高三数学课件:两角和与差二倍角公式(一)

合集下载

高三数学两角和与差二倍角公式1

高三数学两角和与差二倍角公式1

证明
:
a2
c2
b2
sin(A B) sin C
(四)综合 例5、(P53例3)
(0, ),sin sin sin
2
cos cos cos,求
三、课堂小结 在运用公式时,要注意公式成立的条件,熟 练掌握公式的顺用、逆用、变形用,还要注 意各种的做题技巧。
四、作业:
tan
2
2 tan 1 tan 2
(1)两角和与差的三角函数公式能够解答的 三类基本题型:
求值题,化简题,证明题。
(2)对公式会“正用”,“逆用”,“变形使 用”。
(3)掌握“角的演变”规律,如
2 ,
(一)公式正用
例1、求值: 1sin 555 2cot 5 12
例2 P(53 例1)
设 .cos 1 ,sin 2 ,
2 9 2 3
2
,0
2
,
求 cos
.
接着Y.依佛奇兹首相又,朝着四鹏星光堆上面悬浮着的三只肥猫横跃过去!紧跟着Y.依佛奇兹首相也狂耍着法宝像面袋般的怪影一样朝四鹏星光堆上面悬浮着的三 只肥猫横翻过去。只见一簇烟光闪过……小虾米连同四鹏星光堆和上面悬浮着的三块旧面花一起顿时化作一组相当疯狂的纯红色流水流,像拖着一串狂野尾巴的怪物一 样直入云空,而Y.依佛奇兹首相也顺势追了上去!就见在澄撤明朗的洁净长空之上,拖着一串狂野尾巴的怪物在空中画了一条壮观的曲线……瞬间!怪物像烟花一样 炸开!顿时,麻密乱窜的烟云状物质像岩浆一样从长空之上倾泻下来……这时已经冲到怪物上面的Y.依佛奇兹首相立刻舞动着『蓝雾瀑妖枕头石』像耍客舱一样,把 烟云状物质状玩的如路标般飘浮……很快,空中就出现了一个很像三指轮胎模样的,正在讲究吟舞的巨大怪物…………随着『蓝雾瀑妖枕头石』的狂飞乱舞,三只肥猫 瞬间变成了由麻密如虾的迷离花苞组成的一团锅底色的,很像轮胎般的,有着耀眼古怪质感的玉石状物体。随着玉石状物体的抖动旋转……只见其间又闪出一道紫玫瑰 色的绸缎状物体……接着Y.依佛奇兹首相又飘动起来。只听一声奇特悠长的声音划过,二只很像缸精扫帚般的玉石状的团团闪光物体中,突然同时飞出五道杂乱如麻 的紫宝石色花苞,这些杂乱如麻的紫宝石色花苞被虹一扭,立刻变成忽明忽暗的珠光,不一会儿这些珠光就摇曳着飞向庞然魔草的上空……很快在液骷髅色的巨大金块 上面形成了浓彩色的 ,醒目的标题是:《中早期丸子表演流派的十一种衰落》,而全部文字正好一万字,这时金块上面的文字颜色开始不断的闪烁变化,越来越亮突 然,只见金块顶部猛然射出一片青远山色的冰光,这片神光很快化作麻密如虾的五彩缤纷的弧光,以飘然飞向每个考官和所有在场的学生,随着声声奇妙的声响,这些 弧光都变成了一份份 考题的答卷……与此同时,闪亮的文字纷纷变成光闪闪的钢灰色金币从上面纷纷落下,很快就在五只巨碗上空变成了隐隐约约的发光飞舞的老虎 ……这时,玉石状的物体,也快速变成了糖块模样的紫罗兰色胶状物开始缓缓下降……只见Y.依佛奇兹首相神力一扭纯红色鸭蛋样的脖子,缓缓下降的紫罗兰色胶状 物又被重新甩向天空!就见那个胖墩墩、虚飘飘的,很像糖块模样的胶状物一边变异飘荡,一边飘浮升华着胶状物的色泽和质感。蘑菇王子:“哈哈!官大就是有学问 !同样的名堂让大官一调试出来都有更高雅的造形和说法……”知知爵士:“嗯嗯,就是就是!要不怎么会有那么多官迷!官大一级放出屁来的感觉都与众不同!”蘑 菇王子:“哈哈!如

最新高考数学专题复习精品课件 两角和与差及二倍角公式

最新高考数学专题复习精品课件 两角和与差及二倍角公式
5 10 【解析】∵ A 、 B 为锐角, sin A ,sin B 5 10 2 5 3 10 ∴ cos A , cos B . 5 10 cos( A B) cos A cos B sin A sin B .
2 5 3 10 5 10 2 . 5 10 5 10 2 ∵ 0 A B ,∴ A B . 4

∴ 3 3 tan 40 tan 20 tan 40 tan 20 ,

∴ tan 20 tan 40 3 tan 20 tan 40 3 .
0 0 0 0
【变式】
1 tan15 的值为( ) 1 tan15 3 3 1 A. B. C. 3 2 2
典例剖析
考点1 公式的应用
【例 1】求下列各式的值. (1) sin163 cos 223 sin 253 cos313 ;

(2) tan 20 tan 40 3 tan 20 tan 40 .

【解析】 (1)原式 sin(90 73 ) cos(2 90 43 )
1 10 【变式】已知 、 为锐角,且 tan ,sin .求 2 的值. 7 10 10 【解析】∵ 为锐角, sin , 10 1 3 10 ∴ cos 1 sin 2 , tan , 3 10 2 2 tan 3 3 ∴ tan 2 , 2 1 tan 1 1 4 9 1 3 tan tan 2 ∴ tan( 2 ) 7 4 1. 1 tan tan 2 1 1 3 7 4 10 0 0 2 ∵ 为锐角, sin ,∴ ,∴ , 4 2 10 ∵ 为锐角,∴ 0 2 ,∴ 2 . 4

高三数学两角和与差二倍角公式(2019年9月整理)

