色谱的定性定量04
气相色谱分析法-定性定量分析
利用保留值定性(3)
色谱操作条件不稳定时的定性 相对保留值定性:相对保留值只受柱温和固定相性质的影响, 而柱长、固定相的填充情况和载气的流速均不影响相对保留 值的大小。 用已知标准物增加峰高法定性:在得到未知样品的色谱图后, 在未知样品中加入一定量的已知标准物质,然后在同样的色 谱条件下,作已知标准物质的未知样品的色谱图。对比这两 张色谱图,哪个峰增高了,则说明该峰就是加入的已知纯物 质的色谱峰。
f 'i f ' S 分别为组分i和内标物S的质量校正因子
Ai、AS分别为组分i和内标物S的峰面积
问题:内标法中,如以内标物为基准,则其相应 计算公式如何? 提示:此时 f ' S =1.0。
内标物的选择
内标物应是试样中不存在的纯物质; 内标物的性质应与待测组分性质相近,以使内标物的色谱峰 与待测组分色谱峰靠近并与之完全分离; 内标物与样品应完全互溶,但不能发生化学反应; 内标物加入量应接近待测组分含量。
一般来说,对浓度型检测器,常用峰高定量;对质量型检测器, 常用峰面积定量。
校正因子
校正因子分为相对校正因子和绝对校正因子。 绝对校正因子:表示单位峰面积或单位峰高所代表的物质质量。
mi fi = Ai
或
f i(h)
mi = hi
绝对校正因子的测定一方面要准确知道进入检测器的组分的 量mi,另一方面要准确测量出峰面积或峰高,并要求严格控制色 谱操作条件,这在实际工作中是有一定的困难的。
答:没有。由测定过程和计算公式我们可以发现,进样量的大小不影 响最终的测定结果。
内标法应用实例:甲苯试剂纯度的测定
标准溶液和试样溶液的配制 标准溶液的配制 甲苯试样溶液的配制 相对校正因子的测定 仪器开机、点火、调试; 标准溶液的分析 相对校正因子的计算: 甲苯试样中甲苯含量的测定 甲苯试样溶液的分析
定性定量方法
(4)自动积分和微机处理法
2018/10/4
2. 定量校正因子
试样中各组分质量与其色谱峰面积成正比,即: m i = f i’ · Ai 绝对校正因子:比例系数f i ,单位面积对应的物质量: fi ’ =m i / Ai 定量校正因子与检测器响应值成倒数关系: fi’ = 1 / Si 相对校正因子 fi :即组分的绝对校正因子与标准物质的绝 对校正因子之比。
(c) 若将内标法中的试样取样量和内标物加入量固定,则:
Ai ci % 常数 AS2018/10/4(3)外标法
外标法也称为标准曲线法。 特点及要求: 外标法不使用校正因子, 准确性较高,
操作条件变化对结果准确
对进样量的准确性控制要
性影响较大。 求较高,适用于大批量试样的 快速分析。
f i mi / Ai mi As fi f s m s / As m s Ai
'
• 当mi、mS以摩尔为单位时,所得相对校正因子称为相对 摩尔校正因子(f M),用表示;当mi、mS用质量单位时, 以 (f W),表示。
2018/10/4
3.常用的几种定量方法
(1)归一化法:
mi ci % 100 m1 m2 mn f i' Ai
f i ' Ai mS ' mi f s AS mS f i ' Ai ci % 100 100 ' 100 W W W f s AS
2018/10/4
内标法特点
(a) 内标法的准确性较高,操作条件和进样量的稍许变动对 定量结果的影响不大。 (b) 每个试样的分析,都要进行两次称量,不适合大批量试 样的快速分析。
色谱定性定量分析方法
(1)绝对校正因子 某组分i通过检测器的量与检测器对该组分的响应信号之比
测定方法:将已知量的被测标准物质注入色谱仪,根据进样 量及色谱图上的峰面积或峰高计算出绝对校正因子
(2)相对校正因子 组分i与基准物(标准物)s的绝对校正因子之比
检测器不同,所选用的基准物不同 热导检测器——苯 氢火焰离子化检测器——正庚烷
(3)内标法
若试样中所有组分不能全部出峰,或仅需测定试样中某个或 某几个组分的含量时,可以采用内标法 将一定的标准物(内标物s)加入到一定量的试样中,混合均 匀后进样,从色谱图上分别测出组分i和内标物s的峰面积 (或峰高)
或:
内标法中常以内标物为基准,即fs=1.0,则:
■ 内标法最关键是选择合适的内标物,对内标物的 要求:
1.定量校正因子
