2012七上第二章有理数的运算教案-2-1-2
浙教版七上数学第二章 有理数的运算全章教案-
2.1有理教的加法(一)教学目标月日总第课时1、通过实例经历加法法则的产生过程;2、掌握有理数的加法法则;3、会利用加法法则求两个有理数的和,会在数轴上表示两个有理数相加。
重点与难点重点:有理数的加法法则。
难点:有理数加法法则的发生过程比较复杂,异号两数相加包括绝对值相减、确定和的符号,学生不易掌握,容易发生差错,是本节数学的难点。
教学过程一、引入中国国家足球队在两场友谊比赛中,第一场净胜2球,第二场净负1球,请问两场比赛后,中国国家足球队合计胜几球?你能否用一个算式来表示最终结果?如何表示?这个算式与小学时学过的加法有何不同?由此引出课题。
二、讲授新课1、出示课本中的引例,请两位同学分别说出星期一和星期二这两天水泥进货的合计数量、出货的合计数量,并列出算式.根据学生列出的算式及结果,分组讨论,用自己的语言叙述同号两数相加的方法,教师归纳法则.2、继续考虑引例中星期一、星期二每一天的实际库存是增加了还是减少了?是多少?怎么用算式表示?类比于同号两数相加法则,由学生讨论、归纳异号两数相加法则,教师可对确定符号和确定绝对值的值两部分作适当的提示,启发学生观察和的符号,绝对值和两个加数的符号与绝对值的关系。
教师归纳法则,并进一步提出问题:两个有理数相加,除了同号、异号两种情况外,还有什么情形?引导学生从数的正、零、负三类情形进行讨论.教师完整地板书有理数的加法法则,并指出建立有理数加法的必要性和法则的合理性.然后让学生朗读法则,口答课本中“做一做”的练习.3、用引例的数据讲述有理数加法的数轴表示,更直观地反映有理数加法法则的合理性.4、例题.例1 计算下列各式:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)教师注意解答过程的示范,然后完成课本的“课内练习”,其中第3题要求学生板演,再由学生订正错误。
例2在数轴上表示下列有理数的运算,并求出计算结果.(1)(一3)+(4); (2)4+(一5).本题要求学生按要求在数轴上表示求解后,再用法则计算复查.例3(补充)小慧原来在银行存有零用钱350元,上个月取出了120元,这个月计划再存人50元,请用有理数的加法计算:(1)到上月底小慧在银行还有多少存款?(2)到这个月底小慧将有多少存款?5.课内练习(补充)计算:(1)(一1.37)+0;(2)(-68)+(-42)(3)(一27)+(+102);(4)(-4.2)+(+2.5)(5)(+14)+(-34); (6)(-256)+(+313)三、小结1.有理数的加法法则:2.有理数加法的数轴表示;3.有理数相加,先确定符号,再算绝对值;4.有理数的加法运算,和不一定大于加数.四、布置作业2.1 有理数的加法(二)教学目的月日总第课时1.通过合作学习,体验探索数学规律的思想和方法.2.理解加法的运算律.3.掌握多个有理数相加的顺序和方法,探索利用运算律简化运算过程.4.灵活运用有理数的加法解决简单实际问题.教学分析重点:加法运算律和多个有理数相加的顺序与方法.难点:例3的第(2)、(3)题,项较多,涉及分数运算,如何应用运算律需要较多的思考。
人教新版(2024)七年级数学上册-2.1.2 有理数的减法(教案)
2.1.2有理数的减法第1课时【教学目标】1.理解、掌握有理数的减法法则,会将有理数的减法运算转化为加法运算.2.通过把有理数的减法运算转化为加法运算,培养学生观察、归纳、概括及运算能力.3.经历由特殊到一般的归纳过程,培养学生抽象概括能力及表达能力.4.通过减法法则的转化,让学生初步体会转化、化归的思想.【教学重点难点】重点:有理数减法法则和运算.难点:有理数减法法则的理解与应用.【教学过程】一、创设情境复习引入:1.叙述有理数的加法法则.2.计算:①(-2)+(-6).②(-8)+(+6).③-7+=5.④+(-3)=12.3.问题:在月球表面,“白天”的温度可达127 ℃,太阳落下后的“月夜”气温竟下降到-183 ℃,请问在月球上温差是多少?(310 ℃)应如何列式计算呢?通过分析启发学生应该用减法计算上题,从而引出新课.二、探究归纳探究点1:有理数的减法法则问题1:温差是指最高气温减最低气温.北京市某天的气温为-5~5℃.(1)根据你的生活经验,你会说出这天的温差吗?(2)你还能从温度计上看出5℃比-5℃高多少℃吗?(3)你会列式求该天北京市的温差?追问1:怎样理解5-(-5)=10;①追问2:想一想,5+=10;②追问3:观察①,②两个等式的结果,你发现了什么?从结果中你能看出减-5相当于加哪个数?问题2:将式中的5换成0,-1,-4,用上述方法考虑:0-(-5),-1-(-5),-4-(-5).追问:这些数减-5的结果与它们加+5的结果相同吗?0-(-5)=,0+(+5)=;-1-(-5)=,-1+(+5)=;-4-(-5)= ,-4+(+5)= .问题3:计算:9-8= ;9+(-8)= ;15-7= ;15+(-7)= .从以上的运算中,你可以得到什么结论?要点归纳:有理数减法法则:减去一个数,等于加上这个数的 .表达式为:a -b =a +(-b ),显然两个有理数相减,差是一个有理数.【典例剖析】例1:(教材P31【例4】)计算:(1)-3-(-5);(2)0-7;(3)2-5;(4)7.2-(-4.8);(5) (-312)-514. 解:(1)(2)(3)2-5=2+(-5)=-3.(4)7.2-(-4.8)=7.2+4.8=12.(5) (-312)-514=(-312)+(-514)=-834. 【师生活动】师生共同完成.在完成过程中教师示范前两小题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下几个小题学生尝试完成,体验法则的运用.教师要提醒学生注意0-7这个式子,是学生容易出错的一个问题.【解题反思】在小学里,我们只会计算较大的数减去较小的数,观察例题中的计算,思考下面的问题:在有理数范围内,当较小的数减去较大的数的时候,所得的差的符号是什么?【设计意图】使学生加深对法则的理解与掌握,同时引导学生体会引入负数的好处.探究点2:有理数减法的应用例2:世界上最高的山峰是珠穆朗玛峰,其海拔高度是8 844.43米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米?例3:P36T10思路点拨:温差即最高气温与最低气温的差.首先要根据题意列式,利用法则求解,最后比较大小.要点归纳:应用有理数的减法解决温差、时差等实际问题时,一般是两个量比较,求一个量比另一个量多多少,列减法算式即可.三、检测反馈1.下列结论不正确的是()A.若a>0,b<0,则a-b>0B.若a<0,b>0,则a-b<0C.若a<0,b<0,则a-(-b)>0D.若a <0,b <0,且|b |<|a |,则a -b >02.下列运算中,正确的是 ( )A.3.58-(-1.58)=3.58+(-1.58)=2B.(-2.6)-(-4)=2.6+4=6.6C.0-(+25) - 75 =(+25)-75 = 25+(-75) = -1 D.38-145 = 38+(-95)=-57403.(1)(-3)- =1.(2) -7=-2.4.P32练习T15.P32练习T2四、本课小结内容 有理数的减法法则减去一个数,等于加上这个数的相反数 运算步骤1.将减号变为加号,将减数变为其相反数.2.利用有理数的加法法则进行计算. 五、布置作业P34T3,P35T4;P36T11六、板书设计七、教学反思1.通过创设情境引导学生参与探究,给学生充足的时间合作探究并归纳(用自己的语言叙述)有理数减法法则.重在培养学生自主学习的能力和语言表达能力.注意培养学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听别人的意见和建议.2.学生在合作交流、探索混合运算中,首先让学生考虑运算顺序的问题,这是所有混合运算必需首先解决好的问题,然后再从引例的角度遵循减法法则,让学生尝试将加减混合运算统一为加法运算;通过运算的比较,让学生感受到其中的必要性,而在整个探索活动中都充满着学生与学生之间的交流合作,给学生以充分发表意见的机会;让学生在自己与同伴的合作中去发现与探究.同时也注意教师与学生之间的对话;引导学生的思维方向,渗透转化的思想.3.减法运算时学生最容易出现的错误就是在把减变加时,往往不是变成相反数如:5-(-16)=5+(-16)就只变符号.加减混合运算学生更容易出错,并且方法掌握不好,要加强这方面的训练,注重算理的掌握.第2课时【教学目标】1.理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.2.通过加减法的相互转化,培养应变能力、计算能力.3.经历加减法之间的相互转化,培养学生的应变能力、口头表达能力及计算能力.4.理解有理数减法运算可以表示数轴上两点之间距离,体会数形结合思想的应用.【教学重点难点】重点:把加减混合运算理解为加法运算.难点:能把加、减法正确地统一成加法运算,并用加法运算律合理地进行运算.【教学过程】一、创设情境巩固复习:1.叙述有理数加法法则.2.叙述有理数减法法则.3.叙述加法的运算律.4.符号“+”和“-”各表达哪些意义?5.化简:+(+3);+(-3);-(+3);-(-3).6.口算:(1)2-7.(2)(-2)-7.(3)(-2)-(-7).(4)2+(-7).(5)(-2)+(-7).(6)7-2.引入新课:一架飞机作特技表演,起飞后的高度变化如下表:高度变化记作上升4.5千米+4.5千米下降3.2千米-3.2千米上升1.1千米+1.1千米下降1.4千米-1.4千米此时飞机比起飞点高了多少千米?如何计算呢?解法1:4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=1(千米)解法2:4.5-3.2+1.1-1.4=1.3+1.1-1.4=1(千米)【师生活动】学生快速组内思考回答.