2017-2018学年高中数学三维设计人教A版浙江专版必修5讲义:第二章 2.2 等差数列 Word版含答案
2017-2018学年高中数学三维设计人教A版浙江专版必修4讲义:复习课(二) 三角函数的图象与性质
复习课(一) 任意角的三角函数及三角恒等变换1.题型多以选择题、填空题为主,一般难度较小.主要考查三角函数的定义的应用,多与求三角函数值或角的大小有关.2.若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=yr ,cos α=x r ,tan α=yx (x ≠0).[典例] 已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝⎛⎭⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝⎛⎭⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cos θ,故sin α=y r =-45,tan α=y x =-43. [答案] -45 -43[类题通法]利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.[题组训练]1.已知角α的终边上一点的坐标为⎝⎛⎭⎫sin 5π6,cos 5π6,则角α的最小正值为( ) A.5π6 B.2π3 C.5π3D.11π6 解析:选C 由三角函数的定义知: tan α=cos 5π6sin 5π6=-cos π6sin π6=-3212=- 3.又sin5π6>0,cos 5π6<0. 所以α是第四象限角,因此α的最小正值为5π3.2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.3.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:因θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三1.题型既有选择题、填空题,又有解答题.主要考查三角函数式的化简与求值,利用公式进行恒等变形以及基本运算能力.2.(1)牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.(2)诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.[典例] 已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)·(cos θ-sin θ)的值.[解] 法一:由已知2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ =4tan θ-tan 2θ-3tan 2θ+1=8-4-34+1=15.法二:由已知2+tan θ1-tan θ=-4,解得tan θ=2. 即sin θcos θ=2,∴sin θ=2cos θ. ∴(sin θ-3cos θ)(cos θ-sin θ) =(2cos θ-3cos θ)(cos θ-2cos θ) =cos 2θ=cos 2θsin 2θ+cos 2θ=1tan 2θ+1=15. [类题通法]三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形. (2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.[题组训练]1.若sin (π-α)=-53且α∈⎝⎛⎭⎫π,3π2,则sin ⎝⎛⎭⎫π2+α=( ) A .-23B .-66C.66 D.23解析:选A sin(π-α)=sin α=-53,又α∈⎝⎛⎭⎫π,3π2, 所以sin ⎝⎛⎭⎫π2+α=cos α=-1-sin 2α=-23. 2.如果tan θ=2,那么1+sin θcos θ= ( ) A.73 B.75 C.54D.53解析:选B 1+sin θcos θ=1+sin θcos θ1=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ+1tan 2θ+1, 又tan θ=2,所以1+sin θcos θ=22+2+122+1=75.3.计算:sin4π3cos ⎝⎛⎭⎫-25π6=________. 解析:因为sin4π3=sin ⎝⎛⎭⎫π+π3=-sin π3=-32, cos ⎝⎛⎭⎫-25π6=cos 25π6=cos ⎝⎛⎭⎫4π+π6=cos π6=32, 所以sin4π3cos ⎝⎛⎭⎫-25π6=-32×32=-34. 答案:-344.已知sin(180°+α)=-1010,0°<α<90°, 求sin (-α)+sin (-90°-α)cos (540°-α)+cos (-270°-α)的值.解:由sin(180°+α)=-1010,0°<α<90°, 得sin α=1010,cos α=31010, ∴原式=-sin α-sin (90°+α)cos (360°+180°-α)+cos (270°+α)=-sin α-cos α-cos α+sin α=-1010-31010-31010+1010=2.1.题型既有选择题、填空题,又有解答题,主要考查给角求值、给值求值、给值求角、三角函数式的化简以及利用三角恒等变换研究函数的性质等.2.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.3.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan 2α.[典例] (广东高考)已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4 =2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.[类题通法]解决条件求值应学会的三点(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示. (3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.[题组训练]1.(重庆高考)若tan α=13,tan(α+β)=12,则tan β=( )A.17 B.16 C.57D.56解析:选A tan β=tan [(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.2.计算:cos π12cos 5π12=________.解析:cos π12cos 5π12=cos π12sin π12=12sin π6=14.答案:14.3.已知0<α<π4,0<β<π4,且tan(α+β)=2tan α.4tan α2=1-tan 2α2,则α+β=________.解析:∵4tan α2=1-tan 2α2,∴tan α=2tanα21-tan 2α2=2tanα24tanα2=12, ∴tan(α+β)=2tan α=2×12=1.∵0<α<π4,0<β<π4,∴α+β∈⎝⎛⎭⎫0,π2,∴α+β=π4. 答案:π44.在△ABC 中,sin B =cos A ,若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .解:因为sin C -sin A cos B =sin[180°-(A +B )]-sin A cos B =sin(A +B )-sin A cos B =sin A cos B +cos A sin B -sin A cos B =cos A sin B ,所以cos A sin B =34.因sin B =cos A ,因此sin 2B =34.又B 为钝角,所以sin B =32,故B =120°. 由cos A =sin B =32,知A =30°. 从而C =180°-(A +B )=30°.综上所述,A =30°,B =120°,C =30°.1.若cos α=-32,且角α的终边经过点P (x,2),则P 点的横坐标x 是( ) A .23 B .±2 3 C .-2 2 D .-2 3解:选D r =x 2+22,由题意得x x 2+22=-32, ∴x =-2 3.故选D.2.若-2π<α<-3π2,则 1-cos (α-π)2的值是( )A .sin α2B .cos α2C .-sin α2D .-cos α2解析:选D1-cos (α-π)2=1-cos (π-α)2=1+cos α2=⎪⎪⎪⎪cos α2, ∵-2π<α<-3π2,∴-π<α2<-3π4,∴cos α2<0,∴⎪⎪⎪⎪cos α2=-cos α2. 3.若α∈⎝⎛⎭⎫0,π2,且sin 2(3π+α)+cos 2α=14,则tan α的值等于( ) A.22B.33C. 2D. 3解析:选D ∵sin 2(3π+α)+cos 2α=14,∴sin 2α+(1-2sin 2α)=14, 即cos 2α=14. 又α∈⎝⎛⎭⎫0,π2,∴cos α=12,则α=π3,∴tan α=tan π3=3,故选D.4.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-5 B .