■ 色谱定量分析是基于被测物质的量与其峰面积的 正比关系。但由于同一检测器对不同的物质具有 不同的响应值,所以两个相等量的物质出的峰面 积往往不相等,或者说,相同的峰面积并不意味 着相等物质的量。这样就不能用峰面积来直接计 算物质的量。
■ 因此,在计算组分的量时需将面积乘上一个换算 系数,使组分的面积转换成相应物质的量。即必 须将峰面积A乘上一个换算系数进行“校正”。
例:苯、甲苯、乙苯的相对校正因子的测定:分别称取一定 量的三种物质,在25 mL容量瓶中定容。取一定量注入色谱 仪,获得色谱图,测量其峰面积,以苯为基准物,计算各组 分相对校正因子。
组分 质量/g 1
峰面积/mm2
2
3
平均
相对校 正因子
苯(标 准物)
2.22
442
Hale Waihona Puke 440438440
甲苯 2.22 429
例:试样混合物中仅含有甲醇、乙醇和正丁醇,测得峰高分
气相色谱定性和定量分析
气相色谱定性和定量分析一、目的要求1. 学习利用保留值和相对保留值进行色谱对照的定性方法。
2. 学习利用外标法进行定量分析。
3. 熟悉色谱仪器操作。
二、基本原理各种物质在一定的色谱条件(一定的固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。
对于较简单的多组分混合物,若其中所有待测组分均为巳知,它们的色谱峰均能分开,则町将各个色谱峰的保留值与各相应的标准样品在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。
该法是气相色谱分析中最常用的一种定性方法。
以保留值作为定性指标,虽然简便,但由于保留值的测定,受色谱操作条件的影响较大,而相对保留值,仅与所用的固定相和温度有关,不受其它色谱操作条件的影响,因而更适合用于色谱定性分析。
相对保留值r is 定义为:MR M R R R is t t t t t t r s i si --==//式中t M 、t M ’t Rs ’分别为死时间、被测组分i 及标准物质s 的调整保留时间。
还应注意,有些物质在相同的色谱条件下,往往具有相近的甚至相同的保留值,因此在进行具有相近保留值物质的色谱定性分析时,要求使用高柱效的色谱柱,以提高分离效率,并且采用双柱法(即分别在两根具有不同极性的色谱柱上测定保留值)。
在没有已知标准样品可作对照的情况下,可借助于保留指数 (Kov átts 指数)文献值进行定性分析。
对于组分复杂的混合物,采用更为有效的方法,即与其它鉴定能力强的仪器联用,如气相色谱/质谱,气相色谱/红外吸收光谱联用等手段进行定性分析。
三、仪器及试剂1.仪器气相色谱仪(岛津GC—17A);氮气钢瓶、氢气钢瓶;空气压缩机;氢火焰检测器;色谱柱;微量进样器2.试剂①苯、甲苯、正己烷(分析纯);②含苯、甲苯、正己烷的混合物四、实验条件1.毛细管色谱柱: DB-1型 0.25㎜×30m 非极性柱75 Kpa2.载气: N23.燃气: H60Kpa24.助燃气:空气 50Kpa五、实验步骤1.据实验条件,将色谱仪按仪器操作步骤调节至可进样状态,待仪器上的电路和气路系统达到平衡,色谱工作站屏幕上显示基线平直时,即可进样。
气相色谱的定性与定量分析实验
气相色谱的定性与定量分析一、 实验目的:1、 学习计算色谱峰的分享度2、 掌握根据纯物质的保留值进行定性分析3、 掌握用归一化法定量测定混合物各组分的含量4、 学习气相色谱信的使用方法二、 方法原理1、 柱效能的测定:色谱柱的分享效能,主要由柱效和分离度来衡量。
柱效率是以样品中验证分离组分的保留值用峰宽来计算的理论塔板数或塔板高度表示的。
22211654.5⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=bR RW t W t n 理论塔板数: nL H =理论塔板高度: 式中R t 为保留值(S 或mm ):21W 为半峰宽(S 或mm ):b W 为峰底宽(S 或mm ):L 为柱长(cm )。
理论塔板数越大或塔板高度越小,说明柱效率越好。
但柱效率只反应了色谱对某一组分的柱效能,不能反映相邻组分的分离度,因此,还需计算最难分离物质对的分离度。
分离度是指色谱柱对样品中相邻两组分的分离程度,对一个混合试样成功的分离,是气相色谱法完成定性及定量分析的前提和基础。
