江苏省盐城中学九年级数学12月调研考试试题(无答案)
2024年江苏省盐城市中考数学试卷正式版含答案解析
绝密★启用前2024年江苏省盐城市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.有理数2024的相反数是( )A. 2024B. −2024C. 12024D. −120242.下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车3.下列运算正确的是( )A. a6÷a2=a4B. 2a−a=2C. a3⋅a2=a6D. (a3)2=a54.盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( )A. 0.24×107B. 24×105C. 2.4×107D. 2.4×1065.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都6.小明将一块直角三角板摆放在直尺上,如图,若∠1=55∘,则∠2的度数为( )A. 25∘B. 35∘C. 45∘D. 55∘7.矩形相邻两边长分别为√ 2cm、√ 5cm,设其面积为Scm2,则S在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和58.甲、乙两家公司2019∼2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢第II卷(非选择题)二、填空题:本题共8小题,每小题3分,共24分。
2024-2025学年江苏盐城盐都区九年级五校联考11月期中数学试题及答案
2024年秋学期九年级数学期中考试试卷一、选择题(每题3分,计24分)1.下列方程,属于一元二次方程的是()A.x2﹣xy=1 B.x2﹣2x+3=0 C.D.2(x+1)=x2.一元二次方程x2﹣3=2x的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3 B.1,﹣2,3 C.1,2,3 D.1,2,﹣33.若m、n是关于x的方程2x2﹣4x+1=0的两个根,则的值为()A.4 B.﹣4 C.D.4.电影《志愿军》不仅讲述了中国人民志愿军抗美援朝的故事,更是通过鲜活生动的人物塑造,让观众体会到历史事件背后的人性和情感,一上映就获得全国人民的追捧.某地第一天票房约3亿元,若以后每天票房按相同的增长率增长,三天后票房收入累计达18亿元,若把增长率记作x,则方程可以列为()A.3(1+x)=18 B.3(1+x)2=18 C.3+3(1+x)2=18 D.3+3(1+x)+3(1+x)2=185.下列说法正确的是()A.三点确定一个圆B.平分弦的直径垂直于弦C.相等的圆心角所对的弦相等D.三角形的外心到三角形三个顶点的距离相等.6.如图,AB是⊙O的直径,弦CD交AB于点E,∠ACD=60°,∠ADC=40°,则∠AED的度数为()A.110°B.115°C.120°D.105°7.如图,圆O的半径是4,BC是弦,∠B=30°且A是弧BC的中点,则弦AB的长为()A.B.C.4 D.68.如图,⊙M的半径为4,圆心M的坐标为(6,8),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最大值为()A .13B .14C .12D .28二、填空题(每题3分,计30分)9.写一个一元二次方程,使它有两个相等的实数根: (写出一个即可).10.关于x 的方程x 2+kx +1=0有两个相等的实数根,则k 值为 .11.若m 是方程2x 2﹣3x ﹣1=0的一个根,则4m 2﹣6m +2022的值为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =8,EB =2,则⊙O 的半径为 . 13.任意抛掷一枚均匀的骰子,骰子各个面的点数分别为1,2,3,4,5,6,则朝上的点数是奇数的概率是 .14.为迎接全市的禁毒知识竞赛,某校进行了相关知识测试,经过层层预赛,小洋和小亮进入了最后的决赛,如图,是他们6次的测试成绩,若要从中选一名测试成绩稳定的同学去参加竞赛,则应选 .(填“小洋”或“小亮”).第12题 第14题15. 如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=°,则ABI ∠=.16.如图,60BAC ∠=°,45ABC ∠=°,AB =,D 是线段BC 上的一个动点,以AD 为直径画O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值为______.17.如图有一个三角形点阵,从上向下有无数多行,其中第一行有1个点,第二行有2个点,…,第n 行有n 个点,容易发现,10是三角点阵中前4行的点数之和.当三角点阵中点数之和是300时,则三角点阵点的行数为 .18.如图,在矩形ABCD 中,12AB =,16BC =,点E F 、分别是边AB BC 、上的动点,且10EF =,点G 是EF 的中点,连接AG CG 、,则四边形AGCD 面积的最小值为 .第15题 第16题 第17题 第18题三、解答题(共9题,计96分)19.解方程:(1)36x 2﹣1=0;(2)x 2+10x +21=0;20.初一某班16名男生在体检时测量了身高.以160cm 为基准,记录男生们的身高,超过160cm 记为正,不足160cm 记为负.前15名男生的相对身高(单位:cm )记录如表,第16名男生身高为171cm . 序号1 2 3 4 5 6 7 8 相对身高7− 4+ 0 16+ 2+ 3− 1+ 5− 序号9 10 11 12 13 14 15 16 相对身高 9− 3+ 4− 7+ 1+ 2− 1+ m(1)表格中m = ;(2)该班最高的男生与最矮的男生身高相差 cm ;(3)计算该班男生的平均身高.21.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃.为了方便出人,建造时,在BC 上用其它材料做了宽为2米的两扇小门,在EF 上用其它材料做了宽为1米的一扇小门.(1)设花圃的一边AB 长为x 米,请你用含x 的代数式表示另一边AD 的长为___________米;(2)若此时花圃的面积刚好为254m ,求此时花圃的长与宽.22.如图,在四边形ABCD 中,,AC BD 相交于点E ,且AB AC AD ==,经过A ,C ,D 三点的O 交BD 于点F ,连接CF .(1)求证:CF BF =;(2)若CD CB =,求证:CB 是O 的切线.23.已知x 1,x 2是关于x 的一元二次方程x 2﹣2(m +1)x +m 2+10=0的两实数根.(1)求m 的取值范围;(2)已知等腰△ABC 的一边长为7,若x 1,x 2恰好是△ABC 另外两边的边长,求m 的值和△ABC 的周长.24.定义:一元二次方程()200ax bx c a ++=≠,若根的判别式24b ac −是一个完全平方数(式),则此方程叫“完美方程”.(1)判断下列方程一定是“完美方程”的是 ;(直接填序号)①2430x x −−=;②220x mx m ++−=;③()210x b x b +++=;(2)若关于x 的一元二次方程222(1)20x m x m m −−+−=①证明:此方程一定是“完美方程”;②设方程的两个实数根分别为1x ,()212x x x <,是否存在实数k ,使得()12,P x x 始终在函数3y kx k =−+的图像上?若存在,求出k 的值;若不存在,请说明理由.25.某电商销售一款秋季时装,进价40元/件,售价110元/件,每天销售20件.为了庆祝二十大的胜利召开,未来30天,这款时装将开展“喜迎二十大,每天降1元”的促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.(1)这30天内该电商第几天的利润最大?最大利润是多少?(2)为了回馈社会,在这30天内,该电商决定每销售一件时装,向希望工程捐a 元(0,a >).要使每天捐款后的利润随天数t (t 为正整数)的增大而增大,求a 的取值范围.26.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点E .(1)求证:点D 是边BC 的中点.(2)记的度数为α,∠C 的度数为β.探究α与β的数量关系.27.如图①,在四边形ABCD 中,9086BAD D AD CD AB m ∠=∠=°===,,,.过A B C ,,三点的O 的圆心位置和半径,随着m 的变化而变化.解决下列问题:【特殊情形】(1)如图②,当0m =时,圆心O 在AD 上,求O 的半径.【一般情形】(2)(Ⅰ)当2m =时,求O 的半径;(Ⅱ)当0m >时,随着m 的增大,点O 的运动路径是; (填写序号)①射线;②弧;③双曲线的一部分;④不规则的曲线【深入研究】(3)如图③,连接AC ,以O 为圆心,作出与CD 边相切的圆,记为小O .当小O 与AC 相交且与BC 相离时,直接写出m 的取值范围.参考答案1-4BAAD 5-8DACD9.x 2+2x +1=0(答案不唯一) 10.±2 11.2023 12.5 13.½ 14.小亮 15.50° 16.18.14219.解:(1)36x 2﹣1=0,36x 2=1,,解得,;(2)x 2+10x +21=0,x 2+10x =﹣21,x 2+10x +25=﹣21+25,即(x +5)2=4,x +5=±2,解得x 1=﹣3,x 2=﹣7;20.(1)解:由题意得,17116011m =−=+,故答案为:11+;(2)解:16(9)16925cm +−−=+=,即该班最高的男生与最矮的男生身高相差25cm ,故答案为:25;(3)解:1(740162315934712111)16016×−++++−+−−+−++−+++ 11616016=×+ 161cm =答:该班男生的平均身高为161cm .21.1)()273x −(2)长为9米,宽为6米22.(1)证明:AB AC = ,ACB ABC ∴∠=,AB AD = ,ADB ABD ∴∠=∠,又ADB ACF ∠=∠ , ACF ABD ∴∠=∠,ACB ACF ABC ABD ∴∠−∠=−∠,即:BCF CBF ∠=∠, CF BF ∴=;(2)证明:连接CO 并延长交O 于G 点,再连接GF ,CG 为O 直径,90GFC ∴∠=°,90G GCF ∴∠+∠=°,CDB G ∠=∠ ,90CDB GCF ∴∠+∠=°,CD CB = ,CDB CBD ∴∠=∠,CF BF = ,BCF CBD ∴∠=∠,BCF CDB ∴∠=∠,90BCF GCF ∴∠+∠=°,90BCG ∴∠=°,CG BC ∴⊥,CB ∴是O 的切线.23.解:(1)根据题意得Δ=4(m +1)﹣4(m 2+10)≥0,解得;(2)当腰长为7时,则x =7是一元二次方程x 2﹣2(m +1)x +m 2+10=0的一个解, 把x =7代入方程得49﹣14(m +1)+m 2+10=0,整理得m 2﹣14m +45=0,解得m 1=9,m 2=5,当m =9时,x 1+x 2=2(m +1)=20,解得x 2=13,则三角形周长为13+7+7=27;当m =5时,x 1+x 2=2(m +1)=12,解得x 2=5,则三角形周长为5+7+7=19;当7为等腰三角形的底边时,则x 1=x 2,所以,方程化为4x 2﹣44x +121=0,解得,三边长为, 其周长为, 综上所述,m 的值是9或5或,这个三角形的周长为27或19或18. 24.(1)解:①2430x x −−=,()()224441328b ac −=−−××−= ,不是完全平方数,2430x x ∴−−=不是“完美方程”; ②220x mx m ++−=, ()()22224424824b ac m m m m m −=−−=−+=−+ ,不是完全平方式,220x mx m ∴++−=不是“完美方程”;③()210x b x b +++=, ()()2222414211b ac b b b b b −+−−+− ,是完全平方式,()210x b x b ∴+++=是“完美方程”; 故答案为:③;(2)解:①证明:222(1)20x m x m m −−+−=()()2222242142484484b ac m m m m m m m −=−−−=−+−+= ,且4是完全平方数, ∴此方程一定是“完美方程”;②存在,理由如下:222(1)20x m x m m −−+−= ,()()20x m x m ∴−−−=, 0x m ∴−=或()20x m −−=, x m ∴=或2x m =−,设方程222(1)20x m x m m −−+−=的两个实数根分别为1x 、()212x x x <,12x m ∴=−,2x m =,()12,P x x 始终在函数3y kx k =−+的图像上,()23m k m k ∴=−−+,313m k m −∴==−, 即存在实数k ,使得PP (xx 1,xx 2)始终在函数3y kx k =−+的图像上,k 的值为1 25.解:(1)设销售利润为w 元,销售时间为x 天,由题意可知,(11040)(420),wx x =−−+ 242601400x x =−++24(32.5)5625,x =−−+∵50,a =−< ∴函数有最大值,∴当30x =时,w 取最大值为24302603014005600w =−×+×+=元, ∴第30天的利润最大,最大利润是5600元;(2)设未来30天每天获得的利润为y ,时间为t 天,根据题意,得(11040)(204)(204),y t t t a =−−+−+化简,得24(2604)140020,y t a t a =−+−+− 每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴260429.5,2(4)a −−>×− 解得,6,a又∵0,a >即a 的取值范围是:06a <<.26.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,点D 在圆上,∴∠ADB =90°,即AD ⊥BC ,∵AB =AC ,∴BD =CD ,即点D 是BC 的中点;(2)解:β﹣α=45°; 如图,连接OE ,∵的度数为α,∴∠AOE =α,∵OA =OE ,∴∠OAE =,∵AB =AC ,AD ⊥BC ,∴∠CAD =∠OAE =45°﹣α, ∵∠CAD +∠C =90°,∴45°﹣α+β=90°即β﹣α=45°.27.(1)解:连接OC ,在O 中,设OA O =C r =,则8OD r =−. 在Rt OCD 中,90D ∠=︒,∴222OD CD OC +=,即222(8)6r r −+=.解得254r =. (2)(I )解:过点O 分别作,OF AB OE CD ⊥⊥,连接,OC OB ,∵OF 过圆心,OF AB ⊥, ∴1AF BF ==.∵90A D OFA ∠=∠=∠=°, ∴四边形AFED 是矩形.∴1AF DE ==.∴5CE CD DE =−=.设OE x =,则8OF x =−,在Rt COE 中222OE CE OC +=, 在Rt BOF 中222OF BF OB +=, ∴2222OE CE OF BF +=+,即2225(8)x x +=−21+. 解得52x =,∴2221254OC OE CE =+=,即r OC == (II )过点O 分别作,OF AB OE CD ⊥⊥,连接,OC OB ,如图:由(I )知:1,82BFAF DE m EF AD =====, 16,2CE CD DE m ∴=−=− 设OE x =,则8OF x =−,∵OC OB =,∴2222OE CE OF BF +=+, 即2222116(8)24x m x m +−=−+ , 整理得:1438m x +=, ∵0,m O >到AD 的距离12DEm =, 类比平面直角坐标系内xy 的几何意义, ∴O 的轨迹是一条射线,故答案为:①;(3)过O 作EF CD ⊥,交CD 于E ,交AB 于F ,过O 作OM AC ⊥于M ,作ON BC ⊥于N ,连接O ,C OB ,过B 作BG CD ⊥于G ,如图:由(II )知,1438m OE +=, ()222225420,64OC CE OE m m ∴+−+ 8,6,AD CD ==10,AC ∴= 15,2CM AC ∴== ()22222525420256464OM OC CM m m ∴=−=−+−=()2444,m m −− ,,,BG CD AD CD DG AB ⊥⊥∥ ∴四边形ABGD 是矩形,,8,DG AB m BG AD ∴====6,CG m ∴=−222212100,BC CG BG m m ∴=+=−+()2221112100,24CN BC m m ∴==−+ ()22221992900,64ON OC CN m m ∴=−=+− 小O 与AC 相交且与BC 相离, ,OM OE ON ∴<<222,OM OE ON ∴<< 即()()222251431444992900,64864m m m m m + −−<<+− 解得:1123m <<.。
2023年盐城市大丰区九年级中考数学第一次调研考试卷附答案解析
2023年盐城市大丰区九年级中考数学第一次调研考试卷注意事项:1.本次考试时间为120分钟,卷面总分为150分.考试形式为闭卷.2.本试卷共6页,在检查是否有漏印、重印或错印后再开始答题.3.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分.4.答题前,务必将姓名、准考证号用0.5毫米黑色签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2023的相反数是(▲)A .2023-B .2023C .12023D .12023-2.下列运算中,正确的是(▲)A .a 6÷a 2=a 3B .246a a a -⋅=C .(ab )3=a 3b 3D .(a 2)4=a 63.使式子1-x 有意义,x 的取值范围是(▲)A .x >1B .x =1C .x ≥1D .x ≤14.为了发扬“中国航天精神”,每年的4月24日设立为“中国航天日”.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是(▲)A .航B .天C .精D .神第4题图第5题图第6题图5.如图,A 、B 、C 是⊙O 上的点,OC ⊥AB ,垂足为点D ,若OA =5,AB =8,则线段CD 的长为(▲)A .5B .4C .3D .26.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是(▲)A .49B .59C .23D .457.若x =2是关于x 的一元二次方程220x mx +-=的一个根,则m 的值为(▲)A .1B .3C .1-D .3-8.在三张透明纸上,分别有∠AOB 、直线l 及直线l 外一点P 、两点M 与N ,下列操作能通过折叠透明纸实现的有(▲)①图1,∠AOB 的角平分线②图2,过点P 垂直于直线l 的垂线③图3,点M 与点N 的对称中心A .①B .①②C .②③D .①②③第8题图1第8题图2第8题图3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.分解因式:x 2-9=▲.10.盐城,一座让人打开心扉的城市.这里生态环境优美,文化底蕴丰厚,交通便捷,以“东方湿地之都,仙鹤神鹿世界”而闻名.盐城湿地面积约769700公顷,将数字769700用科学记数法表示为▲.第10题图第12题图11.从甲、乙、丙三人中选一人参加环保知识决赛,经过两轮测试,他们的平均成绩都是88.9,方差分别是s甲2=1.82,s乙2=2.51,s丙2=3.42,你认为这三人中最适合参加决赛的选手是▲(填“甲”或“乙”或“丙”).12.如图,用一个圆心角为150°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为▲.13.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为▲.第13题图第14题图14.如图,△ABC 中,∠A =40°,△ABC 绕点B 顺时针旋转一定的角度得到△A 1BC 1,若点C 恰好在线段A 1C 1上,A 1C 1∥AB ,则∠C 1的度数为▲.15.定义:如果三角形的一个内角是另一个内角的2倍,那么称这个三角形为“倍角三角形”.若△ABC 是“倍角三角形”,∠A =90°,ACAB 的长为▲.16.在△ABC 中,AB =10,BC =8,D 为边BC 上一点,当∠CAB 最大时,连接AD 并延长至点E ,使BE =BD ,则AD ·DE 的最大值为▲.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分6分)计算:04212sin 453⎛⎫-+--︒ ⎪⎝⎭π.18.(本题满分6分)解不等式组:32134532x x x -⎧>⎪⎨⎪-+⎩ .19.(本题满分8分)先化简,再求值:222211121x x x x x ++⎛⎫+÷ ⎪--+⎝⎭,其中x =4.20.(本题满分8分)2023年盐城市初中毕业升学体育考试有必考项目立定跳远和一项选考项目,男生选考项目为掷实心球或引体向上,女生选考项目为掷实心球或仰卧起坐.(1)小明(男)从选考项目中任选一个,选中引体向上的概率为▲;(2)小明(男)和小红(女)分别从选考项目中任选一个,求两人都选择掷实心球的概率.(用树状图或列表法写出分析过程)21.(本题满分8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的距离为y (km ),图中的折线表示y 与x 之间的函数关系.根据图像解决下列问题:(1)求慢车和快车的速度;(2)求线段CD 所表示的y 与x 之间的函数关系式,并写出自变量x的取值范围.22.(本题满分10分)如图,AB 为⊙O 的直径,E 为AB 的延长线上一点,过点E 作⊙O 的切线,切点为点C ,连接AC 、BC ,过点A 作AD ⊥EC 交EC 延长线于点D .(1)求证:∠BCE =∠DAC ;(2)若BE =2,CE =4,求⊙O 的半径及AD 的长.23.(本题满分10分)某中学为了解家长对课后延时服务的满意度,从七、八年级中各随机抽取50名学生家长进行问卷调查,获得了每位学生家长对课后延时服务的评分数据(记为x ),并对数据进行整理、描述和分析.下面给出了部分信息:①八年级课后延时服务家长评分数据的频数分布表如表(数据分为5组:0≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100):分组频数0≤x <60260≤x <70570≤x <801580≤x <90a 90≤x ≤1008合计50②八年级课后延时服务家长评分在80≤x <90这一组的数据按从小到大的顺序排列,前5个数据如下:81,81,82,83,83.③七、八年级课后延时服务家长评分的平均数、中位数、众数如表:第22题图第21题图年级平均数中位数众数七787985八81b83根据以上信息,回答下列问题:(1)表中a=▲,b=▲;(2)你认为哪个年级的课后延时服务开展得较好?请说明理由(至少从两个不同的角度说明理由);(3)已知该校八年级共有600名学生家长参加了此次调查评分,请你估计其中大约有多少名家长的评分不低于80分.24.(本题满分10分)2023年3月18、19日,盐城市亭湖区中小学生篮球赛在先锋实验学校火热上演.本次比赛为期2天,共有来自全区26所中小学代表队,近270名运动员参加.如图1,图2分别是某款篮球架的实物图与侧面示意图,已知底箱矩形ABCD在水平地面上,它的高AB为40cm,长BC为200cm,底箱与后拉杆EF所成的角∠DEF=60°,后拉杆EF长为180cm,支撑架FG的长为182cm,伸臂GH平行于地面,支撑架FG与伸臂GH的夹角∠FGH=143°,篮筐与伸臂在同一水平线上.(1)求点F到地面的距离;(2)求篮筐到地面的距离.(结果精确到1cm,参考数据:60︒,75cos≈.037tan≈︒,7337.037.0︒,80sin≈3≈).1第24题图1第24题图225.(本题满分10分)比萨斜塔是意大利的一座著名斜塔,据说物理学家伽利略曾在塔顶上做过著名的自由落体试验:在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.已知:某建筑OA的高度为44.1m,将一个小铁球P(看成一个点)从A处向右水平抛出,在水平方向小铁球移动的距离d(m)与运动时间t(s)之间的函数表达式是:d=7t,在竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2.以点O为坐标原点,水平向右为x轴,OA所在直线为y轴,取1m为单位长度,建立如图所示平面直角坐标系,已知小铁球运动形成的轨迹为抛物线.(1)求小铁球从抛出到落地所需的时间;(2)当t=1时,求小铁球P此时的坐标;(3)求抛物线的函数表达式,并写出自变量x的取值范围.26.(本题满分12分)如图在网格中,每个小正方形的边长均为1,小正方形的顶点称为格点,A 、B 、C 、D 、M 、N 、K 均为格点.仅用无刻度的直尺在给定网格中完成画图,并回答问题.【操作】在图1中,①过点D 画AC 的平行线DE (E 为格点);②过点B 画AC 的垂线BF ,交AC 于点F ,交DE 于点G ,连接AG .【发现】在图1中,BF 与FG 的数量关系是▲;AG 的长度是▲.【应用】在图2中,点P 是边MK 上一点,在MN 上找出点H ,使PH MN.第26题图1第26题图227.(本题满分14分)定义:平面直角坐标系中有点Q (a ,b ),若点P (x ,y )满足|x-a|≤t 且|y-b|≤t (t ≥0),则称P 是Q 的“t 界密点”.(1)①点(0,0)的“2界密点”所组成的图形面积是▲;②反比例函数y =6x图像上▲(填“存在”或者“不存在”)点(1,2)的“1界密点”.(2)直线y =kx +b (k ≠0)经过点(4,4),在其图像上,点(2,3)的“2界密点”组成的线段长17b 的值.(3)关于x 的二次函数y =x 2+2x +1-k (k 是常数),将它的图像M 绕原点O 逆时针旋转90°得曲线L ,若M 与L 上都存在(1,2)的“1界密点”,直接写出k 的取值范围.第25题图2023年春学期第一次学情调研数学参考答案与试题解析一.选择题A C CB ;D BCD .二.填空题9.()()33x x +-.10.7.697×105.11.甲.12.2.5.13.46482538x y x y +=⎧⎨+=⎩.14.70°.15.1或316.32.三.解答题17.原式=﹣1+··········································································4分.··························································································6分18.由313x >,得:x >53,········································································2分由2435x x -+ ,得:x ≤7,···································································4分则不等式组的解集为53<x ≤7.································································6分19.原式=()22221221111x x x x x x -⎛⎫+-+⋅ ⎪--+⎝⎭=()22212111x x x x x -++⋅-+=()()()()2211111x x x x x +-⋅+-+=x ﹣1,························································································5分当x =4时,原式=4﹣1=3.·······································································8分20.(1)12;····························································································3分(2)把掷实心球、引体向上、仰卧起坐分别记为A 、B 、C ,列表如下:AC A (A ,A )(A ,C )B(B ,A )(B ,C )················································································································6分由表知,共有4种等可能结果,两人都选择掷实心球的有1种结果,···············7分∴两人都选择掷实心球的概率为14.