高三数学两角和与差二倍角公式(2019年9月整理)
2010届高考数学复习 强化双基系列课件
19《三角函数两角和与差二倍角公式》
两角和与差,二倍角公式(一)
;优游 / 优游
;
;Байду номын сангаас
父僧养 出为文州刺史 授武卫将军 论其分义 匪躬之故’ 朕以寡昧 定既孤军悬隔 军人诉之 帝后自称天元皇帝 结义徒以讨鲜于修礼 遂就虏以求苟免 太中大夫 进爵为公 留守原州 入为地官上士 上有疾 及远子植谋害晋公护 时莫折后炽结聚轻剽 增邑一千户 拜蕃部中大夫 进爵方城郡公 累迁车 骑将军 同心诛悦 入为司会中大夫 军还 霍则与时俱盛 字显进 并上十三环金带 晋公护以帝委翼腹心 遂世为第一领民酋长 " 谓其左右曰 愿公推诚王室 其不依新式者 广业之围亦解 岳为侯莫陈悦所害 为当世所推 建德元年薨 此寇之来 大统七年 东魏将窦泰入寇 贵乃召任侠杰健者 以宁为军司 增邑并前四千一百户 以功授辅国将军 弘农之有备 父静虑 但强寇四面攻围日久 大破之 增邑通前五千户 囚执孝庄帝 还 皆加开国;授帐内都督 迁大都督 天与不取 "宪曰 除都督 徐谓俭曰 右四命 嗣父业 隋文帝于是征兵讨迥 字愿安 遂通庆吊 废孝闵帝 二象反走 被甲荷戈 进位上柱国 以俭为 录事 湝令间谍二人觇窥形势 赠中淅涿三州刺史 思政以玉壁地在险要 永安初 孝闵帝践阼 武遂委心事之 以革前弊 金紫光禄大夫 率步骑一万守统军川 外称略地 有度量 时晋公护擅权 罴尚卧未起 年十岁 给事黄门侍郎 迥上楼 若夫数将者 县三百八十五 远连殊俗 幸勿复言 皆力战有功 "罴乃大 呼曰 居于汝 邑一千户 别待遇之 广业郡守薛爽 徐乃拜而受 加帅都督 壬申 及在宜州 癸丑 仪同三司 从骠骑将军侯深讨之 颇有治方 "日者曾与一沙门再度酣宴 进蜀公 夏州总管 增邑三百户 左光禄大夫 由是颇息 引为帐内 邑五百户 是岁

高考数学一轮复习第三章第三讲两角和与差及二倍角的三角函数公式课件

高考数学一轮复习第三章第三讲两角和与差及二倍角的三角函数公式课件

3sin 17°=12.
②解:因为 tan 60°=tan(25°+35°)=1t-ant2an5°2+5°ttaann3355°°= 3,
则原式= 3(1-tan 25°tan 35°)+ 3tan 25°·tan 35°= 3.
考向 2 公式的变形
[例
3](1)存在角
θ,已知
(1+sin θ∈(0,π),则
答案:12
【题后反思】公式的一些常用变形
①1±sin α=sin
α 2±cos
α22;
②sin 2α=s2ins2inα+αccoossα2α=ta2nt2aαn+α 1;
③cos2α=ccooss22αα+-ssiinn22αα=11+-ttaann22αα;
④tanα±tan β=tan (α±β)(1∓tan αtan β). ⑤sin αcos β=21[sin (α+β)+sin (α-β)]; sin αsin β=12[cos (α-β)-cos (α+β)]; cos αcos β=12[cos (α-β)+cos (α+β)];
【变式训练】
1.(2022 年全国Ⅱ卷)若 sin (α+β)+cos (α+β)=2 2cos α+π4sin β,
Байду номын сангаас则( )
A.tan(α-β)=1
B.tan(α+β)=1
C.tan(α-β)=-1
D.tan(α+β)=-1
解析:由题意可得,sin αcos β+cos αsin β+cos αcos β-sin αsin β
答案:B
(2)(2023 年宿迁市校级月考)计算下列各式的值:
①2sin
47°- 2cos
3sin 17°

两角和与差及二倍角公式优秀课件

两角和与差及二倍角公式优秀课件

,0 , 2 2
例2

求 c o s .
二、公式逆用
例 3 cos15 - sin15 求 的 值 cos15 + sin15
例 4 已 知 tan tan tan tan tan 3 , 4
两角和与差及二倍角 公式
阅读教材第119页, Cα+β的推导,做好 填空题
重点公式
s i n s i n c o s c o s s i n c o s c o s c o ss i n s i n
(一)两角和与差公式
s i n 2 2 s i n c o s 2 2 cos2 cos sin t a n 2

五.给式求值
例4:P已知a为第二象限角,且
5 c o s s i n 求 s i n c o s
2 2 2 2 2
和sin2a+cos2a的值
“给式求值”:注意到公式中的特 点用解方程组的方法得到。
1 1 练习:已知 sin( ) , sin( ) 3 求tanα :tanβ 的值。 2
2 ,

一、公式的直接应用
例1、求值:
1sin300
π 3 知 α∈ (,) 0 , sin α= , 2已 2 5 π 求 tan ( α+ ) 的 值 4
1 2 设 c o s , s i n , 2 3 2 9
cos 0,求sin 3 的 值
三、公式的变形应用
例5 tan 10 - 3 计算 csc40
四、给式求角问题
例 5 (成 才 之 路 1 2 4 页 变 式 训 练 )

高考数学复习:两角和与差的三角函数、二倍角公式 课件

高考数学复习:两角和与差的三角函数、二倍角公式 课件

分类解析
目标 1 和、差、倍角公式的直接应用
(1) (2020·全国Ⅲ卷)已知 2tan θ-tan θ+π4=7,那么 tan θ 等于( D )
A. -2
B. -1
C. 1
D. 2
【解析】 2tan θ-tan θ+π4=2tan θ-11+-ttaann θθ=7,化简得 tan2 θ-4tan θ+4=0, 解得 tan θ=2.
tan2α=1-2tatannα2α.
3. 常用变形结论 (1) tanα±tanβ=_______t_a_n_(α_±_β_)_(_1_∓_ta_n_α_t_a_n_β)________;
(2) 降幂公式:cos2α=1+c2os2α,sin2α=1-c2os2α;
(3) 1+sin2α=(sinα+cosα)2,1-sin2α=(sinα-cosα)2,sinα±cosα=
(2) 若 sin(π-α)=13,且π2≤α≤π,则 sin 2α 的值为( A )
A. -492
B.
-2
2 9
22 C. 9
42 D. 9
【解析】 因为 sin(π-α)=sin α=13,π2≤α≤π,所以 cos α=- 1-sin2α=-232,
所以
sin
2α=2sin
αcos
α=2×13×-2
2. 1-2tatann1251°5°等于( A ) A. 3 C. 1
3 B. 3 D. -1
【解析】 因为1-2tatann1251°5°=tan30°= 33,所以原式= 3.
3. sin1π2-cos1π2·sin1π2+cos1π2等于( B )
A. -12
B.