教师根据学生回答的情况给出两种解法,比较4.5+(-3.2)+1.1+(-1.4)和4.5-3.2+1.1-1.4,同时指出:我们实际问题中有时还要涉及有理数的加减混合运算,进而引入新知.二、探究归纳探究点1:有理数的加减混合运算问题1:引入相反数后,加减混合运算可以统一为加法运算.如:a +b -c =a +b + .将(-20)+(+3)-(-5)-(+7)转化为加法:(-20)+(+3)+(+5)+(-7).这个算式我们可以看作是 、 、 、 这四个数的和.为书写简单,省略算式中的括号和加号写为-20+3+5-7.可以读作负20、正3、正5、负7的和,或读作负20加3加5减7.在符号简写这个环节,有什么小窍门吗?问题2:观察下列式子,你能发现简化符号的规律吗?(-40)-(+27)+19-24-(-32)=-40-27+19-24+32(-9)-(-2)+(-3)-4=-9+2-3-4规律:数字前“-”号是奇数个取“-”;数字前“-”号是偶数个取“+”例1:计算:(-2)+(+30)-(-15)-(+27).例2:计算:(1)-712+611-512+511. (2)(-18.25)-425+(+1814)+4.4. 【解题反思】有理数加减混合运算的步骤:(1)将减法转化为加法运算.(2)省略加号和括号.(3)运用加法交换律和结合律,将同号两数相加.(4)按有理数加法法则计算.探究点2:数轴上两点间的距离问题:在数轴上,点A,B分别表示数a,b,对于下列各组数a,b,a=2,b=6;a=0,b=6;a=2,b=-6;a=-2,b=-6.(1)观察点A,B在数轴上的位置,你能得出它们之间的距离吗?(2)利用有理数减法法则探究:分别计算每组两个数的差,对比结果的绝对值与这两点之间的距离的关系.(3)你能说说对于任意的两个点A,B之间的距离与a,b的关系吗?(1)若点A,B有一个点在原点,不妨设点A在原点,如图(1)所示,则|AB|=|OB|=|b|=|a-b|;(2)若点A,B都不在原点,①设点A,B都在原点右侧,如图(2)所示,则|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②设点A,B都在原点左侧,如图(3)所示,则|AB|=|OB|-|OA|=|b|-|a|=-b―(―a)=|a-b|;③设点A,B在原点两边,如图(4)所示,则|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.归纳总结:设点A,B在数轴上分别表示数a,b,则点A,B之间的距离|AB|=|a-b|.说明:只要求学生利用数轴,通过观察几组数的情况后,知道用较大的数减去较小的数,得到的差就是这两点的距离即可,不需进行拓展.【设计意图】提出了利用有理数的减法计算数轴上两点之间的距离问题,让学生进一步体会数形结合的数学思想.探究点3:加减混合运算的应用例3:教材P35T7三、检测反馈1.若a =-2,b =3,c =-4,则a -(b -c )的值为 .2.计算:(1)-11-9-7+6-8+10.(2)-5.75-(-3)+(-5)-3.125.(3)|-114|-(-34)+1-|12-1|. 3.下列交换加数的位置的变形中,正确的是( )A.1-4+5-4=1-4+4-5B.-13+34-16-14=14+34-13-16C.1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1=4.5-2.5+1-1.74.计算1-2+3-4+5+…+99-100= .5.-4,-5,+7这三个数的和比这三个数的绝对值的和小 .四、本课小结1.本节课学习的主要内容有哪些?这些内容中体现了哪些数学思想方法?2.解答有理数加减混合运算需要注意的事项有哪些?其基本的运算步骤是什么?有理数加减法混合运算的步骤为:方法一:减法转化成加法1.减法变加法:a+b-c=a+b+(-c);2.运用加法交换律使同号两数分别相加;3.按有理数加法法则计算.方法二:省略括号法1.省略括号;2.同号放一起;3.进行加减运算.五、布置作业P34练习;P35T5;P36T13六、板书设计七、教学反思本节课的教学跨度大.相比前面的内容对学生的要求更高.要讲清楚有理数加减混合运算的步骤.教学中,尤其要注意在运用加法交换律和结合律时,存在4个易错点.如:3-8-6+7在进行用运算律时需要注意下面4点.1.这里的4项中的“-”均认为是“负号”.进行加法交换律时要连同数字前面的符号,不能只交换数字而不带上符号.如(3-7)-8+6这样就是错误的.2.进行加法结合律时要注意括号的位置应该包括数字前面的符号.如(3+7)-(8-6)这里的“-”应该包含在括号内.3.在两个括号之间要补上省略的加号.如(3+7)+(-8-6).4.括号里的两项-8-6其实是-8和-6进行加法运算.可以向学生说明,如果理解为减法的话,根据减法法则转化为加法,再省略加号会出现重复的结果.步骤如下:-8-6=-8+(-6)=-8-6所以对-8-6应该理解为-8和-6进行加法运算.可以认为是省略了“加号”,即两个负数进行加法运算.。
浙教版数学七年级上册第二章《有理数的运算》复习教学设计
浙教版数学七年级上册第二章《有理数的运算》复习教学设计一. 教材分析浙教版数学七年级上册第二章《有理数的运算》复习教学设计,主要涉及有理数的加法、减法、乘法、除法以及混合运算。
本章内容为学生提供了有理数运算的基本方法和规则,是进一步学习数学的基础。
教材通过丰富的例题和练习题,帮助学生掌握有理数运算的方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本章内容前,已初步掌握了实数的概念,对加法、减法、乘法、除法有一定的了解。
但部分学生对有理数运算的规则和技巧还不够熟练,特别是在混合运算中,对运算顺序和运算法则的掌握程度不一。
因此,在复习教学中,需要针对学生的实际情况,重点巩固运算规则,提高学生的运算速度和准确性。
三. 教学目标1.掌握有理数的加法、减法、乘法、除法运算方法。
2.掌握混合运算的顺序和运算法则。
3.提高学生的运算能力和逻辑思维能力。
4.培养学生的团队合作精神和自主学习能力。
四. 教学重难点1.重难点:有理数的混合运算。
2.难点:运算顺序和运算法则的运用。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握运算方法。
2.使用案例分析法,分析典型例题,让学生深刻理解运算规则。
3.运用合作学习法,分组讨论,培养学生的团队协作能力。
4.采用巩固练习法,通过适量练习,提高学生的运算速度和准确性。
六. 教学准备1.准备相关教案和教学PPT。
2.准备典型例题和练习题。
3.准备黑板和粉笔。
4.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)回顾实数的概念,引导学生认识到有理数是实数的一部分。
通过提问方式,让学生回顾加法、减法、乘法、除法的基本概念和方法。
2.呈现(10分钟)利用PPT展示本章的主要内容和知识点,包括有理数的加法、减法、乘法、除法以及混合运算的规则。
引导学生对比实数和有理数的区别,明确有理数运算的重要性。
3.操练(10分钟)分组进行练习,每组选择一道混合运算的题目进行讨论和解答。
北师大版数学七年级上册《 第二章 有理数及其运算 》教案
北师大版数学七年级上册《第二章有理数及其运算》教案一. 教材分析《第二章有理数及其运算》这一章主要介绍了有理数的概念、分类及有理数的运算规则。
内容涵盖了有理数的概念、分类、加减乘除运算、乘方运算等。
这部分内容是整个初中数学的基础,对于学生理解和掌握后续知识具有重要意义。
二. 学情分析学生在学习这一章内容时,已经具备了初步的数学运算能力,对数学概念有一定的理解。
但部分学生可能对有理数的概念和分类理解不深,对于有理数的运算规则容易混淆。
因此,在教学过程中,需要注重对学生概念的理解和运算规则的训练。
三. 教学目标1.理解有理数的概念,掌握有理数的分类。
2.掌握有理数的加减乘除运算规则,能够熟练进行计算。
3.理解有理数的乘方运算规则,能够进行相应的计算。
4.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算规则,特别是乘方运算。
五. 教学方法采用讲解、示例、练习、讨论等教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题,包括基础题和拓展题。
七. 教学过程1.导入(5分钟)通过复习小学学过的加减乘除运算,引出有理数的概念和分类。
2.呈现(15分钟)讲解有理数的概念和分类,示例说明有理数的运算规则。
3.操练(15分钟)让学生进行有理数的加减乘除运算,引导学生掌握运算规则。
4.巩固(10分钟)让学生进行一些有关有理数的运算题目,巩固所学知识。
5.拓展(10分钟)讲解有理数的乘方运算规则,让学生进行相关的计算。
6.小结(5分钟)对本节课的主要内容进行总结,强调重点和难点。
7.家庭作业(5分钟)布置一些有关有理数运算的题目,让学生课后巩固。
8.板书(课后整理)整理本节课的主要板书内容,方便学生复习。
教学过程每个环节所用时间共计50分钟,剩余10分钟用于学生自主学习和教师解答疑问。
针对以上教案对教学情境和教学活动的分析如下:一、教学情境本节课的主题是有理数及其运算,我通过创设生动有趣的教学情境,激发学生的学习兴趣。
七年级数学上册第2章有理数的运算2.2有理数的减法第1课时有理数的减法教学设计新版浙教版
七年级数学上册第2章有理数的运算2.2有理数的减法第1课时有理数的减法教学设计新版浙教版一. 教材分析《浙教版七年级数学上册》第2章有理数的运算2.2有理数的减法,主要介绍了有理数的减法法则。
通过本节课的学习,让学生掌握有理数的减法运算,并能够熟练运用减法法则进行计算。
教材通过例题和练习题的形式,帮助学生理解和巩固有理数减法的概念和运算方法。
二. 学情分析学生在学习本节课之前,已经学习了有理数的加法、乘法和除法,对有理数的运算有一定的基础。