·························································8分21.(1)由题意,得快车与慢车的速度和为:1200÷6=200(km/h ),慢车的速度为:1200÷15=80(km/h ),快车的速度为:200﹣80=120(km/h ).答:快车的速度为120km/h ,慢车的速度为80km/h ;································4分(2)由题意得,快车走完全程的时间为:1200÷120=10(h ),10时时两车之间的距离为:200×(10﹣6)=800(km ).则C (10,800).设线段CD 的解析式为y =kx +b (k ≠0),由题意,得10800151200k b k b +=⎧⎨+=⎩,解得:8000k b =⎧⎨=⎩,则线段CD 的解析式为y =80x ,自变量x 的取值范围是10≤x ≤15.············8分22.(1)证明:∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠BCE +∠ACD =90°,∵AD ⊥ED ,∴∠ADC =90°,∴∠DAC +∠ACD =90°,∴∠BCE =∠DAC ;·······································································3分(2)连接OC ,设⊙O 半径为r ,则OC =r ,OE =r +2,∵EC 是⊙O 的切线,C 为切点,∴OC ⊥EC ,∴∠OCE =90°,在Rt △OEC 中,∵OC 2+EC 2=OE 2,∴r 2+42=(r +2)2,解得r =3,∴⊙O 半径为3,·········································································6分∴OE =5,AE =8,OC =3.∵OC ⊥ED ,AD ⊥ED ,∴OC ∥AD ,∴△OCE ∽△ADE ,∴OC OEAD AE =,即358AD =,解得245AD =.··········································································10分23.(1)a =50﹣2﹣5﹣15﹣8=20,b =(82+83)÷2=82.5;·································4分(2)八年级的课后延时服务开展得较好,理由如下:(答案不唯一,言之有理即可.)八年级课后延时服务家长评分数据的平均数为81分,高于七年级的78分,说明八年级家长评分整体高于七年级;八年级课后延时服务家长评分数据的中位数为82.5,七年级为79,说明八年级一半的家长评分高于82.5分,而七年级一半的家长评分仅高于79分.·········7分(3)20860050+⨯=336(名),答:估计其中大约有336名家长的评分不低于80分.·····························10分24.(1)过点F 作FM ⊥AD 于点M ,延长FM 交BC 于点N 在Rt △EMF 中,sin ∠DEF =EFFM,∴FM =EF ×sin ∠DEF =180×sin60°=903cm··············································3分∵∠A =∠ABC =∠AMN =90°,∴四边形ABNM 是矩形∴MN =AB =40cm∴FN =FM +MN =903+40=195.7≈196cm答:点F 到地面的距离约为196cm····························································5分(2)延长HP 、NF 交于点P ∵GH ∥BC∴∠P =∠FME =90°在Rt △PFG 中,sin ∠PGF =GFPF,∴PF =GF ×sin ∠PGF =182×sin37°≈109.2cm·············································8分∴PN =PF +FN =109.2+903+40=304.9≈305cm答:篮筐到地面的距离约为305cm .·························································10分25.(1)由4.9t 2=44.1(t ≥0),得t =3···························································3分(2)当t =1时,d =7t =7,h =4.9t 2=4.944.1-4.9=39.2∴此时P (7,39.2)·······································································6分(3)由(1)可知OB =7t =21∴B (21,0)设抛物线的函数表达式为y =ax 2+bx +c (a ≠0),将A (0,44.1)、P (7,39.2)、B (21,0)代入解得2144.110y x =-+······································································9分自变量x 的范围是0≤x ≤21.··························································10分26.(1)【操作】如图所示,DE 、BF 、AG 即为所求.··················································4分(2)【发现】BF =GF ·····································································8分(3)【应用】如图所示,点H 即为所求.·······························································12分27.(1)①16···························································································2分②存在···························································································4分(2)①当直线y =kx +b (k ≠0)与左边界相交时,()22244b -+=解得b 1=3,b 2=5∴直线y =kx +b (k ≠0)不可能和上边界相交,②当直线y =kx +b (k ≠0)与下边界相交时,由相似得13b -=∴4b =-综上b 的值为3或5或4-.··························································10分(4)84≤≤k ·······················································································14分。
【全国百强校】江苏省盐城中学2015届九年级12月调研考试数学试题(无答案)
九年级第二次调研检测数学试卷考试时间:120分钟 卷面总分:150分 考试形式:闭卷命题:徐永清一、选择题(每小题3分,共24分)1.sin30°的值是 ( ) A. 12 B. 22 C. 32 D.12.已知⊙O 的半径为3,OA =4,则点A 与⊙O 的位置关系是 ( )A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .无法确定3.在一个不透明的口袋中,装有5个红球和3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 ( )A .15B .13 C .58 D .384.三角形的重心是 ( )A .三角形的三条角平分线的交点 B. 三角形的三条中线的交点C. 三角形的三条高的交点 D .三角形的三条垂直平分线的交点5.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tan A = ( )A .34B .35C . 45D .436.将抛物线2y x =-向左平移2个单位后,得到的函数表达式是 ( )A .22y x =-+B .2(2)y x =-+C .2(2)y x =--D .22y x =--7.一条排水管的截面如图所示,已知排水管的半径OB =10,水面宽AB =16,则截面圆心O 到水面的距离OC 是 ( )A .4B .5C .6D .8(第7题) (第8题)8.如图,是二次函数 y =ax 2+bx +c (a ≠0)的图像的一部分,给出下列命题 :①abc <0②b =2a ;③当-3<x<1时,ax 2+bx +c <0;④)1)((-≠+<-m b am m b a .其中正确的命题有 ( )A .1个 B.2个 C. 3个 D.4个二、填空题(每小题3分,共30分)9.抛物线y=x 2-3的顶点坐标是 .10.已知△ABC ∽△DEF ,它们的相似比为3:1,则面积之比为_______.11.中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为__________cm .(精确到0.1)12.如图,四边形ABCD 内接于⊙O ,已知∠BOD =120°,则∠BCD 的大小为___ °.(第12题) (第13题) (第15题)13.如图,在Rt △ABC 中,斜边BC 上的高AD =4,cos B =54,则AC = . 14.已知二次函数y =x 2-2x +m 的图像顶点在x 轴上,则m 的值是__________.15.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是 cm .16.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为__________米.(第16题) (第17题) (第18题) 17.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )6米的点A 处,沿OA 所在直线行走14米到点B 时,人影长度变长.. 米. 18.如图,在平面直角坐标系中,A 、B 两点的坐标分别为(8,0)和(0,6),点C 为AB 的中点,点D 在x 轴上,当D 点坐标为___________时,由点A 、C 、D 组成的三角形与△AOB 相似.三、解答题(本大题共10小题,共96分)19.(本题6分)计算:︒-+cos4542-820.(本题6分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求在给定的网格中画出△A 1B 1C 1和△A 2B 2C 2。
江苏省盐城中学2014-2015学年高一12月阶段性检测数学试题
江苏省盐城中学2014-2015学年高一12月阶段性检测数学试题一、填空题(每题5分,共70分)1.设集合21{|2},{1}2A x x B x x =-<<=≤,则A B = . 2.若)6sin()(πω-=x x f 的最小正周期是5π,其中0>ω,则ω的值是 .3.已知扇形的面积是4,扇形的圆心角的弧度数是2,则扇形的弧长是 .8.已知定义在R 上的函数)621cos(2)(π-=x x f ,则函数的单调增区间是 . 9.已知函数)62sin(π+=x y 的图象为曲线C ,函数)32sin(π-=x y 的图象为曲线'C ,可将曲线C 沿x 轴向右至少平移 个单位,得到曲线'C .10.已知二次函数,52)(2++=bx x x f 若实数,q p ≠且)()(q f p f =,则=+)(q p f .11.已知函数x x x f sin 4cos )(2+=,那么函数)(x f 的值域是 .12.定义在R 上的函数)(x f 满足()R y x xy y f x f y x f ∈++=+,,2)()()(,,2)1(=f 则=-)2(f .13.已知函数)0()3sin()(>+=ωπωx x f 在)45,(ππ上单调递减,则实数ω的取值范围是 .14.设⎭⎬⎫⎩⎨⎧=61,51,41,31,21X ,若集合G X ⊆,定义G 中所有元素之乘积为集合G 的“积数”(单元素集合的“积数”是这个元素本身),则集合X 的所有非空子集的“积数”的总和为 . 二.解答题15. (本题14分)已知角α是第二象限角,其终边上一点P 的坐标是),2(y -,且y 42sin =α. (1)求αtan 的值; (2)求αααα22cos 2sin 4cos sin 3+⋅的值.17.(本题15分)已知)(x f 是定义在R 上的周期为3的函数,当[)3,0∈x 时,212)(2+-=x x x f . (1)作出函数在区间[)3,0上的图象,并写出它的值域; (2)若函数212)(+-=mx f y 在区间[]4,3-上有10个零点,求m 的取值范围.18. (本题15分)已知奇函数)(x f 的定义域为R ,当121)(,0-⎪⎭⎫⎝⎛=≥xx f x .(1)求函数)(x f 的解析式,并判断函数在R 上的单调性(不需证明,只需给出结论); (2)对于函数)(x f 是否存在实数m ,使)0()sin 1()cos 2(2f f m m f <--+-θθ对所有0,2πθ⎡⎤∈⎢⎥⎣⎦都成立?若存在,求出符合条件的所有实数m 的范围;若不存在,说明理由.20.(本题16分)已知函数()()()2log 41,xf x kx k =++∈R 是偶函数.(1)求k 的值;(2)若2()log 51f x >-,求x 的取值范围;(3)设函数()24log 23xg x a a ⎛⎫=⋅-⎪⎝⎭,其中0.a >若函数()f x 与()g x 的图象有且只有一个交点,求a 的取值范围.高一年级数学随堂练习数学答题纸(2)[]6566,21)6sin(,1)2(,,ππαππααπα≤-≤-=-=∈f o3πα=或π17、(15分) (1)⎪⎭⎫⎢⎣⎡27,0(2)212)(,0212)(-==+-m mx f x f 21)(0<<x f ,01,1221<<-<<m m19、(16分)(1)因为一次喷洒4个单位的净化剂。
江苏省盐城市盐都区2023-2024学年九年级上学期期末数学试题(含答案)
2023/2024学年度第一学期期末学业质量检测九年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分。
3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程属于一元二次方程的是()A. B. C. D.2.二次函数的顶点坐标是( )A. B. C. D.3.已知的半径为4,点到圆心的距离为4.5,则点与的位置关系是( )A.在圆内B.在圆上C.在圆外D.无法确定4.学校组织才艺表演比赛,前5名获奖.有11位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这11名同学成绩的统计量中只需知道一个量,它是( )A.众数B.方差C.中位数D.平均数5.已知与分别为方程的两根,则的值等于( )A. B.2C.D.6.如图,点、、在上,,则的度数是( )A. B. C. D.7.如图,下列条件中不能判定的是()A.B. C. D.321x x+=210x x +-=30x -=140x x+-=2(2)3y x =+-(2,3)-(2,3)--(2,3)(2,3)-O P O P O P P P 1x 2x 2230x x +-=12x x +2-32-32A B C O 30ACB ︒∠=AOB ∠30︒40︒60︒65︒ACD ABC △∽△AB ADBC CD=ADC ACB ∠=∠ACD B ∠=∠2AC AD AB=⋅8.设,,是抛物线上的三点,,,的大小关系为( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)9.在比例尺为的扬州旅游地图上,某条道路的长为,则这条道路实际长________.10.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.11.如图,四边形是的内接四边形,的半径为2,,则的长为________.12.如图,在中,中线、相交于点,,则的长为________.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是,则蝴蝶身体的长度为________(结果保留根号)。
2022-2023学年江苏省盐城中学中校区九年级(上)月考数学试卷(10月份)(附答案详解)
2022-2023学年江苏省盐城中学中校区九年级(上)月考数学试卷(10月份)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.已知⊙O的半径为3,OA=5,则点A和⊙O的位置关系是( )A. 点A在圆上B. 点A在圆外C. 点A在圆内D. 不确定2.已知一组数据4,5,4,6,则这组数据的众数是( )A. 4B. 5C. 6D. 83.已知:如图OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为( )A. 45°B. 40°C. 35°D. 50°4.如图,点A是⊙O上一点,连接OA.弦BC⊥OA于点D.若OD=2,AD=1,则BC的长为( )A. 2√5B. 4C. 2√3D. 2√25.某班学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,但S甲2<S乙2,则考核成绩比较稳定的是( )A. 甲组B. 乙组C. 甲、乙两组一样稳定D. 无法确定6.如图,AB是圆O的直径,D是BA延长线上一点,DC与圆O相切于点C,连接BC,∠ABC=20°,则∠BDC的度数为( )A. 50°B. 45°C. 40°D. 35°7.如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )A. √3B. √6C. 3D. 2√38.如图,将圆锥沿一条母线剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2,扇形的圆心角θ=120°,则该圆锥母线l的长为( )A. 8B. 6C. 4D. 3第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)9.盐城2022年9月28号的最高气温为22℃,最低气温为13℃,该日的气温极差为______℃.10.已知Rt△ABC的两直边分别是6和8,则其内切圆半径为______.11.如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=______.12.在矩形ABCD中,AB=√2,BC=2,以A为圆心,AD为半径画弧交线段BC于E,连接AE,则阴影部分的面积为______.13.如图,已知⊙P的半径为2,圆心P在反比例函数y=12上运动,当⊙P与x轴相切时,圆x心P的坐标为______.14.某校招聘教师,其中一名教师的笔试成绩是90分,面试成绩是80分,综合成绩笔试占60%,面试占40%,则该教师的综合成绩为______分.15.如图所示的网格中,每个小正方形的边长均为1,点A,B,C,D均在小正方形的顶点上,⏜的长为______.且点C在AB⏜上,AB⏜与AD交于点H,则HB16.【阅读理解】三角形中线长公式:三角形两边平方的和,等于所夹中线和第三边一半的平方和的两倍如图(1),在△ABC中,点D是BC中点,则有:AB2+AC2=2(AD2+BD2).【问题解决】请利用上面的结论,解决下面问题:如图(2),点C、D是以AB为直径的⊙O上两点,点P是OB的中点,点E是CD的中点,且∠CPD=90,若AB=8,当△EPB面积最大时,则CD的长为______.三、解答题(本大题共11小题,共102.0分。
2022年江苏省盐城市初三毕业中考数学真题试卷含详解
2022年江苏省盐城市初中学业水平考试一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2022的倒数是()A.2022B.2022-C.12022D.12022-2.下列计算正确的是()A.23a a a += B.236()a a = C.236a a a ⋅= D.632a a a ÷=3.下列四幅照片中,主体建筑的构图不对称的是()A. B. C. D.4.盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为()A.70.1610⨯ B.71.610⨯ C.61.610⨯ D.51610⨯5.一组数据2-,0,3,1,1-的极差是()A.2B.3C.4D.56.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.强B.富C.美D.高7.小明将一块直角三角板摆放在直尺上,如图所示,则ABC ∠与DEF ∠的关系是()A.互余B.互补C.同位角D.同旁内角8.“跳眼法”是指用手指和眼睛估测距离的方法步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()A .40米 B.60米 C.80米 D.100米二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.1x -x 的取值范围是_______.10.已知反比例函数的图象过点(2,3),则该函数的解析式为_____.11.分式方程1121x x +=-的解为__________.12.如图所示,电路图上有A,B,C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A,B,都可使小灯泡发光.现任意闭合其中一个开关,则小灯泡发光的概率等于____________13.如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14.如图,在矩形ABCD 中,22AB BC ==,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD 上的点B '处,线段AB 扫过的面积为___________.15.若点(),P m n 在二次函数222=++y x x 的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.16.《庄子▪天下篇》记载“一尺之锤,日取其半,万世不竭.”如图,直线11:12l y x =+与y 轴交于点A ,过点A 作x 轴的平行线交直线2:l y x =于点1O ,过点1O 作y 轴的平行线交直线1l 于点1A ,以此类推,令1OA a =,112O A a =,L ,11n n n O A a --=,若12n a a a S +++≤ 对任意大于1的整数n 恒成立,则S 的最小值为___________.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.)03tan 4521-+︒-.18.解不等式组:()212,12142x x x x +≥+⎧⎪⎨-<+⎪⎩.19.先化简,再求值:()()()2443x x x +-+-,其中2310x x -+=.20.某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A 、B 、C ,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)21.小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发,两人离甲地的距离y (m )与出发时间x (min)之间的函数关系如图所示.(1)小丽步行的速度为__________m/min ;(2)当两人相遇时,求他们到甲地的距离.22.证明:垂直于弦AB 的直径CD 平分弦以及弦所对的两条弧.23.如图,在ABC 与A B C '''V 中,点D 、D ¢分别在边BC 、B C ''上,且ACD A C D '''∽△△,若___________,则ABD A B D '''△∽△.请从①BD B D CD C D ''='';②AB A B CD C D ''='';③BAD B A D '''∠=∠这三个选项中选择一个作为条件(写序号),并加以证明.24.合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:中国营养学会推荐的三大营养素供能比参考值蛋白质10%~15%脂肪20%~30%碳水化合物50%~65%注:供能比为某物质提供的能量占人体所需总能量的百分比.(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.25.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈ 2.24≈)26.【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在ABC 中,90ACB ∠=︒,四边形ADEB 、ACHI 和BFGC 分别是以Rt ABC 的三边为一边的正方形.延长IH 和FG ,交于点L ,连接LC 并延长交DE 于点J ,交AB 于点K ,延长DA 交IL 于点M .(1)证明:AD LC =;(2)证明:正方形ACHI 的面积等于四边形ACLM 的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形ACHI 和BFGC 分别是以ABC 的两边为一边的平行四边形,探索在AB 下方是否存在平行四边形ADEB ,使得该平行四边形的面积等于平行四边形ACHI 、BFGC 的面积之和.若存在,作出满足条件的平行四边形ADEB (保留适当的作图痕迹);若不存在,请说明理由.27.【发现问题】小明在练习簿的横线上取点O 为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图像上.(1)【分析问题】小明利用已学知识和经验,以圆心O 为原点,过点O 的横线所在直线为x 轴,过点O 且垂直于横线的直线为y 轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为___________.(2)【解决问题】请帮助小明验证他的猜想是否成立.(3)【深度思考】小明继续思考:设点()0,P m ,m 为正整数,以OP 为直径画M ,是否存在所描的点在M 上.若存在,求m 的值;若不存在,说明理由.2022年江苏省盐城市初中学业水平考试一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2022的倒数是()A.2022B.2022-C.12022D.12022-【答案】C 【分析】根据倒数的定义作答即可.【详解】2022的倒数是12022,故选:C .【点睛】本题考查了倒数的概念,即乘积为1的两个数互为倒数,牢记倒数的概念是解题的关键.2.下列计算正确的是()A.23a a a += B.236()a a = C.236a a a ⋅= D.632a a a ÷=【答案】B 【分析】根据合并同类项,幂的乘方以及同底数幂的乘除法求解即可.【详解】解:A .2a a 、不是同类项,不能合并,选项错误,不符合题意;B .236()a a =,选项正确,符合题意;C .235a a a ⋅=,选项错误,不符合题意;D .633a a a ÷=,选项错误,不符合题意;故选B .【点睛】此题考查了合并同类项,幂的乘方以及同底数幂的乘除法,掌握它们的运算法则是解题的关键.3.下列四幅照片中,主体建筑的构图不对称的是()A. B. C. D.【答案】B【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A 、主体建筑的构图对称,故本选项不符合题意;B 、主体建筑的构图不对称,故本选项符合题意;C 、主体建筑的构图对称,故本选项不符合题意;D 、主体建筑的构图对称,故本选项不符合题意;故选B .【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.4.盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为()A.70.1610⨯ B.71.610⨯ C.61.610⨯ D.51610⨯【答案】C 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a ≤<n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n 是正数,当原数的绝对值<1时,n 是负数.【详解】解:61600000 1.610=⨯.故选:C .【点睛】本题主要考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110,a ≤<n 为整数,正确确定a 的值及n 的值是解此题的关键.5.一组数据2-,0,3,1,1-的极差是()A.2B.3C.4D.5【答案】D 【分析】极差:一组数据中最大值与最小值的差,根据极差的定义进行计算即可.【详解】解:∵这组数据中最大的为3,最小的为2,-∴极差为最大值3与最小值2-的差为:()325--=,故选D .【点睛】本题考查的是极差的含义,掌握“极差的定义”是解本题的关键.6.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.强B.富C.美D.高【答案】D 【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,即可求解.【详解】解:根据题意得:“盐”字所在面相对的面上的汉字是“高”,故选D【点睛】本题主要考查了正方体的平面展开图的特征,熟练掌握正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.7.小明将一块直角三角板摆放在直尺上,如图所示,则ABC ∠与DEF ∠的关系是()A.互余B.互补C.同位角D.同旁内角【答案】A 【分析】利用平行线的性质可得出答案.【详解】解:如图,过点G 作GH 平行于BC ,则GH DE ∥,ABC AGH ∴∠=∠,DEF FGH ∠=∠,90AGH FGH ∠+∠=︒ ,90ABC DEF ∴∠+∠=︒,故选A .【点睛】本题考查了平行线的性质,灵活运用性质解决问题是解题的关键.8.“跳眼法”是指用手指和眼睛估测距离的方法步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()A.40米B.60米C.80米D.100米【答案】C 【分析】参照题目中所给的“跳眼法”的方法估测出距离即可.【详解】由“跳眼法”的步骤可知被测物体与观测点的距离是横向距离的10倍.观察图形,横向距离大约是汽车长度的2倍,为8米,所以汽车到观测点的距离约为80米,故选C .【点睛】本题主要考查了测量距离,正确理解“跳眼法”测物距是解答本题的关键.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.x 的取值范围是_______.【答案】1x【分析】根据二次根式的被开方数是非负数列出不等式10x -,解不等式即可求得x 的取值范围.【详解】解:根据题意得10x -,解得1x.故答案为:1x.【点睛】本题考查了二次根式有意义的条件,解题的关键是利用被开方数是非负数得出不等式.10.已知反比例函数的图象过点(2,3),则该函数的解析式为_____.【答案】y=6x.【分析】待定系数法求反比例函数解析式.首先设反比例函数解析式k y x=,再根据反比例函数图象上点的坐标特点可得,236k ,=⨯=进而可得反比例函数解析式.【详解】解:设反比例函数解析式为k y x=,23 反比例函数图象经过点(,),236k ∴=⨯=,6y x ∴=反比例函数解析式为,6.y x=故答案为【点睛】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.11.分式方程1121x x +=-的解为__________.【答案】2x =【分析】方程两边同时乘以2x -1,然后求出方程的解,最后验根.【详解】解:方程两边同乘()21x -得121x x +=-解得2x =,经检验,2x =是原分式方程的根,故答案为:2x =.【点睛】本题主要考查了解分式方程的知识,解答本题的关键是掌握解分式方程的步骤,注意要验根.12.如图所示,电路图上有A,B,C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A,B,都可使小灯泡发光.现任意闭合其中一个开关,则小灯泡发光的概率等于____________【答案】13【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合C 时才发光,所以小灯泡发光的概率等于13.【详解】解:根据题意,三个开关,只有闭合C 小灯泡才发光,所以小灯泡发光的概率等于13.【点睛】本题考查随机事件概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=.13.如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.【答案】35【分析】连接AO 并延长,交O 于点E ,连接BE ,首先根据圆周角定理可得90E BAE ∠+∠=︒,再根据AD 为O 的切线,可得90BAE BAD ∠+∠=︒,可得35E BAD Ð=Ð=°,再根据圆周角定理即可求得.【详解】解:如图,连接AO 并延长,交O 于点E ,连接BE .AE ∵为O 的直径,90ABE ∴∠=︒,90E BAE ∴∠+∠=︒,AD 为O 的切线,90DAE ∴∠=︒,90BAE BAD \Ð+Ð=°,35E BAD \Ð=Ð=°,35C E Ð\Ð==°.故答案为:35.【点睛】本题考查了圆周角定理,切线的性质,作出辅助线是解决本题的关键.14.如图,在矩形ABCD 中,22AB BC ==,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD 上的点B '处,线段AB 扫过的面积为___________.【答案】π3##13π【分析】由旋转的性质可得'2,AB AB ==由锐角三角函数可求'60,DAB ∠=︒从而得出'30,BAB ∠=︒由扇形面积公式即可求解.【详解】解:22,AB BC == 1,BC ∴=∵矩形ABCD 中,1,90,AD BC D DAB ∴==∠=∠=︒由旋转可知AB AB '=,∵22AB BC ==,∴'2,AB AB ==''1cos ,2AD DAB AB ∠== '60,DAB ∴∠=︒'30,BAB ∴∠=︒∴线段AB 扫过的面积2302.3603ππ︒⨯⨯==︒故答案为:.3π【点睛】本题主要考查了旋转的性质,矩形的性质,扇形面积公式,锐角三角函数等知识,灵活运用这些性质解决问题是解此题的关键.15.若点(),P m n 在二次函数222=++y x x 的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.【答案】110n ≤<【分析】先判断22m -<<,再根据二次函数的性质可得:()222211n m m m =++=++,再利用二次函数的性质求解n 的范围即可.【详解】解: 点P 到y 轴的距离小于2,22m ∴-<<,点(),P m n 在二次函数222=++y x x 的图象上,()222211n m m m ∴=++=++,∴当1m =-时,n 有最小值为1.当2m =时,()221110n =++=,n ∴的取值范围为110n ≤<.故答案为:110n ≤<【点睛】本题考查的是二次函数的性质,掌握“二次函数的增减性”是解本题的关键.16.《庄子▪天下篇》记载“一尺之锤,日取其半,万世不竭.”如图,直线11:12l y x =+与y 轴交于点A ,过点A 作x 轴的平行线交直线2:l y x =于点1O ,过点1O 作y 轴的平行线交直线1l 于点1A ,以此类推,令1OA a =,112O A a =,L ,11n n n O A a --=,若12n a a a S +++≤ 对任意大于1的整数n 恒成立,则S 的最小值为___________.【答案】2【分析】先由直线2:l y x =与y 轴的夹角是45°,得出1OAO △,112O A O ,…都是等腰直角三角形,1OA O A ∴=,1121O A O A =,2232O A O A =,…,得出点1O 的横坐标为1,得到当1x =时,131122y =⨯+=,点1A 的坐标为31,2⎛⎫ ⎪⎝⎭,112131122O A O A ==-=,点2O 的横坐标13122+=,当32x =时,1371224y =⨯+=,得出点2A 的坐标为37,24⎛⎫ ⎪⎝⎭,以此类推,最后得出结果.【详解】解: 直线2:l y x =与y 轴的夹角是45°,1OAO ∴△,112O A O ,…都是等腰直角三角形,1OA O A ∴=,1121O A O A =,2232O A O A =,…点A 的坐标为()0,1,∴点1O 的横坐标为1,当1x =时,131122y =⨯+=,∴点1A 的坐标为31,2⎛⎫ ⎪⎝⎭,112131122O A O A ∴==-=,∴点2O 的横坐标13122+=,当32x =时,1371224y =⨯+=,∴点2A 的坐标为37,24⎛⎫⎪⎝⎭,32227111424O A O A ∴==--=,……以此类推,得11OA a ==,11212O A a ==,22314O A a ==,33418O A a ==,……,11112n n n n O A a ---==,123111*********n n n a a a a S --∴++++=++++=-≤ ,S ∴的最小值为2.【点睛】本题考查了此题考查一次函数图象上的点的坐标特征,探究以几何图形为背景的问题时,一是要破解几何图形之间的关系,二是实现线段长度和点的坐标的正确转换,三是观察分析所得数据并找出数据之间的规律.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.)03tan 451-+︒-.【答案】3【分析】先计算)01-,化简绝对值、代入tan45°,最后加减.【详解】解:)03tan 451-+︒-311=+-3=.【点睛】本题考查了实数的运算,掌握零指数幂的意义、绝对值的意义及特殊角的三角函数值是解决本题的关键.18.解不等式组:()212,12142x x x x +≥+⎧⎪⎨-<+⎪⎩.【答案】12x ≤<【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【详解】()212,12142x x x x +≥+⎧⎪⎨-<+⎪⎩解不等式212x x +≥+,得1≥x ,解不等式()12142x x -<+,得2x <,所以不等式组的解集是12x ≤<【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.19.先化简,再求值:()()()2443x x x +-+-,其中2310x x -+=.【答案】2267x x --,-9【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式221669x x x =-+-+2267x x =--.2310x x -+= ,231x x ∴-=-,原式()()22372179x x =--=⨯--=-【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.20.某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A 、B 、C ,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)【答案】23【分析】画树状图,共有9种等可能的结果,其中甲、乙两人在不同检测点做核酸有6种结果,再由概率公式求解即可.【详解】解:画树状图如下:由图可知,共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,故甲、乙两人不在同一检测点参加检测的概率为6293=.【点睛】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发,两人离甲地的距离y (m )与出发时间x (min )之间的函数关系如图所示.(1)小丽步行的速度为__________m/min ;(2)当两人相遇时,求他们到甲地的距离.【答案】(1)80(2)960m【分析】(1)由图象可知小丽行走的路程与时间,根据速度=路程÷时间计算即可;(2)方法一:根据两函数图象的交点坐标来求解;方法二:根据行程问题中的相遇问题列出一元一次方程求解.【小问1详解】解:由图象可知,小丽步行30分钟走了2400米,小丽的速度为:2400÷30=80(m/min),故答案为:80.【小问2详解】解法1:小丽离甲地的距离y (m )与出发时间x (min )之间的函数表达式是()80030y x x =≤≤丽,小华离甲地的距离y (m )与出发时间x (min )之间的函数表达式是()1202400020y x x =-+≤≤华,两人相遇即y y =丽华时,801202400x x =-+,解得12x =,当12x =时,80960y x ==丽(m ).答:两人相遇时离甲地的距离是960m .解法2:设小丽与小华经过t min 相遇,由题意得801202400t t +=,解得12t =,所以两人相遇时离甲地的距离是8012960⨯=m .答:两人相遇时离甲地的距离是960m .【点睛】本题考查函数的图象,两直线相交问题,一元一次方程的应用,从图象中获取有用的信息是解题关键.22.证明:垂直于弦AB 的直径CD 平分弦以及弦所对的两条弧.【答案】见解析【分析】根据命题的题设:垂直于弦AB 的直径CD ,结论:CD 平分AB ,CD 平分¼¼,,ADB ACB 写出已知,求证,再利用等腰三角形的性质,圆心角与弧之间的关系证明即可.【详解】已知:如图,CD 是O 的直径,AB 是O 的弦,AB CD ⊥,垂足为P .求证:PA PB =, AD BD=, AC BC =.证明:如图,连接OA 、OB .因为OA OB =,OP AB ⊥,所以PA PB =,AOD BOD ∠=∠.所以 AD BD=,AOC BOC ∠=∠.所以 AC BC=.【点睛】本题考查的是命题的证明,圆心角与弧,弦之间的关系,等腰三角形的性质,熟练的运用在同圆与等圆中,相等的圆心角所对的弧相等是解本题的关键.23.如图,在ABC 与A B C '''V 中,点D 、D ¢分别在边BC 、B C ''上,且ACD A C D '''∽△△,若___________,则ABD A B D '''△∽△.请从①BD B D CD C D ''='';②AB A B CD C D ''='';③BAD B A D '''∠=∠这三个选项中选择一个作为条件(写序号),并加以证明.【答案】见解析.【分析】根据相似三角形的判定定理证明即可.【详解】解:若选①BD B D CD C D ''='',证明:∵ACD A C D '''∽△△,∴ADC A D C '''∠=∠,AD CD A D C D ='''',∴ADB A D B '''∠=∠,∵BD B D CD C D ''='',∴BD CD B D C D ='''',∴AD BD A D B D ='''',又ADB A D B '''∠=∠,∴ABD A B D '''△∽△.选择②BA B A CD C D ''='',不能证明ABD A B D '''△∽△.若选③BAD B A D '''∠=∠,证明:∵ACD A C D '''∽△△,∴ADC A D C ''∠'=,∴ADB A D B '''∠=∠,又∵BAD B A D '''∠=∠,∴ABD A B D '''△∽△.【点睛】本题考查相似三角形的判定定理,解题的关键是掌握相似三角形的判定方法.24.合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:中国营养学会推荐的三大营养素供能比参考值蛋白质10%~15%脂肪20%~30%碳水化合物50%~65%注:供能比为某物质提供的能量占人体所需总能量的百分比.(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.【答案】(1)抽样调查(2)样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%(3)答案见解析【分析】(1)由全面调查与抽样调查的含义可得答案;(2)利用加权平均数公式可得:求解三个年级的人数分别乘以各自的平均供能比的和,再除以总人数即可得到整体的平均数;(3)结合中国营养学会推荐的三大营养素供能比参考值,把求解出来的平均值与标准值进行比较可得:蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,再提出合理建议即可.【小问1详解】解:由该校1380名学生中调查了100名学生的膳食情况,可得:本次调查采用抽样的调查方法;故答案为:抽样【小问2详解】样本中所有学生的脂肪平均供能比为3536.6%2540.4%4039.2%100%38.59%352540⨯+⨯+⨯⨯=++,样本中所有学生的碳水化合物平均供能比为3548.0%2544.1%4047.5%100%46.825%352540⨯+⨯+⨯⨯=++.答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.【小问3详解】该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄人量.(答案不唯一,建议合理即可)【点睛】本题考查的是全面调查与抽样调查的含义,加权平均数的计算,利用平均数作决策,掌握“计算加权平均数的方法”是解本题的关键.25.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈ 2.24≈)【答案】(1)6.7m(2)4.5m【分析】(1)连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H ,根据锐角三角函数定义和勾股定理即可解决问题.(2)过点A 作AG DC ⊥,垂足为G ,根据锐角三角函数定义和勾股定理即可解决问题.【小问1详解】解:如图2,连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H .在Rt ABH 中,18037ABH ABC ∠=︒-∠=︒,sin 37AH AB ︒=,所以sin373m AH AB =⋅︒≈,cos37BH AB︒=,所以cos374m BH AB =⋅︒≈,在Rt ACH 中,3AH =m ,6CH BC BH =+=m ,根据勾股定理得 6.7AC ==≈m ,答:A 、C 两点之间的距离约6.7m .【小问2详解】如图2,过点A 作AG DC ⊥,垂足为G ,则四边形AGDO 为矩形,1GD AO ==m ,AG OD =,所以5CG CD GD =-=m ,在Rt ACG 中,AG =m ,5CG =m ,根据勾股定理得 4.5AG ==≈m .4.5OD AG ∴==m .答:OD 的长为4.5m .【点睛】求角的三角画数值或者求线段的长时,我们经常通过观察图形将所求的角成者线段转化到直角三角形中(如果没有直角三角形,设法构造直角三角形),再利用锐角三角画数求解26.【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在ABC 中,90ACB ∠=︒,四边形ADEB 、ACHI 和BFGC 分别是以Rt ABC 的三边为一边的正方形.延长IH 和FG ,交于点L ,连接LC 并延长交DE 于点J ,交AB 于点K ,延长DA 交IL 于点M .;(1)证明:AD LC(2)证明:正方形ACHI的面积等于四边形ACLM的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】的两边为一边的平行四边形,探索在AB下方是否存在平行四边如图2,四边形ACHI和BFGC分别是以ABC形ADEB,使得该平行四边形的面积等于平行四边形ACHI、BFGC的面积之和.若存在,作出满足条件的平行四边形ADEB(保留适当的作图痕迹);若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)见解析(4)存在,见解析【分析】(1)根据正方形的性质和SAS证明△ACB≌△HCG,可得结论;=S△CHL,所以S△AMI=S△CHL,由此可得结论;(2)证明S△CHG(3)证明正方形ACHI的面积+正方形BFGC的面积=▱ADJK的面积+▱KJEB的面积=正方形ADEB,可得结论;(4)如图2,延长IH和FG交于点L,连接LC,以A为圆心CL为半径画弧交IH于一点,过这一点和A作直线,以A为圆心,AI为半径作弧交这直线于D,分别以A,B为圆心,以AB,AI为半径画弧交于E,连接AD,DE,BE,则四边形ADEB即为所求.【小问1详解】证明:如图1,连接HG,∵四边形ACHI,ABED和BCGF是正方形,∴AC=CH,BC=CG,∠ACH=∠BCG=90°,AB=AD,∵∠ACB=90°,∴∠GCH=360°﹣90°﹣90°﹣90°=90°,∴∠GCH=∠ACB,。
2023年江苏省盐城市中考数学真题卷(含答案与解析)_8652
2023年江苏省盐城市初中学业水平考试数学试卷本试卷共6页,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1. 下列数中,属于负数的是( )A. 2023B. 2023-C. 12023D. 02. 在平面直角坐标系中,点2(1)A ,在( ) A 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 下列图形中,属于中心对称图形的是( )A B.C. D.4. 下列每组数分别表示3根小木棒的长度(单位:cm ),其中能搭成一个三角形的是( )A. 5,7,12B. 7,7,15C. 6,9,16D. 6,8,125. 2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为( )A. 51.0510⨯B. 410.510⨯C. 60.10510⨯D. 61.0510⨯ 6. 由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是( )..A. B.C. D.7. 小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒8. 如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共8小题,每小题3分,共24分)9. 在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为__________.10. 因式分解:2x xy -=__________________.11. 在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm. 12. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.13. 我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.14. 如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m. 1.7≈)15. 如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.16. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17. 计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭. 18. 解不等式4233x x --<,并把它的解集在数轴上表示出来.19. 先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.20. 随着盐城交通的快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.21. 如图,AB AE =,BC ED =,B E ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)22. 盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表: 年份 2017 2018 2019 2020 2021 2022人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917(3)结合以上统计和计算,谈谈你对该保护区的建议或想法.23.课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小. 的小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>, ∴2121x x +>-.老师:分式大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”) 24. 如图,在ABC 中,O 是AC 上(异于点A ,C )的一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.(1)判断BC 与O 位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.25. 某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.26. 定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】的的(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c =++与x 轴的另一交点为点B .若14OB OA =,求b 的值. 【拓展延伸】(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.27. 综合与实践【问题情境】如图1,小华将矩形纸片ABCD 先沿对角线BD 折叠,展开后再折叠,使点B 落在对角线BD 上,点B 的对应点记为B ',折痕与边AD ,BC 分别交于点E ,F .【活动猜想】(1)如图2,当点B '与点D 重合时,四边形BEDF 是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当4AB =,8AD =,3BF =时,求证:点A ',B ',C 在同一条直线上.【深入探究】(3)如图4,当AB 与BC 满足什么关系时,始终有A B ''与对角线AC 平行?请说明理由.(4)在(3)的情形下,设AC 与BD ,EF 分别交于点O ,P ,试探究三条线段AP ,B D ',EF 之间满足的等量关系,并说明理由.参考答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1. 下列数中,属于负数的是( )A. 2023B. 2023-C. 12023D. 0 【答案】B【解析】【分析】根据小于0的数即为负数解答可得.【详解】2023-是负数,2023和12023是正数,0既不是正数也不是负数 故选:B .【点睛】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键. 2. 在平面直角坐标系中,点2(1)A ,在( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】根据各象限内点的坐标特征解答.【详解】点(1,2)所在的象限是第一象限.故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−). 3. 下列图形中,属于中心对称图形的是( )A. B.C. D.【答案】B【解析】【分析】根据中心对称图形的定义进行逐一判断即可:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.由定义可判定A 、C 、D 选项的图形不是中心对称图形,故不符合题意;B 选项的图形是中心对称图形,符合题意.故选:B .【点睛】本题主要考查了中心对称图形,熟知中心对称图形的定义是解题的关键.4. 下列每组数分别表示3根小木棒的长度(单位:cm ),其中能搭成一个三角形的是( )A. 5,7,12B. 7,7,15C. 6,9,16D. 6,8,12【答案】D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【详解】A 、5712+=,不能构成三角形,故此选项不合题意;B 、771415+=<,不能构成三角形,故此选项不合题意;C 、691516+=<,不能构成三角形,故此选项不合题意;D 、681412+=>,能构成三角形,故此选项符合题意.