分离度R 的计算方法是:)()(22112112W W t t R R R +-=或 2112)(2B b R R W W t t R +-=分离度数值越大,两组分分开程度越大,当R 值达到1.5时,可以认为两组分完全分开。
2、 样品的定性:用纯物质的保留值对照定性。
在一个确定的色谱条件下,每一个物质都有一个确定的保留值,所以在相同条件下,未知物的保留值和已知物的保留值相同时,就可以认为未知物即是用于对照的已知纯物质。
但是,有不少物质在同一条件下可能有非常相近的而不容易察觉差异的保留值,所以,当样品组分未知时,仅用纯物质的保留值与样品的组分的保留值对照定性是困难的。
这种情况,需用两根不同的极性的柱子或两种以上不同极性固定液配成的柱子,对于一些组成基本上可以估计的样品,那么准备这样一些纯物质,在同样的色谱条件下,以纯物质的保留时间对照,用来判断其色谱峰属于什么组分是一种简单而行方便的定性方法。
气相色谱仪的定性、定量分析
常用峰面积定量被测组分经
校正过的峰面积(或峰高)占样品中各组分 经校正过的峰面积(或峰高)的总和的比例
来表示样品中各组分含量的定量方法。 当试样中所有组分均能流出色谱柱,且
完全分离,并在检测器上都能产生信号时, 可用归一化法计算组分含量。
4、标准曲线法 标准曲线法也称外标法或直接比较法, 是一种简便、快速的定量方法,具体方法与 分光光度分析中的标准曲线法相似。 优点:绘制好标准工作曲线后测定工作 就变得相当简单,可直接从标准曲线上读出
含量,因此特别适合于大批样品分析。缺点: 每次样品色谱分析的色谱操作条件(检测器 的响应性能、柱温、流动相流量及组成、进 样量、柱效等)很难完全相同,因此容易出 现圈套误差。
这个结论并不准确可靠。
(2)双柱法定性。若要得到更为准确可靠 的结论,可再用另一根极性完全不同的色谱 柱,做同样的对照比较。如果结论同上,那 么最终的定性结果相对更为可靠。
(3)色谱操作条件不稳定时的定性。这时 可以采用相对保留值定性或用已知标准物增
加峰高法定性。 ① 相对保留值定性; ② 用已知标准物增加峰高法定性。 2、利用保留指数定性 在利用已知标准物直接对照定性时,已
缺点是必须在所有样品中加入内标物, 选择合适的内标物比较困难,内标物的称量 要准确,操作较复杂。
3、标准加入法 标准加入法是一种将欲测组分的纯物质 加入到待测样品中,然后在相同的色谱条件 下,分别测定加入欲测组分纯物质前后欲测 组分的峰面积(或峰高),从而计算欲测组 分在样品中的含量的方法。
优点:不需要别处的标准物质作内标物, 只需要欲则组分的纯物质,进样量不必十分 准确,操作简单,是色谱分析中较常用的定 量分析方法。缺点:要求加入欲测组分前后 两次色谱测定的色谱操作条件完全相同,否 则将引起分析测定的误差。
6--第二章色谱的定性与定量
二、定量校正因子
为何引入定量校正因子? 色谱定量分析是基于被测物质的量与其峰面积 的正比关系。但由于同一检测器对不同的物质具有 不同的响应值,所以两个相等量的物质出的峰面积 往往不相等,这样就不能用峰面积来直接计算物质
的量。这就需要引入“定量校正因子”来进行校正。
绝对校正因子 一定操作条件下,进样量(mi)与响应信号(峰面积Ai)成 正比:
若各组分的f值相近或相同,例如同系物中沸点接近的 各组分,则上式可简化为:
ω i= Ai A1+A2+…+An
×100%
对于狭窄的色谱峰,也有用峰高代替峰面积来进行定量 测定。当各种条件保持不变时,在一定的进样量范围内,峰 的半宽度是不变的,因为峰高就直接代表某一组分的量。 ω i= hi fi´´ f1 ´´ h1+ f2 ´´ h2+…+ fn ´´ hn
第六节 色谱定性方法
一、根据色谱保留值进行定性分析 1.为什么色谱保留值可以作为定性分析的依据?
因为在确定的色谱分析条件下,各物质都有确定不变的保留值。 保留值是最常用的色谱定性方法。
2.根据保留值定性的优劣
方法简便,但应用局限性大。
3.定性方法 (1)简单情况:对于较简单的多组分混合物,其所有待测
式中Mi,Ms分别为被测物和标准物质相对分子量。
3、体积校正因子fV 如果以体积计量(气体试样)则体积校正因子就是 摩尔校正因子,因为1mol任何气体在标准状态下其 体积都是22.4L。 mi /Mi *22.4 Ai fi ’(V) = fM fV = = fS ’ ms/Ms *22.4 (V) As
.