但部分学生可能对减法的概念和运算规则理解不够清晰,容易与加法混淆。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.知识与技能:使学生掌握有理数的减法运算,能够熟练运用减法法则进行计算。
2.过程与方法:通过实例演示、小组讨论等方式,培养学生合作学习、解决问题的能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的耐心和细心。
四. 教学重难点1.重点:有理数的减法运算方法。
2.难点:理解减法的运算规则,能够正确进行减法计算。
五. 教学方法1.讲授法:讲解有理数减法的基本概念和运算规则。
2.演示法:通过实例演示,让学生直观地理解减法运算。
3.练习法:通过大量练习,让学生巩固减法运算方法。
4.小组讨论法:分组让学生讨论减法运算问题,培养学生的合作能力。
六. 教学准备1.准备相关课件和教学素材。
2.准备练习题和测试题。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题引入减法运算的概念,如:“小华买了3个苹果,吃掉了2个,还剩几个苹果?”引导学生思考减法运算的意义。
2.呈现(10分钟)讲解有理数减法的基本概念和运算规则,如减去一个数等于加上这个数的相反数。
通过示例,演示有理数减法的运算过程。
3.操练(10分钟)让学生进行减法运算练习,教师巡回指导。
可设置一些类似的题目,让学生独立完成,如:2.1 - 1.5 = ?3 - (-2) = ?4.5 - 3.2 = ?4.巩固(10分钟)小组讨论以下问题:1.有理数减法与有理数加法的区别和联系是什么?2.如何正确进行有理数减法运算?学生汇报讨论成果,教师点评并总结。
苏教科版初中数学七年级上册 第二章 有理数---运算教学案(2)
例(1) 23 (0.1)2 (1 1 ) (2)2 ( 1 )
4
4
(2) (2)4 (4) (1) (1)3 2
(3) 13 ( 11) (1 2)2 6 13 2
二、练 习
1. -1 4 +(- 1 )×(-2) 3 8
2. (-72) ×( 3 7 11 13 ) 4 6 12 24
2 9 12
9、—22×7—(—3)×6 +5
1
10 、—14—〔1—(1—0.5× )〕×6
3
TB:小初高题库
苏科版初中数学
相信自己,就能走向成功的第一步 教师不光要传授知识,还要告诉学生学会生活。数学思维
可以让他们更理性地看待人生
TB:小初高题库
苏科版初中数学
苏教科版初中数学
重点知识精选
掌握知识点,多做练习题,基础知识很重要! 苏科版初中数学 和你一起共同进步学业有成!
TB:小初高题库
第二章 有理数---运算(2)
苏科版初中数学
一、知识点复习 及例题选讲
知识点 12:混合计算
注意:运算顺序是关键,计算时要严格 按照顺序运算.考试经常考带乘方的 计算.
3
5
3
3、 - 4÷ ( - 1 ) - [ × ( - ) - ( - 0.5) ]
4、
5
627 ( 3)
5
5
5
5、10 (2)2 (5)
6 . 1.6 [( 2)2 (3)3 22 ] 3
1
12
7、— 54×2 ÷ (—4 )×
4
29
1 57
8 、( — + )×(—36)
北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x
北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x一. 教材分析《北师大版七年级数学上册》第二章《有理数及其运算》2.1《有理数》是整个初中数学的基础知识,主要介绍了有理数的概念、分类和运算。
本节课的内容对于学生来说是比较抽象的,需要通过实例和练习让学生理解和掌握有理数的概念和运算方法。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的认识有一定的了解,但是对有理数的概念和运算可能还比较陌生。
因此,在教学过程中,需要通过实例和练习让学生理解和掌握有理数的概念和运算方法。
三. 教学目标1.了解有理数的概念,能够对有理数进行分类。
2.掌握有理数的加、减、乘、除运算方法。
3.能够运用有理数的运算解决实际问题。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算方法。
五. 教学方法采用问题驱动法、实例教学法和练习法,通过引导学生自主探究、合作交流,让学生在实际问题中理解和掌握有理数的概念和运算方法。
六. 教学准备1.PPT课件2.实例和练习题七. 教学过程1.导入(5分钟)通过问题驱动,引导学生思考:在日常生活中,我们经常用到数,比如身高、体重、温度等,这些数都属于什么类型?从而引出有理数的概念。
2.呈现(10分钟)通过PPT课件,呈现有理数的定义、分类和运算方法。
引导学生关注有理数的符号表示和性质,如正负号、绝对值等。
3.操练(10分钟)让学生分组进行练习,运用有理数的运算方法计算各组题目。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师选取一些典型题目,让学生上黑板演示解题过程,其他学生跟学。
通过这种方式,巩固学生对有理数运算方法的掌握。
5.拓展(10分钟)让学生运用所学知识解决实际问题,如计算购物时的找零、温度转换等。
教师引导学生思考,拓展学生思维。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。
7.家庭作业(5分钟)布置一些有关有理数运算的练习题,让学生课后巩固所学知识。
北师大版七年级数学上册第二章有理数及其运算全章教案
五、教学反思
今天在教授有理数及其运算这一章节时,我发现学生们对有理数的概念和分类掌握得相对较好,但在具体的运算规则上,尤其是负数的乘除法则上,还存在一些困难。在课堂上,我尝试通过生动的例子和实际操作来帮助学生理解,但效果似乎并不如预期。
我意识到,有理数的乘除法对于刚接触负数的学生来说确实是一个挑战。在今后的教学中,我需要更加耐心地引导学生,通过更多的实际例题和练习,帮助他们逐步克服这个难点。同时,我也应该鼓励学生多提问,及时解答他们的疑惑,确保他们对这些概念有清晰的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数之比的数,包括正整数、负整数、零以及分数。它是数学运算的基础,广泛应用于日常生活和科学研究。
2.案例分析:接下来,我们来看一个具体的案例。通过温度变化的例子,展示有理数在实际中的应用,以及如何帮助我们解决问题。
-乘法中,两个负数相乘得正数的规则需要通过实例反复强化。
-除法中,理解“除以一个负数等于乘以它的倒数”的概念,并通过具体计算加深理解。
-通过具体的例子(如-2的平方和-2的立方),让学生观察和总结规律。
-难点三:在实际问题中的应用,如何将实际问题转化为有理数的运算问题。
此外,我也在思考如何让总结回顾环节更加高效。今天的总结回顾可能过于简单,没有充分激发学生的思考。未来,我打算在这一环节加入一些互动性强的活动,比如让学生自己总结今天学到的知识点,并尝试用他们自己的语言解释给其他同学听。这样既能检验他们的掌握程度,也能促进他们的表达能力。
七年级上学期数学浙教版参考教案第2章有理数的运算第2节《有理数的减法》2
2.2 有理数的减法(第2课时)【教学目标】知识目标:理解有理数加减法可以互相转化,会进行加减混合运算; 能力目标:培养观察、讨论、积极思维探索的能力及计算的准确能力. 情感目标:激发学生对数学的兴趣,培养学生热爱数学的情感.【教学重点、难点】重点:写成省略加号的和的形式及熟练地进行有理数的加减混合运算. 难点:能灵活运用加法运算律进行有理数的加减混合运算.【教学方法】比较、归纳、探索、练习等.【教学过程】一、创设情境,激发兴趣(-1)-(-2)+(-3)-(-4)+(-5)-(-6)…(-49)-(-50)在学生讨论交流下,提出问题(1)如何解该题? (2)如何将减号进行转变?二、合作学习,共同归纳根据上题,我们知道有理数的减法是先把它化为有理数的加法,即加减统一成加法1.提出问题:13 -(+14 )+(-34 )-(-23 )如何统一成加号?学生回答:13 +(-14 )+(-34 )+(+23 )2.省略加号如何表示?由教师讲解:在一个和式里,通常把各个加数的括号与它前面的加法省略不写.形如:13 -14 -34 +233.如何读呢?总结读法:按和式读做“正13 、负 14 、负34 与正23 的和”按运算意义读做“13 减 14 减34 加23 ”4.你认为如何计算:13 -(+14 )+(-34 )-(-23 )由学生合作交流,教师引导下得出有理数加减混合运算步骤:(1) 利用减法法则,将减法统一为加法.(2) 省略加号的和的形式,简化算式.(3) 运用加法交换律、结合律,使运算简单.三、实践应用,拓展延伸应用1:把写下式成省略加号的和的形式,并把它读出来.(-3)+(-8)-(-6)+(-7)由学生完成,并用两种方法读出.应用2:计算:(1)(+16)+(-29)-(-7)-(+11)+(+9);(2)(-3.1)-(-4.5)+(+4.4)-(+10.3)+(-4.5);(3)(+12 )-(+5)+(-13 )-(+14 )+(+413 );(4)(-252)-(-4.7)-(+0.5)+(-3.2). 法一:按正常顺序来解(从左到右)法二:运用简便方法来解(加法交换律和结合律)问:该如何灵活运用?根据上述解题过程,师生共同归纳.(1)使符号相同的加数放在一起.(2)互为相反数的放在一起.(3)使和为整数的加数放在一起.(4)使分母相同的加数放在一起. 应用3:一储蓄所在某时段内共理了8项现款储蓄业务:存入637元,取出1500元,取出2000元,存入1200元,存入3000元,存入1120元,取出3000元,存入1002元.问该储蓄所在这一时段内现款增加或减少了多少元?由师生共同合作、交流来完成。
第二章 有理数的运算教案-七年级上册数学人教版