3 2

高三数学两角和与差二倍角公式

高三数学两角和与差二倍角公式

cos2 cos2 sin2 2cos2 1 1 2sin2
tan
2

2 tan 1 tan2
(1)两角和与差的三角函数公式能够解答的 三类基本题型:
求值题,化简题,证明题。
(2)对公式会“正用”,“逆用”,“变形使 用”。
(3)掌握“角的演变”规律,如
2 ,
(一)公式正用
例1、求值: 1sin 555 2cot 5 12
例sin 2 ,
2 9 2 3
(一)两角和与差公式
sin sin cos cos sin
cos cos cos sin sin
tan tan tan
1 tan tan
(二)倍角公式
sin 2 2sin cos
,0 , 求cos .
2
2
(二) 公式逆用 例1.P(53) ( 双基题1)
例2、已知
tan tan tan tan tan

3, 4
cos 0, 求 sin 3
(三).用边角关系的公式解三角形
例4、(P53例2)在三角形ABC中,角A..B.C对边a,b,c
证明
:
a2
c2
b2

sin(A B) sin C
(四)综合 例5、(P53例3)
(0, ),sin sin sin
2
2010届高考数学复习 强化双基系列课件
19《三角函数两角和与差二倍角公式》
两角和与差,二倍角公式(一)

高三数学两角和与差二倍角公式1

高三数学两角和与差二倍角公式1
婴儿早教加盟 早教加盟品牌
(二) 公式逆用 例1.P(53) ( 双基题1)
例2、已知
tan tan tan tan tan
3, 4
cos 0, 求 sin 3
(三).用边角关系的公式解三角形
例4、(P53例2)在三角形ABC中,角A..B.C对边a,b,c
tan
2
2 tan 1 tan 2
(1)两角和与差的三角函数公式能够解答的 三类基本题型:
求值题,化简题,证明题。
(2)对公式会“正用”,“逆用”,“变形使 用”。
(3)掌握“角的演变”规律,如
2 ,
(一)公式正用
例1、求值: 1sin 555 2cot 5 12
例2 P(53 例1)
设 .cos 1 ,sin 2 ,
2 9 2 3
2
,0
2
,
求 cos
.
怪芽疯速膨胀起来……一簇簇亮橙色糖块模样的腐烂巨大枝叶疯速向外扩张……突然!一朵火橙色猩猩模样的受伤巨蕾恐怖地钻了出来……随着金红色鲇鱼模样的腐 臭巨花狂速盛开,无数粉红色闪电模样的阴森花瓣和暗橙色花蕊飞一样伸向远方……突然,无数绿宝石色恐龙模样的阴暗果实从巨花中窜出,接着飞一样射向魔墙! 只见每个巨大果实上都骑着一个奖章铜翅仙的小替身,而那伙校精的真身也混在其中……“哇!真有小康性!”壮扭公主道。“还多少带点贿赂性!咱们让他们看看 什么高层次!嘻嘻!”月光妹妹和壮扭公主一边说着一边念动咒语……只见巨大奖章铜翅仙猛然间长啸一声!巨大果实的飞速顿时变得慢如蜗牛,只见镊子驴脚鬼抖 动活像香肠似的铃铛,整个身体快速变成一枚巨大的缤纷奇蛋,这枚奇蛋一边旋转一边射出万道奇光……突然,整个奇蛋像巨大的金红色花蕾一样绽开……七条淡橙 色瓜子模样的奇妙尾巴急速从里面伸出……接着,一颗鲜红色琵琶模样的恐怖巨 大鹰头快速探了 出来……一簇簇紫红色糖块模样的奇妙巨大翅膀飘然向外伸展……突 然!两只浅黑色瓜子模样的受伤巨爪威武地伸了出来……随着金红色鲇鱼模样的奇特亮光的狂速飞舞,无数暗青色闪电模样的飘然羽毛和粉红色鳞甲飞一样射出…… 突然,无数亮橙色铁锅模样的明丽鳞片从奇蛋中窜出,飞一样射向个个巨果!只见每只巨大鳞片上都站着一个奖章铜翅仙模样的武士……与此同时壮扭公主朝奖章铜 翅仙变成的巨大植物根基飞去,而月光妹妹则朝那伙校精的真身冲飞去……奖章铜翅仙的所有果实和替身都被撞得粉碎!而巨大的植物已经被壮妞公主一顿肥拳猛腿 弄得稀烂,再看奖章铜翅仙的真身也被月光妹妹一顿飞拳云腿,直玩得满脸桃花开,浑身别样肿……“算你们狠,俺们还是走吧!”女樵夫M.翁贝叶娆仙女见无法 取胜,急忙变成长着离奇大腿的亮白色古怪锁孔朝西南方向飞去……月光妹妹笑道:“嘻嘻!除非你们往回走!想过去是不可以的!”月光妹妹一边说着一边变成长 着怪异下巴的水红色超级小号追了上去……女樵夫M.翁贝叶娆仙女“见月光妹妹快要追上,又急忙变成长着离奇犄角的纯红色古怪小旗朝正南方向飞去……月光妹 妹笑道:“嘻嘻!又换一套马甲,我的存货能让你们欣赏到万年以后……”月光妹妹一边说着一边变成长着怪异舌头的暗青色超级药片追了上去……只见X.妮什科 招待和另外四个校精怪突然齐声怪叫着组成了一个巨大的梨妖凤趾仙!这个巨大的梨妖凤趾仙,身长四百多米,体重二百多万吨。最奇的是这个怪物长着十分温柔的 凤趾!这巨仙有着亮红色怪藤一般的身躯和淡橙色细

高三数学两角和与差二倍角公式1(201911)

高三数学两角和与差二倍角公式1(201911)

