中,工作浓度是消毒剂的稀释浓度,流量是水处理系统的进水流量,时间是消毒剂的接触时间。
3.胶体悬浮物计算公式胶体悬浮物是指在水中悬浮的微小颗粒,如泥土颗粒、有机物颗粒等。
胶体悬浮物的计算公式为:悬浮物浓度(mg/L)= (視傳導度1 - 視傳導度2)× 系数其中,視傳導度1和視傳導度2分别表示采集水样前后的水的电导率,系数是由实验测定得到的。
4.沉淀污泥计算公式在沉淀池中,通过物理沉降将悬浮物分离出来,形成污泥。
沉淀污泥的计算公式为:污泥量(kg)= 流量(m³/s)× 悬浮物浓度(mg/L)× 时间(s)× 污泥的浓度其中,流量表示进入沉淀池的水流速度,悬浮物浓度表示进入沉淀池的水中的悬浮物浓度,时间表示水在沉淀池停留的时间,污泥的浓度表示沉淀池中污泥的浓度。
5.滤池设计公式滤池是水处理中常用的一种固液分离装置。
滤池的设计公式包括滤料的体积计算公式和空气流量的计算公式。
滤料的体积(m³)=流量(m³/s)×滤速(m/h)×时间(h)其中,流量表示进入滤池的水流速度,滤速表示水通过单位滤料面积的流速,时间表示水在滤池中停留的时间。
水处理计算公式DOC
水处理计算公式DOC1. 余氯消耗公式(Chlorine Residual Calculation Formula)余氯消耗指的是水中余留的自由余氯(HClO和ClO-)在与有机和无机物质反应后所减少的浓度。
余氯消耗量与水中的污染物浓度有关,可以用以下公式计算:余氯消耗量(mg/L)= 初始余氯浓度(mg/L)- 最终余氯浓度(mg/L)2. 氧耗公式(Oxygen Demand Calculation Formula)氧耗是指水中有机物质经生物或化学氧化所消耗的氧气量。
氧耗量是评估水体有机负荷的重要指标,可以用以下公式计算:氧耗量(mg/L)= 初始溶解氧浓度(mg/L)- 最终溶解氧浓度(mg/L)3. 硬度计算公式(Hardness Calculation Formula)硬度是指水中钙和镁的组合,它可以对水的使用和处理产生重要的影响。
硬度通常以钙碳酸盐的当量浓度(以CaCO3计)表示。
硬度可以用以下公式计算:硬度(mg/L)= 钙离子浓度(mg/L)+ 镁离子浓度(mg/L)4. 混凝剂投加量计算公式(Coagulant Dosage Calculation Formula)混凝剂用于水处理过程中的混凝和絮凝作用,以去除水中悬浮颗粒和胶体物质。
混凝剂投加量的计算可以根据水体中的浊度(或悬浮物质浓度)和混凝剂的投加剂量进行估算,常用的公式如下:混凝剂投加量(mg/L)= 水体中的浊度(Turbidity)(NTU)× 混凝剂的投加剂量(mg/L/NTU)5. 细菌剂投加量计算公式(Disinfectant Dosage Calculation Formula)细菌剂是用于水处理过程中杀灭水中细菌和病原微生物的药剂。
细菌剂投加量(mg/L)= (所需聚灵菌(Desired Concentration)- 水体中初始细菌浓度(mg/L))/ 细菌剂的杀菌效果(Disinfection Efficiency)6. 氨氮转换公式(Ammonia Nitrogen Conversion Formula)氨氮是水中一种常见的水质参数,它在水处理中与其他污染物如氯化物和氯酸盐反应后会产生氯氨酮类物质,对水质的安全和卫生产生影响。
纯水处理设备设计常用计算公式
纯水处理设备设计常用计算公式纯水处理设备设计的基础单位及数据直径(D) | 填高(H) | 流速(S) | 比重(ρ)盐酸(F2) | 体积(V) | 重量(G) | 出水量(Q)原水硬度(C) | 原水含盐量(Y) | 再生周期(T) 再生剂耗量[工业盐(F1) | 氢氧化钠(F3) ]机械过滤器一般流速S=8m/h活性炭过滤器一般流速S=8-10m/h钠床、阳床、阴床一般流速S=15-20m/h混床一般流速S=30-40m/h石英砂比重ρ=1800Kg/m3活性炭比重ρ=450Kg/m3阳树脂比重ρ=820Kg/m3(品牌不同会有差异)阴树脂比重ρ=700Kg/m3(品牌不同会有差异)阳树脂交换容量800mmol/m3阴树脂交换容量300mmol/m3纯水处理设备设计常用计算公式及方法1、过滤器滤料体积V=0.785×D2×H滤料重量G=V×ρ出水量Q=0.785×D2×S2、钠床:(阳树脂)滤料体积V=0.785×D2×H滤料重量G=V×ρ出水量Q=0.785×D2×S再生周期T=V×800×50÷C÷Q再生剂耗量-工业盐F1=V×800×1.8×0.0583、阳床:(阳树脂)滤料体积V=0.785×D2×H滤料重量G=V×ρ出水量Q=0.785×D2×S再生周期T=V×800×58.5÷Y÷Q再生剂耗量-盐酸F2=V×800×3×0.0365÷0.354、阴床:(阴树脂)滤料体积V=0.785×D2×H滤料重量G=V×ρ出水量Q=0.785×D2×S再生周期T=V×300×58.5÷Y÷Q再生剂耗量-氢氧化钠F3=V×300×4×0.045、混床阳、阴树脂比例为1:2;筒体直径<500mm填料高度为1350;筒体直径>500 mm填料高度为1800。
水处理常用计算公式总结
水处理常用计算公式总结水处理是指将各种污染物从水中去除,以使水达到指定的水质要求的工艺过程。
在水处理中,常常需要进行各种计算,以确定所需的处理参数和设备尺寸。
下面是水处理中常用的计算公式总结:1.流量计算公式流量是指单位时间内通过管道、泵等设备的水量。
常用的流量计算公式如下:Q=A×V其中,Q表示流量(单位:立方米/秒),A表示管道或泵的截面积(单位:平方米),V表示水的速度(单位:米/秒)。
2.总悬浮物(TSS)计算公式总悬浮物是指水中的悬浮物质的总量。
常用的总悬浮物计算公式如下:TSS=V×C其中,TSS表示总悬浮物浓度(单位:毫克/升),V表示水的体积(单位:升),C表示总悬浮物的质量浓度(单位:毫克/升)。
3.溶解氧(DO)与气体平衡计算公式溶解氧是指水中溶解在其中的氧气的量,常用的溶解氧与气体平衡计算公式如下:DO=C×S其中,DO表示溶解氧浓度(单位:毫克/升),C表示水的溶解氧的平衡浓度(单位:毫克/升),S表示气体平衡系数。
4.化学需氧量(COD)计算公式化学需氧量是指水中有机物质被氧化到无机化合物所需的总量氧化作用。
常用的化学需氧量计算公式如下:COD=V×C其中,COD表示化学需氧量(单位:毫克/升),V表示水的体积(单位:升),C表示化学需氧量浓度(单位:毫克/升)。
5.悬浮固体(SS)计算公式悬浮固体是指水中悬浮物质的总固体量。
常用的悬浮固体计算公式如下:SS=V×C其中,SS表示悬浮固体浓度(单位:毫克/升),V表示水的体积(单位:升),C表示悬浮固体的质量浓度(单位:毫克/升)。
6.硬度计算公式硬度是指水中含有的碳酸钙和镁盐的总量。
常用的硬度计算公式如下:硬度=[Ca2+]×2.5+[Mg2+]×4.1其中,硬度表示水的硬度(单位:毫克/升),[Ca2+]表示钙离子浓度(单位:当量/升),[Mg2+]表示镁离子浓度(单位:当量/升)。
水处理常用计算公式
水处理常用计算公式水处理过程中常用的计算公式包括:流量计算、浓度计算、反应速率计算、污泥处理计算等。
下面将针对这些方面详细介绍常用的计算公式。
一、流量计算公式:1.流量计算公式:流量=速度×面积。
即流量是通过水体横截面的面积和水流速度的乘积。
2.流速计算公式:流速=流量/面积。
反之,可以通过已知的流量和横截面的面积计算流速。
3.时间计算公式:时间=体积/流量。
根据流量和体积的关系,可以计算出所需时间。
二、浓度计算公式:1.溶液浓度计算公式:浓度=溶解物质质量/溶液体积。
根据所需的质量和体积,可以计算出溶液的浓度。
2.平均浓度计算公式:平均浓度=(各组分浓度之和)/组分数量。
当有多个组分的浓度时,可以计算出它们的平均浓度。
3.质量百分比计算公式:质量百分比=(组分质量/总质量)×100%。
三、反应速率计算公式:1.平均反应速率计算公式:平均反应速率=(终态反应物浓度-初态反应物浓度)/时间。
根据反应物浓度的变化和反应所需的时间,可以计算出平均反应速率。
2. 瞬时反应速率计算公式:瞬时反应速率=d[产物]/dt。
即瞬时反应速率是产物浓度对时间的导数。
四、污泥处理计算公式:1.污泥产量计算公式:污泥产量=沉淀物质量/给水流量。
