全等三角形轴对称复习(一)作业
全等三角形与轴对称复习测试卷(含答案).
全等三角形与轴对称复习测试卷一、选择题(共10小题,每小题4分,满分40分)1.下列各图中,为轴对称图形的是()A.B.C.D.2.观察下列银行标志,从图案看是中心对称图形的有()个.A.1个 B.2个 C.3个 D.4个3.如图,AB=AC,EB=EC,那么图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对(第3题)(第6题)4.已知一个三角形中有两个角度数如下,其中不能构成等腰三角形的是()A.40°,70° B.60°,90° C.50°,80° D.30°,120°5.下列说法错误的是()A.全等三角形的对应边上的高相等 B.全等三角形的对应边上的中线相等C.全等三角形的对应角平分线相等 D.所有等边三角形都全等6.如图,已知AB、CD相交于O点,△AOC≌△BOD,E、F分别在OA、OB上,要使△EOC≌△FOD,添加的一个条件不可以是()A.CE=DF B.∠CEA=∠DFB C.∠OCE=∠ODF D.OE=OF7.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,-3),N(-1,-3) B.M(-1,-3),N(-1,3)C.M(-1,-3),N(1,-3) D.M(-1,3),N(1,-3)(第7题)(第8题)8.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直 B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行9.如图,在△ABC中,AB=AC,D是BC边上一点,AD=AE,∠EDC=20°,则∠BAD的度数是()A.20° B.40° C.60° D.无法确定(第9题)(第10题)(第11题)10.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定二、填空题(共4小题,每小题5分,满分20分)11.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是.(只写一个即可,不添加辅助线)12.下列4个图形中,不是轴对称图形的是图形,对称轴最多的轴对称图形是图形.13.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=度.(第13题)(第14题)14.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是度.三、解答题(共9小题,满分90分)15.如图,AC、BD交于点E,添加怎样的两个条件,直接用AAS证明△ADE≌△BCE?16.已知:M、N分别在∠AOB的边OA、OB上.求作:以MN为底边的等腰△MNP,使点P在∠AOB的平分线OC上.(要求:用尺规作图,保留作图痕迹,不必写作法和证明)17.如图,在△ABC与△ABD中,BC=BD.设点E是BC的中点,点F是BD的中点.(1)请你在图中作出点E和点F;(要求用尺规作图,保留作图痕迹,不写作法与证明)(2)连接AE,AF.若∠ABC=∠ABD,请你证明△ABE≌△ABF.18.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.19.如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).(1)画出“基本图形”关于原点O对称的四边形A1B1C1D1,并求出A1,B1,C1,D1的坐标;(2)画出“基本图形”关于x轴的对称图形A2B2C2D2;(3)画出四边形A3B3C3D3,使之与前面三个图形组成的图形既是中心对称图形又是轴对称图形.20.如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.求证:AB=AC+CD.21.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.22.如图,已知∠B+∠D=180°,AE、BD相交于点C,AC=CE,求证:AB=DE.23.如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.答案;一、选择题(共10小题,每小题4分,满分40分)1.故选C.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.故选C.考点:中心对称图形;生活中的旋转现象.分析:根据中心对称图形的概念求解.解答:解:根据中心对称图形的概念,观察可知,只有第四个不是中心对称图形,其它三个都是中心对称图形.故选C.点评:掌握好中心对称与轴对称的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.故选C.考点:全等三角形的判定.分析:三角形全等条件中必须是三个元素,至少有一组对应边相等,根据已知条件和等腰三角形的性质可以得到三组全等三角形.做题要从已知开始找,由易到难.解答:解:∵AB=AC,EB=EC,∴∠ABC=∠ACB,∠EBD=∠ECD,∴∠ABE=∠ACE,∴△ABE≌△ACE(SAS),∴∠BAD=∠CAD,又∠ABC=∠ACB,AD=AD,△ABD≌△ACD(AAS),∴BD=CD,又∠EBD=∠ECD,EB=EC,∴△BDE≌△CDE(SAS).故选C.点评:本题考查全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知入手,结合图形由易到难寻找.4.故选B.考点:三角形内角和定理.分析:等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解答:解:A、构成等腰三角形的三个角的度数分别是40°,70°,70°;B、不能同时满足等腰三角形和三角形的内角和是180°,所以不能构成等腰三角形;C、构成等腰三角形的三个角的度数分别是50°,80°,50°;D、构成等腰三角形的三个角的度数分别是30°,120°,30°.故选B.点评:解决此类问题一定要同时满足等腰三角形的两个底角相等和三角形的内角和是180°这两个条件.5.故选D.考点:全等三角形的判定;全等三角形的性质.分析:根据全等三角形的性质进行分析可得答案.解答:解:根据题意,由全等三角形的性质,两个三角形全等,其对应的边角相等,对应的中线、角平分线、高也相等,可得A、B、C正确,D、每个等边三角形的三边都相等,由于对应边不一定相等,所以不一定全等,D错误,故选D.点评:本题考查全等三角形的性质,两个三角形全等,其对应的边角相等,对应的中线、角平分线、高也相等.6.故选A.考点:全等三角形的判定.分析:因为△AOC≌△BOD,所以要使△EOC≌△FOD,隐含的已知条件是:∠COE=∠DOF,CO=OD;据三角形的判定方法ASA、AAS、SAS,添加条件去判断即可.解答:解:∵△AOC≌△BOD,∴CO=OD,又∵∠COE=∠DOF(对顶角相等),∴要使△EOC≌△FOD,则添加的一个条件是∠CEA=∠DFB,即说明其补角是相等的,符合AAS;或∠OCE=∠ODF,符合ASA;或OE=OF,符合SAS.A选项不符合判定定理,故选A.点评:本题考查了全等三角形的判定;解题的关键是牢记三角形的判定定理,并能熟练应用.从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏7.故选C.考点:坐标与图形变化-旋转;坐标与图形变化-对称.分析:根据轴对称和中心对称图形的概念解答.解答:解:A,M关于原点对称,A的坐标是(1,3),∴M(-1,-3);∵A,N关于x轴对称,A的坐标是(1,3),∴N(1,-3).故选C.点评:两个点关于原点对称,横纵坐标均互为相反数,两个点关于x轴对称,横坐标不变,纵坐标互为相反数.8.故选B.考点:轴对称的性质;平移的性质.专题:压轴题.分析:由已知条件,根据轴对称的性质和平移的基本性质可得答案.解答:解:观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键.9.故选B .考点:三角形的外角性质.分析:根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD 的度数.解答:解:如图,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=20°,∴∠BAD=40°.故选B .点评:本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键. 10.故选A .考点:全等三角形的判定与性质;三角形三边关系.分析:在BA 的延长线上取点E ,使AE=AC ,连接ED ,EP ,证明△ACP 和△AEP 全等,推出PE=PC ,根据三角形任意两边之和大于第三边即可得到m+n >b+c .解答:解:在BA 的延长线上取点E ,使AE=AC ,连接ED ,EP ,∵AD 是∠A 的外角平分线,∴∠CAD=∠EAD,在△ACP 和△AEP 中,⎩⎪⎨⎪⎧AE =AC ∠CAD =∠EAD AP =AP , ∴△ACP≌△AEP(SAS ),∴PE=PC,在△P BE 中,PB+PE >AB+AE ,∵PB=m,PC=n ,AB=c ,AC=b ,∴m+n>b+c .故选A .点评:本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以m 、n 、b 、c 的长度为边的三角形是解题的关键,也是解本题的难点.二、填空题(共4小题,每小题5分,满分20分)11.故填OA=OB.考点:全等三角形的判定.专题:压轴题;开放型.分析:OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP.解答:解:已知点P在∠AOB的平分线上∴∠AOP=∠BOP∵OP=OP,OA=OB∴△AOP=≌△BOP.故填OA=OB.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.12.故填(1).考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.解答:解:图(1)是轴对称图形,它有3条对称轴;图(2)是轴对称图形,它有2条对称轴;图(3)不是轴对称图形;图(4)是轴对称图形,它有1条对称轴;故4个图形中,不是轴对称图形的是图形(3),对称轴最多的轴对称图形是图形(1).点评:掌握好轴对称图形的有关概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,一个轴对称图形的对称轴可以不只一条.13.故填80.考点:翻折变换(折叠问题);平行线的性质.专题:计算题;压轴题.分析:根据中位线的定义得出ED∥BC,再根据平行的性质和折叠的性质即可求.解答:解:∵D、E为AB、AC的中点,∴DE为△ABC的中位线,ED∥BC,∴∠ADE=∠ABC∵∠ABC=50°,∴∠ADE=50°,由于对折前后两图形全等,故∠EDF=50°,∠BDF=180°-50°×2=80°.点评:本题通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作,易得出答案.14.故填125.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.专题:压轴题.分析:根据等腰三角形的性质,依题意可得等腰三角形的顶角为110°,又根据三角形的一个外角等于和它不相邻的内角的和可求出最大角的度数.解答:解:根据等腰三角形的性质:等边对等角.以及三角形的内角和是180°,解得等腰三角形的顶角是180°-35°×2=110°.根据三角形的一个外角等于和它不相邻的内角的和求得四边形的第四个角是90°+35°=125°.比较四边形的四个内角,最大角的度数是125°.故填125.点评:本题考查了等腰三角形的性质、三角形的内角和定理和三角形的外角性质;利用三角形外角的性质求得四边形的内角后与其它三个角进行比较式正确解答本题的关键.三、解答题(共9小题,满分90分)15.考点:全等三角形的判定.专题:证明题;开放型.分析:在△ADE与△BCE中,∠BEC=∠AED,两三角形有一组角对应相等,添加一组角、一组边对应相等(不是两组对应角的夹边),才能用AAS证明△ADE≌△BCE.解答:解:可添加∠B=∠A,EC=ED;或∠C=∠D,BE=AE;∵∠B=∠A,EC=ED,又∠BEC=∠AED,∴△ADE≌△BCE.点评:本题考查了全等三角形的判定;是开放型题目,答案不唯一.注意应用对顶角相等这一条件.16.考点:作图—复杂作图.专题:作图题.分析:以MN为底边的等腰△MNP,则点P在MN的垂直平分线上,点P在∠AO B的平分线OC上.则又要做角的角平分线,两线的交点就是点P的位置.解答:解:点评:本题综合考查了角平分线和线段的垂直平分线的性质.17.考点:全等三角形的判定.专题:作图题.分析:(1)由作一条线段中垂线的方法作出点E和点F.(2)由题意BC=BD推出BE=BF,然后证明△ABE≌△ABF.解答:解:(1)能看到“分别以B,C为圆心,以大于12BC,长为半径画弧,两弧交于点M、N,连接MN,交BC于E”的痕迹,能看到用同样的方法“作出另一点F(或以B为圆心,BE 为半径画弧交BD于点F)”的痕迹(凡正确作出点E,F中的一个后,另一个只要在图上标注了大致位置.,(2)∵BC=BD,E,F分别是BC,BD的中点,∴BE=BF,在△ABE和△ABF中BE=BF,∠ABE=∠ABF,AB=AB,∴△ABE≌△ABF.点评:本题考查了全等三角形的判定;命题意图:掌握知识同时要培养学生的能力,尺规作图就是考查动手能力,三角形全等的证明是几何证明的基础,考查是必要的.中点作法用作垂直平分线的方法,三角形全等利用边角边定理.18.考点:等腰三角形的判定;全等三角形的判定与性质.专题:探究型.分析:要判断△AFC的形状,可通过判断角的关系来得出结论,那么就要看∠FAC和∠FCA 的关系.因为∠BAD=∠B CE,因此我们只比较∠BAC和∠BCA的关系即可.根据题中的条件:BD=BE,∠BAD=∠BCE,△BDA和△BEC又有一个公共角,因此两三角形全等,那么AB=AC,于是∠BAC=∠BCA,由此便可推导出∠FAC=∠FCA,那么三角形AFC应该是个等腰三角形.解答:解:△AFC是等腰三角形.理由如下:在△BAD与△BCE中,∵∠B=∠B(公共角),∠BAD=∠BCE,BD=BE,∴△BAD≌△BCE(AAS),∴BA=BC,∠BAC=∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA.∴AF=CF,∴△AFC是等腰三角形.点评:本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.19.考点:利用旋转设计图案;利用轴对称设计图案.专题:作图题.分析:(1)关于原点对称的两个点的坐标特点是:横坐标,纵坐标都互为相反数;(2)关于x轴对称的;两个点的坐标特点是:横坐标相等,纵坐标互为相反数,根据坐标关系画图,写坐标.解答:解:(1)A1(-4,-4),B1(-1,-3),C1(-3,-3),D1(-3,-1).(正确写出每个点的坐标得4分;正确画出四边形A1B1C1D1给2分)(2)正确画出图形A2B2C2D2给(3分);(3)正确画出图形A3B3C3D3给(3分).点评:本题实际上就是坐标系里的轴对称,中心对称的问题,要明确关于原点对称,关于x 轴对称,y 轴对称的点的坐标特点;通过画图,图形由部分到整体,体现了对称的美感. 20.考点:全等三角形的判定与性质.专题:证明题.解答:证明:∵∠1=∠B(已知),∴∠AED=2∠B(三角形外角的性质),DE=BE (等角对等边),又∠C=2∠B,∴∠C=∠AED(等量代换),在△ACD 和△AED 中,⎩⎪⎨⎪⎧∠CAD =∠EAD∠C =∠AED AD =AD ∴△ACD≌△AED(AAS ),∴AC=AE,CD=DE (对应边相等),∴CD=BE(等量代换),∴AB=AE+EB=AC+CD.点评:此题考查了学生对角平分线的性质及全等三角形的判定方法的理解及运用能力,要熟练掌握并灵活运用这些知识. 21.考点:全等三角形的判定.专题:证明题;开放型.分析:要找出全部的全等三角形,就要从已知的条件求出未知的条件.△ABC 是等边三角形,所以AC=BC ,又CD=CE ,所以BD=AE=EF ,很容易就可以求得△CDE,△AEF 为等边三角形,所以∠BDE=∠CEF,所以△BDE≌△FEC,从而得BE=CF ,由SSS 可得△BCE≌△FDC,因AB=BC=CF ,AE=AF ,∠BAE=∠EAF=60°,由SAS 可求△ABE≌△ACF,然后任意选择一组加以证明即可.解答:答:△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF;证明:(以△BDE≌△FEC 为例)∵△ABC 是等边三角形,∴BC=AC,∠ACB=60°,∵CD=CE,∴△EDC 是等边三角形,∴∠EDC=∠DEC=60°,∴∠BDE=∠FEC=120°,∵CD=CE,∴BC -CD=AC-CE ,∴BD=AE,又∵EF=AE,∴BD=FE, 在△BDE 与△FEC 中,⎩⎪⎨⎪⎧DE =CE ∠EDB =∠CEF BD =EF , ∴△BDE≌△FEC(SAS ).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由已知条件快速的找出一组全等的三角形,然后求出未知的条件,作为下组全等三角形的判定条件,可出从中找出相似的三角形,试着找条件证明全等,数形结合是很重要的数学解题思路. 22.考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:要求AB=DE ,而且两边分别在两个三角形中,所以只能通过全等,但由题意两三角形不全等,但根据AC=CE 知需要作辅助线AF∥DE 交BC 于F ,证得△ACF≌△EDC,再根据题中条件即可得到AB=DE .解答:证明:如图,过A 点作AF∥DE 交BC 于F ,∴∠CAF=∠CED,∠CFA=∠CDE,又∵AC=CE,∴△ACF≌△EDC,∴∠D=∠AFC,AF=DE ,∵∠B+∠D=180°,∠AFC+∠AFB=180°,∴∠B=∠AFB,∴AB=AF,∴AB=DE.点评:本题考查了两直线平行性质及全等三角形的判定和性质,要善于观察、利用题中的隐含条件,对此类题要求有一定转化思想的能力. 23.考点:等腰三角形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.专题:压轴题;探究型.分析:分析:(1)由于△ABC 是直角三角形,点O 是BC 的中点,根据直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,故有OA=OB=OC=12 BC ; (2)由于OA 是等腰直角三角形的斜边上的中线,根据等腰直角三角形的性质知,∠CAO=∠B=45°,OA=OB ,又有AN=MB ,所以由SAS 证得△AON≌△BOM 可得:ON=OM ①∠NOA=∠MOB,于是有,∠NOM=∠AOB=90°,所以△OMN 是等腰直角三角形.解答:解:(1)∵在Rt△ABC 中,∠BAC=90°,O 为BC 的中点,∴OA=12BC=OB=OC , 即OA=OB=OC ;(2)△OMN 是等腰直角三角形.理由如下:连接AO∵AC=AB,OC=OB∴OA=OB,∠NAO=∠B=45°, 在△AON 与△BOM 中⎩⎪⎨⎪⎧AN =BM∠NAO =∠B OA =OB∴△AON≌△BOM(SAS )∴ON=OM,∠NOA=∠MOB∴∠NOA+∠AOM=∠MOB+∠AOM∴∠NOM=∠AOB=90°,∴△OMN 是等腰直角三角形.点评:本题利用了等腰直角三角形的性质,全等三角形的判定和性质求解.。
八年级全等三角形压轴题
全等三角形压轴题复习1、如图,已知A(-2,3),B(-5,0),C(-1,0),△ABC和△A1B1C1关于x轴对称,(1)作△ABC关于x轴对称的△A1B1C1,直接写出点A1坐标;(2)在y轴上有一点P使AP+A1P最小,直接写出点P的坐标;(3)请直接写出点A关于直线x=m(直线上各点的横坐标都为m)对称的点的坐标.知识点一、全等三角形的常见模型与辅助线【知识梳理】1、常见辅助线:(1)角平分线: .(2)垂直平分线: .(3)中线: .(4)等腰三角形: .(5)线段和(差): .2、常见的模型:(1)三垂直:(2)手拉手:(3)夹半角:(4)对角互补:(5)脚拉脚:【例题精讲一】最短路径1、平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使PA-PB最大,则P点坐标为___________。
2、如图,在Rt△ABC中,∠ACB=90°,AC>BC,AD平分∠CAB交BC于D,点E、F分别是AD、AC 上的动点,点O为AB中点,点M在AB上,且AM=AC,则CE+EF的最小值等于()A.点O到点C的距离B.点M到点C的距离C.点O到BC边上的距离 D.点C到AB的距离(第2题)(第3题)(第5题)3、如图,在四边形ABCD中,DA⊥AB,DA=6 cm,∠B+∠C=150°.CD与BA延长交于E点,点A刚好是BE的中点,P、Q分别是线段CE、BE上的动点,则BP+PQ最小值是 .4、已知A(3,1),B(5,2),点P(a,0)在x轴上,当PBPA 达到最大值时,a = 。
5、如图,等边△ABC中,BF是AC边上中线,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,∠CFE的大小是 .【课堂练习】1、如图,已知∠MON=40°,P为△MON内一点,A为OM上的点,B为ON上的点.当△PAB的周长取最小值时,则∠APB的度数为___________。
北师大版七年级(下)全等三角形、对称轴综合测试卷
北师大版七年级(下)轴对称数学综合测试卷一、选择题1.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点; (4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 A.0 B.1 C.2 D.3 ) ( )2.如图,△ABC 和△A′B′C′关于直线 L 对称,下列结论中正确的有( (1)△ABC≌△A′B′C′ (2)∠BAC=∠B′A′C′ (3)直线 L 垂直平分 CC′ (4)直线 BC 和 B′C′的交点不一定在直线 L 上. A.4 个 B.3 个 C.2 个 D.1 个第2题 第5题 第7题 3.一个角的对称轴是( ) A.这个角的其中的一条边 B.这个角的其中的一条边的垂线 C.这个角的平分线 D.这个角的平分线所在的直线 4.下列四个判断:①成轴对称的两个三角形是全等三角形;②两个全等三角形一定成轴对 称;③轴对称的两个圆的半径相等;④半径相等的两个圆成轴对称,其中正确的有( ) A.4 个 B.3 个 C.2 个 D.1 个 5.如图,在平面内,把矩形 ABCD 沿 EF 对折,若∠1=50°,则∠AEF 等于( ) A.115° B.130° C.120° D.65° 6.下图是我国几家银行的标志,其中是中心对称图形的有( )A.1 个 B.2 个 C.3 个 D.4 个 7.如图,∠1=∠2,PD⊥AB,PE⊥BC,垂足分别为 D、E,则下列结论中错误的是( ) A.PD=PE B.BD=BE C.∠BPD=∠BPE D.BP=BE 8.如图,∠AOB 和一条定长线段 a,在∠AOB 内找一点 P,使 P 到 OA,OB 的距离都等于 a,作法如下:(1)作 OB 的垂线段 NH,使 NH=a,H 为垂足. (2)过 N 作 NM∥OB. (3)作∠AOB 的平分线 OP,与 NM 交于 P. (4)点 P 即为所求. 其中(3)的依据是( ) A.平行线之间的距离处处相等 B.到角的两边距离相等的点在角的平分线上 C.角的平分线上的点到角的两边的距离相等 D.到线段的两个端点距离相等的点在线段的垂直平分线上第8题 第 10 题 第 11 题 9.下列四个图形中,如果将左边的图形作轴对称变换,能变成右边的图形的是()A.B.C.D.10.如图,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜 中共可得到小凳的象( ) A.2 个 B.4 个 C.16 个 D.无数个 11.如图,直线 l1、l2、l3 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条 公路的距离相等,则供选择的地址有( ) A.1 处 B.2 处 C.3 处 D.4 处二、填空题 11.已知等腰三角形的腰长是底边长的 ________.4 ,一边长为 11cm,则它的周长为 3第 12 题第 13 题第 14 题第 17 题12. 如图, 在△ABC 中, AB=AC, E 分别是 AC, 上的点, BC=BD, D, AB 且 AD=DE=EB, 则∠A=( ) 度. 13.如图,如果直线 m 是多边形 ABCDE 的对称轴,其中∠A=130°,∠B=110°.那么∠ BCD 的度数等于______________ 度. 14.如图,等边△ABC 中,D、E 分别在 AB、AC 上,且 AD=CE,BE、CD 交于点 P,若∠ ABE:∠CBE=1:2,则∠BDP= ( )度.15. 等腰三角形的“三线合一”是指 ( )( ) , , ( ) 互相重合. 16. 在直线、角、线段、等边三角形四个图形中,对称轴最多的是( ) ,它有 ( )条 对称轴;最少的是() ,它有() 条对称轴. 17. 如图,DE 是 AB 的垂直平分线,交 AC 于点 D,若 AC=6 cm,BC=4 cm,则△BDC 的 周长是 ( ) . 18. 一天小刚照镜子时,在镜子中看见挂在身后墙上的时钟,如图,猜想实际的时间应是 ( ) .第 18 题 第 19 题 第 20 题 第 21 题 19.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,BC=30,BD:CD=3:2,则点 D 到 AB 的距离为( ) cm. 20.如图,D、E 为 AB、AC 的中点,将△ABC 沿线段 DE 折叠,使点 A 落在点 F 处,若∠ B=50°,则∠BDF=( ) 度. 21. 如图,直角△ABC 中,∠C=90°,∠BAC=2∠B,AD 平分∠BAC,CD:BD=1:2, BC=2.7 厘米,则点 D 到 AB 的距离 DE= 厘米,AD= ( )厘米.三、解答题1.已知:如图 7—110,△ABC 中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E 度数?2.如图 7—111,在 Rt△ABC 中,B 为直角,DE 是 AC 的垂直平分线,E 在 BC 上,∠BAE:∠ BAC=1:5,则∠C 的度数?3.如图 7—112,∠BAC=30°,AM 是∠BAC 的平分线,过 M 作 ME∥BA 交 AC 于 E,作 MD⊥ BA,垂足为 D,ME=10cm,则 MD 的长度?4.如图 7—119,点 G 在 CA 的延长线上,AF=AG,∠ADC=∠GEC.求证:AD 平分∠BAC.5.已知:如图 7—120,等腰直角三角形 ABC 中,∠A=90°,D 为 BC 中点,E、F 分别为 AB、 AC 上的点,且满足 EA=CF.求证:DE=DF.6.已知,如图Δ ABC 中,AB=AC,D 点在 BC 上,且 BD=AD,DC=AC.将图中的等腰三角 形全都写出来.并求∠B 的度数.ABDC7.如图,已知 P 点是∠AOB 平分线上一点,PC⊥OA,PD⊥OB,垂足为 C、D, (1)∠PCD=∠PDC 吗? 为什么? (2) 是 CD 的垂直平分线吗? 为什么? OPA CPODB8. 已知,△ABC 中,∠ABC 为锐角,且∠ABC=2∠ACB,AD 为 BC 边上的高,延长 AB 到 E,使 BE=BD,连接 ED 并延长交 AC 于 F.求证:AF=CF=DF.答案 三、1.∠ABC=∠BDE - ∠BAD=100° =30° -70° ∠ACB = ∠ABC =30 ∠DAC = 180-100 - 30 =50 因为 BE//AC ∠E = ∠DAC=50°2∵DE 是 AC 的垂直平分线∴AE=CE ∴∠C=∠CAE ∵∠BAE∶∠BAC=1∶5 ∴∠BAE=1/5∠BAC ∴∠CAE=4/5∠BAC ∴∠C=4/5∠BAC 即∠BAC=5/4∠C ∵∠B=90° ∴∠BAC+∠C=90° ∴5/4∠C+∠C=90° ∠C=40°3 解:过 E 点作 AB 的垂线交 AB 于 F因为 ME‖AB,且 AM 是∠BAC 的平分线 所以∠EMA=∠MAB=1/2 乘以 30°=15° 所以三角形 AEM 为等腰三角形 所以 AE=EM=10cm 又,在直角三角形 AEF 中 ∠BAC=30° 所以 EF=1/2AE=5cm 又 EFDM 为长方形,所以 MD=EF=5cm4 证明:∵AF=AG, ∴∠G=∠GFA. ∵∠ADC=∠GEC, ∴AD∥GE. ∴∠BAD=∠GFA,∠DAC=∠G. ∴∠BAD=∠DAC,即 AD 平分∠BAC.5.证明:连 AD,如图,∵△ABC 为等腰直角三角形,D 为 BC 中点, ∴AD=DC,AD 平分∠BAC,∠C=45°, ∴∠EAD=∠C=45°,在△ADE 和△CDF 中∴△ADE≌△CDF, ∴DE=DF.6. 解 析因为 AB=AC,BD=AD,DC=AC,由等腰三角形的概念得△ABC,△ADB,△ADC 是等腰三角形,再根据角之间的关系求得∠B 的度数.解 答图中等腰三角形有△ABC,△ADB,△ADC ∵AB=AC ∴△ABC 是等腰三角形; ∵BD=AD,DC=AC ∴△ADB 和△ADC 是等腰三角形; ∵AB=AC ∴∠B=∠C ∵BD=AD,DC=AC ∴∠B=∠BAD,∠ADC=∠DAC ∴5∠B=180° ∴∠B=36° .7.解: (1)∠PCD=∠PDC。
全等三角形与轴对称习题
