高中数学三角恒等变换两角和与差的正弦余弦正切公式第1课时两角和与差的正弦、余弦公式课件新人教A版必修4
2023年高考数学(文科)一轮复习——三角恒等变换 第一课时 两角和与差的正弦、余弦和正切公式
第3节三角恒等变换考试要求 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin__αcos__β±cos__αsin__β.cos(α∓β)=cos__αcos__β±sin__αsin__β.tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin__αcos__α.cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.tan 2α=2tan α1-tan2α.3.函数f(α)=a sin α+b cos α(a,b为常数),可以化为f(α)=a2+b2sin(α+φ)(其中tan φ=ba)或f(α)=a2+b2·cos(α-φ)(其中tan φ=ab).1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos2α=1+cos 2α2,sin2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.1.思考辨析(在括号内打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( ) (4)存在实数α,使tan 2α=2tan α.( ) 答案 (1)√ (2)√ (3)× (4)√解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2+k π(k ∈Z ).2.(易错题)已知锐角α,β满足sin α=1010,cos β=255,则α+β=( ) A.3π4 B.π4 C.π6 D.3π4或π4 答案 B解析 ∵sin α=1010,cos β=255, 又α,β为锐角,∴cos α=31010,sin β=55,∴cos(α+β)=cos αcos β-sin αsin β=31010×255-1010×55=22.∵0<α+β<π,∴α+β=π4. 3.计算:1+tan 15°1-tan 15°=________.答案3解析 1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)=tan 60°= 3.4.(易错题)tan 10°+tan 50°+3tan 10°tan 50°=________. 答案3解析 ∵tan 60°=tan(10°+50°) =tan 10°+tan 50°1-tan 10°tan 50°, ∴tan 10°+tan 50°=tan 60°(1-tan 10°tan 50°)=3-3tan 10°tan 50°, ∴原式=3-3tan 10°tan 50°+3tan10°tan 50°= 3. 5.(2020·江苏卷)已知sin 2⎝ ⎛⎭⎪⎫π4+α=23,则sin 2α的值是________.答案 13解析 因为sin 2⎝ ⎛⎭⎪⎫π4+α=23, 所以1-cos ⎝ ⎛⎭⎪⎫π2+2α2=23,即1+sin 2α2=23,所以sin 2α=13.6.函数f (x )=sin 2x +3cos 2x 的周期为________. 答案 π解析 f (x )=2⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x=2sin ⎝ ⎛⎭⎪⎫2x +π3,周期T =2π2=π.第一课时 两角和与差的正弦、余弦和正切公式考点一 公式的基本应用1.已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫α+π4等于( ) A.-210 B.210 C.-7210 D.7210 答案 C解析 ∵α∈⎝ ⎛⎭⎪⎫π,3π2,且cos α=-45,∴sin α=-35,∴sin ⎝ ⎛⎭⎪⎫α+π4=-35×22+⎝ ⎛⎭⎪⎫-45×22=-7210.2.(2022·贵阳模拟)已知角α,β的顶点为坐标原点,始边与x 轴的非负半轴重合,若角α,β的终边分别与单位圆交于点A ⎝ ⎛⎭⎪⎫x 1,13,B ⎝ ⎛⎭⎪⎫x 2,23,其中x 1<0<x 2,则cos(2α-β)=________. 答案 75-8227解析 由题意可知,sin α=13,sin β=23, 由x 1<0<x 2可知cos α=-1-sin 2α=-223,cos β=1-sin 2β=53,所以cos 2α=⎝ ⎛⎭⎪⎫-2232-⎝ ⎛⎭⎪⎫132=79, sin 2α=2×⎝⎛⎭⎪⎫-223×13=-429, 所以cos(2α-β)=cos 2αcos β+sin 2αsin β=75-8227.3.已知2tan θ-tan ⎝ ⎛⎭⎪⎫θ+π4=7,则tan 2θ=________.答案 -43解析 2tan θ-tan ⎝ ⎛⎭⎪⎫θ+π4=2tan θ-1+tan θ1-tan θ=7,解得tan θ=2,∴tan 2θ=2tan θ1-tan 2θ=2×21-22=-43. 感悟提升 1.使用两角和与差的三角函数公式,首先要记住公式的结构特征. 2.使用公式求值,应先求出相关角的函数值,再代入公式求值.考点二 公式的逆用、变形用 角度1 公式的活用例1 (1)tan 22.5°1-tan 222.5°的值为________.(2)若α+β=-3π4,则(1+tan α)(1+tan β)=________. (3)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 答案 (1)12 (2)2 (3)-12 解析 (1)tan 22.5°1-tan 222.5°=12·2tan 22.5°1-tan 222.5°=12tan 45°=12×1=12. (2)tan ⎝ ⎛⎭⎪⎫-3π4=tan(α+β)=tan α+tan β1-tan αtan β=1,所以1-tan αtan β=tan α+tan β,所以1+tan α+tan β+tan αtan β=2, 即(1+tan α)·(1+tan β)=2.(3)∵sin α+cos β=1,cos α+sin β=0,∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.角度2 辅助角公式的运用 例2 化简:(1)sin π12-3cos π12; (2)cos 15°+sin 15°; (3)1sin 10°-3sin 80°; (4)315sin x +35cos x .解 (1)法一 原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12=2⎝ ⎛⎭⎪⎫sin π6sin π12-cos π6cos π12 =-2cos ⎝ ⎛⎭⎪⎫π6+π12=-2cos π4=- 2.法二 原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12=2⎝ ⎛⎭⎪⎫cos π3sin π12-sin π3cos π12 =-2sin ⎝ ⎛⎭⎪⎫π3-π12=-2sin π4=- 2. (2)cos 15°+sin 15°=2(cos 45°cos 15°+sin 45°sin 15°) =2cos(45°-15°) =2×32=62.(3)原式=cos 10°-3sin 10°sin 10°cos 10° =2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10°cos 10°.=4sin (30°-10°)sin 20°=4.(4)315sin x +35cos x =65⎝ ⎛⎭⎪⎫32sin x +12cos x=65⎝ ⎛⎭⎪⎫sin x cos π6+cos x sin π6=65sin ⎝ ⎛⎭⎪⎫x +π6.感悟提升 1.运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.2.对a sin x +b cos x 化简时,辅助角φ的值如何求要清楚.训练1 (1)下列式子化简正确的是( ) A.cos 82°sin 52°-sin 82°cos 52°=12 B.sin 15°sin 30°sin 75°=14 C.tan 48°+tan 72°1-tan 48°tan 72°= 3D.cos 215°-sin 215°=32(2)(2022·郑州模拟)函数f (x )=cos x -sin ⎝ ⎛⎭⎪⎫x +π6-sin ⎝ ⎛⎭⎪⎫x -π6在[0,π]的值域为________.答案 (1)D (2)[-2,1]解析 (1)选项A 中,cos 82°sin 52°-sin 82°·cos 52°=sin(52°-82°)=sin(-30°) =-sin 30°=-12,故A 错误;选项B 中,sin 15°sin 30°sin 75°=12sin 15°cos 15°=14sin 30°=18,故B 错误; 选项C 中,tan 48°+tan 72°1-tan 48°tan 72°=tan (48°+72°)=tan 120°=-3,故C 错误;选项D 中,cos 215°-sin 215°=cos 30°=32,故D 正确.(2)f (x )=cos x -32sin x -12cos x -32sin x +12cos x =cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3.∵0≤x ≤π,∴π3≤x +π3≤4π3,则当x +π3=π时,函数取得最小值2cos π=-2,当x +π3=π3时,函数取得最大值2cos π3=2×12=1, 即函数的值域为[-2,1]. 考点三 角的变换例3 (1)已知sin α=255,sin(β-α)=-1010,α,β均为锐角,则β等于( ) A.5π12 B.π3 C.π4 D.π6(2)(2022·大庆模拟)已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35,sin ⎝ ⎛⎭⎪⎫β-π4=2425,则cos ⎝ ⎛⎭⎪⎫α+π4=________. (3)(2022·兰州模拟)若23sin x +2cos x =1,则sin ⎝ ⎛⎭⎪⎫5π6-x ·cos ⎝ ⎛⎭⎪⎫2x +π3=________.答案 (1)C (2)-45 (3)732解析 (1)因为sin α=255,sin(β-α)=-1010,且α,β均为锐角,所以cos α=55,cos(β-α)=31010, 所以sin β=sin [α+(β-α)] =sin α·cos(β-α)+cos αsin(β-α) =255×31010+55×⎝ ⎛⎭⎪⎫-1010=25250 =22,所以β=π4.故选C.(2)由题意知,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,sin(α+β)=-35<0,所以cos(α+β)=45,因为β-π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以cos ⎝ ⎛⎭⎪⎫β-π4=-725, cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4 =cos(α+β)cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4=-45.(3)由题意可得4sin ⎝ ⎛⎭⎪⎫x +π6=1,令x +π6=t ,则sin t =14,x =t -π6, 所以原式=sin(π-t )cos 2t =sin t (1-2sin 2t )=732.感悟提升 1.求角的三角函数值的一般思路是把“所求角”用“已知角”表示. (1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.训练2 (1)已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,则sin 2α等于( ) A.5665B.-5665C.1665D.-1635(2)(2021·全国大联考)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.答案 (1)B (2)-45解析 (1)因为π2<β<α<3π4,所以0<α-β<π4,π<α+β<3π2,由cos(α-β)=1213,得sin(α-β)=513,由sin(α+β)=-35,得cos(α+β)=-45, 则sin 2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β) =513×⎝ ⎛⎭⎪⎫-45+1213×⎝ ⎛⎭⎪⎫-35=-5665.故选B. (2)由cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3⎝ ⎛⎭⎪⎫12cos α-32sin α=3cos ⎝ ⎛⎭⎪⎫α+π3=3sin ⎝ ⎛⎭⎪⎫π6-α=435,得sin ⎝ ⎛⎭⎪⎫π6-α=45.sin ⎝ ⎛⎭⎪⎫α+11π6=-sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫α+11π6 =-sin ⎝ ⎛⎭⎪⎫π6-α=-45.1.已知α是第二象限角,且tan α=-13,则sin 2α=( ) A.