圆锥曲线齐次式与点乘双根法
圆锥曲线大题11,向量内积为定值,点乘双根法更便捷
圆锥曲线大题11,向量内积为定值,点乘双根法更便捷
这里的计算使用点乘双根法更便捷哦:
【方法点睛】本题的关键点就在于
【方法点睛】证明向量内积为定值的方法与前面的题目中证明方法大同小异:
(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.
(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢
(3)巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算
先关注,再购买哟
付费专栏免费获取的方法。
圆锥曲线齐次式与点乘双根法
1一,圆锥曲线齐次式与斜率之积(和)为定值例1:12,Q Q 为椭圆222212x y b b+=上两个动点,且12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,求D 的轨迹方程.解法一(常规方法):设111222(,),(,)Q x y Q x y ,00(,)D x y ,设直线12Q Q 方程为y kx m =+,联立222212y kx mx y b b=+⎧⎪⎨+=⎪⎩化简可得: 22222222(2)42()0b k b x kmb x b m b +++-=,所以222222212122222222()(2),22b m b b m b k x x y y b k b b k b +-==++因为12OQ OQ ⊥所以2222222222221212222222222()(2)2()2=0222121b m b b m b k m b m b k x x y y b k b b k b k k +---+=+=+++++22232(1)m b k ∴=+*又因为直线12Q Q 方程等价于为0000()x y y x x y -=--,即200000x x y x y y y =-++对比于2y kx m =+,则00200x k y x y my ⎧-=⎪⎪⎨⎪+=⎪⎩代入*中,化简可得:2220023x y b +=. 解法二(齐次式):设直线12Q Q 方程为1mx ny +=,联立222222221111022mx ny mx ny x y x y b b b b+=+=⎧⎧⎪⎪⇒⎨⎨+=+-=⎪⎪⎩⎩ 22222()02x y mx ny b b +-+=化简可得:22222222202x y m x n y mnxy b b+---= 整理成关于,x y ,x y 的齐次式:2222222(22)(12)40b n y m b x mnb xy -+--=,进而两边同时除以2x ,则22222222122212(22)412022m b b n k mnb k m b k k b n ---+-=⇒=- 因为12OQ OQ ⊥12OQ OQ ⊥所以121k k =-,222212122m b b n -=-- 22232()b m n ∴=+*又因为直线12Q Q 方程等价于为0000()x y y x x y -=--,即200000x x y x y y y =-++对比于1mx ny +=,则0220002200x mx y y n x y ⎧=⎪+⎪⎨⎪=⎪+⎩代入*中,化简可得:2220023x y b +=. 例2:已知椭圆2214x y +=,设直线l 不经过点(0,1)P 的直线交于,A B 两点,若直线,PA PB 的斜率之和为1-,证明:直线l 恒过定点.3解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:旧坐标 新坐标(,)(',')x y x y ⇒即(0,1)(0,0)⇒所以'''1'x x A A y y B B =→⎧⎧⇒⎨⎨=-→⎩⎩原来12121111PA PB y y k k x x --+=-⇒+=-则转换到新坐标就成为:1212''1''y y x x +=- 12''1k k +=-即设直线l 方程为:''1mx ny +=原方程:2244x y +=则转换到新坐标就成为:22'4('1)4x y ++=4展开得:22'4'8'0x y y ++=构造齐次式:22'4'8'('')0x y y mx ny +++=整理为:22(48)'8'''0n y mx y x +++=两边同时除以2'x ,则2(48)'8'10n k mk +++=所以128''148m k k n +=-=-+所以12212m n m n -=⇒=+而''1mx ny +=1'()''1('')1022x n x ny n x y ∴++=⇒++-=对于任意n 都成立. 则:''0'2''2102x y x x y +=⎧=⎧⎪⇒⎨⎨=--=⎩⎪⎩,故对应原坐标为21x y =⎧⎨=-⎩所以恒过定点(2,1)-. 例3:已知椭圆22182x y +=,过其上一定点(2,1)P 作倾斜角互补的两条直线,分别交于椭圆于,A B 两点,证明:直线AB 斜率为定值.解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:5旧坐标 新坐标(,)(',')x y x y ⇒即(2,1)(0,0)⇒所以'2''1'x x A A y y B B =-→⎧⎧⇒⎨⎨=-→⎩⎩ 原来1212110021PA PB y y k k x x --+=⇒+=--则转换到新坐标就成为:1212''0''y y x x += 12''0k k +=即设直线AB 方程为:''1mx ny +=原方程:2248x y +=则转换到新坐标就成为:22('2)4('1)8x y +++=展开得:22'4'4'8'0x y x y +++=构造齐次式:22'4'4'('')8'('')0x y x mx ny y mx ny +++++=整理为:22'(48)''(48)(14)'0y n x y n m m x +++++=两边同时除以2'x ,则2(48)'(48)'140n k n m k m +++++=所以1248''048n mk k n++=-=+所以2n m =-而''1mx ny +='(2)'1'2'10mx m y mx my ∴+-=⇒--=.所以1=2k 平移变换,斜率不变,所以直线AB 斜率为定值12.6二,点乘双根法例4:设椭圆中心在原点O ,长轴在x 轴上,上顶点为A ,左右顶点分别为12,F F ,线段12,OF OF 中点分别为12,B B ,且12AB B △是面积为4的直角三角形.(1)求其椭圆的方程(2)过1B 作直线l 交椭圆于,P Q 两点,使22PB QB ⊥,求直线l 的方程.解:(1)221204x y +=(2)易知:直线l 不与轴垂直,则设直线l 方程为:(2)y k x =+,1122(,),(,)P x y Q x y因为22PB QB ⊥,则22=0PB QB ,所以211221212(2,)(2,)0(2)(2)(2)(2)0x y x y x x k x x --=⇒--+++=*现联立22222(2)5(2)2001204y k x x k x x y =+⎧⎪⇒++-=⎨+=⎪⎩则方程2225(2)200x k x ++-=可以等价转化212(15)()()0k x x x x +--=7即2222125(2)20(15)()()x k x k x x x x ++-=+--令2x =,22212122801648020(15)(2)(2)(2)(2)15k k k x x x x k -+-=+--⇒--=+令2x =-,212122164020(15)(2)(2)(2)(2)15k x x x x k -+-=+++⇒++=+结合21212(2)(2)(2)(2)0x x k x x --+++=*化简可得:22280161601515k k k --+=++2222118016160641642k k k k k --=⇒=⇒=∴=±所以直线l 方程为:1(2)2y x =±+.。
高中解析几何简化计算之点乘双根法
( Ⅰ)
设 P( m,0)
则→PA = ( →PA·P→B
x1 =(
,-Am( ,xy1 ,1 )y1,)P→,BB=(
x1 - m) ( x2 -
x2 ,y2 ) , ( x2 - m,y2 m) + y1 y2
), =(
x1
-
m)
(
x2
-
m) + k2 ( x1 - 1) ( x2 - 1) .
解题技巧与方法
JIETI JIQIAO YU FANGFA
131
高中解析几何简化计算之点乘双根法
◎陈俊健 ( 广西南宁市第三中学( 青山校区) ,广西 南宁 530021)
【摘要】高中解析几何在求解圆锥曲线与直线问题的时 候,通常需要联立方程,利用韦达定理去求解. 利用韦达定 理进行运算求解时,稍不注意就容易出错. 在求解点乘或者 斜率乘积为定值,甚至求 x1 x2 ,y1 y2 的时候,我们可以改进 解法,引入 点 乘 双 根 法,避 开 韦 达 定 理,简 化 计 算,减 少 失误.
C:
x2 a2
+
y2 b2
= 1 ( a > b > 0) 上,且椭圆的
离心率为
1 2
.
( 1) 求椭圆 C 的方程.
( 2) 若 M 为椭圆 C 的右顶点,点 A,B 是椭圆 C 上不同
的两点(
均异于
M)
且满足直线
MA
与
MB
斜率之积为
1 4
.
试判断直线 AB 是否过定点? 若是,求出定点坐标; 若不是,
定理进行繁杂计算的过程,达到简化计算、提高解题速度的
效果,下面举例说明.
