2014版线性代数练习册第五章参考答案(1)

合集下载

线性代数第五章 课后习题及解答

线性代数第五章 课后习题及解答

第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT-因此,A 的属于1λ的所有特征向量为:TTk k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任意常数)。

线性代数第五章答案

线性代数第五章答案

0 0 1

| AE|
0 0
1 1
0 0
( 1)2( 1)2
1 0 0
故 A 的特征值为121 341 对于特征值121 由
A E 1100
0 1 1 0
0 1 1 0
1100 ~ 1000
0 1 0 0
0 1 0 0
1000
得方程(AE)x0 的基础解系 p1(1 0 0 1)T p2(0 1 1 0)T 向量 p1 和 p2 是对应于特征值 121 的线性无关特征值向量
k1a1k2a2 knranrl1b1l2b2 lnrbnr0

k1a1k2a2 knranr(l1b1l2b2 lnrbnr)
则 k1 k2 knr 不全为 0 否则 l1 l2 lnt 不全为 0 而
l1b1l2b2 lnrbnr0 与 b1 b2 bnt 线性无关相矛盾
因此 0 是 A 的也是 B 的关于0 的特征向量 所以 A 与 B 有公共的特征值 有公
a2,
a3)
1
0 1
1
1 1
0
1
0111
解 根据施密特正交化方法
b1
a1
0111
b2
a2
[b1,a2] [b1,b1]
b1
1 3
2311
b3
a3
[b1,a3] [b1,b1]
b1
[b2,a3] [b2,b2]
b2
1 5
4331
2 下列矩阵是不是正交阵:
1
(1)
1 2 1 3
对于特征值39 由
A
9E
8 2 3
2 8
3
333

《线性代数》第5章习题解答(r)new2_1

《线性代数》第5章习题解答(r)new2_1

习题五(P213-215)1.写出下列二次型的矩阵:.)(),,,().4(;),,,().3(;),,,().2(;8223),,().1(211221111122142314321222∑∑∑∑==-=+=-=+=-=++-+-=ni i n i in n i i ini in x xn x x x f x xxx x x f x x x x x x x x f yz xz xy z y x z y x f解:(1)12123111442-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦;(2)12121212000000000000⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦;(3)1211221122111211111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4) 111111111n n n ---⎡⎤⎢⎥---⎢⎥⎢⎥⎢⎥---⎣⎦。

2.若二次型123(,,)T f x x x X AX =对任意向量123(,,)T x x x 恒有0),,(321=x x x f ,试证明:A 是零矩阵.解:取(1,0,0),(0,1,0),(0,0,1)T T TX X X ===等三个向量代入0,TX AX =则二次型的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A 的所有元素),3,2,1,3,2,1(0===j i a ij 从而有A =0. 3.设B A ,是n阶实对称矩阵,且对任意的n维向量x 有BX X AX X ''=成立,试证明:.B A = 证:设,21][,][,)',,,(n n ij n n ij n b B a A x x x X ⨯⨯=== 则AX X '中的j i x x 的系数BX X a a a ij ji ij ',2=+中j i x x 的系数为,2ij ji ij b b b =+比较j i x x 的系数知),,,2,1,(n j i b a ij ij ==所以.B A = 4.试证明:不可能有实数矩阵⎥⎦⎤⎢⎣⎡=d c b a C 使1010,0101TC C ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦即⎥⎦⎤⎢⎣⎡1001与⎥⎦⎤⎢⎣⎡-1001是不合同的. 证:用反证法.若,10011001'⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡d c b a d c b a 则推得,122-=+d b 这是不可能的.所以⎥⎦⎤⎢⎣⎡1001与⎥⎦⎤⎢⎣⎡-1001是不.5. 设D C B A ,,,均为n阶对称矩阵,且B A ,是合同的,D C ,是合同的,试证明:⎥⎦⎤⎢⎣⎡B A 00与⎥⎦⎤⎢⎣⎡D C00也是合同的.证: 设,','D CQ Q B AP P ==则.00000000'⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D BQ P C A Q P 所以矩阵⎥⎦⎤⎢⎣⎡B A 00与矩阵⎥⎦⎤⎢⎣⎡D C00是合同的. 6. 用正交变换法,把下列二次型化为标准形:.32414321242322213231212322212222).2(;4844).1(x x x x x x x x x x x x f x x x x x x x x x f --+++++=---++=解:(1).正交变换矩阵为,032622231322326222⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=Q 标准形为;455232221y y y f -+= (2) 正交变换矩阵为,0000212121212121212121212121⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----=Q 标准形为.324232221y y y y f +-+=7. 用配方法,把下列二次型化为标准形:2212121323121323(1).3226;(2).422.f x x x x x x x x f x x x x x x =--+-=-++解:(1).由已知2322321)2()(x x x x x f +-+-=,令,2333223211⎪⎩⎪⎨⎧=+=+-=x y x x y x x x y 则,33321221232322111⎪⎩⎪⎨⎧=-=-+=y x y y x y y y x 可逆线性变换矩阵为,1000121212321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=C 所以标准形为;2221y y f -=(2).先令⎪⎩⎪⎨⎧=-=+=,33212211yx y y x y y x 则,4)(4232223211y y y y f ++--=再令⎪⎩⎪⎨⎧==-=,33223111yz y z y y z 则⎪⎩⎪⎨⎧=+-=++=,33321212321211z x z z z x z z z x 可逆线性变换矩阵为,10011112121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=C 所以标准形为.44232221z z z f ++-= 8. 用初等变换法, 把下列二次型化为标准形:.22).2(;6422).1(3221232132********x x x x x x f x x x x x x x x f ++-=+-+-=解:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=⎪⎪⎭⎫ ⎝⎛100101100030001100010001032321211).1(531313E A ,令,10010113531Y X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-= 则;3233132221y y y f +-= (2).令,110110111Y X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--= 则.2221y y f -= 9.已知二次型),0(233232232221>+++=a x ax x x x f 通过正交替换QY X =化为标准形,52232221y y y f ++=求参数a 及正交矩阵Q .解: 给定二次型及其标准形的矩阵分别为:,521,3030002⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B a a A 由,4,10218,22==-=a a B A 得2=a (去舍2-=a ),与特征值 5,2,1321=λ=λ=λ 对应的特征向量分别为,)'1,1,0(,)'0,0,1(,)'1,1,0(321=α=α-=α 因特征向量321,,ααα是相互正交的,将它们单位化后得所求的正交巨阵.0001022222222⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Q10.求二次型11222121121(,,,)22n n n ini i i i f x x x x xx x x --+===+++∑∑ 的标准形,并指出该二次型的秩和正惯性指数。

线性代数第五章(答案)

线性代数第五章(答案)

线性代数第五章(答案)第五章相似矩阵及二次型一、是非题(正确打√,错误打×)1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ )2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ )3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ )4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ )5.若A 是正交阵, Ax y =,则x y =. ( √ )6.若112=n n n n x x A ,则2是n n A ?的一个特征值. ( × )7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × )8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × )9. 矩阵A 有零特征值的充要条件是0=A . ( √ )10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ )11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ )13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ )15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ )16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ )17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ )18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ )19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵。

线性代数第五章练习及解答

线性代数第五章练习及解答

对应于同一特征值的不同特征向量的非零线性组合是 A 的特征向量。 证明由本节第 3 题可知属于不同特征值的特征向量的和不是特征向量,而属于同一特征值的不同特征 向量满足
Aξ1 = λξ1 , Aξ2 = λξ2 , 于是 A(k1 ξ1 + k2 ξ2 ) = k1 Aξ1 + k2 Aξ2 = λ(k1 ξ1 + k2 ξ2 ) 由定义命题得证 11.λ ̸= 0 是矩阵 A 的特征值,求 A−1 , A⋆ 的特征值。
证明:因为 A + E = A + AAT = A(A + E )T ,那么 |A + E |(1 − |A|) = 0,于是 |A + E | = 0, 即 λ = −1 是 A 的一个特征值
5. 设 A1 , A2 , A3 是 3 个非零的 n 阶矩阵 n ≥ 3 , 满足 A2 i = Ai (i = 1, 2, 3), 且 Ai Aj = O (i ̸= j ; j = 1, 2, 3)
1
若 Ai 有非零和 1 的特征值 λ,由于 λ2 − λ = 0, 故有且仅有 0 和 1 为特征值
(2) 若 Aj ξ = ξ, 那么 Ai (Aj ξ ) = Ai ξi , 即 Ai ξ = 0ξ (3) 反证,若三个向量线性相关不妨设 α3 = k1 α1 + k2 α2
那么 A3 α3 = k1 A3 α1 + k2 A3 α2 , 由 (2) 知 A3 αj = 0(j = 1, 2) 那么 α3 = 0 与特征向量的定义矛盾 2 0 0 2 0 0 与 B = 6. 已知矩阵 A = 0 0 y 0 0 1 0 0 −1 0 1 x P −1 AP = B