.fi ×100%
此法是通过测量内标物和待测组分的峰面积的相对值来进行计算的,因此,由于 操作条件变化所引起的误差可以得到抵消,结果比较准确。
气相色谱常用定量和定性方法
fM
14
2020/10/20
3.2.2相对校正因子的查阅
3.2.3.1相对响应值(S ) 一种物质与相同量的参比物质的响应值之比 3.2.3.2 f =1/S
15
2020/10/20
3.2.3定量校正因子的测定
相对校正因子:采用的标准物因检测器不同而 不同: 热导池检测器TCD:苯 火焰离子化检测器FID:正庚烷
保留指数I只与柱温和固定相的性质和被测物质的性质有关,与色谱柱 的尺寸、固定相的液膜厚度、载气流量、流速无关。
2.3.2.2方法
(1)将碳数为Z和Z+1的正构烷烃做标准物,加入到待测样品i中,测得这
三种物质的调整保留值,且tR(Z) < tR(i)< tR(Z+1)
I
100[Z
lg X i lg X Z lg X(Z 1) lg X Z
Xi%=fi×Ai Xs%=fs×As= fi×As Xi%/ Xs%= Ai/As Xi%= Xs% Ai/As
20
2020/10/20
3.3.4内标法
2.常用的色谱定性分析方法
2.1 根据保留值定性(用纯物质对照) 2.2 用双柱定性 2.3 利用文献值对照定性 2.4 GC-MS联用定性
4
2020/10/20
2.1 根据保留值定性--最常用的定性方法
2.1.1 依据 相同物质在相同的色谱条件下具有相同的保留值。
(1()即若:试若样tR中=ti某,组则分R的=i)保留值(tR) 与已知物相同,则试样中含有该物质。 (2)峰增高法:在待测物中加入已知物的纯物质,再与待测物色谱图比较,
]
(2)求出未知物的Ii,并与文献值对照定性 2.3.2.3注意
色谱的定性和定量分析
第四章色谱的定性和定量分析色谱分析分三个阶段:仪器调试;色谱操作条件选择;定性定量分析。
气相色谱法是用载气将试样带入分离柱。
各成分在柱中分离后用检测器测定,通常是未知试样与标准試样的保留时间及峰面积比较,进行定性定量分析。
色谱法分离较容易,往往是定性较困难。
用t R定性时,因t R与分子结构有关,但两者间相关规律远未阐明.因为色谱信息少,响应信号缺乏典型的分子结构特征,因此不能鉴定未知的新的化合物,只能鉴定已知的化合物。
第一节定性分析色谱定性分析就是要确定各色谱峰所代表的化合物。
由于各种物质在一定的色谱条件下均有确定的保留值,因此保留值可作为一种定性指标。
目前各种色谱定性方法都是基于保留值的。
但是不同物质在同一色谱条件下,可能具有相似或相同的保留值,即保留值并非专属的。
因此仅根据保留值对一个完全未知的样品定性是困难的。
因为许多化合物可能在同一时间流出色谱柱,因此仅仅依靠气相色谱本身是不能对一个完全未知的化合物进行定性的。
然而当样品限定时,如果在了解样品的来源、性质、分析目的的基础上,对样品组成作初步的判断,再结合下列的方法则可确定色谱峰所代表的化合物。
气相色谱将变成一个强有力的工具。
也可以通过比较气相色谱图来确定样品是否相同,例如油轮里的原油样品可以和海上浮油比较以确定油轮是否应对原油的泄漏负责,GC对于排除可疑性是很有用的,如果您从先前的实验中知道异辛烷在1.9 分钟出峰,那么一个在1.5分钟出的峰就不会是异辛烷,那么它是什么呢?幸运的是您不必要考虑所有的有机化合物的样品信息,如果限定化合物范围。
例如您不会期望在烷烃中找到苯系物,当一个未知的峰被初步确定后,还必须在别的不同性质的色谱柱上重现以得到确认,如果一个化合物在基于沸点分离的柱甲基硅氧烷和聚乙二醇极性柱上有正确的保留时间,此定性很可能就是正确的。
GC在处理已知样品组分并且要求定量时是特别有用的。
一、保留值定性(一)利用纯物质对照定性1.利用保留时间t R对照定性色谱分析的的基本依据是保留时间。
气相色谱的定性和定量分析
实验七 气相色谱的定性和定量分析一、实验原理对一个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。
衡量一对色谱峰分离的程度可用分离度R 表示:()211221Y Y t t R R R -⨯-=,,式中,T R,2,Y 2和T R,1,Y 1分别是两个组分的保留时间和峰底宽,当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。
在实际应用中,R=1.0一般可以满足需要。
用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。
在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。
因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。
当手头上有待测组分的纯样时,作与已知物的对照进行定性分桥极为简单。