例 1 ( 2018 年西南四省名校高三第一次大联考) 已知
圆锥曲线齐次式与点乘双根法
一、圆锥曲线齐次式与斜率之积(和)为定值且OQ 11OQ 2,过原点O 作直线Q 1Q 2的垂D (X, V0),设直线 Q 1Q 2 方程为 V= kx +m ,V = kx + m X 2 V 2 化简可得: ——+ — = 1 〔2b 2 b 2(2b 2k 2 + b 2)x 2 + 4kmb 2x + 2b 2(m 2 一b 2) = 0,所以2b 2(m 2 + b 2)b 2(m 2 -2b 2k 2)解法二(齐次式):w r k r第十讲 锥曲线齐次式与点乘双根法V = kx +m ,x]—0-二kV代入*中, 化简可得: x 2 -0- + V = mV 0x x 2V = --0-x + T- + V 对比于V VX 2 V 2 一例1:4%为椭圆乐+b=1上两个动点,线OD ,求D 的轨迹方程.解法一(常规方法):设Q ",V j Q 2a 2,V 2)x 2 y 2 x 2 y 2----------- 1 ---------(mx + ny )2 = 0 化简可得 --- 1 ------------ m 2x 2 一 n 2y 2 一 2mnxy = 02 b 2 b 22 b 2 b 2整理成关于 X , J X , J 的齐次式:(2 - 2b 2n 2)y 2 + (1 - 2m 2b 2)x 2 - 4mnb 2xy = 0,进而两边同时除以x 2,则1 -2 m 2 b 2(2 一 2b 2n 2)k 2 一 4mnb 2k +1 一 2m 2b 2 = 0 n k k = ---------1 2 2 - 2 b 2 n 2因为OQ 1 OQ OQ 1 OQ 所以kk =—1:.3 = 2b 2(m 2 + n 2)・・・*设直线Q 1Q 2方程为mx + ny=1,又因为直线Q1Q2方程等价于为y-y 0 =-x0- (x - x )y0x x 2y = -i x + t- + y对比于mx + ny = 1,则<x--------- 0—x 2 + y 0 (y2i代入*中,化简可得:x 2 + y 2 = -b2. x 2 , ____ __ .一例2:已知椭圆了+y2 =1,设直线,不经过点P(0,D的直线交于A,B两点若直线PA, PB的斜率之和为-1,证明:直线/恒过定点.解:以点P为坐标原点,建立新的直角坐标系x' py ',如图所示:即 k 「+ k 2' ―-1设直线l 方程为:mx '+ ny ' = 1原方程:X 2+ 4y 2 = 4则转换到新坐标就成为:x '2 + 4(y '+1)2 = 4 展开得:x '2 + 4y '2 + 8y' = 0构造齐次式:x '2 + 4y '2 + 8y '(mx '+ ny ') = 0 整理为:(4 + 8n )y '2 + 8mx'y '+ x '2 = 0 两边同时除以 x '2,则(4 + 8n )k '2 + 8mk '+1 = 08 m 1所以 k + k = ---- = —1 所以 2 m — 2 n — 1 n m — n + —1 2 4 + 8 n 2 , ,< ,1 ............................................. x’ “八而 mx + ny = 1「. (n + -)x + ny = 1 n n (x + y ) + --1 = 0 对于任意 n 都成立.x 2 y 2 ~ _ _例3:已知椭圆7 + 4- = 1,过其上一定点尸(2,1)作倾斜角互补的两条直线,分别交于椭所以原来 k pA +k pB =T ny -1, y -1 —t —+——x1—-1则转换到新坐标就成为:十,二一1 12x'+ y' — 0x ' n --1 — 0 [2x' = 2 t c ,故对应原坐标为 y =-2x = 2 1所以恒过定点(2,-1). y = -1即(0,1) n (0,0)8 2圆于A ,B 两点,证明:直线AB 斜率为定值.解:以点P 为坐标原点,建立新的直角坐标系x' py ',如图所示:旧坐标 新坐标即(2,1) n (0,0)所以原来『女。
【经典高考】高考数学 圆锥曲线齐次式与点乘双根法
一,圆锥曲线齐次式与斜率之积(和)为定值例1:12,Q Q 为椭圆222212x y b b+=上两个动点,且12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,求D 的轨迹方程.解法一(常规方法):设111222(,),(,)Q x y Q x y ,00(,)D x y ,设直线12Q Q 方程为y kx m =+,联立222212y kx mx y bb =+⎧⎪⎨+=⎪⎩化简可得: 22222222(2)42()0b k b x kmb x b m b +++-=,所以 222222212122222222()(2),22b m b b m b k x x y y b k b b k b+-==++ 因为12OQ OQ ⊥所以2222222222221212222222222()(2)2()2=0222121b m b b m b k m b m b k x x y y b k b b k b k k +---+=+=+++++ 22232(1)m b k ∴=+*又因为直线12Q Q 方程等价于为0000()x y y x x y -=--,即200000x x y x y y y =-++对比于y kx m =+,则00200x k y x y my ⎧-=⎪⎪⎨⎪+=⎪⎩代入*中,化简可得:2220023x y b +=.解法二(齐次式):设直线12Q Q 方程为1mx ny +=,联立222222221111022mx ny mx ny x y x y b b b b+=+=⎧⎧⎪⎪⇒⎨⎨+=+-=⎪⎪⎩⎩ 22222()02x y mx ny b b +-+=化简可得:22222222202x y m x n y mnxy b b+---= 整理成关于,x y ,x y 的齐次式:2222222(22)(12)40b n y m b x mnb xy -+--=,进而两边同时除以2x ,则22222222122212(22)412022m b b n k mnb k m b k k b n---+-=⇒=- 因为12OQ OQ ⊥12OQ OQ ⊥所以121k k =-,222212122m b b n-=-- 22232()b m n ∴=+*又因为直线12Q Q 方程等价于为0000()x y y x x y -=--,即200000x x y x y y y =-++对比于1mx ny +=,则0220002200x m x y y n x y ⎧=⎪+⎪⎨⎪=⎪+⎩代入*中,化简可得:2220023x y b +=.例2:已知椭圆2214x y +=,设直线l 不经过点(0,1)P 的直线交于,A B 两点,若直线,PA PB的斜率之和为1-,证明:直线l 恒过定点.解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:旧坐标 新坐标(,)(',')x y x y ⇒即(0,1)(0,0)⇒所以'''1'x x A A y y B B =→⎧⎧⇒⎨⎨=-→⎩⎩原来12121111PA PB y y k k x x --+=-⇒+=-则转换到新坐标就成为:1212''1''y y x x +=- 12''1k k +=-即设直线l 方程为:''1mx ny +=原方程:2244x y +=则转换到新坐标就成为:22'4('1)4x y ++=展开得:22'4'8'0x y y ++=构造齐次式:22'4'8'('')0x y y mx ny +++=整理为:22(48)'8'''0n y mx y x +++=两边同时除以2'x ,则2(48)'8'10n k mk +++=所以128''148m k k n +=-=-+所以12212m n m n -=⇒=+而''1mx ny +=1'()''1('')1022x n x ny n x y ∴++=⇒++-=对于任意n 都成立. 则:''0'2''2102x y x x y +=⎧=⎧⎪⇒⎨⎨=--=⎩⎪⎩,故对应原坐标为21x y =⎧⎨=-⎩所以恒过定点(2,1)-. 例3:已知椭圆22182x y +=,过其上一定点(2,1)P 作倾斜角互补的两条直线,分别交于椭圆于,A B 两点,证明:直线AB 斜率为定值.