根据沉淀物质量和给水流量的关系,可以计算出污泥的产量。
2.污泥质量计算公式:污泥质量=干固物质量/干固物质质量分数。
当已知干固物质量和干固物质的质量分数时,可以计算出污泥的质量。
3.污泥浓度计算公式:污泥浓度=干固物质量/污泥体积。
通过干固物质量和污泥体积的关系,可以计算出污泥的浓度。
以上是水处理常用的计算公式,涵盖了流量计算、浓度计算、反应速率计算和污泥处理计算等方面。
这些公式在水处理过程中起到重要的作用,帮助人们预测和控制水处理过程的各种参数和变量。
在实践中,运用这些公式可以有效地指导水处理的工作,提高水的质量和利用效率。
水污染控制工程水处理计算公式大全
水污染控制工程水处理计算公式大全生物法处理基本公式一反应速度计算: 公式:P z X y S •+•→ ⎪⎭⎫⎝⎛-=dt dS y dt dX dSdXy =式中:S ——底物;X ——合成细胞; P ——最终产物;y ——又称产率系数,mg (生物量)/mg (降解的底物); S ——底物浓度,同ρS ;X ——合成细胞浓度或微生物浓度,同ρX ; 反应级数:n kS dtdSv ==k S n v lg lg lg +=式中:k ——反应速度常数,随温度而异; n ——反应级数; 零级反应:k v =,k dtdS=,kt S S -=0 一级反应:kS v =,kS dtdS=, t kS S 3.2lg lg 0-=零级反应:2kS v =,2kS dtdS=, kt S S +=011 式中:v ——反应速度; t ——反应时间;k ——反应速度常数,随温度而异;米氏方程(表示酶促反应速度与底物浓度的关系): 公式:SK Sv v m +=maxmaxmax 111v S v K v m +⋅= 式中:v ——酶反应速度,例如dtdXv X =; v max ——最大酶反应速度; ρs ——底物浓度; K m ——米氏常数;莫诺特方程(表示微生物比增长速度与底物浓度的关系): 公式:SK Ss +=maxμμqv v dS dX y S X μ===式中:μ——微生物比增长速度,Xv X=μ; μmax ——μ的最大值,即底物浓度很大,不影响微生物增长速度时的μ值; S ——底物浓度; K s ——饱和常数;生物处理基本公式二劳伦斯迈卡蒂公式(有机物比降解速度与底物浓度的关系): 公式:q Y ⋅=μ max max q Y ⋅=μS K S q q s +=max又有dtX dSv q S ⋅-==X①ρs ≯K S 时,max q q = 1max K X q X dtdS⋅=⋅=- ②K S ≯ρs 时,SK S q q max= 2max K S X K Sq X dt dS S⋅⋅=⋅=- 式中:q ——底物比降解速度; K1——反应常数; K2——反应常数;劳伦斯迈卡蒂第一方程: 公式:由:SK Sq dt X dS q s +=⋅-=max 得到:SK S X q dt dS s +⋅=-max 劳伦斯迈卡蒂第二方程:公式:X K dt dS Y dt dX d ug⋅-⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛d ug K Xdt dS Y X dt dX -⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛ d K q Y -⋅='μ cg V X V dt dX θμ1=⋅⋅⎪⎭⎫ ⎝⎛='故得到:d cK q Y -⋅=θ1式中:gdt dX ⎪⎭⎫ ⎝⎛——微生物净增长速度; uS dt d ⎪⎭⎫ ⎝⎛ρ——底物利用(或降解)速度; Y ——产率系数,同y ;K d ——内源呼吸(或衰减)系数; ρX ——反应器中微生物浓度;也可简化为: 公式:u obs g dt dS Y dt dX ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛q Y obs ⋅='μ式中:Y obs ——实际工程中,产率系数Y 常以实际测得的观测产率系数Y obs 替代活性污泥法基本计算公式项目公式说明处理率()%100%10000⨯=⨯-=ere S S S S S η S 0——进水BOD 5浓度,mg/LS e ——出水BOD 5浓度,mg/LS r ——进出水BOD 5浓度差,mg/L 污泥负荷()V X S S Q V X S Q L e S ⋅-⋅=⋅⋅=00 ()VX S S Q V X S Q L V e V S ⋅-⋅=⋅⋅='00Q ——设计流量,m 3/dL S ——污泥负荷,kg (BOD 5)/[kg(MLSS)•d] L S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d]V ——曝气池容积,m 3X ——曝气池污泥浓度(MLSS),mg/LX V ——挥发性曝气池污泥浓度(MLVSS),mg/L容积负荷()'⋅=-⋅=⋅=S V e V L X VS S Q V S Q L 00L V ——容积负荷,g (BOD 5)/(m 3•d ) 注:污泥负荷和容积负荷从定义来说用S 0正确,但规范中用去除量,考试中用去除量来计算 污泥容积指数()610%⨯=XSV SVIX ——曝气池污泥浓度(MLSS),mg/L SV ——污泥沉降比,mL/L (如28%,即代0.28) 混合液污泥浓度r SVI X r ⋅=610r X RRX +=1 SVI ——污泥容积指数,mL/g ,取值范围约100左右 r ——二沉池中污泥综合系数,一般为1.2左右污泥浓度()R SVI f r R X V +⋅⋅⋅⨯=1106()R SVI r R f X X V +⋅⋅⨯==1106X ——曝气池污泥浓度(MLSS),mg/LX V ——挥发性曝气池污泥浓度(MLVSS),mg/L R ——污泥回流比 f ——X V /X ,(MLVSS/MLSS )挥发性污泥浓度/污泥浓度r ——二沉池中污泥综合系数,一般为1.2左右 曝气池容积()se s L X S S Q L X S Q V ⋅-⋅=⋅⋅=00()'⋅-⋅='⋅⋅=sV e sV L X S S Q L X S Q V 00 ()Ve V L S S Q L S Q V -⋅=⋅=00 ()()C d V e C K X S S Q Y V θθ⋅+⋅-⋅⋅⋅=10()XX Q Q X Q V ew r w C ⋅-+⋅⋅=θθC ——污泥龄即污泥停留时间,dY ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1X ——曝气池污泥浓度(MLSS),mg/L X r ——剩余污泥/回流污泥浓度,mg/L X e ——二沉池出水污泥浓度,mg/L Q ——设计流量,m 3/dQ w ——每日排出污泥量,m 3/dX V ——挥发性曝气池污泥浓度(MLVSS),mg/L L S ——污泥负荷,kg (BOD 5)/[kg(MLSS)•d] L S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d] L V ——容积负荷,g (BOD 5)/(m 3•d )水力停留时间QV =θ()QR Vs ⋅+=1θθ——水力停留时间(名义),d θS ——水力停留时间(实际),d污泥龄XVX c ∆⋅=θ d cK Yq -=θ1θC ——污泥龄即污泥停留时间,dΔX ——每日排出污泥量即污泥产量,g/d Y ——污泥理论产率,kg(MLVSS)/kg(BOD 5) q ——有机物比降解速率,d -1,有些手册上q=L S ′(即kgBOD 5/kgMLVSS ·d ) 稳态条件下的完全混合式曝气池e S K q ⋅=2 K 2——动力学参数(参见上面公式,Se 单位为mg/L )K d ——污泥内源呼吸率,d -1污泥产量CXV X θ⋅=∆V d r V X V K S Q Y X ⋅⋅-⋅⋅=∆ΔX ——每日排出污泥量即污泥产量(MLSS ),gMLSS/dΔX V ——每日排出挥发性污泥量即挥发性污泥产量(MLVSS ),gMLVSS/dY obs ——实际工程中,产率系数Y 常以实际测得的观测产率系数Y