-6 C .-7D .-8 解析:选D ∵sin α-cos α=-52, ∴1-2sin αcos α=54,∴sin αcos α=-18,∴tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α=-8. 5.若3sin α+cos α=0,则1cos 2α+sin 2α的值为( )A.103B.53C.23D .-2解析:选A ∵3sin α+cos α=0,∴tan α=-13,∴1cos 2α+sin 2α=sin 2α+cos 2αcos 2α+2sin αcos α=tan 2α+11+2tan α=⎝⎛⎭⎫-132+11+2×⎝⎛⎭⎫-13=103,故选A. 6.已知sin(α-β)=35,cos(α+β)=-35,且α-β∈⎝⎛⎭⎫π2,π,α+β∈⎝⎛⎭⎫π2,π,则cos 2β的值为( )A .1B .-1 C.2425D .-45解析:选C 由题意知cos(α-β)=-45,sin(α+β)=45,所以cos 2β=cos[α+β-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=⎝⎛⎭⎫-35×⎝⎛⎭⎫-45+45×35=2425. 7.在0°~720°中与2π5角终边相同的角为________.解析:因为25π=25π×⎝⎛⎭⎫180π°=72°, 所以终边与2π5角相同的角为θ=72°+k ·360°(k ∈Z),当k =0时,θ=72°; 当k =1时,θ=432°,所以在0°~720°中与2π5角终边相同的角为72°,432°.答案:72°,432°8.已知α为钝角,sin ⎝⎛⎭⎫π4+α=34,则sin ⎝⎛⎭⎫π4-α=_______________________. 解析:因为cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4+α=34, 所以cos ⎝⎛⎭⎫π4-α=34. 因为α为钝角,即π2<α<π,所以-3π4<π4-α<-π4,所以sin ⎝⎛⎭⎫π4-α<0, 则sin ⎝⎛⎭⎫π4-α=-1-cos 2⎝⎛⎭⎫π4-α=-74. 答案:-749.已知θ为第二象限角,tan 2θ=-22,则 2cos 2 θ2-sin θ-tan5π42sin ⎝⎛⎭⎫θ+π4=________.解析:∵tan 2θ=2tan θ1-tan 2 θ=-22, ∴tan θ=-22或tan θ= 2. ∵π2+2k π<θ<π+2k π,k ∈Z , ∴tan θ<0,∴tan θ=-22, 2cos 2 θ2-sin θ-tan 5π42sin (θ+π4)=2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=cos θ-sin θcos θ+sin θ=1-tan θ1+tan θ=1+221-22=3+2 2.答案:3+2 2 10.求值:cos 40°+sin 50°(1+3tan 10°)sin 70°1+sin 50°.解:cos 40°+sin 50°(1+3tan 10°)sin 70°1+sin 50°=cos 40°+sin 50°1+3sin 10°cos 10°cos 20°1+cos 40°=cos 40°+cos 40°·2sin (10°+30°)cos 10°2cos 220°=cos 40°+12cos 220°= 2. 11.已知cos α-sin α=3 25,且π<α<3π2,求sin 2α+2sin 2α1-tan α的值. 解:∵cos α-sin α=325, ∴1-2sin αcos α=1825, ∴2sin αcos α=725. 又∵α∈⎝⎛⎭⎫π,3π2, ∴sin α+cos α=-1+2sin αcos α=-425, ∴sin 2α+2sin 2α1-tan α=(2sin αcos α+2sin 2α)cos αcos α-sin α=2sin αcos α(cos α+sin α)cos α-sin α=725×-425325=-2875. 12.已知向量a =(3sin α,cos α),b =(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且a ⊥b . (1)求tan α的值;(2)求cos ⎝⎛⎭⎫α2+π3的值.解:(1)∵a ⊥b ,∴a ·b =0.而a =(3sin α,cos α),b =(2sin α,5sin α-4cos α),故a ·b =6sin 2α+5sin αcos α-4cos 2α=0,由于cos α≠0, ∴6tan 2α+5tan α-4=0,解得tan α=-43或tan α=12. ∵α∈⎝⎛⎭⎫3π2,2π,∴tan α<0, ∴tan α=-43.(2)∵α∈⎝⎛⎭⎫3π2,2π,∴α2∈⎝⎛⎭⎫3π4,π. 由tan α=-43,求得tan α2=-12或tan α2=2(舍去). ∴sin α2=55,cos α2=-255, ∴cos ⎝⎛⎭⎫α2+π3=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510.。
2017-2018学年高中数学三维设计人教A版浙江专版必修5讲义:模块复习精要 复习课(三)不等式 Word版含答案
复习课(三) 不等式一元二次不等式和一元二次方程、一元二次函数三者构成一个统一的整体.贯穿于高中数学的始终,更是高考的重点内容,在考题中有时单独对某类不等式的解法进行考查,一般以小题形式出现,难度不大,但有时在解答题中与其它知识联系在一起,难度较大.[考点精要]解一元二次不等式需熟悉一元二次方程、二次函数和一元二次不等式三者之间的关系,其中二次函数的零点是联系这三个“二次”的枢纽.(1)确定ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)在判别式Δ>0时解集的结构是关键.在未确定a 的取值情况下,应先分a =0和a ≠0两种情况进行讨论.(2)若给出了一元二次不等式的解集,则可知二次项系数a 的符号和方程ax 2+bx +c =0的两个根,再由根与系数的关系就可知a ,b ,c 之间的关系.(3)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论.[典例] (1)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x |-1<x <12B.⎩⎨⎧⎭⎬⎫x |x <-1或x >12C .{x |-2<x <1}D .{x |x <-2或x >1}(2)解关于x 的不等式ax 2-2ax +a +3>0.[解析] (1)由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由根与系数的关系得⎩⎨⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a <0,即2x 2+x -1<0. 解得-1<x <12.[答案] A(2)解:当a =0时,解集为R ; 当a >0时,Δ=-12a <0,∴解集为R ;当a <0时,Δ=-12a >0,方程ax 2-2ax +a +3=0的两根分别为a +-3aa,a --3aa ,∴此时不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a +-3a a <x <a --3a a . 综上所述,当a ≥0时,不等式的解集为R ;a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a +-3a a <x <a --3a a . [类题通法]解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.[题组训练]1.若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.解析:根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2.答案:22.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.解:(1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎨⎧1+b =3a ,1×b =2a .解得⎩⎪⎨⎪⎧a =1,b =2. (2)不等式ax 2-(ac +b )x +bc <0, 即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; 当c =2时,不等式(x -2)(x -c )<0的解集为∅.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c }; 当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.高考中线性规划主要考查平面区域的表示和图解法的具体应用,命题形式以选择题、填空题为主,命题模式是以线性规划为载体,考查区域的划分、区域的面积,涉及区域的最值问题、决策问题、整点问题、参数的取值范围问题等.