-31010 B.31010C.-35D.35答案 C解析 因为α是第二象限角,且tan α=-13, 所以sin α=1010,cos α=-31010,所以sin 2α=2sin αcos α=2×1010×⎝ ⎛⎭⎪⎫-31010=-35,故选C. 2.已知tan α2=3,则sin α1-cos α=( )A.3B.13 C.-3 D.-13答案 B解析 因为tan α2=3,所以sin α1-cos α=2sin α2cos α21-⎝⎛⎭⎪⎫1-2sin 2α2=cos α2sin α2=1tan α2=13,故选B.3.下列选项中,值为14的是( )A.2sin π12sin 5π12B.13-23cos 215°C.1sin 50°+3cos 50°D.cos 72°·cos 36° 答案 D解析 对于A ,2sin π12sin 5π12=2sin π12cos π12=sin π6=12,故A 错误; 对于B ,13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36,故B 错误;对于C ,原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝ ⎛⎭⎪⎫32sin 50°+12cos 50°12sin 100°=2sin 80°12sin 100°=2sin 80°12sin 80°=4,故C 错误;对于D ,cos 36°·cos 72°=2sin 36°·cos 36°·cos 72°2sin 36°=2sin 72°·cos 72°4sin 36°=sin 144°4sin 36°=14,故D 正确.4.(2020·全国Ⅲ卷)已知sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=1,则sin ⎝ ⎛⎭⎪⎫θ+π6等于( ) A.12 B.33 C.23 D.22答案 B解析 因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3 =sin ⎝ ⎛⎭⎪⎫θ+π6-π6+sin ⎝ ⎛⎭⎪⎫θ+π6+π6 =sin ⎝ ⎛⎭⎪⎫θ+π6cos π6-cos ⎝ ⎛⎭⎪⎫θ+π6sin π6+ sin ⎝ ⎛⎭⎪⎫θ+π6cos π6+cos ⎝ ⎛⎭⎪⎫θ+π6sin π6=2sin ⎝ ⎛⎭⎪⎫θ+π6cos π6=3sin ⎝ ⎛⎭⎪⎫θ+π6=1. 所以sin ⎝ ⎛⎭⎪⎫θ+π6=33. 5.若sin ⎝ ⎛⎭⎪⎫π6-θ=35,则sin ⎝ ⎛⎭⎪⎫π6+2θ=( ) A.-2425 B.2425 C.-725 D.725答案 D解析 法一 因为sin ⎝ ⎛⎭⎪⎫π6-θ=35, 所以sin ⎝ ⎛⎭⎪⎫π6+2θ=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π6-θ =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-θ=1-2sin 2⎝ ⎛⎭⎪⎫π6-θ =1-2×⎝ ⎛⎭⎪⎫352=725.故选D. 法二 因为sin ⎝ ⎛⎭⎪⎫π6-θ=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π3+θ=35,所以cos ⎝ ⎛⎭⎪⎫2π3+2θ=2×⎝ ⎛⎭⎪⎫352-1=-725. 因为cos ⎝ ⎛⎭⎪⎫π2+π6+2θ=-sin ⎝ ⎛⎭⎪⎫π6+2θ, 所以sin ⎝ ⎛⎭⎪⎫π6+2θ=725. 6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2等于( ) A.33B.-33C.539D.-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+α·sin ⎝ ⎛⎭⎪⎫π4-β2. ∵0<α<π2,则π4<π4+α<3π4,∴sin ⎝ ⎛⎭⎪⎫π4+α=223. 又-π2<β<0,则π4<π4-β2<π2,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63. 故cos ⎝ ⎛⎭⎪⎫α+β2=13×33+223×63=539.故选C. 7.sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.答案 sin(α+γ)解析 sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(β-γ)-cos(α+β)sin(β-γ)=sin[(α+β)-(β-γ)]=sin(α+γ).8.(2020·浙江卷)已知tan θ=2,则cos 2θ=________,tan ⎝ ⎛⎭⎪⎫θ-π4=________. 答案 -35 13解析 由题意,cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2 θcos 2θ+sin 2 θ=1-tan 2θ1+tan 2θ=1-41+4=-35. tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-tan π41+tan θ·tan π4=tan θ-11+tan θ=2-11+2=13.9.tan 25°-tan 70°+tan 70°tan 25°=________.答案 -1解析 ∵tan 25°-tan 70°=tan(25°-70°)·(1+tan 25°tan 70°)=tan(-45°)(1+tan 25°tan 70°)=-1-tan 25°tan 70°,∴tan 25°-tan 70°+tan 70°tan 25°=-1.10.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解 (1)∵α,β∈⎝ ⎛⎭⎪⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝ ⎛⎭⎪⎫-1010=91050. 11.已知cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,且π2<α<π,0<β< π2,求cos(α+β).解 由已知,得π2<α-β2<π,0<α2-β<π2,∴sin ⎝ ⎛⎭⎪⎫α-β2=459,cos ⎝ ⎛⎭⎪⎫α2-β=53, ∴cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β =cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2·sin ⎝ ⎛⎭⎪⎫α2-β =⎝ ⎛⎭⎪⎫-19×53+459×23=7527. 则cos(α+β)=2cos 2α+β2-1=-239729.12.若cos 2 α-cos 2β=a ,则sin(α+β)sin(α-β)等于( )A.-a 2B.a 2C.-aD.a答案 C解析 sin(α+β)sin(α-β)=(sin αcos β+cos αsin β)·(sin αcos β-cos αsin β)=sin 2αcos 2β-cos 2αsin 2 β=(1-cos 2α)cos 2β-cos 2α(1-cos 2β)=cos 2β-cos 2α=-a .13.已知sin 10°+m cos 10°=2cos 140°,则m =________.答案 - 3解析 由题意可得m =2cos 140°-sin 10°cos 10°=-2cos 40°-sin 10°cos 10°=-2cos (30°+10°)-sin 10°cos 10°=-3cos 10°cos 10°=- 3.14.(2021·合肥质检)已知函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x -π6. (1)求函数f (x )的最小正周期;(2)若α∈⎝ ⎛⎭⎪⎫0,π2,f (α)=13,求cos 2α.解 (1)∵f (x )=cos 2x +32sin 2x -12cos 2x =32sin 2x +12cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π6, ∴函数f (x )的最小正周期T =2π2=π.(2)由f (α)=13,可得sin ⎝ ⎛⎭⎪⎫2α+π6=13. ∵α∈⎝ ⎛⎭⎪⎫0,π2,∴2α+π6∈⎝ ⎛⎭⎪⎫π6,7π6. 又∵0<sin ⎝ ⎛⎭⎪⎫2α+π6=13<12, ∴2α+π6∈⎝ ⎛⎭⎪⎫5π6,π. ∴cos ⎝⎛⎭⎪⎫2α+π6=-223. ∴cos 2α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π6-π6 =cos ⎝ ⎛⎭⎪⎫2α+π6cos π6+sin ⎝ ⎛⎭⎪⎫2α+π6·sin π6 =1-266.。
高中数学第三章三角恒等变换3.1两角和与差的正弦余弦和正切公式3.1.2两角和与差的正弦余弦正切公式
3.1.2 两角和与差的正弦、余弦和正切公式疱工巧解牛知识•巧学一、两角和的余弦公式1.比较cos(α-β)与cos(α+β),根据α+β与α-β之间的联系:α+β=α-(-β),则由两角差的公式得cos(α+β)=cos[α-(-β)]=cosαcos(-β)+sinαsin(-β)=cosαcosβ-sinαsinβ,即cos(α+β)=cosαcosβ-sinαsinβ.学法一得这种以-β代β的变换角的方式在三角函数的恒等变形中有着重要应用,同时也启发我们要辩证地看待和角与差角.在公式C(α-β)中,因为角α、β是任意角,所以在C(α+β)中,角α、β也是任意角.2.用两点间的距离公式推导C(α+β).图3-1-5如图3-1-5,在直角坐标系xOy内作单位圆O,以O为顶点,以x轴的非负半轴为始边,作出角α、-β,使角α、-β的终边分别交单位圆于点P2、P4,再以OP2为始边,作角β,使它的终边交单位圆于点P3,这样就出现了α、β、α+β这样的角,设角α、-β的始边交单位圆于点P1,则P1(1,0).设P2(x,y),根据任意角的三角函数的定义,有sinα=y,cosα=x,即P2(cosα,sinα);同理,可得P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β)).由整个作图过程可知△P3OP1≌△P2OP4,所以|P1P3|=|P2P4|.|P1P3|2=|P2P4|2,即[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2.根据同角三角函数的基本关系,整理得2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ),即cos(α+β)=cosαcosβ-sinαsinβ.3.利用向量的数量积推导C(α+β).图3-1-6如图3-1-6,在平面直角坐标系xOy内作单位圆,以Ox为始边作角α、-β,它们与单位圆的交点分别为A、B.显然,OA=(cosα,sinα),OB=(cos(-β),sin(-β)).根据向量数量积的定义,有OA·OB=1(cosα,sinα)·(cos(-β),sin(-β))=cosαcos(-β)+sinαsin(-β)=cosαcosβ-sinαsinβ.于是cos(α+β)=cosαcosβ-sinαsinβ.学法一得①在处理问题的过程中,把有待解决或难解决的问题,通过某种转化,归结为一类已经解决或比较容易解决的问题,最终求得原问题的解,这种思想方法叫做化归思想.②以任意角的三角函数的定义为载体,我们推导了同角的三角函数的基本关系式、诱导公式和两角和的余弦公式.熟记公式中角、函数的排列顺序及式中的正负号是正确使用公式的关键. 记忆要诀公式右端的两部分为同名三角函数之积,连接符号与左边的连接符号相反.二、两角和与差的正弦1.公式的推导sin(α-β)=cos[2-(α-β)]=cos[(2-α)+β]=cos(2-α)cosβ-sin(2-α)sinβ=sinαcosβ-cosαsinβ.在上面的公式中,以-β代β,即可得到sin(α+β)=sinαcosβ+cosαsinβ.2.和差公式是诱导公式的推广,诱导公式是和差公式的特例.如sin(2π-α)=sin2πcosα-cos2πsinα=0×cosα-1×sinα=-sinα.当α或β中有一个角是2均为任意角.的整数倍时,通常使用诱导公式较为方便;上面公式中的α、β误区警示公式对分配律不成立,即sin(α±β)≠sinα±sinβ,学习时一定要注意这一点.学法一得公式使用时不仅要会正用,还要能够逆用,如化简sin(α+β)cosβ-cos(α+β)sinβ,不要将sin(α+β)和cos(α+β)展开,而应当整体考察,进行如下变形:sin(α+β)cosβ-cos(α+β)sinβ=sin[(α+β)-β]=sinα,这也体现了数学中的整体原则.记忆要诀记忆时要与两角和与差的余弦公式区别开来,两角和与差的正弦公式的右端的两部分为异名三角函数之积,连接符号与左边的连接符号相同.三、两角和与差的正切1.公式的推导利用两角和的正弦、余弦公式,可以推导出两角和的正切公式:tan(α+β)=s in(cos())s incosc oscosc ossin sinsin,当cosαcosβ≠0时,我们可以将上式的分子、分母同时除以cosαcosβ,即得用tanα和tanβ表示的公式:tan tantan(α+β)=1tantan,在上面的公式中,以-β代β,可得两角差的正切公式:tan tantan(α-β)=1tantan.2.