obs 替代f ——X V /X ,挥发性污泥浓度/污泥浓度Cd rr obs K S Q Y S Q Y θ⋅+⋅⋅=⋅⋅=1Cd obs K YY θ⋅+=1f X X V∆=∆ rW X XQ ∆=()e w r w X Q Q X Q X ⋅-+⋅=∆'⋅=⋅=Sdd L K Y q K Y x d S K L Y y -'⋅=Q w ——每日排出污泥量,m 3/d ,即剩余污泥湿量 X r ——剩余污泥/回流污泥浓度,mg/L X e ——二沉池出水污泥浓度,mg/L Y ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1θC ——污泥龄即污泥停留时间,d x ——去除每kgBOD 5产泥量,(kgVSS/kgBOD 5·d ) y ——每kg 活性污泥日产泥量,(kgVSS/kgVSS ·d )负荷法①设定污泥负荷L s ,取值SVI 、R 、r 、f②设定曝气池数量n 、池深H ③设定曝气池宽度B④取值a ′、b ′,及根据总系数K Z ⑤取值α、β、ρ、C st 、C s20、C ⑥设定E A⑦设定二沉池表面负荷q 此表参见三废手册例题P527→求得污泥浓度X/X V (注意统一用MLSS 或者MLVSS )→求得曝气池体积→求得单座曝气池体积,及表面积→求得单座曝气池长度,并验算宽深比、长宽比 →曝气时间→求得需氧量,及最大时需氧量 →求得标态需氧量 →求得标态空气量 →求得二沉池表面积 →得出二沉池直径需氧量计算公式除碳需氧量V r VX b QS a O '+'=⨯21000()V e X COD COD b Q O ∆--⋅⋅=⨯42.1100002 V r X S Q O ∆-⋅=⨯42.147.110002b L a O S a '+'⋅'=∆O 2——需氧量,kg/da ′——氧化每kgBOD 5所需氧量,取值:生活污水0.42~0.53,有机工业废水0.35~0.75b ′——污泥自身氧化需氧率,d -1,取值:生活污水0.09~0.11,有机工业废水0.06~0.341.47——碳的氧当量,当含碳物质以BOD 5计时,取1.47,符号为aS r ——进出水BOD 5浓度差,mg/L''+'=∆Sb L b a O ΔX v ——每日排出挥发性活性污泥量(微生物),g (MLVSS )/d1.42(c )——细胞的氧当量,(gO 2/gMLVSS ),取1.42,符号为cΔO a ——每kg 污泥日需氧量,kgO 2/kgMLVSS ·d ΔO b ——去除每kgBOD 5需氧量,kgO 2/kgBOD 5·d L S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d]除碳和硝化反硝化需氧量()[]100012.057.442.147.12V ke k V r X N N Q X S Q O ∆--⋅+∆-⋅=()[]100012.057.442.147.12V ke k V r X N N Q X S Q O ∆--⋅+∆-⋅=()[]100012.086.2V oe ke t X N N N Q ∆---⋅- 4.57——氧化每g 氨氮所需氧量,(gO 2/gN ),取4.57,符号b2.86——反硝化系数N k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮(TKN ),mg/L N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/L 0.12ΔX v ——排出生物处理系统的微生物含氮量,g/d供氧量计算公式曝气池供氧量计算供氧量时单位折算成kg/h ,注意除24 O 2——计算需氧量,kgO 2/h O S ——标态需氧量,kgO 2/h基本原理()C C K dtdCS La -⋅= dC/dt ——单位体积清水中氧的转移速率,kgO 2/m 3•hK La ——清水中氧的总转移系数,1/h C S ——清水中饱和氧浓度(对应某一温度),kgO 2/m 3 C ——清水中氧的实际浓度,kgO 2/m 3()C C V K OTR S La -⋅⋅=OTR ——体积为V 的液体中氧的转移速率,kgO 2/h V ——曝气系统液体体积,m 3温度因素()()()2020-⋅=T La T La K K θT ——设计的工艺温度,20为标准状态的温度,℃ K La (T )——温度为T ℃时氧的总转移系数,1/h K La (20)——温度为20℃时氧的总转移系数,1/h θ——温度系数,取值范围1.008~1.047,一般取值为1.024污水因素La LaK K '=α α——氧转移折算系数,其值小于1取值范围0.2~1.0 K La ——清水中氧的总转移系数,1/h K La ′——污水中氧的总转移系数,1/h其他组分对饱和溶解度的影SS C C '=β β——氧溶解度折算系数,其值小于1取值范围0.8~1.0C S ——清水中氧的溶解度,kgO 2/m 3响C S ′——污水中氧的溶解度,kgO 2/m 3 压力的影响 SP P =ρ ρ——压力修正系数P S ——标准大气压,1.013×105Pa P ——当地大气压,Pa标态需氧量()()V C K R O S La S ⋅⋅==20200()()()()V C C K R O T S T La ⋅-⋅⋅==-βρθα20202()()()()FC C C O O T T S S S ⋅⋅-⋅⋅=-20202θβρα鼓风曝气和表面曝气不同,应按给排水手册计算O S /R 0——标态下转移到曝气池中的总氧量,kgO 2/h O 2/R ——实际状态下转移到曝气池中的总氧量,kgO 2/hF ——安全系数,不要求时取1 θ——温度系数,取值范围1.008~1.047,一般取值为1.024C ——T ℃时工艺系统中污水的溶解氧浓度,mg/L ,多数情况为2C S (T )——T ℃时曝气池混合液的平均饱和溶解氧浓度,mg/L ,如未告知取值,则查三废P501C S (20)——20℃时清水中氧的溶解度,9.17mg/L 空气量ASA S S E O E O G ⨯=⨯⨯=28.033.121.0G S ——供气量,m 3/h ,注意单位换算 O S ——供气量,kg/h ,注意单位换算 0.21——氧在空气中的百分数 1.33——20℃时氧的密度,kg/m 3 E A ——曝气器的氧利用率二沉池计算公式表面负荷法vQ q Q A 6.32424maxmax ⨯=⨯=t q AtQ H ⋅=⋅=max Q K K Q K Q d h z ⋅⋅=⋅=maxA ——二沉池面积,m 2Q max ——废水最大时流量,m 3/d q ——水力表面负荷,m 3/(m 2·h ) H ——澄清区水深,/mt ——二沉池水力停留时间,一般为1.5~2.5h Q ——设计流量,m 3/d K z ——总变化系数 K h ——时变化系数 K d ——日变化系数固体通量法 tG XQ A ⨯⋅=1000maxX ——曝气池污泥浓度(MLSS),mg/L G t ——固体表面负荷值,kg/m 2·d Q max ——废水最大时流量,m 3/d回流污泥浓度V r X fR RX R R X ⋅+=+=11 r SVIX r ⋅=-610()610%⨯=XSV SVI SVI ——污泥容积指数,mL/g ,取值范围约100左右X r ——剩余污泥/回流污泥浓度,mg/L X ——曝气池污泥浓度(MLSS),mg/L f ——X V /X ,挥发性污泥浓度/污泥浓度X V ——挥发性曝气池污泥浓度(MLVSS),mg/L SV ——污泥沉降比,mL/L (如28%,即代0.28) r ——二沉池中污泥综合系数,一般为1.2左右污泥斗容积计算()()()()RRQRXXXQRVrS2124142414+⨯⋅⋅+⨯=+⨯⋅⋅+⨯=此公式规定泥斗的储泥时间为2hX r——剩余污泥/回流污泥浓度,mg/LX——曝气池污泥浓度(MLSS),mg/LR——污泥回流比Q——设计流量,m3/d污泥回流量RQQr⋅=Q——设计流量,m3/dQ r——回流污泥流量,m3/dR——污泥回流比,此时按最大回流比100%算污泥产量及剩余污泥排放量曝气池容积、污泥产量及泥龄的计算见前面曝气池部分污泥由曝气池排放时CVWθ=当污泥从二沉池排放时()CRRVWθ⋅+⋅=1W——剩余污泥排放量,m3/dR——污泥回流比θC——污泥龄即污泥停留时间,dV——曝气池容积,m3SBR计算公式曝气时间内BOD负荷法nttF=XLSmtSR⋅⋅⋅=024XLVtStQXLVtStQVSRFVSRF⋅⋅⋅⋅⋅⋅=⋅'⋅⋅⋅⋅⋅=02424nXLVttSQVSR⋅⋅⋅⋅⋅⋅⋅=024一个周期所需时间:bdSRttttt+++=——有疑问周期数:tN24=反应池容积另一公式:mnNQV⋅⋅⨯=24Q——设计的流量,m3/hV——SBR池总容积,m3S0——进水有机物浓度,mg/Ln——每个系列反应池个数L S——污泥负荷,kg(BOD5)/[kg(MLSS)•d]X——污泥浓度(MLSS),mg/Lm——充水比(一次进入反应槽内的污水量与充水结束时混合液容积的比值,同排出比)t——一个运行周期所需要的时间,ht F——一个周期的进水时间,ht R——一个周期的反应时间,ht S——一个周期的沉淀时间,ht d——一个周期的排水时间,ht b——一个周期的闲置时间,hN——周期数氧化沟活性污泥法计算公式硝化菌生长速率()()[]pH DO K DO N N e O T ke keT n --⋅⎥⎦⎤⎢⎣⎡+⋅⎥⎦⎤⎢⎣⎡+⋅⨯=--2.7833.011047.02158.1051.015098.0μ 泥龄算法一nCm μθ1=Cm C SF θθ⋅=μn ——硝化菌的生长率,d -1N ke ——出水总凯氏氮或氨氮(TKN ),mg/L T ——计算温度,℃DO ——溶解氧的浓度,mg/L ,一般按2mg/L 计 K O2——氧的半速常数,mg/L ,0.45~2.0mg/L,15℃时为2θCm ——最小污泥龄,dSF ——安全系数,通常取2.0~3.0θC ——污泥龄,d ,此值也可按经验取值 S r ——进出水BOD 5浓度差,mg/LY ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1f b ——可生物降解VSS 占VSS 的比例(与f 不同) 泥龄算法二bd r V C f K S Y X ⋅=⋅=77.0θ存疑问 θC ——污泥龄,d ,此值也可按经验取值 S r ——进出水BOD 5浓度差,mg/LY ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1f b ——可生物降解VSS 占VSS 的比例(与f 不同) 好氧区容积()()C d V e C K X S S Q Y V θθ⋅+⋅-⋅⋅⋅=101 ()'⋅-⋅=SV e L X S S Q V 01V 1——好氧区有效容积,m 3 Q ——废水流量,m 3/dX V ——挥发性污泥浓度(MLVSS),mg/L Y ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1 S 0——进水BOD 5浓度,mg/L S e ——出水BOD 5浓度,mg/LL S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d] 注意此处为MLVSS ,如为MLSS 需对应X 反硝化速率()()O D r r T DN DN '-⨯⨯='-109.120T ——计算温度,℃r DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d r DN ——反硝化速率,gNO 3-N/gVSS ·d ,温度15~27℃时城市污水取值0.03~0.11,20℃可取0.07DO ′——反硝化时的溶解氧浓度,可取0.2mg/L 生物污泥产量Cd r V K YS Q X θ⋅+⋅⋅=∆1算法参见活性污泥法ΔX V ——每日排出挥发性污泥量即挥发性污泥产量(MLVSS ),gMLVSS/dS r ——进出水BOD 5浓度差,mg/L Q ——废水流量,m 3/dK d ——污泥内源呼吸率,d -1Y ——污泥理论产率,kg(VSS)/kg(BOD 5) 除氮量核算()V oe ke k NO X N N N Q ∆---⋅=∆12.030.12ΔX V ——生物合成所需的氮,gMLVSS/d N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L ΔNO3——所需去除氮量,g/d 缺氧区容积(脱氮) V DN NO X r V ⋅'∆=32 V 2——缺氧区有效容积,m 3X V ——挥发性污泥浓度(MLVSS),mg/Lr DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d ΔNO3——所需去除氮量,g/d 厌氧区容积(除磷) 2413θ⋅=Q V V 3——厌氧区有效容积,m 3 θ1——厌氧区水力停留时间,h ,一般根据试验确定,可取2h氧化沟总容积 321V V V V ++=V ——氧化沟总容积,m 3 水力停留时间 QVHRT ⨯=24HRT ——水力停留时间,h碱度的校核剩余碱度=进水碱度+3.57×反硝化NO 3-N 的量+0.1×去除BOD 5的量-7.14×氧化沟氧化总氮的量 其中:反硝化NO3-N 的量:QX N N N Voe ke k ∆---12.0 去除BOD 的量:e S S -0 氧化总氮的量:QX N N Vke k ∆--12.0 ⎪⎪⎭⎫ ⎝⎛⋅+⋅⨯=∆C d r V K YS Q X θ112.012.0 剩余碱度——通常系统中应保证有大于100mg/L 的剩余碱度(即保持pH ≧7.2),以保证反硝化所需环境,所有碱度均以CaCO 3计3.57——反硝化NO 3-N 产生的碱度 0.1——去除BOD 5产生的碱度 7.14——氧化NH 4-N 消耗的碱度0.12ΔX V ——生物合成所需的氮,gMLVSS/d Q ——流量,m 3/dS r ——去除BOD 5的量,mg/L N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L ΔNO3——所需去除氮量,g/d回流污泥量计算r SVIX r ⋅=-610参见活性污泥法计算 ()()X Q Q Q X Q TSS r r r ⋅+=⋅+⋅r ——二沉池中污泥综合系数,一般为1.2左右 SVI ——污泥容积指数,mL/g ,取值范围约100左右X r ——剩余污泥/回流污泥浓度,mg/L Q r ——回流污泥量,m 3/d X ——污泥浓度(MLSS),mg/L R ——污泥回流比,%Q Q R r =()Q X Q X K f YS Q W e C d r ⋅-⋅+⋅+⋅⋅⋅=11θW ——总的剩余污泥量,g/dX 1——污泥中的惰性物质,mg/L ,为进水总悬浮物浓度(mg/L )与挥发性悬浮物浓度之差 X e ——随出水流出的污泥量,mg/L污水脱氮除磷计算公式硝化菌生长速率()()[]pH DO K DO N N e O T ke keT n --⋅⎥⎦⎤⎢⎣⎡+⋅⎥⎦⎤⎢⎣⎡+⋅⨯=--2.7833.011047.02158.1051.015098.0μ 一、 好氧区计算泥龄算法一nCm μθ1= Cm C SF θθ⋅=μn ——硝化菌的生长率,d -1N ke ——出水总凯氏氮或氨氮(TKN ),mg/L T ——计算温度,℃DO ——溶解氧的浓度,mg/L ,一般按2mg/L 计 K O2——氧的半速常数,mg/L ,0.45~2.0mg/L,15℃时为2θCm ——最小污泥龄,dSF ——安全系数,通常取2.0~3.0θC ——污泥龄,d ,此值也可按经验取值 S r ——进出水BOD 5浓度差,mg/LY ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1f b ——可生物降解VSS 占VSS 的比例(与f 不同) 泥龄算法二 VVC X X V X X V ∆⋅=∆⋅=θ 计算参见活性污泥法公式此处ΔX V =0.5~0.7×Q ×S r ,即1kgBOD 产生0.5~0.7kgVSS负荷法V S X V S Q L ⋅⋅='10XV S Q L S ⋅⋅=10S0适当的情况下可以用SrV 