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“有理数的运算”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题.“数与代数”是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.在小学阶段,学生认识了正有理数,掌握了正有理数的四则运算,在初中阶段,学生将认识负数,进一步学习有理数的四则运算.在“数与代数”中,运算是核心内容.“引进一种新的数,就要研究相应的运算;定义一种运算,就要研究相应的运算律”,这是代数的核心思想.在数系、运算法则和运算律(即对任何数都成立的通性)中获得的知识,可以方便地迁移到“以字母表示数”后的学习内容中去.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题和提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材七年级上册第二章“有理数的运算”,本章包括三个小节:2.1有理数的加法与减法;2.2有理数的乘法与除法;2.3有理数的乘方.本单元主要从加、减、乘、除的运算顺序去研究有理数的相关运算及运算律,主要的探究方法是举例验证、归纳总结.在有理数的运算中,加法与乘法着重在探究符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算.减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算.乘方是几个相同因数的乘积,因此可以利用乘法运算.这些运算之间相互联系,最后总结如何利用法则及运算律简化有理数的混合运算并解决实际问题.科学记数法与乘方有关,因而可进一步加以介绍.近似数在实际问题中有广泛的应用,在本单元作进一步的认识.利用计算器计算分两次安排,一次在加减乘除运算之后,一次在乘方运算之后.学会了使用计算器进行有理数的运算,较复杂的计算就可以用计算器完成.本单元重点是有理数的运算和运算法则;难点是在理解运算法则的基础上,养成良好的运算习惯.实际上,运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,这也是在整个“数与代数”领域中需要注意的问题.本单元教学主要是围绕有理数运算这个核心展开的,教学中一定要重视运算技能的训练,包括养成良好的运算习惯等.三、单元学情分析本单元内容是人教版教材数学七年级上册第二章有理数的运算.在“数与代数”中,有理数的运算是重要内容之一.学生之前已经学习了加数的运算和有理数的概念(数轴、相反数、绝对值),所以要有意识地把非负有理数的运算与有理数的运算结合起来.在本单元的学习过程中,有理数的运算的关键是符号法则和绝对值运算.通过新旧知识结合,再利用日常生活经验、数轴的几何直观等,将正数与负数的运算归结到非负数之间的运算,进而定义有理数的运算,得出运算法则,并运用有理数的运算法则解决简单的问题.本单元的知识及其思想方法也是后续学习的基础.四、单元学习目标1.经历有理数加、减、乘、除、乘方运算法则的获得过程,理解乘方的意义,掌握有理数的加、减、乘、除、乘方以及简单的混合运算,让学生体会转化与分类讨论的数学思想方法,培养学生的运算能力与抽象概括能力.2.理解有理数的运算律,并能用运算律进行简便运算,培养学生的运算能力和推理能力.3.能够运用有理数的运算解决简单的实际问题,培养学生的数学建模能力与应用意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难、由浅入深、循序渐进,突出基础知识、基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本单元的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
第二章 有理数的运算(教案)人教版(2024)数学七年级上册
第二章有理数的运算2.1有理数的加法与减法2.1.1有理数的加法(2课时)第1课时有理数的加法1.了解有理数加法的意义,理解有理数加法法则的合理性.2.能运用该法则准确进行有理数的加法运算.3.经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.重点了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点有理数加法中的异号两数如何进行加法运算.一、导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?二、探究新知一个小球作左右方向的运动,我们规定向左为负,向右为正.师:根据题意列出对应的式子:(1)如果小球先向右运动3米,再向右运动5米,那么两次运动后总的运动结果是什么?(2)如果小球先向左运动5米,再向左运动3米,那么两次运动后总的结果是什么?加数加数和(+3)+(+5)=+8,(-5)+(-3)=-8)师:你从上面的两个算式中发现了什么?归纳:同号两数相加,取相同的符号,并把绝对值相加.(3)如果小球先向右运动5米,再向左运动3米,那么两次运动后总的结果是什么?(4)如果小球先向右运动3米,又向左运动5米,两次运动后小球从起点向__左__运动了__2__米.加数加数和(+5)+(-3)=+2,(+3)+(-5)=-2)师:你从上面的两个算式中发现了什么?归纳:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(5)小球先向右运动5米,再向左运动5米,小球从起点向__左(右)__运动了__0__米.师:观察,你又有什么发现?归纳:互为相反数的两个数相加得0.总结归纳:有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.三、课堂练习试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-6)+(-5);(3)(+3)+(-7);(4)(+9)+(-4);(5)(+8)+(-8);(6)(-3)+0;(7)0+(+2);(8)0+0.【答案】(1)7(2)-11(3)-4(4)5(5)0(6)-3(7)2(8)0学生逐题口答后,师生共同得出.方法总结:1.先判断类型(同号、异号等);2.再确定和的符号;3.最后进行绝对值的加减运算.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第28页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.四、课堂小结五、课后作业教材P28练习第1,2,3,4题.本节课主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时有理数加法的运算律及运用1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.重点有理数加法运算律的运用.难点能运用有理数加法运算律来简化加法运算.一、导入新课问题1:在小学中我们学过哪些加法的运算律?加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).问题2:加法的运算律是不是也可以扩充到有理数范围?二、探究新知探究活动(一)1.计算(口算):(1)39+15=__54__,15+39=__54__;(2)(-98)+(-12)=__-110__,(-12)+(-98)=__-110__;(3)(-24)+(+24)=__0__,(+24)+(-24)=__0__;(4)(-23)+(+17)=__-6__,(+17)+(-23)=__-6__.问题3:通过以上的运算结果,你发现了什么?归纳加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变,加法交换律:a+b=b+a.探究活动(二)2.填空:(1)(-15)+(+26)+(+9)=[__(-15)__+__(+26)__]+(+9)=(-15)+[__(+26)__+__(+9)__]=__20__.(2)(-2)+(-12)+(+12)=[__(-2)__+__(-12)__]+(+12)=(-2)+[__(-12)__+__(+12)__]问题4:请你们猜想一下结合律在有理数加法中仍然成立么?使用这些运算律有什么好处呢?请小组开始讨论.归纳加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或先把后两个数相加,和不变.加法的结合律:(a +b )+c =a +(b +c ).师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.例1 计算:16+(-25)+24+(-35). 【答案】-20 例2 灵活运用运用加法交换律和结合律做简便运算 (1)(-25)+(+56)+(-39)+(+28); (2)(-1.9)+3.6+(-10.1)+1.4;(3)13 +(-34 )+(-13 )+(-14 )+1819 ; (4)(-337 )+12.5+(-1647 )+(-2.5).【答案】(1)20 (2)-7 (3)-119(4)-10问题:回顾以上各题的解答,思考:将怎样的加数结合在一起,可使运算简便? 总结归纳:1.一般地,总是先把正数或负数分别结合在一起相加; 2.有相反数的可先把相反数相加,能凑整的可先凑整; 3.有分母相同的,可先把分母相同的数结合相加. 师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂练习 1.计算:(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4).2.上周五股民新买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元)【答案】1.