第十二章全等三角形1、如图,四边形ABCD中,AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E、F.求证:BE=BF.2、如图,锐角△ABC中,∠BAC=60°,O是BC边上的一点,连接AO,以AO为边向两侧作等边△AOD和等边△AOE,分别与边AB,AC交于点F,G.求证:AF=AG.3、如图,已知AD∥BC,P为CD上一点,且AP,BP分别平分∠BAD和∠ABC.(1)判断△APB是什么三角形,证明你的结论;(2)比较DP与PC的大小,并说明理由.4、已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.(有十来种做法)5、如图,梯形ABCD中,AD∥BC,CE⊥AB于E,交梯形的对角线BD于F,连接AF.若△BDC为等腰直角三角形,且∠BDC=90°.求证:CF=AB+AF.连接法6、已知:如图,AD=BC,AC=BD.求证:∠C=∠DD COA B7、如图11-30,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点.求证:AF⊥CD.8、如图所示,BD=DC,DE⊥BC,交∠BAC的平分线于E,EM⊥AB,EN⊥AC,求证:BM=CN倍长中线9、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.10、如图,已知在△ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC 边上的中线,连接DE.求证:DE=2AM.11、正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,∠EAF=45,求证:BE+DF=EF.FE DCB A 12、如图,AC∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB=AC+BDC13、如图,四边形ABCD 中,点E 在边CD 上,连结AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果×××,那么××),并给出证明:(2)用序号再写出三个真命题(不要求证明);(3)加分题:真命题不止以上四个,想一想,就能够多写出几个真命题,每多写出一个真命题就给你加1分,最多加2分.14、在等边ABC ∆的两边AB、AC 所在直线上分别有两点M、N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC.探究:当M、N 分别在直线AB、AC 上移动时,BM、NC、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L的关系.(I)如图1,当点M、N 边AB、AC 上,且DM=DN 时,BM、NC、MN 之间的数量关系是;此时=L Q ;(II)如图2,点M、N 边AB、AC 上,且当DM ≠DN 时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;(III)如图3,当M、N 分别在边AB、CA 的延长线上时,若AN=x ,则Q=(用x 、L 表示).利用角平分线15、如图,在四边形ABCD 中,BC>BA,AD=CD,BD 平分ABC ∠,求证:0180=∠+∠C A 。
2018年八年级数学《三角形全等、轴对称》专题复习资料(含解析)
2018年八年级数学《三角形全等、轴对称》专题复习资料【1】一.解答题(共15小题)1.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.2.如图,已知:BE、CF是△ABC的高,在射线BE上截取BP=AC,在射线CF上截取CQ=AB,求证:(1)AP=AQ;(2)AP⊥AQ.3.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,(1)求∠AOE的度数;(2)试说明:AC=AE+CD.4.已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图1,当点D在边BC的什么位置时,DE=DF?并给出证明;(2)如图2,过点C作AB边上的高CG,垂足为G,试猜想线段DE,DF,CG的长度之间存在怎样的数量关系?并给出证明.5.△ABC中,∠ABC=110°,AB边的垂直平分线交AB于D、AC于E,BC边的垂直平分线交BC于F、AC于G、AB的垂直平分线于H,求∠EBG和∠DHF的度数.6.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,F是DE的中点,试探索CF与DE的位置关系,并说明理由.7.如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=30°,∠ADE=15°.(1)求∠BDN的度数;(2)求证:CD=CE.8.将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.(1)请写出图中的一对全等三角形并证明;(2)你能发现并证明线段AD,BE,DE之间的关系吗?9.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E 在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=,∠CDE=;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.10.已知等腰三角形一腰上的中线将三角形的周长分为12cm和21cm两部分,求这个等腰三角形的底边和腰的长度.11.△ABC在直角坐标系中的位置如图所示,其中A(﹣3,5),B(﹣5,2),C(﹣1,3),直线l经过点(0,1),并且与x轴平行,△A′B′C′与△ABC关于线1对称.(1)画出△A′B′C′,并写出△A′B′C′三个顶点的坐标:;(2)观察图中对应点坐标之间的关系,写出点P(a,b)关于直线l的对称点P′的坐标:;(3)若直线l′经过点(0,m),并且与x轴平行,根据上面研究的经验,写出点Q(c,d)关于直线1′的对称点Q′的坐标:.12.如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.13.如图,已知△ABC中,∠ABC=45°,点D是BC边上一动点(与点B,C不重合),点E与点D 关于直线AC对称,连结AE,过点B作BF⊥ED的延长线于点F.(1)依题意补全图形;(2)当AE=BD时,用等式表示线段DE与BF之间的数量关系,并证明.14.请按要求完成下面三道小题.(1)如图1,AB=AC.这两条线段一定关于某条直线对称吗?如果是,请画出对称轴a(尺规作图,保留作图痕迹);如果不是,请说明理由.(2)如图2,已知线段AB和点C.求作线段CD(不要求尺规作图),使它与AB成轴对称,且A与C是对称点,标明对称轴b,并简述画图过程.(3)如图3,任意位置的两条线段AB,CD,AB=CD.你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法;如果不能,请说明理由.15.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,AC=AE,BC=DE,连接CE交BD于点F.求证:BF=DF小明经探究发现,过B点作∠CBG=∠EDF,交CF于点G(如图2),从而可证△DEF≌△BCG,使问题得到解决(1)请你按照小明的探究思路,完成他的证明过程:参考小明思考问题的方法,解决下面的问题:(2)如图3,在△ABC与△BDE中,∠ABC=∠BDE,BC=DE,AB=BD,CF、EG分别为AB、BD的中线,连结FG并延长交CE于点H,是否存在与CH相等的线段?若存在,请找出并证明;若不存在,说明理由.2018年八年级数学《三角形全等、轴对称》专题复习资料【1】参考答案与试题解析一.解答题(共15小题)1.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF(SAS),∴∠BDE=∠CEF,∵∠ABC+∠BDE+∠BED=∠BED+∠DEGF+∠CEF=180°,∴∠ABC=∠DEF,∴∠ABC=∠ACB=∠DEF.2.如图,已知:BE、CF是△ABC的高,在射线BE上截取BP=AC,在射线CF上截取CQ=AB,求证:(1)AP=AQ;(2)AP⊥AQ.【解答】证明:(1)∵CF⊥AB,BE⊥AC,∴∠AEB=∠AFC=90°,∴∠ABE=∠ACQ=90°﹣∠BAC.∵BP=AC,CQ=AB,在△APB和△QAC中,,∴△APB≌△QAC(SAS).∴AP=AQ;(2)∵△APB≌△QAC,∴∠BAP=∠CQA.∵∠CQA+∠QAF=90°,∴∠BAP+∠QAF=90°.即AP⊥AQ.3.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,(1)求∠AOE的度数;(2)试说明:AC=AE+CD.【解答】解:(1)∵在Rt△ABC中,∠BAC=90°,∠ABC=60°,∴∠ACB=30°,∵AD、CE分别平分∠BAC,∠ACB,∴∠CAO=∠BAC=45°,∠ACO=∠ACB=15°,∴∠AOE=∠CAO+∠AOC=45°+15°=60°.(2)如图,在AC上截取AF=AE,连接OF∵AD平分∠BAC,∴∠BAD=∠CAD,在△AOE和△AOF中,∴△AOE≌△AOF(SAS),∴∠AOE=∠AOF=60°,∴∠AOF=∠COD=60°=∠COF,在△COF和△COD中,,∴△COF≌△COD(ASA)∴CF=CD,∴AC=AF+CF=AE+CD.4.已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图1,当点D在边BC的什么位置时,DE=DF?并给出证明;(2)如图2,过点C作AB边上的高CG,垂足为G,试猜想线段DE,DF,CG的长度之间存在怎样的数量关系?并给出证明.【解答】解:(1)当点D在BC的中点上时,DE=DF,证明:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)CG=DE+DF证明:连接AD,=S三角形ADB+S三角形ADC,∵S三角形ABC∴AB×CG=AB×DE+AC×DF,∵AB=AC,∴CG=DE+DF.5.△ABC中,∠ABC=110°,AB边的垂直平分线交AB于D、AC于E,BC边的垂直平分线交BC于F、AC于G、AB的垂直平分线于H,求∠EBG和∠DHF的度数.【解答】解:∵AB的垂直平分线交AC于点E,BC的垂直平分线交AC于点G,∴EA=EB,GB=GC,∵∠ABC=110°,∴∠A+∠C=70°,∵EA=EB,GB=GC,∴∠ABE=∠A,∠GBC=∠C,∴∠ABE+∠GBC=70°,∴∠EBG=110°﹣70°=40°,在四边形BDHF中,∵∠ABC=110°、∠HDB=∠HFB=90°,∴∠DHF=360°﹣∠ABC﹣∠HDB﹣∠HFB=70°.6.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,F是DE的中点,试探索CF与DE的位置关系,并说明理由.【解答】解:CF⊥DE,理由如下:∵AD∥EB∴∠A=∠EBC在△ADC和△BCE中∴△ADC≌△BCE(SAS)∴DC=CE又∵F是DE的中点∴CF⊥DE.7.如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=30°,∠ADE=15°.(1)求∠BDN的度数;(2)求证:CD=CE.【解答】(1)解:在直角三角形ABC中,∠ACB=90°,∠B=30°,∴∠BAC=60°,又AD平分∠BAC,∴∠CAD=30°,又∠ACD=90°,∴∠CDA=60°又∠ADE=15°,∴∠CDE=∠CDA﹣∠ADE=60°﹣15°=45°∴∠BDN=∠CDE=45°;(2)证明:在△CED中,∠ECD=90°,∠CDE=45°∴∠CED=45°∴CD=CE.8.将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.(1)请写出图中的一对全等三角形并证明;(2)你能发现并证明线段AD,BE,DE之间的关系吗?【解答】解:(1)结论:△ADC≌△CEB.理由:∵AD⊥CE,BE⊥CE,∴∠ACB=∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∠ACD+∠ECB=90°,∴∠CAD=∠ECB,∵AC=CB,'∴△ADC≌△CEB(AAS).(2)结论:AD=BE+DE.理由:∵△ADC≌△CEB,∴AD=CE,CD=BE,∵CE=CD+DE,∴AD=BE+DE.9.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E 在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=64°,∠CDE=32°;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.【解答】解:(1)∠BAD=∠BAC﹣∠DAC=100°﹣36°=64°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+64°=104°.∵∠DAC=36°,∠ADE=∠AED,∴∠ADE=∠AED=72°,∴∠CDE=∠ADC﹣∠ADE=104°﹣72°=32°.故答案为64°,32°;(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB﹣∠AED=40°﹣=.∵∠BAC=100°,∠DAC=n,∴∠BAD=n﹣100°,∴∠BAD=2∠CDE;(3)∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD﹣∠AED=140°﹣=.∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.10.已知等腰三角形一腰上的中线将三角形的周长分为12cm和21cm两部分,求这个等腰三角形的底边和腰的长度.【解答】解:如图所示,设AD=DC=x,BC=y,由题意得,或,解得或,当,等腰三角形的三边为8,8,17,显然不符合三角形的三边关系;当时,等腰三角形的三边为14,14,5,所以,这个等腰三角形的底边长是5,综上所述,这个等腰三角形的底边长5.腰长是14.11.△ABC在直角坐标系中的位置如图所示,其中A(﹣3,5),B(﹣5,2),C(﹣1,3),直线l经过点(0,1),并且与x轴平行,△A′B′C′与△ABC关于线1对称.(1)画出△A′B′C′,并写出△A′B′C′三个顶点的坐标:A'(﹣3,﹣3),B'(﹣5,0),C'(﹣1,﹣1);(2)观察图中对应点坐标之间的关系,写出点P(a,b)关于直线l的对称点P′的坐标:(a,2﹣b);(3)若直线l′经过点(0,m),并且与x轴平行,根据上面研究的经验,写出点Q(c,d)关于直线1′的对称点Q′的坐标:(c,2m﹣d).【解答】解:(1)如图所示,△A′B′C′即为所求,A'(﹣3,﹣3),B'(﹣5,0),C'(﹣1,﹣1);故答案为:A'(﹣3,﹣3),B'(﹣5,0),C'(﹣1,﹣1);(2)由题可得,点P'的横坐标为a,设点P'的纵坐标为y,则=1,解得y=2﹣b,∴点P(a,b)关于直线l的对称点P′的坐标为(a,2﹣b),故答案为:(a,2﹣b);(3)由题可得,点Q′的横坐标为c,设点Q'的纵坐标为y,则=m,解得y=2m﹣d,∴点Q(c,d)关于直线1′的对称点Q′的坐标为(c,2m﹣d).故答案为:(c,2m﹣d).12.如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.【解答】证明:(1)如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∴∠ABC=180°﹣∠BAC﹣∠ACB=70°,(2分)∵BD平分∠ABD,∴∠DBC=∠ABD=35°,(3分)∴∠DBC=∠ACB=35°,∴△BCD为等腰三角形;(4分)(2)证法一:如图2,在AC上截取AH=AB,连接EH,由(1)得:△BCD为等腰三角形,∴BD=CD,∴BD+AD=CD+AD=AC,(6分)∵AE平分∠BAC,∴∠EAB=∠EAH,∴△ABE≌△AHE,∴BE=EH,∠AHE=∠ABE=70°,(8分)∴∠HEC=∠AHE﹣∠ACB=35°,∴EH=HC,∴AB+BE=AH+HC=AC,∴BD+AD=AB+BE;(10分)证法二:如图3,在AB的延长线上取AF=AC,连接EF,由(1)得:△BCD为等腰三角形,且BD=CD,∴BD+AD=CD+AD=AC,∵AE平分∠BAC,∴∠EAF=∠EAC,∴△AEF≌△AEC,∴∠F=∠C=35°,(8分)∴BF=BE,∴AB+BE=AB+BF=AF,∴BD+AD=AB+BE;(10分)(3)正确结论:BD+AD=BE﹣AB,理由是:如图4,在BE上截取BF=AB,连接AF,∵∠ABC=70°,∴∠AFB=∠BAF=35°,∵∠BAC=75°,∴∠HAB=105°,∵AE平分∠HAB,∴∠EAB=∠HAB=52.5°,∴∠EAF=52.5°﹣35°=17.5°=∠AEF=17.5°,∴AF=EF,∵∠AFC=∠C=35°,∴AF=AC=EF,∴BE﹣AB=BE﹣BF=EF=AC=AD+CD=AD+BD.