1——好氧区有效容积,m 3 Q ——废水设计流量,m 3/dL S ′——有机负荷,kgCOD/(kgMLVSS ·d ) L S ——有机负荷,kgCOD/(kgMLSS ·d ) X ——污泥浓度(MLSS),mg/L X V ——污泥浓度(MLVSS),mg/LS 0——进水有机物浓度COD (或者BOD ),mg/L 好氧区容积()()C d V e C K X S S Q Y V θθ⋅+⋅-⋅⋅⋅=101 ()()X L S S Q L X S S Q V S e SV e ⨯-⋅='⋅-⋅=001 V 1——好氧区有效容积,m 3 Q ——废水流量,m 3/dX V ——挥发性污泥浓度(MLVSS),mg/L Y ——污泥理论产率,kg(VSS)/kg(BOD 5) K d ——污泥内源呼吸率,d -1 S 0——进水BOD 5浓度,mg/L S e ——出水BOD 5浓度,mg/LL S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d]VVC X X V ∆⋅=θ1注意此处为MLVSS ,如为MLSS 需对应X二缺氧区计算甲醇投加量计算01087.053.147.2D N N C m +⨯+⨯=注意:此公式未考虑氨氮的变化N 0——起始硝酸盐浓度,mg/L N 1——起始亚硝酸盐浓度,mg/L D 0——起始溶解氧DO 浓度,mg/L C m ——所需甲醇浓度,mg/L 反硝化速率()()O D r r T DN DN '-⨯⨯='-109.120T ——计算温度,℃r DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d r DN ——反硝化速率,gNO 3-N/gVSS ·d ,温度15~27℃时城市污水取值0.03~0.11,20℃可取0.07DO ′——反硝化时的溶解氧浓度,可取0.2mg/L 生物污泥产量Cd r V K YS Q X θ⋅+⋅⋅=∆1算法参见活性污泥法ΔX V ——每日排出挥发性污泥量即挥发性污泥产量(MLVSS ),gMLVSS/dS r ——进出水BOD 5浓度差,mg/L Q ——废水流量,m 3/dK d ——污泥内源呼吸率,d -1Y ——污泥理论产率,kg(VSS)/kg(BOD 5) 除氮量核算()V oe ke k NO X N N N Q ∆---⋅=∆12.030.12ΔX V ——生物合成所需的氮,gMLVSS/d N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L ΔNO3——所需去除氮量,g/d 缺氧区容积(脱氮) VDN NO X r V ⋅'∆=32 V 2——缺氧区有效容积,m 3X V ——挥发性污泥浓度(MLVSS),mg/Lr DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d ΔNO3——所需去除氮量,g/d 三 厌氧区计算厌氧区容积(除磷) 2413θ⋅=Q V V 3——厌氧区有效容积,m 3 θ1——厌氧区水力停留时间,h ,一般根据试验确定,可取2h氧化沟总容积 321V V V V ++=V ——总容积,m 3 水力停留时间 QVHRT ⨯=24HRT ——水力停留时间,h碱度的校核剩余碱度=进水碱度+3.57×反硝化NO 3-N 的量+0.1×去除BOD 5的量-7.14×氧化沟氧化总氮的量 其中:剩余碱度——通常系统中应保证有大于100mg/L 的剩余碱度(即保持pH ≧7.2),以保证反硝化所需环境,所有碱度均以CaCO 3计3.57——反硝化NO 3-N 产生的碱度反硝化NO3-N 的量:QX N N N Voe ke k ∆---12.0 去除BOD 的量:e S S -0 氧化总氮的量:QX N N Vke k ∆--12.0 0.1——去除BOD 5产生的碱度 7.14——氧化NH 4-N 消耗的碱度0.12ΔX V ——生物合成所需的氮,gMLVSS/d N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L ΔNO3——所需去除氮量,g/d回流污泥量计算r SVIX r ⋅=-610 参见活性污泥法计算()()X Q Q Q X Q TSS r r r ⋅+=⋅+⋅QQ R r=()Q X Q X K f YS Q W e C d r ⋅-⋅+⋅+⋅⋅⋅=11θr ——二沉池中污泥综合系数,一般为1.2左右 SVI ——污泥容积指数,mL/g ,取值范围约100左右X r ——剩余污泥/回流污泥浓度,mg/L Q r ——回流污泥量,m 3/d X ——污泥浓度(MLSS),mg/L R ——污泥回流比,%W ——总的剩余污泥量,g/dX 1——污泥中的惰性物质,mg/L ,为进水总悬浮物浓度(mg/L )与挥发性悬浮物浓度之差 X e ——随出水流出的污泥量,mg/L 混合液回流计算10--='oekek N N N RN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L R ′——混合液回流比,%A/O 法脱氮计算公式-负荷法生化反应池总容积 XL S Q L X S Q V S SV ⨯⋅='⋅⋅=00 S0适当的情况下可以用SrV ——生化池总有效容积,m 3Q ——废水流量,m 3/dX V ——挥发性污泥浓度(MLVSS),mg/L S 0——进水BOD 5浓度,mg/L S e ——出水BOD 5浓度,mg/LL S ′——污泥负荷,kg (BOD 5)/[kg(MLVSS)•d] 注意此处为MLVSS ,如为MLSS 需对应X 生化反应池容积比 21V V V += 4~221=V V V 1——好氧区有效容积,m 3 V 2——好氧区有效容积,m 3 水力停留时间甲醇投加量计算01087.053.147.2D N N C m +⨯+⨯=注意:此公式未考虑氨氮的变化N 0——起始硝酸盐浓度,mg/L N 1——起始亚硝酸盐浓度,mg/L D 0——起始溶解氧DO 浓度,mg/L C m ——所需甲醇浓度,mg/L反硝化速率()()O D r r T DN DN '-⨯⨯='-109.120T ——计算温度,℃r DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d r DN ——反硝化速率,gNO 3-N/gVSS ·d ,温度15~27℃时城市污水取值0.03~0.11,20℃可取0.07DO ′——反硝化时的溶解氧浓度,可取0.2mg/L 生物污泥产量Cd r V K YS Q X θ⋅+⋅⋅=∆1算法参见活性污泥法ΔX V ——每日排出挥发性污泥量即挥发性污泥产量(MLVSS ),gMLVSS/dS r ——进出水BOD 5浓度差,mg/L Q ——废水流量,m 3/dK d ——污泥内源呼吸率,d -1Y ——污泥理论产率,kg(VSS)/kg(BOD 5) 除氮量核算()V oe ke k NO X N N N Q ∆---⋅=∆12.030.12ΔX V ——生物合成所需的氮,gMLVSS/d N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L ΔNO3——所需去除氮量,g/d 缺氧区容积(脱氮) VDN NO X r V ⋅'∆=32 V 2——缺氧区有效容积,m 3X V ——挥发性污泥浓度(MLVSS),mg/Lr DN ′——实际的反硝化速率,gNO 3-N/gVSS ·d ΔNO3——所需去除氮量,g/d 三 厌氧区计算厌氧区容积(除磷) 2413θ⋅=Q V V 3——厌氧区有效容积,m 3 θ1——厌氧区水力停留时间,h ,一般根据试验确定,可取2h氧化沟总容积 321V V V V ++=V ——总容积,m 3 水力停留时间 QVHRT ⨯=24HRT ——水力停留时间,h碱度的校核剩余碱度=进水碱度+3.57×反硝化NO 3-N 的量+0.1×去除BOD 5的量-7.14×氧化沟氧化总氮的量 其中:反硝化NO3-N 的量:QX N N N Voe ke k ∆---12.0 去除BOD 的量:e S