解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:旧坐标 新坐标(,)(',')x y x y ⇒即(2,1)(0,0)⇒所以'2''1'x x A A y y B B =-→⎧⎧⇒⎨⎨=-→⎩⎩原来1212110021PA PB y y k k x x --+=⇒+=--则转换到新坐标就成为:1212''0''y y x x += 12''0k k +=即设直线AB 方程为:''1mx ny +=原方程:2248x y +=则转换到新坐标就成为:22('2)4('1)8x y +++=展开得:22'4'4'8'0x y x y +++=构造齐次式:22'4'4'('')8'('')0x y x mx ny y mx ny +++++=整理为:22'(48)''(48)(14)'0y n x y n m m x +++++=两边同时除以2'x ,则2(48)'(48)'140n k n m k m +++++=所以1248''048n mk k n++=-=+所以2n m =-而''1mx ny +='(2)'1210mx m y mx my ∴+-=⇒--=.所以1=2k 平移变换,斜率不变,所以直线AB 斜率为定值12.二,点乘双根法例4:设椭圆中心在原点O ,长轴在x 轴上,上顶点为A ,左右顶点分别为12,F F ,线段12,OF OF 中点分别为12,B B ,且12AB B △是面积为4的直角三角形.(1)求其椭圆的方程(2)过1B 作直线l 交椭圆于,P Q 两点,使22PB QB ⊥,求直线l 的方程.解:(1)221204x y +=(2)易知:直线l 不与轴垂直,则设直线l 方程为:(2)y k x =+,1122(,),(,)P x y Q x y 因为22PB QB ⊥,则22=0PB QB ,所以211221212(2,)(2,)0(2)(2)(2)(2)0x y x y x x k x x --=⇒--+++=*现联立22222(2)5(2)2001204y k x x k x x y =+⎧⎪⇒++-=⎨+=⎪⎩则方程2225(2)200x k x ++-=可以等价转化212(15)()()0k x x x x +--= 即2222125(2)20(15)()()x k x k x x x x ++-=+--令2x =,22212122801648020(15)(2)(2)(2)(2)15k k k x x x x k -+-=+--⇒--=+令2x =-,212122164020(15)(2)(2)(2)(2)15k x x x x k -+-=+++⇒++=+结合21212(2)(2)(2)(2)0x x k x x --+++=*化简可得:22280161601515k k k --+=++2222118016160641642k k k k k --=⇒=⇒=∴=±所以直线l 方程为:1(2)2y x =±+.。
齐次式法与圆锥曲线斜率有关的一类问题
齐次式法与圆锥曲线斜率有关的一类问题本文介绍了利用“齐次式”法解决圆锥曲线斜率有关的顶点定值问题。
针对定点问题,文章提出了引入变量参数表示直线方程、数量积、比例关系等的方法,以寻找不受参数影响的量。
对于直线过定点问题,可以通过设出直线方程,利用韦达定理和已知条件找出k和m的一次函数关系式,代入直线方程解决。
在圆锥曲线中,有很多常见的定点模型,熟练掌握这些结论可以事半功倍。
举例来说,文章给出了一个07山东省的例题。
该题要求证明直线l过定点,并求出该定点的坐标。
通过设定直线方程,利用已知条件和韦达定理,可以求出直线方程中的k和m的关系式,代入方程解得定点坐标。
文章还提供了一些解题技巧,例如如何选择直线,如何转化题目条件等。
总的来说,本文介绍了一种解决定点问题的方法,并以圆锥曲线为例,详细说明了几种常见的定点模型。
文章语言简洁明了,逻辑清晰,对于解决类似问题有很大的帮助。
练7:已知点A(-1,0),B(1,-1)和抛物线C:y=4x,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图。
I)证明:OM·OP为定值;II)若△POM的面积为5,求向量OM与OP的夹角;III)证明直线PQ恒过一个定点。
解:(I)设点M(m,4m),则动直线l的斜率为k=4/m。
由于A、M、P三点共线,故有k·(-1)+4=m,即m=4/(k+1)。
又因为直线MB与抛物线C有两个交点,设另一点为Q(q,4q),则有q=-1/4.因此,OM·OP=|(m,4m)·(q,4q)|=|16(mq)^2|=|16/(k+1)^2|,为定值。
II)设∠PO M=α,则OM·OP·cosα=5.又因为△POM的面积为5,所以OM·OP·sinα=5.由此可得tanα=1,又因为α∈(0,π),所以α=45°。
因此,向量OM与OP的夹角为45°。
第607期:抛砖引玉——圆锥曲线齐次式与点乘双根法
第607期:抛砖引玉——圆锥曲线齐次式与点乘双根法
往期好文
●抛砖引玉——圆锥曲线的第三定义
●抛砖引玉——一定二动斜率定值
●抛砖引玉——解析几何同解变形思想
其次式、点乘双根算法是解决解析几何问题的一种简便算法,多见于解析几何与向量相结合的题目中,与传统方法相比,它可以神奇的大幅减少计算量。
一:圆锥曲线齐次式与斜率之积(和)为定值
解法一:通解
解法二:其次法
二,点乘双ห้องสมุดไป่ตู้法
齐次化解决圆锥曲线题目
齐次化解决圆锥曲线题目一、什么是齐次坐标?1.1 齐次坐标的概念在解决圆锥曲线题目时,我们经常会用到齐次坐标。
齐次坐标是指在二维欧几里德空间中,用三个数表示的点的坐标。
齐次坐标是一种扩充了的坐标表示方法,可以描述无穷远点和线上的点。
一个点的齐次坐标表示为[x, y, z],其中x、y、z为实数,同时不全为零。
如果两个齐次坐标[x₁, y₁, z₁]和[x₂, y₂, z₂]表示同一个点,那么它们之间成比例,即存在实数k,使得x₂=kx₁,y₂=ky₁,z₂=kz₁。
这就是齐次坐标的齐次性。
1.2 齐次坐标的优点齐次坐标有很多优点,可以简化计算过程,降低计算难度和复杂度。
•齐次坐标可以用来表示无穷远点,无需再通过其他方式单独表示。
•齐次坐标可以用来表示直线和曲线等特殊的几何对象,而不只是点。
•齐次坐标的运算可以通过矩阵乘法实现,简化了计算过程。
二、齐次坐标与圆锥曲线方程的关系2.1 一般式方程圆锥曲线可以用一般式方程表示,例如二次曲线的一般式方程为Ax² + Bxy + Cy² + Dx + Ey + F = 0。
当A、B、C不全为零时,这个方程表示一个二次曲线。
将二次曲线的一般式方程转化为齐次坐标的形式,可以得到齐次方程。
例如,对于二次曲线的一般式方程Ax² + Bxy + Cy² + Dx + Ey + F = 0,将其转化为齐次坐标的形式,我们可以得到一个齐次方程Ax² + Bxy + Cy² + Dxw + Eyw + Fw² = 0。
2.2 齐次坐标与直线的关系在齐次坐标中,直线可以表示为三个点的线性组合。
考虑一条直线L,由两个点P₁[x₁, y₁, z₁]和P₂[x₂, y₂, z₂]确定,那么直线L上的任意一点P[x, y, z]都满足以下齐次坐标关系:|x y z| |x₁ y₁ z₁| |x₂ y₂ z₂| = 0。
圆锥曲线中的齐次化方法
圆锥曲线中的齐次化方法
圆锥曲线的齐次化方法是一种将圆锥曲线转换为一个齐次方程的方法。
它通过将圆锥曲线的参数表示式转换为一个齐次方程,可以使得求解曲线上的点成为可能。
首先,要将圆锥曲线的参数表示式转换为一个齐次方程,需要将参数表示式中的变量转换为齐次坐标。
具体来说,将圆锥曲线的参数表示式中的变量u和v转换为齐次坐标x、y、z,即:
x = u cos v
y = u sin v
z = f(u, v)
其中f(u, v)表示圆锥曲线的参数表示式。
然后,将上述参数表示式代入齐次坐标,可以得到如下齐次方程:
x^2 + y^2 + z^2 - u^2 = 0
最后,可以将该齐次方程代入求解器,以求解曲线上的点。
第11讲 点乘双根法(解析几何)(解析版)