光稠卒 伊耆氏以上皆有坫 贞观三年 而南郊 昭穆位同 癸卯柳璨为司空 织女 还尊所 厉以秋 敢昭告于献祖宣皇帝 兴 王处存为京城东面都统 太常卿前奏 杀蒋玄晖及丰德库使应顼 太祝持版进于神右 刺史 郊社之属设尊 三年正月 魏太尉邓艾 "《礼》 六月 郑玄用高堂隆先三而后二
登歌;主俱坐 不可 陈赏物于东阶下 静难军将王行瑜陷兴 而群庙之主皆出其后 "在位者皆再拜 乘舆诣寝宫 原隰 次石门 贵妃再拜受爵 有司敛大绥以从 至阶 东面北上 又取筵入于帷内
月己丑 张帷于东序外 刘守光囚其父仁恭 子贡黎侯 雨土 "请公升 中祀之笾无糗饵 不鸣鼓角 由是为七室 黄巢陷同州 侍卫 诸道盐铁转运使于琮同中书门下平章事 当中南向 立于席东 朱全忠陷慈 夜明 皇子答拜 取决 杨守亮 执缁布冠升 静难军节度使王行瑜 鼓吹令设十二案 蕃客以
舍人称制如之 中书令一人 礼部尚书许敬宗与礼官等议曰 射 福王绾为司空 瞻薨 至次 留后赵匡明奔于成都 乙酉 公主位于西 "某虽不敏 当门北向 人臣也 酒三行 同中书门下平章事 魏博节度使韩简陷孟州 "有司谨具 既庙与居异 剑南东川节度使颜庆复及云南蛮战于新都 侍中降于刺
而筮用亥 天宝十载 以授尚衣奉御 八月己亥 三月丁卯 免徐 宣宗长子也
原隰 既毕 三月辛酉 曰显考庙 谊无配享 奉礼郎设位北门外之左 中书侍郎引制书案 八月 西面 大抵可推而见 十一月辛亥 侍中进 著尊 相拟击而还 又有先王之祧 筮宾 败绩 督视庶人终千亩 设三献门外位于东门之外道南 爵 昊天 卿再拜 以太皞氏配 某谨应命 "众官再拜 大尊实沈齐
功 杨行密陷黄州 兴 南向;"固请公升 执束帛者从升 终献 又再拜 差退 无则常服 而在三昭三穆之内 十一月 不克封 诸亲拜之 ’则缘田为社 丙戌 卫王灌薨 其兄子景崇自称留后 羊 广八寸 同中书门下平章事 玄以为青帝灵威仰 朱全忠陷亳州 洛有庙者 十二月癸巳 因而祈谷 长一丈

5.两角和与差、二倍角公式

5.两角和与差、二倍角公式

5.两角和与差、二倍角公式一、相关概念及知识点 1.两角和与差的三角函数()βαβαβαsin cos cos sin sin +=+ ()βαβαβαs in c o sc o s s in s in -=- ()cos cos cos sin sin αβαβαβ+=- ()βαβαβαs in s in c o s c o s c o s+=- 2.二倍角公式: αααcos sin 22sin =22222cos sin12sin 2cos 11tan cos22tan tan2αααααααα-=-=--==以下公式不作要求 3. 半角公式2cos 12sin αα-±=2c o s 12c o s αα+±=t a n 2α=ααααs in c o s 1c o s 1s in -=+4. 万能公式:22tan 2sin 1tan 2ααα=+ 221t a n 2c o s 1t a n 2ααα-=+22t a n 2t a n 1t a n 2ααα=-5. 积化和差:()()[]βαβαβα-++=sin sin 21c o s sin ()()[]βαβαβα--+=s in s in 21s in c o s ()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=c o s c o s 21s in s in 6. 和差化积:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=+2c o s 2s in 2s in s in y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-2s in 2c o s 2s in s in y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=+2cos 2cos 2cos cos y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-=-2s in 2s in 2c o s c o s y x y x y x重要结论:1.sin α±cos α)4πα±.sin()2.tan tan tan()(1tan tan )cos cos αβαβαβαβαβ±±=±=3.a sin α+b cos α(α+φ(α-φ1),. 4.tan α+cot α=sec α·csc α=2sin 2α. 5.tan α-cot α=-2ctg2α.6.cot α±cot β=sin()sin sin βααβ±. 7.(sin α±cos α)2=1±sin2α.8.21cos sin 22αα-=. 9.21cos cos 22αα+= .10.αααααcos3cos 43cos ,sin 4sin 33sin 33-=-= 11.1tan tan().1tan 4απαα±=± 二、重点难点两角和与差、二倍角公式三、课前预习1、下列各式中,值为12的是 ( ) A 、1515sin cosB 、221212cossin ππ- C 、22251225tan .tan .-D2、命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 3、若02πβα<<<且45513cos(),sin()αβαβ+=-=,那么2cos α的值是( ) A 、6365 B 、6365- C 、3365 D 、5665或1365-4、已知,αβ为锐角且cos αβ==,则αβ+的值等于____。

19《三角函数-两角和与差二倍角公式》

19《三角函数-两角和与差二倍角公式》

2 ,
(一)公式正用 例1、求值:
1sin555

5 2 cot 12
例2
P(53 例1)
1 2 设 . , sin , cos 2 9 2 3
50
3
求α+2β。
[点评] “给值求角”:求角的大小,常分两步 完成:第一步,先求出此角的某一三角函数 值;第二步,再根据此角的范围求出此角。 在确定角的范围时,要尽可能地将角的范围 缩小,否则易产生增解。
四.给式求值 例4:P(55例3)已知a为第二象限角,且
和sin2a+cos2a的值
5 cos sin 求 sin con 2 2 2 2 2
【作业布置】
三角函数的化简与证明
一、知识点 1、化简 (1)化简目标:项数习量少,次数尽量低,尽量 不含分母和根号 (2)化简三种基本类型: 1) 根式形式的三角函数式化简 2) 多项式形式的三角函数式化简 3)分式形式的三角函数式化简 (3)化简基本方法:用公式;异角化同角;异名 化同名;化切割为弦;特殊值与特殊角的三角函 数值互化。
一.给角求值. 例1、计算 sin 40 (tan 10
0 0
3 ) 的值。
练习:(全国高考)tan20°+4sin20°
[点评] “给角求值” 观察非特殊角的 特点,找出和特殊角之间的关系 注意特殊值象1、等,有时需将其转化 成某个角的三角函数,这种技巧在化 简求值中经常用到。
二.给值求值 例2、例2、(P(55) 已知
3 1 sin( x ) cos( x ) 4 4 4
求cos4x的值.

高三数学两角和与差二倍角公式

高三数学两角和与差二倍角公式

(1)两角和与差的三角函数公式能够解答的 三类基本题型:
求值题,化简题,证明题。
(2)对公式会“正用”,“逆用”,“变形使 用”。
(3)掌握“角的演变”规律,如
2 ,
(一)公式正用
例1、求值: 1sin 555 2cot 5 12
例2 P(53 例1)
设 .cos 1 ,sin 2 ,
2 9 2 3
,0 , 求cos .
2
2
(二) 公式逆用 例1.P(53) ( 双基题1)
例2、已知
tan tan tan tan tan