线代习题答案第五章

线代习题答案第五章

习题51.写出下列二次型f 的矩阵A 和矩阵表示式,并求二次型的秩。

(1)2212313121323(,,)35224f x x x x x x x x x x x =+−+−(2)2221231231323(,,)26f x x x x x x x x x x =+−++(3)2221234123121323(,,,)2f x x x x x x x x x x x x x =−++−+(4)123121323(,,)43f x x x x x x x x x =−+1.解:(1)f 的矩阵表示为311102125−⎛⎞⎜⎟−−⎜⎟⎜⎟−⎝⎠=A 其矩阵表示式为()112312323311(,,)102125x f x x x x x x x x −⎛⎞⎛⎞⎜⎟⎜⎟=−−⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠由于()3R =A ,故()3R f =。

(2)f 的矩阵表示为10310221312⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠A =其矩阵表示式为()1123123231031(,,)0221312x f x x x x x x x x ⎛⎞⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎜⎟−⎝⎠由于()3R =A ,故()3R f =。

(3)f 的矩阵表示为1110221110211102000⎛⎞−⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎝⎠A =其矩阵表示式为()1212341234341110221110(,,,)211102000x x f x x x x x x x x x x ⎛⎞−⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎜⎟⎜⎟⎝⎠由于()3R =A ,故()3R f =。

(4)f 的矩阵表示为3022120231022⎛⎞−⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎜⎟⎝⎠A =其矩阵表示式为()11231232330221(,,)20231022x f x x x x x x x x ⎛⎞−⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎜⎟−⎜⎟⎝⎠由于()3R =A ,故()3R f =。

线性代数第五章答案解析

线性代数第五章答案解析

第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ,⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛---121312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T=E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量.对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(01010010100||+-=----=-λλλλλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量. 对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ⋅⋅⋅, a n -r , b 1, b 2, ⋅⋅⋅, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ⋅⋅⋅, k n -r , l 1, l 2, ⋅⋅⋅, l n -t , 使k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r +l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0.记γ=k1a1+k2a2+⋅⋅⋅+k n-r a n-r=-(l1b1+l2b2+⋅⋅⋅+l n-r b n-r),则k1,k2,⋅⋅⋅,k n-r不全为0,否则l1,l2,⋅⋅⋅,l n-t不全为0,而l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0,与b1,b2,⋅⋅⋅,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A 的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A 3-5A 2+7A |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解 因为|A |=1⨯2⨯(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令ϕ(λ)=-6λ-1+3λ+2, 则ϕ(1)=-1, ϕ(2)=5, ϕ(-3)=-5是ϕ(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相 似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x , 得特征向量(2, 1, -2)T , 单位化得T)32 ,31 ,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T)31 ,32 ,32(3-=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T)2 ,2 ,1(313--=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x . 因此⎪⎪⎭⎫ ⎝⎛-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解 设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A . 因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T .因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P , 所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x .解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T .令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1. 于是11100111-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A nn⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9; 解 由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ, 从而A =P ΛP -1, A k =P Λk P -1. 因此ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222.(2)设⎪⎪⎭⎫⎝⎛=122221212A , 求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0, 0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161 ⎪⎪⎭⎫⎝⎛----=4222112112.25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵: (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ; 解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A . (2)x x x ⎪⎪⎭⎫ ⎝⎛=987654321)(T f .解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T)21 ,21 ,21 ,21(2--=p .当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3=(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++=232322212)2(21)21(2x x x x x +-++=.令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x yy y x , 二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为a 11=1, 2111a a a -=, )45(5212111+-=--a a a a .因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32. 判别下列二次型的正定性: (1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛---=401061112A . 因为0211<-=a , 0116112>=--, 038||<-=A ,所以f 为负定.(2) f =x 12+3x 22+9x 32+19x 42-2x 1x 2+4x 1x 3+2x 1x 4-6x 2x 4-12x 3x 4.解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛------=19631690230311211A . 因为 0111>=a , 043111>=--, 06902031211>=--, 024>=A ,所以f 为正定.33. 证明对称阵A 为正定的充分必要条件是: 存在可逆矩阵U , 使A =U T U , 即A 与单位阵E 合同.证明 因为对称阵A 为正定的, 所以存在正交矩阵P 使P T AP =diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ, 即A =P ΛP T ,其中λ1, λ2, ⋅ ⋅ ⋅, λn 均为正数. 令), , ,diag(211n λλλ⋅⋅⋅=Λ, 则Λ=Λ1Λ1, A =P Λ1Λ1T P T .再令U =Λ1T P T , 则U 可逆, 且A =U T U .。

线性代数第五章课后习题及解答

线性代数第五章课后习题及解答

第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT -因此,A 的属于1λ的所有特征向量为:TT k k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任 意常数)。