实验时,可采用单柱比较法、峰高加入法或双柱比较法。
单柱比较法是在相同的色谱条件下.分别对已知纯样及待测试样进行色谱分析.得到两张色谱图,然后比较其保留参数。
当两者的数值相同时,即可认为待测试样中有纯样组分存在。
双柱比较法是在两个极性完全不同的色谱住上,在各自确定的操作条件下,测定纯样和待测组分在其上的保留参数,如果都相同,则可准确地判断试样中有与此纯样相同的物质存在。
由于有些不同的化合物会在某一固定相上表现出相同的热力学性质,故双柱法定性比单柱法更为可靠。
在一定的色谱条件下,组分i 的质景m :或其在流动相中的浓度,与检测器的响应信号峰面积Ai 或峰高h ,成正比:2-10 或 2-11式中,f i A 和f i h 称为绝对校正因子。
式(2-10)和式(2-11)是色谱定量的依据。
不难看出,响应信号A 、h 及校正因了的淮确测量直接影响定定分析的准确度。
由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。
测量峰面积的方法分为于上测量和自动测量。
气相色谱的原理及定性定量分析
气相色谱的原理及定性定量分析基本原理气相色谱是将有机物分离的一种方法,它也可以对混合物的组成进行定性定量分析。
混合物是通过在流动相和固定相中的相作用而分离的。
流动相和固定相构成色谱法的基础。
流动相可以有气体和液体两种状态,固定相则有液体和固体两种状态。
流动相是气体的称作气相色谱。
流动相是液体的称做液相色谱。
气相色谱是一种分配色谱,其固定相是由特定的液体黏附在一些固体基质上组成的。
各种气相色谱仪虽然在功能、价格和操作上有所不同,但其都是由气流系统、分离系统、检测系统和数据处理系统所组成的。
如下图:气相色谱的气流系统主要包括气源和气体纯化及调节装置。
气源一部分是作为流动相的载气,我们所使用的载气是氮气。
气源的另一部分是作为后期检测所用的燃烧气体,主要是氢气和空气。
由于进入分离系统的气体纯度需要保证,所以不论气源纯度如何,都应通过气体净化装置才能进入色谱分离系统。
虽然根据检测器或色谱柱不同,气相色谱的气体纯度有所差异,但所有气体的纯度至少要达到99 %以上,许多情况下应达99?99 %。
气相色谱分离系统包括样品汽化室和色谱柱两部分。
气相色谱分离技术需要所测有机物样品必须在气态才能进行,因此,首先需要将液态或固态的样品加热(100 —300 C )汽化才能进入色谱柱进行分离。
这样气相色谱进样是用人工或自动注射的方式将有机样品首先注入汽化室。
气相色谱的定性定量分析气相色谱主要功能不仅是将混合有机物中的各种成分分离开来,而且还要对结果进行定性定量分析。
所谓定性分析就是确定分离出的各组分是什么有机物质,而定量分析就是确定分离组分的量有多少。
色谱在定性分析方面远不如其它的有机物结构鉴定技术,但在定量分析方面则远远优于其它的仪器方法。
有机物进入气相色谱后得到两个重要的测试数据:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。
色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。
㈠定性分析气相色谱的定性分析主要有保留值定性法、化学试剂定性法和检测器定性法。
色谱定性和定量分析方法
Identification
2019/9/22
二、 色谱定量分析方法 1. 峰面积的测量
(1)峰高(h)乘半峰宽(Y 1/2)法:近似将色谱峰当作等腰三角形。此法算 出的面积是实际峰面积的0.94倍:
A = 1.064 h·Y1/2 (2)峰高乘平均峰宽法:当峰形不对称时,可在峰高0.15和0.85处分别测定峰 宽,由下式计算峰面积:
fi' Ai
f
' s
AS
ci
%
mi W
100
ms
fi' Ai
f
' s
AS
W
100
ms W
fi' Ai
f
' s
AS
100
2019/9/22
内标法特点
(1) 内标法的准确性较高,操作条件和进样量的稍许变动对定量结果的影响 不大。
(2) 每个试样的分析,都要进行两次称量,不适合大批量试样的快速分析。 (3)若将内标法中的试样取样量和内标物加入量固定,则:
Ai Ai
)
100
i 1
特点及要求: 归一化法简便、准确; 进样量的准确性和操作条件的变动对测定结果影响不大; 仅适用于试样中所有组分全出峰的情况。
2019/9/22
(2)外标法
外标法也称为标准曲线法。 特点及要求: 外标法不使用校正因子,准确性较高, 操作条件变化对结果准确性影响较大。 对进样量的准确性控制要求较高,适用于大批量试样的快速分析。
1.0 DEG/MI N
HEWLET PTACKAR
5972A
D
Mass Selectiv eDetecto r
色谱的定性与定量
谱峰的峰面积或峰高)---所测组分的数量或 浓度成正比,
即:
wi Ci f i Ai hi
w 式中: i –组分i的质量
ci —组分i的浓度
f i —组分的校正因子(与检测器的性质和被 测组分的性质有关)