(12分)13.如图,已知△ABC中,∠ABC=45°,点D是BC边上一动点(与点B,C不重合),点E与点D 关于直线AC对称,连结AE,过点B作BF⊥ED的延长线于点F.(1)依题意补全图形;(2)当AE=BD时,用等式表示线段DE与BF之间的数量关系,并证明.【解答】解:(1)依题意补全图形如图所示:(2)结论:DE=2BF.理由:连接AD,设DE交AC于H.∵点E、D关于AC对称,∴AC垂直平分DE.∴AE=AD.∵AE=BD,∴AD=DB.∴∠DAB=∠ABC=45°.∴∠ADC=90°.∴∠ADE+∠BDF=90°.∵BF⊥ED,AC⊥ED,∴∠F=∠AHD=90°.∴∠DBF+∠BDF=90°.∴∠DBF=∠ADH.∴△ADH≌△DBF∴DH=BF又∵DH=EH,∴DE=2BF.14.请按要求完成下面三道小题.(1)如图1,AB=AC.这两条线段一定关于某条直线对称吗?如果是,请画出对称轴a(尺规作图,保留作图痕迹);如果不是,请说明理由.(2)如图2,已知线段AB和点C.求作线段CD(不要求尺规作图),使它与AB成轴对称,且A与C是对称点,标明对称轴b,并简述画图过程.(3)如图3,任意位置的两条线段AB,CD,AB=CD.你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法;如果不能,请说明理由.【解答】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.15.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,AC=AE,BC=DE,连接CE交BD于点F.求证:BF=DF小明经探究发现,过B点作∠CBG=∠EDF,交CF于点G(如图2),从而可证△DEF≌△BCG,使问题得到解决(1)请你按照小明的探究思路,完成他的证明过程:参考小明思考问题的方法,解决下面的问题:(2)如图3,在△ABC与△BDE中,∠ABC=∠BDE,BC=DE,AB=BD,CF、EG分别为AB、BD的中线,连结FG并延长交CE于点H,是否存在与CH相等的线段?若存在,请找出并证明;若不存在,说明理由.【解答】(1)证明:∵∠ACB=∠AED=90°,∴∠DEF+∠AEC=∠ACE+∠BCG=90°,∵AE=AC,∴∠AEC=∠ACE,∴∠DEF=∠BCG,在△BCG与△DEF中,∴△BCG≌△DEF,(ASA),∴BG=DF,∠BGC=∠DFC,∴∠BGF=∠BFG,∴BF=BG,∴BF=DF;(2)解:CH=EH,理由:如图3,延长FH至L,使HL=FG,连接LE,则HL+HG=FG+HG,即LG=FH,∵∠ACB=∠AED=90°,CF、EG分别为AB、BD的中线,∴CF=EG,∵∠ABC=∠BDE,∠CBF=∠CFB,∠D=∠DGE,∴∠BFC=∠DGE,∵AB=BD,∴BF=BG,∴∠BFG=∠BGF,∵∠BGF=∠DGH,∴∠CFH=∠EGL,在△CFH与△EGL中,,∴△CFH≌△EGL,(SAS),∴CH=EL,∠ELH=∠CHF,∴∠ELH=∠EHL,∴EH=EL,∴EH=CH.。
人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)
同理△DCB≌△C'DB,
∵∠A=∠C',∠AOB=∠C'OD,AB=C'D,
∴△AOB≌△C'OD (AAS) ,
所以共有四对全等三角形.
故答案为4.
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
故选D.
二.填空题(本大题共8小题,共24.0分)
9.如图,在 和 中, ,若利用“HL”证明 ≌ ,则需要加条件______.
【答案】 ,
【解析】
【分析】
添加∠C=∠D=90°,由HL证明△ABC≌△ABD即可.
【详解】添加∠C=∠D=90°,理由如下:
∵∠C=∠D=90°,
∴在Rt△ABC和Rt△ABD中,
A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB= CD
【答案】D
【解析】
【分析】
根据垂直定义求出∠CFD=∠AEB=90°,由已知 ,再根据全等三角形的判定定理推出即可.
【详解】添加的条件是AB=CD;理由如下:
∵AE⊥BC,DF⊥BC,
∴∠CFD=∠AEB=90°,
在Rt△ABE和Rt△DCF中,
【详解】①∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,
,
∴Rt△ARP≌Rt△ASP(HL),
∴AR=AS,∴①正确;
全等三角形、轴对称复习专题
全等三⾓形、轴对称复习专题全等三⾓形、轴对称复习专题(⼀)知识要点1.全等三⾓形的概念:能够完全重合的两个三⾓形叫做全等三⾓形。
理解:①全等三⾓形形状与⼤⼩完全相等,与位置⽆关;②⼀个三⾓形经过平移、翻折、旋转可以得到它的全等形;③三⾓形全等不因位置发⽣变化⽽改变。
2.全等三⾓形有哪些性质(1)全等三⾓形的对应边相等、对应⾓相等。
(理解:①长边对长边,短边对短边;最⼤⾓对最⼤⾓,最⼩⾓对最⼩⾓;②对应⾓的对边为对应边,对应边对的⾓为对应⾓)。
(2)全等三⾓形的周长相等、⾯积相等。
(3)全等三⾓形的对应边上的对应中线、⾓平分线、⾼线分别相等。
3.⾓的平分线:从⼀个⾓的顶点得出⼀条射线把这个⾓分成两个相等的⾓,称这条射线为这个⾓的平分线。
性质:⾓的平分线上的点到⾓的两边的距离相等。
判定:⾓的内部到⾓的两边的距离相等的点在⾓的平分线上。
4.全等三⾓形找法(运动法寻找)翻折法:找到中⼼线经此翻折后能互相重合的两个三⾓形,易发现其对应元素旋转法:两个三⾓形绕某⼀定点旋转⼀定⾓度能够重合时,易于找到对应元素平移法:将两个三⾓形沿某⼀直线推移能重合时也可找到对应元素5.全等三⾓形的判定(证明⽅法)边边边:三边对应相等的两个三⾓形全等(可简写成“SSS”)边⾓边:两边和它们的夹⾓对应相等两个三⾓形全等(可简写成“SAS”)⾓边⾓:两⾓和它们的夹边对应相等的两个三⾓形全等(可简写成“ASA”)⾓⾓边:两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等(可简写成“AAS”)斜边.直⾓边:斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等(可简写成“HL”)⼩贴⼠:学习全等三⾓形应注意以下⼏个问题:(1)要正确区分“对应边”与“对边”,“对应⾓”与“对⾓”的不同含义;(2)表⽰两个三⾓形全等时,表⽰对应顶点的字母要写在对应的位置上;(3)“有三个⾓对应相等”或“有两边及其中⼀边的对⾓对应相等”的两个三⾓形不⼀定全等;(4)时刻注意图形中的隐含条件,如 “公共⾓” 、“公共边”、“对顶⾓”(5)截长补短法证三⾓形全等。
几何-全等三角形及轴对称(含答案)
初二数学上学期期末考试复习建议(几何部分)一. 考试范围第十一章 三角形 第十二章 全等三角形 第十三章 轴对称 二. 复习目的1. 通过复习使学生对已学过的数学知识系统化, 条理化. 更有利于学生掌握基础知识和基本方法, 为进一步学习数学打下良好的基础.2. 逐步培养学生识图能力, 逻辑思维和推理论证的能力, 作图能力, 分析问题和解决问题的能力, 提高学生的数学素质.3. 使学生初步会运用数形结合、转化与化归、分类讨论等数学思想方法.三. 总体复习建议1. 重视基础: 对每一章的知识点进行总结, 使学生掌握所有重要的定义、公式、性质和判定; 掌握每章必须掌握的基本方法(包括解题规范) , 且“每一步推理都要有根据”; 关注教材中数学应用(包括尺规作图) 的实例及其数学原理.2. 优选例题习题, 使学生熟悉一些基本题型, 掌握常用辅助线的添加. 证明书写格式要规范, 思路清楚.3. 适当的综合题的训练.4. 关注新旧教材的对比与变化.5. 充分利用区里的教育资源.第十二章 全等三角形 第十三章 轴对称 一、通过框架图进行知识梳理轴对称等腰三角形 等边三角形画轴对称图形画轴对称图形的对称轴 关于坐标轴对称的点的坐标的关系 生活中的轴对称二、基本尺规作图: 作法及原理作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;作已知线段的垂直平分线(作已知线段的中点) ;三、适当总结证明方法:(1) 证明线段相等的方法①利用线段中点. ②利用数量相等.③证明两条线段所在的两个三角形全等④利用角平分线的性质证明角平分线上的点到角两边的距离相等⑤等腰三角形顶角平分线、底边上的高线平分底边⑥线段垂直平分线上的点到线段两端点的距离相等(2) 证明角相等的方法:①利用数量相等. ②利用平行线的性质进行证明.③利用角平分线证明. ④证明两个角所在的两个三角形全等⑤同角(或等角) 的余角(或补角) 相等⑥等腰三角形底边上的高线或底边中线平分顶角⑦等式性质⑧等边对等角(3) 证明两条线段的位置关系(平行、垂直) 的方法.(4) 常添加的辅助线:截长补短倍长中线角分线双垂直角分线翻折平行线+角分线: 等腰三角形角分线+垂直: 补全等腰三角形四、从图形变换的角度来复习全等同时复习几何的平移、轴对称两种变换, 归纳定义及性质, 渗透旋转变换的思想全等三角形的常见图形平移型:A'AB C C'B'轴对称型:旋转型:补充习题(一) 全等的性质和判定1. 如图, 正方形ABCD 的边长为4, 将一个足够大的直角三角板的直角顶点放于点A 处, 该三角板的两条直角边与CD 交于点F , 与CB 延长线交于点E . 四边形AECF 的面积是( ) . A A. 16 B. 12 C. 8 D. 42. 已知: 如图, AC 、BD 相交于点O , ∠A = ∠D , 请你再补充一个条件, 使△AOB ≌△DOC , 你补充的条件是____________.CA A' BABCB'C' ABCC' B'AB CC' B'B (C' )C (B' ) AA'ABB'C'CABB'C' C A'AA'B (C' )C (B' )A A'BB' C C' AA'B' BCC' ABB'C'C A'ABCDO3. 在△ABC 与△A'B'C' 中, 已知∠A = ∠A', CD 和C'D' 分别为∠ACB 和∠A'C'B' 的平分线, 再从以下三个条件: ①∠B = ∠B', ②AC = A'C', ③CD = C'D' 中任取两个为题设, 另一个为结论, 则可以构成 ( ) 个正确的命题.A . 1B . 2C . 3D . 4 4. 根据下列已知条件, 不能唯一确定......△ABC 的大小和形状的是( ) . B A. AB =3, BC =4, AC =5 B. AB =4, BC =3, ∠A =30º C. ∠A =60º, ∠B =45º, AB =4D. ∠C =90º, AB =6, AC = 55. 如图, 已知△ABC , 则甲、乙、丙三个三角形中和△ABC 全等的是( ) . Dbaca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 只有丙C. 甲和乙D. 乙和丙6. 已知: 如图, CB = DE , ∠B = ∠E , ∠BAE = ∠CAD . 求证: ∠ACD = ∠ADC .7. 如图, 锐角△ABC 中, D , E 分别是AB , AC 边上的点, △ADC ≌△ADC ′, △AEB ≌△AE B′, 且C ′D ∥EB ′∥BC , 记BE , CD 交于点F , 若BAC x ∠=︒, 则∠BFC 的大小是__________°. (用含x 的式子表示) (1802x -)E ABCDF E DB'C'ABC第6题图第7题图(二) 轴对称图形和垂直平分线1. 在下列各图中, 对称轴最多的图形有________条对称轴.2. (1) 点P (3, − 5) 关于x 轴的对称点坐标为( ) D A. (−3, −5) B. (5, 3) C. (−3, 5) D. (3, 5)(2) 如图, 数轴上A B ,两点表示的数分别为1-和3, 点B 关于点A 的对称点为C , 则点C 所表示的数为( ) A A. 23-- B. 13--C. 23-+D. 13+(3) 如图, 在正方形网格纸上有三个点A , B , C , 现要在图中网格范围内再找格点D , 使得A , B , C , D 四点组成的凸四边形是轴对称图形, 在图中标出所有满足条件的点D 的位置. (两个解)3. 如图, 在Rt △ABC 中, ∠ACB = 90°, ∠A = 15°, AB 的垂直平分线与 AC 交于点D , 与AB 交于点E , 连结BD . 若AD =12cm, 则BC 的长为 cm.4. 如图, 已知△ABC 中, ∠BAC = 120°, 分别作AC , AB 边的垂直平分线PM , PN 交于点P , 分别交BC 于点E 和点F . 则以下各说法中: ①∠P = 60°, ②∠EAF = 60°, ③点P 到点B 和点C 的距离相等, ④PE = PF , 正确的说法是______________. (填序号) ①②③FEPMN CAB第3题图第4题图5. 已知∠AOB =45°, 点P 在∠AOB 的内部, P 1与P 关于OB 对称, P 2与P 关于OA 对称, 则P 1、P 2与O 三点构成的三角形是( ) D A. 直角三角形 B. 等腰三角形 C. 等边三角形 D. 等腰直角三角形(三) 等腰三角形的性质和判定1. 等腰直角三角形的底边长为5, 则它的面积是( ). D A. 50B. 25C. 12.5D. 6.252. 已知: 如图3, △ABC 中, 给出下列四个命题: ① 若AB =AC , AD ⊥BC , 则∠1=∠2; ②若AB =AC , ∠1=∠2, 则BD =DC ; ③若AB =AC , BD =DC , 则AD ⊥BC ;④若AB =AC , AD ⊥BC , BE ⊥AC , 则∠1=∠3; 其中, 真命题的个数是( ). D A. 1个 B. 2个 C. 3个 D. 4个A O B3. 如图, 在△ABC 中, D 是BC 边上一点, 且AB = AD = DC , ∠BAD = 40°, 则∠C 为( ) . B A. 25° B. 35°C. 40°D. 50°4. 如图, 在△ABC 中, AB = AC , ∠BAC = 30°. 点D 为△ABC 内一点, 且DB = DC , ∠DCB = 30°. 点E 为BD 延长线上一点, 且AE = AB .(1) 求∠ADE 的度数;(2) 若点M 在DE 上, 且DM = DA , 求证: ME = DC .5. 已知: 如图, △ABC 中, 点,D E 分别在,AB AC 边上, F 是CD 中点, 连BF 交AC 于点E , 180ABE CEB ∠+∠=︒, 比较线段BD 与CE 的大小, 并证明你的结论.(提示, 注意AE = AB ; 过D 作AC 的平行线交BE 于点G )(四) 等边三角形(30° 角直角三角形)1. 下列条件中, 不能..得到等边三角形的是( ) . B A. 有两个内角是60°的三角形 B. 有两边相等且是轴对称图形的三角形 C. 三边都相等的三角形D. 有一个角是60°且是轴对称图形的三角形2. 如图, △ABC 中, AB =AC , ∠BAC =120°, DE 垂直平分AC . 根据以上条件, 可知∠B =______, ∠BAD =_______, BD : DC =_______. (30, 90, 2: 1)3. 如图, 在纸片△ABC 中, AC = 6, ∠A = 30º, ∠C = 90º, 将∠A 沿DE 折叠, 使点A 与点B 重合, 则折痕DE 的长为_____. (2)4. 如图所示△ABC 中, AB = AC , AG 平分∠BAC ; ∠FBC = ∠BFG = 60︒, 若FG = 3, FB = 7, 求BC 的长. (答案10. 提示: 延长AG 、FG 与BC 相交)ABCDABCDEADMC(五) 最值问题1. 如图, P 、Q 为ABC 边上的两个定点. 