第11讲 点乘双根法知识与方法在计算两个向量的数量积(即点乘)时,会遇到 (x 1−x 0)(x 2−x 0)+(y 1−y 0)(y 2−y 0)的结构, 常规 方法是将它展开, 再结合韦达定理化简整理,也可以利用“点乘双根法”进行整体处理, 达到简化运算, 快速解题的目的.1.方法介绍所谓的“点乘双根法”, 是指构建双根式,整体处理含 或 (x 1−x 0)(x 2−x 0)(y 1−y 0) 等类似结构的计算问题.(y 2−y 0)2.理论基础二次函数 的双根式. 若一元二次方程 f (x )=ax 2+bx +c ax 2+bx +c =0(a ≠0)有两根 , 则, 取 , 可得 x 1,x 2f (x )=a (x−x 1)(x−x 2)x =x 0f (x 0)=a (x 1−x 0)(x 2−x 0).3.适用类型, 或 等形式.x 1x 2, y 1y 2,(x 1−m )(x 2−m ),(y 1−m )(y 2−m )PA ⋅PB 4.解题步骤化双根式 赋值 整体代入.→→典型例题下面以一个例题来说明点乘双根法的解题步骤.【例1】 已知点 是拋物线 上一定点, 以M (x 0,y 0)y 2=2px (p >0)M 为直角顶点作该抛物线的内接直角三角形 , 则动直线 过定点 △MAB AB .(x 0+2p,−y 0)【证明】设 , 由 , 得 A (x 1,y 1),B (x 2,y 2)MA ⋅MB =0(x 1−x 0)(x 2−x 0)+(y 1−y 0)(y 2−y 0)=0(∗)显然直线 不与 轴平行,设其方程为 .AB x x =my +t 步骤 1: 化双根式联立 , 得 , 方程两根为 , 则 {y 2=2px x =my +ty 2−2pmy−2pt =0y 1,y 2(y 1−y )(y 2−y )=y 2−2pmy (1)−2pt 联立 , 得, 则 {y 2=2px x =my +t x 2−(2t +2m 2p )x +t 2=0(x 1−x )(x 2−x )=x 2−(2t +2m 2p )x +t 2(2)步骤 2: 赋值在(1)中, 令 , 则 (4)y =y 0(y 1−y 0)(y 2−y 0)=y 20−2pmy 0−2pt 在(2)中, 令 , 则 (5)x =x 0(x 1−x 0)(x 2−x 0)=x 20−(2t +2m 2p )x 0+t 2步骤 3: 整体代入即 ,t 2−(2p +2x 0)t +x 20−m 2y 20+y 20−2pmy 0=0即 ,[t−(x 0−my 0)]⋅[t−(x 0+my 0+2p )]=0所以 或 ,t =x 0−my 0t =x 0+my 0+2p 情形一:当 , 即 时, 说明点 在直线 上, 不合题意;t =x 0−my 0x 0=my 0+t M AB 情形二:当 , 即 时, 直线 过定点 t =2p +x 0+my 0x 0+2p =m (−y 0)+t x =my +t .(x 0+2p,−y 0)综上所述:直线 恒过定点 .AB (x 0+2p,−y 0)通过本例可以看到,利用点乘双根法处理这类问题时,看起来式子仍然不少, 实际上运算量已经減少了很多.【例2】 设椭圆中心在原点 , 长轴在 轴上,上顶点为 , 左右顶点分别为 O x A F 1,F 2,线段 中点分别为 , 且 是面积为 4 的直角三角形.OF 1,OF 2B 1,B 2△AB 1B 2(1) 求椭圆的方程;(2) 过 作直线 交椭圆于 两点, 使 , 求直线 的方程.B 1l P ,Q PB 2⊥QB 2l【解析】(1)设所求椭圆的标准方程为 , 右焦点为 .x 2a 2+y 2b 2=1(a >b >0)F 2(c ,0)因为 是直角三角形, 又 , 故 为直角, 因此 ,△AB 1B 2|AB 1|=|AB 2|∠B 1AB 2|OA |=|OB 2|得 .b =c2 结合 c2=a 2−b 2 得 4b 2=a 2−b 2, 故 a 2=5b 2,c 2=4b 2 , 所以离心率 e =在 中, , 故 2Rt ABB ∆12OA B B ⊥22,1221||||22MBB B cS B B OA OB OA b b =⋅=⋅=⋅=由题设条件 , 得 , 从而 .2,4AB B S ∆=24b =22520a b ==因比, 所求椭圆的标准方程为 ;221204x y +=(2) 显然直线 不与 轴垂直,设 的方程为 ,l x l ()()1122(2),,,,y k x P x y Q x y =+因为 , 则 ,22PB QB ⊥220PB QB ⋅=所以 ()()()()()()2112212122,2,022220(*)x y x y x x k x x -⋅-=⇒--+++=联立 22222(2)5(2)2001204y k x x k x x y =+⎧⎪⇒++-=⎨+=⎪⎩因为 是方程的两根, 所以 ,12,x x ()()()2222125(2)2015x k x k x x xx ++-=+--令 , 得 ,2x =()()()()()2221212280164802015222215k k k x x x x k -+-=+--⇒--=+令 , 得 ,2x =-()()()()()21212216402015222215k x xx x k -+-=+++⇒++=+代入 (*), 得,22280161601515k k k --+=++化简可得: , 所以 ,22221801616064164k k k k --=⇒=⇒=12k =±故直线 方程为: .l 1(2)2y x =±+【例3】 设 分别为椭圆 的左、右顶点, 过左焦点 且斜率为 ,A B 22132x y +=F 的直线与椭圆交于 两点. 若 , 求 的值.k ,C D 8AC DB AD CB ⋅+⋅=k 【答案】 k =【解析】设点 , 由 得直线 的方程为 ()()1122,,,C x y D x y (1,0)F -CD (1)y k x =+,由方程组 , 消去 , 整理得 .22(1)12y k x y x =+⎧⎪⎨+=⎪⎩y ()2222236360k x k x k +++-=由韦达定理可得 .22121222636,2323k k x x x x k k -+=-=++因为,(A B 所以AC DB AD CB⋅+⋅()()11222211,,x y x y xy x y =+⋅-+⋅--1212622x x y y =--()()2121262211x x k x x =--++8=由 , 得 .8AC DB AD CB ⋅+⋅=()()21212111x x k x x +++=-因为 是方程 的两根, 所以12,x x ()2222236360k x k x k +++-=()()()()()()()2222221212236362323k xk x k k x x x x k x x xx +++-=+--=+--令 , 则 , 所以 0x =()22123623k kx x -=+21223623k x x k -=+令 , 则 1x =-()()()()222212236362311k k k k x x+-+-=+++所以 ()()12241123x x k ++=-+因为 ,()()21212111x x k x x +++=-所以 , 解得222223641,22323k k k k k--=-=++k =【例4】设 为曲线 上两点, 与 的横坐标之和为 4 .,A B 2:4x C y =A B (1) 求直线 的斜率;AB(2) 设 为曲线 上一点, 在 处的切线与直线 平行, 且 , M C C M AB AM BM ⊥求直线 的方程.AB 【答案】 (1) 1; (2) 7y x =+【解析】(1) 设 , 则 ()()1122,,,A x y B x y 2212121212,,,444x x x x y y x x ≠==+=于是直线 的斜率 .AB 12121214y y x x k x x -+===-(2) 由 , 得 .24x y =2x y '=设 , 由題设知, 解得 , 于是 ()33,M x y 312x =32x =(2,1)M 因为 , 所以 , 即 .AM BM ⊥0MA MB ⋅=()()()()121222110x x y y --+--=设直线 的方程为 , 因为点 在直线 上,AB y x m =+,A B AB 所以 ,1122,y x m y x m =+=+所以 .()()()()121222110x x x m x m --++-+-=由 得 . 