[考点精要]1.确定二元一次不等式表示平面区域的方法与技巧确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法. 2.利用线性规划求最值,一般用图解法求解,其步骤是 (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. [典例] (1)设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =y +1x的最小值为( )A .1B .2C .3D .4(2)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元[解析] (1)不等式组所表示的平面区域如图中的△ABC ,目标函数的几何意义是区域内的点与点P (0,-1)连线的斜率,显然图中AP 的斜率最小.由⎩⎪⎨⎪⎧x +y =3,2x -y =3解得点A 的坐标为(2,1),故目标函数z =y +1x的最小值为1+12=1.(2)设对项目甲投资x 万元,对项目乙投资y 万元,则⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5.目标函数z =0.4x +0.6y .作出可行域如图所示,由直线斜率的关系知目标函数在A 点取最大值,代入得z max =0.4×24+0.6×36=31.2,所以选B.[答案] (1)A (2)B [类题通法](1)求目标函数最值的一般步骤为:一画、二移、三求.其关键是准确作出可行域,理解目标函数的意义.(2)在约束条件是线性的情况下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题或者填空题时也可以根据可行域的顶点直接进行检验.[题组训练]1.不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )A .4B .1C .5D .无穷大解析:选B不等式组⎩⎨⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即为所求.求出点A ,B ,C 的坐标分别为(1,2),(2,2),(3,0),则△ABC 的面积为S =12×(2-1)×2=1.2.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a =________.解析:依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个,则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1.答案:13.某公司用两种机器来生产某种产品,第一种机器每台需花3万日元及人民币50元的维护费;第二种机器则需5万日元及人民币20元的维护费.第一种机器的年利润每台有9万日元,第二种机器的年利润每台有6万日元,但政府核准的外汇日元为135万元,并且公司的总维护费不得超过1 800元,为了使年利润达到最大值,第一种机器应购买________台,第二种机器应购买________台.解析:设第一种机器购买x 台,第二种机器购买y 台,总的年利润为z 万日元,则⎩⎪⎨⎪⎧3x +5y ≤135,50x +20y ≤1 800,x ,y ∈N ,目标函数为z =9x +6y .不等式组表示的平面区域如图阴影部分中的整点.当直线z =9x +6y 经过点M ⎝⎛⎭⎫63019,13519,即到达l 1位置时,z 取得最大值,但题目要求x ,y 均为自然数,故进行调整,调整到与M 邻近的整数点(33,7),此时z =9x +6y 取得最大值,即第一种机器购买33台,第二种机器购买7台获得年利润最大.答案:33 7考试中单纯对不等式性质的考查并不多,但是不等式作为工具几乎渗透到各个考点,所以其重要性不言而喻.而利用基本不等式求最值,解决实际问题是考试的热点,题型既有选择题、填空题,又有解答题,难度为中、低档题.[考点精要] 基本不等式的常用变形(1)a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立;(2)a 2+b 2≥2ab ,ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R),当且仅当a =b 时,等号成立; (3)b a +ab ≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立;(4)a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a ≤-2(a <0),当且仅当a =-1时,等号成立.[典例] (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5D .6(2)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43 B.53 C .2D.54[解析] (1)由x +3y =5xy 可得15y +35x=1,∴3x +4y =(3x +4y )⎝⎛⎭⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5当且仅当3x 5y =12y5x ,即x =1,y =12时,等号成立, ∴3x +4y 的最小值是5.(2)由x >0,y >0,得4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.[答案] (1)C (2)C [类题通法]条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.[题组训练]1.若正数a ,b 满足1a +1b =1,则1a -1+4b -1的最小值为( )A .3B .4C .5D .6解析:选B 依题意,因为1a +1b =1,∴(a -1)(b -1)=1, 因此1a -1+4b -1≥24(a -1)(b -1)=4,当且仅当1a -1=4b -1,即a =32,b =3时“=”成立.2.设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2的最小值为________. 解析:⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.答案:9绝对值不等式主要考查解法及简单的应用,题目难度中档偏下,着重考查学生的分类讨论思想及应用能力.[考点精要]1.公式法|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x ); |f (x )|<g (x )⇔-g (x )<f (x )<g (x ). 2.平方法|f (x )|>|g (x )|⇔[f (x )]2>[g (x )]2. 3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.4.对于不等式恒成立求参数范围问题,常用分离参数法、更换主元法、数形结合法解决.[典例] 已知f (x )=|ax +1|(a ∈R),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. [解] (1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意. 当a >0时,-4a ≤x ≤2a ,得a =2. (2)法一:记h (x )=f (x )-2f ⎝⎛⎭⎫x 2,则h (x )=⎩⎨⎧1,x ≤-1,-4x -3,-1<x <-12,-1,x ≥-12,所以|h (x )|≤1,因此k 的取值范围是[1,+∞).法二:⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2=||2x +1|-2|x +1|| =2⎪⎪⎪⎪⎪⎪⎪⎪x +12-|x +1|≤1, 由⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立, 可知k ≥1,所以k 的取值范围是[1,+∞). [类题通法]解绝对值不等式的关键是去掉绝对值符号,化成不含绝对值的不等式,其一是依据绝对值的意义;其二是先令每一个绝对值等于零,找到分界点,通过讨论每一区间内的代数式的符号去掉绝对值.[题组训练]1.不等式|2x +1|-2|x -1|>0的解集为________.解析:原不等式即|2x +1|>2|x -1|,两端平方后解得12x >3,即x >14.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x >142.设关于x 的不等式lg(|x +3|+|x -7|)>a . (1)当a =1时,解此不等式;(2)当a 为何值时,此不等式的解集是R. 解:(1)当a =1时,lg(|x +3|+|x -7|)>1, ⇔|x +3|+|x -7|>10,⇔⎩⎪⎨⎪⎧ x ≥7,2x -4>10或⎩⎪⎨⎪⎧ -3<x <7,10>10或⎩⎪⎨⎪⎧x ≤-3,4-2x >10,⇔x >7或x <-3.