S -0剩余碱度——通常系统中应保证有大于100mg/L 的剩余碱度(即保持pH ≧7.2),以保证反硝化所需环境,所有碱度均以CaCO 3计3.57——反硝化NO 3-N 产生的碱度 0.1——去除BOD 5产生的碱度 7.14——氧化NH 4-N 消耗的碱度0.12ΔX V ——生物合成所需的氮,gMLVSS/d N t ——进水总氮,mg/LN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L氧化总氮的量:QX N N Vke k ∆--12.0ΔNO3——所需去除氮量,g/d回流污泥量计算r SVIX r ⋅=-610参见活性污泥法计算 ()()X Q Q Q X Q TSS r r r ⋅+=⋅+⋅QQ R r=()Q X Q X K f YS Q W e C d r ⋅-⋅+⋅+⋅⋅⋅=11θr ——二沉池中污泥综合系数,一般为1.2左右 SVI ——污泥容积指数,mL/g ,取值范围约100左右X r ——剩余污泥/回流污泥浓度,mg/L Q r ——回流污泥量,m 3/d X ——污泥浓度(MLSS),mg/L R ——污泥回流比,%W ——总的剩余污泥量,g/dX 1——污泥中的惰性物质,mg/L ,为进水总悬浮物浓度(mg/L )与挥发性悬浮物浓度之差 X e ——随出水流出的污泥量,mg/L 混合液回流计算10--='oekek N N N RN oe ——出水总硝态氮,mg/LN k ——进水总凯氏氮(TKN 凯氏氮=有机氮+氨氮),mg/LN ke ——出水总凯氏氮或氨氮(TKN ),mg/L R ′——混合液回流比,%厌氧计算公式负荷法VS Q L V ⨯⋅=10000V S X V S Q L ⋅⋅='0XV S Q L S ⋅⋅=0XL S Q X L S Q L S Q V S VS V ⨯⋅=⨯'⋅=⨯⋅=001000 QV HRT ⨯==24θ H A V ⋅=24D A ⋅=πθθH A V A Q v =⋅=⨯=241V ——反应器有效容积,m 3 Q ——废水设计流量,m 3/dL V ——容积负荷,kgCOD/(m 3·d )L S ′——有机负荷,kgCOD/(kgMLVSS ·d ) L S ——有机负荷,kgCOD/(kgMLSS ·d ) X ——污泥浓度(MLSS),mg/L X V ——污泥浓度(MLVSS),mg/LS 0——进水有机物浓度COD (或者BOD ),mg/L θ即HRT ——水力停留时间,h H ——反应器高度,m A ——反应器截面积,m 2 D ——反应器直径,mv 1——反应器内液体上升流速,m/h注:污泥负荷和容积负荷从定义来说用S 0正确,但规范中用去除量,考试中用去除量来计算 投配率法 100⨯=PVV nV n ——每日需要处理的污泥或废液体积,m 3/d P ——设计投配率,%/d ,通常采用5~12%/d 动力学公式法适用于厌氧生物滤池t ——水力停留时间,d K ——反应动力学常数,d -1S 0——进水有机物浓度COD ,mg/L⎪⎪⎭⎫ ⎝⎛⨯=e S S K t 0ln 1Q t V ⋅=S e ——进水有机物浓度COD ,mg/LQ ——废水设计流量,m 3/d污泥处理计算公式含水率12122121100100C C P P W W V V =--== P 1、V 1、W 1、C 1——含水率为P 1的污泥体积、重量、固体物浓度P 2、V 2、W 2、C 2——含水率为P 2的污泥体积、重量、固体物浓度适用于含水率大于65%的污泥 可消化程度 %10012112⨯⎪⎪⎭⎫ ⎝⎛⋅⋅-=S V S V d P P P P RR d ——可消化程度P S1、P S2——生污泥及消化污泥无机物含量,% P V1、P V2——生污泥及消化污泥有机物含量,% 湿、干污泥比重P P S S-+⋅=100100γγγVS P ⨯+=5.1100250γγ——湿污泥比重,g/L P ——湿污泥含水率,% γS ——干污泥比重,g/LP V ——干固体物质中,有机物所占百分比,%初沉污泥产量可根据人口数,或者悬浮固体去除率计算二沉污泥产量V d r V X V K S Q Y X ⋅⋅-⋅⋅=∆Cd rr obs K S Q Y S Q Y θ⋅+⋅⋅=⋅⋅=1见活性污泥法计算公式污泥重力浓缩计算MWM C Q A =⋅= ()1000100100⨯-⨯=⋅=P Q C Q Wn A A =1()21100100P P Q Q --⋅='24/Q HA t ⋅=A ——浓缩池总面积,m 2 Q ——污泥体积流量,m 3/dM ——浓缩池污泥固体通量,kg/m 2·d W ——污泥质量流量,kg/d C ——污泥固体浓度,g/L A 1——单个浓缩池总面积,m 2 n ——浓缩池数量,个Q ′——浓缩后污泥体积流量,m 3/d P 、P 1、P 2——均为含水率,% t ——停留时间,hH ——有效水深,常数可取4m ,m1000——P 含水率时的污泥密度,1000kg/m 3 气浮浓缩计算污泥厌氧消化计算100⨯=PVV n 投配率法'=⋅=SSC L W Q V θ泥龄及负荷法 ()100100bS f P Q W ⋅⋅-⨯=γ此处γ为干泥密度,kg/m3,fb 为VSS 所占比例,用前面VSS 比例和含水率求Ws V n ——每日需要处理的污泥或废液体积,m 3/d P ——设计投配率,%/d ,通常采用5~12%/d V ——消化池有效容积,m 3W S ——挥发性干固体重量,kgVSS/d L S ′——挥发性固体负荷,kgVSS/m 3·d Q ——污泥体积流量,m 3/dθC ——污泥龄即污泥停留时间,d沼气产量 0.35m3(标准)/kgCOD城市污水中COD/有机物=1.6~1.8两级厌氧消化 '=S S L WV 总 321总V V ⨯= 312总V V ⨯=V1和V2为2:1的时候板框污泥脱水计算vQ P A ⨯⨯⎪⎭⎫ ⎝⎛-⨯=2410011000 A ——板框压滤机过滤面积,m 2P ——压滤污泥含水率,% Q ——污泥体积流量,m 3/d v ——过滤速度,kg/m 2·h 带机污泥脱水计算Tv Q P B 110011000⨯⨯⎪⎭⎫ ⎝⎛-⨯=B ——带机滤带宽度,m P ——湿污泥含水率,% Q ——污泥体积流量,m 3/d v ——污泥脱水负荷,kg/m ·h T ——每天工作时间,h/d气浮计算公式名称公式说明0.1Mpa 下所需释放的空气量()10001PS Q P f C A ⋅-⋅⋅⋅=γ (kg/d )C S 单位为mg/L 时,不需要空气密度γ——空气密度,g/L ,20℃时为1.164 C S ——20℃时空气溶解度,18.7ml/Lf ——实际空气溶解度与理论空气溶解度之比,一般为0.5~0.8,多取0.5P ——溶气压力(绝对大气压,0.1Mpa ),如0.5Mpa 时P=0.5/0.1=5气浮的污泥干重a S Q S ⋅= (kg/d )S a ——污泥浓度,kg/m 3 加压溶气水量Q R Q P ⋅= (m 3/d )()11000-⋅⋅⋅⨯⎪⎭⎫⎝⎛⋅⋅=P f C S A S Q Q S a P γ (m 3/d ) Q ——气浮池设计水量,m3/d R ——溶气压力下的回流比,%SA——气固比,一般在0.01~0.04之间,常取0.03 标态空气供应量ηγ⋅'='A A (m 3/d )A ——所需空气量,kg/dγ′——0℃时,0.1Mpa 下空气密度,kg/m3,取值1.252η——溶气效率,可采用0.5接触室平面面积 1186400v Q Q A P⨯+=(m 2)v 1——接触室水流平均上升速度,m/s气浮池容积()t Q Q V P ⋅+=分离室平面面积 2286400v Q Q A P⨯+= (m 2)v 2——分离室水流平均下降速度,m/s气浮浓缩池表面积MSF =(m 2) M ——气浮浓缩池固体负荷,kg/m 2·d。
水处理相关工艺计算公式
水处理相关工艺计算公式水处理是指对水质进行改善或净化,以满足特定用途的过程。
在水处理中,常常需要使用各种工艺和计算公式来确定所需的操作参数和设备尺寸。
下面是一些常用的水处理工艺和相关计算公式的介绍。
1.沉淀工艺沉淀是一种将悬浮颗粒物从水中移除的方法,通常使用沉淀池来完成这一过程。