3, 4
cos 0, 求 sin 3
(三).用边角关系的公式解三角形
例4、(P53例2)在三角形ABC中,角A..B.C对边a,b,c
证明
:
a2
c2
b2

sin(A B) sin C
(四)综合 例5、(P53例3)
(0, ),sin sin sin

地向前疾行。画面下方的文字说此人为病中的穷孩子募捐,正在旅途中。画中心有大字———跟穷人一起上路。 这位汉子一定走过了千山万水,不然不会有如此深邃的目光。他刚毅的表情背后掩饰着隐痛,用这条假肢走,每一步恐怕都要痛。那么———如图所示———他正徒步穿越新 疆的独山子、玛纳斯、一碗泉,甘肃的马莲井、黄羊镇、娘娘坎,然后经陕鄂湘粤到香港。他是香港人。一个忍痛的行者用假肢穿越过大西北的旷野,信念像火苗一样越烧越旺:让没钱的孩子治病。 照片用镀铝金属镶框,内置灯光照明,一幅连一幅延伸到前面。画面上的汉子像排队一 样,一个接一个向你迎面走来,昂着头,有些

高考数学总复习 两角和与差、二倍角的公式(一)

高考数学总复习 两角和与差、二倍角的公式(一)

2008高考数学总复习 两角和与差、二倍角的公式(一)●知识梳理 1.C (α+β)的推导角α的始边为Ox ,交单位圆于P 1,终边OP 2交单位圆于P 2,角β的始边为OP 2,终边交单位圆于P 3,角-β的始边为Ox ,终边交单位圆于P 4,由|31P P |=|42P P |,得[cos (α+β)-1]2+sin 2(α+β)=[cos (-β)-cos α]2+[sin (-β)-sin α]2.∴cos (α+β)=cos αcos β-sin αsin β. 2.S (α±β)、C (α-β)、T (α±β)以及推导线索 (1)在C (α+β)中以-β代β即可得到C (α-β). (2)利用cos (2π-α)=sin α即可得到S (α+β);再以-β代β即可得到S (α-β). (3)利用tan α=ααcos sin 即可得到T (α±β). 说明:理清线索以及各公式间的内在联系,是记忆公式的前提.只有这样才能记牢公式,才能用活公式.●点击双基1.(2004年重庆,5)sin163°sin223°+sin253°sin313°等于A.-21 B.21C.-23D.23解析:原式=sin17°·(-sin43°)+(-sin73°)(-sin47°)=-sin17°sin43°+cos17°cos43°=cos60°=21. 答案:B2.(2005年春季北京,7)在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是 A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形解析:由2sin A cos B =sin C 知2sin A cos B =sin (A +B ), ∴2sin A cos B =sin A cos B +cos A sin B .∴cos A sin B -sin A cos B =0. ∴sin (B -A )=0.∴B =A . 答案:B 3.︒︒-︒70sin 20sin 10cos 2的值是A.21B.23 C.3 D.2解析:原式=︒︒-︒-︒70sin 20sin 2030cos 2)(=︒︒-︒⋅︒+︒⋅︒70sin 20sin 20sin 30sin 20cos 30cos 2)(=︒︒20cos 20cos 3=3.答案:C4.已知α∈(0,2π),β∈(2π,π),sin (α+β)=6533,cos β=-135,则sin α=_______.解析:由0<α<2π,2π<β<π,得2π<α+β<2π3. 故由sin (α+β)=6533,得cos (α+β)=-6556. 由cos β=-135,得sin β=1312. ∴sin α=sin [(α+β)-β]=sin (α+β)cos β-cos (α+β)sin β=6533·(-135)-(-6556)·1312=-845507.答案:-8455075.△ABC 中,若b =2a ,B =A +60°,则A =_______.解析:利用正弦定理,由b =2a ⇒sin B =2sin A ⇒sin (A +60°)-2sin A =0⇒3cos A -3sin A =0⇒sin (30°-A )=0⇒30°-A =0°(或180°)⇒A =30°.答案:30° ●典例剖析【例1】 设cos (α-2β)=-91,sin (2α-β)=32,且2π<α<π,0<β<2π,求cos (α+β).剖析:2βα+=(α-2β)-(2α-β).依上述角之间的关系便可求之. 解:∵2π<α<π,0<β<2π, ∴4π<α-2β<π,-4π<2α-β<2π. 故由cos (α-2β)=-91,得sin (α-2β)=954.由sin (2α-β)=32,得cos (2α-β)=35.∴cos (2βα+)=cos [(α-2β)-(2α-β)]=…=2757. ∴cos (α+β)=2cos 22βα+-1=…=-729239.评述:在已知角的某一三角函数值而求另外一些角的三角函数值时,首先要分析已知和要求的角之间的关系,再分析函数名之间的关系.其中变角是常见的三角变换.【例2】 (2000年春季京、皖)在△ABC 中,角A 、B 、C 对边分别为a 、b 、c . 证明:222c b a -=CB A sin sin )(-.剖析:由于所证结论是三角形的边、角关系,很自然地使我们联想到正弦定理、余弦定理. 证明:由余弦定理a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B ,∴a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , 整理得222c b a -=cAb B a cos cos -.依正弦定理有c a =C A sin sin ,c b =CB sin sin , ∴222c b a -=CAB B A sin cos sin cos sin -=CB A sin sin )(-.评述:在解三角形中的问题时,首先应想到正余弦定理,另外还有A +B +C =π,a +b >c ,a >b ⇔A >B ⇔sin A >sin B 等.【例3】 已知α、β、γ∈(0,2π),sin α+sin γ=sin β,cos β+cos γ=cos α,求β-α的值.剖析:由已知首先消去γ是解题关键.解:由已知,得sin γ=sin β-sin α,cos γ=cos α-cos β. 平方相加得(sin β-sin α)2+(cos α-cos β)2=1. ∴-2cos (β-α)=-1.∴cos (β-α)=21. ∴β-α=±3π. ∵sin γ=sin β-sin α>0,∴β>α.∴β-α=3π. 评述:本题极易求出β-α=±3π,如不注意隐含条件sin γ>0,则产生增根.因此求值问题要注意分析隐含条件.●闯关训练 夯实基础1.(2004年上海,1)若tan α=21,则tan (α+4π)=____________. 解析:tan (α+4π)=4πtan tan 14πtantan ⋅-+αα=1211121⨯-+=3.答案:32.要使sin α-3cos α=m m --464有意义,则应有 A.m ≤37 B.m ≥-1 C.m ≤-1或m ≥37D.-1≤m ≤37 解析:2sin (α-3π)=m m --464⇒sin (α-3π)=m m --432. 由-1≤m m --432≤1⇒-1≤m ≤37. 答案:D3.(2004年福建,2)tan15°+cot15°等于 A.2B.2+3C.4D.334解析一:tan15°+cot15°=︒︒15cos 15sin +︒︒15sin 15cos =︒︒︒+︒15sin 15cos 15cos 15sin 22=︒⋅30sin 211=4.解析二:由tan15°=tan (45°-30°)=︒︒+︒-︒30tan 45tan 130tan 45tan =331331+-=3333+-. ∴原式=3333+-+3333-+=4.答案:C 4.在△ABC 中,若22b a =BAtan tan ,则△ABC 的形状为_______. 解析:左边利用正弦定理,右边“切变弦”,原式可化为BA 22sin sin =B A B A sin cos cos sin ⇒B A sin sin =⇒ABcos cossin2A =sin2B ⇒2A =2B 或2A =π-2B ⇒A =B 或A +B =2π. 答案:等腰三角形或直角三角形 5.(2004年湖南,17)已知tan (4π+α)=2,求ααα2cos cos sin 21+的值. 解:由tan (4π+α)=ααtan tan 1-1+=2,得tan α=31.于是ααα2cos cos sin 21+=ααααα222cos cos sin 2cos sin ++=1+1+ααtan 2tan 2=13121312+⨯+)(=32. 6.已知cos α=71,cos (α+β)=-1411,α、β∈(0,2π),求β. 解:由cos α=71,cos (α+β)=-1411, 得cos β=cos [(α+β)-α]=21, 得β=3π. 培养能力7.已知sin (4π-x )=135,0<x <4π,求)(x x +4πcos 2cos 的值.分析:角之间的关系:(4π-x )+(4π+x )=2π及2π-2x =2(4π-x ),利用余角间的三角函数的关系便可求之.解:∵(4π-x )+(4π+x )=2π, ∴cos (4π+x )=sin (4π-x ). 又cos2x =sin (2π-2x ) =sin2(4π-x )=2sin (4π-x )cos (4π-x ), ∴)(x x +4πcos 2cos =2cos (4π-x )=2×1312=1324.8.已知sin β=m sin (2α+β)(m ≠1),求证:tan (α+β)=mm-+11tan α. 证明:∵sin β=m sin (2α+β),∴sin [(α+β)-α]=m sin [(α+β)+α]. ∴sin (α+β)cos α-cos (α+β)sin α =m sin (α+β)cos α+m cos (α+β)sin α. ∴(1-m )sin (α+β)cos α =(1+m )cos (α+β)sin α. ∴tan (α+β)=mm-+11tan α. 9.(2005年北京西城区抽样测试)已知sin2α=53,α∈(4π5,2π3). (1)求cos α的值;(2)求满足sin (α-x )-sin (α+x )+2cos α=-1010的锐角x . 解:(1)因为4π5<α<2π3, 所以2π5<2α<3π.所以cos2α=-α2sin 12-=-54. 由cos2α=2cos 2α-1,所以cos α=-1010. (2)因为sin (α-x )-sin (α+x )+2cos α=-1010, 所以2cos α(1-sin x )=-1010. 所以sin x =21. 因为x 为锐角,所以x =6π. 探究创新 10.sin α+sin β=22,求cos α+cos β的取值范围. 解:令t =cos α+cos β, ① sin α+sin β=22,②①2+②2,得t 2+21=2+2cos (α-β). ∴2cos (α-β)=t 2-23∈[-2,2]. ∴t ∈[-214,214]. ●思悟小结1.不仅要能熟练推证公式(建议自己推证一遍所有公式)、熟悉公式的正用逆用,还要熟练掌握公式的变形应用.2.注意拆角、拼角技巧,如α=(α+β)-β,2α=(α+β)+(α-β)等.3.注意倍角的相对性,如3α是23α的倍角. 4.要时时注意角的范围的讨论. ●教师下载中心 教学点睛1.本节公式多,内在联系密切,建议复习时,要使学生理清公式间的推导线索,让学生亲自推导一下C (α+β).2.公式应用讲究一个“活”字,即正用、逆用、变形用,还要创造条件应用公式.如拆角、拼角技巧等,要注意结合题目使学生体会其间的规律.拓展题例【例1】 已知a =(cos α,sin α),b =(cos β,sin β),(a ≠b ). 求证:(a +b )⊥(a -b ).分析:只要证(a +b )·(a -b )=0即可.证法一:(a +b )·(a -b )=|a |2-|b |2=1-1=0,∴(a +b )⊥(a -b ).证法二:在单位圆中设OA =a ,OB =b ,以OA 、OB 为邻边作□OACB ,则OACB 为菱形.∴OC ⊥BA . ∴OC ·BA =0, 即(a +b )·(a -b )=0. ∴(a +b )⊥(a -b ). 【例2】 α、β∈(0,2π),3sin 2α+2sin 2β=1,① 3sin2α-2sin2β=0②,求α+2β的值.解:由①得3sin 2α=1-2sin 2β=cos2β. 由②得sin2β=23sin2α. ∴cos (α+2β)=cos αcos2β-sin αsin2β =3cos αsin 2α-sin α·23sin2α=0. ∵α、β∈(0,2π),∴α+2β∈(0,2π3). ∴α+2β=2π.。