公式成立的条件要能应用公式,首先要使公式本身有意义,即tanα、tanβ存在.并且1+tanαtanβ的值不为零,所以可得α、β需满足的条件:α≠kπ+2,β≠kπ+2,α+β≠kπ+2或2α-β≠kπ+2,以上 k∈Z .当 tanα、tanβ、tan(α±β)不存在时,可以改用诱导公式或 其他方法解决.学法一得 两角和与差的正切同样不仅可以正用,而且可以逆用、变形用,逆用和变形用都是 化简三角恒等式的重要手段,如 tanα+tanβ=tan(α+β)(1-tanαtanβ)就可以解决诸如 tan15°+tan30°+tan15°tan30°的问题.所以在处理问题时要注意考察式子的特征,巧妙运 用公式或其变形,使变换过程简单明了. 典题•热题知识点一 所求角可表示成两个特殊角的和、差 例 1 求 sin75°,tan15°的值.解:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30° = 232 1 62 22 24 2;tan60tan 45 3 1tan15°=tan(60°-45°)= 2 31 tan 60tan 45 1 3 tan 60 45 1 3,3 1tan 45 tan 303或 tan15°=tan(45°-30°)= 2 31 tan 45tan 303 13. 例 2 求 sin 7 c os 7c os15sin 8 sin15sin 8的值.思路分析:观察被求式的函数名称的特点和角的特点,其中 7°=15°-8°,15°=8°+7°,8°=15°-7°.无论采取哪种代换方式,都可减少角的个数.利用和角或差角公式展开,进行约 分、化简、求值.若用 7°=15°-8°代换,分子、分母是二次齐次式;若用 15°=8°+7°或 8°=15°-7°代换,分子、分母将会出现三次式,显然选择后者更好,不妨比较一下. 答案:原式=sin 7 cos 7cos(7 sin(78)sin 8 8)sin 8s in 7 cos 7cos7cos8sin 8 s in7cos8sin8s in 7cos7sin2sin28 8s in 7(sin cos 7sinsin 7cos2 cos 7cos288cos7cos8sin8sin7cos8sin8s in7cos8cos7sin 8c os7cos8sin7sin 8sin15tan1523. cos15巧解提示:原式=sin(15cos(158)8)c os15sin 8sin15sin 8s in15 cos8 c os15 cos8cos15sin8sin 8sin15cos15sin15sin8sin83s in15cos8cos15cos8=tan15°=tan(45°-30°)31tan45tan30323.1tan45t an 30313方法归纳三角函数式的结构一般由角、三角函数符号及运算符号三部分组成.因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的重要特点.无论是化简、求值,还是证明,其结果应遵循以下几个原则:①能求值的要求值;②三角函数的种类尽可能少;③角的种类尽可能少;④次数尽可能低;⑤尽可能不含根号和分母.知识点二已知α、β的三角函数值,求α±β的三角函数值1例3 已知sinα=,求cos( +α)的值.3 3思路分析:因为是个特殊角,所以根据C(α+β)的展开式,只需求出cosα的值即可.由于条31件只告诉了sinα=,没有明确角α所在的象限,所以应分类讨论,先求cosα的值,再代3入展开式确定cos( +α)的值.31解:∵sinα=>0,∴α位于第一、二象限.3当α是第一象限角时,cosα=1221()2,33∴cos(3+α)=cos3cosα-sin3sinα=1223122232363;22同理,当α是第二象限角时,cosα=,3∴cos(3233+α)=.6方法归纳解这类给值求值问题的关键是先分清S(α±β)、C(α±β)、T(α±β)的展开式中所需要的条件,结合题设,明确谁是已知的,谁是待求的.其中在利用同角三角函数的基本关系求值时,应先解决与已知具有平方关系的三角函数值.但是,对于cos(π+α)、cos( +α)这样的2函数求值,由于它们的角与的整数倍有关,所以无需按它们的展开式求值,直接利用诱导2公式可能更简单.例4 已知cos(α-2)=1,sin(92-β)=23,并且2<α<π,0<β<2,求cos24思路分析:观察给出的角()(),结合公式C(α-β)展开式的特点,只需222利用同角三角函数的基本关系计算出sin(α-)、cos( -β)的值即可.22解:∵<α<π,0<β<,∴<<,0<<.2242224∴<α-<π,- <-β<.424221<0,∴又∵cos(α-)= .29221∴sin(22)1sin()1()229459.同理,∵sin(2-β)=23>0,∴.222∴cos(22)1sin()1()22353.故cos[()()]cos222=cos(α- )cos( -β)+sin(α- )sin(2222-β)1545275.939327例5 在△ABC中,sinA=355,cosB=13,求cosC.思路分析:本题主要考查三角形中的三角函数问题.若不注意“△ABC”这个条件,就会产生多解,所以解这类问题时一定要注意尽量压缩角的范围,避开分类讨论,同时要注意结论是否符解:5,∴B∈( 2∵cosB=13 24 ,212 13)且 sinB=. ∵sinA= 3 ,∴A∈(0, 2 5 24 )∪( 34 ,π).33若 A∈(,π),B∈( , ),则 A+B∈(π,)与 A+B+C=π 矛盾,44 2234∴A(,π).因此 A∈(0, )且 cosA= .445 45 3 12 16从而 cosC=cos [π-(A+B)]=-cos(A+B)=-cosAcosB+sinAsinB=. 5 13 5 13 655例 6 如图 3-1-7,已知向量OP =(3,4)绕原点旋转 45°到 OP′的位置,求点 P′(x′,y′)的 坐标.图 3-1-7思路分析:本题相当于已知角 α 的三角函数值,求 α+45°的三角函数值. 解:设∠xOP=α.因为|OP|= 32 42 5 ,所以cosα=3 5 ,sinα=45 . 因为 x′=5cos(α+45°)=5(cosαcos45°-sinαsin45°)3 24 2 2 5( ),5 2 5 22同理,可求得 y′=5sin(α+45°)=7 22 7 ,所以 P′(,2 2 22 ).方法归纳 ①已知角 α 的某一三角函数值和角 α 所在的象限,则角 α 的其他三角函数值唯 一;已知角 α 的某一三角函数值,不知角 α 所在的象限,应先分类讨论,再求 α 的其他三 角函数值.②一般地,90°±α,270°±α 的三角函数值,等于 α 的余名函数值,前面加上一个把 α 看成锐角时原函数值的符号,它的证明也可通过两角和、差的三角函数式进行.③在给值求值的题型中,要灵活处理已知与未知的关系,合理进行角的变换,使所求角能用已 知角表示出来,所求角的三角函数值能用已知角的三角函数值表示出来. 知识点三 已知三角函数值求角 例 7 已知 sinα=5 5 ,sinβ= 10 10,且 α、β 都是锐角,求 α+β 的值.思路分析:(1)根据已知条件可先求出 α+β 的某个三角函数值,如 cos(α+β).(2)由两角和的余弦公式及题设条件知只需求出 cosα、cosβ 即可.(3)由于 α、β 都是锐角,所以 0<α+β <π,y=cosx 在(0,π)上是减函数,从而根据 cos(α+β)的值即可求出 α+β 的值. 解:∵sinα=5 5,sinβ=10 10,且 α、β 都是锐角,∴cosα=2 5 1 sin2,cosβ=53 10 1 sin 2.10∴cos(α+β)=cosαcosβ-sinαsinβ=210 10. 5 3 5 2 5 1051026又∵0<α+β<π,∴α+β=4.方法归纳给值求角的一般步骤是:①确定所求角的范围;②找到该范围内具有单调性的某一三角函数值;③先找到一个与之相关的锐角,再由诱导公式导出所求角的值.知识点四利用两角和、差的三角函数公式证明恒等式例8 已知3sinβ=sin(2α+β),求证:tan(α+β)=2tanα.思路分析:观察条件等式和结论等式中的角,条件中含有β、2α+β,结论中含有α+β、α,若从条件入手,可采用角的变换,β=(α+β)-α,2α+β=(α+β)+α,展开后转化成齐次整式,约分得出结论.证明:∵3sinβ=3sin[(α+β)-α]=3sin(α+β)cosα-3cos(α+β)sinα,sin(2α+β)=sin[(α+β)+α]=sin(α+β)cosα+cos(α+β)sinα,又3s inβ=sin(2α+β),∴3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα.∴2sin(α+β)cosα=4cos(α+β)sinα.∴tan(α+β)=2tanα.方法归纳对条件恒等式的证明,若条件复杂,可从化简条件入手得出结论;若结论复杂,可化简结论得出条件;若条件和结论都较为复杂,可同时化简它们,直到找到它们间的联系.知识点五变用两角和差的三角函数公式化简求值例9 用和、差公式证明tan12°+tan18°+33tan12°·tan18°=33.tan12tan18解:∵1tan12tan18=tan(12°+18°)=tan30°=33,∴tan12°+tan18°=33(1-tan12°·tan18°),即左边=33(1-tan12°tan18°)+33tan12°tan18°=33=右边.∴tan12°+tan18°+33tan12°·tan18°=33.方法归纳三角公式通过等价变形,可正用,可逆用,也可变用,主要是通过对函数结构式的变形与对角的分、拆、组合来实现的.例10 求(1+tan1°)(1+tan2°)(1+tan3°)……(1+tan45°)的值.tan tan解:因为α+β=45°时,tan(α+β)=1tantan=1,所以tanα+tanβ+tanαtanβ=1,即(1+tanα)(1+tanβ)=2.于是(1+tan1°)(1+tan44°)=(1+tan2°)(1+tan43°)=……=(1+tan22°)(1+tan23°)=2.又因为1+tan45°=2,所以原式=223.方法归纳当α+β=kπ+4,k∈Z时,(1+tanα)(1+tanβ)=2;7当 α+β=kπ- 问题•探究 思想方法探究4,k∈Z 时,(1+tanα)(1+tanβ)=2tanαtanβ.问题 1 在三角恒等变换中,三角公式众多,公式变换也是解决问题的有效手段,在应用这些 公式时要注意些什么问题?探究过程:使用任何一个公式都要注意它的逆向变换、多向变换,这是灵活使用公式所必须的, 尤其是面对那么多三角公式,把这些公式变活,显得更加重要,这也是学好三角函数的基本功.如:cos(α-β)cosβ-sin(α-β)sinβ 化简为__________.将 α-β 看作一个角,β 看 作另一个角,则 cos(α-β)cosβ-sin(α-β)sinβ=cos [(α-β)+β]=cosα.解答本题时不仅利用角的变换:α=(α-β)+β,同时运用了公式的逆向变换.tantan探究结论:两角和的正切公式 tan(α+β)=1 tan tan.除了掌握其正向使用之外,还需掌握 如 下 变 换 : 1-tanαtanβ=tan tan( tan); tanα+tanβ=tan(α+β)(1-tanαtanβ);tanαtanβtan(α+β)=tan (α+β)-tanα-tanβ 等.两角和的正切公式的三种变形要熟悉, 其在以后解题中经常使用,要能灵活处理.问题 2 2004年重庆高考有一题为:求函数 y=sin 4x+2 3 sinxcosx-cos 4x 的最小正周期和最 小 值 , 并 写 出 该 函 数 在 [ 0,π] 上 的 单 调 递 增 区 间 .该 函 数 变 形 后 就 需 要 用 到 形 如 asinx+bcosx(a 、b 不同时为零)的式子的变换,我们称之为辅助角变换,那么如何进行辅助角 变换?探究过程:形如 asinx+bcosx(a 、b 不同时为零)的式子可以引入辅助角变形为 Asin(x+φ)的形ab式.asinx+bcosx=b ( sincos )a 22xx ,abab2222令 cosφ=aa2b2,sinφ=ba2b2,则原式= a 2b 2 (sinxcosφ+cosxsinφ)= a 2 b 2 sin(x+φ).(其中 φ 角所在象限由 a 、b 的符号确定,φ 角的值由 tanφ=b a 确定,常常取 φ=arctan b a).探究结论:辅助角变换是三角变形的重要形式,它的应用十分广泛,特别是在数学中求三角函数的最值及物理学当中波的合成时,都是重要的工具.例如 2sinx-3cosx ,就可以利用这一结 论将其化为一个三角函数的形式,从而确定其最值,因为 a=2,b=-3,A= a 2 b 2 13 ,所以 2sinx-3cosx= 13 sin(x+φ),(其中 φ 在第四象限,且 tanφ=3),所以 2sinx-3cosx 2的最大值是 13 ,最小值是 13 .8。
高中数学第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.2两角和与差的正弦、余弦、正
1.设 α∈0,π2,若 sin α=35,则 2cosα+π4=(
)
7
1
A.5
B.5
C.-75
D.-15
第九页,共39页。
解析: 易得 cos α=45,
则
2cosα+π4=
2cos αcos
π4-sin αsin
π4=15.