故选:D .【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.5. 2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为( )A. 51.0510⨯B. 410.510⨯C. 60.10510⨯D. 61.0510⨯ 【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为10n a ⨯,n 为正整数,且n 比原数的整数位数少1,据此可以解答.【详解】解:数据105000用科学记数法表示为51.0510⨯ .故选:A .【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.6. 由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是( )A. B.C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】观察图形可知,该几何体的俯视图如下:.故选:D .【点睛】本题考查了简单组合体的三视图的知识,俯视图是从物体的上面看得到的视图. 7. 小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒【答案】C【解析】 【分析】根据平行线的性质得出45AGF F ∠=∠=︒,然后根据三角形内角和定理求解即可.【详解】解:如图:设AB FD 、交于点G ,∵AB EF ∥,∴45AGF F ∠=∠=︒,∵60A ∠=︒,∴1180180604575A AGF ∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查了三角形内角和定理、平行线的性质等知识点,熟练掌握平行线的性质是解题的关键.8. 如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】 【分析】结合函数图象逐个分析即可.【详解】由函数图象可得:当0y >时,31x -<<-或3x >;故①错误;当3x >-时,y 有最小值;故②正确;点(),1P m m --在直线=1y x --上,直线=1y x --与函数图象有3个交点,故③错误;将函数y 的图象向右平移1个或3个单位长度经过原点,故④正确;故选:C .【点睛】本题考查了函数的图象与性质,一次函数图象,解题的关键是数形结合.二、填空题(本大题共8小题,每小题3分,共24分)9. 在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为__________.【答案】3【解析】【分析】根据频数定义可得答案.【详解】在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为3,故答案为:3.【点睛】此题主要考查了频数,关键是掌握频数是指每个对象出现的次数.10. 因式分解:2x xy -=__________________.【答案】()x x y -【解析】【分析】根据观察可知公因式是x ,因此提出x 即可得出答案.【详解】解:x 2-xy = x (x -y ).故答案:()x x y -【点睛】提公因式法因式分解是本题的考点,通过观察正确找出公因式是解题的关键.11. 在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm.【答案】5【解析】【分析】由于D 、E 分别为AB 、AC 边上的中点,那么DE 是ABC 的中位线,根据三角形中位线定理可求DE .【详解】如图所示,D 、E 分别为AB 、AC 边上的中点,DE ∴是ABC 的中位线,12DE BC ∴=; 又∵10cm BC =, ∴15cm 2DE BC ==; 故答案为:5.【点睛】本题考查了三角形中位线定理.三角形的中位线等于第三边的一半.12. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.【答案】59【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:设小正方形的边长为1,则总面积为9,其中阴影部分面积为5, ∴飞镖落在阴影部分的概率是59, 故答案为:59. 【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.13. 我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.【答案】7人【解析】【分析】设共有x 人,价格为y 钱,根据题意列出二元一次方程组即可求解.【详解】解:设共有x 人,价格为y 钱,依题意得:8374x y x y -=⎧⎨+=⎩, 解得:753x y =⎧⎨=⎩, 答:物品价格为53钱,共同购买该物品的人数有7人,故答案为:7.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组即可求解.14. 如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m. 1.7≈)【答案】15【解析】【分析】由60ACB ∠=︒,30ADB ∠=︒可得30ADB CAB CAD ∠︒=∠=∠=,可推得17.5m AC CD ==,由三角函数求出AB 即可.【详解】∵60ACB ∠=︒,30ADB ∠=︒,ACB ADB CAD ∠=∠+∠,∴30ADB CAD ∠=∠=︒,∴17.5m AC CD ==,又∵90ABC ∠=︒,∴906030CAB ∠=︒-︒=︒, ∵cos ∠=AB CAB AC,17.5AB = 解得15AB ≈,故答案为:15.【点睛】此题主要考查了解直角三角形的应用,正确得出AC 的长是解题关键.15. 如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.【解析】【分析】首先证明BCD △是等边三角形,再根据弧长公式计算即可.【详解】解:在Rt ABC △中,∵90ACB ∠=︒,=60B ∠︒,3BC =,∴26AB BC ==,由旋转的性质得CE CA ===,90ACE BCD ACD ∠=∠=︒-∠,CB CD =,∴BCD △是等边三角形,∴60BCD ACE ∠=︒=∠,∴点A =..【点睛】本题考查了旋转变换,含30︒直角三角形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是证明BCD △是等边三角形.16. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.【答案】6【解析】【分析】过点B 作BF AD ⊥于点F ,连接AE ,设点A 的坐标为,k a a ⎛⎫ ⎪⎝⎭,点B 的坐标为,k b b ⎛⎫ ⎪⎝⎭,则,AD a =,k k AF a b BF b a=-=-,证明∽ ABF ACD ,则AB AF AC AD =,得到3a b =,根据29ABE S BCE == ,进一步列式即可求出k 的值.【详解】解:过点B 作BF AD ⊥于点F ,连接AE ,设点A 的坐标为,k a a ⎛⎫ ⎪⎝⎭,点B 的坐标为,k b b ⎛⎫ ⎪⎝⎭,则,AD a =,k k AF a b BF b a =-=-, ∵2AB BC =, ∴23AB AC =,∵AD y ⊥轴于点D ,∴CD BF ,∴∽ ABF ACD , ∴AB AF AC AD=, ∴23AB a b AC a -==, ∴3a b =,∵2AB BC =,BCE 的面积是4.5,∴29ABE S BCE == , ∴11922AD BF AD OD ⋅+⋅=, ∴11922k k k a a b a a⎛⎫-+⋅= ⎪⎝⎭, 则113392323k k k b b b b b ⎛⎫-+⋅= ⎪⎝⎭, 即3119222k k k -+=,解得6k =,故答案为:6【点睛】此题考查反比例函数的图象和性质、相似三角形的判定和性质等知识,求出3a b =是解题的关键.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17. 计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭. 【答案】3【解析】【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂分别化简,进而得出答案. 【详解】原式124132=+⨯-=. 【点睛】此题主要考查了实数的运算,正确化简各数是解题关键.18. 解不等式4233x x --<,并把它的解集在数轴上表示出来.【答案】1x <,数轴见详解【解析】【分析】根据解一元一次不等式的步骤解答即可. 【详解】4233x x --< 去分母得:()3234x x -<-,去括号得:694x x -<-,移项得:694x x -<-,合并同类项得:55x <,系数化为1:1x <.在数轴上可表示为:.【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.19. 先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.【答案】226a ab +,4-【解析】【分析】根据完全平方公式和平方差公式展开后化简,最后代入求值即可.【详解】()()()2333a b a b a b +++- 2222699a ab b a b =+++-226a ab =+当2a =,1b =-时,原式()2226214=⨯+⨯⨯-=-. 【点睛】本题考查整式混合运算的化简求值,解题的关键是根据完全平方公式和平方差公式展开. 20. 随着盐城交通快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.【答案】(1)12(2)16【解析】【分析】(1)根据概率公式计算即可;(2)列表表示出所有的可能性,再根据概率公式计算即可.的【小问1详解】从甲镇到乙镇,小华所选路线是乡村公路A 的概率为12, 故答案为:12.【小问2详解】列表如下:C D E AAC AD AE B BC BD BE 共有6种等可能的结果,其中两段路程都选省级公路只有BC ,共1种, ∴小华两段路程都选省级公路的概率16. 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m PA n =. 21. 如图,AB AE =,BC ED =,BE ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)【答案】(1)见解析(2)见解析 【解析】【分析】(1)根据边角边证明ABC AED ≌△△即可证明结论成立; (2)根据过直线外一点向直线最垂线的作法得出即可.【小问1详解】证明:∵AB AE =,B E ∠=∠,BC ED =,∴()SAS ABC AED ≌,∴AC AD;【小问2详解】解:所作图形如图,.【点睛】本题主要考查了全等三角形的判定和性质,过直线外一点向直线最垂线的作法,熟练记忆正确作法是解题关键.22. 盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表:年份2017 2018 2019 2020 2021 2022人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917(3)结合以上的统计和计算,谈谈你对该保护区的建议或想法.【答案】(1)14.4︒,1585(2)3980(3)见解析【解析】【分析】(1)先计算哺乳类所占百分比,再计算该部分扇形圆心角的度数;(2)先排序,再计算中间的两个数的平均数;(3)从人工驯养和野生保护两个方面表述即可.【小问1详解】解:①在扇形统计图中,哺乳类所占的百分比为:154%32%10%4%---=,∴哺乳类所在扇形的圆心角度数为:3604%14.4︒⨯=︒;②在折线统计图中,近6年野生麋鹿头数按从小到大顺序排序为: 765,1025,1350,1820,2503,3116,近6年野生麋鹿头数的中位数为1350182015852+=, 故答案为:14.4︒,1585;【小问2详解】解:648325033980-=,故答案为:3980;【小问3详解】加强对野生麋鹿的保护的同时,提高人工驯养的技术.【点睛】本题考查了扇形统计图和拆线统计图,中位数,掌握从图形中获取信息的方法是解题的关键. 23. 课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小. 小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>, ∴2121x x +>-.老师:分式大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”) 【答案】(1)M N >(2)<【解析】【分析】(1)根据作差法求M N -的值即可得出答案;(2)根据作差法求23226865-的值即可得出答案. 【小问1详解】 解:()()()()()311333333a b b a a a ab a ba b a b M N b b b b b b b b +-+++----=-===++++, 30a b >> ,()3>03a b b b -∴+, >M N ∴; 【小问2详解】解:2322149514961=<06865442044204420--=-, 2322<6865∴. 故答案为:<.【点睛】本题考查分式运算的应用,解题关键是理解材料,通过作差法求解,掌握分式运算的方法. 24. 如图,在ABC 中,O 是AC 上(异于点A ,C )一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.的的(1)判断BC 与O 的位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.【答案】(1)见解析(2)O 的半径长为154. 【解析】【分析】(1)连接OB ,证明OB AD ∥,即可证得OB BC ⊥,从而证得BC 是圆的切线;(2)设OB OA x ==,则10OC AC OA x =-=-,利用勾股定理求得6AD =,推出COB CAD ∽△△,利用相似三角形的性质列得比例式,据此求解即可.【小问1详解】证明:连接OB ,如下图所示,∵AB 是CAD ∠的平分线,∴BAD BAO ∠=∠,又∵OB OA =,∴OAB OBA ∠=∠,∴BAD OBA ∠=∠,∴OB AD ∥,∴90OBC D ∠=∠=︒,即OB BC ⊥,又∵BC 过半径OB 的外端点B ,∴BC 与O 相切;【小问2详解】解:设OB OA x ==,则10OC AC OA x =-=-,∵在ADC △中,90D Ð=°,10AC =,8DC =,∴6AD ==,∵OB AD ∥,∴COB CAD ∽△△, ∴OB OC AD AC=,即10610x x -=, 解得154x =. 故O 的半径长为154. 【点睛】本题考查了切线的判定,相似三角形的判定和性质,以及勾股定理,熟练掌握切线的判定是解本题的关键.25. 某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.【答案】(1)甲商店硬面笔记本的单价为16元(2)乙商店硬面笔记本的原价18元【解析】【分析】(1)根据“硬面笔记本数量=软面笔记本数量”列出分式方程,求解检验即可;(2)设乙商店硬面笔记本的原价为a 元,则软面笔记本的单价为()3a -元,由再多购买5本的费用恰好与按原价购买的费用相同可得()()53ma m a =+-,再根据30530m m <⎧⎨+≥⎩且m ,均为正整数,即可求解. 【小问1详解】解:设硬面笔记本的单价为x 元,则软面笔记本的单价为()3x -元,根据题意得 2401953x x =-,解得16x =,经检验,16x =是原方程的根,且符合题意,故甲商店硬面笔记本单价为16元;【小问2详解】设乙商店硬面笔记本的原价为a 元,则软面笔记本的单价为()3a -元,由题意可得30530m m <⎧⎨+≥⎩, 解得2530m ≤<,根据题意得()()53ma m a =+-, 解得3155m a +=, m 为正整数, 25m ∴=,26,27,28,29,分别代入3155m a +=, 可得18a =,18.6,19.2,19.8,20.4,由单价均为整数可得18a =,故乙商店硬面笔记本的原价18元.【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出相应方程.26. 定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c =++与x 轴的另一交点为点B .若14OB OA =,求b 的值. 【拓展延伸】 的(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.【答案】(1)①;(2)5b =或3-;(3)1n =或n =14n = 【解析】 【分析】(1)求出函数1y x =-与坐标轴的交点,再判断这两个点在不在二次函数图象上即可; (2)求出函数y x c =+与坐标轴的交点,再由14OB OA =求出点B 坐标,代入二次函数解析式计算即可; (3)先求出M ,C 的坐标,再根据2y mx nx t =++的顶点P 在矩形MNDE 的边上分类讨论即可.【详解】(1)函数1y x =-交x 轴于()1,0,交y 轴于()0,1-,∵点()1,0、()0,1-都在21y x =-函数图象上∴①21y x =-为函数1y x =-的轴点函数;∵点()0,1-不在2y x x =-函数图象上∴②2y x x =-不是函数1y x =-的轴点函数;故答案为:①;(2)函数y x c =+交x 轴于(),0A c -,交y 轴于()0,c , ∵函数y x c =+的轴点函数2y ax bx c =++∴(),0A c -和()0,c 都在2y ax bx c =++上,∵0c >∴OA c = ∵14OB OA =, ∴14OB c = ∴1,04B c ⎛⎫- ⎪⎝⎭或1,04B c ⎛⎫ ⎪⎝⎭当1,04B c ⎛⎫-⎪⎝⎭时,把(),0A c -1,04B c ⎛⎫- ⎪⎝⎭代入2y ax bx c =++得 221101640ac bc c ac bc c⎧=-+⎪⎨⎪=-+⎩,解得5b =, 当1,04B c ⎛⎫ ⎪⎝⎭时,把(),0A c -1,04B c ⎛⎫ ⎪⎝⎭代入2y ax bx c =++得 221101640ac bc c ac bc c⎧=++⎪⎨⎪=-+⎩,解得3b =-, 综上,5b =或3-;(3)函数12y x t =+交x 轴于()2,0M t -,交y 轴于()0,C t , ∵ON OC =,以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE∴(),0N t ,(),2D t t ,()2,2E t t -, ∵函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++ ∴()2,0M t -和()0,C t 在2y mx nx t =++上∴()()2022m t n t t =-+-+,整理得4210mt n -+= ∴122n mt =+∴2y mx nx t =++的顶点P 坐标为24,24n mt n m m ⎛⎫-- ⎪⎝⎭, ∵函数2y mx nx t =++的顶点P 在矩形MNDE 的边上。
2022-2023学年江苏省盐城中学等四校高三上学期12月联考试题 数学(word版)
16.有一张面积为 的矩形纸片 ,其中 为 的中点, 为 的中点,将矩形 绕 旋转得到圆柱 ,如图所示,若点 为 的中点,直线 与底面圆 所成角的正切值为 , 为圆柱的一条母线(与 , 不重合),则当三棱锥 的体积取最大值时,三棱锥 外接球的表面积为___________.
22.已知函数 .( 是自然对数的底数)
(1)若 ,求 的单调区间;
(2)若 ,试讨论 在 上的零点个数.(参考数据: )
2023届高三年级第一学期四校联考
数学试卷参考答案
1.B2.C3.A4.A5.A6.C7.B8.C
解:设 ,则 (不恒为零),
C.圆 的圆心为 ,半径为
D.圆 的圆心为 ,半径为
3.已知向量 , , , ,则下列说法正确的是()
A.若 ,则 有最小值 B.若 ,则 有最小值
C.若 ,则 的值为 D.若 ,则 的值为1
4.2021年4月29日,中国空间站天和核心舱发射升空,这标志着中国空间站在轨组装建造全面展开,我国载人航天工程“三步走”战略成功迈出第三步.到今天,天和核心舱在轨已经九个多月.在这段时间里,空间站关键技术验证阶段完成了5次发射、4次航天员太空出舱、1次载人返回、1次太空授课等任务.一般来说,航天器绕地球运行的轨道近似看作为椭圆,其中地球的球心是这个椭圆的一个焦点,我们把椭圆轨道上距地心最近(远)的一点称作近(远)地点,近(远)地点与地球表面的距离称为近(远)地点高度.已知天和核心舱在一个椭圆轨道上飞行,它的近地点高度大约351km,远地点高度大约385km,地球半径约6400km,则该轨道的离心率为()
C.当 时,平面 截球O所得截面的周长为
D.当 时,将正四面体ABCD绕EF旋转 后与原四面体的公共部分体积为
江苏省G4联盟(苏州中学、扬州中学、盐城中学、常州中学)22-23学年高三12月联考数学试题 附答案
G4联盟—苏州中学、扬州中学、常州中学、盐城中学2022-2023学年第一学期12月联合调研高三数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={-1,0},B ={x |-2<x <0},则A ∩B = A .{-1}B .{-1,0}C .{x |-2<x <0}D .{x |-2<x ≤0}2.若复数z 的共轭复数z 满足i ⋅z =4+3i (其中i 为虚数单位),则z z ⋅的值为AB .5C .7D .253.下图是近十年来全国城镇人口、乡村人口的折线图(数据来自国家统计局).根据该折线图,下列说法错误的是 A .城镇人口与年份星现正相关B .乡村人口与年份的相关系数r 接近1C .城镇人口逐年增长率大致相同D .可预测乡村人口仍呈现下降趋势4.函数y =2x 2-e |x |在[-2,2]的图象大致为A .B .C .D .5.若椭圆的焦点为F 1,F 2,过F 1的最短弦PQ 的长为10,△PF 2Q 的周长为36,则此椭圆的离心率为A .13B .3C .23D .36.南宋时期,秦九韶就创立了精密测算雨量、雨雪的方法,他在《数学九章》载有“天池盆测雨”题,使用一个圆台形的天池盆接雨水.观察发现体积一半时的水深大于盆高的一半,体积一半时的水面面积大于盆高一半时的水面面积,若盆口半径为a ,盆地半径为b (0<b <a ),根据如上事实,可以抽象出的不等关系为A <B <C .22222a b a b ++⎛⎫<⎪⎝⎭D .33322a b a b ++⎛⎫<⎪⎝⎭7.在数列{a n }中,()()111sin sin 10n n n n a a a a ++-⋅+=,则该数列项数的最大值为 A .9B .10C .11D .128.在△ABC 中,AB =4,BC =3,CA =2,点P 在该三角形的内切圆上运动,若AP mAB nAC =+(m ,n 为实数),则m +n 的最小值为 A .518B .13C .718D .49二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知a >0,b >0,a +b =1,则A .114a b+≤B .22a b+≥C .log 2a +log 2b ≤-2D .1sin sin 2sin2a b +≤ 10.已知函数()x a a x f x e e --=+,()x a a x g x e e --=-,则 A .函数y =g (x )有且仅有一个零点B .f ′(x )=g (x )且g ′(x )=f (x )C .函数y =f (x )g (x )的图象是轴对称图形D .函数()()g x y f x =在R 上单调递增 11.乒乓球(tabletennis ),被称为中国的“国球”,是一种世界流行的球类体育项目,是推动外交的体育项目,被誉为“小球推动大球”.某次比赛采用五局三胜制,当参赛甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前已赛结果影响.假设甲在任一局赢球的概率为p (0≤p ≤1),实际比赛局数的期望值记为f (p ),下列说法正确的是 A .三局就结束比赛的概率为p 3+(1-p )3B .f (p )的常数项为3C .1435f f ⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭D .13328f ⎛⎫=⎪⎝⎭ 12.在四棱锥P -ABCD 中,底面ABCD 为正方形,P A ⊥底面ABCD ,P A =AB =1.G 为PC 的中点,M 为平面PBD 上一点下列说法正确的是A .MGB .若MA +MG =1,则点M 的轨迹是椭圆C.若MA =M 的轨迹围成图形的面积为12π D .存在点M ,使得直线BM 与CD 所成角为30°三、填空题:本题共4小题,每小题5分,共20分.13.在6x ⎛⎝的展开式中,常数项为 .14.如图,将绘有函数()sin 2f x M πϕ⎛⎫=+⎪⎝⎭(M >0,0<φ<π)部分图象的纸片沿x 轴折成直二面角,此时A ,Bφ= .15.我们利用“错位相减”的方法可求等比数列的前n 项和,进而可利用该法求数列{(2n -1)⋅3n }的前n 项和S n ,其操作步骤如下:由于S n =1×31+3×32+…+(2n -1)⋅3n ,()23131333213n n S n +=⨯+⨯++-⋅,从而()()21232323213n n n S n +=--⨯++⨯+-⋅,所以()1133n n S n +=-⋅+,始比如上方法可求数列{n 2⋅3n }的前n 项和T n ,则2T n +3= .16.已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=2x .若对任意x ∈[1,3],不等式f (x +a )≤f 2(x )恒成立,则实数a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在数列{a n }中,a =1,其前n 项和S n 满足2S n =(n +1)a n ,n ∈N *. (1)求数列{a n }的通项公式a n ;(2)若m 为正整数,记集合22n nn a a m a ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭≤的元素个数为b m ,求数列{b m }的前20项和. 18.(本小题满分12分)在轴截面为正方形ABCD 的圆柱中,M ,N 分别为弧AD ,弧BC 的中点,且在平面ABCD 的两侧.(1)求证:四边形ANCM 是矩形; (2)求二面角B -MN -C 的余弦值.19.(本小题满分12分)文化月活动中,某班级在宣传栏贴出标语“学好数学好”,可以不同断句产生不同意思,“学/好数学/好”指要学好的数学,“学好/数学/好”强调数学学习的重要性,假设一段时间后,随机有N 个字脱落. (1)若N =3,用随机变量X 表示脱落的字中“学”的个数,求随机变量X 的分布列及期望; (2)若N =2,假设某同学检起后随机贴回,求标语恢复原样的概率. 20.(本小题满分12分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =1,c =2. (1)若2CD DB =,2AD CB ⋅=,求A ; (2)若23C B π-=,求△ABC 的面积. 21.(本小题满分12分)在平面直角坐标系xOy 中,已知点P 在抛物线C 1:y 2=4x 上,圆C 2:(x -2)2+y 2=r 2(0<r <2). (1)若r =1,Q 为圆C 2上的动点,求线段PQ 长度的最小值;(2)若点P 的纵坐标为4,过P 的直线m ,n 与圆C 2相切,分别交抛物线C 1于A ,B (异于点P ),求证:直线AB 过定点.22.(本小题满分12分)若对实数x 0,函数f (x ),g (x )满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称()()()0,,f x x x F x g x x x <⎧⎪=⎨⎪⎩≥为“平滑函数”,x 0为该函数的“平滑点”.