Ai —组分i的峰面积,
②利用相对保留值定性
定义:相对保留值是组分i与基准物S的调整保留值之比:
i,s tR ,i / tR ,s VR,i /VR,s
优点:可以消除某些操作条件的影响,只要柱温、 固定相不变,即使柱径、柱长、填充情况及流动 相的流速有所变化,相对保留值γ仍然不变,它是 色谱定性分析的重要参数
③利用保留指数定性 表示物质在固定液上的保留行为,是目前使
绝对校正因子fi的大小主要由操作条件和 仪器的灵敏度所决定,既不容易准确测量,也 无统一标准;当操作条件波动时,fi也发生变 化。故fi无法直接应用,定量分析时,一般采 用相对校正因子。
(2)相对校正因子(校正因子):
f
fi fs
mi ci Ai hi ms cs As hs
式中:f -- 相对校正因子 ,简称为校正因子, 无因次量
hi —组分i的峰高
2.峰面积的准确测定
1)对称峰的峰高和峰面积 的测定
第一法:峰高×半高 峰宽
A h Wh 2
式中: h—从峰顶到峰底线 的垂直距离 W h/2—峰高1/2处的 峰宽
第二法:三角形法
A BM Wi
式中:BM—三角形的高 Wi—三角形KML的
半高宽,近似等于色 谱峰高0.607处的峰宽
0.40
Ethylparaben
0.35
6.色谱分析中的定性与定量方法
色谱定量分析
色谱定量分析
• 绝对校正因子:单位峰面积对应的物质量:fi = mi/Ai • 定量校正因子与检测器响应值成倒数关系: • fi=1/Si • 相对校正因子fi :即组分的绝对校正因子与标准物质 的绝对校正因子之比。
fi mi / Ai mi As fi f s ms / As ms Ai
• 化学反应定性:利用化学反应,使样品中某些 化合物与特征试剂反应,生成相应的衍生物。 • 柱前反应:被分离混合物进入色谱柱前与某些 特征性试剂反应,观察色谱图上某些色谱峰发 生消失、提前或滞后而断定有无此类化合物。 • 柱 上: 如装有5A分子筛的前置柱,可吸附C3C11的正构烷烃,KOH处理的石英粉可将羧酸 和酚除去(吸附)等。 • 柱 后: 柱后流出物收集后,加入特征试剂与 其反应,可对未知物定性。
色谱定量分析
• 叠加内标法:以样品中已有的组分做内标,比 较该组分加入前后面积的改变,计算被测组分 含量
A1 mS ci % 100 A2 A1 W
• 特点:要求两次进样量完全相同。
色谱定量分析
• 叠加内标法:两次进样量不同时的处理
'
• 当 m i 、 m S 为质量单位时,为质量相对校正因子;当 m i 、 mS用摩尔单位时相应于摩尔校正因子。
色谱定量分析
• 归一化法:
mi ci % 100 m1 m2 mn
f i ' Ai
' ( f i Ai ) i 1 n
100
归一化法的特点: • 对同系物可认为校正因子一样,通过峰面积直接测定; • 进样量的准确性和操作条件的变动对测定结果影响不 大; • 试样中所有组分必须全出峰并且无分解反应发生。
色谱定性与定量
仪器分析中各分析定量定性的依据定量分析是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。
定性分析则是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及最新的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。
1、气相色谱:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。
色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。
2、紫外光谱:最大吸收波长λ、摩尔吸收系数ε及吸收曲线的形状不同是进行物质定性分析的依据。
进行定量分析依据朗伯-比耳定律:A=εbc3、核磁:定量分析以结构分析为基础,在进行定量分析之前,首先对化合物的分子结构进行鉴定,再利用分子特定基团的质子数与相应峰谱的峰面积之间的关系进行定量测定。
定量分析的根据:吸收能量的大小取决于核的多少。
以磁场强度为横坐标提供定性分析所依据的参数,以吸收能量为纵坐标,纵坐标对应于不同H0的出峰面积就是定量分析参数。
4、质谱:利用电磁学原理,对物质气相离子依其质荷比(m/e)进行分离和分析的方法。
被分析的样品首先离子化,然后利用离子在电场或磁场中的运动性质,将离子按质荷比(m/e)分开并按质荷比大小排列成谱图形式,根据质谱图可确定样品成分、结构和相对分子质量。
5、原子吸收:原子吸收光谱法进行定量分析的依据是:试样中待测元素的浓度与待测元素吸收辐射的原子总数成正比,即A=k'C 。
定量分析方法有标准曲线法和标准加入法两种。
6、红外:红外光谱的定性主要根据图谱中的:基团的特征吸收频率红外光谱的定量是根据图谱中的:特征峰的强度7、离子:利用离子交换的原理,连续对多种阴离子进行定性和定量的分析。