线性代数课后习题解答第五章习题详解

线性代数课后习题解答第五章习题详解

第五章 相似矩阵及二次型1.试用施密特法把下列向量组正交化:(1) ⎪⎪⎪⎭⎫⎝⎛=931421111),,(321a a a ; (2) ⎪⎪⎪⎪⎭⎫⎝⎛---=011101110111),,(321a a a 解 (1) 根据施密特正交化方法:令⎪⎪⎪⎭⎫ ⎝⎛==11111a b , [][]⎪⎪⎪⎭⎫ ⎝⎛-=-=101,,1112122b b b a b a b , [][][][]⎪⎪⎪⎭⎫ ⎝⎛-=--=12131,,,,222321113133b b b a b b b b a b a b ,故正交化后得: ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=311132013111),,(321b b b .(2) 根据施密特正交化方法:令⎪⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ; [][]⎪⎪⎪⎪⎭⎫ ⎝⎛-=-=123131,,1112122b b b a b a b , [][][][]⎪⎪⎪⎪⎭⎫⎝⎛-=--=433151,,,,222321113133b b b a b b b b a b a b 故正交化后得 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=5431153321531051311),,(321b b b2.下列矩阵是不是正交矩阵?并说明理由:(1) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---121312112131211; (2) ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891. 解 (1) 第一个行向量非单位向量,故不是正交阵.(2) 该方阵每一个行向量均是单位向量,且两两正交,故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T ,所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4.设A 与B 都是n 阶正交阵,证明AB 也是正交阵. 证明 因为B A ,是n 阶正交阵,故A AT =-1,B B T =-1E AB A B AB A B AB AB T T T===--11)()(故AB 也是正交阵.5.求下列矩阵的特征值和特征向量:(1)⎪⎭⎫⎝⎛-4211; (2)⎪⎪⎪⎭⎫ ⎝⎛633312321; (3)())0(,12121≠⎪⎪⎪⎪⎭⎫ ⎝⎛a a a a a a a n nΛM .并问它们的特征向量是否两两正交? 解 (1) ① )3)(2(4211--=---=-λλλλλE A . 故A 的特征值为3,221==λλ.② 当21=λ时,解方程0)2(=-x E A ,由⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=-00112211)2(~E A 得基础解系⎪⎭⎫⎝⎛-=111P所以)0(111≠k P k 是对应于21=λ的全部特征值向量. 当32=λ时,解方程0)3(=-x E A ,由⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=-00121212)3(~E A 得基础解系⎪⎪⎭⎫ ⎝⎛-=1212P 所以)0(222≠k P k 是对应于33=λ的全部特征向量.③ 023121)1,1(],[2121≠=⎪⎪⎭⎫ ⎝⎛--==P P P P T 故21,P P 不正交.(2) ① )9)(1(633312321-+-=---=-λλλλλλλE A . 故A 的特征值为9,1,0321=-==λλλ. ② 当01=λ时,解方程0=Ax ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=000110321633312321~A 得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1111P故)0(111≠k P k 是对应于01=λ的全部特征值向量. 当12-=λ时,解方程0)(=+x E A ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A 得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=0112P故)0(222≠k P k 是对应于12-=λ的全部特征值向量 当93=λ时,解方程0)9(=-x E A ,由⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A 得基础解系⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=121213P故)0(333≠k P k 是对应于93=λ的全部特征值向量.③ 0011)1,1,1(],[2121=⎪⎪⎪⎭⎫⎝⎛---==P P P P T , 012121)0,1,1(],[3232=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==P P P P T , 012121)1,1,1(],[3131=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==P P P P T, 所以321,,P P P 两两正交.(3) λλλλ---=-2212221212121n n n n na a a a a a a a a a a a a a a E A ΛMO M M ΛΛ=)(222211n n n a a a +++--Λλλ[])(222211n n a a a +++-=-Λλλ∑==+++=∴ni i na a a a 12222211Λλ, 032====n λλλΛ当∑==ni ia121λ时,()E A λ-⎪⎪⎪⎪⎭⎫⎝⎛------------=-212221212223211212122322n n n n nnn a a a a a a a a a a a a a a a a a a a a a ΛΛMO M M ΛΛΛΛ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛----000000000121ΛΛM M O M M ΛΛn n n n a a a a a a取n x 为自由未知量,并令n n a x =,设112211,,--===n n a x a x a x Λ.故基础解系为⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a P M 211当032====n λλλΛ时,()⎪⎪⎪⎪⎭⎫⎝⎛=⋅-22122212121210n n n n n a a a a a a a a a a a a a a a E A ΛM M M ΛΛ⎪⎪⎭⎫ ⎝⎛00000021~ΛM M M ΛΛn a a a 初等行变换 可得基础解系 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=112312200,,00,00a a P a a P a a P n n M ΛM M综上所述可知原矩阵的特征向量为 ()⎪⎪⎪⎪⎭⎫ ⎝⎛--=112212100,,,a a a a a a a P P P n n n ΛM M M ΛΛΛ6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,⋅⋅⋅,a n-r,b1,b2,⋅⋅⋅,b n-t必线性相关.于是有不全为0的数k1,k2,⋅⋅⋅,k n-r,l1,l2,⋅⋅⋅,l n-t,使k1a1+k2a2+⋅⋅⋅+k n-r a n-r+l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0.记γ=k1a1+k2a2+⋅⋅⋅+k n-r a n-r=-(l1b1+l2b2+⋅⋅⋅+l n-r b n-r),则k1,k2,⋅⋅⋅,k n-r不全为0,否则l1,l2,⋅⋅⋅,l n-t不全为0,而l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0,与b1,b2,⋅⋅⋅,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA 的特征值, 且B x 是BA 的对应于λ的特征向量.11. 已知3阶矩阵A 的特征值为1, 2, 3, 求|A 3-5A 2+7A |.解 令ϕ(λ)=λ3-5λ2+7λ, 则ϕ(1)=3, ϕ(2)=2, ϕ(3)=3是ϕ(A )的特征值, 故 |A 3-5A 2+7A |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解 因为|A |=1⨯2⨯(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令ϕ(λ)=-6λ-1+3λ2+2, 则ϕ(1)=-1, ϕ(2)=5, ϕ(-3)=-5是ϕ(A )的特征值, 故|A *+3A +2E |=|-6A -1+3A +2E |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13.设B A ,都是n 阶方阵,且0≠A ,证明AB 与BA 相似. 证明 0≠A 则A 可逆BA BA A A A AB A ==--))(()(11 则AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则 (A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量.因此A 不能相似对角化.16.试求一个正交的相似变换矩阵,将下列对称矩阵化为对角矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛----020212022; (2)⎪⎪⎪⎭⎫ ⎝⎛----542452222. 解 (1) λλλλ-------=-20212022E A )2)(4)(1(+--=λλλ故得特征值为4,1,2321==-=λλλ. 当21-=λ时,由0220232024321=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----x x x . 解得 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛2211321k x x x . 单位特征向量可取:⎪⎪⎪⎭⎫ ⎝⎛=3232311P 当12=λ时,由0120202021321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----x x x . 解得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛2122321k x x x . 单位特征向量可取: ⎪⎪⎪⎭⎫ ⎝⎛-=3231322P 当43=λ时,由0420232022321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------x x x . 解得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1223321k x x x . 单位特征向量可取: ⎪⎪⎪⎭⎫ ⎝⎛-=3132323P得正交阵 ⎪⎪⎪⎭⎫ ⎝⎛--==12221222131),,(321P P P P . ⎪⎪⎪⎭⎫ ⎝⎛-=-4000100021AP P (2) ⎪⎪⎪⎭⎫ ⎝⎛-------=-λλλλ542452222E A )10()1(2---=λλ, 故得特征值为10,1321===λλλ当121==λλ时,由⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000442442221321x x x . 解得 ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10201221321k k x x x 此二个向量正交,单位化后,得两个单位正交的特征向量⎪⎪⎪⎭⎫ ⎝⎛-=012511P ; ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=*15452012540122P 单位化得 ⎪⎪⎪⎭⎫⎝⎛=15452352P 当103=λ时,由⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x . 解得⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛2213321k x x x . 单位化⎪⎪⎪⎭⎫⎝⎛--=221313P . 得正交阵),,(321P P P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=323503215545131155252. ⎪⎪⎪⎭⎫⎝⎛=-1000100011AP P . 17.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=Λy 00040005相似,求y x ,;并求一个正交阵P ,使Λ=-AP P 1.解 方阵A 与Λ相似,则A 与Λ的特征多项式相同,即E E A λλ-Λ=-λλλ---------⇒12422421x λλλ----=4000005y ⎩⎨⎧==⇒54y x .18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以 ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎭⎫⎝⎛------=244354331.19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=.令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x .因此 ⎪⎪⎭⎫ ⎝⎛-=022********A .20.设3阶对称矩阵A 的特征值6,3,3,与特征值6对应的特征向量为)1,1,1(1TP =,求A .解 设⎪⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A . 由⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1116111A , 知① ⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x3是A 的二重特征值,根据实对称矩阵的性质定理知E A 3-的秩为1,故利用 ① 可推出⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---33111333653542653542321~x x x x x x x x x x x x x x x 秩为1. 则存在实的b a ,使得②⎩⎨⎧-=-=)3,,()1,1,1(),3,()1,1,1(653542x x x b x x x a 成立.由①②解得1,4,1564132======x x x x x x .得 ⎪⎪⎪⎭⎫ ⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量. 对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T .因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100), ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P , 所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1). (1)求关系式⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此 ⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x . 解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由 )1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T .令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A nn ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24.(1) 设⎪⎭⎫⎝⎛--=3223A ,求9105)(A A A -=ϕ;(2) 设⎪⎪⎪⎭⎫ ⎝⎛=122221212A ,求891056)(A A A A +-=ϕ.解 (1) ⎪⎭⎫⎝⎛-=3223A Θ是实对称矩阵. 故可找到正交相似变换矩阵⎪⎪⎪⎪⎭⎫⎝⎛-=21212121P . 使得 Λ=⎪⎭⎫ ⎝⎛=-50011AP P从而11,--Λ=Λ=P P A P P A k k因此 1911091055)(--Λ-Λ=-=P P PP A A A ϕ11011050055001--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=P P P P10004-⎪⎭⎫ ⎝⎛-=P P ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222.(2) 同(1)求得正交相似变换矩阵⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=31036312166312166P . 使得 11,500010001--Λ=Λ=⎪⎪⎪⎭⎫ ⎝⎛-=P P A AP P891056)(A A A A +-=ϕ)5)(()56(828E A E A A E A A A --=+-=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⋅Λ=-42223121302221121118P P ⎪⎪⎪⎭⎫ ⎝⎛----=4222112112.25.用矩阵记号表示下列二次型:(1) yz z xz y xy x f 4244222+++++=; (2) ;4427222yz xz xy z y x f ----+=(3) .46242423241312124232221x x x x x x x x x x x x x x f -+-+-+++=解 (1) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121),,(.(2) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211),,(.(3) ⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211),,,(x x x x x x x x f .26. 写出下列二次型的矩阵:(1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ; 解 二次型的矩阵为⎪⎭⎫ ⎝⎛=1312A .(2)x x x ⎪⎪⎭⎫⎝⎛=987654321)(T f .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=987654321A .27.求一个正交变换将下列二次型化成标准形:(1) 322322214332x x x x x f +++=;(2) 43324121242322212222x x x x x x x x x x x x f +--++++=.解 (1) 二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛=320230002Aλλλλ---=-320230002E A )1)(5)(2(λλλ---=故A 的特征值为1,5,2321===λλλ. 当21=λ时, 解方程0)2(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A . 得基础解系 ⎪⎪⎪⎭⎫ ⎝⎛=0011ξ. 取 ⎪⎪⎪⎭⎫ ⎝⎛=0011P当52=λ时,解方程0)5(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A 得基础解系 ⎪⎪⎪⎭⎫⎝⎛=1102ξ. 取 ⎪⎪⎪⎭⎫ ⎝⎛=212102P .当13=λ时,解方程0)(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A 得基础解系 ⎪⎪⎪⎭⎫⎝⎛-=1103ξ. 取 ⎪⎪⎪⎭⎫ ⎝⎛-=212103P ,于是正交变换为⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛3213212121021210001y y y x x x . 且有 23222152y y y f ++=. (2) 二次型矩阵为 ⎪⎪⎪⎪⎭⎫⎝⎛----=111111001111011A λλλλλ--------=-1101111001111011E A 2)1)(3)(1(--+=λλλ,故A 的特征值为1,3,14321===-=λλλλ当11-=λ时,可得单位特征向量⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=212121211P ,当32=λ时,可得单位特征向量⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=212121212P , 当143==λλ时,可得单位特征向量⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0210213P ,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2102104P .于是正交变换为 ⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎭⎫ ⎝⎛432143212102121021212121021210212121y y y y x x x x 且有242322213y y y y f +++-=.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21 ,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29.证明:二次型Ax f xT=在1=x 时的最大值为矩阵A 的最大特征值.证明 A 为实对称矩阵,则有一正交矩阵T ,使得B TAT n =⎪⎪⎪⎪⎭⎫⎝⎛=-λλλO 211成立. 其中n λλλ,,,21Λ为A 的特征值,不妨设1λ最大,T 为正交矩阵,则T T T =-1且1=T ,故T T T B T B T A ==-1则Ax x f T =By y BTx T x TT T ==2222211n n y y y λλλ+++=Λ. 其中Tx y =当1====x x T Tx y 时, 即122221=+++n y y y Λ即122221=+++n y y y Λ 1122111)(λλλ==++=y n n y y f 最大最大Λ. 故得证.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32=(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223*********y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2. 令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫⎝⎛--=110010111C . (3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++= 232322212)2(21)21(2x x x x x +-++=.令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x y y y x ,二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为a 11=1, 2111a a a -=, )45(5212111+-=--a a a a .因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32.判别下列二次型的正定性:(1)312123222122462x x x x x x x f ++---=;(2)424131212423222162421993x x x x x x x x x x x x f -++-+++=4312x x -解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---=401061112A ,0211<-=a ,0116112>=--,038401061112<-=---, 故f 为负定. (2) ⎪⎪⎪⎪⎭⎫⎝⎛------=19631690230311211A , 0111>=a ,043111>=--, 06902031211>=--,024>=A . 故f 为正定.33.证明对称阵A 为正定的充分必要条件是:存在可逆矩阵U ,使U U A T =,即A 与单位阵E 合同. 证明 A 正定,则矩阵A 满秩,且其特征值全为正.不妨设n λλ,,1Λ为其特征值,n i i ,,10Λ=>λ由定理8知,存在一正交矩阵P使⎪⎪⎪⎪⎭⎫⎝⎛=Λ=n TAP PλλλO 21⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n λλλλλλOO2121 又因P 为正交矩阵,则P 可逆,P P T =-1.所以)(PQ PQ P PQ A TT Q T ⋅==.令U PQT=)(,U 可逆,则U U A T =.。