由 , 得 .24y x m x y =+⎧⎪⎨=⎪⎩2440x x m --=16(1)0m ∆=+>1m >-()()21244x x m x x x x --=--在 式中, 令 , 得 (1)2x =()()212242422m x x -⨯-=--在(1)式中, 令 , 得 1x m =-()()212(1)4(1)411m m m x m x m --⨯--=+-+-∴()()()()12122211x x x m x m --++-+-,222424(1)4(1)40m m m m =-⨯-+--⨯--=解得 , 或 (舍), 所以直线 的方程为 .7m =1m =-AB 7y x =+强化训练1. 椭圆 , 若直线 与椭圆 交于 两点 22:143x x C +=:l y kx m =+C ,A B (,A B 不是左右顶点), 且以直线 为直径的圆恒过椭圆 的右顶点. 求证:直线AB C 恒过定点, 并求出该点的坐标.l【答案】 2,07⎛⎫⎪⎝⎭【解析】设椭圆的右顶点为 ,()()1122(2,0),,,,C A x y B x y 则 ()()1212220,(*)CA CB x x y y ⋅=--+=联立 , 整理得: ,22143x y y kx m ⎧+=⎪⎨⎪=+⎩()()222348430k x mkx m +++-=因为 是方程 的两个根, 所以12,x x ()()222348430k x mkx m +++-=()()()()()2222123484334(1)k xmkx m k x x x x +++-=+--取 , 得 ,2x =()()()()()2221243416433422k mk m k x x +++-=+--所以 (2).()()22122161642234k mk m x x k++--=+取 , 并两边同时乘以 , 可得 m x k =-2k 2221212231234m m m k y y k x x k k k -⎛⎫⎛⎫=++= ⎪⎪+⎝⎭⎝⎭(3).将(2和(3)整体代入 (*), 得,2222221616431203434k mk m m k k k ++-+=++即 , 即 或 ,2241670k mk m ++=(72)(2)0,2m k m k m k ++=∴=-27m k =-当 时, 直线 过点 , 不合题意;2m k =-:(2),l y kx m k x l =+=-(2,0)C 当 时, 直线 , 显然 恒过定点 .27m k =-2:7l y kx m k x ⎛⎫=+=- ⎪⎝⎭l 2,07⎛⎫⎪⎝⎭2. 已知椭圆 的右焦点为 , 过 且与2222:1(0)x y E a b a b+=>>(1,0)F F x 轴垂直的弦长为 3 .(1) 求椭圆标准方程;(2) 直线 过点 与满圆交于 两点, 问 轴上是否存在点 , 使 l F ,A B x P PA PB ⋅为定值?若存在, 求出 的坐标; 若不存在, 说明理由.P【答案】 (1) ; (2) 见解析22143x y +=【解析】 (1)易得椭圆标准方程为 ;22143x y +=(2) 当直线 的斜率存在时, 设为 , 则直线 的方程为 ,l k l (1)y k x =-设 , 则()()1122(,0),,,,P m A x y B x y ()()()22221234(1)1234x k x k x x x x +--=+--(1).()()1122,,,PA x m y PB x m y =-=-()()()()()()21212121211(2)PA PB x m x m y y x m x m k x x ⋅=--+=--+--在(1)中令 , 得 , (3)x m =()()22212234(1)1234m k m x m x m k+----=+在(1)中令 , 得 , (4)1x =()()12291134x x k ---=+把(3)4代入(2)并整理得()()22224(1)931243m k m PA PB k --+-⋅=+ 所以, 得 , 此时 .()224(1)931243m m---=118m =13564PA PB ⋅=- 当直线 的斜率不存在时, , 仍有 .l 33111,,1,,,0228A B P ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13564PA PB ⋅=- 综上所述, 的坐标为 .P 11,08P ⎛⎫⎪⎝⎭3. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点, 直线 与椭圆 有且只有一个公共点 .:3l y x =-+E T (1) 求椭圆 的方程及点 的坐标;E T (2) 设 是坐标原点, 直线 平行于 , 与椭圆 交于不同的两点 , O l OT E ,A B 且与直线 交于点 . 证明: 存在常数 , 使得 , 并求 l P λ2||||||PT PA PB λ=⋅λ的值.【答案】 (1) (2) ,(2,1);45λ=【解析】 (1) , 点 坐标为 , 过程路.22163x y +=T (2,1)(2) 由已知可设直线 的方程为 ,l 1(0)2y x m m =+≠由方程组 可得 1,23y x m y x ⎧=+⎪⎨⎪=-+⎩223213m x m y ⎧=-⎪⎪⎨⎪=+⎪⎩所以 点坐标为 , 设点 的坐标分别为, P 222282,1,||339m m PT m ⎛⎫-+= ⎪⎝⎭,A B ,()()1122,,,A x y B x y 由方程组 , 可得 (1)2216312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩()22344120x mx m ++-=而 是 的两根, 所以12,x x ()22344120x mx m ++-= (2)()()()2212344123x mx m x x x x ++-=--方程(2)的判别式为 , 由 , 解得 .()21692m ∆=-0∆>m <<由(2)得 212124412,33m m x x x x -+=-=所以1122||233m m PA x x ==-=-同理, 所以22||3m PB x =-1252222433m m PA PB x x ⎛⎫⎛⎫=----⎪⎪⎝⎭⎝⎭②中令,得223mx =-得()2212222232424123223333m m m m m m x x ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-=---- ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭得 21222822339m m x x m ⎛⎫⎛⎫----= ⎪⎪⎝⎭⎝⎭,故存在,使得2109PA PB m =54λ=2||||||.{PT PA PB λ=⋅。
高中数学圆锥曲线解题思路
高中数学圆锥曲线解题思路
一、基本方法
1、待定系数法,基本量,求直线方程中的参数,求曲线方程中的a、b、c、
e、p。
2、齐次方程法,比值问题,解决离心率渐近线夹角等比值问题。
3、韦达定理法,直线和曲线的相交问题。
对交点设而不求,勇韦达定理实现转化,如果根很容易求得,需要直接求根。
4、点差法,弦中点问题,对端点设而不求。
也叫五条等式法,点满足方程2个,中点公式2个,斜率公式1个。
5、距离转化法,将斜线上的长度问题,比例问题,向量问题,转化为直线上的问题。
二、基本思想
1、常规求值需要找等式,求范围找不等式。
2、是否存在”当存在解决不存在的自然无解。
3、过“定点”“定值”先设参变量,然后说明和变量无关。
定点问题:常把参数的齐次项放在一起,令=0。
或者特殊值探解。
定值问题:把变动的参数表示出来,然后证明和参数无关,或者特殊求值,在进行一般证明。
最值问题:几何法,二次配方法,三角代换法,均值不等式,切线方法
4、有些题思路易成,但是难以实施,需要优化方法,才具有可行性,积累经验。
5、大部分题目只要忠诚的准确的将条件表达出来,一般都会产生思路。
三、解题套路
1、一化(点,直线,曲线化成代数式)
2、二代(点代入线,点代入曲线)
3、图形特点的代数化
4、解方程组出答案。
「高中数学技巧提升篇」圆锥曲线中点乘双根法具体步骤及典型例题
「高中数学技巧提升篇」圆锥曲线中点乘双根法具体步骤及典
型例题
圆锥曲线的题目计算量很大,你是知道的,所以在原方法的基础上,给出另外的计算方式
给你的解题思路多一点灵感
一道例题的解法,利用圆锥曲线点乘双根法解的!