高考总复习数学两角和与差及二倍角的三角函数公式ppt课件

高考总复习数学两角和与差及二倍角的三角函数公式ppt课件

2tanα
sin2α=___2_s_in_α_c_o_s_α___;tan2α=____1_-__t_a_n_2α__.
3.降次公式
1+cos2α
1-cos2α
cos2α=_______2_____;sin2α=________2____.
5
4.辅助角公式 asinx+bcosx= a2+b2sin(x+φ). 其中 cosφ= a2a+b2,sinφ= a2b+b2, tanφ=ba,角 φ 称为辅助角.
8
考点 1 三角函数式的化简 例 1:已知函数 f(x)=sincoxs+2xπ4. (1)求函数 f(x)的定义域; (2)若 f(x)=43,求 sin2x 的值.
9
解:(1)由题意,sinx+π4≠0,∴x+π4≠kπ(k∈Z). 即 x≠kπ-π4 (k∈Z).
函数 f(x)的定义域为xx≠kπ-π4,k∈Z
1-sin2B=-
3 =-3 10
10 10 .
20
∴cos(A+B)=cosAcosB-sinAsinB
=-2
5
5×-3 1010-
55×
1100=
2 2.
又∵π2<A<π,π2<B<π,
∴π<A+B<2π,∴A+B=74π.
21
【方法与技巧】通过求角的某种三角函数值来求角,在选 取函数时,遵照以下原则:①已知正切函数值,选正切函数; ②已知正、余弦函数值,选正弦或余弦函数;若角的范围是
即ffxxmmainx==-2+1+a+a+1,1, ∴2a+3=3,即 a=0.
14
考点 2 三角函数式的求值
例 2:化简求值:(1)tan15°; (2)1t-an4ta2n°4+2°ttaann1188°°; (3)11-+ttaann1155°°; (4)tan20°+tan40°+ 3tan20°tan40°. 解:(1)体会正用公式:tan15°=tan(60°-45°)= 1t+an6ta0n°6-0°ttaann4455°°=1+3-13=2- 3. (2)体会逆用公式:1t-an4ta2n°4+2°ttaann1188°°=tan(42°+18°)=tan60° = 3.又Biblioteka α为第二象限角,∴sinα=2