答案(dáàn): B
第十页,共39页。
2.sin 59°·cos 89°-cos 59°·sin 89°的值为( )
1-172=4 7 3.
由 0<β<α<π2,得 0<α-β<π2.
又∵cos(α-β)=1134,
第三十四页,共39页。
∴sin(α-β)= 1-cos2(α-β)=
由 β=α-(α-β),得 cos β=cos[α-(α-β)] =cos αcos (α-β)+sin αsin(α-β) =17×1134+4 7 3×3143=12. ∵0<β<π2,∴β=π3.
(3)求角,结合三角函数值及角的范围求角
第三十一页,共39页。
同类练]☆ 1.已知 α,β 均为锐角,且 sin α= 55,cos β= 1100,求 α-β 的值.
第三十二页,共39页。
解析: ∵α,β 均为锐角,且 sin α= 55,cos β= 1100,
∴cos α=255,sin β=31010. ∴sin(α-β)=sin αcos β-cos αsin β
第三十六页,共39页。
故co1s A+co1s C=cos(601°+α)+cos(601°-α)
=
1
+
1
12cos α- 23sin α 12cos α+ 23sin α
22第四章 三角函数、解三角形 简单的三角恒等变换 第1课时 两角和与差的正弦、余弦和正切公式
(2)设 α 为锐角,若 cosα+π6=54,则 sin2α+π3的值为
12 A.25
√24
B.25
C.-2245
解析 因为 α 为锐角,且 cosα+π6=54,
D.-1225
所以 sinα+π6= 1-cos2α+π6=35,
所以 sin2α+π3=sin 2α+π6 =2sinα+6πcosα+π6=2×53×54=2245,故选 B.
tan α+tan β
tan(α+β)= 1-tan
αtan
(T(α+β)) β
2.二倍角公式
sin 2α= 2sin αcos α ; cos 2α= cos2α-sin2α = 2cos2α-=1
2tan α tan 2α= 1-tan2α .
1-2sin2α ;
【概念方法微思考】 1.诱导公式与两角和差的三角函数公式有何关系? 提示 诱导公式可以看成和差公式中 β=k·π2(k∈Z)时的特殊情形. 2.怎样研究形如f(x)=asin x+bcos x函数的性质? 提示 先根据辅助角公式 asin x+bcos x= a2+b2·sin(x+φ),将 f(x)化成 f(x)
解析
cos2α2
= 121+cos α = 1+cos α =4sin α.
1234567
2
PART TWO
题型分类 深度剖析
第1课时 两角和与差的正弦、余弦和正切公式
自主演练
题型一 和差公式的直接应用
1.(2018·石家庄质检)若 sin(π-α)=13,且π2≤α≤π,则 sin 2α 的值为
A.-
2 10
B.
2 10
√C.-7102
D.7102
三角恒等变换两角和与差的正弦余弦正切公式两角和与差的正切公式
xx年xx月xx日
contents
目录
• 引言 • 两角和与差的正弦、余弦、正切公式 • 两角和与差的正切公式推导 • 两角和的正弦、余弦、正切公式 • 两角差的正弦、余弦、正切公式
01
引言
课程背景
数学是研究数量、 结构、变化和空间 等概念的学科
$\sin(\alpha-\beta)=\sin\alpha\cos\beta\cos\alpha\sin\beta$
两角和与差的正弦公式证明
1. 证明 $\sin(\alpha+\beta)=\sin\alpha\cos\beta+\co s\alpha\sin\beta$
2. 证明$\sin(\alpha\beta)=\sin\alpha\cos\beta\cos\alpha\sin\beta$
又因为cos(π/2-x)=sinx,sin(π/2-x)=cosx,代入上式 得sin(x+y)=sinxcosy+cosxsiny。
两角和的正弦应用举例
举例1
已知一个直角三角形的两个锐角分别为 30度和45度,求两锐角和的正弦值。
VS
解
首先计算出这两个锐角的正弦值分别为 1/2和1/√2,然后利用两角和的正弦公式 计算两锐角和的正弦值为: sin(30°+45°)=sin30°cos45°+cos30°sin 45°=1/2×√2/2+√3/2×√2/2=(√2+√6)/ 4。
两角和的正切公式
两角和的正切公式为:tan(x+y)=(tanx+tany)/(1-tanxtany)。
该公式是三角恒等变换中的基本公式之一,可以用来将两角和的正切表示为两角 正切的和除以两角正切的积减1的形式。
高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A版必修4
2
2
(2) 3 sin x cos x.
解:(1)1 cos x 3 sin x (2) 3 sin x cos x
2
2
sin 30 cos x cos 30 sin x
2( 3 sin x 1 cos x)
2
2
sin(30 x);
2(sin x cos 30 cos x sin 30 )
解:原式 sin(72 18 ) sin 90 1.
第十三页,共31页。
例1 已知 sin 3 , 是第四象限角,求 sin( ),
5
4
cos( )的值.
4
解:由sin=-
3 5
,
是第四象限角,得
cos 1 sin2 1 ( 3)2 4 , 55
于是有sin( ) sin cos cos sin
第七页,共31页。
探究(tànjiū)二:两角和与差的正弦公式
1.利用哪些公式可以实现正弦(zhèngxián)、余弦的互 化?
提示(tíshìs)i:n cos( ) 2
sin(
)
cos
2
(
)
第八页,共31页。
2.由两角和与差的余弦公式如何推导两角和与 差的正弦(zhèngxián)公式?
(2) 2 cos x 6 sin x.
解:(1)原式 (2 2 sin x 2 cos x)
2
2
2sin(x ).
4
(2)原式 2 (2 1 cos x 3 sin x)
2
2
2 2 sin( x).
6
第二十一页,共31页。
1.(2015·四川高考)下列函数中,最小正周期为π且图象关
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.1 两角差的余弦公
-1665,得 sin(α+ β )=6635,又 sin α=45,所以 cos α =35,
所以 cos β=cos[(α+ β )-α]= cos(α+ β )cos α+sin(α+ β )sin α= -1665×35+6635×45=230245.
[迁移探究] (变换条件)若把本例中的“α, β∈
cos(83°-23°)=cos 60°=12.
1 (2)2cos
105°+
3 2 sin
105°=
cos 60°cos 105°+sin 60°sin 105°=
cos(60°-105°)=cos(-45°)=
2 2.
答案:(1)B
(2)
2 2
归纳升华 两角差的余弦公式常见题型及解法
1.两特殊角之差的余弦值,利用两角差的余弦公式 直接展开求解.
2.cos 65°cos 35°+sin 65°sin 35°( ) A.cos 100° B.sin 100°
3
1
C. 2
D.2
解析:cos 65°cos 35°+sin 65°sin 35°=cos(65°-35°)
=cos 30°= 23.
答案:C
3.cos(-15°)的值是( )
6- 2 A. 2
0,π2”改为“α, β∈π2,π”,求 cos β 的值. 解:因为 α, β∈π2,π,所以 π<α+ β <2π, 由 cos(α+ β )=-1665,得 sin(α+ β )=-6635, 又 sin α=45,
所以 cos α=-35, 所以 cos β=cos[(α+ β )-α]= cos(α+ β)cos α+sin(α+ β )sin α= -1665×-35+-6635×45=-230245.
必修四⑤三角恒等变换(两角和与差的正弦、余弦和正切).
三角恒等变换基础梳理1.两角和与差的正弦、余弦、正切公式(1C(α-β:cos(α-β=cos_αcos_β+sin_αsin_β;(2C(α+β:cos(α+β=cos_αcos_β-sin_αsin_β;(3S(α+β:sin(α+β=sin_αcos_β+cos_αsin_β;(4S(α-β:sin(α-β=sin_αcos_β-cos_αsin_β;(5T(α+β:tan(α+β=;(6T(α-β:tan(α-β=.2.二倍角的正弦、余弦、正切公式(1S2α:sin 2α=2si n_αcos_α;(2C2α:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;(3T2α:tan 2α=.3.有关公式的逆用、变形等(1tan α±tan β=tan(α±β(1∓tan_αtan_β;(2cos2α=,sin2α=;(31+sin 2α=(sin α+cos α2,1-sin 2α=(sin α-cos α2,sin α±cos α=sin.4.函数f(α=a cos α+b sin α(a,b为常数,可以化为f(α=sin(α+φ或f(α=cos(α-φ,其中φ可由a,b的值唯一确定.两个技巧(1拆角、拼角技巧:2α=(α+β+(α-β;α=(α+β-β;β=-;=-.(2化简技巧:切化弦、“1”的代换等.三个变化(1变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.题型分析1、三角函数式的化简、求值※相关链接※(1)三角函数式的化简要遵循“三看”原则①一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;②二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;③三看“结构特征”,分析结构特征,可以帮助我们打到变形的方向,常见的有“遇到分式要通分”等。
3.1.2第1课时 两角和与差的正弦、余弦公式 课件
栏目 导引
第三章 三角恒等变换
高效学习模型-内外脑模型
2
内脑- 思考内化
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
栏目 导引
第三章 三角恒等变换
超级记忆法
栏目 导引
第三章 三角恒等变换
超级记忆法-记忆规律
记忆前
第三章 三角恒等变换
3.1.2 两角和与差的正弦、余弦、正切 公式
第1课时 两角和与差的正弦、余弦公式
第三章 三角恒等变换
学习导航
学习目标
结合两角差 的余弦公式
―理―解→
两角和与差的正弦、 余弦推导过程及各 公式之间的联系
―掌―握→
两角和与差的正弦、 余弦公式的应用
重点难点 重点:公式的正用、逆用及变式应用. 难点:灵活运用公式解决相关的求值、化简.
=12sin x+ 23cos x+sin x- 3cos x+ 23cos x-32sin x
=(12+1-32)sin x+( 23-
3+
3 2 )cos
x=0.
