高中数学会考复习必背知识点
高中数学会考知识要点总结
高中数学会考知识要点总结
高中数学会考主要包括以下知识要点总结:
1. 几何学:直线和平面的性质和关系、三角形、四边形的性质和关系、圆的性质和关系、空间几何体的性质和关系等。
2. 代数学:多项式的运算和因式分解、一元二次方程、不等式和绝对值、函数的概念
和性质、函数的图像、函数的运算、复合函数、反函数等。
3. 数列与数学归纳法:数列的概念和性质、等差数列和等比数列、数列的推导、数学
归纳法的应用。
4. 解析几何:点、直线、平面的坐标表示、直线和平面的性质和关系、向量的概念和
运算、向量的坐标表示、向量的数量积和向量积。
5. 概率与统计:随机事件的概率、事件的独立性、全概率公式和贝叶斯定理、统计图
表的表示和分析、样本调查和数据分析等。
6. 三角函数:弧度制和角度制、正弦、余弦、正切函数的概念和性质、三角函数的图像、三角函数的运算、解三角方程等。
7. 微积分初步:函数的极限和连续性、导数和导数的应用、函数的积分和积分的应用、微分方程的基本概念、解微分方程的基本方法等。
以上是高中数学会考的主要知识要点总结,需要学生对这些知识点进行系统的学习和
掌握,才能在数学会考中取得好成绩。
高中数学会考知识点总结
高中数学会考知识点总结
1. 数学基础知识
- 数字与运算:包括整数、有理数、无理数和实数等概念,以及四则运算和混合运算。
- 代数与函数:包括代数运算规律、函数的概念、函数的图像和性质等内容。
- 几何与形状:包括几何图形的分类、性质和计算等内容。
2. 数学推理与证明
- 数学推理:包括命题逻辑、谓词逻辑和命题的推理法则等内容。
- 数学证明:包括直接证明法、间接证明法和反证法等内容。
3. 高中数学应用
- 函数与方程:包括一次函数、二次函数、指数函数、对数函数和三角函数等内容。
- 数列与数学归纳法:包括等差数列、等比数列、递推数列和数学归纳法等内容。
- 空间与向量:包括坐标系、平面向量和空间几何等内容。
4. 统计与概率
- 统计学:包括数据的收集、整理、分析与解释等内容。
- 概率学:包括事件概率、条件概率和概率分布等内容。
5. 解决实际问题
- 实际问题的建模与解决:包括将实际问题转化为数学问题、运用数学方法解决问题等内容。
- 实际问题的解释与应用:包括解释数学解的含义和应用数学解于实际问题的场景等内容。
以上是高中数学会考的主要知识点总结,希望对你的学习有所帮助。
新人教版高中数学必修一、必修二会考考点归纳(表格版)
高中数学学考知识点汇总1.集合与常用逻辑用语集合与常用逻辑用语集合 概念 一组对象的全体. ,x A x A ∈∉。
元素特点:互异性、无序性、确定性。
关系子集x A x B A B ∈⇒∈⇔⊆。
A ∅⊆; ,AB BC A C ⊆⊆⇒⊆ n 个元素集合子集数2n 。
真子集00,,x A x B x B x A A B ∈⇒∈∃∈∉⇔⊂ 相等,A B B A A B ⊆⊆⇔= 运算交集{}|,x x B x B A A ∈∈=且 ()()()U U U C A B C A C B = ()()()U U U C A B C A C B = ()U U C C A A =并集{}|,x x B x B A A ∈∈=或 补集{}|U x x U C A x A ∈=∉且 充要 条件充分条件 p q ⇒,p 是q 的充分条件 若命题p 对应集合A ,命题q 对应集合B ,则p q ⇒等价于A B ⊆,p q ⇔等价于A B =。
必要条件 p q ⇒,q 是p 的必要条件 充要条件 p q ⇔,,p q 互为充要条件 量词全称量词 ∀,含全称量词的命题叫全称命题,其否定为存在性量词命题。
存在量词∃,含存在量词的命题叫存在性量词命题,其否定为全称命题。
2.不等式不等式的性质(1)a b b c a c >>⇒>,;两个实数的顺序关系: 0a b a b >⇔-> 0a b a b =⇔-= 0a b a b <⇔-<(2)00a b c ac bc a b c ac bc >>⇒>><⇒<,;,; (3)a b a c b c >⇒+>+;(4)a b c d a c b d >>⇒+>+,; 11a b a b>⇔<的充要条件是0ab >。
(5)00a b c d ac bd >>>>⇒>,;(6)*01nnnna b n n a b a b >>∈>⇒>>N ,,;基本 不等式2a b ab +≥(,0a b >); 2()2a b ab +≤(,a b ∈R );3.二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++(a>0) 的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,22b x a-±∆=()12x x <有两个相等实数根122b x x a==-没有实数根一元二次不等式的解集20ax bx c++>(a>0) {}12x x x x x<>或2bx xa⎧⎫≠-⎨⎬⎩⎭R 20ax bx c++<(a>0) {}12x x x x<<∅∅4. 函数函数概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记为y=f(x)。其中,x叫作自变量,x的取值范围A叫作函数的定义域,与x的值相对应的y叫作函数值,函数值的集合:{y|y=f(x),x∈A}叫作函数的值域性质单调性增函数定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)< f(x2减函数定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).奇偶性偶函数对于函数()f x的定义域内的任意一个x,都有()()f x f x-=偶函数的图像关于y轴对称奇函数对于函数()f x的定义域内的任意一个x,都有()()f x f x-=-奇函数的图像关于原点对称零点概念方程()0f x=的实数根叫零点⇔函数()y f x=的图象与x轴有交点⇔函数()y f x=有零点存在定理图象在[,]a b上连续不断,若()()0f a f b<,则()y f x=在(,)a b内存在零点。