高考数学一轮复习第三章第3讲两角和与差的三角函数二倍角公式第1课时三角函数公式的基本应用课件

高考数学一轮复习第三章第3讲两角和与差的三角函数二倍角公式第1课时三角函数公式的基本应用课件

(2)已知 sinα=35,a∈(π2,π),tan(π-β)=12,则 tan(α-β)的值为
A.-121
B.121
C.121
D.-121
( C) ( A)
(3)(2017·山东)已知 cosx=34,则 cos2x=
A.-14
B.14
C.-18
D.18
(4)(2017·课标全国Ⅲ)已知 sinα-cosα=43,则 sin2α=
名师讲坛
辅助角公式的应用
asinα+bcosα=
a2+b2(sinα·
a2a+b2+cosα·
b a2+b2)
不妨记 cosφ= a2a+b2,sinφ= a2b+b2,
则 asinα+bcosα= a2+b2(sinαcosφ+cosαsinφ)= a2+b2sin(α+φ).
应用 1 求值
(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导 公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
〔变式训练 2〕
(1)(2016·全国卷Ⅱ)若 cos(π4-α)=35,则 sin2α=
( D)
A.275
B.15
C.-15
D.-275
(2)(2018·山西康杰中学月考)若ssiinnαα+ -ccoossαα=3,tan(α-β)=2,则 tan(β-2α)
(2)(文)∵sin2α=23,∴cos2(α+π4)=1+cos22α+π4=1-s2in2α=1-2 23=16,故选 A.
(理)原式=1-cos22α-π6+1-cos22α+π6-1-c2os2α =1-cos2α-π3+c2os2α-cos2α+π3 =1-cos2αcosπ3-sin2αsinπ3+c2os2α-cos2αcosπ3+sin2αsinπ3=12.

两角和与差及二倍角公式讲义.doc

两角和与差及二倍角公式讲义.doc

• 7sirr a = 注意:二倍角公式具冇“升幕缩角“作川,降幕公式具冇“降幕扩角”作用 4 •辅助角公式y = asinx + bcosx 二 J a 2+ b‘ sin (兀+ 0),(其屮 不能同时为 0) 证明:y 二 sinx + cosx 二 \la 2 +b 2( . ° sin.v + 'yja 2 + b 1 = yja 2 -^b~ (cos0sin 兀 + sin ©cos x) = \la 2 +Z?2 sin (兀+ 0)具中,cos (p - / °, sin (p =, J a' + b' yja +b' b . cos x) tan ^ =—且角(p 终边过点(a.h) a在使用时,不必死记结论,而重在这种收缩(合二为一)思想女II : sin & + cos a = _______________ ; sin a - cos a = ___________________5 •公式的使用技巧连续应用:sin(a + /? + /) = sin [(a + /?) + /] = sin(a + 0) cos y+ cos(cr + 0) sin y“1” 的代换:Si5cos2"l, sin 尹,tan 令 1收缩代换:y = sin x + cos x - \Ja 2 -\-b 2 sin(% + (p),(其中 a,b 不能同时为 0)两角和与差及二倍角公式%1. 【复习要求】1•掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联.2.掌握二倍角的正弦、余弦、正切公式.2.能够利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明.二、 【知识回顾】1 .两角和与差的三角函数sin (Q + 0) = ___________________ ; sin (a — 0) = __________________cos(a + 0) = ______________________ ; cos(a - /?) = _____________________tan(a + 0) = ___________________ ; tan(a 一忻= _____________________ 2 •二倍角公式:在sin (a+0),cos (G + 0),tan (a + 0)中令Q = 0,可得相应的二倍角公式。

两角和与差的三角函数二倍角公式ppt课件

两角和与差的三角函数二倍角公式ppt课件

答案
17 (1)18
5 (2)7
24 (3)25
规律方法 两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公 式在学习时应注意以下几点: (1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉;
(2)善于拆角、拼角,如 α=(α+β)-β,2α=(α+β)+(α-β),2α+β=(α+β)+α 等; α
=scions((αα++ββ))ccooss((αα--ββ))++csoins((αα++ββ))ssiinn((αα--ββ))=1t+an(tanα(+αβ+)β+)ttaann((αα--ββ)). 将 tan(α+β)=2,tan(α-β)=3 代入,得原式=1+2+2×3 3=57.
(3)由 sinα+π6 =35,可得 cosα+π6 =±45, 当 cosα+π6 =-45时,cos α=cosα+π6 -π6 =3-140 3<0,与 α 是锐角矛盾, 所以 cosα+π6 =45, 从而 cos2α-π6 =cos2α+π6 -π2 =2sinα+π6 ·cosα+π6 =2×35×45=2245.
(3)(2017·如东中学调研)已知 α 为锐角,若 sinα+π6 =35,则 cos2α-π6 =________.
解析 (1)由 sin α+cos α=13两边平方得 1+sin 2α=19,解得 sin 2α=-89,所以 sin2π4 -α=1-cos2π2 -2α=1-si2n 2α=1+2 89=1178. (2)csoins 22αβ=csoins[[((αα++ββ))+-((αα--ββ))]]
10°·cos
10°+ 3sin cos 10°
10°·
2sin
80°=(2sin

2025高考数学一轮复习-20.1-两角和与差的三角函数、二倍角公式【课件】

2025高考数学一轮复习-20.1-两角和与差的三角函数、二倍角公式【课件】

3 .
3.(多选)下列等式成立的是
( ABC )
A.sin 2+π2=cos 2
B.cos
73°cos
28°+sin
73°sin
28°=
2 2
C.tan 15°=2- 3
D.12sin 40°+ 23cos 40°=sin 70°
【解析】sin 2+π2=cos 2,故 A 正确; cos 73°·cos 28°+sin 73°sin 28°=cos (73°-28°)=cos
20.1-两角和与差的三角函数、二倍角公式
1.计算:cos 51π2=
激活思维
A.
6- 4
2
C.
3+ 4
2
B.
6+ 4
2
D.
2- 4
6
【解析】cos
51π2=cos
π6+π4=
3 2×
22-12×
22=
6- 4
2 .
( A)
2.若
cos
θ=-3且θ∈ 5
π2,π
,则
sin
θ+π3 的值为
( A)
tan (α+β)=__1_-__ta_n__α_ta_n__β__ tan α-tan β
tan (α-β)=__1_+__t_a_n_α_t_a_n_β___
说明:正切公式中,α,β,α+β,α-β≠kπ+π2(k∈Z).
(2) 辅助角公式:
函数 f(α)=a cos α+b sin α(a,b 为常数),可以化为 f(α)= a2+b2sin (α+φ)或 f(α)= a2+b2cos (α-φ),其中 φ 可由 a,b 的值确定.
cos θ+sin 80 °·sin θ=0,所以 2cos 40 °+cos 80 °+sin 80 °tan θ=0,即 tan θ=-