另外,在洪老师的高中高考提分资料库中,我们的数学老师针对高一到高三数学汇总了63个常用常见的考点的额解题方法资料。
如有需要高一到高三常用常考解题方法大全可以发送私信063。
:点此进入洪老师的高考必备资料,底下有个“666”按钮,点进去有相关提示哦
高一到高三解题方法大全目录
下面是我们先来熟悉一下点乘双根法的具体步骤:
例题和两个解法。
数学分析:点乘双根法
数学分析:点乘双根法知识与方法1.预备知识(二次函数的两根式):一般地,设=++≠f x ax bx c a 02)()(,若一元二次方程++=ax bx c 02有两根x 1和x 2,则必有=−−f x a x x x x 12)()()(, 即++=−−ax bx c a x x x x 122)()(.2.点乘双根法:若我们将直线与圆锥曲线方程联立,得到关于x 的一元二次方程++=ax bx c 02≠a 0)(,并且假设该方程的两根为x 1和x 2,现在我们要计算−−x t x t 12)()(这个量,此时当然可以将其展开,利用韦达定理来进行计算,但更简单的操作方法是利用二次函数的两根式,得出++=−−ax bx c a x x x x 122)()(,并在两端同时令=x t ,即可得到++=−−at bt c a t x t x 122)()(,从而−−=++ax t x t at bt c122)()(,这样就求出了我们想要的量,这种技巧叫做“点乘双根法”,其一般的步骤是“化两根式→赋值→求得结采”.【例题】已知抛物线=>E y px p :202)(的焦点为F ,A y 1,0)(>y 00)(为抛物线E 上一点,=AF 45 (1)求p 和y 0的值;(2)过F 作两条互相垂直的直线与抛物线E 交于另外两点B 和C ,证明:直线BC 过定点. 【解析】(1)由题意,=+=AF p 2415,解得:=p 21,所以抛物线C 的方程为=y x 2,将A y 1,0)(代入=y x 2得:=y 102,又>y 00,所以=y 10. (2)解法1:显然直线BC 不与坐标轴垂直,可设其方程为=+x my t ≠m 0)(,设B y y ,112)(,C y y ,222)(,易得直线AB 和AC 斜率均存在,因为⊥AB AC ,所以−−⋅=−−−y y y y 11111122212,从而++=−y y 11112)()(①,联立⎩=⎨⎧=+y xx my t2消去x 整理得:−−=y my t 02②,因为y 1和y 2是方程②的两根,所以−−=−−y my t y y y y 122)()(,令=−y 1得:+−=−−−−m t y y 11112)()(,所以++=+−y y m t 11112)()(代入式①得:+−=−m t 11,所以=+t m 2,故直线BC 的方程为=++x my m 2,即=++x m y 12)(,所以直线BC 过定点−2,1)(.解法2:显然直线BC 不与坐标轴垂直,可设其方程为=+x my t ≠m 0)(,设B x y ,11)(,C x y ,22)(,联立,消去x 整理得:①,则和是方程①的两根,所以,令=y 1得:−−=−−m t y y 11112)()(,所以−−=−−y y m t 11112)()(联立消去y 整理得:−++=x t m x t 20222)(②,则x 1和x 2是方程②的两根,所以−++=−−x t m x t x x x x 212222)()()(令=x 1得:−−+=−−t m t x x 12111222)()(,所以−−=−−+x x t m t 11121222)()(,由(1)知点A 的坐标为1,1)(,所以=−−AB x y 1,111)(,=−−AC x y 1,122)(, 由题意,⊥AB AC ,所以⋅=−−+−−=AB AC x x y y 111101212)()()()(, 从而−−++−−=t m t m t 121022)()(整理得:+−−−=t m t m 120)()(,所以=−t m 1或=+t m 2, 若=−t m 1,则直线BC 的方程为=+−x my m 1 即=−+x m y 11)(,显然直线BC 过点A ,不合题意, 所以=+t m 2,从而直线BC 的方程为=++x my m 2, 即=++x m y 12)(,故直线BC 过定点−2,1)(.【反思】当涉及到−−x t x t 12)()(或−−y t y t 12)()(这种结构计算时,就可以考虑使用点乘双根法,这是一种能够降低计算复杂度的优越算法.强化训练1.(★★★★)椭圆+=>>a ba b x y 102222)(的左焦点为F ,左、右顶点分别为A 、B ,离心率为,=AB .(1)求椭圆的方程;(2)过F 且斜率为k 的直线l 与椭圆交于C 、D 两点,若⋅+⋅=AC DB AD CB 8,求k 的值. 【解析】(1)由题意,==AB a 2=a又椭圆的离心率eb , 故椭圆的方程为+=x y 32122. (2)由(1)可得A )(,B),−F 1,0)(,所以直线l 的方程为=+y k x 1)(,设C x y ,11)(,D x y ,22)(,则=+AC x y 3,11)(,=−−DB x y 3,22)(,=+AD x y 3,22)(,=−−CB x y 3,11)(,从而⋅+⋅=+−−++−−AC DB AD CB x x y y x x y y 333312122112)()()()(=−+−+−=−−=−−++x x x x y y x x y y x x k x x 3362262211112212112121212122)()(,由题意,⋅+⋅=AC DB AD CB 8,所以−−++=x x k x x 62211812122)()(,故+++=−x x kx x 11112122)()(①,联立⎩⎪+=⎨⎪⎧=+x y y k x 321122)(消去y 整理得:+++−=k x k x k 3263602222)(②,因为x 1和x 2是方程②的两根,所以+++−=+−−k x k x k k x x x x 32636321222222)()()()(③,在③中取=−x 1可得:+++=−k x x 32114212)()(,又由方程②的韦达定理,+=−k x x k 32362122,代入①得:⎝⎭++ ⎪+⋅−=−⎛⎫−k k k k 323213642222,解得:=k2.(★★★★)已知椭圆+=C x y 42:122和点P 1,1)(,过点P 且斜率为2的直线与椭圆C 交于A 、B 两点.(1)求⋅PA PB 的值;(2)直线l 过点P 与椭圆C 交于不与A 、B 重合的M 、N 两点,若⋅=⋅PA PB PM PN ,求直线l 的方程.【解析】(1)由题意,直线AB 的方程为−=−y x 121)(,即=−y x 21,设A x y ,11)(,B x y ,22)(联立⎩⎪+=⎨⎪⎧=−x y y x 4212122消去y 整理得:−−=x x 98202①,则x 1和x 2是方程①的两根,所以−−=−−x x x x x x 9829122)()(,令=x 1可得−−=−x x 911112)()(,故−−=−x x 911112)()(从而⋅=−−=−−=PA PB x x x x 91151151212)()(.(2)当直线l 的斜率不存在时,其方程为=x 1,代入椭圆C的方程可求得=y所以⎝⎭⎪ ⎪⋅=−=≠⋅⎛⎫PM PN PA PB 2111,不合题意, 当直线l 斜率存在时,设其方程为−=−y k x 11)(,即=+−y kx k 1,设M x y ,33)(,N x y ,44)(, 联立⎩⎪=+−+=⎨⎪⎧x y y kx k142122消去y 整理得:++−+−−=k x k k x k 12412140222)()()(②,则x 3和x 4是方程②的两根,所以++−+−−=+−−k x k k x k k x x x x 124121412342222)()()()()()(令=x 1可得++−+−−=+−−k k k k k x x 1241214121134222)()()()()()(, 所以+−−=−k x x 12111234)()(从而+⋅=−−=+⋅−−=+k PM PN x x k x x k 121111112343422)()()(,因为⋅=⋅PA PB PM PN所以+=+k k 1291522,解得:=±k 2,因为M 、N 不与A 、B 重合, 所以≠k 2,故=−k 2,从而直线l 的方程为=−+y x 23.。