沉淀池的设计需要考虑到流量和沉淀时间,并根据流速和悬浮颗粒物的水质特征选择合适的设计流速。
常用的沉淀工艺计算公式包括:-沉淀时间计算公式:T=V/Q其中,T是沉淀时间(小时),V是沉淀池的体积(立方米),Q是进水流量(立方米/小时)。
-水深计算公式:H=Q/(A*t)其中,H是沉淀池的水深(米),Q是进水流量(立方米/小时),A是沉淀池的有效面积(平方米),t是沉淀时间(小时)。
-沉淀池尺寸计算公式:V=Q*T其中,V是沉淀池的体积(立方米),Q是进水流量(立方米/小时),T是沉淀时间(小时)。
2.过滤工艺过滤是通过将水通过多孔介质来去除悬浮颗粒物和溶解物的过程。
过滤操作通常具有流量和滤料厚度的要求,因此过滤工艺计算需要考虑到这些参数。
常用的过滤工艺计算公式包括:-过滤速度计算公式:v=Q/A其中,v是过滤速度(米/小时),Q是进水流量(立方米/小时),A 是过滤器的有效面积(平方米)。
-滤料容积计算公式:V=A*H其中,V是滤料的容积(立方米),A是过滤器的有效面积(平方米),H是滤料的厚度(米)。
-过滤器尺寸计算公式:A=Q/v其中,A是过滤器的有效面积(平方米),Q是进水流量(立方米/小时),v是过滤速度(米/小时)。
3.加药工艺加药是在水处理过程中添加化学药剂,以控制水质和改变水的性质。
加药操作通常需要考虑到药剂的浓度和投加速度,并根据水质特征和处理目标选择合适的加药量。
常用的加药工艺计算公式包括:-药剂投加量计算公式:C=Q*c/Qw其中,C是药剂的投加量(克/小时),Q是进水流量(立方米/小时),c是药剂的浓度(克/立方米),Qw是水的流量(立方米/小时)。
水处理常用计算公式
水处理常用计算公式水处理是指对污水、废水进行净化、杀菌、除臭、回收和再利用的过程。
在水处理过程中,常常会涉及到一些计算公式,以便确定水质参数、处理效果等关键指标。
以下是水处理中常用的一些计算公式。
一、水质参数计算公式1.溶解氧浓度(mg/L)计算公式:溶解氧浓度(mg/L)= 溶解氧得量 / 水样量2.氨氮浓度(mg/L)计算公式:氨氮浓度(mg/L)= 氨氮得量 / 水样量3.总硬度(mg/L)计算公式:总硬度(mg/L)= (Ca2+浓度×2.5)+(Mg2+浓度×4.14)4.COD(化学需氧量)浓度(mg/L)计算公式:COD浓度(mg/L)= COD得量 / 水样量5.BOD(生化需氧量)浓度(mg/L)计算公式:BOD浓度(mg/L)= BOD得量 / 水样量6.悬浮物(SS)浓度(mg/L)计算公式:悬浮物浓度(mg/L)= 悬浮物得量 / 水样量二、水处理效果计算公式1.混凝剂投加量计算公式:混凝剂投加量(mg/L)= (混凝剂质量 / 水体体积)×10002.絮凝剂投加量计算公式:絮凝剂投加量(mg/L)= (絮凝剂质量 / 水体体积)×10003.絮凝效果计算公式:絮凝效果(%)=(初浊度-终浊度)/初浊度×100%4.沉淀剂投加量计算公式:沉淀剂投加量(mg/L)= (沉淀剂质量 / 水体体积)×10005.沉淀效果计算公式:沉淀效果(%)=(初浊度-终浊度)/初浊度×100%6.过滤速度计算公式:过滤速度(m/h)=过滤液体积(m³)/过滤时间(h)/过滤面积(m²)7.生物膜反应器(MBR)膜通量计算公式:MBR膜通量(L/m²·h)=清水浸膜前水质量(L)/膜池面积(m²)/清水浸膜时间(h)8.反渗透(RO)回收率计算公式:RO回收率(%)=(进水量-出水量)/进水量×100%三、常见单位换算1.体积单位换算:2.质量单位换算:3.浓度单位换算:1毫克/升(mg/L)= 1ppm(mg/L)= 0.001克/升(g/L)以上是水处理中常用的一些计算公式和单位换算。
水处理常用计算公式汇总
水处理常用计算公式汇总水处理是指对水体进行改善、净化、处理的过程,以满足各种需求和要求。
在水处理过程中,我们经常需要进行一些计算来确定水质参数、处理方案和设备设计等。
下面是一些水处理常用的计算公式的汇总。
1.水质参数计算:1.1 余氯消耗量(residual chlorine demand)计算公式:余氯消耗量=总氯添加量-余氯含量1.2 水体中溶解氧含量DO(dissolved oxygen)计算公式:DO = 34.6 * 溶解氧含量(mg/L)1.3 水体中溶解二氧化碳含量CO2(dissolved carbon dioxide)计算公式:CO2 = 62.7 * 溶解二氧化碳含量(mg/L)1.4 碳酸氢根含量HCO3-(bicarbonate)计算公式:HCO3- = 61 * 碳酸氢钠含量(mg/L)1.5 电导率(conductivity)计算公式:电导率 = 1 / (0.0256 + 0.0247 * ln(电导率值))2.流量计算:2.1流量(Q)计算公式:Q=A*V其中,Q为流量,A为流经面积,V为平均流速。
2.2时间(T)计算公式:T=V/Q其中,T为时间,V为容积,Q为流量。
3.消毒剂计算:3.1 硫代硫酸钠(sodium thiosulfate)计算公式:硫代硫酸钠用量=溶解氯浓度*供氯量/硫代硫酸钠浓度3.2 次氯酸钠(sodium hypochlorite)计算公式:次氯酸钠用量=供氯量/次氯酸钠浓度4.混凝剂计算:4.1 沉降速度(settling velocity)计算公式:沉降速度=K*d^n其中,K为常数,d为颗粒直径,n为指数。
4.2 混凝剂用量(coagulant dosage)计算公式:混凝剂用量=收入总浊度-出口水浊度5.活性炭吸附计算:5.1 吸附容量(adsorption capacity)计算公式:吸附容量=初始浓度-终浓度/活性炭用量饱和时间=饱和容积/进水流量6.膜处理计算:6.1 通量(flux)计算公式:通量=净水产量/膜面积6.2 渗透率(permeability)计算公式:渗透率=通量/水中溶质浓度以上是一些水处理常用的计算公式的汇总。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 污水的一级处理构筑物设计计算1.1格栅格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。
被截留的物质称为栅渣。
设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。
格栅断面有圆形、矩形、正方形、半圆形等。
圆形水力条件好,但刚度差,故一般多采用矩形断面。
格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5~10mm );按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处的格栅。
1.1.1格栅的设计城市的排水系统采用分流制排水系统,城市污水主干管由西北方向流入污水处理厂厂区,主干管进水水量为s L Q 63.1504 ,污水进入污水处理厂处的管径为1250mm ,管道水面标高为80.0m 。
本设计中采用矩形断面并设置两道格栅(中格栅一道和细格栅一道),采用机械清渣。
其中,中格栅设在污水泵站前,细格栅设在污水泵站后。
中细两道格栅都设置三组即N=3组,每组的设计流量为0.502s m 3。
1.1.2设计参数1、格栅栅条间隙宽度,应符合下列要求:1) 粗格栅:机械清除时宜为16~25mm ;人工清除时宜为25~40mm 。
特殊情况下,最大间隙可为100mm 。
2) 细格栅:宜为1.5~10mm 。
3) 水泵前,应根据水泵要求确定。
2、 污水过栅流速宜采用0.6~1.Om /s 。
除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60~90°。
人工清除格栅的安装角度宜为30°~60°。
3、当格栅间隙为16~25mm 时,栅渣量取0.10~0.0533310m m 污水;当格栅间隙为30~50mm 时,栅渣量取0.03~0.0133310m m 污水。
4、格栅除污机,底部前端距井壁尺寸,钢丝绳牵引除污机或移动悬吊葫芦抓斗式除污机应大于1.5m ;链动刮板除污机或回转式固液分离机应大于1.Om 。
5、格栅上部必须设置工作平台,其高度应高出格栅前最高设计水位0.5m ,工作平台上应有安全和冲洗设施。