线性代数第五章答案

线性代数第五章答案
k1a1k2a2 knranrl1b1l2b2 lnrbnr0 记 k1a1k2a2 knranr(l1b1l2b2 lnrbnr) 则k1 k2 knr不全为0 否则l1 l2 lnt不全为0 而
l1b1l2b2 lnrbnr0 与b1 b2 bnt线性无关相矛盾
因此 0 是A的也是B的关于0的特征向量 所以A与B有公共的特征值 有 公共的特征向量
8 设A23A2EO 证明A的特征值只能取1或2 证明 设是A的任意一个特征值 x是A的对应于的特征向量 则
(A23A2E)x2x3x2x(232)x0 因为x0 所以2320 即是方程2320的根 也就是说1或2
9 设A为正交阵 且|A|1 证明1是A的特征值 证明 因为A为正交矩阵 所以A的特征值为1或1 (需要说明) 因为|A|等于所有特征值之积 又|A|1 所以必有奇数个特征值为1 即1 是A的特征值
10 设0是m阶矩阵AmnBnm的特征值 证明也是n阶矩阵BA的特征值 证明 设x是AB的对应于0的特征向量 则有
(AB)xx 于是 B(AB)xB(x) 或 BA(B x)(Bx) 从而是BA的特征值 且Bx是BA的对应于的特征向量
11 已知3阶矩阵A的特征值为1 2 3 求|A35A27A| 解 令()3527 则(1)3 (2)2 (3)3是(A)的特征值 故
|A35A27A||(A)|(1)(2)(3)32318
12 已知3阶矩阵A的特征值为1 2 3 求|A*3A2E| 解 因为|A|12(3)60 所以A可逆 故
A*|A|A16A1 A*3A2E6A13A2E 令()6132 则(1)1 (2)5 (3)5是(A)的特征值 故 |A*3A2E||6A13A2E||(A)|
6 设A为n阶矩阵 证明AT与A的特征值相同 证明 因为

线性代数第五章答案

线性代数第五章答案

线性代数第五章答案第五章相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)=931421111) , ,(321a a a ;解根据施密特正交化方法,==11111a b ,-=-=101],[],[1112122b b b a b a b ,-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)---=011101110111) , ,(321a a a .解根据施密特正交化方法,-==110111a b ,-=-=123131],[],[1112122b b b a b a b , ?-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)---121312112131211;解此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)------979494949198949891.解该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明因为A ,B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由--???? ??---=-00021101113333823289~E A ,得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考)解22)1()1(001010010100||+-=----=-λλλλλλλE A ,故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1,由=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由------=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明a与b有公共的特征值,有公共的特征向量.< p="">证明设R(A)=r,R(B)=t,则r+t<n.< p="">若a1,a2,,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,,a n-r,b1,b2,,b n-t 必线性相关.于是有不全为0的数k1,k2,,k n-r,l1,l2,,l n-t,使k1a1+k2a2++k n-r a n-r+l1b1+l2b2++l n-r b n-r=0.记γ=k1a1+k2a2++k n-r a n-r=-(l1b1+l2b2++l n-r b n-r),则k1,k2,,k n-r不全为0,否则l1,l2,,l n-t不全为0,而l1b1+l2b2++l n-r b n-r=0,与b1,b2,,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m?n B n?m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令?(λ)=λ3-5λ2+7λ, 则?(1)=3, ?(2)=2, ?(3)=3是?(A )的特征值, 故 |A 3-5A 2+7A |=|?(A )|=?(1)??(2)??(3)=3?2?3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解因为|A |=1?2?(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令?(λ)=-6λ-1+3λ+2, 则?(1)=-1, ?(2)=5, ?(-3)=-5是?(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|?(A )|=?(1)??(2)??(-3)=-1?5?(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相似.证明取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵=50413102x A 可相似对角化, 求x .解由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由-???? ??=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;解设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即=???? ??-???? ??------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由-???? ??----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)----020212022;解将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即=???? ?????? ??----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即=???? ?????? ??-------000542452228321x x x ,得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵------=12422421x A 与-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵?--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1,1, 0)T , 求A .解令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1.因为---=???? ??=--11011101101111111011P ,所以---???? ??-???? ??=Λ=-1101110111000200020111111101P P A------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解设=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 =++=++=++222222122653542321x x x x x x x x x , ---① =-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x ,314=x , 325=x . 因此-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解设=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有=???? ??1116111A , 即?=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出--???? ??---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此=411141114A .21. 设a =(a 1, a 2, , a n )T , a 1≠0, A =aa T . (1)证明λ=0是A 的n -1重特征值;证明设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ? ? ?, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ? ? ?, a n 2, 所以a 12+a 22+ ? ? ? +a n 2=a T a =λ1+λ2+ ? ? ? +λn ,这说明在λ1, λ2, ? ? ?, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解设λ1=a Ta , λ2= ? ? ? =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ? ? ? =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ? ? ? +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, , 0)T ,p 3=(-a 3, 0, a 1, , 0)T , ? ? ?,p n =(-a n , 0, 0, , a 1)T .因此n 个线性无关特征向量构成的矩阵为--=112212100), , ,(a a a aa a a nn n p p p . 22. 设-=340430241A , 求A 100. 解由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),--=???? ??-=--1202105055112021012111P ,所以--???? ?????? ??-=12021050555112021012151100100100A-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式??=??++n n n n y x A y x 11中的矩阵A ;解由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为--=??? ??++n n n n y x q p q p y x 1111,因此--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即??? ??=??? ??5.05.000y x , 求?n n y x .解由??=??++n n n n y x A y x 11可知??=??00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r ,解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令??-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-??-??? ????? ??-=p q r p q A n n-??? ????? ??-+=q p r p q q p n 11001111+--++=n n n n qr p pr p qr q pr q q p 1,+--++=??? ??5.05.01n n n n n n qr p pr p qr q pr q q p y x ??-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设??--=3223A , 求?(A )=A 10-5A 9; 解由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵?-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此?(A )=P ?(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1-??? ??-??? ??-=1111210004111121-=??? ??----=111122222.(2)设=122221212A , 求?(A )=A 10-6A 9+5A 8.解求得正交矩阵为---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是?(A )=P ?(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0,0)P -1---???? ?---=222033*********223123161----=4222112112. 25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解------=432143211021013223111211) , , ,(x x x x x x x x f .26. 写出下列二次型的矩阵: (1)x x x ?=1312)(T f ;解二次型的矩阵为=1222A .(2)x x x=987654321)(T f .解二次型的矩阵为=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解二次型的矩阵为=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由-???? ??---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解二次型矩阵为----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解二次型的矩阵为----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p . 对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换--=???? ??w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ? ? ?, λn )=Λ成立, 其中λ1, λ2, ? ? ?, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ? ? ? +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ? ? ? +y n 2=1.因此f =λ1y 12+λ2y 22+ ? ? ? +λn y n 2≤λ1,又当y 1=1, y 2=y 3=? ? ?=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3;解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ??+==-+=323223211222x x y x y x x x y , 即+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 +==+=32322311x x y x y x x y , 即+-==-+=3 23223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.</n.<></n,证明a与b有公共的特征值,有公共的特征向量.<>。