在BC 边上求作一点M , 使PM +MQ 最短2. 已知: 如图, 牧马营地在M 处, 每天牧马人要赶着马群到草地吃草, 再到河边饮水, 最后回到营地M . 请在图上画出最短的放牧路线..M河草地第1题图第2题图3. 如图, 四边形EFGH 是一长方形的台球桌面, 现在黑、白两球分别位于A 、B 两点的位置上. 试问怎样撞击黑球A , 才能使黑球A 先碰到球台边EF , 反弹一次后再击中白球B ?4. 如图, MN 是正方形ABCD 的一条对称轴, 点P 是直线MN 上的一个动点, 当PC +PD 最小时, ∠PCD = _________°. (45)DAMNBCP5. 已知两点M (4, 2) , N (1, 1) , 点P 是x 轴上一动点, 若使PM +PN 最短, 则点P 的坐标应为___________. (2, 0)6. 平面直角坐标系xOy 中, 已知点A (0, 4) , 直线x = 3, 一个动点P 自OA 的中点M 出发, 先到达x 轴上的某点(设为点E ) , 再到达直线x = 6上某点(设为点F ) 最后运动到点A , 求使点P 运动的路径中最短的点E 、F 的坐标. E (4, 0) , F (6, 1)几何专题复习 (一) 分类讨论1. ① 等腰三角形的一个角是110︒, 求其另两角? ② 等腰三角形的一个角是80︒, 求其另两角?③ 等腰三角形两内角之比为2: 1, 求其三个内角的大小? 2. ① 等腰三角形的两边长为5cm 、6cm, 求其周长? ② 等腰三角形的两边长为10cm 、21cm, 求其周长?3. ① 等腰三角形一腰上的中线将周长分为12cm 和21cm 两部分, 求其底边长? ② 等腰三角形一腰上的中线将周长分为24cm 和27cm 两部分, 求其底边长?4. 等腰三角形一腰上的高与另一腰的夹角为30°, 则其顶角为_______.(按高的位置分类)5. 等腰三角形一边上的高等于底边的一半, 则其顶角为___________.6. 等腰三角形一腰上的高等于腰的一半, 则其顶角为___________.7. 等腰三角形一边上的高等于这边的一半, 则其顶角为___________.8. △ABC 中, AB = AC, AB 的中垂线EF 与AC 所在直线相交所成锐角为40︒, 则∠B = _____. (按一腰中垂线与另一腰的交点所在位置分类)9. 已知: ()()ABC x C B A ∆-轴上一点且为、,4,00,2为等腰三角形 , 问满足条件的C 点有几个? 4个10. 在正方形ABCD 所在平面上找一点P, 使△PAD 、△PAB 、△PBC 、△PCD 均为等腰三角形, 这样的P 点有几个? 9个11. 平面内有一点D 到△ABC 三个顶点的距离DA = DB = DC , 若∠DAB = 30°, ∠DAC = 40°, 则∠BDC 的大小是_________°. (20或140)(二) 几何作图1. 如图, 某地区要在区域S 内建一个超市M , 按照要求, 超市M 到两个新建的居民小区A , B 的距离相等, 到两条公路OC , OD 的距离也相等. 这个超市应该建在何处? (本题要求: 尺规作图, 不写作法, 保留作图痕迹)SD2. 尺规作图作AOB 的平分线方法如下: 以O 为圆心, 任意长为半径画弧交OA 、OB 于C 、D , 再分别以点C 、D 为圆心, 以大于12CD 长为半径画弧, 两弧交于点P , 则作射线OP 即为所求. 由作法得OCP ODP △≌△的根据是( ) . DA. SASB. ASAC. AASD. SSS3. 如图, 用圆规以直角顶点O 为圆心, 以适当半径画一条弧 交两直角边于A 、B 两点, 若再以A 为圆心, 以OA 为半径画弧, 与弧AB 交于点C , 则∠AOC 等于 __________ °4. 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长方形直尺就可以作出一个锐角的平分线. 如图: 一把直尺压住射线OB , 另一把直尺压住射线OA 并且与第一把直尺交于点P , 小明说: “射线OP 就是∠BOA 的角平分线. ”你认为小明的想法正确吗? 请说明理由.5. 阅读下列材料:木工张师傅在加工制作家具的时候, 用下面的方法在木板上画直角:如图1, 他首先在需要加工的位置画一条线段AB , 接着分别以点A 、点B 为圆心, 以大于12AB 的适当长为半径画弧, 两弧相交于点C , 再以C 为圆心, 以同样长为半径画弧交AC 的延长线于点D (点D 需落在木板上) , 连接DB . 则∠ABD 就是直角. 木工张师傅把上面的这种作直角的方法叫做“三弧法.图2EF ACBD 图1OAB解决下列问题:(1) 利用图1就∠ABD是直角作出合理解释(要求: 先写出已知、求证, 再进行证明);(2) 图2表示的一块残缺的圆形木板, 请你用“三弧法”, 在木板上...画出一个以EF为一条直角边的直角三角形EFG(要求: 尺规作图, 不写作法, 保留作图痕迹) .(三) 操作问题第1题图①图②第2题图1. 如图①, 一张四边形纸片ABCD, ∠A=50︒, ∠C=150︒. 若将其按照图②所示方式折叠后, 恰好MD'∥AB, ND'∥BC, 则∠D的度数为( ). CA. 70°B. 75°C. 80°D. 85°2. 如图所示, 把一个三角形纸片ABC顶角向内折叠3次之后, 3个顶点不重合, 那么图中∠1+ ∠2+∠3+∠4+∠5+∠6的值为( ) CA. 180°B. 270°C. 360°D. 无法确定3. 将一个菱形纸片依次按下图①、②的方式对折, 然后沿图③中的虚线裁剪, 成图④样式. 将纸展开铺平. 所得到的图形是图中的( ) A4. 如图, 等边△ABC的边长为1cm, D、E分别是AB、AC上的点, 将△ADE沿直线DE折叠, 点A落在点A´处, 且点在△ABC外部, 则阴影部分图形的周长为____________cm. (3)5. 如图, 将一张三角形纸片ABC 折叠, 使点A 落在BC 边上, 折痕EF ∥BC , 得到△EFG ; 再继续将纸片沿△BEG 的对称轴EM 折叠, 依照上述做法, 再将△CFG 折叠, 最终得到矩形EMNF , 折叠后的△EMG 和△FNG 的面积分别为1和2, 则△ABC 的面积为( ) A . 6B . 9C . 12D . 186. 将如图1所示的长方形纸片ABCD 沿过点A 的直线折叠, 使点B 落在AD 边上, 折痕为AE (如图2) ; 再继续将纸片沿过点E 的直线折叠, 使点A 落在EC 边上, 折痕为EF (如图3) , 则在图3中, ∠F AE = _______°, ∠AFE = _______°. (45, 67.5)图1 图2 图37.(1) 已知ABC △中, 90A ∠=, 67.5B ∠=, 请画一条直线, 把这个三角形分割成两个等腰三角形. (请你选用下面给出的备用图, 把所有不同的分割方法都画出来. 只需画图, 不必说明理由, 但要在图中标出相等两角的度数)(2) 已知ABC △中, C ∠是其最小的内角, 过顶点B 的一条直线把这个三角形分割成了两个等腰三角形, 请探求ABC ∠与C ∠之间的所有可能的关系.8. 当身边没有量角器时, 怎样得到一些特定度数的角呢? 动手操作有时可以解“燃眉之急”. 如图, 已知矩形ABCD , 我们按如下步骤操作可以得到一个特定的角: (1) 以点A 所在直线为折痕, 折叠纸片, 使点B 落在AD 上, 折痕与BC 交于E ; (2) 将纸片展平后, 再一次折叠纸片, 以E 所在直线为折痕, 使点A 落在BC 上, 折痕EF 交AD 于F . 则∠AFE = _______°. (67.5)A BC 备用图①A BC 备用图②ABC备用图③AC B GFEACBAM GFECB NM G FEACB A BCD ED CB AFD CEA9. 如图(1)所示Rt △ABC 中, ∠A = 90°, 三边a b c >>. 现以△ABC 某一边的垂直平分线为对称轴, 作△ABC 的轴对称图形, 记作一次操作. 例如, 若图(1)中△ABC 以a 边的垂直平分线为对称轴, 作轴对称图形得到图(2)中的△ABC , 记作“a 操作”一次; 图(2)中△ABC 继续以b 边的垂直平分线为对称轴, 作轴对称图形得到图(3)中的△ABC , 记作“b 操作”一次. 现对图(1)中的△ABC 分别按以下顺序连续进行若干次操作, 则最后得到的△ABC 与图(1)中△ABC 重合的是( ) . BA. a 操作 − b 操作 − c 操作B. b 操作 − c 操作 − b 操作 − c 操作C. a 操作 − c 操作 − b 操作 − a 操作D. b 操作 − a 操作 − b 操作 − a 操作c ba a(1)ABC (2) a 操作 (3) b 操作BCAA BCACB四、探究性问题1. 已知: 如图, Rt △ABC 中, AB = AC , ∠BAC = 90°, 直线AE 是经过点A 的任一直线, BD ⊥AE 于D , CE ⊥AE 于E , BD > CE . (1) AD 与CE 的大小关系如何? 请说明理由. (2) 求证: DE =BD -CE .2. 已知: 如图, B 、A 、C 三点共线, 并且Rt △ABD ≌Rt △ECA , M 是DE 的中点. 问题:(1) 判断△ADE 的形状并证明;(2) 判断线段AM 与线段DE 的关系并证明; (3) 判断△MBC 的形状并证明.MCDAEB3.已知: 在△ABC 中, ∠CAB = 2α, 且030α<<, AP 平分∠CAB .(1) 如图1, 若21α=, ∠ABC = 32°, 且AP 交BC 于点P , 试探究线段AB , AC 与PB 之间的数量关系, 并对你的结论加以证明;(2) 如图2, 若∠ABC = 60α-, 点P 在△ABC 的内部, 且使∠CBP = 30°, 求∠APC 的度数(用含α的代数式表示) .五、关于旋转的问题、动点问题1. 已知: 如图, △AOB 和△COD 都是等边三角形, 作直线AC 、直线BD 交于E . 求证: (1) AC =BD ; (2) ∠AEB =60°.2. 已知: 如图, 等边三角形ABC 中, AB = 2, 点P 是AB 边上的一动点(点P 可以与点A 重合, 但不与点B 重合) , 过点P 作PE ⊥BC , 垂足为E , 过点E 作EF ⊥AC , 垂足为F , 过点F 作FQ ⊥AB , 垂足为Q . 设BP = x , AQ = y . (1) 请用x 的代数式表示y (直接写出) ; (2) 当BP 的长等于多少时, 点P 与点Q 重合; (128x y =+; 43) 3. 已知: 如图, △ABC 中, ∠A =90°, AB =AC . D 是斜边BC 的中点; E 、F 分别在线段AB 、AC 上, 且∠EDF =90°.(1) 求证: △DEF 为等腰直角三角形.(2) 如果E 点运动到AB 的反向..延长线...上, F 在直线..CA 上且仍保持∠EDF =90°, 那么△DEF 还仍然是等腰直角三角形吗? 请画图(右图) 并直接写出....你的结论. 图1ABCP图2AC PBACB P EFQC4. 如图所示, 长方形ABCD 中, AB = 4, BC 点E 是折线段A —D —C 上的一个动点(点E 与点A 不重合) , 点P 是点A 关于BE 的对称点. 在点E 运动的过程中, 能使△PCB 为等腰三角形.....的点E 的位置共有( ) . CA. 2个B. 3个C. 4个D. 5个5. 如图ABC △中, 10AB AC ==厘米, 8BC =厘米, 点D 为AB 中点. (1) 如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动, 同时, 点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等, 经过1秒后, BPD △与CQP △是否全等, 请说明理由;②若点Q 的运动速度与点P 的运动速度不相等, 当点Q 的运动速度为多少时, 能够使BPD △与CQP △全等?(2) 若点Q 以②中的运动速度从点C 出发, 点P 以原来的运动速度从点B 同时出发, 都逆时针沿ABC △三边运动, 求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? ( (1) ①SAS 全等; ②415厘米/秒. (2) 经过803秒点P 与点Q 第一次在边AB 上相遇. )六、综合应用1. 在平面直角坐标系中, 直线l 过点M (3,0), 且平行于y 轴.如果△ABC 三个顶点的坐标分别是A (-2,0), B (-1,0),C (-1,2), △ABC 关于y 轴的对称图形是△A 1B 1C 1, △A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2, 在右面的坐标系中画出△A 2B 2C 2,并写出它的三个顶点的坐标.AB CDEPB2. 已知: 如图, 在△ABC 中, AB = AC , ∠BAC = α, 且60° < α < 120°. P 为△ABC 内部一点, 且PC = AC , ∠PCA = 120° − α.(1) 用含α的代数式表示∠APC , 得∠APC = ________; (2) 求证: ∠BAP = ∠PCB ; (3) 求∠PBC 的度数.3. 在△ABC 中, AD 是△ABC 的角平分线.(1) 如图1, 过C 作CE ∥AD 交BA 延长线于点E , 若F 为CE 的中点, 连结AF , 求证: AF ⊥AD ;(2) 如图2, M 为BC 的中点, 过M 作MN ∥AD 交AC 于点N , 若AB = 4, AC = 7, 求NC 的长.4.在ABC △中, BA BC BAC =∠=α,, M 是AC 的中点, P 是线段BM 上的动点, 将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1) 若α=60︒且点P 与点M 重合(如图1) , 线段CQ 的延长线交射线BM 于点D , 请补全图形, 并写出CDB ∠的度数;(2) 在图2中, 点P 不与点B M ,重合, 线段CQ 的延长线与射线BM 交于点D , 猜想CDB ∠的大小(用含α的代数式表示) , 并加以证明.图1 图2BCPA5. 在Rt△ABC中, ∠ACB = 90°, ∠A = 30°, BD是△ABC的角平分线, DE⊥AB于点E.(1) 如图1, 连接EC, 求证: △EBC是等边三角形;(2) 点M是线段CD上的一点(不与点C, D重合) , 以BM为一边, 在BM的下方作∠BMG = 60°, MG交DE延长线于点G. 请你在图2中画出完整图形, 并直接写出MD, DG与AD之间的数量关系;(3) 如图3,点N是线段AD上的一点, 以BN为一边, 在BN的下方作∠BNG= 60°, NG交DE延长线于点G. 试探究ND, DG与AD数量之间的关系, 并说明理由.。
八年级数学上册 全等三角形专题练习(解析版)