保留时间定性,峰高或峰面积定量。
8、荧光:物质吸收的光,称为激发光;物质受激后所发射的光,称为发射光或荧光。
根据荧光的光谱和荧光强度,对物质进行定性或定量测定9、差热:定性分析:定性表征和鉴别物质依据:峰温、形状和峰数目方法:将实测样品DTA曲线与各种化合物的标准(参考)DTA曲线对照。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
果仪器 线 关系 , 浓度与 积( 高) 线 关系。 标 曲线 过 。 们可 单 校 来计 测 样 浓度,看仪器 线 关系 , 可 标纸画, 种可 过计 获得。 来说,r值为4个九 ,线 关系较 。
在保证标准曲线通过原点的情况下,用 单点校正法还需要标准样品和被测样品的浓 度近可能的接近。我们在分析时,一般要求 标准和被测浓度差小于10%。总之,标准和 被测样品的浓度越接近,分析的准确度就越 高。
2.利用文献值对照进行定性分析
在一个普通的实验室中,不可能备有很多已 知的纯物质。因此人们利用已知物的文献保留值与 未知物测定的保留值进行比较对照的办法来进行定 性分析。利用文献值对照进行定性分析,需要知道 被测的未知物是属于哪一类化合物,然后在文献中 查找分析该类化合物所用的色谱柱及其他色谱操作 条件,(注意:一定要与文献上的色谱条件一样) 再与文献对照进行定性分析。如果分析条件不一样, 分析结果是没有意义的。这种方法一般不用,因为 也很难找到与文献一样的色谱操作条件。
1.归一化法
• 归一化法是一种常用的,简 便的准确的定量分析方法。使用这 种定量方法的条件是样品中的所有 组份都要流出色谱柱,且在所用检 测器上都产生信号。
归一化法:样品中全部组分都显示出 谱峰。测量全部峰值,经相应的校正因子 校准并归一后,计算组分百分含量:
f i ⋅ Ai Xi% = × 100% ∑ f i ⋅ Ai
(1).利用相对保留值定性
相对保留值就是在相同色谱操作条件下,组 分与参比组分的调整保留值之比。由于相对保留值 是被测组分与加入的参比组分的调整保留值之比, 因此当载气的流速和柱箱温度发生微小变化时,被 测组分与加入的参比组分的保留值同时发生变化, 而它们的比值——相对保留值则不变。
(2) 利用已知物增加峰高法定性
外标法计算举例
面积值
C12 C14 C16 C18 250 290 330 370 1240
面积 %
20.2 23.4 20.6 29.9 100%
RF
25/250 = 0.100 25/290 = 0.086 25/330 = 0.076 25/370 = 0.068
脂肪酸甲酯标样做单级校正,含C12、C14、C16、C18各 25 ng。 则保存其响应因子用于计算未知样品中的C12、C14、C16、C18各组分的 浓度。 响应因子 = 标准物质的含量 / 面积 未知样含量 = 未知样品的面积 X RF(响应因子)
定量校正因子
同一种物质在不同检测器上有不同的响应讯号 ,不同的物质在同一检测器上响应值也不同, 为了使用方便,提出了定量校正因子的概念, 其物理定义是单位峰面积所代表的被测组分的 量。
Ci fi = Ai
式中:Ci—被测组分浓度 Ai—被测组分峰面积
4. 标准加入法
• 标准加入法实质上是一种特殊的内标法 ,是在选择不到合适的内标物时,以欲册 组分的纯物质为内标物,加入到待测样品 中,然后在相同的色谱条件下,测定加入 欲测组分纯物质前后欲测组分的峰面积或 峰高,从而计算欲测组分在样品中的含量 。
谢 谢!
式中: Ai为任一组份的峰面积 fi 为任一组份的摩尔校正因子 Wi为试样中组份i的百分含量
2. 校正曲线法
这个方法的原理是配制已知浓度的 标准样品进行色谱分析,测量各组份的峰 高或峰面积。求出单位峰高或峰面积的组 份含量,或峰高(或峰面积)和浓度的标 准曲线,然后在与标准样品相同的测量条 件下,进入同样量的被测样品,根据上述 校正值或标准曲线计算出被分析样品的浓 度。
3.利用保留值规律进行定性分析
无论采用已知物增加峰高法定性, 还是采用文献值对照进行定性分析,其 定性的准确度都不是很高的,往往还需 要别的方法进行确认。如果将已知物增 加峰高法定性、文献值对照进行定性与 保留值规律的定性加与结合,则可大大 提高定性分析结果的准确性。
三、定量分析
• • • • • 色谱分析中常用的定量方法主要有4种: 1.归一化法 2.校正曲线法 3.内标法 4.标准加入法
二、定性分析
1、利用已知物直接对照法定性 、 a.利用相对保留值定性 利用相对保留值定性 b.利用已知物增加峰面积方法定性 利用已知物增加峰面积方法定性 2、利用文献值对照进行定性 、 3、利用保留值规律进行定性 碳素 、 规律/沸点规律 规律 沸点规律
1.利用已知物直接对照进行的 定性分析