高中数学会考必修公式总结大全
高中数学会考必修公式总结大全作为高中数学的重要组成部分,会考必修公式的掌握对于学生的数学成绩至关重要。
本文将总结高中数学会考必修的公式,帮助同学们更好地理解和掌握这些知识点。
一、有理数运算公式1. 加法交换律:a+b=b+a2. 加法结合律:(a+b)+c=a+(b+c)3. 减法法则:a-b-c=a-(b+c)4. 乘法交换律:ab=ba5. 乘法结合律:(ab)c=a(bc)6. 乘法分配律:(a+b)c=ac+bc二、数列求和公式1. 等差数列求和:Sn=(a1+an)n/2或Sn=n(a1+an)/22. 等比数列求和:Sn=a1(1-q^n)/(1-q)或Sn=A1/(1-q)+An/(1-q)三、基本不等式公式1. 平均值不等式:a+b≥2√ab(当且仅当a=b时等号成立)2. 海伦-秦九韶公式:√(p(p-a)(p-b)(p-c)),其中p=(a+b+c)/2四、几何公式1. 两点之间的距离公式:点A(x1,y1),B(x2,y2),则AB的长度为|AB|=√[(x2-x1)²+(y2-y1)²]2. 向量加法、减法、数乘运算公式:(1)a=(x,y),b=(x',y')→a+b=(x+x',y+y');(2)(c,d)+a=(c+x,d+y);(3)λa=(λx,λy);(4)(a-b)·i=x-y,(a-b)·j=xj+yj;3. 圆的方程:圆的一般方程为(x-a)²+(y-b)²=r²,其中圆心坐标为(a,b),半径为r;4. 直线与圆的位置关系判断公式:d<r,则直线与圆相交;d=r,则直线与圆相切;d>r,则直线与圆相离。
五、三角函数公式高中数学会考中,三角函数是非常重要的一部分内容。
以下是一些常见的三角函数公式:1. 正弦函数(sin):y=sinx;余弦函数(cos):y=cosx;正切函数(tan):y=tanx。
高中数学会考重点整理--非常详细总结
高中数学会考重点整理--非常详细总结1. 代数部分- 多项式多项式- 一元多项式的定义和性质- 多项式的加减乘除运算- 一元多项式的整除性质和余式定理- 多项式的因式定理和因式分解- 方程与不等式方程与不等式- 一元二次方程的解法及其性质- 二次函数与二次方程的关系- 一次不等式、二次不等式的解法及其性质- 绝对值方程与绝对值不等式的解法及其性质- 函数函数- 线性函数、反比例函数和一次函数的性质和图像- 二次函数、指数函数和幂函数的性质和图像- 对数函数和指数函数的互反性质- 数列数列- 等差数列和等比数列的性质及其应用- 通项公式、求和公式和首项公式的推导和使用2. 几何部分- 平面几何平面几何- 长度、角度、面积、体积的计算方法及其应用- 相似三角形的性质和判定条件- 三角形内角和、外角和、中线、高线的性质和计算方法- 圆内接四边形和圆内接三角形的性质和判定条件- 立体几何立体几何- 空间几何图形的投影、旋转和平移等变换- 空间几何体的面积和体积计算方法及其应用- 空间几何体的表面积和体积计算方法及其应用- 球的性质、公式和计算方法3. 统计与概率部分- 统计统计- 数据的收集、整理和描述方法- 数据的频数、频率、平均数和离散程度计算- 图表和统计图的制作和解读- 抽样调查和统计推断的基本方法- 概率概率- 基本概率定理和计算方法- 事件的相互排斥和独立性判定条件- 概率问题的计算步骤和策略- 条件概率和事件的互斥性计算方法以上是高中数学会考的重点整理,希望能够帮助你复习和准备考试。
祝你取得好成绩!。
高二数学会考必背公式知识点
高二数学会考必背公式知识点在高中数学的学习中,必背公式是提高解题效率和准确性的基础。
掌握了这些公式,能够快速、准确地解决各类数学问题。
以下是高二数学会考必背公式知识点:1. 二次函数相关公式:- 一般式:$y = ax^2 + bx + c$- 根的判别式:$\Delta = b^2 - 4ac$- 顶点坐标:$(h, k)$,其中$h = -\frac{b}{2a}$,$k = f(h) =\frac{\Delta}{4a}$- 对称轴:$x = -\frac{b}{2a}$- 平移变换:$y = a(x - h)^2 + k$2. 三角函数相关公式:- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正切定理:$\tan A = \frac{\sin A}{\cos A}$- 三角和差公式:$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$3. 平面几何相关公式:- 任意三角形面积公式:$S = \frac{1}{2} \cdot a \cdot b \cdot \sin C$- 直角三角形勾股定理:$c^2 = a^2 + b^2$- 中线定理:三角形三条中线交于一点且平分彼此的长度- 高线定理:三角形三条高线交于一点,且交点到三边的距离相等4. 概率与统计相关公式:- 排列公式:$A_n^m = \frac{n!}{(n-m)!}$- 组合公式:$C_n^m = \frac{n!}{m!(n-m)!}$- 事件的概率:$P(A) = \frac{N(A)}{N(S)}$- 条件概率:$P(A|B) = \frac{P(A \cap B)}{P(B)}$- 独立事件概率:$P(A \cap B) = P(A) \cdot P(B)$5. 数列与级数相关公式:- 等差数列通项公式:$a_n = a_1 + (n-1)d$- 等差数列前n项和公式:$S_n = \frac{n}{2}(a_1 + a_n)$- 等差数列求和公式:$S_n = \frac{n}{2}(2a_1 + (n-1)d)$- 等比数列通项公式:$a_n = a_1 \cdot q^{n-1}$- 等比数列前n项和公式(当$|q| < 1$):$S_n = a_1 \cdot \frac{1-q^n}{1-q}$以上是高二数学会考必背的公式知识点,掌握并熟练运用这些公式,能够在数学问题的解答中更加得心应手。