线性代数第五章答案

线性代数第五章答案

第五章 相似矩阵及二次型1.试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫⎝⎛==11111a b ,⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫⎝⎛-==110111a b ,⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .2.下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛---121312112131211;解 此矩阵的第一个行向量非单位向量,故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891.解 该方阵每一个行向量均是单位向量,且两两正交,故为正交阵.3. 设x 为n 维列向量,x Tx =1, 令H =E -2xx T, 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T=E -2(x T )T x T=E -2xx T, 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T )=E -2xx T -2xx T +(2xx T )(2xx T) =E -4xx T +4x (x T x )x T=E -4xx T+4xx T=E ,所以H 是正交矩阵.4.设A 与B 都是n 阶正交阵,证明AB 也是正交阵. 证明 因为A ,B 是n 阶正交阵,故A -1=A T ,B -1=B T,(AB )T(AB )=B T A TAB =B -1A -1AB =E ,故AB 也是正交阵.5.求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1,由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1,1,-1)T,向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0,λ2=-1,λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1,-1,1)T, 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1,1,0)T, 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A ,得方程(A -9E )x =0的基础解系p 3=(1/2,1/2,1)T, 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(001010010100||+-=----=-λλλλλλλE A ,故A 的特征值为λ1=λ2=-1,λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0,-1)T,p 2=(0, 1,-1, 0)T, 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量. 对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T,p 4=(0, 1, 1, 0)T, 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T与A 的特征值相同. 证明 因为|A T-λE |=|(A -λE )T|=|A -λE |T=|A -λE |,所以A T与A的特征多项式相同,从而A T与A的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明A与B有公共的特征值,有公共的特征向量.证明设R(A)=r,R(B)=t,则r+t<n.若a1,a2,⋅⋅⋅,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,⋅⋅⋅,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,⋅⋅⋅,a n-r,b1,b2,⋅⋅⋅,b n-t必线性相关.于是有不全为0的数k1,k2,⋅⋅⋅,k n-r,l1,l2,⋅⋅⋅,l n-t,使k1a1+k2a2+⋅⋅⋅+k n-r a n-r+l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0.记γ=k1a1+k2a2+⋅⋅⋅+k n-r a n-r=-(l1b1+l2b2+⋅⋅⋅+l n-r b n-r),则k1,k2,⋅⋅⋅,k n-r不全为0,否则l1,l2,⋅⋅⋅,l n-t不全为0,而l1b1+l2b2+⋅⋅⋅+l n-r b n-r=0,与b1,b2,⋅⋅⋅,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A 的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11. 已知3阶矩阵A 的特征值为1,2,3, 求|A 3-5A 2+7A |.解 令ϕ(λ)=λ3-5λ2+7λ, 则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A )的特征值, 故 |A 3-5A 2+7A |=|ϕ(A )|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12.已知3阶矩阵A 的特征值为1,2,-3, 求|A *+3A +2E |. 解 因为|A |=1⨯2⨯(-3)=-6≠0, 所以A 可逆, 故A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令ϕ(λ)=-6λ-1+3λ+2, 则ϕ(1)=-1,ϕ(2)=5,ϕ(-3)=-5是ϕ(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|ϕ(A )| =ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相 似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6,λ2=λ3=1.因为A 可相似对角化,所以对于λ2=λ3=1,齐次线性方程组(A -E )x =0有两个线性无关的解,因此R (A -E )=1.由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1,即x =3为所求.15.已知p =(1, 1,-1)T是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a ,b 及特征向量p 所对应的特征值; 解设λ是特征向量p 所对应的特征值,则(A -λE )p =0,即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1,a =-3,b =0.(2)问A 能不能相似对角化?并说明理由. 解由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16.试求一个正交的相似变换矩阵,将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2,λ2=1,λ3=4. 对于λ1=-2,解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1,2,2)T, 单位化得T )32 ,32 ,31(1=p . 对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x , 得特征向量(2,1,-2)T, 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2,-2,1)T, 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1,p 2,p 3), 使P -1AP =diag(-2,1,4).(2)⎪⎪⎭⎫ ⎝⎛----542452222.(和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1,λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2,1,0)T和(2,0,1)T, 将它们正交化、单位化得T 0) 1, ,2(511-=p ,T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1,-2,2)T, 单位化得T )2 ,2 ,1(313--=p .于是有正交阵P =(p 1,p 2,p 3), 使P -1AP =diag(1,1,10).17. 设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x ,y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5,λ=-4,λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A ,y y2045||-=-=Λ,所以-20y =-100,y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1,0,-1)T,(1,-2, 0)T. 将它们正交化、单位化得T )1 ,0 ,1(211-=p ,T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2,1,2)T, 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18.设3阶方阵A 的特征值为λ1=2,λ2=-2,λ3=1;对应的特征向量依次为p 1=(0,1,1)T , p 2=(1,1,1)T, p 3=(1,1, 0)T , 求A .解 令P =(p 1,p 2,p 3),则P -1AP =diag(2,-2,1)=Λ,A =P ΛP -1. 因为⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫⎝⎛=--11011101101111111011P , 所以 ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1,λ2=-1,λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1,2,2)T ,p 2=(2,1,-2)T ,求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1,A p 2=-2p 2, 即 ⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x ,---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x .---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0.---③由①②③解得612131x x --=,6221x x =,634132x x -=,642131x x -=,654132x x +=.令x 6=0, 得311-=x ,x 2=0,323=x ,314=x ,325=x . 因此 ⎪⎪⎭⎫ ⎝⎛-=022********A . 20.设3阶对称矩阵A 的特征值λ1=6,λ2=3,λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1,1,1)T,求A .解 设⎪⎪⎭⎫ ⎝⎛=653542321x x x x x x x x x A . 因为λ1=6对应的特征向量为p 1=(1,1,1)T, 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A ,即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1,x 1=x 4=x 6=4.因此 ⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1,a 2,⋅⋅⋅,a n )T,a 1≠0,A =aa T.(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值,x 是A 的对应于λ的特征向量, 则有A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax ,于是可得λ2=λa T a , 从而λ=0或λ=a Ta .设λ1,λ2,⋅⋅⋅,λn 是A 的所有特征值,因为A =aa T的主对角线性上的元素为a 12,a 22,⋅⋅⋅,a n 2,所以a 12+a 22+⋅⋅⋅+a n 2=a T a =λ1+λ2+⋅⋅⋅+λn ,这说明在λ1,λ2,⋅⋅⋅,λn 中有且只有一个等于a Ta , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a Ta ,λ2=⋅⋅⋅=λn =0.因为A a =aa Ta =(a Ta )a =λ1a , 所以p 1=a 是对应于λ1=a Ta 的特征向量.对于λ2=⋅⋅⋅=λn =0, 解方程A x =0, 即aa Tx =0. 因为a ≠0, 所以a Tx =0, 即a 1x 1+a 2x 2+⋅⋅⋅+a n x n =0, 其线性无关解为p 2=(-a 2,a 1, 0,⋅⋅⋅, 0)T , p 3=(-a 3,0,a 1,⋅⋅⋅, 0)T ,⋅⋅⋅,p n =(-a n , 0,0,⋅⋅⋅,a 1)T .因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1,λ2=5,λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1,0,0)T. 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2,1,2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1,-2,1)T . 令P =(p 1,p 2,p 3), 则P -1AP =diag(1,5,-5)=Λ, A =P ΛP -1,A 100=P Λ100P -1.因为Λ100=diag(1,5100,5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P ,所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A⎪⎪⎭⎫ ⎝⎛-=1001001005000501501. 23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n ,可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111, 因此 ⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x .解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1,λ2=r , 其中r =1-p -q . 对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q ,p )T. 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1,1)T. 令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则 P -1AP =diag(1,r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A nn⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24.(1)设⎪⎭⎫ ⎝⎛--=3223A ,求ϕ(A )=A10-5A 9;解由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1,λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21.对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-. 于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1,5)=Λ, 从而A =P ΛP -1,A k =P Λk P -1. 因此ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1=P [diag(1,510)-5diag(1,59)]P -1=P diag(-4,0)P -1 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222. (2)设⎪⎪⎭⎫⎝⎛=122221212A ,求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1,5)=Λ,A =P ΛP -1. 于是ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1=P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1,1,58)diag(-2,0,4)diag(-6,-4,0)P -1=P diag(12,0,0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033*********223123161 ⎪⎪⎭⎫⎝⎛----=4222112112. 25.用矩阵记号表示下列二次型:(1)f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2)f =x 2+y 2-7z 2-2xy -4xz -4yz ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3)f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵: (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A . (2)x x x ⎪⎪⎭⎫ ⎝⎛=987654321)(T f .解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A .27.求一个正交变换将下列二次型化成标准形: (1)f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2,λ2=5,λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1,0,0)T. 取p 1=(1,0,0)T. 当λ2=5时,解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0,1,1)T.取T )21 ,21,0(2=p .当λ3=1时,解方程(A -E )x =0,由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0,-1,1)T.取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1,p 2,p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2)f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1,λ2=3,λ3=λ4=1.当λ1=-1时,可得单位特征向量T )21 ,21 ,21 ,21(1--=p . 当λ2=3时,可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时,可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p ,T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1,p 2,p 3,p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11,λ3=0,.对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4,-1, 1)T, 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2,-2)T, 单位化得)32 ,32 ,31(2-=p . 对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T, 单位化得)21 ,21,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2,11,0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29.明:二次型f =x TA x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明A 为实对称矩阵,则有一正交矩阵T ,使得TAT -1=diag(λ1,λ2,⋅⋅⋅,λn )=Λ成立, 其中λ1,λ2,⋅⋅⋅,λn 为A 的特征值,不妨设λ1最大. 作正交变换y =T x , 即x =T Ty , 注意到T -1=T T, 有f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+⋅⋅⋅+λn y n 2.因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+⋅⋅⋅+y n 2=1.因此f =λ1y 12+λ2y 22+⋅⋅⋅+λn y n 2≤λ1,又当y 1=1,y 2=y 3=⋅⋅⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规形, 并写出所用变换的矩阵. (1) f (x 1,x 2,x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1,x 2,x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32=(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x y y y x , 二次型化为规形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1,x 2,x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1,x 2,x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫⎝⎛--=110010111C .(3) f (x 1,x 2,x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1,x 2,x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++=232322212)2(21)21(2x x x x x +-++=.令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x yy y x ,二次型化为规形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31.设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为 a 11=1,2111a a a -=,)45(5212111+-=--a a a a . 因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32.判别下列二次型的正定性:(1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3; 解二次型的矩阵为⎪⎪⎭⎫⎝⎛---=401061112A . 因为 0211<-=a ,0116112>=--,038||<-=A , 所以f 为负定.(2) f =x 12+3x 22+9x 32+19x 42-2x 1x 2+4x 1x 3+2x 1x 4-6x 2x 4-12x 3x 4. 解 二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛------=19631690230311211A . 因为0111>=a ,043111>=--,06902031211>=--,024>=A , 所以f 为正定.33. 证明对称阵A 为正定的充分必要条件是: 存在可逆矩阵U , 使A =U TU ,即A 与单位阵E 合同.证明 因为对称阵A 为正定的, 所以存在正交矩阵P 使 P T AP =diag(λ1,λ2,⋅⋅⋅,λn )=Λ, 即A =P ΛP T ,其中λ1,λ2,⋅⋅⋅,λn 均为正数.令), , ,diag(211n λλλ⋅⋅⋅=Λ, 则Λ=Λ1Λ1,A =P Λ1Λ1T P T . 再令U =Λ1T P T , 则U 可逆, 且A =U TU .。