在具有已知标准物质的情况下,利用已知物 直接对照法定性是一种最简单的定性方法。就是在 相同的色谱条件下,(即同一台仪器,同一根色谱 柱,相同的色谱操作条件)将未知物质和已知物质 进行分析,作出色谱图后进行对照比较。这种方法 只限于未知样品中组分不多且组分不太复杂,色谱 柱具有很好的分离度的情况下使用。
用已知物增加峰高法定性,就是在得到未知样 品的色谱图后,在未知样品中加入一定量的已知纯 物质,然后在相同的色谱条件下 ,作已知物质和 未知样品的色谱图,再把两个色谱图进行对比,哪 个峰高增加了,则该峰就是加入的已知纯物质的色 谱峰。这一方法既可避免载气流速和柱箱温度的微 小波动而引起的保留时间变化对定性分析结果带来 的影响,又可避免色谱图图形复杂时准确测定保留 时间的困难。这是确认复杂样品中 是否含有某一 组分的最好办法。
X 1.10 = X 1.10 = X 1.10 = X 1.10 = X 1.10 =
ISTD 校正因子 25 / 22.7 = 1.10 校正因子:
四、色谱分析计量学的保证
(1)气相色谱的检定
气相色谱仪的测量数据涉及到环保、医药、矿山、 安全等强制计量内容; 对社会出具检测数据报告的实验室; 为了使气相色谱仪测量数值准确可靠,需按 JJG700-1999计量检定规程对该仪器进行检定。
色谱分析的定性与定量金美兰 二0一年五月色谱分析的定性与定量
一、前言 二、定性分析 三、定量分析 四、保证色谱分析的定性和定量结果准 确的几个因素
一、前言
色谱法是目前使用最广泛的和最 有效的分离、分析方法之一,色谱法 是依据组分的保留时间来定性,依据 组分的响应值来定量。色谱分析的最 终目的就是要对未知组分进行定性和 对已知组分进行定量。从而获得准确 可靠的分析结果。
单点校正法的计算公式是:
C = R R 0 • C
0
式中:C为被测样品的浓度; CO为标准样品的浓度; R 为被测样品的响应值(峰面积或峰高); RO为标准样品的响应值(峰面积或峰高)。
3. 内标法
选择内标物的标准
样品中不存在 可迅速容易得到 化学性质与样品相似 与样品有相同的浓度范围 不会与样品发生反应 在感兴趣组分附近流出 可得到分离良好、干净利落的峰 色谱性质稳定
(2)分析方法的建立与确认 在色谱仪性能指标正常的前提下,应根据分析目的 建立分析方法,并对方法的精密度及可靠性进行考 察,最终获得准确的数据。 (3)标准物质的使用 气相色谱仪是依据被测物质的成分量与可测量的物 理量之间的关系来计量的,属于相对测量。需要依 赖可靠的标准物质为标准,通常选取组分相同或相 近的标准物质进行定量分析。 (4)气相色谱分析的不确定度估算
内标法的计算公式 :
= Ai f AS f
i S
W
i
• W
S
式中:Ai 为被测组份的峰面积 fi 为被测组份的质量绝对校正因子 As 为内标物的峰面积 fs 为内标物的质量绝对校正因子 Wi 为试样中被测组份的含量
内标法的优缺点
• 内标法的优点: • 进样量的变化,色谱条件的微小变化对内 标法定量结果影响不大。如要获得高准确 度的结果时 ,可以加入数种内标物,以获 得准确可靠的定量结果。 • 缺点是:选择合适的内标物比较困难,准 确称量内标物比较麻烦。
标准加入法的优缺点
优点:不需要加入另外的标准物 质作内标物,只需欲测组分的纯物质 进样量不必十分准确,操作简单。 缺点 :要求加入欲测组分前后两次 色谱测定的色谱条件完全相同。
气相色谱的响应值
• 早期的气相色谱的响应值一般用记录仪记 录色谱图,通过峰高和半峰宽及其他已知 条件计算得到峰面积。 • 后来发展到用积分仪记录色谱图,并直接 给出峰高和峰面积 • 目前大多数采用色谱工作站,直接给出峰 高和峰面积,并直接给出未知样品的含量
峰面积的测量方法 记录仪: 记录仪: 通过计算方法求得近似峰面积: 通过计算方法求得近似峰面积:A=1.065A′ A′=1.065×h·W1/2·C1·C2×Att × × 式中:h—峰高(cm) 峰高( ) 式中: 峰高 W1/2—半峰宽(cm) 半峰宽( ) 半峰宽 C1—记录仪灵敏度(mv/cm) 记录仪灵敏度( 记录仪灵敏度 ) C2—纸速的倒数(min/cm) 纸速的倒数( 纸速的倒数 ) Att—记录仪衰减 记录仪衰减
未知样品
面积 值 RF X 面积 (ESTD)
(
ISTD CONC
ISTD
面积
x RF
ISTD
)
ISTD 结果 30.8 ng 23.7 ng 25.0 ng 18.4 ng 24.0 ng
C12 C14 C15 C16 C18
280 250 280 220 320
28.0 ng 21.5 ng 22.7 ng 16.7 ng 21.8 ng
响应因子考虑了相同的含量并不一定产生相同检测器响应的事实。
内标法的计算
标样 C12 C14 C15 C16 C18 面积值 250 290 310 330 370 RF 0.100 0.086 0.081 0.076 0.068 单级校正,标样脂肪酸甲酯含C12、C14、C16 和C18四组分各25ng,并加入一含量为25g的内 标物C15。 这里RF=样品量/面积值