所以不等式的解集为{x |x <-3或x >7}.(2)设f (x )=|x +3|+|x -7|,则有f (x )≥|(x +3)-(x -7)|=10,当且仅当(x +3)(x -7)≤0, 即-3≤x ≤7时,f (x )取得最小值10. ∴lg(|x +3|+|x -7|)≥1.要使lg(|x +3|+|x -7|)>a 的解集为R ,只要a <1.1.若1a <1b <0,则下列不等式不正确的是( )A .a +b <ab B.b a +a b >0C .ab <b 2D .a 2>b 2解析:选D 由1a <1b <0,可得b <a <0,故选D.2.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意:A ={x |-1<x <3},B ={x |-3<x <2}.A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3.3.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2解析:选A ∵x >1, ∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2≥23+2(当且仅当x -1=3x -1,即x =3+1时等号成立). 4.不等式|x -2|-|x -1|>0的解集为( ) A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎭⎫-∞,-32 C.⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-32,+∞ 解析:选A 不等式|x -2|-|x -1|>0即|x -2|>|x -1|,平方化简可得 2x <3,解得x <32,故选A. 5.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49解析:选C 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.故选C.6.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1 C.94 D .3解析:选B 由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2,∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3. 又x ,y ,z 为正实数,∴x y +4y x ≥4,即xy z ≤1,当且仅当x =2y 时取等号,此时z =2y 2.∴2x +1y -2z =22y +1y -22y 2 =-⎝⎛⎭⎫1y 2+2y =-⎝⎛⎭⎫1y -12+1, 当1y =1,即y =1时,上式有最大值1.7.若x ,y 满足约束条件⎩⎪⎨⎪⎧ x -1≥0,x -y ≤0,x +y -4≤0,则y x 的最大值为________.解析:画出可行域如图阴影部分所示,∵y x 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时y x 最大. 由⎩⎪⎨⎪⎧ x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3).∴y x 的最大值为3.答案:38.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ________log a t +12(填“>”“≥”“≤”或“<”).解析:因为a 2+a -2>0,所以a <-2或a >1,又a >0,所以a >1,因为t >0,所以t +12≥ t , 所以log a t +12≥log a t =12log a t . 答案:≤9.若实数x ,y 满足约束条件⎩⎪⎨⎪⎧ y ≥x ,x +y ≤4,2x -y ≥k .已知点(x ,y )所表示的平面区域为三角形,则实数k 的取值范围为________,又z =x +2y 有最大值8,则实数k =________.解析:作出一元二次不等式组所表示的平面区域如图中阴影部分所示.要想点(x ,y )所表示的平面区域为三角形,则B (2,2)必须在直线2x-y =k 的右下方,即2×2-2>k ,则k <2,则实数k 的取值范围为(-∞,2).观察图象可知,当直线z =x +2y 过点A 时,z 有最大值,联立⎩⎪⎨⎪⎧ 2x -y =k ,x +y =4,解得⎩⎪⎨⎪⎧ x =4+k 3,y =8-k 3,即A ⎝ ⎛⎭⎪⎫4+k 3,8-k 3,代入z =x +2y 中,即4+k 3+2×8-k 3=8,解得k =-4. 答案:(-∞,2) -410.已知函数f (x )=|x -2|.(1)解不等式:f (x +1)+f (x +2)<4;(2)已知a >2,求证:对任意x ∈R ,f (ax )+af (x )>2恒成立.解:(1)f (x +1)+f (x +2)<4,即|x -1|+|x |<4,①当x ≤0时,不等式为1-x -x <4,即x >-32,∴-32<x ≤0是不等式的解; ②当0<x ≤1时,不等式为1-x +x <4,即1<4恒成立,∴0<x ≤1是不等式的解;③当x >1时,不等式为x -1+x <4,即x <52, ∴1<x <52是不等式的解. 综上所述,不等式的解集为⎝⎛⎭⎫-32,52. (2)证明:∵a >2,∴f (ax )+af (x )=|ax -2|+a |x -2|=|ax -2|+|ax -2a |=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|>2,∴对任意x ∈R ,f (ax )+af (x )>2恒成立.11.某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.设f (n )表示前n 年的纯利润总和.(注:f (n )=前n 年的总收入-前n 年的总支出-投资额)(1)从第几年开始获利?(2)若干年后,外商为开发新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂;问哪种方案最合算?为什么?解:由题意知,每年的经费是以12为首项,4为公差的等差数列,∴f (n )=-2n 2+40n -72.(1)获利就是要求f (n )>0,所以-2n 2+40n -72>0,解得2<n <18.由n ∈N 知从第三年开始获利.(2)①年平均利润=f (n )n=40-2⎝⎛⎭⎫n +36n ≤16. 当且仅当n =6时取等号.故此方案共获利6×16+48=144(万美元),此时n =6.②f (n )=-2(n -10)2+128.当n =10时,f (n )max =128.故第②种方案共获利128+16=144(万美元),故比较两种方案,获利都是144万美元.但第①种方案只需6年,而第②种方案需10年,故选择第①种方案最合算.12.已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值.解:设f (x )=x 2+ax +2b ,由题意f (x )在[0,1]和[1,2]上各有一个零点,∴⎩⎪⎨⎪⎧ f (0)≥0,f (1)≤0,f (2)≥0,即⎩⎪⎨⎪⎧ b ≥0,a +2b +1≤0,a +b +2≥0,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如图.由⎩⎪⎨⎪⎧ a +2b +1=0,a +b +2=0,解得⎩⎪⎨⎪⎧ a =-3,b =1,即C (-3,1). 令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率. 又B (-1,0),C (-3,1),则k AB =32,k AC =12, ∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12.。
2017-2018学年高中数学三维设计人教A版浙江专版必修5讲义:模块复习精要 复习课(二)数 列 Word版含答案