线性代数第五章习题答案

线性代数第五章习题答案
0 1 0 0 1 0 1 1 , 0
72 −1
第五章 相似矩阵及二次型
得基础解系 p = −1 . 所以 k p (k = 0) 是对应于 λ1 = λ2 = λ3 = −1 的全部特征值向量. 1 (2) 由 1−λ 2 3 |A − λE | = 2 1−λ 3 = −λ(λ + 1)(λ − 9), 3 3 6−λ
1


b3 = a3 −
[b1 , a3 ] [b2 , a3 ] 1 b1 − b2 = [b1 , b1 ] [b2 , b2 ] 5
−1

3 . 3 4
故正交化后得

0 −1 (b1 , b2 , b3 ) = −1 2 3 1 1 3 70
H T = (E − 2xxT )T = E T − 2(xxT )T = E − 2(xT )T (xT ) = E − 2xxT = H.
所以 H 是对称的. 又
H T H = (E − 2xxT )(E − 2xxT ) = E − 2xxT − 2xxT + 4xxT xxT = E. (xT x = 1)
得 A 的特征值为 λ1 = 0, λ2 = −1, λ3 = 9. 当 λ1 = 0 时, 解方程 Ax = 0, 由 1 2 3 1 2 3 1 −1 0 r2 − 2r1 r +r 0 −3 −3 1 2 0 A= 1 1 2 1 3 , r3 − r1 − r2 r2 ÷ (−3) 3 3 6 0 0 0 0 0 0
0 p3 = 0 , 1
1

1 p4 = 1 . 0

线代第五章答案

线代第五章答案

线代第五章答案1) A 2) A 3) A 4) A2 印a〔 a ?a 〔 a ? 2 a2a aa 1a 3 a 2a3 2a35) A6) A1.写出下列矩阵对应的二次型x ; 2为 X 31)f (X 1,X 2,X 3) 2)3) f 化冬压)X 2 2X | 3x f 2%X 24X ^3 6X 2X 34)一、 温习巩固1、写出下列二次型的矩阵2 2 2f (为,X 2,X 3,X 4) X 1 2X 2 3X 3 2X 1X 2 4X 1X 3 6X 2X 32.判定下列二次型的正定性1)解:f (X 1,X 2, X 3) 3xf 6X 1X 3 x ; 4X 2X 3 8x ;的矩阵为 A所以f (X 1, X 2 , X 3)为正定32)解:此二次型的矩阵为A 2第五早二次型3 2 03 2顺序主子式3 3, 4 0.所以此二次型不是正定二次型.2 0, 2 2 22 20 2 1姓名 班级 学号 任课老师3) f (X i ,X 2,X 3) 2 2(1)为 X 2 6X 2X 3X 32,当取何值时,二次型f 为正定.解f(X i ,X 2,X 3)的矩阵为1 0A0 3,31 02A 11 0, A10,卜3A 1 9 0从而 3,故当3时,二次型 f 为正定.、练习提高1.求一正交变换X PY ,把二次型f(x i , X 2, X 3)2X I X 3 x 2化为标准型0 0 10 1解:此二次型的矩阵为A 0 1 0,特征多项式f() 0 1 0(1)2(1),1 0 0 1 01 01对应1 2 1有特征向量0 ,1 ,对应3 1有特征向量 0 ,1 01言0吉取 P 0 1 0 ,并令 X PY ,则二次型 f (x 1, X 2, X 3) 2x 1x 3 x 2 可化为 y 2 y ; yl 。

耕0詰2.求一个正交变换X PY ,把二次型f x 2 x ; x 2 2x 1x 3化为标准形1 0 11 0 1解: 此二次型的矩阵为A0 1 0 ,特征多项式f()0 1 0(1)( 2),1 0 11 0 111 对应10有特征向量0 ,对应2 1有特征向量 1 , 对应32有特征向量0 , 11专0专取P0 1 0 ,并令XPY ,则二次型fx 22X22 X32X 1X 3 可化为 y 2 2y 3。

线代第五章答案

线代第五章答案

第五章 二次型一、 温习巩固1、写出下列二次型的矩阵1)3111A -⎛⎫= ⎪-⎝⎭2)1112133223112A ⎛⎫- ⎪⎪ ⎪= ⎪ ⎪ ⎪-- ⎪⎝⎭ 3)1110213302231102000A ⎛⎫- ⎪⎪ ⎪ ⎪= ⎪ ⎪-- ⎪ ⎪⎝⎭4)2112132********233a a a a a A a a a a a a a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭5)2221A ⎛⎫= ⎪⎝⎭ 6)135357579A ⎛⎫⎪= ⎪ ⎪⎝⎭1. 写出下列矩阵对应的二次型1)2123213(,,)2f x x x x x x =+ 2)222123123(,,)32f x x x x x x =-+3)222123123121323(,,)23246f x x x x x x x x x x x x =+++++ 4)2221234123121323(,,,)23246f x x x x x x x x x x x x x =+++++ 2. 判定下列二次型的正定性1)解: 2221231132233(,,)3648f x x x x x x x x x x =++-+的矩阵为303012328A ⎛⎫⎪=- ⎪ ⎪-⎝⎭,130A =>,2303001A ==>,330301230328A A ==-=>-,所以123(,,)f x x x 为正定2)解: 此二次型的矩阵为320222021A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦顺序主子式3203233,20,22240.22021==>=-<所以此二次型不是正定二次型.3)22212312233(,,)(1)6f x x x x x x x x λλλ=-+-+,当λ取何值时,二次型f 为正定.解 123(,,)f x x x 的矩阵为1000303A λλλ-⎛⎫⎪=- ⎪ ⎪-⎝⎭,110A λ=->,()210100A λλλλ-==->,()()23190A A λλ==-->3λ>从而,故当3λ>时,二次型f 为正定.二、 练习提高1.求一正交变换X PY =,把二次型2123132(,,)2f x x x x x x =+化为标准型。

线性代数课后习题答案第1――5章习题详解(优选.)