高中数学会考重点知识点详细总结
高中数学会考重点知识点详细总结引言高中数学会考是对学生数学知识掌握程度的重要评估,涵盖了代数、几何、概率统计等多个领域。
本文档旨在总结高中数学会考的重点知识点,帮助学生系统复习,提高考试成绩。
第一部分:代数1.1 函数函数的定义与性质一次函数、二次函数、指数函数、对数函数、三角函数的图像与性质函数的单调性、奇偶性、周期性1.2 代数方程一元一次方程、一元二次方程的解法高次方程的解法无理方程、指数方程、对数方程的解法1.3 不等式不等式的基本性质一元一次不等式、一元二次不等式的解法线性规划的基本概念和简单应用1.4 数列等差数列、等比数列的定义和通项公式数列的求和公式数列极限的概念1.5 复数复数的概念和四则运算复数的几何意义复数与三角函数的关系第二部分:几何2.1 平面几何三角形、四边形的性质圆的性质解析几何:点的坐标、直线的方程、圆的方程2.2 立体几何棱柱、棱锥、球的性质空间几何体的表面积和体积计算2.3 解析几何的应用直线与直线、直线与圆、圆与圆的位置关系空间向量及其在立体几何中的应用第三部分:概率统计3.1 概率论基础随机事件的概率互斥事件、独立事件的概率条件概率3.2 统计学基础数据的收集、整理和图表表示描述性统计:均值、中位数、众数、方差、标准差概率分布:离散型随机变量、连续型随机变量3.3 统计推断抽样分布置信区间假设检验第四部分:微积分初步4.1 极限与连续性极限的概念函数的连续性4.2 导数与微分导数的定义和几何意义基本初等函数的导数公式复合函数、反函数的求导法则4.3 积分不定积分和定积分的概念牛顿-莱布尼茨公式定积分的几何意义和物理意义结语高中数学会考覆盖了数学的多个重要领域,本文档的总结旨在帮助学生系统地复习和掌握这些知识点。
通过对这些重点内容的深入理解和练习,学生可以提高解题能力,增强数学思维,为会考和未来的数学学习打下坚实的基础。
高中会考数学知识点总结完整
高中会考数学知识点总结完整
版
一、代数:
1、复数:虚数单位i,负数的平方根,实部、虚部,复数模及其计算,共轭复数,复数乘法法则及其计算;
2、一元二次方程:二次函数的定义,一元二次方程的解法,两个实
数根(根的种类、解的类型),有理数解,实数解,无理数解;
3、一元n次方程:一元n次方程的定义、解法,有理数解,实数解、无理数解;
4、二元一次方程组:定义、解法,化简,消元,解的类型,无解,
有唯一解,有多解;
5、分式:分式定义及其特点,分式的加减法,乘除法,乘方,混合
运算法则及计算,提取公因数;
6、根式:定义、特点,同底数的幂的加法、减法,乘法、乘方及计算,开根号,根式与分式的比较及混合运算;
7、二元二次方程组:定义,利用配方求解,利用消元求解,利用把
变量替换成另一个求解;
二、几何:
1、直线与圆:直线与圆的定义,直线的斜率及其计算,圆的标准方
程及其计算,圆的圆心角的大小及其计算;
2、直角三角形:定义、特点,两个直角三角形的重要性质,利用重要性质求三角形的面积,角的大小及其计算,弦长的计算;
3、三角形:定义,重要性质(勾股定理、余弦定理),三角。
高中数学会考知识点
高中数学会考知识点高中数学会考是对学生高中阶段数学学习的一次重要检验。
为了帮助同学们更好地应对会考,下面将对高中数学会考的重要知识点进行梳理。
一、集合与函数集合是数学中一个基础的概念,包括集合的表示方法(列举法、描述法等)、集合的运算(交集、并集、补集)。
函数则是高中数学的重点内容。
要理解函数的概念,包括定义域、值域和对应关系。
常见的函数类型有一次函数、二次函数、反比例函数等。
对于二次函数,要掌握其图像和性质,如对称轴、顶点坐标、开口方向等。
函数的单调性和奇偶性也是重要的考点,能够通过函数的解析式或者图像判断其单调性和奇偶性。
二、数列数列包括等差数列和等比数列。
等差数列要掌握其通项公式、前n 项和公式,以及等差中项的性质。
通过这些公式和性质可以解决数列中的求值、求和等问题。
等比数列同样要掌握通项公式、前 n 项和公式,以及等比中项的性质。
在解题过程中,要注意公比是否为 1 的情况。
三、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
要牢记它们的定义、周期性、值域、单调性等性质。
三角函数的诱导公式是解题的重要工具,能够将不同角度的三角函数值进行转化。
解三角形部分,要掌握正弦定理和余弦定理,能够运用它们解决三角形中的边长、角度等问题。
四、平面向量平面向量的概念包括向量的定义、表示方法(有向线段、坐标表示)。
向量的运算包括加法、减法、数乘和数量积。
要掌握这些运算的法则和性质,能够进行向量的运算和求解相关问题。
五、不等式不等式的性质是解不等式的基础,要熟练掌握。
一元二次不等式的解法是重点,通过求解二次函数的零点,结合函数图像得出不等式的解集。
线性规划问题则是考查如何在约束条件下,求目标函数的最值。
六、立体几何立体几何主要包括空间几何体的结构特征、表面积和体积的计算。