复习课(二) 数 列对应学生用书P58数列的基本运算以小题出现具多,但也可作为解答题第一步命题,主要考查利用数列的通项公式及求和公式,求数列中的项、公差、公比及前n 项和等,一般试题难度较小.[考点精要]1.等差数列(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. (3)前n 项和公式S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 视为关于n 的一元二次函数,开口方向由公差d 的正负确定;S n =(a 1+a n )n2中(a 1+a n )视为一个整体,常与等差数列性质结合利用“整体代换”思想解题.2.等比数列(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).(3)等比数列{a n },S n 为其前n 项和,则S n 可表示为S n =k ·q n +b ,(k ≠0,且k +b =0). [典例] 成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3,b 4,b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.[解] (1)设成等差数列的三个正数分别为a -d ,a ,a +d .依题意,得a -d +a +a +d =15,解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,(7-d )(18+d )=100, 解得d =2或d =-13(舍去), ∴b 3=5,公比q =2,故b n =5·2n -3.(2)证明:由(1)知b 1=54,公比q =2,∴S n =54(1-2n )1-2=5·2n -2-54,则S n +54=5·2n -2,因此S 1+54=52,S n +54S n -1+54=5·2n -25·2n -3=2(n ≥2).∴数列⎩⎨⎧⎭⎬⎫S n +54是以52为首项,公比为2的等比数列.[类题通法]在等差(或等比)数列中,首项a 1与公差d (或公比q )是两个基本量,一般的等差(或等比)数列的计算问题,都可以设出这两个量求解.在等差数列中的五个量a 1,d ,n ,a n ,S n 或等比数列中的五个量a 1,q ,n ,a n ,S n 中,可通过列方程组的方法,知三求二.在利用S n 求a n 时,要注意验证n =1是否成立.[题组训练]1.在等比数列{a n }中,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为17,则S 6=( )A.634 B .16 C .15D.614解析:选A 设{a n }的公比为q ,则由等比数列的性质知,a 2a 3=a 1a 4=2a 1,则a 4=2;由a 4与2a 7的等差中项为17知,a 4+2a 7=2×17=34,得a 7=16.∴q 3=a 7a 4=8,即q =2,∴a 1=a 4q 3=14,则S 6=14(1-26)1-2=634,故选A.2.已知等差数列{a n }的前n 项和为S n ,且a 3+a 8=13,S 7=35,则a 7=________. 解析:设等差数列{a n }的公差为d ,则由已知得(a 1+2d )+(a 1+7d )=13,S 7=7(a 1+a 1+6d )2=35.联立两式,解得a 1=2,d =1,∴a 7=a 1+6d =8.答案:83.设S n 是数列{a n }的前n 项和,已知a 1=-1,S n +1-S n =S n S n +1.⎝⎛⎭⎫其中12+22+…+n2=16n(n+1)(2n+1)(1)求证⎩⎨⎧⎭⎬⎫1S n是等差数列,并求S n;(2)若b n=1a n,求数列{b n}的前n项和T n.解:(1)证明:1S1=1a1=-1.因为S n+1-S n=S n S n+1,所以1S n+1-1S n=-1,所以⎩⎨⎧⎭⎬⎫1S n是首项为-1、公差为-1的等差数列,所以1S n=-1+(n-1)×(-1)=-n,故S n=-1n.(2)b1=1a1=-1.当n≥2时,a n=S n-S n-1=-1n+1n-1=1n(n-1),b n=n2-n.所以T1=-1.当n≥2时,T n=-1+(22+32+…+n2)-(2+3+…+n)=-1+(12+22+32+…+n2)-(1+2+3+…+n)=-1+16n(n+1)(2n+1)-12n(n+1)=-1+13n(n+1)(n-1).故T n=-1+13n(n+1)(n-1).等差、等比数列的性质主要涉及数列的单调性、最值及其前n项和的性质.利用性质求数列中某一项等,试题充分体现“小”“巧”“活”的特点,题型多以选择题和填空题的形式出现,一般难度较小.[考点精要]n 135246n 列{a n }的前n 项和,则使得S n 取得最大值的n 是( )A .21B .20C .19D .18(2)记等比数列{a n }的前n 项积为T n (n ∈N *),已知a m -1a m +1-2a m =0,且T 2m -1=128,则m =________.[解析] (1)由a 1+a 3+a 5=105得,3a 3=105, ∴a 3=35.同理可得a 4=33,∴d =a 4-a 3=-2,a n =a 4+(n -4)×(-2) =41-2n .由⎩⎪⎨⎪⎧a n ≥0,a n +1<0,得n =20. ∴使S n 达到最大值的n 是20.(2)因为{a n }为等比数列,所以a m -1a m +1=a 2m ,又由a m -1a m +1-2a m =0,从而a m =2.由等比数列的性质可知前(2m -1)项积T 2m -1=a 2m -1m,则22m -1=128,故m =4. [答案] (1)B (2)4 [类题通法]关于等差(比)数列性质的应用问题,可以直接构造关于首项a 1和公差d (公比q )的方程或方程组来求解,再根据等差(比)数列的通项公式直接求其值,此解思路简单,但运算过程复杂.[题组训练]1.等差数列{a n }的前16项和为640,前16项中偶数项和与奇数项和之比为22∶18,则公差d ,a 9a 8的值分别是( )A .8,109B .9,109C .9,119D .8,119解析:选D 设S 奇=a 1+a 3+…+a 15,S 偶=a 2+a 4+…+a 16,则有S 偶-S 奇=(a 2-a 1)+(a 4-a 3)+…+(a 16-a 15)=8d ,S 偶S 奇=8(a 2+a 16)28(a 1+a 15)2=a 9a 8.由⎩⎪⎨⎪⎧S 奇+S 偶=640,S 偶∶S 奇=22∶18,解得S 奇=288,S 偶=352.因此d =S 偶-S 奇8=648=8,a 9a 8=S 偶S 奇=119.故选D.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列的前13项和为( ) A .13 B .26 C .52D .156解析:选B 3(a 3+a 5)+2(a 7+a 10+a 13)=24,∴6a 4+6a 10=24,∴a 4+a 10=4,∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26,故选B. 3.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:选C ∵a 5·a 2n -5=a 2n =22n ,且a n >0,∴a n =2n,∵a 2n -1=22n -1,∴log 2a 2n -1=2n -1,∴log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+5+…+(2n -1)=n [1+(2n -1)]2=n 2.通项及数列求和一直是考查的热点,在命题中,多以与不等式的证明或求解相结合的形式出现.一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,题型多以解答题形式出现,难度较大.[考点精要]1.已知递推公式求通项公式的常见类型 (1)类型一 a n +1=a n +f (n )把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解. (2)类型二 a n +1=f (n )a n把原递推公式转化为a n +1a n =f (n ),再利用叠乘法(逐商相乘法)求解.(3)类型三 a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0), 先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p,再利用换元法转化为等比数列求解.2.数列求和(1)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .(2)裂项相消法:即将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c为常数)的数列.(3)拆项分组法:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和.(4)并项求和法:与拆项分组相反,并项求和是把数列的两项(或多项)组合在一起,重新构成一个数列再求和,一般适用于正负相间排列的数列求和,注意对数列项数奇偶性的讨论.[典例] (1)已知数列{a n }中,a 1=1,a n +1=a n (1-na n +1),则数列{a n }的通项公式为( ) A .a n =n 2-n +22B .a n =n 2-n +12C .a n =2n 2-n +1D .a n =2n 2-n +2(2)已知正项数列{a n }的前n 项和S n 满足:4S n =(a n -1)·(a n +3),(n ∈N *). ①求a n 的通项公式;②若b n =2n ·a n ,求数列{b n }的前n 项和T n .[解析] (1)原数列递推公式可化为1a n +1-1a n=n ,令b n =1a n ,则b n +1-b n =n ,因此b n=(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)+b 1=(n -1)+(n -2)+…+2+1+1=n 2-n +22.