栏目 导引
第三章 三角恒等变换
(2)原式=sin[α+β+α]s-in 2αcosα+βsin α
=sinα+βcos
α-cosα+βsin sin α
=csions 8100°°=1.
第三章 三角恒等变换
栏目 导引
第三章 三角恒等变换
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
栏目 导引
第三章 三角恒等变换
小案例—哪个是你
三角恒等变换两角和与差的正弦余弦正切公式两角和与差的正弦余弦公式
解决三角函数问题
利用两角和的正切公式求三角函数的值
利用两角差的正切公式求三角函数的值
03
三角恒等变换
三角恒等变换的定义
定义
三角恒等变换是指利用三角函数的和、差、倍、半等关系,将一个式子化为另一 个式子的过程。
三角恒等变换的常用公式
和角公式、差角公式、和差化积公式、积化和差公式、倍角公式、半角公式等。
正弦函数在区间[2kππ/2,2kπ+π/2]上单调递增 ,在区间 [2kπ+π/2,2kπ+3π/2]上 单调递减
05
三角恒等变换的证明方法
通过两角和与差的正弦公式证明
总结词
通过两角和与差的正弦公式,可以将不同角度的三角函数值转化为相同角度或相 反角度的三角函数值,从而证明恒等式。
证明方法
利用两角和与差的正弦公式,将正弦函数的角度进行加减,得到证明结果。
正切函数是定义在整个复 平面上的,因此是 无界函 数。
奇偶性
正切函数的奇 偶性
正弦函数是奇函数,即对 于任意的实数x,都有sin(x) = -sin(x);余弦函数是 偶函数,即对于任意的实 数x,都有cos(-x) = cos(x) 。
对于任意的实数x,都有 tan(-x) = -tan(x)。
增减性
三角恒等变换的证明方法
通过已知的三角恒等式证明新的三角恒等式,通常需要使用已知的推论或定理进 行推理和证明。
证明方法:直接证明、间接证明、反证法等。
三角恒等变换的应用
应用领域
三角恒等变换在数学、物理、工程等领域都有广泛的应用。
常见问题
化简和求值,解方程,证明恒等式等。
04
三角函数的相关概念
三角函数的定义
【2020】最新高中数学第三章三角恒等变换3-1两角和与差的正弦、余弦和正切公式3-1-2第1课时两角和与差的正
(2)正确.当α=45°,β=0°时,sin(α-β)=sin α-sin β. (3)错误.当α=30°,β=-30°时,sin(α+β)=sin α+sinβ成立.(4)正确.因为sin 54°cos 24°-sin 36°sin 24° =sin 54°cos 24°-cos 54°sin 24°=sin(54°-24°) =sin 30°,故原式正确.[答案] (1)√ (2)√ (3)× (4)√2.cos 57°cos 3°-sin 57°sin 3°的值为( ) A.0 B.12C.32D.cos 54°B [原式=cos(57°+3°)=cos 60°=12.]3.若cos α=-35,α是第三象限的角,则sin ⎝ ⎛⎭⎪⎫a -π4=________.-210 [∵cos α=-35,α是第三象限的角, ∴sin α=-1-cos2α=-45,∴sin ⎝⎛⎭⎪⎫α-π4=22sin α-22cos α=22×⎝ ⎛⎭⎪⎫-45-22×⎝ ⎛⎭⎪⎫-35=-210.][合 作 探 究·攻 重 难]给角求值问题(1)cos 70°sin 50°-cos 200°sin 40°的值为( ) A.-32B.-12C.12D.32(2)若θ是第二象限角且sin θ=513,则cos(θ+60°)=________.(3)求值:(tan 10°-3)cos 10°sin 50°.(1)D (2)-12+5326 [(1)∵cos 200°=cos(180°+20°)=-cos20°=-sin 70°,sin 40°=cos 50°,∴原式=cos 70°sin 50°-(-sin 70°)cos 50° =sin(50°+70°)=sin 120°=32. (2)∵θ是第二象限角且sin θ=513, ∴cos θ=-1-sin2θ=-1213, ∴cos(θ+60°)=12cos θ-32sin θ=12×⎝ ⎛⎭⎪⎫-1213-32×513 =-12+5326. (3)原式=(tan 10°-tan 60°)cos 10°sin 50°=⎝ ⎛⎭⎪⎫sin 10°cos 10°-sin 60°cos 60°cos 10°sin 50°=sin -50°cos 10°cos 60°·cos 10°sin 50°=-2.][规律方法] 解决给角求值问题的策略 1对于非特殊角的三角函数式求值问题,一定要本着先整体后局部的基本原则,如果整体符合三角公式的形式,则整体变形,否则进行各局部的变形.2一般途径有将非特殊角化为特殊角的和或差的形式,化为正负相消的项并消项求值,化分子、分母形式进行约分,解题时要逆用或变用公式.提醒:在逆用两角的和与差的正弦和余弦公式时,首先要注意结构是否符合公式特点,其次注意角是否满足要求.[跟踪训练] 1.化简求值: (1)sin 50°-sin 20°cos 30°cos 20°;(2)sin(θ+75°)+cos(θ+45°)-3cos(θ+15°). [解] (1)原式=sin20°+30°-sin 20°cos 30°cos 20°=sin 20°cos 30°+cos 20°sin 30-sin 20°cos 30°cos 20°=cos 20°sin 30°cos 20°=sin 30°=12.(2)设α=θ+15°,则原式=sin(α+60°)+cos(α+30°)-3cos α=⎝ ⎛⎭⎪⎫12sin α+32cos α+⎝ ⎛⎭⎪⎫32cos α-12sin α-3cos α=0.给值求值、求角问题(1)已知P ,Q 是圆心在坐标原点O 的单位圆上的两点,且分别位于第一象限和第四象限,点P 的横坐标为45,点Q 的横坐标为513,则cos∠POQ =________.(2)已知cosα=55,sin(α-β)=1010,且α,β∈⎝⎛⎭⎪⎫0,π2.求:①cos(2α-β)的值;②β的值.[思路探究](1)先由任意角三角函数的定义求∠xOP 和∠xOQ 的正弦、余弦值,再依据∠POQ =∠xOP +∠xOQ 及两角和的余弦公式求值.(2)先求sinα,cos(α-β),依据2α-β=α+(α-β)求cos(2α-β).依据β=α-(α-β)求cos β再求β.(1)5665 [(1)由题意可得,cos∠xOP =45,所以sin ∠xOP =35.再根据cos∠xOQ =513, 可得sin∠xOQ =-1213, 所以cos∠POQ =cos(∠xOP +∠xOQ )=cos∠xOP ·cos∠xOQ -sin∠xOP ·si n ∠xOQ =45×513-35×⎝ ⎛⎭⎪⎫-1213=5665.(2)①因为α,β∈⎝ ⎛⎭⎪⎫0,π2, 所以α-β∈⎝ ⎛⎭⎪⎫-π2,π2,又sin(α-β)=1010>0,所以0<α-β<π2, 所以sin α=1-cos2α=255,cos(α-β)=1-sin2α-β=31010, cos(2α-β)=cos[α+(α-β)] =cos αcos(α-β)-sin αsin(α-β) =55×31010-255×1010=210. ②cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =55×31010+255×1010=22,又因为β∈⎝ ⎛⎭⎪⎫0,π2,所以β=π4.][规律方法] 给值求值问题的解题策略在解决此类题目时,一定要注意已知角与所求角之间的关系,恰当地运用拆角、拼角技巧,同时分析角之间的关系,利用角的代换化异角为同角,具体做法是:1当条件中有两角时,一般把“所求角”表示为已知两角的和或差. 2当已知角有一个时,可利用诱导公式把所求角转化为已知角.[跟踪训练]2.已知锐角α,β满足cos α=255,sin(α-β)=-35,求sin β的值.[解] 因为α,β是锐角,即0<α<π2,0<β<π2, 所以-π2<α-β<π2, 因为sin(α-β)=-35<0,所以cos(α-β)=45,因为cos α=255,所以sin α=55, 所以sin β=s in[α-(α-β)]=sin αcos(α-β)-cosαsin(α-β)=55×45+255×35=255. 辅助角公式的应用[探究问题]1.能否将函数y =sin x +cosx (x ∈R )化为y =A sin(x +φ)的形式⎝ ⎛⎭⎪⎫|φ|∈⎝ ⎛⎭⎪⎫0,π2?提示:能.y =sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4.2.如何推导a sin x +b cos x =a2+b2sin(x +φ)⎝ ⎛⎭⎪⎫tan φ=b a 公式.提示:a sin x +b cos x=a2+b2⎝⎛⎭⎪⎫a a2+b2sin x +b a2+b2cos x , 令cos φ=a a2+b2,sin φ=ba2+b2,则a sin x +b cos x =a2+b2(sin x cos φ+cos x sin φ) =a2+b2sin(x +φ)(其中φ角所在象限由a ,b 的符号确定,φ角的值由tan φ=ba确定,或由sin φ=b a2+b2和cos φ=aa2+b2共同确定). (1)sinπ12-3cos π12=________. (2)已知a =(3,-1),b =(sin x ,cosx ),x ∈R ,f (x )=a·b ,求函数f (x )的周期,值域,单调递增区间.[思路探究]解答此类问题的关键是巧妙构建公式C (α-β)、C (α+β)、S (α-β)、S (α+β)的右侧,逆用公式化成一个角的一种三角函数值.(1)-2 [(1)原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12.法一:(化正弦)原式=2⎝ ⎛⎭⎪⎫cos π3sin π12-si n π3cos π12=2⎝ ⎛⎭⎪⎫sin π12cos π3-co s π12sin π3=2sin ⎝ ⎛⎭⎪⎫π12-π3=2sin ⎝ ⎛⎭⎪⎫-π4=- 2.法二:(化余弦)原式=2⎝⎛⎭⎪⎫sin π6sin π12-co s π6cos π12⎣⎢⎡⎦⎥⎤-3π4+2kπ,π4+2kπ,k ∈Z .[规律方法] 辅助角公式及其运用 1公式形式:公式a sin α+b cos α=a2+b2sin α+φ或a sin α+b cos α=a2+b2cosα-φ将形如a sinα+b cosαa ,b 不同时为零的三角函数式收缩为同一个角的一种三角函数式.2形式选择:化为正弦还是余弦,要看具体条件而定,一般要求变形后角α的系数为正,这样更有利于研究函数的性质.提醒:在使用辅助角公式时常因把辅助角求错而致误.[当 堂 达 标·固 双 基]1.sin 245°sin 125°+sin 155°sin 35°的值是( ) A.-32B.-12C.12D.32B [∵sin 245°=sin(155°+90°)=cos 155°, sin 125°=sin(90°+35°)=cos 35°, ∴原式=cos 155°cos 35°+sin 155°sin 35°=cos(155°-35°)=cos 120°=-12.]2.化简2cos x -6sin x 等于( ) A.22sin ⎝ ⎛⎭⎪⎫π6+xB.22cos ⎝ ⎛⎭⎪⎫π6-xC.22sin ⎝ ⎛⎭⎪⎫π3-xD.22cos ⎝ ⎛⎭⎪⎫π3+xD [2cos x -6sin x =22⎝ ⎛⎭⎪⎫12cos x -32sin x=22⎝ ⎛⎭⎪⎫cos π3cos x-si n π3sin x=22cos ⎝ ⎛⎭⎪⎫π3+x .]。
第3讲 第1课时 两角和与差的正弦、余弦和正切公式
第3讲 简单的三角恒等变换[学生用书P61]一、知识梳理1.两角和与差的正弦、余弦、正切公式C (α-β):cos(α-β)=cos_αcos__β+sin_αsin__β. C (α+β):cos(α+β)=cos_αcos__β-sin_αsin__β. S (α+β):sin(α+β)=sin_αcos__β+cos_αsin__β. S (α-β):sin(α-β)=sin_αcos__β-cos_αsin__β. T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎫α,β,α+β≠π2+k π,k ∈Z .T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎫α,β,α-β≠π2+k π,k ∈Z .2.二倍角的正弦、余弦、正切公式 S 2α:sin 2α=2sin_αcos__α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan α⎝⎛⎭⎫α≠π4+k π2,且α≠k π+π2,k ∈Z .常用结论记准四个必备结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(a ±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)(其中sin φ=ba 2+b 2,cos φ=aa 2+b 2). 二、习题改编1.(必修4P127练习T2改编)若cos α=-45.α是第三象限的角,则sin ⎝⎛⎭⎫α+π4=________. 解析:因为α是第三象限角,所以sin α=-1-cos 2α=-35,所以sin ⎝⎛⎭⎫α+π4=-35×22+⎝⎛⎭⎫-45×22=-7210. 答案:-72102.(必修4P131练习T5改编)sin 347°cos 148°+sin 77°·cos 58°=________. 解析:sin 347°cos 148°+sin 77°cos 58° =sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°)=sin 135°=22. 