直线与平面、平面与平面的位置关系是重要考点,要能够进行判定和证明。
空间向量在立体几何中的应用,可以通过建立空间直角坐标系,利用向量的方法解决线线角、线面角、面面角等问题。
高中数学会考知识要点总结
高中数学会考知识要点总结一、集合与简易逻辑1、集合的元素具有确定性、无序性和互异性、2、对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集;3、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”;4、“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”;5、四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”、原命题等价于逆否命题,但原命题与逆命题、否命题都不等价、反证法分为三步:假设、推矛、得果、充要条件。
二、函数1、指数式、对数式,2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”;(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个;(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像。
3、单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同、偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反。
(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”。
复合函数的奇偶性特点是:“内偶则偶,内奇同外”、复合函数要考虑定义域的变化。
(即复合有意义)4、对称性与周期性(以下结论要消化吸收,不可强记)(1)函数与函数的图像关于直线(轴)对称。
推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称。
推广二:函数,的图像关于直线对称。
(2)函数与函数的图像关于直线(轴)对称。
(3)函数与函数的图像关于坐标原点中心对称。
三、数列1、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系。
会考数学高考知识点总结
会考数学高考知识点总结一、函数1.函数的定义与性质函数是数学中一个基本的概念,它是一个输入和输出之间的对应关系。
在高中数学中,学生要学习函数的定义、函数的性质、函数的图像等内容。
函数的定义是指出了一种输入和输出之间的关系。
对于函数的性质,在高中数学中有很多的知识点需要掌握,比如函数的奇偶性、周期性、单调性等内容。
函数的图像是指函数的曲线在平面直角坐标系中的图形,学生要学习如何画出函数的图像。
2.常用函数在高中数学中,学生要学习一些常用的函数,比如幂函数、指数函数、对数函数、三角函数等。
这些函数在数学中具有重要的作用,学生要掌握它们的性质和应用。
3.函数的运算函数的运算是指两个或多个函数之间的加减乘除和复合等运算。
学生要学习函数的基本运算规则和运算性质。
二、数列和数学归纳法1.数列的概念数列是一个按照一定顺序排列的一组数,学生要学习数列的概念和数列的基本性质。
2.等差数列和等比数列等差数列和等比数列是高中数学中常见的两种数列,学生要学习这两种数列的定义、性质和常用的应用。
3.数学归纳法数学归纳法是数学中的一种推理方法,它用来证明一个关于自然数的性质。
在高中数学中,学生要学习数学归纳法的原理和应用,掌握使用数学归纳法解题的方法。
三、三角函数1.三角函数的概念三角函数是描述角和角度的函数,它包括正弦函数、余弦函数、正切函数、余切函数等。
在高中数学中,学生要学习三角函数的概念,函数图像和性质等内容。
2.三角函数的应用三角函数的应用十分广泛,它在几何学、物理学、工程技术等领域中都有重要的作用。
学生要学习三角函数在实际问题中的应用,掌握解答相关问题的方法。
四、导数1.导数的概念导数是微积分的一个基本概念,它描述了函数的变化率。
在高中数学中,学生要学习导数的概念和导数的定义,掌握导数的计算方法和导数的性质。
2.导数的应用导数在实际问题中有广泛的应用,比如在物理学中描述物体的运动,建模和分析经济学中的函数等。
学生要学习导数在实际问题中的应用,掌握解答相关问题的方法。
高中数学会考必备的39个公式
高中数学会考必备的39个公式1、勾股定理:三条直线上两个点之间的距离关系,即a2 + b2 = c2。
2、余弦定理:两条相交直线所成的两个直角三角形,c2=a2+b2-2ab×cosC 。
3、正弦定理:两条相交的直线所组成的两个直角三角形, sinA / a = sinB / b = sinC / c 。
4、梯形公式:面积之和,即(a+b)h / 2。
5、圆面积公式:πr2 。
6、三角形面积公式:S=1/2×a×b×sinC 。
7、抛物线面积公式:S=1/3×a×h2 。
8、割线法则:1/y=1/a+1/b 。
9、勾股变形定理:ac=a2+b2−2ab cosC 。
10、余切定理:tanA/a=tanB/b=tanC/c 。
11、海伦公式:三角形内角a+b+c=180°,a2=b2+c2−2bc cosA。
12、同余三角形定理:三角形内角A/a=B/b=C/c 。
13、梯形公式:周长之和,即a+b+(c+d) 。
14、圆周长公式:2πr15、平行线定理:平行线成立的条件为同时垂直于两个垂线。
16、外接圆定理:四边形的外接圆的半径等于对角的中点的距离的一半。