从而a n =2n 2-n +2.故选D. [答案] D(2)解:①因为4S n =(a n -1)(a n +3)=a 2n +2a n -3,所以当n ≥2时,4S n -1=a 2n -1+2a n -1-3, 两式相减得,4a n =a 2n -a 2n -1+2a n -2a n -1,化简得,(a n +a n -1)(a n -a n -1-2)=0, 由于{a n }是正项数列,所以a n +a n -1≠0,所以a n -a n -1-2=0,即对任意n ≥2,n ∈N *都有a n -a n -1=2,又由4S 1=a 21+2a 1-3得,a 21-2a 1-3=0,解得a 1=3或a 1=-1(舍去),所以{a n }是首项为3,公差为2的等差数列, 所以a n =3+2(n -1)=2n +1. ②由已知及(1)知,b n =(2n +1)·2n ,T n =3·21+5·22+7·23+…+(2n -1)·2n -1+(2n +1)·2n ,(ⅰ) 2T n =3·22+5·23+7·24+…+(2n -1)·2n +(2n +1)·2n +1,(ⅱ) (ⅱ)-(ⅰ)得,T n =-3×21-2(22+23+24+…+2n )+(2n +1)·2n +1 =-6-2×4(1-2n -1)1-2+(2n +1)·2n +1=2+(2n -1)·2n +1. [类题通法](1)由递推公式求数列通项公式时,一是要注意判别类型与方法.二是要注意a n 的完整表达式,易忽视n =1的情况.(2)数列求和时,根据数列通项公式特征选择求和法,尤其是涉及到等比数列求和时要注意公比q 对S n 的影响.[题组训练]1.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________. 解析:因为f (n )=n 2cos(n π),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)+…+f (100)]+[f (2)+…+f (101)],f (1)+f (2)+…+f (100)=-12+22-32+42-…-992+1002=(22-12)+(42-32)+…(1002-992)=3+7+…+199=50(3+199)2=5 050,f (2)+…+f (101)=22-32+42-…-992+1002-1012=(22-32)+(42-52)+…+(1002-1012)=-5-9- (201)50(-5-201)2=-5 150,所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)+…+f (100)]+[f (2)+…+f (101)] =-5 150+5 050=-100. 答案:-1002.已知a 1+2a 2+22a 3+…+2n -1a n =9-6n ,则数列{a n }的通项公式是________.解析:令S n =a 1+2a 2+22a 3+…+2n -1a n , 则S n =9-6n ,当n =1时,a 1=S 1=3;当n ≥2时,2n -1·a n =S n -S n -1=-6,∴a n =-32n -2.∴通项公式a n=⎩⎨⎧3,n =1,-32n -2,n ≥2.答案:a n =⎩⎪⎨⎪⎧3,n =1,-32n -2,n ≥2 3.已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解:(1)当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1,则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝⎛⎭⎫13n -1=2·⎝⎛⎫13n (n ∈N *). (2)因为1-S n =12a n =⎝⎛⎭⎫13n . 所以b n =log 13(1-S n +1)=log 13⎝⎛⎭⎫13n +1=n +1,因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n2(n +2).4.已知数列{a n }满足a 1=12,a n +1a n =2a n +1-1,令b n =a n -1.(1)求证:数列⎩⎨⎧⎭⎬⎫1b n 为等差数列;(2)设c n =a n +1a n ,求证:数列{c n }的前n 项和T n <n +34.证明:(1)由题意知,1b 1=1a 1-1=-2,a n =2-1a n +1,则1b n +1-1b n =1a n +1-1-1a n -1=1a n +1-1 -12-1a n +1-1=-1,∴数列⎩⎨⎧⎭⎬⎫1b n 是首项为-2,公差为-1的等差数列.(2)由(1)可知,1b n=-2+(n -1)×(-1)=-n -1,∴b n =-1n +1, 代入a n =b n +1=1-1n +1=n n +1,∴a n +1a n =n +1n +2n n +1=(n +1)2 n (n +2)=1+1n (n +2)=1+12⎝ ⎛⎭⎪⎫1n -1n +2,∴T n =c 1+c 2+…+c n =a 2a 1+a 3a 2+…+a n +1a n=⎣⎡⎦⎤1+12⎝⎛⎭⎫1-13+⎣⎡⎦⎤1+12⎝⎛⎭⎫12-14+…+⎣⎢⎡⎦⎥⎤1+12⎝ ⎛⎭⎪⎫1n -1n +2=n +12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2<n +34.1.设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d >0 B .d <0 C .a 1d >0D .a 1d <0解析:选D ∵{2a 1a n }为递减数列,∴2a 1a n +12a 1a n=2a 1a n +1-a 1a n =2a 1d <1=20,∴a 1d <0,故选D.2.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11=( )A .24B .48C .66D .132解析:选D 由a 9=12a 12+6得,2a 9-a 12=12,由等差数列的性质得,2a 9-a 12=a 6+a 12-a 12=12,则a 6=12,所以S 11=11(a 1+a 11)2=11×2a 62=132,故选D. 3.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( )A .-165B .-33C .-30D .-21解析:选C 由已知得a 2=a 1+a 1=2a 1=-6,∴a 1=-3.∴a 10=2a 5=2(a 2+a 3)=2a 2+2(a 1+a 2)=4a 2+2a 1=4×(-6)+2×(-3)=-30.4.设S n 是公差不为0的等差数列{a n }的前n 项和,若a 1=2a 8-3a 4,则S 8S 16=( ) A.310B.13C.19D.18 解析:选A 由题意可得,a 1=2a 1+14d -3a 1-9d ,∴a 1=52d ,又S 8S 16=8a 1+28d 16a 1+120d =20d +28d 40d +120d =48d 160d =310,故选A. 5.已知数列2 008,2 009,1,-2 008,-2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 016项之和S 2 016等于( )A .1B .2 010C .4 018D .0解析:选D 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前n 项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009,….由此可知数列为周期数列,周期为6,且S 6=0.∵2 016=6×336,∴S 2 016=S 6=0.6.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( ) A .4n -1 B .4n -1C .2n -1 D .2n -1 解析:选D 设等比数列{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧ a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①÷②可得1q =2,∴q =12,代入①解得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n , ∴S n a n =4⎝⎛⎭⎫1-12n 42n =2n -1.7.已知数列{a n }的通项公式为a n =2n -30,S n 是{|a n |}的前n 项和,则S 10=________. 解析:由a n =2n -30,令a n <0,得n <15,即在数列{a n }中,前14项均为负数, 所以S 10=-(a 1+a 2+a 3+…+a 10)=-102(a 1+a 10)=-5[(-28)+(-10)]=190. 答案:1908.