已知()323122x f x ax x x =-+,g (x )=bx ln x . (1)若1是平滑函数F (x )的“平滑点”, (ⅰ)求实数a ,b 的值;(ⅱ)若过点P (2,t )可作三条不同的直线与函数y =F (x )的图象相切,求实数t 的取值范围; (2)对任意b >0,判断是否存在a ≥1,使得函数F (x )存在正的“平滑点”,并说明理由.G4联盟—苏州中学、扬州中学、常州中学、盐城中学2022-2023学年第一学期12月联合调研高三数学答案及其解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A 2.【答案】D【解析】4334i z i z i ⋅=+⇒=-,所以25z z ⋅= 3.【答案】B【解析】因为乡村人口与年份望负线性相关关系,所以r 接近-1,故选B 4.【答案】D 5.【答案】C【解析】由题意得22245109436b b a a a ⎧⎧==⎪⇒⎨⎨=⎩⎪=⎩,所以6c ==,故椭圆离心率为23c e a == 6.【答案】D 7.【答案】C【解析】()()()()()()11112111cos cos sin sin sin 2n n n n n n n n n n n n n a a a a a a a a a a a a a +++++++--+--++⎡⎤⎡⎤⎣⎦⎣⎦-⋅+==-21sin 10n a =,所以{}2sin n a 为等差数列,公差为110,所以()2211sin sin 1110n a a n =+-⨯≤,所以110n -211sin 111a n -⇒≤≤≤,故选C8.【答案】B【解析】()m n AP mAB nAC m n AB AC m n m n ⎛⎫=+=++⎪++⎝⎭,由P 在内切圆上,故APm n m n AB AC m n m n +=⎛⎫+⎪++⎝⎭,则11cos 16A =,所以BC 边上高为2h =6r =,故由平行线等比关系,可得213h r m n h -+=≥,故选B 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.【答案】BCD 【解析】选项A ,应该是114a b +≥,B :22221a ba b+++≥,B 正确;C :222log log 2log 22a b a b ++=-≤,C 正确;D :1sin sin 2sin cos 2sin 222a b a b a b +-+=⋅≤,D 正确;答案为BCD 10.【答案】ABD【解析】AB 正确,因为()f x 关于x a =轴对称,()g x 关于(),0a 中心对称,故()()f x g x 为中心对称图形,C 错误:而()()()()()220'g x f x q x f x B x ⎡⎤-=>⎢⎥∠⎣⎦或根据一般得分离常数变形可知D 正确;答案为:ABD 11.【答案】ABD 【解析】 显然A 正确;()()()()()323131223343141151f p p p C p p C p p C p p ⎡⎤⎡⎤=+-+-+-+⨯-⎣⎦⎣⎦()03f =,13328f B ⎛⎫=⇒ ⎪⎝⎭,D 正确; 求导或根据()f p 关于12对称,且p 越极端,越可能快结束,有11412352--≤,得1435f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, 故答案为:ABD 12.【答案】ABC 【解析】A 选项判断:应用等体积法,可()()min min 1122MG AG =≥A 正确;B 选项:因为面PBD 不与AG 垂直,也不平行,故轨迹不可能时圆,即为椭圆,B 正确;C 选项判断:设MH ⊥面PBD ,H ∈面PBD ,2112MA HM =⇒=,故C 正确; D 选项判断:由于CD 与面PBD 夹角θ满足1sin2θ=>,故[],6πθπθ∉-,D 错误;综上所述,答案为ABC三、填空题:本题共4小题,每小题5分,共20分.13.【答案】15【解析】展开式的通项为()()36621661rr r r Tr Cx C x --+⎛==- ⎝,当31602r -=,4r =时,为常数项15 14.【答案】56π【解析】如图,因为()f x 的周期为242T ππ==,所以22T CD ==,22TCD ==,所以AB ===解得M =所以()2f x x πϕ⎛⎫=+ ⎪⎝⎭,所以()0f ϕ==,1sin 2ϕ=,因为0ϕπ<<,所以6πϕ=或56π,又因为函数()f x 在y 轴右侧单调递减,所以56πϕ=. 15.【答案】()2113n n n +-+⋅【解析】2122213233n n T n =⨯+⨯+⋯+⋅① 222321313233n n T n +=⨯+⨯+⨯+⋅②②-①()()()222222322123123233133n n n T n n n +⎡⎤=-+-⋅+-⋅++--⋅+⋅⎣⎦()()3321333532133n n n n +=--⋅+⋅++-⋅+⋅()()212112333313n n n n n S n S n n n +++=---+⋅=-+⋅=-+⋅所以()212313n n T n n ++=-+⋅16.【答案】[]3,1-. 【解析】()()()()[]2221,3f x a fx f x f x x +==⇒∀∈≤,[]23,1x a a +⇒∈-≤四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分) 解析:(1)()()()()()111212221212nn n n n n n n n n a S n a a S S n a na n n a na n n---=+⇒=-=+-⇒-=⇒=≥≥11111n n a a a n n -===⇒=-(2)2214222n n a n m m n m a n n ⎛⎫+⇒+⇒-+ ⎪⎝⎭≤≤≤, 因为1422n n ⎛⎫+ ⎪⎝⎭≥,当且仅当2n =时成立, 所以10b =,21b =,当3n ≥,35b =,47b =,59b =,611b =,…,2339b = 所以{}m b 的前20项和为()135739378+++++=.18.(本小题满分12分) 【解析】(1)设轴截面正方形ABCD 边长为2a ,取弧BC 另一侧的中点Q , 则BC 与NQ 垂直平分,且2BC NQ a ==, 所以四边形BNCQ为正方形,BQ NC ==,因为M 为弧AD 中点,所以MQ AB ∥,四边形ABQM 为矩形, 所以AM BQ ∥,所以AM CN ∥,所以四边形AMCN 为平行四边形,因为AN ==,MN ==,所以22228AM AN MN a +==,所以AM ⊥AN ,所以四边形ANCM 为矩形; (2)由(1)知,MB MC ===,BN CN ==,MN =,所以2MNB MNC π∠=∠=所以MNB MNC ∆∆≌,Rt △MBN 斜边MN上的高2h a ==, 作BP ⊥MN ,则CP ⊥MN ,∠BPC 即为二面角B -MN -C的平面角,2BP CP ==,2BC a =, 在△BPC 中,由余弦定理得222222341cos 233BP CP BC a a BPC BP CP a +--∠===-⨯,二面角B -MN -C 的余弦值为13- 19.(本小题满分12分) 【解析】(1)随机变量X 的可能取值为0,1,2,12C()33351010C P X C ===,()1223356110C C P X C ===,()2123353210C C P X C ===,随机变量X 的分布列如下表:随机变量X 的期望为()163012 1.2101010E X =⨯+⨯+⨯= 法二:随机变量X 服从超几何分布X ~H (3,2,5),所以()26355E X =⨯= (2)设脱落一个“学”为事件A ,脱落一个“好”为事件B ,脱落一个“数”为事件C ,事件M 为脱落两个字M AA BB AB AC BC =++++,()2225110C P AA C ==,()2225110C P BB C ==,()112225410C C P AB C ⋅==,()112125210C C P AC C ⋅==,()112125210C C P BC C ⋅==, 所以某同学捡起后随机贴回,标语恢复原样的概率为()()()()()()()11413125525P P AA P BB P AB P AC P BC =+⨯+++⨯=+⨯=,法二:掉下的两个字不同的概率为1020.810p -==, 所以标语恢复原样的概率为()110.62p p -+=. 20.(本小题满分12分) 解:(1)()112123333CD DB AD AB BD AB BC AB AC AB AB AC =⇒=+=+=+-=+ 所以()22212118112cos 233333333AD CB AB AC AB AC AB AC AB AC A ⎛⎫⋅=+-=--⋅=--⨯⨯=⇒⎪⎝⎭1cos 2A =,因为()0,A π∈,所以3A π=(2)法一: 因为23C B π-=,所以562A C π=-,62AB π=-, 因为2c b =,sin 2sinC B =, 则5sin 2sin 6262A A ππ⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭化简整理得tan 29A =,所以22tan2sin 1tan 2AA A ==+故面积为1sin 214S bc A == 法二:因为2sin 2sin c b C B =⇒=, 因为23C B π-=,所以2sin 2sin sin 3B B B B π⎛⎫+=⇒=⎪⎝⎭①, 联立22sin cos 1B B +=②解得sin cos B B ⎧=⎪⎪⎨⎪=⎪⎩,所以sin 2sin C B ==,232C B ππ=+> 所以cos 0C <,则cos C ==所以()sin sin sin cos cos sin 14A B C B C B C =+=+= 所以△ABC的面积为1sin 214ABC S bc A ∆==. 21.(本小题满分12分)【解析】 (1)设()2,2P t t ,则211PQ PC -=≥,当()0,0P ,Q 为2PC 线段与圆2C 的交点时,min 1PQ =(2)题意可知()4,4P ,过P 点直线()44y k x -=-与圆2C 相切,r =,即()222416160r k k r --+-=,①设直线AB 为:()()441m x n y -+-=,则与抛物线C 的交点方程可化为:()()()()()()24844444(4)4y y m x n y x m x n y -+--+-=--+-⎡⎤⎡⎤⎣⎦⎣⎦, 令44y z x -=-,则:()()2188440n z m n z m ++--=,② 题意有,①②方程同解,故有()()()[]()2233164164818444y r r m n m n -⎡⎤⎣=---+⨯=--+-⎦-, 即:2111m n -=,故:直线AB 恒过()6,7-.22.(本小题满分12分)【解析】(1)(ⅰ)()21'332f x ax a =-+,()[]'1lng x b x =+, 由题意可知10a -=,且532a b -=, 故解得:1a =,12b =, (ⅱ)进一步()323,122ln ,12x x x x F x x x ⎧-+<⎪⎪=⎨⎪⎪⎩≥,过点()2,P t 作()F x 的切线,切点()(),x F x 满足方程:()()()2F x t F x x -=-,故题意等价于方程:()()()'2t F x F x x =--有3个不同根,()()()()'2p x F x F x x =--,()()()''2p x F x x =--, 代入得1,2x ⎛⎫∈-∞ ⎪⎝⎭时, ()p x 单调递减,1,22x ⎡⎫∈⎪⎢⎣⎭时,()p x 单调递增,[)2,x ∈+∞时,()p x 单调递减, 故()13,2,ln 228t p x x ⎧⎫⎛⎫⎛⎫∈∈=-⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭ (2)题意等价于:0b ∀>,是否1a ∃≥,使得[]3223ln 221331ln 2x ax x bx x ax x b x ⎧-+=⎪⎪⎨⎪-+=+⎪⎩有解 消a 有:()313212ln 122ln 1x x b x b x ---=-⇒=-,其中由0b >,可得23x ⎛∈ ⎝,故题意进一步化简23x ⎛∀∈ ⎝,是否1a ∃≥,使得()3ln 3122ln 1x x x a x x -+=-成立,23x ⎛⇔∀∈ ⎝,()23ln 3122ln 1x x x x x -+-≤是否恒成立 设()()2243ln 231q x x x x x x =--+-,()()'83ln q x x x =-,故2,13x ⎛⎫∈ ⎪⎝⎭时,单调递减,(x ∈,()q x 单调递增,故:()()10q x q =≥得证,即0b ∀>,31a ≥,使得()F x 存在的“平滑点”.。
2021-2022学年江苏省盐城市盐都区九年级(上)期末数学试卷(解析版)
2021-2022学年江苏省盐城市盐都区九年级第一学期期末数学试卷一、选择题《本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.一元二次方程x2﹣25=0的解为()A.x1=x2=5B.x1=5,x2=﹣5C.x1=x2=﹣5D.x1=x2=25 2.已知点P在半径为8的⊙O外,则()A.OP>8B.OP=8C.OP<8D.OP≠83.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=1C.顶点坐标是(﹣1,2)D.当x≥1时,y随x增大而减小4.如图,∠DAB=∠CAE,请你再添加一个条件,使得△ADE∽△ABC.则下列选项不成立的是()A.∠D=∠B B.∠E=∠C C.D.5.已知x1与x2分别为方程x2+2x﹣3=0的两根,则x1+x2的值等于()A.﹣2B.2C.﹣D.6.如图,在⊙O中=,∠AOB=40°,则∠COD的度数()A.20°B.40°C.50°D.60°7.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.中位数是13D.方差是8.将抛物线y=﹣x2﹣2x+3向右平移1个单位,再向下平移2个单位得到的抛物线必定经过()A.(﹣2,2)B.(﹣1,1)C.(0,6)D.(1,﹣3)二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在、答题纸相应位直上)9.甲、乙两地的实际距离是30千米,在比例尺为1:500000的地图上,甲乙两地的距离是厘米.10.已知关于x的二次函数y=(x﹣3)2+5,则函数值y的最小值是.11.在一个不透明的盒子里装有5个黑色棋子和若干白棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数为.12.如图,四边形ABCD内接于⊙O中,若∠B=130°,则∠AOC=.13.圆锥的母线长为7cm,侧面积为21πcm2,则圆锥的底面圆半径r=cm.14.《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.书中有下列问题:“今有邑方不知大小,各中开门.出北门八十步有木,出西门二百四十五步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,且ME=80步,NF =245步,已知每步约40厘米,则正方形的边长约为米.15.如图,抛物线y=ax2+c与直线y=kx+b交于A(﹣1,m),B(2,n)两点,则不等式ax2﹣kx+c<b的解集是.16.如图,AB是半圆的直径,C为半圆的中点,A(4,0),B(0,2),反比例函数的图象经过点C,则k的值为.三、解答题(本大题共有11小题,共102分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.用适当的方法解下列方程.(1)x2﹣2x﹣2=0;(2)3x(x﹣2)=x﹣2.18.如图,在平面直角坐标系中,以原点O为位似中心,将△OAB放大到原来的2倍后得到△OA'B',其中A、B在图中格点上,点A、B的对应点分别为A'、B'.(1)在第一象限内画出△OA'B';(2)求△OA'B'的面积.19.如图,在正方形ABCD中,已知:点A,点B在抛物线y=2x2上,点C,点D在x轴上.(1)求点A的坐标;(2)连接BD交抛物线于点P,求点P的坐标.20.第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.为了考查学生对冬奥知识的了解程度,某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动.为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整:【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲:40,60,60,70,60,80,40,90,100,60,60,100,80,60,70,60,60,90,60,60乙:70,90,40,60,80,75,90,100,75,50,80,70,70,70,70,60,80,50,70,80【整理、描述数据】按如表分数段整理、描述这两组样本数据:分数(分)40≤x<6060≤x<8080≤x<100甲学校2人12人6人乙学校3人10人7人(说明:成绩中优秀为80≤x≤100,良好为60≤x<80,合格为40≤x<60.)【分析数据】两组样本数据的平均分、中位数、众数如表所示:学校平均分中位数众数甲学校686060乙学校71.570a 【得出结论】(1)【分析数据】中,乙学校的众数a=.(2)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是校的学生;(填“甲”或“乙”)(3)根据抽样调查结果,请估计乙校学生在这次竞赛中的成绩是优秀的人数;(4)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(从平均分、中位数、众数中至少选两个不同的角度说明推断的合理性)21.小美家将于周末进行自驾游,由于交通便利,准备将行程分为周六和周日两天进行.周六的备选地点为:A﹣盐城大洋湾、B﹣常州淹城春秋乐园、C﹣苏州乐园,周日的备选地点为:D﹣常州恐龙园、E﹣盐城荷兰花海.(1)请用画树状图或列表的方法分析并写出小美家所有可能的游玩方式(用字母表示即可);(2)求小美家周六和周日恰好在同一城市游玩的概率.22.随着“共享经济”的概念迅速普及,共享汽车也进入了人们的视野,某共享汽车租赁公司年初在某地投放了一批共享汽车,全天包车的租金定为每辆120元.据统计,三月份的全天包车数为25次,在租金不变的基础上,四、五月的全天包车数持续走高,五月份的全天包车数达到64次.(1)若从三月份到五月份的全天包车数月平均增长率不变,求全天包车数的月平均增长率;(2)从六月份起,该公司决定降低租金,经调查发现,租金每降价a元,全天包车数增加1.6a次,当租金降价多少元时,公司将获利8800元?23.如图,AB是⊙O的直径,BD切⊙O于点B,C是圆上一点,过点C作AB的垂线,交AB于点P,与DO的延长线交于点E,且ED∥AC,连接CD.(1)求证:CD是⊙O的切线;(2)若AB=12,OP:AP=1:2,求PC的长.24.某商家准备销售一种防护品,进货价格为每件50元,并且每件的售价不低于进货价.经过市场调查,每月的销售量y(件)与每件的售价x(元)之间满足如图所示的函数关系.(1)求每月的销售量y(件)与每件的售价x(元)之间的函数关系式;(不必写出自变量的取值范围)(2)物价部门规定,该防护品每件的利润不允许高于进货价的30%.设这种防护品每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?25.如图,小丁家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间地面的D处,中午太阳光恰好能从窗户的最低点E射进房间地面的F处,AB ⊥BD于点B,CE⊥BD于点O,小丁测得OE=1m,CE=1.5m,OF=1.2m,OD=12m,求围墙AB的高为多少米.26.如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE=c,这时我们把关于x的形如ax2+cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)当a=3,且a、b、c为连续自然数时,写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”ax2+cx+b=0必有实数根;(3)若x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是6,求△ABC的面积.27.九年级学生梁梁在帮爸爸整理书橱时,发现爸爸当年的数学书上有个相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.即:如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.梁梁思索片刻,通过连接AC、BD,很快就证明出来了.【结论证明】(1)请在图1中,根据梁梁的提示作出辅助线,并写出详细的证明过程;【灵活运用】(2)如图2,⊙O的弦AB=10cm,点P是AB上一点,BP=6cm,OP=5cm,则⊙O的半径为cm.(3)如图3,⊙O的直径AB与弦CD相交于点P,且∠APC=45°,若PC2+PD2=8,则AB长为.【问题解决】(4)在平面直角坐标系中,二次函数y=x2﹣x﹣4的图象与x轴交于A、B两点,交y 轴于点C,点P是第四象限内抛物线上的一个动点.如图4,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.参考答案一、选择题《本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.一元二次方程x2﹣25=0的解为()A.x1=x2=5B.x1=5,x2=﹣5C.x1=x2=﹣5D.x1=x2=25【分析】利用直接开平方法解方程得出答案.解:x2﹣25=0,则x2=25,解得:x1=5,x2=﹣5.故选:B.2.已知点P在半径为8的⊙O外,则()A.OP>8B.OP=8C.OP<8D.OP≠8【分析】根据点P与圆O的位置关系即可确定OP的范围.解:∵点P在圆O的外部,∴点P到圆心O的距离大于8,故选:A.3.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=1C.顶点坐标是(﹣1,2)D.当x≥1时,y随x增大而减小【分析】由抛物线解析式可求得其开口方向、对称轴、顶点坐标、及增减性,则可判断四个选项,可求得答案.解:∵y=(x﹣1)2+2,∴抛物线开口向上,故A不正确;对称轴为直线x=1,故B正确;顶点坐标为(1,2),故C不正确;对称轴为直线x=1,当x≥1时,y随x的增大而增大,故D不正确;故选:B.4.如图,∠DAB=∠CAE,请你再添加一个条件,使得△ADE∽△ABC.则下列选项不成立的是()A.∠D=∠B B.∠E=∠C C.D.【分析】根据∠DAB=∠CAE,可以得到∠DAE=∠BAC,然后即可判断添加各个选项中的条件是否可以使得△ADE∽△ABC,本题得以解决.解:∵∠DAB=∠CAE,∴∠DAB+∠BAE=∠CAE+∠BAE,∴∠DAE=∠BAC,∴当添加条件∠D=∠B时,则△ADE∽△ABC,故选项A不符合题意;当添加条件∠E=∠C时,则△ADE∽△ABC,故选项B不符合题意;当添加条件时,则△ADE∽△ABC,故选项C不符合题意;当添加条件时,则△ADE和△ABC不一定相似,故选项D符合题意;故选:D.5.已知x1与x2分别为方程x2+2x﹣3=0的两根,则x1+x2的值等于()A.﹣2B.2C.﹣D.【分析】根据一元二次方程根与系数的关系即可直接求解.解:∵x1与x2分别为方程x2+2x﹣3=0的两根,x1+x2=﹣2.故选:A.6.如图,在⊙O中=,∠AOB=40°,则∠COD的度数()A.20°B.40°C.50°D.60°【分析】首先得到=,进而得到∠AOB=∠COD,即可选择正确选项.解:∵=,∴=,∴∠AOB=∠COD,∵∠AOB=40°,∴∠COD=40°,故选:B.7.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.中位数是13D.方差是【分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是C 符合题意;S2=×[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项D不符合题意;故选:C.8.将抛物线y=﹣x2﹣2x+3向右平移1个单位,再向下平移2个单位得到的抛物线必定经过()A.(﹣2,2)B.(﹣1,1)C.(0,6)D.(1,﹣3)【分析】直接将原函数写成顶点式,再利用二次函数平移规律:左加右减,上加下减,进而得出平移后解析式,再把各选项的点代入判断即可.解:y=﹣x2﹣2x+3=﹣(x2+2x)+3=﹣[(x+1)2﹣1]+3=﹣(x+1)2+4,∵将抛物线y=﹣x2﹣2x+3向右平移1个单位,再向下平移2个单位,∴得到的抛物线解析式为:y=﹣x2+2,当x=﹣2时,y=﹣(﹣2)2+2=﹣4+2=﹣2,故(﹣2,2)不在此抛物线上,故A选项不合题意;当x=﹣1时,y=﹣(﹣1)2+2=﹣1+2=1,故(﹣1,1)在此抛物线上,故B选项符合题意;当x=0时,y=﹣02+2=0+2=2,故(0,6)不在此抛物线上,故C选项不合题意;当x=1时,y=﹣12+2=﹣1+2=1,故(1,﹣3)不在此抛物线上,故D选项不合题意;故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在、答题纸相应位直上)9.甲、乙两地的实际距离是30千米,在比例尺为1:500000的地图上,甲乙两地的距离是6厘米.【分析】设地图上,甲乙两地的距离是xcm,根据比例尺的定理列出方程,解之可得.解:设地图上,甲乙两地的距离是x cm,根据题意,得:=解得:x=6,即地图上,甲乙两地的距离是6cm,故答案为:6.10.已知关于x的二次函数y=(x﹣3)2+5,则函数值y的最小值是5.【分析】根据二次函数的性质即可求解.解:∵y=(x﹣3)2+5,∴当x=3时,函数值y有最小值,最小值为5,故答案为:5.11.在一个不透明的盒子里装有5个黑色棋子和若干白棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数为10.【分析】设白色棋子的个数为x个,根据概率公式列出算式,求出x的值即可得出答案.解:设白色棋子的个数为x个,根据题意得:=,解得:x=10,经检验x=10是原方程的解,答:白色棋子的个数为10个;故答案为:10.12.如图,四边形ABCD内接于⊙O中,若∠B=130°,则∠AOC=100°.【分析】根据圆内接四边形的性质求出∠D,再根据圆周角定理计算即可.解:∵四边形ABCD内接于⊙O,∠B=130°,∴∠D=180°﹣∠B=50°,由圆周角定理得:∠AOC=2∠D=100°,故答案为:13.圆锥的母线长为7cm,侧面积为21πcm2,则圆锥的底面圆半径r=3cm.【分析】由于圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式得到×2π×r×7=21π,然后解方程即可.解:根据题意得×2π×r×7=21π,即得r=3,所以圆锥的底面圆半径r为3cm.故答案为3.14.《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.书中有下列问题:“今有邑方不知大小,各中开门.出北门八十步有木,出西门二百四十五步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,且ME=80步,NF =245步,已知每步约40厘米,则正方形的边长约为112米.【分析】根据题意,可知Rt△AEM∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.解:设正方形的边长为x步,∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴AM=AD,AN=AB,∴AM=AN,由题意可得,Rt△AEM∽Rt△FAN,∴=,即AM2=80×245=19600,解得:AM=140,∴AD=2AM=280步=280×40=11200厘米=112米;故答案为:112.15.如图,抛物线y=ax2+c与直线y=kx+b交于A(﹣1,m),B(2,n)两点,则不等式ax2﹣kx+c<b的解集是﹣1<x<2.【分析】将ax2﹣kx+c<b化为ax2+c<kx+b,根据图象求解.