6、 格栅工作平台两侧边道宽度宜采用0.7~1.Om 。
工作平台正面过道宽度,采用机械清除时不应小于1.5m ,采用人工清除时不应小于1.2m 。
7、 粗格栅栅渣宜采用带式输送机输送;细格栅栅渣宜采用螺旋输送机输送。
8、格栅除污机、输送机和压榨脱水机的进出料口宜采用密封形式,根据周围环境情况,可设置除臭处理装置。
9、格栅间应设置通风设施和有毒有害气体的检测与报警装置。
10、沉砂池的超高不应小于0.3m 。
1.1.3中格栅设计计算1、进水渠道宽度计算根据最优水力断面公式2221111νB v B B hv B Q ===计算设计中取污水过栅流速v =0.8s mm QB 12.18.0502.0221=⨯==ν则 栅前水深:m B h 56.021==2、格栅的间隙数 NbhvQ n αsin =式中 n 格栅栅条间隙数,个; Q 设计流量,s m 3; α 格栅倾角,º; N 设计的格栅组数,组;b 格栅栅条间隙数,m 。
设计中取 60=α b =0.02m528.056.002.060sin 502.0=⨯⨯︒=n 个3、格栅栅槽宽度()bn n S B +-=1 式中 B 格栅栅槽宽度,m ; S每根格栅条宽度,m 。
设计中取S =0.015m()m B 80.104.176.05202.0152015.0=+=⨯+-⨯=4、进水渠道渐宽部分的长度计算 111tan 2αB B l -=式中 1l 进水渠道渐宽部分长度,m ; 1α渐宽处角度,º。
设计中取 1α=︒20 m l 93.020tan 212.180.11=︒-=5、进水渠道渐窄部分的长度计算m l l 46.0293.0212===6、通过格栅的水头损失αβsin 2)(2341g v b S k h =式中 1h 水头损失,m ;β 格栅条的阻力系数,查表知 β=2.42;k格栅受污物堵塞时的水头损失增大系数,一般取 k =3。
则 m g h 14.060sin 28.0)02.0015.0(42.232341=︒⨯⨯=7、栅后槽总高度设栅前渠道超高m h 3.02=则 栅后槽总高度:m h h h H 00.13.014.056.021=++=++=8、栅槽总长度mh hl l L 38.360tan 3.060tan 56.00.15.046.093.0tan tan 0.15.0221=︒+︒++++=+++++=αα 中格栅示意图如图3—1图3—1 中格栅示意草图9、每日栅渣量 100010008640011max W Q K W Q W Z =⨯⨯= 式中 W每日栅渣量,m 3;1W 每日每10003m 污水的栅渣量,33310m m 污水。
设计中取 1W =0.0533310m m 污水43310100.0550.21000W m d m d ⨯⨯==> 应采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包机将栅渣打包,汽车运走。
10、进水与出水渠道城市污水通过1250DN mm 的管道送入进水渠道,然后,就由提升泵将污水提升至细格栅。
1.1.4细格栅设计计算设计中取格栅栅条间隙数b =0.01m ,格栅栅前水深h =0.9m ,污水过栅流速v =1.0s m ,每根格栅条宽度S =0.01m ,进水渠道宽度1B =0.8m ,栅前渠道超高m h 3.02=,每日每10003m 污水的栅渣量1W =0.0433310m m则 格栅的间隙数:NbhvQ n αsin =520.19.001.060sin 502.0=⨯⨯︒= 个 格栅栅槽宽度:()()m bn n S B 03.15201.015201.01=⨯+-=+-= 进水渠道渐宽部分的长度:m B B l 32.020tan 28.003.1tan 2111=︒--=α进水渠道渐窄部分的长度计算:m l l 16.0232.0212=== 通过格栅的水头损失:m g g v b S k h 32.060sin 20.101.001.042.23sin 2)(2342341=︒⨯⨯⎪⎭⎫ ⎝⎛⨯⨯==αβ 栅后槽总高度:m h h h H 52.13.032.09.021=++=++=栅槽总长度:ααtan tan 0.15.0221h hl l L +++++=m67.260tan 3.060tan 9.00.15.016.032.0=︒+︒++++=每日栅渣量:433max 118640010100.0550.2100010001000Z Q W Q W W m s m s K ⨯⨯⨯====>⨯应采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包机将栅渣打包,汽车运走。
细格栅示意图见图3—2图3—2 细格栅示意图1.2提升泵站污水总泵站接纳来自整个城市排水管网来的所有污水,其任务是将这些污水抽送到污水处理厂,以利于处理厂各构筑物的设置。
因采用城市污水与雨水分流制,故本设计仅对城市污水排水系统的泵站进行设计。
排水泵站的基本组成包括:机器间、集水池、格栅和辅助间。
3.2.1泵站设计的原则1、污水泵站集水池的容积,不应小于最大一台水泵5min 的出水量;如水泵机组为自动控制时,每小时开动水泵不得超过6次。
2、集水池池底应设集水坑,倾向坑的坡度不宜小于10%。
3、水泵吸水管设计流速宜为0.7~1.5 m/s 。
出水管流速宜为0.8~2.5 m/s 。
其他规定见GB50014—2006《室外排水规范》。
1.2.2泵房形式及工艺布置本设计采用地下湿式矩形合建式泵房,设计流量选用最高日最高时流量d m s m Q 3313000050463.1==。
1、泵房形式为运行方便,采用自灌式泵房。
自灌式水泵多用于常年运转的污水泵站,它的优点是:启动及时可靠,管理方便。
该泵站流量小于2m 3/s ,且鉴于其设计和施工均有一定经验可供利用,故选用矩形泵房。
由于自灌式启动,故采用集水池与机器间合建,前后设置。
大开槽施工。
2、工艺布置本设计采用来水为一根污水干管,无滞留、涡流等不利现象,故不设进水井,来水管直接经进水闸门、格栅流入集水池,经机器间的泵提升污水进入出水井,然后依靠重力自流输送至各处理构筑物。
3.2.3泵房设计计算1、设计参数设计流量为31.504631504.63Q m s L s ==,集水池最高水位为79.93m ,出水管提升至细格栅,出水管长度为5m ,细格栅水面标高为85.001m 。
泵站设在处理厂内,泵站的地面高程为81.50m 。
2、泵房的设计计算 (1)集水池的设计计算设计中选用5台污水泵(4用1备),则每台污水泵的设计流量为:11504.63376.244Q Q L s ===,按一台泵最大流量时5min 的出水量设计,则集水池的容积为:31376.2560112860112.86V Q t L m ==⨯⨯==取集水池的有效水深为 2.0h m =集水池的面积为:2112.8656.432V F m h ===集水池保护水深0.71m ,实际水深为2.0+0.71=2.71m 。
(2)水泵总扬程估算1)集水池最低工作水位与所需提升最高水位之间的高差为: 85.001-(79.93-2)=7.071m 2)出水管管线水头损失每一台泵单用一根出水管,其流量为1376.2Q L s =,选用的管径为mm DN 600的铸铁管,查《给水排水设计手册》第一册常用资料得流速s m v 33.1=(介于0.8~2.5s m 之间),68.31000=i 。
出水管出水进入一进水渠,然后再均匀流入细格栅。
设局部损失为沿程损失的30%,则总水头损失为:m h 024.03.1100068.35=⨯⨯= 泵站内的管线水头损失假设为1.5m ,考虑自由水头为1.0,则水泵总扬程为: m H 595.90.1071.7024.05.1=+++=(3)选泵本设计单泵流量为1376.2Q L s =,扬程m 595.9。
查《给水排水设计手册》第11册常用设备,选用300TLW-540IB 型的立式污水泵。
该泵的规格性能见表3-1。
表3-1 300TLW-540IB 型的立式污水泵的规格性能3、泵站总扬程的校核水泵的平面布置形式可直接影响机器间的面积大小,同时,也关系到养护管理的方便与否。