答案:223.(必修4P146A 组T4改编)tan 20°+tan 40°+3tan 20°·tan 40°=________. 解析:因为tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°,所以tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,所以原式=3-3tan 20°tan40°+3tan 20°tan 40°= 3. 答案: 3一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(2)对任意角α都有1+sin α=⎝⎛⎭⎫sin α2+cos α22.( )(3)y =3sin x +4cos x 的最大值是7.( )(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtanβ),且对任意角α,β都成立. ( )答案:(1)√ (2)√ (3)× (4)× 二、易错纠偏常见误区|K(1)不会逆用公式,找不到思路; (2)不会合理配角出错; (3)忽视角的范围用错公式.1.化简:sin 50°sin 65°·1-cos 50°=________.解析:原式=cos 40°cos 25°1-cos 50°=cos 40°cos 25°·2sin 25°=cos 40°22sin 50°= 2.答案: 22.若tan α=3,tan(α-β)=2,则tan β=________. 解析:tan β=tan[α-(α-β)] =tan α-tan (α-β)1+tan α·tan (α-β)=3-21+3×2=17.答案:173.已知θ∈⎝⎛⎭⎫0,π2,且sin ⎝⎛⎭⎫θ-π4=210,则tan 2θ=________. 解析:法一:sin ⎝⎛⎭⎫θ-π4=210, 得sin θ-cos θ=15,①θ∈⎝⎛⎭⎫0,π2,①平方得2sin θcos θ=2425,可求得sin θ+cos θ=75,所以sin θ=45,cos θ=35,所以tan θ=43,tan 2θ=2tan θ1-tan 2θ=-247.法二:因为θ∈⎝⎛⎭⎫0,π2且sin ⎝⎛⎭⎫θ-π4=210, 所以cos ⎝⎛⎭⎫θ-π4=7210, 所以tan ⎝⎛⎭⎫θ-π4=17=tan θ-11+tan θ,所以tan θ=43.故tan 2θ=2tan θ1-tan 2θ=-247.答案:-247第1课时 两角和与差的正弦、余弦和正切公式[学生用书P62]和差公式的直接应用(自主练透)1.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B .211C.112D .-112解析:选A.因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.2.(2019·高考全国卷Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15 B .55C.33D .255解析:选B.由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin 2α+1,即2sin αcos α=1-sin 2α.因为α∈⎝⎛⎭⎫0,π2,所以cos α=1-sin 2 α,所以2sin α1-sin 2 α=1-sin 2 α,解得sin α=55,故选B. 3.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 解:(1)因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255,故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α =22×⎝⎛⎭⎫-255+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45,cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35,所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45 =-4+3310.三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.三角函数公式的逆用与变形用(多维探究) 角度一 公式的逆用(1)化简sin 10°1-3tan 10°=________.(2)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C =________. 【解析】 (1)sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.(2)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π), 所以A +B =3π4,则C =π4,cos C =22.【答案】 (1)14 (2)22角度二 公式的变形用(1)化简sin 235°-12cos 10°cos 80°=________.(2)化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 【解析】 (1)sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.(2)原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.【答案】 (1)-1 (2)12(1)和差角公式的常见变形①sin αsin β+cos(α+β)=cos αcos β; ②cos αsin β+sin(α-β)=sin αcos β; ③tan α±tan β=tan(α±β)·(1∓tan αtan β). (2)二倍角正、余弦公式的常见变换方式①配方变换:1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2;②因式分解变换:cos 2α=2cos 2α-1=1-2sin 2α=cos 2 α-sin 2α=(cos α+sin α)(cosα-sin α);③降幂扩角变换:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;④升幂缩角变换:1+cos α=2cos 2α2,1-cos α=2sin 2α2;⑤公式变换:cos α=sin 2α2sin α,sin α=sin 2α2cos α.1.(一题多解)3cos 15°-4sin 215°cos 15°=( ) A.12 B .22C .1D . 2解析:选D.法一:3cos 15°-4sin 215°cos 15°=3cos 15°-2sin 15°·2sin 15°cos 15°=3cos 15°-2sin 15°·sin 30°=3cos 15°-sin 15°=2cos(15°+30°)=2cos 45°= 2.故选D.法二:因为cos 15°=6+24,sin 15°=6-24,所以3cos 15°-4sin 215°·cos 15°=3×6+24-4×⎝ ⎛⎭⎪⎫6-242×6+24=6+24×(3-2+3)=6+24×(23-2)= 2.故选D.2.计算sin 110°sin 20°cos 2 155°-sin 2155°的值为________.解析:sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.答案:12和差公式的灵活运用(多维探究) 角度一 变角问题(1)设α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β=________. (2)已知cos(75°+α)=13,则cos(30°-2α)的值为________.【解析】 (1)依题意得sin α=1-cos 2α=255,因为sin(α+β)=35<sin α且α+β>α,所以α+β∈⎝⎛⎭⎫π2,π,所以cos(α+β)=-45. 于是cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)cos(75°+α)=sin(15°-α)=13,所以cos(30°-2α)=1-2sin 2(15°-α)=1-29=79.【答案】 (1)2525 (2)79角度二 变名问题求值:1+cos 20°2sin 20°-sin 10°⎝⎛⎭⎫1tan 5°-tan 5°.【解】 原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝⎛⎭⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.三角公式应用中变“角”与变“名”问题的解题思路(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等. (2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[提醒] 转化思想是实施三角变换的主导思想,恒等变形前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.1.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=________. 解析:cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22 =12+12sin 2α=12+12×13=23. 答案:232.cos 10°-3cos (-100°)1-sin 10°=________.(用数字作答)解析:cos 10°-3cos (-100°)1-sin 10°=cos 10°+3cos 80°1-cos 80°=cos 10°+3sin 10°2·sin 40°=2sin (10°+30°)2·sin 40°= 2.答案: 2[学生用书P348(单独成册)][基础题组练]1.(2020·广东揭阳一模)若sin ⎝⎛⎭⎫π2-2α=35,则sin 4α-cos 4α的值为( ) A.45 B .35C .-45D .-35解析:选D.因为sin ⎝⎛⎭⎫π2-2α=35,所以cos 2α=35,因此sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=1-2cos 2α=-cos 2α=-35,选D.2.(2020·湖南长沙长郡中学一模)已知sin(α+2β)=34,cos β=13,α,β为锐角,则sin(α+β)的值为( )A.37-2212B .3-21412C.37+2212D .3+21412解析:选D.因为cos β=13,0<β<π2,所以sin β=223,cos 2β=2cos 2β-1=2×⎝⎛⎭⎫132-1=-79<0,所以π2<2β<π.因为sin(α+2β)=34,α为锐角,所以π2<α+2β<π,所以cos(α+2β)=-74, 所以sin(α+β)=sin[(α+2β)-β] =sin(α+2β)cos β-cos(α+2β)sin β =34×13-⎝⎛⎭⎫-74×223=3+21412.故选D. 3.已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=( ) A .-255B .-3510C .-31010D .255解析:选A.因为tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12,所以tan α=-13,因为tan α=sin αcos α,sin 2α+cos 2α=1,α∈⎝⎛⎭⎫-π2,0,所以sin α=-1010.所以2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)cos ⎝⎛⎭⎫π4-α=4sin α(sin α+cos α)2(sin α+cos α)=22sin α=22×⎝⎛⎭⎫-1010=-255.故选A.4.已知cos ⎝⎛⎭⎫x -π6=14,则cos x +cos ⎝⎛⎭⎫x -π3=( ) A.34B .-34 C.14D .±34解析:选A.因为cos ⎝⎛⎭⎫x -π6=14, 所以cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x=3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=3×14=34. 故选A. 5.2cos 10°-sin 20°sin 70°的值是( )A.12 B .32C. 3D . 2解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.6.sin 10°sin 50°sin 70°=________. 解析:sin 10°sin 50°sin 70°=sin 10°cos 40°cos 20° =sin 10°cos 10°cos 20°cos 40°cos 10°=18sin 80°cos 10°=18.答案:187.(2020·益阳模拟)已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, 所以3sin ⎝⎛⎭⎫α+π6=435, 即sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-458.已知tan α=m 3,tan ⎝⎛⎭⎫α+π4=2m ,则m =________. 