线性代数课后习题答案第1――5章习题详解(优选.)

xx .. ..第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4xx .. .. (4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b axx .. ..(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++xx .. ..=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=xx .. ..同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n nn n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解xx .. ..(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得xx .. ..nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a Dxx .. ..即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221xx .. ..nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=xx .. ..112035122412111512-----=D 811507312032701151-------=31390011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=xx .. ..51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.xx .. ..10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.xx .. ..第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.xx .. ..解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.xx .. ..(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x xxx .. ..322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.xx .. ..6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k .解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察xx .. ..⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:xx .. ..⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;xx .. ..解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知xx .. ..⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121xx .. ..⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为xx .. ..⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E ,xx .. ..或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.xx .. ..解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;xx .. ..若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1xx .. ..=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,xx .. ..而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .xx .. ..26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠.xx .. ..28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C , 所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111.xx .. ..(2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.xx .. ..解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201xx .. ..33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数练习题库及答案

线性代数练习题库及答案

线性代数练习册答案第五章相似矩阵及二次型51内积52方阵的特征值与特征向量一.填空题:1.A 是正交矩阵,则A 1A.2.已知n 阶方阵A 的特征值为12,,,n,则EA12n.3.已知3阶方阵A 的特征值为1,1,2,则232BAA 的特征值为1,5,8;A2;A 的对角元之和为2.4.若0是A 的特征值,则A 不可逆(可逆,不可逆).5.A 是n 阶方阵,Ad ,则AA 的特征值是,,,d d d (共n 个).二.用施密特法把下列向量组规范正交化123111(,,)124139解:111,1,1T2122121,61,2,31,1,11,0,13TTT313233122212,,1481211,4,91,1,11,0,1,,32333TT TT 故11111,1,13Tb ,22211,0,12Tb ,33311,2,16Tb .三.求下列矩阵的特征值和特征向量1. 1221A2. 100020012B 解:1. A 的特征多项式为12(3)(1)21A E故A 的特征值为123,1.当13时,解方程30A E x .由2211322rA E:得基础解系111P ,故1(0)kP k是对应于13的全部特征向量. 当21时,解方程0A E x .由22112200rA E :得基础解系211P ,故2(0)kP k是对应于21的全部特征向量.2.B 的特征多项式为210020(1)(2)12B E故B 的特征值为1231,2.当11时,解方程0B E x .由000011010010011rBE :得基础解系1100P ,故1(0)kP k 是对应于11的全部特征向量.当232时,解方程20B E x.由10010*********11rBE :得基础解系201P ,故2(0)kP k 是对应于232的全部特征向量.四.证明下列各题1. x 为n 维列向量,且1Tx x,求证:2THExx 是对称的正交阵.2. 设A 、B 为同阶正交阵,证明:AB 也是正交阵. 证明:1.222TTTTTTTTHExxHExxExxH故H 为对称阵.又224444TTTTT TTTH HE xxExxExxx x x xExxxxE故H 为正交阵.2. 因,A B 为同阶正交阵,故,TTA AE B BE .又TT TT TABAB B A ABB EBB BE ,故AB 为正交阵.五.A 是n 阶方阵,命题P 为:A 的特征值均不为0.请尽量多的列举与P 等价的命题.(如A 可逆.至少列举3个)解:等价命题:1P :A 的列(行)向量组线性无关2P :0A3P :齐次线性方程组0Ax只有0解4P :A 的秩为n53相似矩阵54实对称矩阵的相似矩阵一.填空题:1.若是A 的特征向量,则1P是1P AP 的特征向量. 2.若A 与B 相似,则AB .3.20000101Ax与2000001B y 相似,则x 0,y 1.4.若是A 的k 重特征根,则必有k 个相应于的线性无关的特征向量,不对(对,不对),若A 是实对称的呢?对(对,不对).二.多项选择题(选出全部正确的选项,可能不只一个)1.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个(C )(A )互不相同的特征值;(B )互不相同的特征向量;(C )线性无关的特征向量;(D )两两正交的特征向量;2.方阵A 与B 相似,则必有(BD )(A )E A E B ;(B )A 与B 有相同的特征值;(C )A 与B 有相同的特征向量;(D )A 与B 有相同的秩;3.A 为n 阶实对称矩阵,则(ACD )(A )属于不同特征值的特征向量必定正交;(B )0A ;(C )A 必定有n 个两两正交的特征向量;(D )A 的特征值均为实数;三.100021012A,试求一个可逆矩阵P 使得1P AP 为对角阵,并求mA .解:先求A 的特征值和特征向量.2100021(1)(3)12EA故A 的所有特征值为1233,1.当13时,解方程30A E x.2001003011011011rA E :令1011P ,则1P 即为对应于13的特征向量.当231时,解方程0A E x.00000011011011rAE:令2310,101P P ,则23,P P 即为对应于231的特征向量.显然,123,,P P P 线性无关.令123010,,10111PP P P ,则1111003131312211313022mmmmm m P APAP PAPP四.三阶实对称矩阵A 的特征值为0,2,2,又相应于特征值0的特征向量为1111P ,求出相应于2的全部特征向量. 解:因为A 为三阶实对称矩阵,故A 有三个线性无关的特征向量,且对应于不同特征值的特征向量两两正交.已知对应于10的特征向量为1P ,设对应于232的特征向量为23,P P ,则12130,0T TP P P P .即23,P P 为齐次线性方程组10T P x 的两个线性无关的解.由10TP x得1230x x x .令2310,1x x ,则11,1x .取23111,001P P ,则23,P P 即为对应于232的特征向量.令2233k P k P (23,k k 不全为零),则为对应于232的全部特征向量.五.设3阶方阵A 的特征值为1231,0,1,对应的特征向量分别依次为1231222,2,1212P P P ,求A . 解:因为123,故A 可对角化,且123,,所对应的特征向量123,,P P P 线性无关.显然112312323,,,,A P P P P P P ,令123,,PP P P ,故111231102100123122A P PP P.55二次型及其标准形56用配方法化二次型为标准形57正定二次型一.填空题:1. 22(,)22f x y xxy yx 是不是二次型?答:不是.2. 123121323(,,)422f x x x x x x x x x 的秩是3;秩表示标准形中平方项的个数.3.2110100A k k,A 为正定矩阵,则k 满足大于1.二.A 为实对称矩阵,选出全部的A 为正定矩阵的充分必要条件(12346)1.对任意的列向量0x ,0x Ax2.存在可逆方阵C ,使得A C C3.A 的顺序主子式全部大于零4.A 的主子式全部大于零5.A 的行列式大于零6.A 的特征值全部大于零三.212312331001(,,)(,,)3043x f x x x x x x x x 1.求二次型123(,,)f x x x 所对应的矩阵A ;2.求正交变换xPy ,将二次型化为标准形.解:1. 2112312331232123001(,,)(,,)300(,,)34343x x f x x x x x x x x x x x x x x 22212233343xxx x x故二次型123(,,)f x x x 所对应的矩阵100032023A. 2.问题可转化为求正交矩阵P ,将A 化为对角形. 210032(1)(5)23AE故A 的特征值为1231, 5.当121时,解方程0A E x.000011022*******rA E :.令1310,1x x ,得20,1x .取1210,101,则12,即为对应于121的特征向量.显然,12,正交.将12,单位化得121212110,2012P P 当35时,解方程50A E x.4001005022011022rA E :.令31x ,得1201x x .取311,则3即为对应于35的特征向量.将3单位化得3331212P .令123PP P P ,则1115P AP.故123(,,)f x x x 的标准形为2221235y yy .四.已知A 和B 都为n 阶正定矩阵,求证A B 的特征值全部大于零.证明:因为,A B 都为n 阶正定矩阵,则对任意n 维列向量0x,有0,00T T Tx Axx BxxA B x .即A B 是正定矩阵.故A B 的特征值全部大于零. 五.已知A 为n 阶正定矩阵,求证1A E.证明:因为A 为n 阶正定矩阵,则A 的n 个特征值12,,,n全大于零且存在正交矩阵P ,使得112211nnP APAPP .由1122111nnAE P PPPPE P121111nPP ,得121121111111nnA E PP六.求22:1L x xy y围成的面积.解:设二次型22112(,),112x f x y xxy yx yy.令112112A,则A 是对称矩阵且正定.设12,为A 的特征值,可知存在正交矩阵P ,使得112TP APP AP.由0E A,得1213,22.因为正交变换不改变向量的长度,故可用正交变换12z x P z y,使得1221122TT TT X AXZ P APZZ P APZzz ,其中12,z x XZz y.综上可知,经过正交变换后,221213(,)22f x y zz .故L 的面积即为椭圆:221213122zz的面积.面积23S .第五章复习题三、计算题1、设3阶对称阵A 的特征值为6,3,3,与特征值6对应的特征向量为11,1,1Tp ,求A解:因为对称矩阵对应于不同特征值的特征向量是两两正交的,所以求对应于3的特征向量即为求与1,1,1T正交的特征向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章参考答案第一节一、选择题1.A (观察矩阵的元素,每行元素之和都是1,即有1111111A ⎡⎤⎡⎤⎢⎥⎢⎥=⨯⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦) 2.B (矩阵A 的所有特征值之和等于矩阵的对角线元素之和)3.D (教材P198定理5.1.1,注意对角阵中特征值的次序与构成P 的特征向量的次序对应)4.B (特征向量是非零向量,故A,D 错误;属于不同特征值的特征向量线性无关,故C 错误) 二、填空题.1.0(由0Ax =知0A =,而矩阵A 的所有特征值的乘积等于A );2.32(教材P199定理5.1.5(1), A 的特征值满足00E A λ-=;323002A E E A -=⇒-=); 3. 1,1-(211213211321a b a b b a b a -=⎡⎤⎡⎤⎡⎤⎧=⇒⎨⎢⎥⎢⎥⎢⎥---=-⎣⎦⎣⎦⎣⎦⎩); 4. 5,4-(2-和4为特征值,故满足00E A λ-=或00A E λ-=,于是有2040A E A E ⎧+=⎪⎨-=⎪⎩);5. 任意的非零向量(由于A 的特征值为2,且()20R A E -=). 三、证法一:设λ为A 的特征值,ξ为属于λ的特征向量,则有()222210101A A E ξλξξλξξξλξλλ=⇒===⇒-=⇒-=⇒=±即A 的特征值只有1±,5λ=不是矩阵A 的特征值从而50E A -≠,故A 可逆. 证法二:222225242524(5)(5)24A E A E E E A E E A E A E =⇒-=-⇒-=⇒-+= 于是有552424050nE A E A E E A -+==≠⇒-≠,故A 可逆. 四、(1)()31E A λλ-=-,所以特征值为1231λλλ===,而000100100000100000E A ⎛⎫⎛⎫⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭即3重特征值1λ=,对应的全部特征向量为1212(0,1,0)(0,0,1)(,)T T p k k k k =+不全为零.只有两个线性无关的特征向量,故不能对角化.(2)()()216E B λλλ-=--,所以特征值为1231,6λλλ===对于36λ=,4014016353310401000E B --⎛⎫⎛⎫ ⎪ ⎪-=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以属于特征值16λ=的全部特征向量为111(1,3,4)(0)T p k k =≠;对于231λλ==,101101303000404000E B --⎛⎫⎛⎫ ⎪ ⎪-=--→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭所以属于特征值231λλ==的全部特征向量为22323(0,1,0)(1,0,1)(,)T T p k k k k =+-不全为零.取101310401P ⎛⎫⎪= ⎪ ⎪-⎝⎭,则0P ≠,P 的列恰是三个线性无关的特征向量,故A 能对角化.五、(1)记32()57f A A A A =-+,并令32()57f x x x x =-+,则()f A 的特征值为: 32(1)151713f =-⨯+⨯=,32(2)252722f =-⨯+⨯=,32(3)353733f =-⨯+⨯=所以3257(1)(2)(3)18A A A f f f -+==。