圆锥曲线齐次化使用条件
圆锥曲线齐次化使用条件圆锥曲线齐次化是一种重要的数学工具,它在多个领域中都有着广泛的应用,如物理学、工程学、计算机图形学等。
本文将介绍圆锥曲线齐次化的使用条件,以帮助读者更好地了解和应用这一工具。
圆锥曲线齐次化是指将一个二次方程化为标准的圆锥曲线形式。
具体来说,一个二次方程$ax^2+bx+c=0$可以被齐次化为$x^2+px+q=0$,其中$p$和$q$分别是圆锥曲线的两个参数,它们与原方程的系数$a,b,c$之间的关系如下:$$\begin{cases}p=\frac{1}{a}b,\\q=\frac{1}{a}c.\end{cases}$$圆锥曲线齐次化结果可以用以下公式表示:$$x^2+px+q=0\Rightarrow x^2+\frac{1}{a}px+\frac{1}{a}q=0$$从这个公式中可以看出,圆锥曲线齐次化后的方程只涉及$x$的一次项和常数项,而与原方程的二次项和一次项系数无关。
因此,圆锥曲线齐次化对于某些二次方程具有重要的简化作用。
圆锥曲线齐次化在物理学中有广泛的应用。
例如,在量子力学中,圆锥曲线齐次化被用来描述粒子的波动性质。
另外,在电动力学中,圆锥曲线齐次化也被用来描述电场和磁场的相互作用。
圆锥曲线齐次化在工程学和计算机图形学中也有重要的应用。
例如,在计算机图形学中,圆锥曲线齐次化被用来计算三维图形的几何性质,如圆度、平滑度等。
此外,在工程学中,圆锥曲线齐次化也被用来进行数据分析和优化,以提高工程系统的效率和可靠性。
在使用圆锥曲线齐次化时,需要满足一定的条件。
首先,原方程必须是一个二次方程,即$ax^2+bx+c=0$。
其次,$a\neq0$。
此外,圆锥曲线齐次化结果中的参数$p$和$q$也必须满足一定的关系,即$p=\frac{1}{a}b$,$q=\frac{1}{a}c$。
总结起来,圆锥曲线齐次化是一种非常有用的数学工具,它可以帮助我们更好地理解和应用二次方程。
用齐次式解圆锥曲线定值问题的注意事项
用齐次式解圆锥曲线定值问题的注意事项齐次式解圆锥曲线定值问题是高等数学中的一个重要内容,它是解析几何的一个重要分支。
在解决定值问题时,我们需要注意一些事项,这些事项对于正确解题非常重要。
本文将从圆锥曲线的概念、齐次式解题的基本原理和注意事项等方面进行介绍。
一、圆锥曲线的概念圆锥曲线是解析几何中的一个重要内容,它包括圆、椭圆、双曲线和抛物线。
圆锥曲线是通过平面和圆锥体的相交而成的曲线,它具有很多重要的数学性质和应用。
在圆锥曲线中,椭圆、双曲线和抛物线都可以用二次方程的形式表示,而圆则有特殊的表示形式。
在解定值问题时,我们主要关注的是椭圆、双曲线和抛物线。
二、齐次式解题的基本原理在解析几何中,齐次式是解决几何问题的一种基本方法。
齐次式解题的基本原理是将空间中的几何问题转化为代数问题,通过代数的方法来求解几何问题。
齐次式解题的一个核心思想是将几何问题转化为代数问题,然后用代数的方法来解决问题。
对于圆锥曲线定值问题,我们通常采用齐次式解题的方法。
通过齐次式的方法,我们可以将定值问题转化为一个齐次方程组的解法问题,然后通过求解齐次方程组来得到几何问题的解答。
三、注意事项在使用齐次式解题的过程中,我们需要注意以下几个方面。
1.确定问题的类型和条件在解决定值问题时,我们首先要确定问题的类型和条件。
例如,在解决椭圆、双曲线和抛物线的定值问题时,我们要确定问题的类型,然后根据问题的条件来确定解题的方法和步骤。
不同类型的圆锥曲线问题有不同的解题方法和步骤,我们需要根据具体问题的条件来确定解题的思路。
2.转化为标准形式在使用齐次式解题的过程中,我们通常要将问题转化为标准形式。
例如,在解决椭圆的定值问题时,我们通常要将椭圆的方程转化为标准形式,然后再利用齐次式解题的方法来求解问题。
转化为标准形式可以使问题更清晰地呈现在我们面前,有利于我们进行后续的解题过程。
3.利用齐次式解题的方法在解决定值问题时,我们要善于利用齐次式解题的方法。
圆锥曲线点除法
圆锥曲线点除法
圆锥曲线点除法(或称为点乘除法)通常不是直接应用于圆锥曲线的一种标准算法。
然而,你可能是在提及射影几何中一些与圆锥曲线相关的点运算,或者是在数值计算、图形学或密码学中使用某种特定方法来处理圆锥曲线上的点。
在射影几何中,圆锥曲线(椭圆、双曲线、抛物线)上的点满足特定的二次方程。
在二维平面上,一个圆锥曲线可以用一般二次方程来表示:
(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0)
对于椭圆曲线密码学(ECC,Elliptic Curve Cryptography),人们特别关注椭圆曲线上的点运算,如点加和点倍。
这些运算遵循特定的代数规则,并且由于椭圆曲线离散对数问题的困难性,这些运算在密码学中被广泛应用。
在椭圆曲线密码学中,点加运算可以被视为椭圆曲线上两点连线的交点关于x轴的对称点(如果交点不在无穷远处)。
点倍运算则是曲线上一点切线的交点关于x轴的对称点。
如果你是在寻找一种处理圆锥曲线上点的算法,你可能需要更具体地说明你的需求,比如你是在进行图形渲染、几何计算,还是在实现椭圆曲线密码学中的某个功能。
如果你是指其他类型的“点除法”或特定的数学运算,请提供更多的上下文,以便我能更准确地回答你的问题。
注意:在密码学中,特别是在椭圆曲线密码学中,通常没有直接的“点除法”运算。
点加和点倍是基本的运算,而除法通常是通过找到乘法的逆元来间接实现的。
圆锥曲线齐次化原理
圆锥曲线齐次化原理
圆锥曲线齐次化原理是一种利用投射以将圆锥曲线映射到笛卡尔坐标的方法。
该原理可以用来解决圆锥曲线在设计空间中出现的问题,例如更好地解决连续性等问题。
圆锥曲线齐次化原理是一种分段化技术,它获得了独立的比重因子和系数单位上的圆锥曲线方程。
通过利用欧拉变换和矢量运算,可以将所有的圆锥曲线部分映射到一个大的限制曲面。
该限定曲面是一个二维面,其上的所有点都具有相同的离散曲面参数,符合指定的限制方程。
圆锥曲线齐次化原理同时还可以使用来解决其他类型曲线方程的空间,例如,圆柱曲线和平面曲线。
齐次化解决圆锥曲线问题
4 + ( 3t − 12 ) n
2
2
以上步移——齐次化——韦达定理
直线 mx + ny = 1 过定点 (1 − t ,0 ) ,即:
m (1 − t ) = 1 ,若 = 1,则与点重合,显然不为定值。所以:
①中含有 3 个参数,t,m,n 变化,都会导致结果发生变化。
又由 PA1 = 3 ,可得 x0 + a = 3 ,可得 x0 = 1 ,
因为 PB1 = 2 = a ,所以 b 2 + x02 = a 2 ,即 b 2 + 1 = 4 ,所以 b2 = 3 ,
所以椭圆的标准方程为
x2 y 2
+
= 1 ,此时点 P 点坐标为 (1,0 ) .
4
3
(2)解:由直线 l 过 P (1, 0 ) ,设 l 的方程为 x = my + 1 ,
4
3
步骤
计算过程
思路解释
两直线的交点为(, 0),将 点平移到原点,则整个图像需要
向左平移个单位.
将图像向左平移个单位:得
平移
( x + 1)
4
2
+
y2
= 1 ,化简:
3
3 x 2 + 4 y 2 + 6tx + 3t 2 − 12 = 0
(红色为平移后的图像)
将 T 平移到原点后,图像上的点与曲线的位置如何?
且平以后所求的斜率: KTN = KT2 N2 ; KTM = KT2 M 2
设直线
设 MN 平移后的直线 M 2 N 2 的方程为:
直线为什么这么设?