解析:由题意,tan α=m 3,tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=2m ,则m3+11-m 3=2m ,所以m =-6或1.答案:-6或19.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45. (1)求sin ()α+π的值;(2)若角β满足sin(α+β)=513,求cos β的值.解:(1)由角α的终边过点P ⎝⎛⎭⎫-35,-45得sin α=-45, 所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝⎛⎭⎫-35,-45得cos α=-35, 由sin(α+β)=513得cos(α+β)=±1213.由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.10.已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.解:(1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2 α+cos 2 α=1, 所以cos 2 α=925,因此cos 2α=2cos 2 α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255,因此tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2 α=-247, 所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[综合题组练]1.(2020·河南九师联盟2月质量检测)若α∈⎝⎛⎭⎫0,π2,且cos 2α=25sin ⎝⎛⎭⎫α+π4,则tan α=( )A.34 B .35C.43D .53解析:选A.因为α∈⎝⎛⎭⎫0,π2,所以sin α+cos α>0. 因为cos 2α=25sin ⎝⎛⎭⎫α+π4, 所以(cos α+sin α)(cos α-sin α)=15(sin α+cos α),所以cos α-sin α=15.将cos α-sin α=15两边平方可得1-2sin αcos α=125,所以sin αcos α=1225.所以sin αcos αsin 2 α+cos 2 α=1225.分子、分母同除以cos 2α可得tan αtan 2 α+1=1225,解得tan α=34或43(舍),即tan α=34.2.(创新型)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n2cos 227°-1=( )A .8B .4C .2D .1解析:选C.因为m =2sin 18°,m 2+n =4,所以n =4-m 2=4-4sin 218°=4cos 218°. 所以m n2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=4sin 18°cos 18°2cos 227°-1=2sin 36°cos 54°=2sin 36°sin 36°=2.故选C.3.已知0<α<π2,且sin α=35,则tan ⎝⎛⎭⎫α+5π4=________;sin 2α+sin 2αcos 2α+cos 2α=________.解析:因为0<α<π2,且sin α=35,所以cos α=1-sin 2α=45,所以tan α=sin αcos α=34,则tan ⎝⎛⎭⎫α+5π4=tan(α+π4)=tan α+11-tan α=7.sin 2 α+sin 2αcos 2α+cos 2α=sin 2α+2sin αcos α2cos 2α-sin 2α=tan 2α+2tan α2-tan 2α=916+642-916=3323.答案:733234.设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为________.解析:由sin αcos β-cos αsin β=1, 得sin(α-β)=1,又α,β∈[0,π],所以α-β=π2,所以⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, 所以sin(2α-β)+sin(α-2β) =sin ⎝⎛⎭⎫2α-α+π2+sin(α-2α+π)=cos α+sin α=2sin ⎝⎛⎭⎫α+π4. 因为π2≤α≤π,所以3π4≤α+π4≤5π4,所以-1≤2sin ⎝⎛⎭⎫α+π4≤1, 即取值范围为[-1,1]. 答案:[-1,1]5.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值.解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14,即sin ⎝⎛⎭⎫2α+π3=-12. 因为α∈⎝⎛⎭⎫π3,π2, 所以2α+π3∈⎝⎛⎭⎫π,4π3, 所以cos ⎝⎛⎭⎫2α+π3=-32, 所以sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=-12×12-⎝⎛⎭⎫-32×32=12. (2)因为α∈⎝⎛⎭⎫π3,π2,所以2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,所以cos 2α=-32.所以tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.6.如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α与钝角β的终边与单位圆分别交于A ,B 两点,x 轴正半轴与单位圆交于点M ,已知S △OAM =55,点B 的纵坐标是210.(1)求cos(α-β)的值; (2)求2α-β的值.解:(1)由题意,OA =OM =1, 因为S △OAM =55,α为锐角, 所以sin α=255,cos α=55.又点B 的纵坐标是210. 所以sin β=210,cos β=-7210, 所以cos(α-β)=cos αcos β+sin αsin β=55×⎝⎛⎭⎫-7210+255×210=-1010. (2)因为cos 2α=2cos 2α-1=2×⎝⎛⎭⎫552-1=-35,sin 2α=2sin α·cos α=2×255×55=45,所以2α∈⎝⎛⎭⎫π2,π. 因为β∈⎝⎛⎭⎫π2,π, 所以2α-β∈⎝⎛⎭⎫-π2,π2. 因为sin(2α-β)=sin 2α·cos β-cos 2α·sin β=-22, 所以2α-β=-π4.。
三角恒等变换两角和与差的正弦余弦正切公式
三角恒等变换两角和与差的正弦余弦正切公式三角恒等变换是数学中用于简化三角函数之间关系的一组等式,其中最常见的是两角和与差的公式。
这些公式允许我们在求解复杂的三角函数问题时,将其转化为更简单的形式。
在本文中,我们将讨论三角恒等变换中的两角和与差的正弦、余弦和正切公式。
1.两角和与差的正弦公式:正弦是一个周期函数,其周期为2π。
两角和与差的正弦公式可以表示为:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)这个公式可通过欧拉公式得到,欧拉公式为:e^(ix) = cos(x) + isin(x)当x=a和x=b时,有:e^(ia) = cos(a) + isin(a)e^(ib) = cos(b) + isin(b)将这两个方程相乘,则得到:e^(ia)e^(ib) = (cos(a) + isin(a))(cos(b) + isin(b))利用乘法展开,则有:e^(ia)e^(ib) = (cos(a)cos(b) - sin(a)sin(b)) + i(cos(a)sin(b) + sin(a)cos(b))将该方程的实部和虚部分别与常数i相乘,则得到:i(e^(ia)e^(ib)) = i((cos(a)cos(b) - sin(a)sin(b)) +i(cos(a)sin(b) + sin(a)cos(b)))移项后得到:e^(i(a+b)) = (cos(a)cos(b) - sin(a)sin(b)) + i(cos(a)sin(b)+ sin(a)cos(b))可以观察到,右侧的实部与虚部分别等于sin(a + b)和cos(a + b),因此有:sin(a + b) = sin(a)cos(b) + cos(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)这就是两角和与差的正弦公式。
2.两角和与差的余弦公式:余弦是一个周期函数,其周期也为2π。
2020高中数学第三章三角恒等变换3.1两角和与差的正弦余弦和正切公式3.1.2第1课时两角和与差的正弦余弦公式
第1课时两角和与差的正弦、余弦公式学习目标:1.掌握两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦公式.2.会用两角和与差的正弦、余弦公式进行简单的三角函数的求值、化简、计算等.3.熟悉两角和与差的正弦、余弦公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.[自主预习·探新知]1.两角和与差的余弦公式y=a sin x+b cos x=a2+b2sin(x+θ)(a,b不同时为0),其中cos θ=aa2+b2,sin θ=ba2+b2.[基础自测]1.思考辨析(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( )(2)存在α,β∈R,使得sin(α-β)=sin α-sin β成立.( )(3)对于任意α,β∈R,sin(α+β)=sin α+sin β都不成立.( )(4)sin 54°cos 24°-sin 36°sin 24°=sin 30°.()[解析](1)正确.根据公式的推导过程可得.(2)正确.当α=45°,β=0°时,sin(α-β)=sin α-sin β.(3)错误.当α=30°,β=-30°时,sin(α+β)=sin α+sin β成立.(4)正确.因为sin 54°cos 24°-sin 36°sin 24°=sin 54°cos 24°-cos 54°sin 24°=sin(54°-24°)=sin 30°,故原式正确.[答案] (1)√ (2)√ (3)× (4)√2.cos 57°cos 3°-sin 57°sin 3°的值为( ) A .0 B .12 C .32D .cos 54°B [原式=cos(57°+3°)=cos 60°=12.]3.若cos α=-35,α是第三象限的角,则sin ⎝ ⎛⎭⎪⎫a -π4=________.-210 [∵cos α=-35,α是第三象限的角, ∴sin α=-1-cos 2α=-45,∴sin ⎝⎛⎭⎪⎫α-π4=22sin α-22cos α=22×⎝ ⎛⎭⎪⎫-45-22×⎝ ⎛⎭⎪⎫-35=-210.] [合 作 探 究·攻 重 难]) A .-32B .-12C .12D .32(2)若θ是第二象限角且sin θ=513,则cos(θ+60°)=________.(3)求值:(tan 10°-3)cos 10°sin 50°.(1)D (2)-12+5326[(1)∵cos 200°=cos(180°+20°)=-cos 20°=-sin 70°,sin 40°=cos 50°,∴原式=cos 70°sin 50°-(-sin 70°)cos 50° =sin(50°+70°)=sin 120°=32. (2)∵θ是第二象限角且sin θ=513,∴cos θ=-1-sin 2θ=-1213,∴cos(θ+60°)=12cos θ-32sin θ=12×⎝ ⎛⎭⎪⎫-1213-32×513 =-12+5326.(3)原式=(tan 10°-tan 60°)cos 10°sin 50°=⎝ ⎛⎭⎪⎫sin 10°cos 10°-sin 60°cos 60°cos 10°sin 50°=-cos 10°cos 60°·cos 10°sin 50°=-2.][规律方法] 解决给角求值问题的策略对于非特殊角的三角函数式求值问题,一定要本着先整体后局部的基本原则,如果整体符合三角公式的形式,则整体变形,否则进行各局部的变形.一般途径有将非特殊角化为特殊角的和或差的形式,化为正负相消的项并消项求值,化分子、分母形式进行约分,解题时要逆用或变用公式.提醒:在逆用两角的和与差的正弦和余弦公式时,首先要注意结构是否符合公式特点,其次注意角是否满足要求.[跟踪训练] 1.化简求值:(1)sin 50°-sin 20°cos 30°cos 20°;(2)sin(θ+75°)+cos(θ+45°)-3cos(θ+15°). [解] (1)原式=+-sin 20°cos 30°cos 20°=sin 20°cos 30°+cos 20°sin 30-sin 20°cos 30°cos 20°=cos 20°sin 30°cos 20°=sin 30°=12.(2)设α=θ+15°,则原式=sin(α+60°)+cos(α+30°)-3cos α=⎝ ⎛⎭⎪⎫12sin α+32cos α+⎝ ⎛⎭⎪⎫32cos α-12sin α-3cos α=0.(1)已知P ,Q 是圆心在坐标原点O 的单位圆上的两点,且分别位于第一象限和第四象限,点P 的横坐标为45,点Q 的横坐标为513,则cos ∠POQ =________.(2)已知cos α=55,sin(α-β)=1010,且α,β∈⎝⎛⎭⎪⎫0,π2.求:①cos(2α-β)的值;②β的值.[思路探究] (1)先由任意角三角函数的定义求∠xOP 和∠xOQ 的正弦、余弦值,再依据∠POQ =∠xOP +∠xOQ 及两角和的余弦公式求值.(2)先求sin α,cos(α-β),依据2α-β=α+(α-β)求cos(2α-β).