(1)-10 (2)-3 2.34元 四、课堂小结1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?五、课后作业教材P30练习第1,2,3题.本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的运算律在有理数范围内是否适用?”接着让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.2.1.2有理数的减法(2课时)第1课时有理数的减法1.掌握有理数的减法法则;2.能运用有理数的减法法则进行运算;3.渗透转化思想,培养运算能力.重点有理数的减法法则.难点有理数减法法则的推导.一、导入新课师:出示温度计,提出问题:1.你能从温度计上看出5℃比-5℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式5-(-5)=10.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了5-(-5)=10,而我们还知道5+(+5)=10.即5-(-5)=5+(+5).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则:减去一个数,等于加上这个数的相反数用符号表示:a-b=a+(-b).注意:减法在运算时有2个要素要发生变化: ①减号变加号;②减数变成它的相反数. 三、课堂练习师:出示教材P32例4. (1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)(-312 )-514.【答案】(1)2 (2)-7 (3)12 (4)-834计算(口答): (1)6-9;(2)(+4)-(-7); (3)(-5)-(-8); (4)(-2.5)-5.9; (5)1.9-(-0.6); (6)-25 -(45 );(7)0-(-5); (8)0-5.【答案】(1)-3 (2)11 (3)3 (4)-8.4 (5)2.5 (6)-65(7)5 (8)-5师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材32页练习. 四、课堂小结小结:谈谈本节课的收获. 思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?五、课后作业教材P32练习第1,2题.本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索.法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成,减法法则的归纳得出是本节课的难点,在这个过程中,教师适时、适度的引导,也体现教师是学生学习的引导者和伙伴的新型师生关系.第2课时 有理数的加减混合运算1.熟练掌握有理数的加法和减法运算法则;2.能进行有理数的加减混合运算,培养学生的计算能力.重点1.有理数的加减混合运算;2.将加减法统一成加法的省略括号的形式并读出来.难点1.有理数的加减混合运算;2.将加减法改写成省略括号和加号的形式并读出来.一、导入新课一口深3.5米的深井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米.问题:小青蛙爬出井了吗?学生回答.二、探究新知师:投影展示教材例5.计算(-20)+(+3)-(-5)-(+7).学生完成.说明:学生可以按照从左到右的运算顺序去进行计算.在这一过程中本身也需要将减法统一成加法,可以先让学生感受这一方法.师:提出新的问题,可否将其先统一成加法,然后再进行运算?学生讨论后回答.师:让学生尝试新的思路,然后与刚才的方法相比较.师:进一步提出,在刚才的过程中你是否注意到了加法运算律的应用.让学生再重新尝试做一做.之后师生共同归纳方法:有理数加减法的混合运算可以统一成加法运算.探索统一成加法以后的省略括号的书写形式及读法.师:出示例子(-20)+(+3)+(+5)+(-7)并指出,这个式子是否可看作-20,3,5,-7这四个数的和,为书写简便,可以写成省略括号和加号的形式:-20+3+5-7.可以读作(1)负20,正3,正5,负7的和.(2)负20加3加5减7.注意让学生理解这两种读法,尤其是第一种,学生可能不习惯,但在后面讲到多项式时还会涉及类似的问题.例6计算:14-25+12-17.解:14-25+12-17=14+12-25-17=26-42=-16.探究:在数轴上,点A,B分别表示数a,b.对于下列各组数a=2,b=6;a=0,b=6;a=2:b=-6;a=-2,b=-6.(1)观察点A,B在数轴上的位置,你能得出它们之间的距离吗?(2)利用有理数的运算,你能用含有a,b的算式表示上述各组点A,B之间的距离吗?一般地,你能发现点A,B之间的距离与数a,b之间的关系吗?三、课堂小结小结:谈谈你这节课的收获.四、课后作业教材P34练习第1,2题.在学生的合作交流、探求新知过程中,首先让学生考虑运算顺序的问题,这是所有混合运算必需首先解决好的问题,然后再从引例的角度遵循减法法则,让学生尝试将加减混合运算统一为加法运算;通过运算的比较,让学生感受到其中的必要性,而在整个探索活动中都充满着学生与学生之间的交流合作,给学生以充分发表意见的机会;让学生在自己与同伴的合作中去发现与探究.同时也注意引导学生的思维方向,渗透了转化的思想.2.2有理数的乘法与除法2.2.1有理数的乘法(2课时)第1课时有理数的乘法1.掌握有理数的乘法法则;2.能利用乘法法则正确进行有理数乘法运算.重点运用有理数的乘法法则正确进行计算.难点有理数乘法法则的探索过程及对法则的理解.一、导入新课师:由于长期干旱,水库放水抗旱,每天水位下降2米,已经放了3天,现在水位20米,问放水抗旱前水库水位多少米?生:26米师:能写出算式吗?生:……师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题.二、探究新知1.(1)教师出示以下问题,学生以组为单位探索.a.观察下面的乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一乘数逐次递减1,__积逐次递减3__.b.要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=-3,3×(-2)=__-6__,3×(-3)=__-9__.c.观察下面的算式,你又能发现什么规律?3×3=9,2×3=6,1×3=3,0×3=0.规律:__左右两个因数相乘,其中一个因数为3,若另一个因数逐次减少1,乘积也相应减少3__.d.要使c中的规律在引入负数后仍成立,那么应有:(-1)×3=__-3__,(-2)×3=__-6__,(-3)×3=__-9__.(2)以小组为单位对以上问题从符号和绝对值两个角度进行观察总结归纳,得出正数乘正数,正数乘负数,负数乘正数的规律.(3)利用(2)中的结论计算下面的算式,你又发现了什么规律?(-3)×3=__-9__,(-3)×2=__-6__,(-3)×1=__-3__,(-3)×0=__0__.规律:__随着后一乘数逐次减1,积逐次加3__.(4)按照(3)中的规律,填空,并总结归纳.(-3)×(-1)=__3__,(-3)×(-2)=__6__,(-3)×(-3)=__9__.结论:__负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积__.2.师生共同归纳总结有理数的乘法法则,并用文字叙述.(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同0相乘,都得0.讨论:(1)若a<0,b>0,则ab<0;(2)若a<0,b<0,则ab>0;(3)若ab>0,则a,b应满足什么条件?(4)若ab<0,则a,b应满足什么条件?3.运用法则计算,巩固法则.教师出示教材例1,师生共同完成,学生口述,教师板书,要求学生能说出每一步依据.教师出示例2,引导学生完成.4.倒数计算并观察结果有何特点?(1)12×2; (2)(-0.25)×(-4). 【答案】(1)1 (2)1要点:有理数中,乘积是1的两个数互为倒数. 思考:数a (a ≠0)的倒数是什么?(a ≠0时,a 的倒数是1a)巩固:口答,说出下列各数的倒数:1,-1,13 ,-13 ,5,-5,0.75,-213 .例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1 km ,气温的变化量为-6℃,攀登3 km 后,气温有什么变化?解:(-6)×3=-18. 答:气温下降18℃. 三、课堂练习 计算: (1)4×(-9); (2)-11×5; (3)(-0.3)×(-0.6);(4)(-12 )×23 ;(5)-98×0; (6)(-0.2)×(-13).【答案】(1)-36 (2)-55 (3)0.18 (4)-13 (5)0 (6)115四、课堂小结1.有理数乘法法则;2.有理数乘法的求解步骤; 3.乘积是1的两个数互为倒数. 五、课后作业教材P40练习第1,2,3题.本节课在引入时采用形象生动的多媒体课件,先激起学生的兴趣,使学生能在兴趣的指引下逐步开展探究.在引例中把表示具有相反意义量的正负数在实际问题中求积的问题,与小学算术乘法相结合,通过直观演示与多媒体结合,采用小组讨论合作学习的方式得出法则.第2课时 有理数乘法的运算律及多个有理数相乘1.正确理解乘法交换律、结合律和分配律,能用字母表示运算律; 2.能运用运算律较熟练地进行乘法运算; 3.掌握多个有理数相乘的运算方法.重点1.掌握多个有理数相乘的计算方法以及乘法运算律,能运用乘法运算律进行简便运算.2.运用有理数的乘法解决问题.难点逆用乘法分配律进行简便运算.一、导入新课1.有理数的乘法法则是什么?2.小学时候大家学过乘法的哪些运算律?二、探究新知1.提出问题,激发学生探索的欲望和学习积极性.计算(-5)×89.2×(-2)的过程能否使用简便方法,这样做有没有依据?