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析:由S 2=3a 2+2,S 4=3a 4+2相减可得a 3+a 4=3a 4-3a 2,同除以a 2可得2q 2-q-3=0,解得q =32或q =-1.因为q >0,所以q =32. 答案:329.数列{a n }满足a 1=1,a n -a n -1=1n (n -1)(n ≥2且n ∈N *),则数列{a n }的通项公式为a n =________.解析:a n -a n -1=1n (n -1)(n ≥2),a 1=1, ∴a 2-a 1=12×1=1-12,a 3-a 2=13×2=12-13, a 4-a 3=14×3=13-14,…, a n -a n -1=1n (n -1)=1n -1-1n . 以上各式累加,得a n -a 1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =1-1n .∴a n =a 1+1-1n =2-1n ,当n =1时,2-1n =1=a 1, ∴a n =2-1n ,故数列{a n }的通项公式为a n =2-1n . 答案:2-1n10.已知数列{a n }满足a 1=1,a n +1=2a n ,数列{b n }满足b 1=3,b 2=6,且{b n -a n }为等差数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和T n .解:(1)由题意知数列{a n }是首项a 1=1,公比q =2的等比数列, 所以a n =2n -1.因为b 1-a 1=2,b 2-a 2=4,所以数列{b n -a n }的公差d =2,所以b n -a n =(b 1-a 1)+(n -1)d =2+2(n -1)=2n , 所以b n =2n +2n -1.(2)T n =b 1+b 2+b 3+…+b n=(2+4+6+…+2n )+(1+2+4+…+2n -1) =(2+2n )n 2+1×(1-2n )1-2=n (n +1)+2n -1.11.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2(n ∈N *). (1)求证:数列{a n }是等差数列;(2)设b n =1S n ,T n =b 1+b 2+…+b n ,求T n . 解:(1)证明:S n =a n (a n +1)2(n ∈N *),① S n -1=a n -1(a n -1+1)2(n ≥2).② ①-②得a n =a 2n +a n -a 2n -1-a n -12(n ≥2), 整理得(a n +a n -1)(a n -a n -1)=a n +a n -1(n ≥2). ∵数列{a n }的各项均为正数,∴a n +a n -1≠0,∴a n -a n -1=1(n ≥2). 当n =1时,a 1=1,∴数列{a n }是首项为1,公差为1的等差数列.(2)由(1)得S n =n 2+n 2, ∴b n =2n 2+n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴T n =2[ ⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 ]=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 12.设数列{a n }满足a 1=2,a n +1-a n =3×22n -1. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 解:(1)由已知,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1 =3(22n -1+22n -3+…+2)+2=22(n +1)-1. 而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1×2+2×23+3×25+…+n ×22n -1,①从而22·S n=1×23+2×25+3×27+…+n×22n+1.②①-②得(1-22)S n=2+23+25+…+22n-1-n×22n+1,即S n=19[(3n-1)22n+1+2].。
2017-2018学年高中数学三维设计人教A版浙江专版必修5讲义:模块复习精要 模块综合检测 Word版含答案
(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系为( ) A .f (x )>g (x ) B .f (x )=g (x ) C .f (x )<g (x )D .随x 值变化而变化解析:选A 因为f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1>0,所以f (x )>g (x ).2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,B =60°,那么角A 等于( )A .135°B .90°C .45°D .30°解析:选C 由正弦定理知a sin A =b sin B, ∴sin A =a sin Bb =2sin 60°3=22. 又a <b ,B =60°,∴A <60°,∴A =45°.3.若关于x 的不等式x 2-3ax +2>0的解集为(-∞,1)∪(m ,+∞),则a +m =( ) A .-1 B .1 C .2D .3解析:选D 由题意,知1,m 是方程x 2-3ax +2=0的两个根,则由根与系数的关系,得⎩⎪⎨⎪⎧ 1+m =3a ,1×m =2,解得⎩⎪⎨⎪⎧a =1,m =2,所以a +m =3,故选D. 4.已知数列{a n }为等差数列,且a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A .40 B .42 C .43D .45解析:选B 设等差数列{a n }的公差为d , 则2a 1+3d =13,∴d =3,故a 4+a 5+a 6=3a 1+12d =3×2+12×3=42.5.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394解析:选B 由余弦定理得AB 2+4-2·AB ×2×cos 60°=7,解得AB =3或AB =-1(舍去),设BC 边上的高为x ,由三角形面积关系得12·BC ·x =12AB ·BC ·sin 60°,解得x =332,故选B.6.某汽车公司有两家装配厂,生产甲、乙两种不同型的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和40辆乙型车,若要使所费的总工作时数最少,那么这两家工厂工作的时间分别为( )A .16,8B .15,9C .17,7D .14,10解析:选A 设A 工厂工作x 小时,B 工厂工作y 小时,总工作时数为z ,则目标函数为z =x +y ,约束条件为⎩⎪⎨⎪⎧x +3y ≥40,2x +y ≥40,x ≥0,y ≥0作出可行域如图所示,由图知当直线l :y =-x+z 过Q 点时,z 最小,解方程组⎩⎪⎨⎪⎧x +3y =40,2x +y =40,得Q (16,8),故A 厂工作16小时,B 厂工作8小时,可使所费的总工作时数最少.7.若log 4(3x +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3D .7+4 3解析:选D 由log 4(3a +4b )=log 2ab ,得12log 2(3a +4b )=12log 2(ab ),所以3a +4b =ab ,即3b +4a =1.所以a +b =(a +b )⎝⎛⎭⎫3b +4a =3a b +4b a +7≥43+7,当且仅当3a b =4ba ,即a =23+4,b =3+23时取等号,故选D.8.定义max{a ,b }=⎩⎪⎨⎪⎧ a ,a ≥b ,b ,a <b ,设实数x ,y 满足约束条件⎩⎪⎨⎪⎧|x |≤2,|y |≤2,则z =max{4x+y,3x -y }的取值范围是( )A .[-8,10]B .[-7,10]C .[-6,8]D .[-7,8]解析:选B 做出约束条件所表示的平面区域如图阴影部分所示.令4x +y ≥3x -y ,得x ≥-2y ,当x ≥-2y 时,z =4x +y ;当x <-2y 时,z =3x -y .在同一直角坐标系中作出直线x +2y =0的图象,如图所示.当(x ,y )在平面区域CDEF 内运动时(含边界区域),此时x ≥-2y ,故z =4x +y ,可知目标函数z =4x +y 在D (2,2)时取到最大值10,在F (-2,1)时取到最小值-7;当(x ,y )在平面区域ABCF 内运动时(含边界区域但不含线段CF ),此时x <-2y ,故z =3x -y ,可知目标函数z =3x -y 在B (2,-2)时取到最大值8,在F (-2,1)时z =3x -y =-7,所以在此区域内-7<z ≤8.综上所述,z =max{4x +y,3x -y }∈[-7,10],故选B.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上)9.