(2)由已知,12(3)6A =⨯⨯-=-,记*11()3232632A A A E A A A E A A E ϕ--=-+=-+=--+ 令1()632x x x ϕ-=--+,则()A ϕ的特征值为(1)7ϕ=-,(2)7ϕ=-,(3)13ϕ-=所以*32(1)(2)(3)637A A E ϕϕϕ-+=-=。

第二、三节一、选择题.1.D (λ为A 的特征值的充要条件是0E A λ-=,故若λ不是A 的特征值,必0E A λ-≠)2.C (令()()11222121()3333f A A A A A ----⎛⎫==== ⎪⎝⎭,则由教材P209性质5.3.3,()f A 的一个特征值为23(2)324f -=⨯=) 3.D (见教材P212性质5.3.5,性质5.3.6;由于对角阵中特征值可有不同的排列次序,故B 不正确) 4.C (见教材P198定理5.1.1;D 选项正确的叙述为:对于A 的每个i r 重特征值i λ,应有()i i R E A n r λ-=-) 5.C (见教材P214性质5.3.8,;6611A P PPEP --=Λ=)6.D (因属于不同特征值的特征向量线性无关,且特征向量是非零向量,故A ,B 不正确;对于选项C 和D :设12ξξ+是A 的特征向量,则存在特征值λ使得1212()()A ξξλξξ+=+,有121211221122()()()0A A λξξξξλξλξλλξλλξ+=+=+⇒-+-=因为12λλ≠,所以12,ξξ线性无关,由上式得12120λλλλλλ-=-=⇒=,与已知矛盾,故12ξξ+不是A 的特征向量。

因此C 错误D 正确)二、填空题.1.43(因B 与A 相似,所以B 的特征值也是1,2,3-,记1()f B B E -=+,则()f B 的特征值为 1(1)112f -=+=,11(2)(2)12f --=-+=,14(3)313f -=+=,于是11442233B E -+=⨯⨯=); 2. 4(见教材P208性质5.3.1);3. 0,1(见教材P212性质5.3.6;tr 20tr 2(1)22A x B y A B y =++==++-⎧⎨=-==-⎩);4. 21-或(α也是A 的特征向量,设α是属于特征值λ的特征向量,则有21111312122112113k A k k k k k λαλαλλλ+=⎡⎤⎡⎤⎡⎤⎧⎪⎢⎥⎢⎥⎢⎥=⇒=⇒+=⎨⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥+=⎣⎦⎣⎦⎣⎦⎩,解之可得);5. 0x y +=(由()()20111110E A xy λλλλλλ-=-=-+,知1λ=是二重特征值,A 能对角化,则必有()1R E A -=,而101101000101000E A x y y x --⎡⎤⎡⎤⎢⎥⎢⎥-=--→+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦). 三、(1)参考教材例题可解得A 的特征值为1,2,2-,解方程组得属于1-的特征向量为1101ξ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,属于2的两个线性无关的特征向量分别为2011ξ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦和3104ξ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,于是,所求可逆矩阵为 ()123101,,010114P ξξξ⎛⎫ ⎪== ⎪ ⎪-⎝⎭,使得1122P AP --⎛⎫⎪=Λ= ⎪ ⎪⎝⎭(2)记3()21g λλλ=-+,则()g A 的特征值和特征向量依次为 特征值()112g λ=-=,对应的全部特征向量为111(1,0,1)(0)T p k k =≠;特征值()2325g λλ===,对应的全部特征向量为22323(0,1,1)(1,0,4)(,)T T p k k k k =-+不全为零.(3)()(1)(2)(2)25550g A g g g =-=⨯⨯=; (4)由()123101,,010114P ξξξ⎛⎫ ⎪== ⎪ ⎪-⎝⎭,可得141110303111P ---⎛⎫⎪= ⎪ ⎪-⎝⎭ 所以1200111()050050005416g A P P -⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭第四节一、选择题.1.D (设A 的特征值为λ,属于λ的特征向量为ξ,则()()22222200A A O A A A A O ξξξλξλξλλξξλλ+=⇒+=+=+=+==⇒+=,即A 的特征值为1,0-,又由A 的秩为3,知0是一重特征值,从而1-是三重特征值)2.D (如1000⎡⎤⎢⎥⎣⎦为实对称矩阵,显然不可逆) 3.D (由0A <可知A 有两个不相等的特征值,由第二、三节选择题6可知C 不正确) 二、填空题.1.0(A 为对称矩阵,,u v 是属于不同特征值的特征向量); 2. 53-(由1α与2α正交,可算得a ); 3.E (32223()(23)230A A A E A E A A E O A E A A E ++=⇒-++=⇒-++=,由于A 的特征值都是实数,所以2230A A E ++≠,故223A A E ++可逆,从而A E O A E -=⇒=;或者:设A 的特征值为λ,属于λ的特征向量为ξ,则有()()323232323303030A A A E A A A E ξλλλξλλλ++=⇒++-=⇒++-=⇒++-=即2(1)(23)0λλλ-++=,由于A 的特征值都是实数,故1λ=,又由323A A A E ++=知A 可逆,从而1λ=是三重特征值,于是存才可逆阵P 使11P AP E A PEP E --=⇒==)。

三、由于()()()400032415023E A λλλλλλλ--=--=-----,所以特征值为4,1,5λ=; 对于特征值1,解方程组()0E A X -=得基础解系1011ξ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,单位化得1011p ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦; 对于特征值4,解方程组(4)0E A X -=得基础解系2100ξ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,单位化得2100p ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦; 对于特征值5,解方程组(5)0E A X -=得基础解系3011ξ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,单位化得3011p ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦;所以所求正交阵为10000P ⎛⎫⎪⎪⎪= ⎪ ⎪ ⎝,使得1100040005TP AP P AP -⎛⎫⎪==Λ= ⎪ ⎪⎝⎭ 四、(注:本题中属于3个不同特征值的特征向量不是正交的,故A 不是实对称矩阵,请将题目中的“实对称”划掉)记()123011,,111110P p p p ⎛⎫ ⎪== ⎪ ⎪⎝⎭,则可求得1110111011P --⎛⎫⎪=- ⎪ ⎪-⎝⎭,于是有11200011200110020111020111001110001011P AP A P P ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪=Λ=-⇒=Λ=-- ⎪ ⎪⎪⎪ ⎪ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭233453442--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭五、设属于30λ=的特征向量为()3123,,Tp x x x =,则有3p 与1p ,2p 正交,即13230T T p p p p ⎧=⎨=⎩,也即3p 为方程组1231230220x x x x x x ⎧++=⎨+-=⎩的基础解系,由111103212014-⎛⎫⎛⎫→ ⎪ ⎪-⎝⎭⎝⎭得()33,4,1Tp =-为所求; 记()123123,,114121P p p p ⎛⎫ ⎪==- ⎪ ⎪-⎝⎭,17811152726341P -⎛⎫⎪=- ⎪ ⎪-⎝⎭,则1A P P -=Λ。

相关文档
最新文档