小学里数的运算律在有理数中是否适用?2.导入运算律:(1)通过计算①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5.(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等.(3)用公式的形式表示为:ab=ba.这里的a,b表示有理数,讲解“a×b→a·b→ab”的过程.(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论,归纳出乘法结合律.用文字语言归纳:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.用公式的形式表示为:(ab)c=a(bc).(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式.(6)分组计算、比较,5×[3+(-7)])与5×3+5×(-7)的结果,讨论归纳出分配律.用文字语言归纳:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用公式的形式表示为:a(b+c)=ab+ac.(7)一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.a(b+c+d)=ab+ac+ad.3.几个不为0的数相乘:确定下列积的符号,试分析积的符号与各因数的符号之间有什么规律?2×3×(-0.5)×(-7),2×(-2)×(-0.5)×(-7),(-2)×(-3)×(-0.5)×(-7).当负因数个数为奇数时,积为__负__;当负因数个数为偶数时,积为__正__.结论1:几个不等于0的数相乘,积的符号由__负因数的个数__决定;结论2:有一个乘数为0,则积为__0__;三、课堂练习下列各式中用了哪条运算律?如何用字母表示?1.(-4)×8=8×(-4).乘法交换律:a×b=b×a.2.[(-8)+5]+(-4)=(-8)+[5+(-4)]. 加法结合律:(a +b )+c =a +(b +c ). 例3 用两种方法计算 (14 +16 -12)×12. 比较上面两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种解法运算量小?计算:-47 ×3.59-47 ×2.41+47×(-3).师:这道题直接进行计算显然比较麻烦,同学们想一想,有没有简便方法呢?生:同学相互讨论完成. 四、课堂小结小结:这节课你有什么收获? 1.乘法的运算律;2.多个有理数相乘积的符号规律. 五、课后作业教材P43练习第1,2题.新课引入设计,期望使学生始终处于积极的思维状态,学生利用已有的知识与经验引出当前要学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题环境中.在探求新知的过程中,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情,借助于多媒体手段,生动直观地分析问题.2.2.2 有理数的除法(2课时)第1课时 有理数的除法1.了解有理数除法的定义;2.经历有理数除法法则的探索过程,会进行有理数的除法运算; 3.会化简分数.重点正确运用除法法则进行有理数的除法运算. 难点怎样根据不同的情况来选取适当的方法求商.一、导入新课1.有理数的乘法法则;2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律; 3.倒数的意义. 学生回答以上问题. 二、探究新知(一)有理数除法法则的推导师提出问题:根据“除法是乘法的逆运算”填空: (-4)×(-2)=8 → 8÷(-4)=____; 6×(-6)=-36 → -36÷6=____; (-35 )×(45 )=-1225 → -1225 ÷(-35)=____; -8×9=-72 → -72÷9=____.问题:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗? 与小学学过的除法法则一样,对于有理数除法,得到有理数除法法则(一): 除以一个不等于0的数,等于乘这个数的倒数. 用字母表示为a ÷b =a ·1b(b ≠0).师指出,有理数除法法则(二):两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于0的数,都得0.教师点评:法则(1)所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);法则(2)揭示有理数除法的运算步骤:第一步,确定商的符号;第二步,求出商的绝对值.(二)有理数除法法则的运用 教师出示教材例4. 计算: (1)(-36)÷9;(2)(-1225 )÷(-35). 师生共同完成,教师注意强调法则:两数相除,先确定商的符号,再确定商的绝对值. 教师出示教材例5. 化简下列分数: (1)-123 ;(2)-45-12. 教师点拨:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.三、课堂练习 计算: (1)24÷(-6);(2)(-4)÷12 ;(3)0÷34 ;(4)(-78 )÷(-47).【答案】(1)-4 (2)-8 (3)0 (4)4932教师分析,学生口述完成. 四、课堂小结小结:谈谈本节课的收获.(有理数的除法法则) 五、课后作业教材P45练习第1,2题,P48习题第6,8题.学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象,并应该讲清楚除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则(二)计算;2.在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法.然后统一用乘法的运算律解决问题.第2课时 有理数的加减乘除混合运算1.掌握有理数加、减、乘、除运算的法则,运算顺序,能够熟练运算; 2.能运用法则解决实际问题.重点有理数四则混合运算的方法与技巧 难点如何按有理数的运算顺序,正确而合理地进行计算.一、导入新课问题1:小学的四则混合运算的顺序是怎样的? 问题2:我们目前都学习了哪些运算? 二、探究新知教师投影出示教材P45页例6 (1)(-12557 )÷(-5);(2)-2.5÷58 ×(-14).你能尝试解决这两个问题吗?学生尝试解决,然后交流,师生再共同分析.教师提出问题,进行有理数的乘除混合运算,运算顺序是怎样的?学生讨论后回答:乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)问题1:下列式子含有哪几种运算?先算什么,后算什么?归纳:有理数混合运算的顺序:先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的运算.三、课堂练习教师投影展示教材P46例7.教师先示范(1),然后学生口述,教师板书师生共同完成(2).过程中注意联系讲解法则的运用.教师出示例8.例8某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?提示,可记盈利为正数,亏损为负数.本例题教师可让学生上黑板板演,以便发现学生的问题,及时讲解和纠正.教师布置学生练习:教材47页练习题.学生独立完成,然后同学交流,教师安排学生板演.布置自学任务,使用计算器进行计算,教师布置学生互相交流,然后完成教材47页练习3.四、课堂小结小结:说说你本节课的收获.五、课后作业教材P47习题2.2第4,9,10题.在练习过程中,学生所表现出来的问题比较多,一是运算顺序出现问题;二是符号出现问题,尤其是两个负数相加经常和乘法中的负负得正混淆,异号两数相加也往往弄错符号.究其原因还是因为没有完全熟练掌握,形成能力.因此,在教给学生解题方法的同时,还要着重强调易错点,不断加强训练,才能确保计算准确无误.2.3有理数的乘方2.3.1乘方(2课时)第1课时有理数的乘方1.理解有理数乘方的意义;2.能正确进行有理数乘方运算;3.让学生经历探索乘方的有关规律的过程.重点理解有理数乘方的意义.难点理解有理数乘方的意义,熟练进行有理数的乘方运算.一、导入新课师:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的体积为2×2×2=8(cm3).2×2,2×2×2都是相同因数的乘法.生思考回答,为了简便,我们可以将它们记作什么,读作什么?同样:(-2)×(-2)×(-2)×(-2)记作什么?读作什么?(-25)×(-25)×(-25)×(-25)×(-25)记作什么?读作什么?a·a·a·a·a·a可以记作什么?读作什么?学生讨论交流后教师进一步提出:师:怎么表示a·a·…·a,\s\do4(几个a)) (n为正整数)呢?生归纳总结:可以记作a n,读作a的n次方.师:对于a n中的a,不仅可以取正数,还可以取0和负数,也就是说,a可以取任意有理数,这就是我们今天研究的课题:有理数的乘方(板书).二、探索新知师:求n个相同因数的积的运算,叫作乘方.乘方的结果叫作幂,相同的因数叫作底数,相同的因数的个数叫作指数.一般地,在a n中,a取任意有理数,n取正整数.注意:乘方是一种运算,幂是乘方运算的结果.a n看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.师:出示教材例1.提出问题:怎样进行乘方的运算,你能根据乘方的意义进行上面这个例题的运算吗?学生进行交流讨论,尝试解决.然后师生共同完成例1.师:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律?。
七年级数学上册 第二章有理数及其运算教案 教学设计、教案及练习
解析:由绝对值的性质可知|a-3|≥0,|b-2015|≥0,则有|a-3|=|b-2015|=0.