17、锐角定理:三角形内角a+b>c18、直角定理:三角形内角a+b=c19、正方形面积公式:a220、平行四边形面积公式:ab21、直角三角形面积公式:1/2ah22、圆心角公式:mθ=2πr23、梯形周长公式:a+b+c+d24、圆周弧长公式:λ=θr25、余子式:对于系数矩阵A=[aij]n×n,各阶行列式的余子式定义为Ai,…,Ak 。
26、拉格朗日和弦定理:如果一个四边形的角都是锐角,那么它的两个对角线的乘积等于它的四条边的乘积。
27、反余弦定理:ac=a2+b2−2ab×cosC 。
28、反正弦定理: sinA / a = sinB / b = sinC / c 。
高中会考数学知识点总结
高中会考数学知识点总结一、代数1、代数运算代数运算包括加法、减法、乘法、除法,以及相应的运算规则。
高中阶段代数运算的难点在于复杂的多项式运算,例如多项式的加减、乘除和因式分解等。
2、方程与不等式高中数学主要学习一元一次方程、一元二次方程、一元一次不等式、一元二次不等式以及二元一次方程组等。
学生需要掌握将复杂方程或不等式化简,以及求解方程和不等式的方法。
3、函数函数是高中数学中的一个重要知识点,包括一元函数、二元函数、复合函数、反函数等内容。
学生需要学会绘制函数图像、求函数的极值、零点、不等式解等。
4、数列与级数数列与级数是高中数学中的另一个重要知识点,包括等差数列、等比数列、级数求和及收敛性等内容。
学生需要掌握数列的通项公式、通项求和公式等。
5、排列与组合排列与组合是高中数学中的概率知识,包括排列、组合、二项式定理、多项式定理等内容。
学生需要学习如何计算排列组合问题及其应用。
二、几何1、平面几何平面几何主要包括平面图形的性质、相似、全等、直角三角形、圆的性质等内容。
学生需要掌握平面图形的面积、周长计算,以及几何证明等方法。
2、立体几何立体几何主要包括立体图形的性质、体积、表面积计算,以及空间几何关系等内容。
学生需要学会计算立体图形的体积、表面积,以及解决空间几何问题。
3、向量向量是高中数学中的一个重要概念,包括向量的定义、线性运算、数量积、向量积等内容。
学生需要学会计算向量的模、夹角、投影以及向量与几何问题的应用。
4、解析几何解析几何是将几何问题转化为代数问题进行求解的方法,主要包括平面坐标、距离公式、斜率公式、方程解析等内容。
学生需要学会应用解析几何解决几何问题。
5、空间几何空间几何主要包括三维空间的向量表示,点、直线、平面的性质及其应用,以及多面体的体积、表面积计算等内容。
学生需要掌握解决空间几何问题的方法。
三、概率与统计1、概率概率是高中数学中的一个重要知识点,包括随机事件、事件的概率、事件的互斥、独立性等内容。
高中数学会考必备资料
高一内容梳理一、集合1、集合的中元素的三个特性:确定性、互异性、无序性2、3、空集是任何集合的子集,空集是任何非空集合的真子集。
4、⑴C U (C U A)=A ⑵(C U A)∩A=Φ⑶(C U A)∪A=U(4)(C U A)∩(C U B)=C U (A ∪B)(5)(C U A)∪(C U B)=C U (A∩B)5、充要条件口诀:小充大必(范围小的是充分条件,范围大的是必要条件)6、复合命题的真假判断(利用真值表):非二、不等式1、若R b a ∈,,ab b a 222≥+,222b a ab +≤,2)2(222b a b a +≤+(当且仅当b a =时取“=”)2、若*,R b a ∈,则ab b a ≥+2,ab b a 2≥+,22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)3、若0x >,12x x +≥(当且仅当1x =取“=”);0x <,则12x x+≤-(当且仅当1x =-取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或(当且仅当b a =时取“=”)4、若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或(当且仅当b a =时取“=”)三、函数1、定义域:分母不等于零;偶次方根的被开方数不小于零;对数式的真数必须大于零;指数、对数式的底必须大于零且不等于1;2、抽象函数定义域:定义域是指x 的取值范围,对应法则的作用范围相同。
3、求函数值域:根式型(换元法);一次分式型(无限制:系数比,取不到;有限制;带端点,内外反);二次分式型(换元,转化为一次;判别式法;捺撇方程法)4、函数单调性:在定义域范围内,取21x x ,,比较()()21,x f x f :同增异减5、函数奇偶性:()()x f x f =-偶函数;()()x f x f -=-为奇函数,若奇函数定义域有0,则必有()00=f 。
高中数学会考知识点总结
高中数学会考知识点总结高中数学是一门重要的学科,对于我们的逻辑思维和解决问题的能力培养有着至关重要的作用。
在会考中,掌握好重点知识点是取得好成绩的关键。
以下是对高中数学会考知识点的总结。
一、集合与函数集合是数学中最基本的概念之一。
集合中的元素具有确定性、互异性和无序性。
常见的集合表示方法有列举法、描述法和区间法。
集合的运算包括交集、并集和补集。
函数是高中数学的核心内容。
函数的定义是给定一个非空数集 A 和B,如果对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数f(x)与之对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
函数的三要素是定义域、值域和对应法则。
常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数。