解:由图象可得在A,B之间的图象抛物线在直线下方,点A横坐标为﹣1,点B横坐标为2,∴﹣1<x<2时,ax2+c<kx+b,即ax2﹣kx+c<b,故答案为:﹣1<x<2.16.如图,AB是半圆的直径,C为半圆的中点,A(4,0),B(0,2),反比例函数的图象经过点C,则k的值为9.【分析】过点C作CE⊥CA,垂足为E,交AB于点D,连接CF,证△BOA∽△DFC,推==,求出CD,DF,再根据CE∥BO,△ADE∽△ABO,推===,进而求出C点坐标.解:过点C作CE⊥CA,垂足为E,交AB于点D,连接CF,∴∠CEA=90°,∵C为半圆的中点,∴∠CFE=90°,∵A(4,0),B(0,2),∴OA=4,OB=2,在Rt△AOB中,根据勾股定理得AB=2,∵∠FCE+∠CDF=∠BAO+∠ADE=90°,∠CDE=∠EDA,∴∠FCE=∠BA0,∵∠BOA=∠CFD,∴△BOA∽△DFC,∴==,∴CD=2.5,DF=,∴DA=,∵∠BOA=∠CEA=90°,∴CE∥BO,∴△ADE∽△ABO,∴===,∴DE=0.5AE=1,∴OE=3,CE=3,∴C(3,3),∵反比例函数的图象经过点C,∴k=9,故答案为:9.三、解答题(本大题共有11小题,共102分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.用适当的方法解下列方程.(1)x2﹣2x﹣2=0;(2)3x(x﹣2)=x﹣2.【分析】(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)先移项,再利用提公因式法将方程的左边因式分解后求解可得,解:(1)∵x2﹣2x﹣2=0,∴x2﹣2x=2,∴x2﹣2x+1=2+1,即(x﹣1)2=3,∴x﹣1=±,∴x1=1+,x2=1﹣;(2)∵3x(x﹣2)=x﹣2,∴3x(x﹣2)﹣(x﹣2)=0,∴(x﹣2)(3x﹣1)=0,则x﹣2=0或3x﹣1=0,解得x1=2,x2=.18.如图,在平面直角坐标系中,以原点O为位似中心,将△OAB放大到原来的2倍后得到△OA'B',其中A、B在图中格点上,点A、B的对应点分别为A'、B'.(1)在第一象限内画出△OA'B';(2)求△OA'B'的面积.【分析】(1)根据原点O为位似中心,将△OAB放大到原来的2倍后得到△OA'B',即可在第一象限内画出△OA'B';(2)根据网格利用割补法即可求△OA'B'的面积.解:(1)如图,△OA'B'即为所求;(2)△OA'B'的面积为:4×6﹣2×4﹣2×4﹣2×6=10.19.如图,在正方形ABCD中,已知:点A,点B在抛物线y=2x2上,点C,点D在x轴上.(1)求点A的坐标;(2)连接BD交抛物线于点P,求点P的坐标.【分析】(1)根据题意设A(a,2a),则B(﹣a,2a),代入抛物线的解析式即可求得a=1,得到A(1,2);(2)根据待定系数法求得直线BD的解析式,然后与抛物线解析式联立成方程组,解方程组即可求得P点的坐标.解:(1)由题意可设A(a,2a),则B(﹣a,2a),∵点A在抛物线y=2x2上,∴2a=2a2,∴a=1或a=0(舍去),∴A(1,2);(2)设直线BD的解析式y=kx+b,∵B(﹣1,2),D(1,0),∴,解得,∴直线BD为y=﹣x+1,由解得或,∴P点的坐标为(,).20.第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.为了考查学生对冬奥知识的了解程度,某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动.为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整:【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲:40,60,60,70,60,80,40,90,100,60,60,100,80,60,70,60,60,90,60,60乙:70,90,40,60,80,75,90,100,75,50,80,70,70,70,70,60,80,50,70,80【整理、描述数据】按如表分数段整理、描述这两组样本数据:分数(分)40≤x<6060≤x<8080≤x<100甲学校2人12人6人乙学校3人10人7人(说明:成绩中优秀为80≤x≤100,良好为60≤x<80,合格为40≤x<60.)【分析数据】两组样本数据的平均分、中位数、众数如表所示:学校平均分中位数众数甲学校686060乙学校71.570a【得出结论】(1)【分析数据】中,乙学校的众数a=70.(2)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是甲校的学生;(填“甲”或“乙”)(3)根据抽样调查结果,请估计乙校学生在这次竞赛中的成绩是优秀的人数;(4)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(从平均分、中位数、众数中至少选两个不同的角度说明推断的合理性)【分析】(1)根据众数的定义即可得出答案;(2)根据两个学校竞赛成绩的中位数进行判断即可;(3)根据乙学校成绩在80分及以上的人数所占的百分比,估计总体的优秀所占的百分比,进而计算相应的人数即可;(4)比较两个学校的平均数、中位数的大小,进而得出结论.解:(1)乙学校竞赛得分出现次数最多的是70分,共出现6次,因此众数是70,即a =70;故答案为:70;(2)甲学校的中位数是60,而乙学校的中位数是70,由于小明的竞赛是70分,在学校排名属中游略偏上,所以小明是甲学校的学生,故答案为:甲;(3)400×=140(人),答:乙校学生在这次竞赛中的成绩是优秀的大约有140人;(4)乙校,理由如下:乙校的平均分高于甲校的平均分.21.小美家将于周末进行自驾游,由于交通便利,准备将行程分为周六和周日两天进行.周六的备选地点为:A﹣盐城大洋湾、B﹣常州淹城春秋乐园、C﹣苏州乐园,周日的备选地点为:D﹣常州恐龙园、E﹣盐城荷兰花海.(1)请用画树状图或列表的方法分析并写出小美家所有可能的游玩方式(用字母表示即可);(2)求小美家周六和周日恰好在同一城市游玩的概率.【分析】(1)根据题意列出图表得出所有等可能的情况数即可;(2)根据(1)求得所有情况与符合条件的情况,求其比值即可.解:(1)根据题意列表如下:A B CD AD BD CDE AE BE CE小美家所有可能选择游玩的方式有:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)小美家周六和周日恰好在同一城市游玩的有(A,E),(B,D)两种,则小美家恰好在同一城市游玩的概率==.22.随着“共享经济”的概念迅速普及,共享汽车也进入了人们的视野,某共享汽车租赁公司年初在某地投放了一批共享汽车,全天包车的租金定为每辆120元.据统计,三月份的全天包车数为25次,在租金不变的基础上,四、五月的全天包车数持续走高,五月份的全天包车数达到64次.(1)若从三月份到五月份的全天包车数月平均增长率不变,求全天包车数的月平均增长率;(2)从六月份起,该公司决定降低租金,经调查发现,租金每降价a元,全天包车数增加1.6a次,当租金降价多少元时,公司将获利8800元?【分析】(1)设全天包车数的月平均增长率为x,则四月份的全天包车数为:25(1+x);五月份的全天包车数为:25(1+x)2,又知五月份的全天包车数为:64次,由此等量关系列出方程,求出x的值即可;(2)每辆全天包车的租金×全天包车数量=8800列出方程,求解即可.解:(1)设全天包车数的月平均增长率为x,根据题意可得:25(1+x)2=64,解得:x1=0.6=60%,x2=﹣2.6(不合题意舍去),答:全天包车数的月平均增长率为60%;(2)根据题意可得:(120﹣a)(64+1.6a)=8800,化简得:a2﹣80a+700=0,解得:a1=10,a2=70.答:当租金降价10元或70元时,公司将获利8800元.23.如图,AB是⊙O的直径,BD切⊙O于点B,C是圆上一点,过点C作AB的垂线,交AB于点P,与DO的延长线交于点E,且ED∥AC,连接CD.(1)求证:CD是⊙O的切线;(2)若AB=12,OP:AP=1:2,求PC的长.【分析】(1)连接OC,证明△BOD≌△COD,可得∠OCD=∠OBD=90°,进而可得CD是⊙O的切线;(2)根据AB=12,OP:AP=1:2,可得OP=2,AP=4,再根据勾股定理即可求PC的长.【解答】(1)证明:如图,连接OC,∵BD切⊙O于点B,∴∠OBD=90°,∵OA=OC,∴∠OAC=∠OCA,∵ED∥AC,∴∠BOD=∠OAC,∠COD=∠OCA,∴∠BOD=∠COD,在△BOD和△COD中,,∴△BOD≌△COD(SAS),∴∠OCD=∠OBD=90°,∴CD是⊙O的切线;(2)解:∵AB=12,AB是⊙O的直径,∴OB=OA=6,∵OP:AP=1:2,∴OP=2,AP=4,∵∠APC=90°,OC=6,∴PC===4.24.某商家准备销售一种防护品,进货价格为每件50元,并且每件的售价不低于进货价.经过市场调查,每月的销售量y(件)与每件的售价x(元)之间满足如图所示的函数关系.(1)求每月的销售量y(件)与每件的售价x(元)之间的函数关系式;(不必写出自变量的取值范围)(2)物价部门规定,该防护品每件的利润不允许高于进货价的30%.设这种防护品每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?【分析】(1)由图象可知每月销售量y(件)与售价x(元)之间为一次函数关系,设其函数关系式为y=kx+b(k≠0,x≥50),用待定系数法求解即可;(2)由题意得w关于x的二次函数,将其写成顶点式,根据二次函数的性质可得答案.解:(1)由图象可知每月销售量y(件)与售价x(元)之间为一次函数关系,设其函数关系式为y=kx+b(k≠0,x≥50),将(60,600),(80,400)代入,得:解得:,∴每月销售y(件)与售价x(元)的函数关系式为y=﹣10x+1200;(2)由题意得:w=(﹣10x+1200)(x﹣50)=﹣10x2+1700x﹣60000=﹣10(x﹣85)2+12250,∵﹣10<0,∴当x≤85时,w随x的增大而增大,∵该防护品的每件利润不允许高于进货价的30%,∴x≤50×(1+30%),即x≤65,∴当x=65时,w取得最大值:最大值=﹣10(65﹣85)2+12250=8250.∴售价定为65元可获得最大利润,最大利润是8250元.25.如图,小丁家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间地面的D处,中午太阳光恰好能从窗户的最低点E射进房间地面的F处,AB ⊥BD于点B,CE⊥BD于点O,小丁测得OE=1m,CE=1.5m,OF=1.2m,OD=12m,求围墙AB的高为多少米.【分析】根据垂直的定义得到∠FOE=90°,推出AB∥EO,根据相似三角形的性质解方程即可得到结论.解:∵EO⊥BF,∴∠FOE=90°,∵AB⊥BF,CO⊥BF,∴AB∥EO,∴△ABD∽△COD,△ABF∽△EOF,∴,=,∵OE=1m,CE=1.5m,OF=1.2m,OD=12m,∴=,=解得:AB=3.答:围墙AB的高度是3m.26.如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE=c,这时我们把关于x的形如ax2+cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)当a=3,且a、b、c为连续自然数时,写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”ax2+cx+b=0必有实数根;(3)若x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是6,求△ABC的面积.【分析】(1)根据题意得出a=3,b=4,c=5,然后得出“勾系一元二次方程”即可;(2)根据题意得出方程的Δ值≥0即可;(3)根据题意得出ab的值,再根据面积公式求值即可.解:(1)当a=3,b=4,c=5时,则“勾系一元二次方程”为:3x2+5x+4=0;(2)根据题意得Δ=(c)2﹣4ac=2c2﹣4ab,∵a2+b2=c2,∴2c2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0,即Δ≥0,∴“勾系一元二次方程”ax2+cx+b=0必有实数根;(3)当x=﹣1时,有a﹣c+b=0,即a+b=c,∵2a+2b+c=6,即2(a+b)+c=6,∴3c=6,∴c=2,∴a2+b2=c2=4,a+b=2,∵(a+b)2=a2+b2+2ab,∴ab=2,∴S△ABC=ab=1.27.九年级学生梁梁在帮爸爸整理书橱时,发现爸爸当年的数学书上有个相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.即:如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.梁梁思索片刻,通过连接AC、BD,很快就证明出来了.【结论证明】(1)请在图1中,根据梁梁的提示作出辅助线,并写出详细的证明过程;【灵活运用】(2)如图2,⊙O的弦AB=10cm,点P是AB上一点,BP=6cm,OP=5cm,则⊙O的半径为7cm.(3)如图3,⊙O的直径AB与弦CD相交于点P,且∠APC=45°,若PC2+PD2=8,则AB长为4.【问题解决】(4)在平面直角坐标系中,二次函数y=x2﹣x﹣4的图象与x轴交于A、B两点,交y 轴于点C,点P是第四象限内抛物线上的一个动点.如图4,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.【分析】(1)连接AC,BD,证明△APC∽△DPB,即可求解;(2)连接OA,过点O作OE⊥AB交于E点,在Rt△OEP中,OE=2cm,在Rt△OAE 中,OA=7cm,OA即为半径;(3)过点O作OG⊥CD交于G,连接OC,由垂径定理可得,CG=DG,则有(CG+GP)2+(CG﹣GP)2=8,求出CO=2,即可求AB=4;(4)设P(m,m2﹣m﹣4),求出D(m,0),由相交弦定理可得PD•DE=AD•DB,即可求DE=2,所以DE为定值.【解答】证明:(1)连接AC,BD,如图1,由同弧所对的圆周角相等,∴∠C=∠B,∠A=∠D,∴△APC∽△DPB,∴AP:DP=CP:BP,∴AP•BP=CP•DP;(2)如图2,连接OA,过点O作OE⊥AB交于E点,∵AB=10cm,∴AE=5cm,∵BP=6cm,∴AP=4cm,∴EP=1cm,∵OP=5cm,在Rt△OEP中,OE===2cm,在Rt△OAE中,OA===7cm,∴⊙O的半径为7cm,故答案为:7;(3)如图3,过点O作OG⊥CD交于G,连接OC,∵∠APC=45°,∴OG=PG,由垂径定理可得,CG=DG,∴PC=CG+GP,DP=CG﹣GP,∵PC2+PD2=8,∴(CG+GP)2+(CG﹣GP)2=8,∴2CG2+2GP2=8,∴CG2+GO2=4,∴CO2=4,∴CO=2,∴AB=4,故答案为:4;(4)点P在运动过程中线段DE的长不变,理由如下:令y=0,则x2﹣x﹣4=0,∴x=4或x=﹣2,∴A(﹣2,0),B(4,0),令x=0,则y=﹣4,∴C(0,﹣4),设P(m,m2﹣m﹣4),∵PE⊥x轴,∴D(m,0),∴AD=m+2,BD=4﹣m,PD=﹣(m2﹣m﹣4)=m2+m+4,∵PD•DE=AD•DB,∴DE===2,∴DE是定值2,∴点P在运动过程中线段DE的长不变,是定值2.。
2024-2025学年江苏省苏州中学九年级上学期第一次月考数学试题及答案
2024-2025学年第一学期九年级数学第一次月考卷(范围:九上第1、2章、九下第6章 考试时间:120分钟试卷满分:150分)一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列方程一定是关于 x 一元二次方程的是( ) A. 22350x x −−= B. 2220x xy y ++=C. ()()()213x x x x +=−+D. 250x =2. 下列各条件中,能判断ABC A B C ′′′∽△△的是( )A. 3AB A B ′′=,A A ′∠=∠B. AB BCA B A C =′′′′ ,B B ∠=∠′ C. ABA B BC B C ′′=′′,∠+∠=∠+∠′′A C A CD. 40A ∠=°,80B ∠=°,80∠′=°A ,70B ′∠=°3. 如图,四边形ABCD 内接于O ,它的一个外角70CBE ∠=°,则ADC ∠的度数为( )A. 55°B. 70°C. 110°D. 140° 4. 定义运算21m n mn mn =−−☆,例如242424217=×−×−=☆,则方程20x =☆的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根 5. 如图,AB 、CD 是O 的弦,且AB CD =,若84BOD ∠=°,则ACO ∠的度数为( )A. 42°B. 44°C. 46°D. 48°6. 如图,ABC 与DEF 是位似三角形,位似比为2:3,已知3AB =,则DDDD 的长等于( )的A. 49B. 2C. 92D. 2747. “读万卷书,行万里路”我校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均课外阅读量从七年级的每年50万字增加到九年级的每年80万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A. 250(1)80x +=B. 250(1%)80x +=C. 250(12)80x +=D. 25050(1)50(1)80x x ++++= 8. 如图,a b c ∥∥,若32AD DF =,则下面结论错误的是( ).A 35AD AF =B. 32C. 23AB EF =D. 35BC BE = 9. 如图,ABC 的内切圆O 与AB BC AC 、、相切于点D 、E 、F ,已知435AB AC BC ===,,,,则DE 的长是( )A.B.C.D. 10. 如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,且12AD AB =,分别作射线BD 、CE ,它们交于点M .以点A 为旋转中心,将ADE 按顺时针方向旋转,若AE 的长为2,则MBC △面积的最小值是( ).A. 4B. 8C. 2+D. 二、填空题:本题共8小题,每小题3分,共24分.11. 方程 250x =的解是____.12. 若32a b=,则22a b a b +−的值为____. 13. 已知点P 是线段AB 的一个黄金分割点,且AP BP >,那么:AP AB 的比值为________.14. 如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为__________.15. 已知四边形ABCD 是矩形,2AB =,BC =B 为圆心BC 为半径的圆交AD 于点E ,则图中阴影部分的面积为__________.16. 如图,AD 是O 的直径,将弧AB 沿弦AB 折叠后,弧AB 刚好经过圆心O .若6BD =,则O 的半径长是___.17. 已知A 是方程2201010x x −+=的一个根,试求22201020091A A A −++的值______. 18. 如图,AB 为O 的直径,C 为O 上一点,其中6120AB AOC =∠=°,,P 为O 上的动点,连接AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为______.三、解答题:本题共10小题,共96分.解答应写出文字说明、证明过程或演算步棸. 19. 用指定方法解下列一元二次方程(1)23(21)120x −−=(直接开平方法) (2)22470x x −−=(配方法)(3)210x x +−=(公式法)(4)22(21)0x x −−=(因式分解法) 20. 如图,AAAA 是⊙O 的弦,C 是⊙O 上的一点,且60ACB ∠=°,OD AB ⊥于点E ,交⊙O 于点D .若⊙O 的半径为6,求弦AAAA 的长.21. 如图,在正方形ABCD 中,E 为边AD 中点,点F 在边CD 上,且3CF FD =,求证:ABE DEF △△∽.的22. 已知ABC 三边a b c ,,满足()()()271a c a b c b −+−=−∶∶∶∶,且24a b c ++=.(1)求a b c ,,的值;(2)判断ABC 的形状.23. 已知关于x 一元二次方程22230x mx m m ++−=.(1)若方程有两个实数根,求m 取值范围;(2)设22230x mx m m ++−=的两个实数根为1x ,2x ,若221212364x x x x =++,求m 的值. 24. 图Ⅰ是大拇指广场示意图及测量其高度的方案,图Ⅱ是求大拇指高度AB 的示意图.如图Ⅱ,在C 处放置一根高度为2m 且与地平线BF 垂直的竹竿IC ,点A ,I ,D 在同一直线上,测得CD 为3m .将竹竿3m 平移5m 至E 处,点A ,G ,F 在同一直线上,测得EF 为5m .求大拇指的高度.25. 如图,已知O 是ABC 的外接圆,AB 是O 的直径,P 是AB 的延长线上的点,弦CE 交AB 于点D .2POE CAB ∠=∠,P E ∠=∠.(1)求证:CE AB ⊥;(2)求证:PC 是O 的切线;(3)若BD OD =,9PB =,求O 的半径.26. 某超市销售一种饮料,进价为每箱48元,规定售价不低于进价.现在的售价为每箱60元,每月可销售60箱.现为了尽量减少库存,决定对该饮料降价销售,市场调查发现:若这种饮料的售价每降价1元,则每月的销量将增加10箱.的的(1)若11月份每箱饮料降价2元,则该超市11月份可获得的利润是多少?(2)若该超市预计12月份要获得770元的利润,则每箱饮料售价应定为多少元?(3)该超市能否每月获得880元的利润?若能,求出售价为多少元?若不能,请说明理由.27. 按要求利用无刻度直尺作图(保留作图痕迹).(1)如图1,由小正方形构成的66×网格,每个小正方形的顶点叫做格点,且每个小正方形的边长为1,O 经过A ,B ,C 三个格点,用无刻度的直尺作出圆心O ;(2)如图2,在平行四边形ABCD 中,45A ∠=°,以AB 为直径的圆与CD 相切于点D .请仅用无刻度直尺在图中作出ABD △的重心M .28. 新定义:如果一个四边形的对角线相等,我们称这个四边形为美好四边形.【问题提出】(1)如图1,若四边形ABCD AD BD =,90ABC ∠=°,4AB =,3BC =,求四边形ABCD 的面积;【问题解决】(2)如图2,某公园内需要将4个信号塔分别建在A ,B ,C ,D 四处,现要求信号塔C 建在公园内一个湖泊的边上,该湖泊可近似看成一个半径为200m 的圆,记为E .已知点A 到该湖泊的最近距离为500m ,是否存在这样的点D ,满足AC BD =,使得四边形ABCD 的面积最大?若存在,求出最大值;若不存在,请说明理由.2024-2025学年第一学期九年级数学第一次月考卷(范围:九上第1、2章、九下第6章 考试时间:120分钟试卷满分:150分)一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列方程一定是关于 x 的一元二次方程的是( ) A. 22350x x −−= B. 2220x xy y ++=C. ()()()213x x x x +=−+D. 250x = 【答案】D【解析】【分析】本题考查了一元二次方程的一般式:一般地,任何一个关于x 的一元二次方程经过整理,都能化成如下形式()200ax bx c a ++=≠,这种形式叫一元二次方程的一般形式.根据一元二次方程的定义对各选项进行判断.【详解】解:A 、22350x x−−=含有分式,故不是一元二次方程,不符合题意; B 、2220x xy y ++=含有两个未知数,故不是一元二次方程,不符合题意.C 、()()()213x x x x +=−+化简得03=−,不是一元二次方程,不符合题意;D 、250x =符合一元二次方程定义,符合题意;故选:D .2. 下列各条件中,能判断ABC A B C ′′′∽△△的是( )A. 3AB A B ′′=,A A ′∠=∠B.AB BC A B A C =′′′′,B B ∠=∠′ C. AB A B BC B C ′′=′′,∠+∠=∠+∠′′A C A C D. 40A ∠=°,80B ∠=°,80∠′=°A ,70B ′∠=° 【答案】C【解析】【分析】本题主要考查相似三角形的判定,解答的关键是熟记相似三角形的判定条件.两角对应相等的两个三角形相似;两组对应边成比例且其夹角相等的两个三角形相似.根据相似三角形的判定条件对各选项进行分析即可.【详解】A 、∵3AB A B ′′=,A A ′∠=∠,只有一角一边,∴不能判断两个三角形相似,故A 不符合题意;B 、∵AB BC A B A C =′′′′,B B ′∠=∠,B ′∠不是A B ′′与A C ′′的夹角, ∴不能判断两个三角形相似,故B 不符合题意;C 、由∠+∠=∠+∠′′A C A C ,可得B B ′∠=∠, 再由AB A B BC B C′′=′′,得AB BC A B B C =′′′′, ∵两组对应边成比例且其夹角相等的两个三角形相似,∴可判断ABC A B C ′′′∽△△,故C 符合题意;D 、由40A ∠=°,80B ∠=°,得60C ∠=°,由80∠′=°A ,70B ′∠=°, 得30C ′∠=°,∵只有80B A ∠′=∠=°,∴不能得ABC A B C ′′′∽△△,故D 不符合题意.故选:C .3. 如图,四边形ABCD 内接于O ,它的一个外角70CBE ∠=°,则ADC ∠的度数为( )A. 55°B. 70°C. 110°D. 140°【答案】B【解析】 【分析】利用圆内接四边形的性质即可.证明ADC CBE ∠=∠即可得到答案.本题主要考查圆的内接四边形,熟练掌握圆内接四边形的性质即可.详解】解:依题意,180ADC ABC ∠+∠=°,∵180ABC CBE ∠+∠=°,70ADC CBE ∴∠=∠=°.故选:B .4. 定义运算21m n mn mn =−−☆,例如242424217=×−×−=☆,则方程20x =☆的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根【答案】A【解析】【分析】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键.先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案.【详解】解:根据定义得:222210x x x =−−=☆, 2a = ,2b =−,1c =−,()()22Δ42421120b ac ∴=−=−−××−=>, ∴ 原方程有两个不相等的实数根,故选:A .5. 如图,AB 、CD 是O 的弦,且AB CD =,若84BOD ∠=°,则ACO ∠的度数为( )A. 42°B. 44°C. 46°D. 48°【答案】D【解析】 【详解】此题考查了圆心角、弧的关系,熟练掌握圆心角、弧的关系是解题的关键.根据圆心角、弧、弦的关系求出84AOC BOD ∠=∠=°,再根据等腰三角形的性质求解即可. 【解答】解:如图,连接OA ,【AB CD = ,CAB D ∴=, AB AD AD CD ∴−=−,AC BD∴=, 84AOC BOD ∴∠=∠=°,OA OC = ,()()11180180844822ACO CAO AOC ∠=∠=°−∠=×°−°=°. 故选:D .6. 如图,ABC 与DEF 是位似三角形,位似比为2:3,已知3AB =,则DDDD 的长等于( )A. 49B. 2C. 92D. 274【答案】C【解析】【分析】本题考查了位似图形的性质,根据位似比等于相似比,进而即可求解.掌握位似图形的性质是解题的关键.【详解】解:∵ABC 与DEF 是位似图形,位似比为2:3,∴23AB DE =, ∵3AB =,∴92DE =, 故选:C .7. “读万卷书,行万里路”我校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均课外阅读量从七年级的每年50万字增加到九年级的每年80万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A. 250(1)80x +=B. 250(1%)80x +=C. 250(12)80x +=D. 25050(1)50(1)80x x ++++= 【答案】A【解析】【分析】本题考查了一元二次方程的应用,增长率问题的一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量,由此列方程即可.【详解】解:设该校七至九年级人均阅读量年均增长率为x ,则250(1)80x +=,故选A .8. 