解:由绝对值的性质得|a-3|≥0,|b-2015|≥0,又因为|a-3|+|b-2015|=0,所以
|a-3|=0,|b-2015|=0,所以 a=3,b=2015.
方法总结:如果几个非负数的和为 0,那么这几个非负数都等于 0.
距离标准质量越小,即绝对值越小,就越接近标准质量.
解:(1)四号球,|0|=0 正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻 0.08
克,二号球,|+0.1|=0.1,比标准球重 0.1 克.
(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,
三者缺一不可.
探究点二:有理数与数轴的关系
【类型一】读出数轴上的点所表示的数
例 2 指出如图中所表示的数轴上的 A、B、C、D、E、F 各点所表示的数.
解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数, 在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.
解:由图可知,A 点表示:-4.5;B 点表示:4;C 点表示:-2;D 点表示:5.5;E 点表 示:0.5;F 点表示 7.
教学目标 1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了 解数形结合的思想方法;(重点) 2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点) 3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求 知欲. 板书设计: 1.绝对值的几何定义:一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值, 记作|a|. 2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0
七年级数学上册第2章有理数的运算2.1有理数的加法第2课时有理数加法运算律教学设计新版浙教版
七年级数学上册第2章有理数的运算2.1有理数的加法第2课时有理数加法运算律教学设计新版浙教版一. 教材分析本节课的内容是浙教版七年级数学上册第2章有理数的运算2.1有理数的加法第2课时有理数加法运算律。
这部分内容主要包括有理数的加法运算律,以及其应用。
学生在学习这部分内容时,需要理解和掌握有理数的加法运算律,并能够运用其解决实际问题。
二. 学情分析面对七年级的学生,他们已经掌握了有理数的基本概念和加法运算。
然而,对于有理数的加法运算律,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中抽象出有理数的加法运算律,并通过实例让学生感受和理解其应用。
三. 教学目标1.让学生理解和掌握有理数的加法运算律。
2.培养学生运用有理数的加法运算律解决实际问题的能力。
3.培养学生合作交流、归纳总结的能力。
四. 教学重难点1.重点:理解和掌握有理数的加法运算律。
2.难点:运用有理数的加法运算律解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作法。
通过提出问题,引导学生从实际问题中抽象出有理数的加法运算律;通过实例教学,让学生感受和理解有理数的加法运算律的应用;通过小组合作,培养学生合作交流、归纳总结的能力。
六. 教学准备1.准备相关实例,用于引导学生理解和掌握有理数的加法运算律。
2.准备练习题,用于巩固学生对有理数的加法运算律的理解和应用。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生从实际问题中抽象出有理数的加法运算律。
例如,提问:“小红买了一支铅笔花了5元,后又买了一支铅笔花了3元,她总共花了多少钱?”让学生思考并回答。
2.呈现(10分钟)通过实例教学,呈现有理数的加法运算律。
以小红买铅笔的例子,展示有理数的加法运算律:两个有理数相加,它们的和等于它们的代数和。
3.操练(10分钟)让学生分组进行练习,运用有理数的加法运算律解决实际问题。
每组选一个实例,例如:“小明有2个苹果,又得到了3个苹果,他一共有几个苹果?”让学生分组讨论并解答。
初一数学最新教案-第二章有理数的运算 精品
第二章有理数的运算本章是继第一章把数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是第一章的延续和发展。
本章的主要内容是有理数的加、减、乘、除和乘方运算(包括用计算器进行计算),以及与乘方和有理数运算密切相关的科学记数法、近似数和有效数字等。
数从自然数、分数扩展到有理数后,数的运算从内涵到法则都发生了变化,必须在原有的基础上重新建立。
这种数的运算法则的变化,主要原因是增加了负数的概念。
而到学了第三章实数,数系扩展到实数后,数的运算的内涵和法则(包括运算律)并没有多大变化,从这个意义上来说,有理数的运算是实数运算的基础和依据,也是代数式四则运算的重要基础。
因此,本章内容在第三学段的数学教学中的地位是至关重要的。
准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。
尤其计算器的使用,是《标准》所倡导的重视数学技术的标志之一。
本套教材将计算器取代了传统教材中的全部查表内容,不仅给学生学习带来方便,减轻学生负担,也给学生探索数学问题提供了有效的工具,对改变学生的学习方法和思维方式都产生良好的影响。
有理数的减法是加法的逆运算,有理数的除法是乘法的逆运算,因此,减法和除法可以转化为加法和乘法,而乘方可以看做乘法的特殊情况,所以本章教学的重点是有理数的加法和乘法运算。
有理数的混合运算需要运用多种法则,较复杂的符号判别和运算顺序是本章教学的主要难点。
本章教学时间约需16课时,具体安排如下:2.1 有理数的加法 2课时2.2 有理数的减法 2课时2.3 有理数的乘法 2课时2.4 有理数的除法 1课时2.5 有理数的乘方 2课时2.5 有理数的混合运算 1课时2.6 准确数和近似数 1课时2.7 计算器的使用 1课时复习、评价3课时,机动使用1课时,合计 16课时。
一、教科书内容和课程教学目标(1)本章知识结构框图如下:(3)本章教学要求①掌握有理数的加法和减法及简单的混合运算,理解有理数加法的交换律和结合律,并能运用加法运算律简化运算。
初中七年级上册初一数学第二章有理数的运算教案 2-1-2
2.1 有理数的加法(第2课时)【教学目标】➢知识目标:1、让学生熟练掌握三个或三个以上有理数相加的运算;2、加法的交换律和结合律在有理数运算中仍然成立,并能灵活运用加法的交换律和结合律使运算简便;➢能力目标:培养学生简便计算的能力,培养学生的类比能力;➢情感目标:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。
【教学重点、难点】➢重点:运用加法的交换律和结合律进行有理数的加法运算;➢难点:灵活运用运算律,使运算简便;【教学过程】一、情景设置:引例1:已知一辆卡车从A 站出发,先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,问卡车最后停在何处?分析:如果规定向东为“正”,则向东行驶15千米记作+15千米,向西行驶25千米记作-25千米,向东行驶20千米记作+20千米,则(+15)+(-25)+(+20)=?,问题成了三个有理数相加,一般地,三个或三个以上有理数相加,一般是依次相加,对于有括号的式子,应先进行括号里面的运算。
所以(+15)+(-25)+(+20)=(—10)+(+20)=+10,所以卡车最后停在A 站东面的10千米处。