1.便于齐次化;2.回忆直线的截距式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+ = y 圆锥曲线齐次式与点乘双根法一,圆锥曲线齐次式与斜率之积(和)为定值x 2 y 2例 1:Q 1 , Q 2 为椭圆 2b 2 + b2 线OD ,求 D 的轨迹方程.= 1上两个动点,且OQ 1 ⊥ OQ 2 ,过原点O 作直线Q 1Q 2 的垂解法一(常规方法):设Q 1 (x 1 , y 1 ),Q 2 (x 2 , y 2 ) , D (x 0 , y 0 ) ,设直线Q 1Q 2 方程为 y = kx + m ,⎧ y = kx + m⎪联立⎨ x 2 ⎪⎩ 2b 2 y 2b2 1 化简可得:(2b 2k 2 + b 2 )x 2 + 4kmb 2 x + 2b 2 (m 2 - b 2 ) = 0 ,所以x 1x 2 = 2b 2 (m 2 + b 2 ) 2b 2k 2 + b 2, y 1 y 2 = b 2 (m 2 - 2b 2k 2 ) 2b 2k 2 + b 2因为OQ 1 ⊥ OQ 2 所以2b 2 (m 2 + b 2 ) b 2 (m 2 - 2b 2k 2 ) 2(m 2 - b 2 )m 2 - 2b 2k 2x 1x 2 + y 1 y 2 = 2b 2k 2 + b 2 + 2b 2k 2 + b 2 = 2k 2+1 + 2k 2 +1 =0∴3m 2 = 2b 2 (1+ k 2 ) *又因为直线 Q Q 方程等价于为 y - y = - x0 (x - xx x 2) , 即 y = - 0 x + 0 + y对比于1 2 0y 0 y 0⎨ 20 00 0y y ⎧- x 0 = k y = kx + m ,则⎪ y 0x 代入* 中,化简可得: x 2 + y 2= 2b 2. 3 ⎪ 0 + y = m ⎪ y 0 ⎩ 0解法二(齐次式):⎧ mx + ny= 1 ⎧ mx + ny = 1 ⎪ ⎪ 设直线Q 1Q 2 方程为 mx + ny = 1,联立⎨ x 2 + y 2 =⇒ ⎨ x 2 + y 2- =⎪⎩ 2b2b21⎪⎩ 2b2 b21 0x 2 y22x 2 y 2 2 2 2 22b 2 + (m x + ny ) b 2= 0 化简可得: 2b 2 + m x b 2- n y- 2mnxy = 0 整理成关于 x , y x , y 的齐次式: (2 - 2b 2n 2 ) y 2 + (1- 2m 2b 2 ) x 2 - 4mnb 2xy = 0 ,进而两边同时除以 x 2,则2 2 2 2 2 21- 2m 2b 2(2 - 2b n )k - 4mnb k +1- 2m b= 0 ⇒ k 1k 2 =2 - 2b 2n 21- 2m 2b 2因为OQ 1 ⊥ OQ 2 OQ 1 ⊥ OQ 2 所以 k 1k 2 = -1,2 - 2b 2n2= -1∴3 = 2b 2 (m 2 + n 2 ) *又因为直线 Q Q 方程等价于为 y - y = - x0 (x - xx x 2) , 即 y = - 0 x + 0 + y 对比于1 2⎧x 0= my 0 y 0⎪ x 2 + y 22mx + ny = 1,则⎨ 0 0y 代入* 中,化简可得: x 2+ y 2= b 2 .3 0 = n ⎪ x 2 + y 2 ⎩ 0 0例 2:已知椭圆 x 2 + 24= 1,设直线l 不经过点P (0,1) 的直线交于 A , B 两点,若直线 PA , PB 的斜率之和为-1,证明:直线l 恒过定点.⎩ ⎩解:以点 P 为坐标原点,建立新的直角坐标系 x ' py ' ,如图所示:旧坐标 新坐标(x , y ) ⇒ (x ', y ')即(0,1) ⇒ (0, 0)⎧ x ' = x ⎧ A → A ' 所以⎨ y ' = y -1 ⇒ ⎨B → B '原来 k + k = -1⇒y 1 -1 + y 2 -1 = -1 则转换到新坐标就成为: y 1 ' + y 2 '= -1PAPBx x x ' x ' 1 21 2即k 1 '+ k 2 ' = -1设直线l 方程为: mx '+ ny ' = 1原方程: x 2 + 4 y 2 = 4 则转换到新坐标就成为: x '2 + 4( y '+1)2= 4展开得: x '2 + 4 y '2+ 8 y ' = 0⎨⎪x' ⎩ ⎩ 构造齐次式: x '2 + 4 y '2+ 8 y '(mx '+ ny ') = 0整理为: (4 + 8n ) y '2 + 8mx ' y '+ x '2= 0两边同时除以 x '2 ,则(4 + 8n )k '2+ 8mk '+1 = 0所以 k '+ k ' = -8m= -1 所以 2m - 2n = 1 ⇒ m = n + 1124 + 8n 21 x '而 mx '+ ny ' = 1 ∴(n + )x '+ ny ' = 1 ⇒ n (x '+ y ') + -1 = 0 对于任意 n 都成立.2 2⎧x '+ y ' = 0则: ⎪⇒ -1 = 0 ⎩ 2⎧ x ' = 2 ⎨ y ' = -2,故对应原坐标为⎧ x = 2 ⎨ y = -1所以恒过定点(2, -1) .x 2例 3:已知椭圆y 2+ = 1,过其上一定点 P (2,1) 作倾斜角互补的两条直线,分别交于椭 8 2圆于 A , B 两点,证明:直线 AB 斜率为定值.解:以点 P 为坐标原点,建立新的直角坐标系 x ' py ' ,如图所示:旧坐标新坐标(x , y ) ⇒ (x ', y ')即(2,1) ⇒ (0, 0)所以⎧x ' =x - 2⇒⎧A →A '⎨y '=y -1⎨B →B '⎩⎩原来k +k = 0 ⇒ y1-1+y2-1= 0 则转换到新坐标就成为:y1'+y2'= 0PA PB x - 2 x -1 x ' x '1 2 1 2即k1 '+k2' = 0设直线 AB 方程为: mx '+ny ' = 1原方程: x2 + 4 y2 = 8 则转换到新坐标就成为: (x '+ 2)2 + 4( y '+1)2 = 8 展开得: x '2 + 4 y '2 + 4x '+ 8 y ' = 0构造齐次式: x '2 + 4 y '2 + 4x '(mx '+ny ') + 8 y '(mx '+ny ') = 0整理为: y '2 (4 + 8n) +x ' y '(4n + 8m) + (1 + 4m)x '2 = 0两边同时除以 x '2 ,则(4 + 8n)k '2 + (4n + 8m)k '+1+ 4m = 0所以 k '+k ' =-4n + 8m= 0 所以 n =-2m1 2 4 +8n1而mx '+ny ' = 1 ∴mx '+ (-2m) y ' = 1 ⇒mx - 2my -1 = 0 .所以k =21平移变换,斜率不变,所以直线AB 斜率为定值.21 2 1 1 2 2 1 2 1 21 二,点乘双根法例 4:设椭圆中心在原点O ,长轴在 x 轴上,上顶点为 A ,左右顶点分别为 F 1 , F 2 ,线段OF 1 ,OF 2 中点分别为 B 1 , B 2 ,且△AB 1B 2 是面积为 4 的直角三角形.(1) 求其椭圆的方程(2) 过 B 1 作直线l 交椭圆于 P , Q 两点,使 PB 2 ⊥ QB 2 ,求直线l 的方程.x 2y 2解:(1) + = 20 4(2)易知:直线l 不与轴垂直,则设直线l 方程为: y = k (x + 2) , P (x 1, y 1 ), Q (x 2 , y 2 )因为 PB ⊥ QB,则,22PB 2 QB 2 =0所以(x - 2, y )(x - 2, y ) = 0 ⇒ (x - 2)(x - 2) + k 2(x + 2)(x + 2) = 0 *⎧ y = k (x + 2) ⎪2 2 2现联立⎨ x 2+ y 2 = ⇒ x ⎩ 20 4+ 5k (x + 2) - 20 = 0则方程 x 2 + 5k 2 (x + 2)2 - 20 = 0 可以等价转化(1+ 5k 2)( x - x )( x - x ) = 012即 x 2 + 5k 2 (x + 2)2 - 20 = (1+ 5k 2)(x - x )(x - x )令 x = 2 , 4 + 80k 2- 20 = (1+ 5k 2)( x 1 - 2)( x 2 - 2) ⇒ ( x 1 - 2)( x 2 - 2) =80k 2 -16 1+ 5k 2令 x = -2 , 4 + 0 - 20 = (1+ 5k 2)( x + 2)( x + 2) ⇒ ( x + 2)( x + 2) = -161 2 1 21+ 5k 21结合(x1 - 2)(x2- 2) +k (x1 + 2)(x2 + 2) = 0 *化简可得:80k 2 -161+ 5k 2+-16= 01+ 5k 280k 2 -16k 2 -16 = 0 ⇒ 64k 2 =16 ⇒k 2 =1∴k =±1 4 2所以直线l 方程为: y =± 1(x + 2) . 22。