一次函数的表达式为 y = kx + b(k≠0),其图像是一条直线。
二次函数的表达式为 y = ax²+ bx + c(a≠0),其图像是一条抛物线,对称轴为 x = b/2a。
反比例函数的表达式为 y = k/x (k≠0),其图像是双曲线。
指数函数的表达式为 y = a^x(a>0 且a≠1),对数函数的表达式为 y =logₐx(a>0 且a≠1),它们互为反函数。
幂函数的表达式为 y =x^α,其中α为常数。
函数的性质包括单调性、奇偶性、周期性。
单调性是指函数在某个区间内是递增还是递减;奇偶性是指函数的图像关于原点对称(奇函数)还是关于 y 轴对称(偶函数);周期性是指函数在一定的区间内重复出现相同的性质。
二、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
正弦函数 y =sin x,余弦函数 y = cos x,正切函数 y = tan x。
三角函数的诱导公式用于将不同角度的三角函数值进行转化。
同角三角函数的基本关系式有 sin²x + cos²x = 1,tan x = sin x / cos x 等。
高二会考数学必考知识点总结【五篇】
高二会考数学必考知识点总结【五篇】高二会考数学必考知识点总结【一篇】:高二数学的学习相比于初中数学来说,难度更高,知识点更加繁多,而且高二数学是高考数学的重要基础。
因此,考生在备考高考时必须充分理解各种知识点,并将它们融会贯通,才能在高考中取得好成绩。
本文将列举出高二会考数学必考知识点,希望对各位考生有所帮助。
1.直线方程的表示高考数学中相信每一位同学都了解到直线的方程是很重要的,上数学老师都会告诉我们,直线的方程有三种表示方法,它们分别是一般式、点斜式、截距式。
一般式:Ax+By+C=0点斜式:y-y1=k(x-x1) (k为斜率)截距式:y=kx+b (k为斜率,b为截矩)2.平面直角坐标系上的曲线在平面直角坐标系上,曲线有不同的类型,如函数图像、二次函数图像、指数函数图像、对数函数图像、正弦函数图像、余弦函数图像等。
而每一种曲线又各自有不同的性质和特点。
例如,二次函数图像呈现出一个“U”型,判断一个二次函数的开口方向,可通过判定它的次数和二次系数的正负来确定。
如果二次系数大于0,则曲线开口朝上;如果二次系数小于0,则曲线开口朝下。
3.三角函数三角函数是高考数学的复习重点,主要包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
正弦函数和余弦函数幅度都在-1和1之间,它们分别表示一个标准角的正弦和余弦;正切函数和余切函数的定义分别是正弦和余弦的商,正割函数和余割函数则是余弦和正弦的商。
考生需要掌握三角函数的各种公式和性质,例如和差公式、倍角公式、半角公式和余弦定理等,同时也要能够运用三角函数解决各种实际问题。
这三个例子分别是数学中的重要知识点,对高中数学的学习以及高考数学的备考都有着极大的帮助。
学生平时应注重理解这些知识点,多加练习,有针对性地补充相应的知识点,提高自己的数学能力,来备战高考。
高二会考数学必考知识点总结【二篇】:在高二数学的学习中,有一些知识点不仅是数学考试中的必考内容,而且在高考数学中也是必考的,这些知识点要求考生扎实掌握,最好能够背诵并熟练运用,下面我们就来详细介绍一下高二数学中的必考知识点。
高中数学会考复习必背知识点
高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.2、包含关系 A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C AB R ⇔=第二章 函数 对数:①、负数和零没有对数;②、1的对数等于0:01log =a ;③、底的对数等于1:1log =a a ;④、积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a alog log log -=幂的对数:M n M a n a log log =,b mn b a na m log log =。
第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数) (4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d 3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义: yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin 22=+αα ααcos tan =1cot tan =αα 5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=- )(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=- 7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质)α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=ααα α2T : ααα2tan 1tan 22tan -=212cos 2122cos 1cos 2+=+=ααα 9、三角函数:10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)、正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=求角: abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+=第五章、平面向量 1、坐标运算:(1)、设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x AB -+-=;向量a 的模|a |:a a a ⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,0)(=-+a a (4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a(3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x 2,y 2) ,且21PP P P λ= ,则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧==y x第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤2、解指数、对数不等式的方法:同底法,同时对数的真数大于0;第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC- 3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ; 垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)4、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r(2)圆的一般方程022=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α;第九章 排列 组合 二项式定理1、排列:(1)、排列数公式: mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).0!=1(2)、全排列:n 个不同元素全部取出的一个排列;!n A nn =)!1(123)2)(1(-⋅=⋅⋅⋅⋅--=n n n n n ; 2、组合:(1)、组合数公式: mn C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤);10=n C ;(2)、组合数的两个性质:m n C =m n n C - ;m n C +1-m n C =mn C 1+;3、二项式定理 :(1)二项展开式的通项公式(第r +1项):rr n r n r b a C T -+=1)210(n r ,,,= (2)各二项式系数和:C n 0+C n 1+C n 2+ C n 3+ C n 4+…+C n r +…+C n n =2n(表示含n 个元素的集合的所有子集的个数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n2个 第二章 函数 1、求)(x f y =的反函数:解出)(1y fx -=,y x ,互换,写出)(1x fy -=的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数:N M NMa a alog log log -=,幂的对数:M n Ma na log log =;b mnb a n a m log log =, 第三章 数列1、数列的前n 项和:n n a a a a S ++++=Λ321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)(4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)、通项公式:11-=n n qa a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S n n n (4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数 1、弧度制:(1)、π=ο180弧度,1弧度'1857)180(οο≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义:yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin 22=+αα ααcos tan =1cot tan =αα 5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正公式二: 公式三: 公式四: 公式五:6、两角和与差的正弦、余弦、正切 )(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+)(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:⎪⎪⎭⎫ ⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 8、二倍角公式:(1)α2S : αααcos sin 22sin =α2C : ααα22sin cos 2cos -= 1cos 2sin 2122-=-=ααα2T : ααα2tan 1tan 22tan -=(2)、降次公式:(多用于研究性质)9、三角函数:10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)正弦定理: (3)余弦定理: 求角:第五章、平面向量1、坐标运算:(1)设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→ 