八年级数学上册全等三角形专题练习(解析版)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.3.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD =m ,AE +AF =n ,则S △AEF =12mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.【详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣12∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE•OM+12AF•OD=12OD•(AE+AF)=12mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;同理可证:BM=BN,CD=CN.∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC﹣BC)故⑤正确.故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.4.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.5.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为 2n.故答案为:2n.【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.6.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键7.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,利用对称的性质得到△PQR 周长=P′P″,根据两点之间线段最短可判断此时△PQR 周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR 周长的最小值【详解】解:作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.8.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .9.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________【答案】8 5【解析】【分析】首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE ,得出BF 的长,即 B′F 的长.【详解】解:根据折叠的性质可知:DE=AE ,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,B′F=BF ,∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE ,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FE=90°,∵S △ABC =12AC•BC=12AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810ABAC BC ∴ 4.8AC BC CE AB⋅== ∴EF=4.8,22 3.6AE AC EC -=∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=85, 故答案是:85.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.二、八年级数学轴对称三角形选择题(难)11.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .32B .332C .32D .不能确定【答案】B 【解析】 已知,如图,P 为等边三角形内任意一点,PD 、PE 、PF 分别是点P 到边AB 、BC 、AC 的距离,连接AP 、BP 、CP ,过点A 作AH ⊥BC 于点H ,已知等边三角形的边长为3,可求得高线AH =332,因S △ABC =12BC •AH =12AB •PD+12BC•PE +12AC •PF ,所以12×3×AH =12×3×PD +12×3×PE +12×3×PF ,即可得PD +PE +PF =AH =332,即点P 到三角形三边距离之和为332.故选B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P 到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.12.已知:如图,点D ,E 分别在△ABC 的边AC 和BC 上,AE 与BD 相交于点F ,给出下面四个条件:①∠1=∠2;②AD=BE ;③AF=BF ;④DF=EF ,从这四个条件中选取两个,不能判定△ABC 是等腰三角形的是( )A .①②B .①④C .②③D .③④【答案】C【解析】【分析】 根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.【详解】选取①②:在ADF ∆ 和BEF ∆ 中1=2{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF ∆ 和BEF ∆ 中 1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF ∆ 和BEF ∆ 中 ={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=故选C.【点睛】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.13.如图所示,在ABC 中,AC BC =,90ACB ︒∠=,AD 平分BAC ∠,BE AD ⊥交AC 的延长线F ,E 为垂足.则有:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 利用全等三角形的判定定理及其性质以及等腰三角形的三线合一的性质逐项分析即可得出答案.【详解】解:∵AC BC =,90ACB ︒∠=∴45CAB ABC ︒∠=∠=∵AD 平分BAC ∠∴22.5BAE EAF ︒∠=∠=∵90EAF F FBC F ︒∠+∠=∠+∠=∴EAF FBC ∠=∠∴ADC BFC ≅∴AD=BF ,CF=CD ,故①②正确;∵CD=CF,∴AC+CD=AC+CF=AF∵67.5F ︒∠=∵18018067.54567.5ABF F CAB ︒︒︒︒︒∠=-∠-∠=--=∴AF=AB ,即AC+CD=AB ,故③正确;由③可知,三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = 若BE CF =,则30CBF ∠=︒与②中结论相矛盾,故④错误;∵三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = ∴BF=2BE ,故⑤正确;综上所述,正确的选项有4个.故选:D .【点睛】本题考查的知识点是全等三角形的判定定理及其性质,等腰三角形的判定与性质,等腰直角三角形的性质,掌握以上知识点是解此题的关键.14.等边△ABC ,在平面内找一点P ,使△PBC 、△PAB 、△PAC 均为等腰三角形,具备这样条件的P 点有多少个?( )A .1个B .4个C .7个D .10个【答案】D【解析】试题分析:根据点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;因为△ABC 是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D .点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.15.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°) 所以 x°=180°-2α 【点睛】求出M,N 在什么位子△PMN 周长最小是解此题的关键.16.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A .①②B .①②③C .①②④D .①②③④【答案】C【解析】【分析】 ①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明②正确;③若DM 平分∠EDF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD.同理:DF=12AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中DE DFBD DC⎧⎨⎩==,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE-BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.综上所述,①②④正确,故选:C.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.17.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE、BD 相交于点O,AE、BD 分别交 CD、CE 于 M、N,连接 MN、OC,则下列所给的结论中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120º;⑤OC 平分∠AOB.其中结论正确的个数是()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由题意易证:△ACE≅△DCB,进而可得AE=BD;由△ACE≅△DCB,可得∠CAE=∠CDB,从而△ACM ≅△DCN,可得:CM=CN;易证△MCN是等边三角形,可得∠MNC=∠BCE,即MN∥AB;由∠CAE=∠CDB,∠AMC=∠DMO,得∠ACM=∠DOM=60°,即∠AOB=120º;作CG⊥AE,CH⊥BD,易证CG=CH,即:OC 平分∠AOB.【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC,CE=CB,∠ACE=∠DCB=120°,∴△ACE≅△DCB(SAS)∴AE=BD,∴①正确;∵△ACE≅△DCB,∴∠CAE=∠CDB,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC,在△ACM 和△DCN中,∵60CAE CDB AC DCACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN (ASA ),∴CM =CN ,∴②正确;∵CM =CN ,∠DCE=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE ,∴MN ∥AB ,∴③正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵∠AMC=∠DMO ,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO ,即:∠ACM=∠DOM=60°,∴∠AOB =120º,∴④正确;作CG ⊥AE ,CH ⊥BD ,垂足分别为点G ,点H ,如图,在△ACG 和△DCH 中,∵90?AMC DHC CAE CDB AC DC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG ≅△DCH (AAS ),∴CG =CH ,∴OC 平分∠AOB ,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.18.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()A.12 B.16 C.24 D.32【答案】A【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∵△CDM周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,故选A.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.19.如图,已知,点A(0,0)、B(43,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2017个等边三角形的边长等于()A .201532B .201632C .3D .201932【答案】A【解析】【分析】【详解】根据锐角三函数的性质,由OB=43,OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A 1AB=60°,进而可得∠CAA 1=30°,∠CA 1O=90°,因此可推导出∠A 2A 1B=30°,同理得到∠CA 2B 1=∠CA 3B 2=∠CA 4B 3=90°,∠A 2A 1B=∠A 3A 2B 2=∠A 4A 3B 3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA 1=OCcos ∠CAA 1=23,B 1A 2=1232⨯,以此类推,可知第2017个等边三角形的边长为:201713()432⨯=. 故选A.【点睛】此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.20.如图,在△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,则△BCD 的周长为( )A .13B .15C .18D .21【答案】A【解析】 根据线段垂直平分线的性质,可由AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,得到AD=BD ,进而得出△BCD 的周长为:CD+BD+BC=AC+BC=8+5=13.故选A .点睛:此题主要考查了线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.。
八年级全等三角形压轴题
全等三角形压轴题复习1、如图,已知A(—2,3),B(—5,0),C(—1,0),△ABC和4A^1c l关于x轴对称,(1)作4ABC关于x轴对称的^A1B1C1,直接写出点A1坐标;(2)在y轴上有一点P使AP+A1P最小,直接写出点P的坐标;(3)请直接写出点A关于直线x=m(直线上各点的横坐标都为m)对称的点的坐标.知识点一、全等三角形的常见模型与辅助线【知识梳理】1、常见辅助线:(1)角平分线:^(2)垂直平分线:^(3)中线:^(4)等腰三角形:^(5)线段和(差):^2、常见的模型:(1)三垂直:(2)手拉手:(3)夹半角:(4)对角互补:(5)脚拉脚:【例题精讲一】最短路径1、平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使PA-PB最大,则P点坐标为2、如图,在Rt^ABC中,N ACB=90°,AC>BC,AD平分N CAB交BC于口,点E、F分别是AD、AC上的动点,点O为AB中点,点M在AB上,且AM=AC,则CE+EF的最小值等于()A.点O到点C的距离B.点M到点C的距离C.点O到BC边上的距离D.点C到AB的距离(第2题)(第3题)(第5题)3、如图,在四边形ABCD中,DA,AB,DA=6cm,Z B+Z C=150°.CD与BA延长交于E点,点A刚好是BE的中点,P、Q分别是线段CE、BE上的动点,则BP+PQ最小值是^4、已知A(3,1),B(5,2),点P(a,0)在x轴上,当PA—PB达到最大值时,a=。
5、如图,等边△ABC中,BF是AC边上中线,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接£尸,当4AEF周长最小时,N CFE的大小是^【课堂练习】1、如图,已知N MON=40°,P为^MON内一点,A为OM上的点,B为ON上的点.当△PAB的周长取最小值时,则N APB的度数为。
第13章《轴对称》复习课
等腰三角形的判定及性质:
等边三角形的判定及性质:
达标测试
1.(-2,1)点关于x轴对称的点坐标为(_-__2_,__-_1_.)
2.等腰三角形的顶角为50度,则一腰上的高线
与底边的夹角是_2_5__度;
3.仔细观察下列图案,并按规律在横线上画出
合适的图形.