依据β=α-(α-β)求cos β再求β.(1)5665 [(1)由题意可得,cos ∠xOP =45, 所以sin ∠xOP =35.再根据cos ∠xOQ =513,可得sin ∠xOQ =-1213,所以cos ∠POQ =cos(∠xOP +∠xOQ )=cos ∠xOP ·cos∠xOQ -sin ∠xOP ·sin∠xOQ =45×513-35×⎝ ⎛⎭⎪⎫-1213=5665. (2)①因为α,β∈⎝⎛⎭⎪⎫0,π2,所以α-β∈⎝ ⎛⎭⎪⎫-π2,π2,又sin(α-β)=1010>0,所以0<α-β<π2,所以sin α=1-cos 2α=255,cos(α-β)=1-sin2α-β=31010,cos(2α-β)=cos[α+(α-β)] =cos αcos(α-β)-sin αsin(α-β) =55×31010-255×1010=210. ②cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =55×31010+255×1010=22, 又因为β∈⎝ ⎛⎭⎪⎫0,π2,所以β=π4.][规律方法] 给值求值问题的解题策略在解决此类题目时,一定要注意已知角与所求角之间的关系,恰当地运用拆角、拼角技巧,同时分析角之间的关系,利用角的代换化异角为同角,具体做法是:当条件中有两角时,一般把“所求角”表示为已知两角的和或差. 当已知角有一个时,可利用诱导公式把所求角转化为已知角. [跟踪训练]2.已知锐角α,β满足cos α=255,sin(α-β)=-35,求sin β的值.[解] 因为α,β是锐角,即0<α<π2,0<β<π2,所以-π2<α-β<π2,因为sin(α-β)=-35<0,所以cos(α-β)=45,因为cos α=255,所以sin α=55,所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×45+255×35=255.[探究问题]1.能否将函数y =sin x +cos x (x ∈R )化为y =A sin(x +φ)的形式⎝ ⎛⎭⎪⎫|φ|∈⎝ ⎛⎭⎪⎫0,π2?提示:能.y =sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4.2.如何推导a sin x +b cos x =a 2+b 2sin(x +φ)⎝ ⎛⎭⎪⎫tan φ=b a 公式.提示:a sin x +b cos x=a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2sin x +b a 2+b 2cos x , 令cos φ=a a 2+b2,sin φ=b a 2+b 2,则a sin x +b cos x =a 2+b 2(sin x cos φ+cos x sin φ)=a 2+b 2sin(x +φ)(其中φ角所在象限由a ,b 的符号确定,φ角的值由tan φ=ba确定,或由sin φ=b a 2+b2和cos φ=a a 2+b2共同确定).(1)sin π12-3cos π12=________.(2)已知a =(3,-1),b =(sin x ,cos x ),x ∈R ,f (x )=a·b ,求函数f (x )的周期,值域,单调递增区间.[思路探究] 解答此类问题的关键是巧妙构建公式C (α-β)、C (α+β)、S (α-β)、S (α+β)的右侧,逆用公式化成一个角的一种三角函数值.(1)-2 [(1)原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12.法一:(化正弦)原式=2⎝ ⎛⎭⎪⎫cos π3sin π12-sin π3cos π12=2⎝ ⎛⎭⎪⎫sin π12cos π3-cos π12sin π3=2sin ⎝⎛⎭⎪⎫π12-π3=2sin ⎝ ⎛⎭⎪⎫-π4=- 2. 法二:(化余弦)原式=2⎝ ⎛⎭⎪⎫sin π6sin π12-cos π6cos π12=-2⎝ ⎛⎭⎪⎫cos π6cos π12-sin π6sin π12=-2cos ⎝ ⎛⎭⎪⎫π6+π12=-2cos π4=- 2.(2)f (x )=3sin x -cos x =2⎝ ⎛⎭⎪⎫sin x ·32-cos x ·12 =2⎝⎛⎭⎪⎫sin x cos π6-cos x sin π6 =2sin ⎝⎛⎭⎪⎫x -π6,∴T =2πω=2π,值域[-2,2].由-π2+2k π≤x -π6≤π2+2k π,得递增区间⎣⎢⎡⎦⎥⎤-π3+2k π,2π3+2k π,k ∈Z .] 母题探究:1.若将例3(2)中a =(3,-1)改为a =(-1,3),其他条件不变如何解答?[解] f (x )=-sin x +3cos x =2⎝ ⎛⎭⎪⎫32cos x -12sin x =2cos ⎝ ⎛⎭⎪⎫x +π6,∴T =2π,值域为[-2,2],由-π+2k π≤x +π6≤2k π,得递增区间⎣⎢⎡⎦⎥⎤-7π6+2k π,-π6+2k π,k ∈Z .2.若将例3(2)中a =(3,-1)改为a =(m ,m )其中m >0,其他条件不变,应如何解答?[解] f (x )=m sin x +m cos x =2m sin ⎝⎛⎭⎪⎫x +π4,∴T =2π,值域为[-2m ,2m ],由-π2+2k π≤x +π4≤π2+2k π,得递增区间⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π,k ∈Z . [规律方法] 辅助角公式及其运用公式形式:公式a sin α+b cos α=a 2+b2α+φ或a sin α+b cos α=a 2+b2α-φ将形如a sin α+b cos αa ,b 不同时为零的三角函数式收缩为同一个角的一种三角函数式.形式选择:化为正弦还是余弦,要看具体条件而定,一般要求变形后角α的系数为正,这样更有利于研究函数的性质.提醒:在使用辅助角公式时常因把辅助角求错而致误.[当 堂 达 标·固 双 基]1.sin 245°sin 125°+sin 155°sin 35°的值是( ) A .-32B .-12C .12D .32B [∵sin 245°=sin(155°+90°)=cos 155°,sin 125°=sin(90°+35°)=cos 35°,∴原式=cos 155°cos 35°+sin 155°sin 35°=cos(155°-35°)=cos 120°=-12.] 2.化简2cos x -6sin x 等于( )A .22sin ⎝ ⎛⎭⎪⎫π6+xB .22cos ⎝ ⎛⎭⎪⎫π6-xC .22sin ⎝ ⎛⎭⎪⎫π3-x D .22cos ⎝ ⎛⎭⎪⎫π3+x D [2cos x -6sin x =22⎝ ⎛⎭⎪⎫12cos x -32sin x=22⎝ ⎛⎭⎪⎫cos π3cos x -sin π3sin x=22cos ⎝ ⎛⎭⎪⎫π3+x .] 3.cos βcos(α-β)-sin βsin(α-β)=________.cos α [cos βcos(α-β)-sin βsin(α-β)=cos[β+(α-β)]=cos α.] 4.(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.[解析] ∵sin α+cos β=1,cos α+sin β=0,∴sin 2α+cos 2β+2sin αcos β=1①,cos 2α+sin 2β+2cos αsin β=0②,①②两式相加可得sin 2α+cos 2α+sin 2β+cos 2β+2(sin αcos β+cos αsin β)=1,∴sin(α+β)=-12.[答案] -125.已知α,β均为锐角,sin α=55,cos β=1010,求α-β. [解] ∵α,β均为锐角,sin α=55,cos β=1010, ∴sin β=31010,cos α=255.∵sin α<sin β,∴α<β,∴-π2<α-β<0,∴sin(α-β)=sin αcos β-cos αsin β =55×1010-255×31010=-22,∴α-β=-π4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解决给角求值问题的方法 (1)对于非特殊角的三角函数式求值问题,一定要本着先整体后 局部的基本原则, 如果整体符合三角公式的形式, 则整体变形, 否则进行各局部的变形. (2)一般途径有将非特殊角化为特殊角的和或差的形式,化为正 负相消的项并消项求值,化分子、分母形式进行约分,解题时 要逆用或变用公式.
)
7 2 A. 26 5 2 C. 26
答案:B
17 2 B. 26 9 2 D. 26
4.sin 75° =________,sin 15° =________.
6+ 2 答案: 4
6- 2 4
π 3 5. 已知 sin α=- , α 是第四象限角, 则 sin4-α=________. 5
第三章
三角恒等变换
3.1.2 两角和与差的正弦、余弦、正
切公式
第1课时 两角和与差的正弦、余弦公式
第三章
三角恒等变换
1.正确理解两角和与差的正弦、余弦公式的推导过程 及区别与联系. 2.掌握两角和与差的正弦、余弦公式,并
能灵活运用这些公式进行简单的恒等变换.
两角和的余弦公式及两角和与差的正弦公式 名称 公式 简记符号 条件
分)
1.若本例的条件不变,求 sin 2α 的值.
解:由本例解析知 sin 2α=sin[(α-β)+(α+β)] =sin(α-β)cos(α+β)+cos(α-β)sin(α+β) 5 4 12 3 = ×-5+ ×-5 13 13 56 =- . 65
π 3π 5 2.本例条件变为: < β< α < , sin(α - β)= , sin(α+ β) 2 4 13 5 =- ,求 sin 2β 的值. 13
(2)原式=2 =2sin
3 π 1 π sin + cos 2 12 2 12
π π π π cos +sin cos 12 6 6 12 π = 2. 4
π π =2sin12+6 =2sin
探究点二
给值求值(规范解答)
π 3π 12 (本题满分 12 分)已知 <β<α< ,cos(α-β)= ,sin(α 2 4 13 3 +β)=- ,求 cos 2α 与 cos 2β 的值. 5
分)
cos 2β=cos[(α+β)-(α-β)] =cos(α+β)cos(α-β)+sin(α+β)
4 12 3 5 63 - - sin(α-β)= 5 × + 5 × =- .(12 65 13 13
巧妙利用角的变 换方法,是求解 此类题目常用方 法
32 4 1- -5 =- .(6 5
分)
所以cos 2α=cos[(α+β)+(α-β)] =cos(α+β)cos(α-β)-sin(α+β)sin(α-β)
4 12 3 5 33 = -5 × - -5 × =- ,(9 65 13 13
sin 47° -sin 17° cos 30° (2) cos 17° sin(17° +30° )-sin 17° cos 30° = cos 17° sin 17° cos 30° +cos 17° sin 30° -sin 17° cos 30° = cos 17° cos 17° sin 30° = cos 17° 1 =sin 30° = . 2
两角差 sin(α-β)= sin αcos β-cos αsin β 的正弦 ______________________
S(α-β)
1.判断(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角 α,β 是任意的.( (2)存在 α,β∈R,使得 sin(α-β)=sin α-sin β 成立.( (3)对于任意 α, β∈R, sin(α+β)=sin α+sin β 都不成立. (
两角和 cos(α+β)= cos αcos β-sin αsin β 的余弦 _____________________
C(α+β)
α,β∈R
名称
公式
Байду номын сангаас
简记符号 条件
两角和 sin(α+β)= sin αcos β+cos αsin β 的正弦 ____________________
S(α+β) α, β ∈R
7 2 答案: 10
探究点一
给角求值
sin 47° -sin 17° cos 30° 求值:(1)cos 105° ;(2) . cos 17°
[解 ] (1)cos 105° =cos(60° +45° )
=cos 60° cos 45° -sin 60° sin 45° 1 2 3 2 = × - × 2 2 2 2 2- 6 = . 4
[解 ]
π 3π 因为 <β<α< , 2 4
π 3π 所以 0<α-β< ,π<α+β< . 4 2 (2 分) 所以 sin(α-β)= 1-cos2(α-β) =
122 5 1- 13 = ,(4 13
正确判断 α-β, α+β 的范围是 求解前提
分)
cos(α+β)=- 1-sin2(α+β) =-
答案:(1)√ (2)√ (3)×
) ) )
2.sin 45° cos 15° +cos 225° sin 15° 的值为( 3 A.- 2 1 C. 2
答案:C
)
1 B.- 2 3 D. 2
3 π 12 3.已知 cos α= ,α∈2π,2π,则 cosα+4 等于( 13
1.求下列各式的值. (1)sin 347° cos 148° +sin 77° cos 58° ; π π (2) 3sin +cos . 12 12
解 : (1) 原 式 = sin(360°- 13° )cos(180°- 32° ) + sin(90°- 13° )· cos(90° -32° ) =sin 13° cos 32° +cos 13° sin 32° =sin(13° +32° ) 2 =sin 45° = . 2