数与向量的积:λ()()1111,,y x y x aλλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x -+-=;向量a 的模|a |:⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a,→→=⋅00a ,)(=-+(4)、向量()()2211,,,y x b y x a==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a //01221=-y x y x(2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a,02121=+⇔⊥→→y y x x b a(3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2(则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧==y x 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤(2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤ 2、解指数、对数不等式的方法:同底法,同时对数的真数大于0第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC - 3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、到角范围:()π,0 到角公式 : 12121tan k k k k +-=θ 21k k 、都存在,0121≠+k k夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)6、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r (2)圆的一般方程022=++++F Ey Dx y x(配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:圆锥曲线 1、椭圆标准方程:)0(12222>>=+b a by a x , 半焦距:222b ac -= , 离心率的范围:10<<e ,准线方程:ca x 2±=,参数方程:⎩⎨⎧==ϕϕsin cos b y a x 2、 双曲线标准方程:)0,0(,12222>>=-b a by a x ,半焦距:222b a c+=,离心率的范围:1>e准线方程:c a x 2±=,渐近线方程用02222=-by a x 求得:x a b y ±=,等轴双曲线离心率2=e3、抛物线:p 是焦点到准线的距离0>p ,离心率:1=epx y 22=:准线方程2p x -=焦点坐标)0,2(p ;px y 22-=:准线方程2p x = 焦点坐标)0,2(p-py x 22=:准线方程2p y -=焦点坐标)2,0(p ;py x 22-=:准线方程2p y = 焦点坐标)2,0(p-AAA‘OB第九章 直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α;3、球的体积公式:334 R Vπ=,球的表面积公式:24 R S π= 4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =第十章 排列 组合 二项式定理1、排列:(1)、排列数公式: mn A =)1()1(+--m n n n Λ=!!)(m n n -.(n ,m ∈N *,且m n ≤).0!=1(3)、全排列:n 个不同元素全部取出的一个排列;!n A nn =)!1(123)2)(1(-⋅=⋅⋅⋅⋅--=n n n n n Λ;2、组合:(1)、组合数公式: m nC =m n m mA A =m m n n n ⨯⨯⨯+--ΛΛ21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤);10=n C ;(3)组合数的两个性质:mn C =mn n C - ;m n C +1-m nC =mn C 1+;3、二项式定理 :(1)、定理:nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( ;(2)、二项展开式的通项公式(第r +1项):r rn r n r b aC T -+=1)210(n r ,,,Λ=各二项式系数和:C n 0+C n 1+C n 2+ C n 3+ C n 4+…+C n r+…+C n n=2n(表示含n 个元素的集合的所有子集的个数)。
奇数项二项式系数的和=偶数项二项式系数的和:C n 0+C n 2+C n 4+ C n 6+…=C n 1+C n 3+C n 5+ C n 7+…=2n?-1第十一章:概率:1、概率(范围):0≤P(A) ≤1(必然事件: P(A)=1,不可能事件: P(A)=0)2、等可能性事件的概率:()mP A n=. 3、互斥事件有一个发生的概率:A ,B 互斥: P(A +B)=P(A)+P(B);A 、B 对立:P (A )+ P(B)=14、独立事件同时发生的概率:独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B). n 次独立重复试验中某事件恰好发生k 次的概率()(1).kkn kn n P k C P P -=-。