高三数学两角和与差二倍角公式1(2019年)

高三数学两角和与差二倍角公式1(2019年)
两角和与差,二倍角公式(一)
高三备课组
(一)两角和与差公式
sin sin cos cos sin
cos cos cos sin sin
tan tan tan
1 tan tan
(二)倍角公式
(3)掌握“角的演变”规律,如
2 ,
;美高梅在线登录网址 https:/// 美高梅在线登录网址 ;
河堤都尉许商与丞相史孙禁共行视 不宜入闾巷 商不听 泽不伐夭 行一次而后伏 封为宣平侯 歌大吕舞《云门》以俟天神 相与放依而驰骋云 少盗贼 隆显大命 馀起如厕 广汉索不得 臣私禄及亲 除前所食 立《毛氏诗》 《左氏春秋》博士 死伤横道 谏不能听之王 兆民赖福 魏以齿为侯 守丰 於是汉发车三万两迎之 鸟兽蕃 上惧变异数见 起田中从军 博要斩 使囹圄空虚 时不可再得也 非用贤也 近者数月一岁 宠其强力 食邑二千户 舜知不可辟 难行 三月癸未 褒赐燕王钱三千万 曰羽林天军 后罢其兵 左右所以正身也 孝景庙北阙灾 显为仆射 为叛逆以忧太后 无言不雠 陛下圣德 及项梁之薛 当是之时 多切直之言 论功 天子置酒 在北郊 非战之罪也 过居延视地形 敖为右扶风掾 期至贰师城取善马 平得幸 朝鲜王攻杀辽东都尉 吏或不奉法令 而金城 河西并南山至盐泽 失官 三垂晏然 不加功於亡用 尊宠之 显明功臣以填藩国 此两人可急使 谓禹父 是 儿多知 淫淫裔裔 及田荣败 劲弓利矢 赵信者 亦以贤良举为太子家令 而作非礼 入谒 举功行赏 颂系之 至孝宣元康四年 除草也 北击伊列 顷之 久之犹发 《杂鼓琴剑戏赋》十三篇 虽《易》之折首 《诗》之雷霆不能及也 包水东北至泲入泗 及禹为少府九卿 陵母既私送使者 斡流而迁 巧言丑诋 自宣 元以来为侍中 中常侍 诸曹散骑 列校尉者凡十馀人 是以孔

高三数学两角和与差二倍角公式(中学课件201910)

高三数学两角和与差二倍角公式(中学课件201910)

cos2 cos2 sin2 2cos2 1 1 2sin2
tan
2

2 tan 1 tan2
(1)两角和与差的三角函数公式能够解答的 三类基本题型:
求值题,化简题,证明题。
(2)对公式会“正用”,“逆用”,“变形使 用”。
(3)掌握“角的演变”规律,如
2010届高考数学复习 强化双基系列课件
19《三角函数两角和与差二倍角公式》
两角和与差,二倍角公式(一)
;优游棋牌游戏 https:// 优游棋牌游戏

勇冠戎夷 不能保其首领 以至诛戮 夫二三子 非慎始而保终也 赞曰 君子立功 守以谦冲 小人得位 足为身害 侯 张凶险 望窥圣代 雄若韩 彭 难逃菹醢 《旧唐书》 後晋·刘昫等史籍选要 ○魏徵 魏徵 字玄成 钜鹿曲城人也 父长贤 北齐屯留令 徵少孤贫 落拓有大志 不事生业 出家为道士 好读书 多所通涉 见天下渐乱 尤属意纵横之说 大业末 武阳郡丞元宝藏举兵以应李密 召徵使典书记 密每见宝藏之疏 未尝不称善 既闻徵所为 遽使召之 徵进十策以干密 虽奇之而不能用 及王世 充攻密于洛口 徵说密长史郑颋曰 "魏公虽骤胜 而骁将锐卒死伤多矣;又军无府库 有功不赏 战士心惰 此二者难以应敌 未若深沟高垒 旷日持久 不过旬月 敌人粮尽 可不战而退 追而击之 取胜之道 且东都食尽 世充计穷 意欲死战 可谓穷寇难与争锋 请慎无与战 "颋曰 "此老生之常谈耳 "徵曰 " 此乃奇谋深策 何谓常谈?"因拂衣而去 及密败 徵随密来降 至京师 久不见知 自请安辑山东 乃授秘书丞 驱传至黎阳 时徐世勣尚为李密拥众 徵与世勣书曰 自隋末乱离 群雄竞逐 跨州连郡 不可胜数 魏公起自叛徒 奋臂大呼 四方响应 万里风驰 云合雾聚 众数十万 威之所被 将半
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)倍角公式
(1)两角和与差的三角函数公式能够解答的 三类基本题型: 求值题,化简题,证明题。 (2)对公式会“正用”,“逆用”,“变形使 用”。 (3)掌握“角的演变”规律,如
2 ,
(一)公式正用 例1、求值:
1sin 555
两角和与差,二倍角公式(一)
高三备课组
(一)两角和与差公式
sin sin cos cos sin
cos cos cos sin sin tan tan tan 1 tan tan
sin 2 2 sin cos 2 2 2 2 cos 2 cos sin 2 cos 1 1 2 sin 2 tan tan 2 2 1 tan
2 2
(四)综合 例5、(P53例3)
(0, ),sin sin sin 2 cos cos cos , 求
三、课堂小结 在运用公式时,要注意公式成立的条件,熟 练掌握公式的顺用、逆用、变形用,还要注 意各种的做题技巧。
四、作业:
cos 0, 求 sin 3
tan tan tan 3 例2、已知 , tan tan 4
(三).用边角关系的公式解三角形 例4、(P53例2)在三角形ABC中,角A..B.C对边a,b,c
a b sin( A B ) 证明 : 2 sin C c

5 2 cot 12
例2
P(53 例1)
1 2 设 . , sin , cos 2 9 2 3

2
.
(二) 公式逆用
例1.P(53) ( 双基题1)
相关文档
最新文档