如图,a b c ∥∥,若32AD DF =,则下面结论错误的是( ).A. 35AD AF =B. 32BC CE =C. 23AB EF =D. 35BC BE = 【答案】C【解析】【详解】本题主要考查了比例的基本性质、平行线等分线段定理等知识点,掌握平行线等分线段定理成为解题的关键.根据比例的性质、平行线分线段成比例列出比例式逐项判断即可.【分析】解: AD DF =32, 35AD AF ∴=, 故A 选项正确,不符合题意;a b c ∥∥,且AD DF =32, 32AD BC DF CE ∴==, 故B 选项正确,不符合题意;32BC CE = 35BC BE ∴= 故D 选项正确,不符合题意; 根据已知条件不能求出AB EF的值,故C 选项不正确. 故选C .9. 如图,ABC 的内切圆O 与AB BC AC 、、相切于点D 、E 、F ,已知435AB AC BC ===,,,,则DE 的长是( )A. B. C. D. 【答案】C【解析】【分析】连接AO ,BO ,CO ,DO ,EO ,FO .根据题意可知OE OD OF ==,且OE BC ⊥,OF AC ⊥,OD AB ⊥,再根据6ABC ABO BCO ACO S S S S =++= 求出OE ,接下来设BE x =,根据切线长定理得出CE CF =,AD AF =,BD BE =,求出BE ,再根据勾股定理求出BO ,结合DO EO =,BD BE =可知BO 是DE 的垂直平分线,然后根据1122BEO S BE EO BO EG =⋅=⋅ 求出EG ,进而得出答案.本题主要考查了圆内切三角形的性质,切线的性质,勾股定理,线段垂直平分线的判定,切线长定理等,根据面积相等求出半径是解题的关键.【详解】解:连接AO ,BO ,CO ,DO ,EO ,FO .根据题意可知OE OD OF ==,且OE BC ⊥,OF AC ⊥,OD AB ⊥,∵435AB AC BC ===,,,∴222AB AC BC +=∴ABC 是直角三角形 ∴13462ABC S =××= , ∴1116222ABC ABO BCO ACO S S S S OE BC OF AC OD AB =++=⋅+⋅+⋅= , 即1()62OE BC AC AB ++=, 解得()123451OE =÷++=.设BE x =,则BD BE x ==,5CE CF x ==−,4AD AF x ==−,得543x x −+−=, 解得3x =,3BE ∴=.在Rt BOE 中,BO,DO EO = ,BD BE =, BO ∴是DE 的垂直平分线,DG EG ∴=. 1122BEO S BE EO BO EG =⋅=⋅ ,即113122EG ××=,解得EG =,∴2DE EG==. 故选:C .10. 如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,且12AD AB =,分别作射线BD 、CE ,它们交于点M .以点A 为旋转中心,将ADE 按顺时针方向旋转,若AE 的长为2,则MBC △面积的最小值是( )A. 4B. 8C. 2+D. 【答案】A【解析】 【分析】本题考查了旋转的性质、全等三角形的判定与性质、切线的性质、勾股定理、等腰三角形的性质等知识点,灵活运用相关性质成为解题的关键.先证明()SAS BAD CAE ≌,则ACE ABD ∠=∠,推出90BMC ∠=°,由题意知,E 在以A 为圆心,2为半径的圆上运动,如图,当CE 在A 下方且与A 相切时,线段MB 最短,MBC △面积的最小;再证明四边形ADME 是正方形,则2MD ME AE ===,由勾股定理得,CE BD ==2,2BM CM −,最后根据三角形的面积公式计算即可.【详解】解:∵ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,且12AD AB =,2AE = ∴290,4,AB AC AD AE BAC DAE ===∠=∠=°=, ∴45ABC ACB ∠=∠=°,∴BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠, ∵,,AB AC BAD CAE AD AE =∠=∠=, ∴()SAS BAD CAE ≌,∴ACE ABD ∠=∠,BD CE =∴180BMC DBC ACB ACE ∠=°−∠−∠−∠()18090DBC ABD ACB=°−∠+∠−∠=°, 如图:由题意知,E 在以A 为圆心,2为半径的圆上运动,∵90BMC ∠=°,∴当CE 在A 下方且与A 相切时,点M 到BC 距离最小,MBC △面积的最小∵90AEM CMD DAE ∠=°=∠=∠,∴四边形ADME 是矩形,∵AD AE =∴四边形ADME 是正方形,∴2MD ME AE ===,由勾股定理得,CE BD ==,∴2,2BM BD DM CM CE ME =−=−=+=,∴()()1122422MBC S BM CM =⋅=⋅⋅= . 故选:A . 二、填空题:本题共83分,共24分.11. 方程 250x =的解是____.【答案】120x x == 【解析】【分析】本题考查的是一元二次方程的解法,直接利用开平方法解方程即可.【详解】解:∵250x =,∴20x =,∴120x x ==, 故答案为:120x x == 12. 若32a b=,则22a b a b +−的值为____.【答案】2【解析】【分析】本题考查比例性质,根据条件设3,2a k b k ==,代值化简即可得到答案,熟练掌握比例性质及相应题型的解法是解决问题的关键.【详解】解: 32a b=, ∴设3,2a k b k ==,则22328222324a b k k k a b k k k +×+===−×−, 故答案为:2.13. 已知点P 是线段AB 的一个黄金分割点,且AP BP >,那么:AP AB 的比值为________.【解析】【分析】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.根据黄金分割的定义即可得出答案.【详解】解: 点P 是线段AB 的黄金分割点,且AP BP >,AP AB ∴,∴AP AB =14. 如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为__________.【答案】1【解析】【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.剩余部分可合成长为()30m x −,宽为()20m x −的矩形,利用矩形的面积公式结合草地面积为2551m ,即可得出关于x 的一元二次方程,求解并注意检验.【详解】解:根据题意得:()()3020551x x −−=, 化简得:250490x x −+=,解得:11x =,249x =,∵当249x =时,20290x −=−<,∴249x =舍去,故答案为:1.15. 已知四边形ABCD 是矩形,2AB =,BC =B 为圆心BC 为半径的圆交AD 于点E ,则图中阴影部分的面积为__________.【答案】2π−−【解析】 【分析】本题主要考查了求扇形的面积,勾股定理,矩形的性质.证明AE AB =,可得45ABE AEB ∠=∠=°,45CBE ∠=°,再由阴影部分的面积为ABE ABCD CBE S S S −− 矩形扇形,即可求解. 【详解】解:∵四边形ABCD 是矩形,∴90ABC A ∠=∠=°,由题意得:BE BC ==∵2AB =,∴2AE ,∴AE AB =,∴45ABE AEB ∠=∠=°,∴45CBE ∠=°,∴阴影部分的面积为ABE ABCD CBE S S S −− 矩形扇形21452360BC AB BC AB AE π×=×−×−12222=×××2π=−−故答案为:2π−−16. 如图,AD 是O 的直径,将弧AB 沿弦AB 折叠后,弧AB 刚好经过圆心O .若6BD =,则O 的半径长是___.【答案】6【解析】【分析】本题考查了折叠的性质、垂直平分线的性质、等边三角形的判定与性质、垂径定理、中位线的定义与性质、含30°角的直角三角形的性质,熟练掌握知识点、作辅助线推理是解题的关键.过点O 作OH AB ⊥于点H ,交 AB 于点M ,连接AM ,根据折叠的性质,得出AB 垂直平分OM ,根据垂直平分线的性质得出AO AM =,则AM OM AO ,证明AOM 为等边三角形,得出60AOM ∠=°,由OH AB ⊥、垂径定理得出AH BH =,推出30OAH=°∠,根据含30°角的直角三角形的性质得出2OA OH =,由AH BH =,OA OD =,推出OH 是ABD △的中位线,根据中位线的性质得出132OH BD ==,由2OA OH =得出答案即可. 【详解】解:如图,过点O 作OH AB ⊥于点H ,交 AB 于点M ,连接AM,∵弧AB 沿弦AB 折叠后,弧AB 刚好经过圆心O ,∴AB 垂直平分OM ,∴AO AM =,∴AM OM AO ,∴AOM 为等边三角形,∴60AOM ∠=°,∵OH AB ⊥,∴AH BH =,90AHO ∠=°,∴180906030OAH ,∴2OA OH =,∵AH BH =,OA OD =,∴OH 是ABD △的中位线, ∴132OH BD ==, ∴26OA OH ,即O 的半径长是6.故答案为:6.17. 已知A 是方程2201010x x −+=的一个根,试求22201020091A A A −++的值______. 【答案】2009【解析】【分析】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值;由A 是方程2201010x x −+=的一个根,将其代入方程,得到关于A 的等式,变形后代入所求式子中计算,即可求出值.【详解】∵A 是方程2201010x x −+=的一个根,∴2201010A A −+=,即220101A A +=,220101A A =−则22201020091A A A −++201012009A A −−20102010A + 21111A A A A+=−+=−201012009A A −= 故答案为:2009.18. 如图,AB 为O 的直径,C 为O 上一点,其中6120AB AOC =∠=°,,P 为O 上的动点,连接AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为______.【解析】【分析】本题主要考查了垂径定理的推论、半圆所对的圆周角是直角、勾股定理、含30°角的直角三角形等知识点,正确寻找点Q OQ ,作CH AB ⊥于H ,先证明点Q 的运动轨迹为以AO 为直径的K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,利用勾股定理求出CK 即可解答.【详解】解:如图:连接OQ ,作CH AB ⊥于H ,∵Q 是AP 中点,∴AQ QP =,根据垂径定理的推论可得OQ AP ⊥,∴90∠=°AQO , ∴点Q 的运动轨迹为以AO 为直径的K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,∵在直角OCH △中,120AOC ∠=°,∴60COH ∠=°,132OC AB ==,∴1322OH OC ==,CH , 又∵在直角CKH 中,11324KH OK OH OA OH AB OH =+=+=+=,∴CK =∴32CQ CK KQ =+=+=CQ .. 三、解答题:本题共10小题,共96分.解答应写出文字说明、证明过程或演算步棸. 19. 用指定方法解下列一元二次方程(1)23(21)120x −−=(直接开平方法) (2)22470x x −−=(配方法)(3)210x x +−=(公式法)(4)22(21)0x x −−=(因式分解法) 【答案】(1)132x =,212x =−(2)11x =+,21x =(3)1x =,2x = (4)113x =,21x = 【解析】【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用配方法求出解即可;(3)方程利用公式法求出解即可;(4)方程利用因式分解法求出解即可.【小问1详解】解:23(21)120x −−=,移项,得23(21)12x −=,两边都除以3,得2(21)4x −=,两边开平方,得212x −=±,移项,得212x =±, 解得:132x =,212x =−;【小问2详解】解:22470x x −−=,两边都除以2,得27202x x −−=, 移项,得2722x x −=, 配方,得29212x x −+=,即29(1)2x −=,解得:1x −=,即11x =,21x =−;【小问3详解】解:210x x +−=,这里1a =,1b =,1c =−,224141(1)5b ac −=−××−= ,x ∴,解得:1x =,2x =;【小问4详解】解:22(21)0x x −−=, 方程左边因式分解,得(21)(21)0x x x x −+−−=,即(31)(1)0x x −−=, 解得:113x =,21x =. 【点睛】此题考查了解一元二次方程−因式分解法,公式法与直接开平方法,熟练掌握各种解法是解本题的关键.20. 如图,AAAA 是⊙O 的弦,C 是⊙O 上的一点,且60ACB ∠=°,OD AB ⊥于点E ,交⊙O 于点D .若⊙O 的半径为6,求弦AAAA 的长.【答案】【解析】【分析】本题考查了垂径定理,等腰三角形的性质和直角三角形的性质等知识点,能根据垂直于弦的直径平分这条弦是解此题的关键.连接OB ,可得2120AOB ACB ∠=∠=°,进而可得OAB OBA ∠=∠12=()18030AOB °−∠=°,OE 12=3OA =,求出AE 即可;【详解】解:连接OB ,∵60ACB ∠=°,∴2120AOB ACB ∠=∠=°,∵OA OB =, ∴OAB OBA ∠=∠12=()18030AOB °−∠=°,∵OE AB ⊥,OE 过圆心O ,∴90AE BE AEO =∠=°,, ∵6OA =, ∴OE 12=3OA =,由勾股定理得:AE == ∴3BE =,即3AB AE BE =+=+=21. 如图,在正方形ABCD 中,E 为边AD 的中点,点F 在边CD 上,且3CF FD =,求证:ABE DEF △△∽.【答案】见解析【解析】【分析】本题考查了正方形的性质、相似三角形的判定与性质:熟练掌握正方形的性质,熟记两边成比例且夹角相等的两个三角形相似是解题的关键;由正方形的性质得出90,A D AB AD CD ∠∠==°==,设4AB AD CD a ===,得出2,AEDE a DF a ===,证出AB AE DE DF=,即可得出结论. 【详解】证明:∵四边形ABCD 是正方形 90,A D AB AD CD ∠∠∴==°==设4AB AD CD a ===∵E 为边AD 的中点,3CF FD =2,AE DE a DF a ∴===422,22AB a AE a a DF DE a ∴==== AB AE DE DF=∴ A D ∠=∠ ∴ABE DEF △△∽22. 已知ABC 三边a b c ,,满足()()()271a c a b c b −+−=−∶∶∶∶,且24a b c ++=.(1)求a b c ,,值;(2)判断ABC 的形状.【答案】(1)6810a b c ===,,;(2)直角三角形.【解析】【分析】(1)设2a c k −=−,7a b k +=,c b k −=,可得()()27a c a b c b k k k −+++−=−++,即得3a k =,进而得到4b k =,5c k =,再由24a b c ++=,可得2k =,据此即可求解;(2)利用勾股定理逆定理即可判断求解;本题考查了比例的有关计算,勾股定理的逆定理,掌握比例的有关计算是解题的关键.【小问1详解】解:设2a c k −=−,7a b k +=,c b k −=,∴()()27a c a b c b k k k −+++−=−++, 即26a k =,∴3a k =,∴4b k =,5c k =,∵24a b c ++=,∴34524k k k ++=,∴2k =,∴6a =,8b =,10c =;【小问2详解】解:∵222268100a b +=+=,2210100c ==,∴222a b c +=,∴ABC 为直角三角形.23. 已知关于x 一元二次方程22230x mx m m ++−=.(1)若方程有两个实数根,求m 取值范围;(2)设22230x mx m m ++−=的两个实数根为1x ,2x ,若221212364x x x x =++,求m 的值. 【答案】(1)0m ≥的的的(2)3m =【解析】【分析】本题考查根据一元二次方程根的个数求参数、一元二次方程根与系数的关系、完全平方公式变形、解一元二次方程等知识点.(1)由方程有实数根即可得出()()22Δ2430m m m =−−≥,解之即可得出m 的取值范围; (2)根据根与系数的关系可得出122x x m +=−,2123x x m m =−,结合221212364x x x x =++,即可得出关于m 的一元二次方程,解之即可得出m 的值,再由(1)中m 的取值范围即可确定m 的值.【小问1详解】解: 该方程有两个实数根,()()22Δ2430m m m ∴=−−≥, 120m ∴≥,0m ∴≥;【小问2详解】解:122x x m +=− ,2123x x m m =−, 221212364x x x x ∴=++,()21212236x x x x ∴++=,即()2242336m m m +−=, 260m m ∴−−=, 12m ∴=−,23m =,0m ≥ ,3m ∴=.24. 图Ⅰ是大拇指广场示意图及测量其高度的方案,图Ⅱ是求大拇指高度AB 的示意图.如图Ⅱ,在C 处放置一根高度为2m 且与地平线BF 垂直的竹竿IC ,点A ,I ,D 在同一直线上,测得CD 为3m .将竹竿3m 平移5m 至E 处,点A ,G ,F 在同一直线上,测得EF 为5m .求大拇指的高度.【答案】大拇指的高度为7m【解析】【分析】本题主要考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解题关键.分别证明CDI BDA ∽ 、GEF ABF ∽ 可得IC CD CD AB BD BC CD ==+、EF GE EF AB EF CE BCBF ==++,进而得到35310BC BC =++可得7.5BC =;最后将7.5BC =代入IC CD AB BC CD=+求得AB 值即可解答.【详解】解:由题意可得:AB CI ∥,∴CDI BDA ∽ . ∴ICCD CD AB BD BC CD==+. 由题意可得:AB EG ∥,∴GEF ABF ∽ . ∴GEEF EF AB EF CE BCBF ==++. ∵IC GE =, ∴CD EF BC CD EF CE BC =+++,即35310BC BC=++,解得:7.5BC =. 将7.5BC =代入IC CD AB BC CD =+,得2310.5AB =.解得7AB =. ∴大拇指的高度为7m .25. 如图,已知O 是ABC 的外接圆,AB 是O 的直径,P 是AB 的延长线上的点,弦CE 交AB 于点D .2POE CAB ∠=∠,P E ∠=∠.(1)求证:CE AB ⊥;(2)求证:PC 是O 的切线;的(3)若BD OD =,9PB =,求O 的半径.【答案】(1)证明见解析(2)证明见解析 (3)9【解析】【分析】(1)连接OC ,如图所示,由圆周角定理得到COD EOD ∠=∠,在COD △和EOD △中,由三角形全等即可得到SAS COD EOD (≌),利用三角形全等的性质即可得到答案; (2)由(1)中全等三角形性质得到E OCE ∠=∠,结合三角形内角和定理得到OC CP ⊥即可得证; (3)由垂直平分线的判定与性质得到OC BC =,再由等边三角形的判定与性质得到BCP P ∠=∠,再由等腰三角形的判定与性质即可得到答案.【小问1详解】证明:连接OC ,如图所示:则2COB CAB ∠=∠,∵2POE CAB ∠=∠,COD EOD ∴∠=∠,在COD △和EOD △中,CO EO COD EOD OD OD = ∠=∠ =∴SAS COD EOD (≌), ∴1180902CDO EDO ∠=∠=×°=°, CE AB ∴⊥;【小问2详解】证明:由(1)得COD EOD ≌,E OCE ∴∠=∠,又P E ∠=∠ ,P OCE ∴∠=∠∵90CDO ∠=°,∴1801809090OCE COP CDO ∠+∠=°−∠=°−°=°,90P COP ∴∠+∠=°,∵()1801809090OCP P COP ∠=°−∠+∠=°−°=° ,即OC CP ⊥, PC ∴是O 的切线;【小问3详解】解:BD OD = ,CE AB ⊥,CE ∴垂直平分OB ,∴OC BC =.又OC OB = ,OB OC BC ∴==,OBC ∴ 为等边三角形,60OCB COB ∴∠=∠=°,90OCP ∠=° ,906030,90906030BCP OCP OCB P COP °°°°°°°∴∠=∠−∠=−=∠=−∠=−=BCP P ∴∠=∠,BC BP ∴=,9PB = ,9BC ∴=,9OC ∴=,即O 的半径为9.【点睛】本题考查圆综合,涉及圆周角定理、全等三角形的判定与性质、切线的判定、三角形内角和定理、垂直平分线的判定与性质、等边三角形的判定与性质、等腰三角形的判定与性质等知识,熟练掌握圆的基本性质及综合题型解法是解决问题的关键.26. 某超市销售一种饮料,进价为每箱48元,规定售价不低于进价.现在的售价为每箱60元,每月可销售60箱.现为了尽量减少库存,决定对该饮料降价销售,市场调查发现:若这种饮料的售价每降价1元,则每月的销量将增加10箱.(1)若11月份每箱饮料降价2元,则该超市11月份可获得的利润是多少?(2)若该超市预计12月份要获得770元的利润,则每箱饮料售价应定为多少元?(3)该超市能否每月获得880元的利润?若能,求出售价为多少元?若不能,请说明理由.【答案】(1)800元(2)55元 (3)该超市不能每月获得880元的利润,理由见解析【解析】【分析】本题主要考查了一元二次方程的应用;(1)根据总利润=销售量×单个的销售利润列式求解即可;(2)设每箱饮料降价x 元,根据总利润=销售量×单个的销售利润,列出方程求解即可;(3)设每箱饮料降价y 元,根据总利润=销售量×单个的销售利润,列出方程,判断判别式的符号即可.【小问1详解】解:()()6024860210800−−×+×=元, 答:若11月份每箱饮料降价2元,则该超市11月份可获得的利润是800元;【小问2详解】解:设每箱饮料降价x 元,由题意得:()()60486010770x x −−×+=, 整理得:2650x x −+=,解得:15x =,21x =(不符合题意,舍去), ∴6060555x −−,答:每箱饮料售价应定为55元;【小问3详解】解:该超市不能每月获得880元的利润,理由如下:设每箱饮料降价y 元,由题意得:()()60486010880y y −−×+=, 整理得:26160y y −+=, ∵()2Δ6411636640=−−××=−<,∴此方程无解,∴该超市不能每月获得880元的利润.27. 按要求利用无刻度直尺作图(保留作图痕迹).(1)如图1,由小正方形构成的66×网格,每个小正方形的顶点叫做格点,且每个小正方形的边长为1,O 经过A ,B ,C 三个格点,用无刻度的直尺作出圆心O ;(2)如图2,在平行四边形ABCD 中,45A ∠=°,以AB 为直径的圆与CD 相切于点D .请仅用无刻度直尺在图中作出ABD △的重心M .【答案】(1)见解析 (2)见解析【解析】【分析】本题主要考查了网格作图和尺规作图.熟练掌握全等三角形性质,线段垂直平分线性质,是解题的关键.(1)根据AD BC ==,5CD AB ==,AC 共用,可知,ABC CDB △≌△,得到CD 是直径,点O 即为圆心;(2)根据AD BD =,AP BP =,得到DP 垂直平分AB ,点N 为AB 中点,根据AC BD ,是平行四边形ABCD 的对角线,得到点Q 是BD 的中点,即得M 是ABD △的重心.【小问1详解】解:取点D ,使AD =CD ,交AB 于点O ,点O 即为所求作;【小问2详解】分别以点A ,B 为圆心,以大于12AB 长为半径在点D 的异侧画弧,两弧交于点P ,作射线DP ,连接AC 交DP 于点M ,点M 即为所求作.28. 新定义:如果一个四边形的对角线相等,我们称这个四边形为美好四边形.【问题提出】(1)如图1,若四边形ABCD 是美好四边形,且AD BD =,90ABC ∠=°,4AB =,3BC =,求四边形ABCD 的面积;【问题解决】(2)如图2,某公园内需要将4个信号塔分别建在A ,B ,C ,D 四处,现要求信号塔C 建在公园内一个湖泊的边上,该湖泊可近似看成一个半径为200m 的圆,记为E .已知点A 到该湖泊的最近距离为500m ,是否存在这样的点D ,满足AC BD =,使得四边形ABCD 的面积最大?若存在,求出最大值;若不存在,请说明理由.【答案】(1)3+; (2)存在,最大为2405000m【解析】【分析】本题主要考查了新定义美好四边形,勾股定理,圆的性质,三角形的面积等知识,证明对角线相等的四边形对角线垂直时,面积最大是解题的关键.(1)过D 作DK AB ⊥于K ,先利用勾股定理求出AC ,再分别求ABD S 和BCD S △;(2)先证明对角线相等的四边形对角线垂直时,面积最大,最大值为对角线乘积的一半,再确定AC 的最大值,即可得到答案.【详解】解:(1)过D 作DK AB ⊥于K ,如图1,90ABC ∠=° ,4AB =,3BC =,5AC ∴=,四边形ABCD 是美好四边形,AD BD =,5AD BD AC ∴===,DK AB ⊥ ,122AK BK AB ∴===,在Rt ADK △中,DK1122ABD S AB DK ∴=⋅=×=△,1132322BCD S BC BK =⋅=××=△,3ABD BCD ABCD S S S ∴=+=△△四边形;(2)存在这样的点D ,满足AC BD =,且使得四边形ABCD 的面积最大,理由如下: 当对角线相等的四边形对角线不垂直时,如图2,过点D 作DM AC ⊥于M ,过点B 作BN AC ⊥于N ,则()12ACD ACB ABCD S S S AC DM BN =+=⋅+ 四边形, DM DO < ,BN BO <,DM BN BD ∴+<, 12ABCD S AC BD ∴<⋅四边形. 当对角线相等的四边形对角线垂直时,如图3,则()1122ACD ACB ABCD S S S AC OD OB AC BD =+=⋅+=⋅ 四边形, ∴当对角线相等的四边形对角线垂直时,面积最大. 点A 到湖泊的最近距离为500m ,E 的半径为200m , ()500200700m AE ∴=+=,又200m CE = ,∴当A 、E 、C 依次共线时AC 最长,如图4,又AC BD ⊥时,21122ABCD S AC BD AC =⋅=四边形, ∴此时四边形ABCD 面积最大,此时()900m AC AE CE =+=,()22211900405000m 22ABCD S AC ∴==×=四边形, 故四边形ABCD 的面积最大为2405000m .。
2022年江苏省盐城市盐城初级中学南北校区中考三模数学试题(含答案与解析)
D的坐标是(3,4),则点B的坐标是____.
14.用半径为9,圆心角为120° 扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径等于_______.
15.小余同学计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为4元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满 元减 元,满 元减 元,满 元减 元,如果小余在购买下表中所有菜品时,采取适当的下单方式,那么他点餐总费用最低可为____________元.
【答案】3
【解析】
【分析】
根据中位数的定义直接解答即可;
【详解】把这些数从小到大排列为:3,3,3,5,6,
则这组数据的中位数为:3,
故答案为:3.
【点睛】本题考查了中位数的求法,正确掌握知识点是解题的关键.
13.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点
D的坐标是(3,4),则点B的坐标是____.
菜品
单价(含包装费)
数量
水煮牛肉(小份)
元
1
醋溜土豆丝(小份)
元
1
豉汁排骨(小份)
元
1
手撕包菜(小份)
元
1
米饭
元
2
16.在平面直角坐标系中, , ,点D、E是 的三等分点,点P是线段 上的一个动点,若只存在唯一一个点P使得 ,则a需满足的条件是:____________.
三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)
A. B. C. D.
【答案】C
【解析】
【分析】先确定a=1.14,再确定n=6,用科学记数法形式表示出来即可.