短?
B 小区
A小区
煤气主管
)
道)
例5、已知:如图,CD是RtΔABC斜边上的高, ∠A的平分线AE交CD于点F。 求证:CE要得到CE=CF, 只要有∠CEF=∠CFE;
例6:如图,AD是△ABC的中线,∠ADC=60°, 把△ADC沿直线AD折过来, C落在C′的位置, (1)在图中找出点C′,连结BC′; (2)如果BC=4,求BC′的长。
讲练平台
A
例1:如图,如果△ACD的周长为17cm, D
△ABC的周长为25cm,根据这些条件,
你可以求出哪条线段的长?
BE C
思路点拨:
(1)△ACD的周长=AD +CD+AC=17; (2)△ABC的周长=AB+AC+BC=25; (3)由DE是BC的垂直平分线得:BD=CD;
所以AD+CD=AD+BD=AB。 (4)由(2)-(1)得BC=8cm.
解(:1)画CO垂直AD,并延 长到C′,使得OC′=OC,
C′
点C′即为所求。
O
(2)连结C′D,由对称性得 CD=CD′,∠CD′A=∠CDA=60°; 所以∠BDC′=60°, 所以,△C′BD是等边三角形, 所以,BC′=BD=2.
小结点评:
1、翻折变换后得到的图
C′
形与原图形关于折痕对称;对
全等三角形与轴对称综合练习题(4)
全等三角形与轴对称练习题一、填空题1、如图1所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得△BDC的周长为17m,则边BC的长为 .2、如图2,△ABC中,AB=AC,∠BAD=30°,且AD=AE,则∠EDC= .3、在直角坐标系内有两点A(-1,1)、B(3,3),若M为x轴上一点,且MA+MB最小,则M的坐标是________。
4、如图3,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF=_________度.图1 图2 图35、小宇同学在一次手工制作活动中,先把一张矩形纸片按图的方式进行折叠,使折叠的左侧部分比右侧部分短1;展开后按图的方式再折叠一次,使第二侧折痕的左侧部分比右测部分长1,再展开后,在纸上形成的两条折痕之间的距离是 .6、已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点构成的三角形是______.7、如图4,△ABC中AB=AC,EB=BD=DC=CF,∠A=40°,则∠EDF•的度数是_____.8、如图5,已知△ABC是等腰直角三角形,AB=AC,若AD=AB,∠CAD=36°,则∠DBC的度数是。
9、如图6,△ABD、△ACE都是正三角形,BE和CD交于O点,则∠BOC=__________.图4 图5 图6二、选择题1、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或15°B.75°C.15°D.75°和30°2、如图7,光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角,即∠1=∠6,∠5=∠3,∠2=∠4,若已知∠1=55°,∠3=75°,那么∠2等于().A.50° B.55° C.66° D65°3、如图8,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直;④四边形ABCD是轴对称图形.其中正确结论的个数为().A.1B.2C.3D.44、如图9,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于().A.50° B.55° C.60° D.65°5、如图10,在△ABC中,AD平分∠BAC,过B作BE⊥AD于E,过E作EF∥AC交AB于F,则( )A、AF=2BFB、AF=BFC、AF>BFD、AF<BF图7 图8 图9 图106、如下图,将矩形纸片ABCD(图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图③),那么∠AFE的度数为:()A.60°B.67.5°C.72°D.75°8.如下图1,AB⊥AC,AG⊥BG,CD、BE分别是△ABC的角平分线,AG∥BC,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°其中正确的结论是()A、①③ B、②④ C、①③④ D、①②③④9.如下图2所示,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2 等于() A 、270° B、180° C、135° D、90°10.如下图3,已知在△ABC中,∠CAB、∠ABC的外角平分线相交于点D。
全等三角形和轴对称专练题(50题)
全等三角形和轴对称专练题(50题)一.解答题(共60小题)1.如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠DEC的度数.2.如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠F AG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.3.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.4.如图,AB平分∠CAD,AC=AD,求证:BC=BD.5.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠E=∠D.6.如图,CE=DE,AE=BE,∠1=∠2,点D在AC边上,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠3的度数.7.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,AC=BD.求证:∠C=∠D.8.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.9.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.10.在△ABC中,D为AC的中点,DM⊥AB于M,DN⊥BC于N,且DM=DN.(Ⅰ)求证:△ADM≌△CDN.(Ⅱ)若AM=2,AB=AC,求四边形DMBN的周长.11.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED,求证:DB=CD.12.如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.13.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB,交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=2,CF=1时,求AC的长.14.如图,点C、E、F、B在同一直线上,CE=BF,AB=CD,AB∥CD.(1)求证∠A=∠D;(2)若AB=BE,∠B=40°,求∠D的度数.15.如图,AC=AE,∠1=∠2,AB=AD.求证:△ABC≌△ADE.16.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.17.如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.(1)当∠BDA=100°时,∠EDC=°,∠DEC=°.(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.18.如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.19.如图所示,已知△ABC中AB=AC,E、D、F分别在AB,BC和AC边上,且BE=CD,BD=CF,过D作DG⊥EF于G.求证:EG=EF.20.如图,在△ABC中,∠B=∠C,点D、E、F分别在AB、BC、AC边上,且BE=CF,AD+EC=AB.(1)求证:DE=EF.(2)当∠A=36°时,求∠DEF的度数.21.如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE.(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;22.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.23.如图,点A,B,C,D在一条直线上,且AB=CD,若∠1=∠2,EC=FB.求证:∠E=∠F.24.如图,点D在AB上,点E在AC上,AB=AC,BD=CE,求证:∠B=∠C.25.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.26.已知:如图,点D在△ABC的BC边上,AC∥BE,BC=BE,∠ABC=∠E,求证:AB=DE.27.如图,AC⊥CB,DB⊥CB,垂足分别为C、B,AB=DC,求证:∠A=∠D.28.如图,已知AD是△ABC的高,E为AC上的一点,BE交AD于点F,且有BF=AC,FD=CD,求证:BE⊥AC.29.已知:如图,AB=DE,AB∥DE,BE=CF,且点B、E、C、F都在一条直线上,求证:AC∥DF.30.如图,点B,E,C,F在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:∠B=∠F.31.如图,△ABC和△EFD的边BC、DF在同一直线上(D点在C点的左边),已知∠A=∠E,AB∥EF,BD=CF.(1)求证:△ABC≌△EFD;(2)求证:AC∥DE.32.如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BF=CE,求证:△ABC≌△DEF;33.如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.34.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.35.如图,∠1=∠2,∠C=∠D,求证:AC=AD.36.如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.37.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ 的形状,并加以证明.38.如图,AC⊥CB,DB⊥CB,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.39.如图,已知AB=AD,∠B=∠D=90°.求证:△ABC≌△ADC.40.如图,已知点A、E、F、C在同一直线上,∠1=∠2,AE=CF,AD=CB.判断BE和DF的位置关系,并说明理由.41.如图,△ABC中,AB=AC,点D,E在边BC上,且BD=CE.(1)求证:△ABD≌△ACE;(2)若∠B=40°,AB=BE,求∠DAE的度数.42.已知:如图,B,A,E在同一直线上,AC∥BD且AC=BE,∠ABC=∠D.求证:AB=BD.43.已知:如图,∠B=∠C=90°,AF=DE,BE=CF.求证:AB=DC.44.已知:点A、E、D、C在同一条直线上,AE=CD,EF∥BD,EF=BD.求证:AB∥CF.45.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.46.如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,AE=CF,求证:AB∥CD.47.已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.48.如图,A、B两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN,且使MN ⊥AB于点B,在BN上截取BC=CD,过点D作DE⊥MN,使点A、C、E在同一直线上,则DE的长就是A、B两建筑物之间的距离,请说明理由.49.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.50.如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:△ABF≌△CDE.51.已知:如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:BD=CE.52.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.53.已知:如图,AC与BD交于点O,AO=CO,BO=DO.求证:AB∥CD.54.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.55.如图,已知∠ABC=∠ADC=90°,E是AC上一点,AB=AD,求证:EB=ED.56.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.57.已知:如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.58.如图,D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.59.如图,BE=BC,∠A=∠D,求证:AC=DE.60.如图,AD,BC相交于点O,OA=OB,∠C=∠D=90°.(1)求证:△ACB≌△BDA.(2)当AC=3,AB=5时,求OD的长.2022年11月03日遵义三十二钟的初中数学组卷一.解答题(共60小题)1.如图所示:(1)A,B两点关于轴对称;(2)A,D两点横坐标相等,线段AD y轴,线段ADx轴;若点P是直线AD上任意一点,则点P的横坐标为;(3)线段AB与CD的位置关系是;若点Q是直线AB上任意一点,则点Q的纵坐标为.2.如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1).(1)在图中作△A'B'C',使△A'B'C'和△ABC关于x轴对称;(2)写出点A',B',C'的坐标;(3)直接写出△ABC的面积.3.如图,在△ABC中,∠C=90°,∠A=30°,AB=6cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?4.已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,BF=AE,求证:(1)△ABC是等腰三角形;(2)AF=CE.5.如图,在△ABC中,AB=AC,D为CA延长线上一点,且DE⊥BC交AB于点F.(1)求证:△ADF是等腰三角形;(2)若AC=10,BE=3,F为AB中点,求DF的长.6.如图,在△ABC中,DE垂直平分BC,垂足为E,交AC于点D,连接BD.若∠A=100°,∠ABD =22°,求∠C的度数.7.△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)作出△ABC关于x对称的△A2B2C2,并写出点A2的坐标;(3)求△AA1A2的面积.8.如图,在△ABC中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠DAC=30°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系,并说明理由.9.如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;(2)在图中,若B2(﹣4,2)与点B关于一条直线成轴对称,则这条对称轴是,此时C点关于这条直线的对称点C2的坐标为;(3)△A1B1C1的面积为;(4)在y轴上确定一点P,使△APB的周长最小.(注:不写作法,不求坐标,只保留作图痕迹)10.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=120°,∠BDC=2∠1,求∠DBC的度数.11.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)△ABC的面积;(2)在坐标系中作出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标.12.如图,在△ABC中,AB=BC,∠ABC=120°,AB的垂直平分线DE交AC于点D,连接BD,若AC=12.(1)求证:BD⊥BC.(2)求DB的长.13.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(2,0),C(4,4)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.14.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)作出△ABC关于y轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标.(3)在y轴上找一点P,使P A+PC的长最短.15.如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.16.如图,△ABC是等边三角形,P是△ABC的角平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.(1)若BQ=2,求PE的长(2)连接PF,EF,试判断△EFP的形状,并说明理由.17.如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.18.如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.19.如图,在△ABC中,AB=AC,∠B=30°,D为BC边上一点,∠DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.20.如图:已知AB=AC=AD,且AD∥BC求证:∠C=2∠D.21.如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.22.在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.23.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.24.如图,在△ABC中,AB=AC,点D是BC上一点,点E是AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.25.如图,△ABC中,BC=10,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.26.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.27.在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD,(1)当点E为AB的中点时,如图1,求证:EC=ED;(2)当点E不是AB的中点时,如图2,过点E作EF∥BC,求证:△AEF是等边三角形;(3)在第(2)小题的条件下,EC与ED还相等吗,请说明理由.28.如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.(2)当∠A=50°时,求∠DEF的度数.30.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:AE=BC.31.已知,如图,∠B=∠C,AB∥DE,EC=ED,求证:△DEC为等边三角形.32.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.34.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.35.如图:△ABC和△ADE是等边三角形.证明:BD=CE.36.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF.37.如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC=CE,连结CD,BE.(1)若∠ABC=80°,求∠BDC,∠ABE的度数;(2)写出∠BEC与∠BDC之间的关系,并说明理由.38.如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.(1)求证:△ACD为等腰三角形.(2)若∠BAD=140°,求∠BDC的度数.39.已知:如图,在△ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E,连接BE.