引例2:计算:(11)(7)-++= ,(7)(11)++-= ;[(4)(7)](13)-+-++= ,(4)[(7)(13)]-+-++= ;学生回答:(11)(7)4-++=-,(7)(11)4++-=-;[(4)(7)](13)2-+-++=+,(4)[(7)(13)]2-+-++=+;教师启发:发现(11)(7)(7)(11)-++=++-,[(4)(7)](13)-+-++=(4)[(7)(13)]-+-++;要求学生再换几对不同的有理数试一试,结果如何?教师小结:发现加法的交换律和结合律在有理数运算中仍然成立。
二、知识点讲解:在有理数运算中,加法的交换律:两个有理数相加,交换加数的位置,和不变,即a b b a +=+;加法的结合律:三个有理数相加,先把前两个数相加,或者先把后两个数相加,和不变, 即()()a b c a b c ++=++;在引例1中的运算中,如果运用加法的交换律和结合律,则(+15)+(-25)+(+20)=[(+15)+(+20)]+(-25)=(+35)+(—25)=+10,显然这样的运算要比前面更好。
七年级数学上册第2章有理数的运算2.2有理数的减法第1课时教案新版浙教版68
2.2 有理数的减法(第1课时)一、教学目标:知识目标:掌握有理数的减法法则,熟练地进行有理数的减法运算。
能力目标:培养学生观察、归纳的数学能力及初步掌握转化的数学思想。
情感目标:通过积极参与探索有理数的减法法则及其应用的数学活动,体会相应的数学思想、数学与现实生活的紧密联系,增强应用意识,提高学生的学习兴趣。
二、教学重难点:重点:有理数的减法的运算法则,以及法则的应用。
难点:在实际生活中,正、负关系的确定以及原有知识的掌握。
三、教学过程:(一)导入新课:一天, 厦门的最高温度是9℃,哈尔滨的最高气温是-7℃,那么这一天厦门的最高温度比哈尔滨的最高气温高多少摄氏度?列出算式.由学生回答结果,在学生回答的基础上,让学生用式子加以表示:9-(-7)=16.提出问题:怎么进行这里的减法运算呢?有理数的减法法则是什么?(二)探究新知:1. 不妨我们看一个简单的问题:9 -(-7)=16. 9 +(?)=16.大家注意观察上面的两个算式,你能发现什么规律?先个人研究,而后交流. 比较两式,可以发现: 9“减去-7”与“加上+7”结果是相等的,即:减法变加法变相反数2.归纳:全班交流,从上述结果我们可以发现规律: 减去一个数,等于加上这个数的相反数.这就是有理数减法法则,由此可见,有理数的减法运算实质转化为加法运算.3. 例题讲解:例1: 计算:(1)5-(-5) (2)0-7-5(3)(-1.3)-(-2.1) (4)113 -212在学生口答的基础上,由教师引导归纳:(1)有理数减法是转化为有理数加法实施的.在进行减法运算时,首先应弄清减数的符号(是9 -(-7)=9+7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 有理数的加法(第2课时)
【教学目标】
知识目标:1、让学生熟练掌握三个或三个以上有理数相加的运算;
2、加法的交换律和结合律在有理数运算中仍然成立,并能灵活运用加法的交换
律和结合律使运算简便;
能力目标:培养学生简便计算的能力,培养学生的类比能力;
情感目标:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。
【教学重点、难点】
重点:运用加法的交换律和结合律进行有理数的加法运算;
难点:灵活运用运算律,使运算简便;
【教学过程】
一、情景设置:
引例1:已知一辆卡车从A 站出发,先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,问卡车最后停在何处?
分析:如果规定向东为“正”,则向东行驶15千米记作+15千米,向西行驶25千米记作-25千米,向东行驶20千米记作+20千米,则(+15)+(-25)+(+20)=?,问题成了三个有理数相加,一般地,三个或三个以上有理数相加,一般是依次相加,对于有括号的式子,应先进行括号里面的运算。
所以(+15)+(-25)+(+20)=(—10)+(+20)=+10,所以卡车最后停在A 站东面的10千米处。
引例2:计算:(11)(7)-++= ,(7)(11)++-= ;
[(4)(7)](13)-+-++= ,(4)[(7)(13)]-+-++= ;
学生回答:(11)(7)4-++=-,(7)(11)4++-=-;
[(4)(7)](13)2-+-++=+,(4)[(7)(13)]2-+-++=+;
教师启发:发现(11)(7)(7)(11)-++=++-,
[(4)(7)](13)-+-++=(4)[(7)(13)]-+-++;
要求学生再换几对不同的有理数试一试,结果如何?
教师小结:发现加法的交换律和结合律在有理数运算中仍然成立。
二、知识点讲解:
在有理数运算中,
加法的交换律:两个有理数相加,交换加数的位置,和不变,即a b b a +=+;
加法的结合律:三个有理数相加,先把前两个数相加,或者先把后两个数相加,和不变, 即()()a b c a b c ++=++;
在引例1中的运算中,如果运用加法的交换律和结合律,则(+15)+(-25)+(+
20)=[(+15)+(+20)]+(-25)=(+35)+(—25)=+10,显然这样的运算要比前面更好。
所以三个或三个以上有理数相加,一般是依次相加,对于有括号的式子,应先
进行括号里面的运算,但能运用运算律的要运用运算律,这样会使运算简便。
三、例题讲解:
例1:计算:
(1)(+14)+(-4)+(-1)+(+16)+(-5)
(2)(-2.48)+4.33+(-7.52)+(-4.33)
(3)5116 ()()() 6767 +-+-+-
解:(1)原式=[(+14)+(+16)]+[(-4)+(-1)+(-5)]=(+30)+(-10)=+20
一般地,多个有理数相加,可以把正数或负数分别结合在一起相加;
(2)原式=[(-2.48)+(-7.52)]+[4.33+(-4.33)]
=(—10)+0=-10
一般地,多个有理数相加,有相反数的先把相反数相加,能凑整的先凑整;
(3)原式=5116
()()()
6767
+-+-+-=
5116
[()][()()]
6677
+-+-+-
=2
(1)
3
+-=
1
3
-
一般地,多个有理数相加,有分母相同的,先把同分母的数相加;学生练习(一):计算:
(1)(-3.5)+[3+(-1.5)]
(2)(-18.65)+(-7.25)+(+18.15)+(+7.25)
(3)
53
( 2.25)()()(0.125)
84
-+-+-++
(4)
2111 (4)(6)(3)(2)
3234 -+++-+-
例2:小明遥控一辆玩具赛车,让它从A地出发,先向东行驶15米,再向西行驶25米,然后又向东行驶20米,再向西行驶35米,问玩具赛车最后停在何处?一共行驶了多少米?
解:规定向东为“正”,则(+15)+(-25)+(+20)+(—35)
=[(+15)+(+20)]+[(-25)+(-35)]
=(+35)+(-60)=-25(米)
一共行驶的路程为|+15|+|-25|+|+20|+|-35|=95(米)
答:玩具赛车最后停在A地向西25米处,一共行驶了95米。
学生练习(二):
四、思考题:
数扩展到有理数后,下面这些结论还成立吗?请说明理由(如果认为结论不正确,请举例说明):
(1)若两个数的和是0,则这两个数都是0;
(2)任何两数相加,和不小于任何一个加数;
五、小结:
(1)一般地,三个或三个以上有理数相加,一般是依次相加,对于有括号的式子,应先进行括号里面的运算;
(2)灵活运用加法的交换律和结合律进行有理数的加法运算;
(3)一般地,多个有理数相加,可以把正数或负数分别结合在一起相加;
一般地,多个有理数相加,有相反数的先把相反数相加,能凑整的先凑整;
一般地,多个有理数相加,有分母相同的,先把同分母的数相加;
六、作业:
必做题:书本P34A组1、2、3和B组4;选做题:书本P34C组5;。