江苏省盐城中学2013届高三12月月考 数学 (附答案)
江苏省盐城中学高三年级综合测试数学试题(12月)(总分160分,考试时间120分钟)命题人:张太年 朱军 审核人:姚动 徐瑢一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上。
1.已知集合{}Zx x x x A ∈≤-=,042,(){}A x x y yB ∈+==,1log2,则=B A .2.复数ii z -=12,其共轭复数为z ,则=+-1z z z .3.在平面直角坐标系中,从五个点:(0,0),(2,0),(1,1),(2,2),(3,3)A B C D E 中任取三个,这三点能构成三角形的概率是 .(结果用分数表示)4.在棱长为4的正方体1111D C B A ABCD -中,四面体11CD AB 的体积为 .5.已知函数()cos ,(0,2)f x x x π=∈有两个不同的零点12,x x ,且方程()f x m =有两个不同的实根34,x x ,若把这四个数按从小到大顺序排列恰好构成等差数列,则实数m 的值为___________.6.已知双曲线22221x y ab-=(0,0>>b a )的两条渐近线均和圆:C 22650x y x +-+=相切且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 . 7.已知锐角,A B 满足tan()2tan A B A +=,则tan B 的最大值为 . 8.过直线x y l 2:=上一点P 作圆()()221M 345x y -+-=:的两条切线21,l l ,,A B 为切点,若直线21,l l 关于直线l 对称,则APB ∠= .9.已知A B C ∆是等腰直角三角形,090A ∠=,且AB a b =+ ,AC a b =-,若(cos ,sin ),a R θθθ=∈,则A B C ∆的面积为 .10.已知椭圆22221(0)x y a b ab+=>>与抛物线22(0)y px p =>有相同的焦点F ,,P Q 是椭圆与抛物线的的交点,若PQ 经过焦点F ,则椭圆22221(0)x y a b ab+=>>的离心率为 ____. 11.已知数列{}n a 的通项公式为|13|n a n =-,那么满足119102k k k a a a +++++= 的正整数k = .12.在平面直角坐标系中,若点,A B 同时满足:①点,A B 都在函数)(x f y =图象上;②点,A B 关于原点对称.则称点对(),A B 是函数)(x f y =的一个“姐妹点对”,当函数a x a x g x--=)(,(0,1)a a >≠有“姐妹点对”时,a 的取值范围是 .13.已知等比数列{}n a 的首项81=a ,令n n a b 2l og=,n S 是数列{}n b 的前n 项和,若3S 是数列{}n S 中的唯一最大项,则{}n a 的公比q 的取值范围是 .14.设,m k 为整数,方程2220mx kx -+=在区间(0,1)内有两个不同的根,则m k +的最小值为 .二、解答题:本大题共6小题, 第15,16,17题各14分,第18,19,20题各16分,共计90分. 15.在ABC ∆中,三个内角分别为,,A B C ,且sin()2cos 6B B π+=.(1)若cos 3C =,3A C =,求A B .(2)若0,3A π⎛⎫∈ ⎪⎝⎭,且()4cos 5B A -=,求sin A .16.如图,E 、F 分别为直角三角形ABC 的直角边A C 和斜边A B 的中点,沿E F 将AEF ∆折起到'A E F ∆的位置,连结'A B 、'A C ,P 为'A C 的中点. (1)求证://EP 平面'A FB . (2)求证:平面'A E C ⊥平面'A B C .A17. 为了研究某种药物,用小白鼠进行试验,发现1个单位剂量的药物在血液内的浓度与 时间的关系因使用方式的不同而不同。
江苏省盐城中学2024-2025学年高三上学期10月月考数学试题
江苏省盐城中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知集合{}3,2,1,0,1,2,3U =---,{}1,0,1A =-,{}1,2B =,则()U A B ⋃=ð( ) A .{}2,3- B .{}3,2,3- C .{}3,2,3-- D .{}3,2,1,0,2,3---2.若复数z 满足1ii z-=,则z =( )AB .2C D .13.“213x -≥”是“201x x -≥+”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.在ABC V 中,2,CD DB AE ED ==u u u r u u u r u u u r u u u r ,则CE =u u u r( )A .1163AB AC -u u ur u u u rB .1263AB AC -u u ur u u u rC .1536AB AC -u u ur u u u rD .1133AB AC -u u ur u u u r5.在一个空旷的房间中大声讲话会产生回音,这种现象叫做“混响”.用声强的大小来度量声音的强弱,假设讲话瞬间发出声音的声强为0W ,则经过t 秒后这段声音的声强变为()0e tW t W τ-=(τ为常数).把混响时间()R T 定义为声音的声强衰减到讲话之初的610-倍所需时间,则R T 约为( )(参考数据ln 20.7≈,ln5 1.6≈) A .4.2τB .9.6τC .13.8τD .23τ6.化简cos20sin30cos40sin40cos60-=o o oo o( )A .1BC .2D 7.已知数列{}n a 的各项均为正数,且11a =,对于任意的*n ∈N ,均有121n n a a +=+,()22log 11n n b a =+-.若在数列{}n b 中去掉{}n a 的项,余下的项组成数列{}n c ,则1220c c c +++=L ( )A .599B .569C .554D .5688.已知函数11()221xf x =-+,()f x '是()f x 的导函数,则下列结论正确的是( ) A .()()0f x f x --= B .()0f x '<C .若120x x <<,则()()1221x f x x f x >D .若120x x <<,则()()()1212f x f x f x x +>+二、多选题9.下列命题中,正确的是( )A .在ABC V 中,若cos cos a A bB =,则ABC V 必是等腰直角三角形 B .在锐角ABC V 中,不等式sin cos A B >恒成立 C .在ABC V 中,若A B >,则sin sin A B >D .在ABC V 中,若260,B b ac =︒=,则ABC V 必是等边三角形 10.已知0,0,2a b a b >>+=,则( )A .1≥abB .222a bb a +≥ C .145aa b+≥ D .224a b ab ++<11.已知函数()2ln 11f x x x =---,则下列结论正确的是( ) A .若0a b <<,则()()f a f b < B .()()20242025log 2025log 20240f f +=C .若()()()e 1,0,1,0,e 1b b f a b a b +=-∈∈+∞-,则e 1b a =D .若()1,2,a ∈则()()1f a f a ->三、填空题12.在ABC V 中,角,,A B C 的对边分别为,,a b c ,若sin :sin :sin 2:3:4A B C =,则sin C =. 13.已知函数()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭,()f x '为()f x 的导函数,()f x '在π0,2⎡⎤⎢⎥⎣⎦上单调递减,则正实数ω的取值范围为.14.已知函数32()f x x ax bx c =+++恰有两个零点12,x x 和一个极大值点()0102x x x x <<,且102,,x x x 成等比数列.若()0()f x f x >的解集为(5,)+∞,则0x =.四、解答题15.已知函数()ππsin 2cos cos 2cos 022f x x x ϕϕϕ⎛⎫⎛⎫=-+<< ⎪⎪⎝⎭⎝⎭,对x ∀∈R ,有()π3f x f ⎛⎫≤ ⎪⎝⎭. (1)求ϕ的值及()f x 的单调递增区间; (2)若()00π10,,43x f x ⎡⎤∈=⎢⎥⎣⎦时,求0sin 2x .16.已知数列{}n a 的前n 项和为n S ,1112,34n n n a S S a ++=+=-. (1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个实数,使这n +2个数依次组成公差为dn 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和Tn17.在ABC V 中,AC =,且BC 边上的中线AD 长为1. (1)若5π6BAC ∠=,求BC 的长; (2)若2ABC DAC ∠=∠,求BC 的长. 18.设函数()e ,()ln x f x g x x ==.(1)已知e ln x kx x ≥≥对任意(0,)x ∈+∞恒成立,求实数k 的取值范围; (2)已知直线l 与曲线(),()f x g x 分别切于点()()()()1122,,,x f x x g x ,其中1>0x . ①求证:212e e x --<<;②已知()21e 0xx x x λ-++≤对任意[)1,x x ∞∈+恒成立,求λ的最大值.19.若数列 a n 的各项均为正数,且对任意的相邻三项11t t t a a a -+,,,都满足211t t t a a a -+≤,则称该数列为“对数性凸数列”,若对任意的相邻三项11t t t a a a -+,,,都满足112t t t a a a -++≤则称该数列为“凸数列”.(1)已知正项数列{}n c 是一个“凸数列”,且e n c na =,(其中e 为自然常数,*N n ∈),证明:数列 a n 是一个“对数性凸数列”;(2)若关于x 的函数231423()f x b b x b x b x =+++有三个零点,其中0(1,2,3,4)i b i >=.证明:数列1234,,,b b b b 是一个“对数性凸数列”;(3)设正项数列01,,,n a a a L 是一个“对数性凸数列”证明:110101111111n n n n i j i j i j i j a a a a n n n n --====⎛⎫⎛⎫⎛⎫⎛⎫≥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑.。
2022-2023学年度第一学期九年级数学阶段质量调研
2022~2023学年度第一学期 九年级数学阶段质量调研(本卷满分150分,考试时间为120分钟)一、选择题(每题3分,共24分) 1.下列方程为一元二次方程的是 ( ▲ )A .x 2-3=x (x +4)B .x 2-1x=3 C .x 2-10x =-5 D .4x +6xy =332.下列各组线段中是成比例线段的是 ( ▲ ) A .1cm ,2cm ,3cm ,4cm B .1cm ,2cm ,2cm ,4cm C .2cm ,4cm ,6cm ,8cm D .3cm ,6cm ,9cm ,12cm 3.若△ABC ∽ △A'B'C',∠A =30°,∠C =110°,则∠B' 的度数为 ( ▲ ) A .30° B .50° C .40° D .70°4.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm .则投影三角板的对应边长为 ( ▲ ) A .20cm B .10cm C .8cm D .3.2cm第4题图 第7题图 第8题图5.已知m ,n 是方程x 2-2x -5=0的两个不同的实数根,则m +n 的值为 ( ▲ )A . ﹣2B .2C .﹣5D .56. 某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:项目作品 甲 乙 丙 丁创新性90 95 90 90 实用性90 90 95 85 如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是 ( ▲ ) A .甲 B .乙 C .丙 D .丁 7.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为 ( ▲ )A .2B .3C .4D .58. 已知二次函数y =ax 2+bx +c 的图象如图所示,有下列结论:①a >0;②b 2﹣4ac >0;③4a +b =1;④不等式ax 2+(b ﹣1)x +c <0的解集为1<x <3,正确的结论个数是( ▲ ) A .1 B .2 C .3 D .4 二、填空题(每空3分,共24分)9.在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm ,则甲、乙两地的实际距离为 ▲ 千米.10.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为2甲=0.2S ,2乙=0.08S ,成绩比较稳定的是 ▲ (填“甲”或“乙”)11.若线段a =2厘米,c =8厘米,则线段a 和线段c 的比例中项b = ▲ 厘米.12.已知点P 是线段AB 的黄金分割点,AB =4厘米,则较短线段AP 的长是 ▲ 厘米. 13.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =3,BD =9,则边AC 的长为 ▲ .第13题图 第14题图 第15题图 第16题图 14. 如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加 ▲ m .15.如图,在平面直角坐标系中,点的坐标为(0,2),点B 的坐标为(4,2)若抛物线23()2yx h k (h 、k 为常数)与线段AB 交于C 、D 两点,且CD =12AB ,则 k 的值为 ▲ .16.如图,将□ABCD 绕点A 逆时针旋转到□A ′B ′C ′D ′的位置,使点B ′落在BC 上,B ′C ′与CD 交于点E .若AB =3,BC =4,BB ′=1,则CE 的长为 ▲ . 三、解答题(本大题共11小题,共102分) 17.(本题满分8分)解方程:(1)2x 2﹣5x +1=0 (2)(x +2)2=3x +6.18. (本题满分8分)已知354x y z ==. (1)求x yz-的值; (2)若2317x y z +-=,求2x y z +-的值.19.(本题满分8分)如图,在△ABC 和△DEC 中,∠A =∠D ,∠BCE =∠AC D . (1)求证:△ABC ∽△DEC ;(2)若S △ABC :S △DEC =4:9,BC =6,求EC 的长.20. (本题满分8分)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A ,B ,C 的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.(1)七年一班从3张卡片中随机抽取1张,抽到C 卡片的概率为 ▲ ;(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机y xO A B C抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.21. (本题满分8分)在正方形方格纸中,我们把顶点都在“格点”上的三角形称为“格点三角形”,如图,△ABC 是一个格点三角形,点A 的坐标为(﹣1,2). (1)点B 的坐标为 ▲ ,△ABC 的面积为 ▲ ; (2)在所给的方格纸中,请你以原点O 为位似中心,将△ABC 放大为原来的2倍,放大后点A 、B 的对应点分别为A 1、B 1,点B 1在第一象限;(3)在(2)中,若P (a ,b )为线段AC 上的任一点, 则放大后点P 的对应点P 1的坐标为 ▲ .22. (本题满分8分)已知二次函数y =x 2﹣2mx +m 2+3(m 是常数). (1)求证:不论m 为何值,该函数的图象与x 轴没有公共点;(2)把该函数的图象沿y 轴向下平移多少个单位长度后,得到的函数的图象与x 轴只有一个公共点?23 . (本题满分8分)如图,一电线杆AB 的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN ,量得其影长MF 为0.5米,量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米.你能利用小明测量的数据算出电线杆AB 的高吗?24. (本题满分12分) 某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的销售单价x (元/千克) 55 60 65 70 销售量y (千克)70 60 50 40 ((2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?25(本题满分10分)如图,以等边三角形ABC 的BC 边为直径画圆,交AC 于点D ,DF ⊥AB 于点F ,连接OF ,且AF =1. (1)求证:DF 是⊙O 的切线; (2)求线段OF 的长度.26(本题满分12分)在△ABC 中,∠ACB =90°,ACBC=m ,D 是边BC 上一点,将△ABD 沿AD 折叠得到△AED ,连接BE . (1)特例发现如图1,当m =1,AE 落在直线AC 上时. ② 求证:∠DAC =∠EBC ;②填空:CDCE的值为 ▲ ;(2)类比探究如图2,当m ≠1,AE 与边BC 相交时,在AD 上取一点G ,使∠ACG =∠BCE ,CG 交AE于点H .探究CGCE的值(用含m 的式子表示),并写出探究过程;(3)拓展运用在(2)的条件下,当m =22,D 是BC 的中点时,若EB •EH =6,求CG 的长.27.(本题满分12分)二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (﹣4,0),B (1,0),与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式;(3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.九年级数学阶段质量调研参考答案(说明:答案仅供参考,不同解法酌情给分)....................1 2 3 4 5 6 7 8 C B C A B B D C 9、26 10、 乙 11、4 12、6-2513、 6 14、 2 15、7216、98三、解答题17.(1)5174x……………4分 (2)122,1x x ……………4分 18. 解:令354x k y k z k ===,,,则354x k y k z k ===,,,……………2分(1)将354x k y k z k ===,,代入x yz-得:35142x y k k z k --==-;……………4分(2)将354x k y k z k ===,,代入2317x y z +-=得: 2335417k k k ⨯+⨯-=,解得:1k =,……………6分∴354x y z ===,,,将代入2x y z +-得: 32549+⨯-=,∴29x y z +-=……………8分19. 证明:(1)∵∠BCE =∠ACD . ∴∠BCE +∠ACE =∠ACD +∠ACE , ∴∠DCE =∠ACB ,……………2分 又∵∠A =∠D ,∴△ABC ∽△DEC ;……………4分 (2)∵△ABC ∽△DEC ; ∴=()2=,……………6分又∵BC =6,∴CE =9.……………8分20. 解:(1)小明随机抽取1张卡片,抽到卡片编号为C 的概率为,故答案为:;……………2分(2)画树状图如下:共有9种等可能的结果数,其中两个半径恰好选择一首歌曲的有3种结果,所以两个班级恰好抽到同一首歌曲的概率为=.……………8分21.解:(1)点B的坐标为(2,2)……………2分△ABC的面积为12×3×2=3,……………4分(2)如图,△A1B1C1即所求.……………6分(3)放大后点P的对应点P1的坐标为(2a,2b),……………8分22.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;……………4分(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.……………8分23.解:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米,∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC……………4分∴MN MFAG GC=,∴AG=130.5MN GCMF⋅⨯==6……………6分∴AB=AG+GB=6+2=8(米)……………7分故电线杆AB的高为8米……………8分24.解:设与之间的函数表达式为,将表中数据、代入得:,……………2分解得:.……………3分与之间的函数表达式为.……………4分由题意得:……………5分整理得:,解得,.……………7分答:为保证某天获得元的销售利润,则该天的销售单价应定为元千克或元千克.……………8分设当天的销售利润为元,则:,,当时,.……………11分答:当销售单价定为元千克时,才能使当天的销售利润最大,最大利润是元.……………12分25.【解答】(1)证明:连接OD,∵△ABC是等边三角形,∴∠C=∠A=60o,∵OC=OD,∴△OCD是等边三角形,∴∠CDO=∠A=60o,∴OD∥AB,……………2分∵DF⊥AB,∴∠FDO=∠AFD=90°,∴OD⊥DF,……………4分∴DF是⊙O的切线;……………5分(2)解:∵OD∥AB,OC=OB,∴OD是△ABC的中位线,……………6分∵∠AFD=90°,∠A=60o,∴∠ADF=30°,∵AF=1……………8分∴CD =OD =AD =2AF =2, 由勾股定理得:DF 2=3, 在Rt △ODF 中,OF =,……………10分26. 解(1)①如图1,延长AD 交BE 于F ,由折叠知,∠AFB =90°=∠ACB ,∴∠DAC +∠ADC =∠BDF +∠EBC =90°, ∵∠ADC =∠BDF ,∴∠DAC =∠EBC ;……………3分②由①知,∠DAC =∠EBC , ∵m =1, ∴AC =BC ,∵∠ACD =∠BCE ,∴△ACD ≌△BCE (ASA ), ∴CD =CE , ∴=1,故答案为1.……………5分(2)如图2,延长AD 交BE 于F , 由(1)①知,∠DAC =∠EBC , ∵∠ACG =∠BCE , ∴△ACG ∽△BCE , ∴=m ;……………8分(3)由折叠知,∠AFB =90°,BF =FE , ∵点D 是BC 的中点, ∴BD =CD ,∴DF 是△BCE 的中位线, ∴DF ∥CE ,∴∠BEC =∠BFD =90°,∠AGC =∠ECG ,∠GAH =∠CEA , 由(2)知,△ACG ∽△BCE , ∴∠AGC =∠BEC =90°,==2m =,易证△ACG ∽△ADC ∴2CG DC AG AC ==, 设CG =x ,则AG =x ,BE =2x , ∴AG =CE ,∴△AGH ≌△ECH (AAS ), ∴AH =EH ,GH =CH ,∴GH =x ,在Rt △AGH 中,根据勾股定理得,AH ==x ,∵EB •EH =6, ∴2x •x =6,∴x =或x =﹣(舍), 即CG =.……………12分27. 解:(1)∵二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (﹣4,0),B (1,0),∴,解得:,∴该二次函数的表达式为y =﹣x 2﹣3x +4;……………4分xyGQDCBA OP在OC 上截取CG=BG ,则∠NGO=2∠BCO 易求点C(0,4)设OG=m ,则BG=4-m则2215(4-m)1,解得8m m =+=故G(15(0,)8所以:BP 的表达式为y=1515-x 88+……………8分易证,PQ PMQB BK=BK 为定值5,故只需PM 有最大值 设2(m,34)P m m --+,AC :y=x+4故设点M(m,m+4)PM=22234m 44=-(m+2)4m m m m --+--=--+故当m=-2时,PM 有最大值为4 所以:4的最大值,此时P(-2,6)5PQ QB =……………12分。
江苏省盐城市滨海县滨海县条港初级中学等5校2022-2023学年九年级上学期12月月考数学试题
A.1:2
B.1:3
C.1:4
D.1:16
6.如图,小正方形边长均为 1,则下列图形中三角形(阴影部分)与△ABC 相似的是
A.
B.
试卷第 1页,共 6页
C.
D.
7.如图,线段 CD 两个端点的坐标分别为 C(1,2)、D(2,0),以原点为位似中心, 将线段 CD 放大得到线段 AB,若点 B 坐标为(5,0),则点 A 的坐标为( )
相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这 13 名同学成绩的统
计量中只需知道一个量,它是( )
A.众数
B.方差
C.中位数
D.平均数
4.若
y x
3 4
,则
x
x
y
的值为(
)
A.1
B. 4 7
C. 5 4
D. 7 4
5. ABC 与 DEF 的相似比为 1:4,则 ABC 与 DEF 的周长比为( ).
(1)画出△A1B1C1 ,使△A1B1C1 与 ABC 关于点 O 成中心对称,并写出点 A 的对应点 A1的 坐标 ; (2)以原点 O 为位似中心,位似比为1: 2 ,在 y 轴的左侧,画出将 ABC 放大后的 △A2B2C2 , 并写出点 A 的对应点 A2 的坐标_______;
试卷第 3页,共 6页
试卷第 5页,共 6页
(1)求证:∠PAC=∠CAO; (2)求点 P 的坐标;
OQ (3)若点 Q 为⊙M 上任意一点,连接 OQ、PQ,问 PQ 的比值是否发生变化?若不变 求出此值;若变化,说明变化规律.
试卷第 6页,共 6页
实际距离为 km.
10.若 x2 3x 1 0 ,则代数式 ax2 3ax a 2019 的值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省盐城中学2015届九年级数学12月调研考试试题(无答案)
一、选择题(每小题3分,共24分)
1.sin30°的值是 ( )
A.
12 B. 2
C. 2
D.1 2.已知⊙O 的半径为3,OA =4,则点A 与⊙O 的位置关系是 ( ) A .点A 在⊙O 内 B .点A 在⊙O 上 C .点A 在⊙O 外 D .无法确定
3.在一个不透明的口袋中,装有5个红球和3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 ( ) A .
15
B .13
C .
58
D .38
4.三角形的重心是 ( ) A .三角形的三条角平分线的交点 B. 三角形的三条中线的交点 C. 三角形的三条高的交点 D .三角形的三条垂直平分线的交点
5.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tan A = ( ) A .
34 B .35 C . 45 D .43
6.将抛物线2
y x =-向左平移2个单位后,得到的函数表达式是 ( ) A .22y x =-+ B .2(2)y x =-+ C .2(2)y x =-- D .2
2y x =--
7.一条排水管的截面如图所示,已知排水管的半径OB =10,水面宽AB =16,则截面圆心O 到水面的距离OC 是 ( ) A .4 B .5 C .6 D .8
(第7题) (第8题)
8.如图,是二次函数 y =ax 2
+bx +c (a ≠0)的图像的一部分,给出下列命题 :①abc <0②b =2a ;③当-3<x<1
时,ax 2
+bx +c <0;④)1)((-≠+<-m b am m b a .其中正确的命题有
( )
A .1个 B.2个 C. 3个 D.4个 二、填空题(每小题3分,共30分) 9.抛物线y=x 2
-3的顶点坐标是 .
10.已知△ABC ∽△DEF ,它们的相似比为3:1,则面积之比为_______.
11.中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为__________cm .(精确到0.1)
12.如图,四边形ABCD 内接于⊙O ,已知∠BOD =120°,则∠BCD 的大小为___ °.
(第12题) (第13题) (第15题)
13.如图,在Rt △ABC 中,斜边BC 上的高AD =4,cosB =54
,则AC = .
14.已知二次函数y =x 2
-2x +m 的图像顶点在x 轴上,则m 的值是__________.
15.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是 cm .
16.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为__________米.
(第16题) (第17题) (第18题)
17.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )6米的点A 处,沿OA 所在直线行走14米到点B 时,人影长度变长..
米. 18.如图,在平面直角坐标系中,A 、B 两点的坐标分别为(8,0)和(0,6),点C 为AB 的中点,点D 在x 轴上,当D 点坐标为___________时,由点A 、C 、D 组成的三角形与△AOB 相似. 三、解答题(本大题共10小题,共96分) 19.(本题6分)计算:︒-+cos4542-8
20.(本题6分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求在给定的网格中画出△
A 1
B 1
C 1和△A 2B 2C 2。
(1)将△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;
(2)以图中的点O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到 △A 2B 2C 2.
21.(本题8分)在一个不透明的盒子里,装有三个分别标有数字1,2,3的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .
(1)用列表法或画树状图表示出(x ,y )的所有可能出现的结果; (2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数x
y 3
的图像上的概率;
22.(本题8分)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,AE =2,ED =4. (1)求证:△ABE ∽△ADB ; (2)求tan ∠ADB
的值;
23.(本题10分)一副直角三角板如图放置,点C 在FD 的
延长线上,AB ∥
CF ,∠F =∠ACB
=90°, ∠E =45°,∠A =60°,AC =10,过点B 作BM ⊥DF ,试求: (1)BC 的长; (2)CD 的长.
A
24.(本题10分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y (件)之间满足如图所示的关系: (1)求出y 与x 之间的函数关系式;
(2)写出每天的利润W 与销售单价x 之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
25.(本题12分)如图,AB 是⊙O 的直径,AC 是弦,直线EF 经过点C ,AD ⊥EF 于点D ,∠DAC =∠BAC . (1)求证:EF 是⊙O 的切线; (2)求证:AC 2
=AD ·AB ;
(3)若⊙O 的半径为2,∠ACD =30
26.(本题12分)如图,抛物线y =2
1x 2
+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求b 的值和顶点D 的坐标;
⑵判断△ABC 的形状,并证明你的结论;
⑶点M (m ,0)是x 轴上的一个动点,当CM+DM 的值最小时,求m 的值.
27.(本题12分)如图,在△ABC 中,∠B =45°,BC =5,高AD =4,矩形EFPQ 的一边QP 在BC 边上,E 、F 分别在AB 、AC 上,AD 交EF 于点H .设EF =x , (1)当x 为何值时,矩形EFPQ 是正方形;
(2)当x 为何值时,矩形EFPQ 的面积最大?并求出最大面积;
(3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线DA 匀速向上运动(当矩形的边PQ 到达A 点时停止运动),设运动时间为t 秒,矩形EFPQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式,并写出t 的取值范围.
28.(本题12分)如图,已知抛物线42
12
++-=x x y 交x 轴正半轴于点A ,交y 轴于点B . (1)求证:△AOB 是等腰直角三角形;
(2)若M 为AB 的中点,∠PMQ 在AB 的同侧以M 为中心旋转,且∠PMQ =45°,MP 交y 轴于点C ,MQ 交x 轴于点D .设AD 的长为m (m >0),BC 的长为n ,求m 和n 之间的函数关系式; (3)当m 、n 为何值时,∠PMQ 的边经过抛物线与x 轴的另一个交点?。