(1)求证:CE=CB;(2)若∠CAE=30°,CE=2,求BE的长度.40.如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.(1)如图1,若∠BAC=40°,求∠AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.41.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.(1)若∠ABC=30°,∠ACB=40°,求∠DAE的度数;(2)已知△ADE的周长7cm,分别连接OA、OB、OC,若△OBC的周长为15cm,求OA的长.42.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE =∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.43.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.44.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.45.已知:如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E.(1)求证:CE=CB;(2)如果连接BE,请写出BE与AC的关系并证明.46.已知:如图,在△ABC中,点D是BC上一点,∠1=80°,AB=AD=DC.求:∠C的度数.47.如图,△ABC中,AB,AC边的垂直平分线分别交BC于点D,E,垂足分别为点F,G,△ADE的周长为6cm.(1)求△ABC中BC边的长度;(2)若∠BAC=116°,求∠DAE的度数.48.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE分别交AB、AC于D、E.(1)若AC=12,BC=10,求△EBC的周长;(2)若∠A=40°,求∠EBC的度数.49.已知在△ABC中,AB=AC,且线段BD为△ABC的中线,线段BD将△ABC的周长分成12和6两部分,求△ABC三边的长.50.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE =AC.(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠B的度数.51.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.52.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.53.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.54.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC.(1)求△PDE的周长;(2)若∠A=50°,求∠BPC的度数.55.如图,在△ABC中,AB=AC=6,BC=10,AB的垂直平分线分别交BC、AB于点D、E.(1)求△ACD的周长;(2)若∠C=25°,求∠CAD的度数.56.如图在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.57.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示).58.如图,△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.①若△BCD的周长为8,求BC的长;②若BD平分∠ABC,求∠BDC的度数.59.如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.60.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.。
全等三角形、轴对称综合测试题
ABCDE 全等三角形、轴对称期末复习1.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A 、两角和一边B 、 两边及夹角C 、 三个角D 、三条边2.如图,在△ABD 和△ACE 都是等边三角形,则ΔADC ≌ΔABE 的根据是( )A 、SSSB 、SASC 、ASAD 、AAS3.如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A 、2 B 、3 C 、5 D 、2.5 4.使两个直角三角形全等的条件是( )A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两边对应相等 5.如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个 6.下列平面图形中,不是轴对称图形的是 ( )7.下列图形:①角,②两相交直线,③圆,④正方形,其中轴对称图形有( )A 、4个B 、3个C 、2个D 、1个8.已知∠AOB=30︒,点P 在∠AOB 的内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则△P 1OP 2是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形 9.已知A 、B 两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A 、B 关于x 轴对称;②A 、B 关于y 轴对称;③A 、B 关于原点对称;④A 、B 之间的距离为4,其中正确的有( )A .1个B .2个C .3个D .4个10.如图:AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。
A 、2 B 、3 C 、4 D 、5第2题图 第3题图 第5题图 第10题图11.已知点A (a ,b )关于x 轴对称点的坐标是(a ,-12),关于y 轴对称点的坐标是(5,b ),则A 点的坐标是 。
全等三角形和轴对称综合练习
一、选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或 17D .10或 122. 下列美丽的图案中,是轴对称图形的是( )3. 如图,∠ACB=900,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm ,则BE=(1) A 、1cm B 、0.8cm C 、4.2cm D 、1.5cm4. 等腰三角形一边长等于4,一边长等于9,它的周长是 ( )A .17B .22C .17或22D .135. 等腰三角形一边长等于5,一边长等于9,则它的周长是( )A 、14B 、23C 、19或23D 、196. 如图,已知△ABC 中,∠ABC=45°,AC=4,H 是高AD 和BE 的交点,则线段BH 的长度为( )B. C.5D.4A .B .C .D .A题7图7. 已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )(1) A 、14 B 、18 C 、24 D 、18或24 8. 如图,∠B 、∠C 的平分线相交于F ,过点F 作DE ∥BC ,交AB 于D ,交AC 于E ,那么下列结论正确的是①△BDF 、△CEF 都是等腰三角形; ②DE =BD +CE ; ③△ADE 的周长为AB +AC ;④BD =CE ;A .③④B .①②C .①②③D .②③④9. 下列图形中,不是轴对称图形的是( )。
10.已知△ABC 的周长是24,且AB=AC ,又AD⊥BC ,D 为垂足,若△ABD 的周长是20,则AD 的长为( )。
A 、6B 、8C 、10D 、1211.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( )。
BCDADBCE F(第8题图)A、14B、16C、10D、14或1612.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形 B.平行四边形C.正三角形 D.矩形13.在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是()A.25° B.40°或30° C.25°或40° D.50°14.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点 B.三边中线的交点C.三边上高所在直线的交点 D.三边的垂直平分线的交点15.一个三角形任意一边上的高都是这边上的中线,•则对这个三角形的形状最准确的判断是()A.等腰三角形 B.直角三角形C.正三角形 D.等腰直角三角形16.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm17.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与EF交于F,若BF=AC ,那么∠ABC 等于( )A .45°B .48°C .50°D .60° 18.下列各命题中,假命题的个数为( )1面积相等的两个三角形是全等三角形;②三个角对应相等的两个三角形是全等三角形;③全等三角形的周长相等④有两边及其中一边的对角对应相等的两个三角形是全等三角形.A .1B .2C .3D .419.等腰三角形有一个角是,它的一条腰上的高与底边的夹角是( )(1) A B C 或 D 大小无法确定 20.已知等腰三角形的两边的长分别为3和7,则其周长为( )(1) A)13 B 17 C 13或17 D 不确定 21.如图∠BOP=∠AOP=15°,PC ∥OB ,PD⊥PB 于D ,PC=2, 则PD 的长度为( )。
最新-鲁教版数学轴对称练习题 精品
鲁教版数学轴对称练习题篇一:鲁教版《轴对称》经典复习题《轴对称》复习题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形正确的说法有()个.1个;.2个;.3个;.4个2.如图:等边三角形中,=,与相交于点,则∠的度数是().45°;.55°;.60°;.75°3等腰三角形是轴对称图形,它的对称轴是()过顶点的直线顶角平分线所在的直线底边上的中线底边上的高4等腰三角形的一个角是80°,则它的底角是()50°80°20°或80°50°或80°5如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是等腰三角形锐角三角形直角三角形钝角三角形6如右图,屋架设计图的一部分,点是斜梁的中点,立柱、垂直于横梁,=8,∠=30°,则和的长分别等于()2,2;4,2;2,4;4,47.如图:已知∠=∠=15°,∥,⊥,若=4,则=().4.3.2.18等腰三角形底边上的高等于腰的一半,则它的顶角度数为()、60°、90°、100°、120°9.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图5所示的图形,两条直角边在同一直线上.则图中等腰三角形有()个.1个.2个.3个.4个10.如图,四边形中,垂直平分,垂足为,下列结论不一定成立的是...()=()平分∠()=()△≌△图5(第10题图)图611如图6,?,??120?,的垂直平分线交于点,那么?的度数为().90?.80?.70?.60?12如图,在直角坐标系中,点、的坐标分别为(1,4)和(3,0),点是轴上的一个动点,且、、三点不在同一条直线上,当△的周长最小时,点的坐标是().(0,0).(0,1).(0,2).(0,3)13如图,在△中,∠=90°,∠=30°,以为圆心,任意长为半径画弧分别交、于点和,再分别以、为圆心,大于的长为半径画弧,两弧交于点,连结并延长交于点,则下列说法中正确的个数是()①是∠的平分线;②∠=60°;③点在的中垂线上;④△:△=1:3.、1;、2;、3;、414等腰△中,==10,∠=30°,则腰上的高等于___________.15.如图,△中,垂直平分,垂直平分,设与相交于,则点与边的关系如何?请用一句话表示:.16等腰三角形的周长是25,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为_____17如图,△中,是的垂直平分线,如果=3,△的周长为14,则△的周长为____________18.在△中,=,∠。
三角形全等及轴对称之综合题(我的原创)
1.如图1,点C 为线段AB 上一点,△ACM , △CBN 是等边三角形,直线AN ,MC 交于点F , (1)求证:AN=BM ;(2)求证: △CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明);2.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF3.如图,△ABC 中,E 、F 分别是AB 、AC 上的点.①AD 平分∠BAC ;②DE ⊥AB ,DF ⊥AC ;③AD ⊥EF .以此三个中的两个为条件,另一个为结论,可构成三个命题,即①②⇒③,①③⇒②,②③⇒①.试判断上述三个命题是否正确,并证明你认为正确的命题.4.如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将BOC △绕点C 按顺时针方向旋转60得ADC △,连接OD .(1)求证:COD △是等边三角形; (2)当150α=时,试判断AOD △的形状,并说明理由;(3)探究:当α为多少度时,AOD △是等腰三角形?A BC D O 110 α5.△ABC 中,∠A=90°,AB=AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由.6. 如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )7. 如图,△ABC 是等边三角形,点D 、E 、F 分别是线段AB 、BC 、CA 上的点, (1)若AD BE CF ==,问△DEF 是等边三角形吗?试证明你的结论; (2)若△DEF 是等边三角形,问AD BE CF ==成立吗?试证明你的结论.B8.将直角三角形(∠ACB 为直角)沿线段CD 折叠使B 落在B’处,若∠ACB’=60°,则∠ACD 度数为______.9.如图,已知线段AB 的端点B 在直线 l 上(AB 与 l 不垂直)请在直线 l 上另找一点C ,使△ABC 是等腰三角形,这样的点能找几个?请你找出所有符合条件的点.A Bl10.如图,在△ABC 中,AB =AC ,∠BAC =100°,MP 、NQ 分别垂直平分AB 、AC ,求∠1,∠2的度数.11.如图所示,AD 是△ABC 的角平分线,EF 是AD 的垂直平分线,交BC 的延长线于点F ,连结AF . 求证:∠BAF=∠ACF .12.如图所示,EFGH 是一矩形的弹子球台面,有黑、•白两球分别位于A 、B 两点的位置上,试问:怎样撞击白球,使白球先撞击边EF•反弹后再击中黑球?13.如图, ∠DEF =36°,AB=BC=CD=DE=EF ,求∠A14.如图所示,F 、C 是线段BE 上的两点, A 、D 分别在线段QC 、RF 上, AB=DE ,BF=CE ,∠B=∠E ,QR ∥BE .求证:△PQR 是等腰三角形.15.如图,已知点B,C,D 在同一条直线上,△ABC 和△CDE 都是等边三角形,BE 交AC 于F ,AD交CE 于H ,(1) 求证:△BCE ≌△ACD (2) 求证:BA E DCFED C B A PQ R F ED C B A D C21题⑵B EDCBA16.如图,在等边△ABC 中,延长AC 到D ,以BD 为一边作等边△BDE ,连接AE ,求证:AD=AE+AC.17.如图所示,∠B=90°,AD=AB=BC ,DE ⊥AC.求证BE=DC.18.求证:等腰三角形两腰上的中线相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A) (B)
(C)
(D)
全等三角形轴对称复习(一)作业
姓名: 学号: 班级
一、选择题
1、下面有4个汽车标致图案,其中是轴对称图形的是 ( )
① ② ③ ④
(A)②③④ (B)①②③ (C)①②④ (D)①②④
2、下列平面图形中,只有一条对称轴的图形是 ( )
3.如图,已知AC FE =,BC DE =,点A 、D 、B 、 F 在一条直线上,要使△ABC ≌△FDE ,还需 添加一个..条件,这个条件可以是 . 4.如图,四个三角形中,能构成全等三角形的是( ).
(A ) ①和② (B )②和③ (C )③和④ (D )②和④ 5.如图4,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠, 使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( ).
(A)5° (B)10° (C)20° (D)40°
6.如下图所示,这是出现在某种计数器上的一些数,其中不是轴对称图形的是( )
7.若等腰三角形的周长为26cm ,一边为11cm
,则腰长为( ) A
.11cm B 7.5cm C 11cm 或
7.5cm D 以上都不对
8.在△
ABC 中,三边长分别为,,,
c b a
满足,0
))()(
(=
---a c c b b a 则这个三角形一定是( ) A .等边三角形 B 等腰三角形 C 等腰直角三角形 D 以上答案都错 9.如果等腰三角形的一个角为︒45,那么另外两个角的度数是( )
A
C
D B
E
F
A '
B D
A
C A
B C
C B
A .︒︒90,45
B ︒︒5.67,5.67
C ︒︒︒︒5.675.6790,45,或
D ︒︒5.6745,
二、填空题:
10.长方形的对称轴有_________________条. 11.(-2,1)点关于x 轴对称的点坐标为__________.
12.如右上图,将长方形ABCD 沿对角线BD 折叠,使点C 恰好落在如图C 1的位置,若
∠DBC=30º,则∠ABC 1=________。
13.如右上图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,
∠A=35º,∠BCO=30º,那么∠AOC=_______。
14.等腰三角形一个角为100°,则另外两个角的度数为_________________________; 15.若A (2,b ),B )3,(-a 两点关于y 轴对称,则a =___________,b=___________。
三、作图题 (注:用直尺与圆规,要保留作图痕迹) 16.作图,三角形的三个内角的角平分线相交于一点, 这个点就是三角形的内心。
请同学作△ABC 的内心O 。
17.已知:如图所示,A 、B 两村庄在一条小河的同一侧,要在河边建一自来水厂向A 、B 两村庄供水。
(1)若要使厂址到A 、B 两村的距离相等, 厂址应设在哪个位置?
(2)若要使厂址到A 、B 两村的水管最省料, 厂址应设在哪个位置?
四、解答题(解答应写出文字说明、证明过程或演算步骤.)
18.如图,在△ABC 中,∠B=∠C ,AD 平分∠BAC ,求证:△
l A
B
· · l
A B ·
·
19.如图:已知,CA ⊥AB ,DB ⊥AB ,AC = BE ,AE = BD ,试猜想线段CE 与DE 的大小、
位置关系,并证明你的结论。
20.如图,点D 在BC 上,AC 与DE 交于点F ,∠1=∠2=∠3,AC =AE ,说出图中哪两个三角形全等,并给出证明过程.
21.如图,在△ABC 中, DA=CB=DC,若∠DCB=70º,求∠A 和∠B 。
22.如图,RT △ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E , ∠C=90º, ∠B=30º。
AB=10cm,BC=8.7cm;求AC 的长和△ADC 周长。
1 A B
D C
F E
3 2 A B
23.如下图,将矩形纸片ABCD 沿其对角线AC 折叠,使点B 落到点B '的位置,AB '与CD 交于点E , P 为线段AC 上一动点,PG AB '⊥于G ,PH DC ⊥于H ,连结PE ,已知,
30AC a BAC =∠= .
(1)判定AEC ∆是否是等腰三角形?并加以证明;
(2)在点P 运动过程中,PG PH +的值是否发生变化?并说明理由; (3)当点P 运动到使P 、H 、B '三点在一条直线上时, 试求
DE
的值.
24。
已知,如图1,点C 为线段AB 上一点,△ACM ,△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F . (1)求证:AN=BM ; (2)求证:△CEF 为等边三角形;
D C B A C。