若不等式|2x +a |<b 的解集为{x |1<x <4},则ab 等于________.解析:显然,当b ≤0时,不合题意,当b >0时,由|2x +a |<b 可得-b <2x +a <b ,所以-b -a 2<x <b -a2,因此⎩⎪⎨⎪⎧-b -a 2=1,b -a2=4,解得⎩⎪⎨⎪⎧a =-5,b =3,故ab =-15.答案:-1510.在数列{a n }中,S n 为它的前n 项和,已知a 2=3,a 3=7,且数列{a n +1}是等比数列,则a 1=________,a n =________,S n =________.解析:令x n =a n +1,则x 2=4,x 3=8,因为{a n +1}是等比数列,所以x n =2n ,即a n =2n-1,a 1=1,S n =2(1-2n)1-2-n =2n +1-2-n .答案:1 2n -1 2n +1-2-n11.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.解析:由于三边长构成公差为4的等差数列, 故可设三边长分别为x -4,x ,x +4.由一个内角为120°,知其必是最长边x +4所对的角. 由余弦定理得,(x +4)2=x 2+(x -4)2-2x (x -4)·cos 120°, ∴2x 2-20x =0,∴x =0(舍去)或x =10, ∴S △ABC =12×(10-4)×10×sin 120°=15 3.答案:15 312.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. 解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n .答案:-1n13.如果实数x ,y 满足⎩⎪⎨⎪⎧2x -y ≥0,x +y -4≥0,x ≤3,则yx 的取值范围是________,z =x 2+y 2xy的最大值为________.解析:画出可行域如图中阴影部分所示,则A⎝⎛⎭⎫43,83,B (3,6),C (3,1),y x 的几何意义是区域上的点与坐标原点连线的斜率,所以k OC ≤y x ≤k AB ,即13≤yx≤2. 因为z =x 2+y 2xy =x y +y x =1k +k 在⎣⎡⎦⎤13,1单调递减,在[1,2]上单调递增,当k =13时,有z max =103.答案:⎣⎡⎦⎤13,2 10314.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2b -3c 3a=cos C cos A .若角B =π6,BC 边上的中线AM =7,则A =________,△ABC 的面积为________.解析:由正弦定理及2b -3c 3a =cos C cos A 得2sin B -3sin C 3sin A =cos Ccos A ,整理得2sin B cos A =3sin(A +C )=3sin B ,又sin B ≠0,所以cos A =32,又A ∈(0,π),所以A =π6.又B =π6,∴a =b ,△ACM 中,由余弦定理得cos 2π3=b 2+b 24-7b 2=-12,解得b =2,所以△ABC 的面积S =12×2×2×32= 3. 答案:π6315.已知实数x ,y >0且xy =2,则x 3+8y 3x 2+4y 2+8的最小值是________,此时x =________,y =________.解析:因为x ,y >0且xy =2,由于x 3+8y 3x 2+4y 2+8=(x +2y )(x 2-2xy +4y 2)x 2+4y 2+4xy=(x +2y )[(x +2y )2-6xy ](x +2y )2=(x +2y )2-12(x +2y )=(x +2y )-12x +2y ,令x +2y =t ,则t =x +2y ≥22xy =4,有t -12t 在[4,+∞)上单调递增,所以当t =4时有最小值4-124=1,当且仅当x =2,y=1时取等号.答案:1 2 1三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤) 16.(14分)等差数列{a n }的前n 项和记为S n ,已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .解:(1)设{a n }的首项为a 1,公差为d ,则⎩⎪⎨⎪⎧ a 1+9d =30,a 1+19d =50.解得⎩⎪⎨⎪⎧a 1=12,d =2.∴通项a n =a 1+(n -1)d =10+2n .(2)由S n =na 1+n (n -1)2d =242,得12n +n (n -1)2×2=242,解得n =11,或n =-22(舍去).故n =11.17.(15分)已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5). (1)求f (x )的解析式;(2)若对于任意的x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的取值范围. 解:(1)因为f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5), 所以2x 2+bx +c <0的解集是(0,5),所以0和5是方程2x 2+bx +c =0的两个根, 由根与系数的关系,知-b 2=5,c2=0,所以b =-10,c =0,所以f (x )=2x 2-10x .(2)对任意的x ∈[-1,1],f (x )+t ≤2恒成立等价于对任意的x ∈[-1,1],2x 2-10x +t -2≤0恒成立.设g (x )=2x 2-10x +t -2,则由二次函数的图象可知g (x )=2x 2-10x +t -2在区间[-1,1]上为减函数,所以g (x )max =g (-1)=10+t ,所以10+t ≤0,即t ≤-10,所以t 的取值范围为(-∞,-10].18.(15分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a2n -1a 2n +1的前n 项和.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5.解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12⎝ ⎛⎭⎪⎫12n -3-12n -1, 从而数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a2n -1a 2n +1的前n 项和为12(1-1-11+11-13+…+12n -3-12n -1)=n1-2n. 19.(15分)在△ABC 中,BC =6,点D 在BC 边上,且(2AC -AB )cos A =BC cos C . (1)求角A 的大小;(2)若AD 为△ABC 的中线,且AC =23,求AD 的长;(3)若AD 为△ABC 的高,且AD =33,求证:△ABC 为等边三角形.解:(1)由(2AC -AB )cos A =BC cos C 及正弦定理,有(2sin B -sin C )cos A =sin A cos C , 得2sin B cos A =sin C cos A +sin A cos C =sin(A +C )=sin B ,所以cos A =12.因为0°<A <180°,所以A =60°.(2)由正弦定理BC sin A =AC sin B ,得sin B =AC sin A BC =12.因为A +B <180°,所以B =30°,所以C =90°. 因为D 是BC 的中点,所以DC =3, 由勾股定理,得AD =AC 2+DC 2=21.(3)证明:因为12AD ·BC =12AB ·AC sin A ,且AD =33,BC =6,sin A =32,所以AB ·AC=36.因为BC 2=AB 2+AC 2-2AB ·AC cos A , 所以AB 2+AC 2=72,所以AB =AC =6=BC , 所以△ABC 为等边三角形.20.(15分)(全国丙卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.。
2017-2018学年人教A版高中数学必修五全册学案
2017-2018学年人教A版高中数学必修五全册学案目录§1.1.1正弦定理(一)§1.1.1正弦定理(二)§1.1.2余弦定理(一)§1.1.2余弦定理(二)§1.2应用举例(一)§1.2应用举例(二)§1.2应用举例(三)§1习题课正弦定理和余弦定理§1章末复习提升§2 习题课数列求和§2 章末复习提升§2.1数列的概念与简单表示法(一)§2.1数列的概念与简单表示法(二)§2.2等差数列(一)§2.2等差数列(二)§2.3等差数列的前n项和(一)§2.3等差数列的前n项和(二)§2.4等比数列(一)§2.4等比数列(二)§2.5等比数列的前n项和(一)§2.5等比数列的前n项和(二)§3.1不等关系与不等式§3.2一元二次不等式及其解法(一)§3.2一元二次不等式及其解法(二)§3.3.1二元一次不等式(组)与平面区域§3.3.2简单的线性规划问题§3.4基本不等式:√ab≤(a+b)2 (一)§3.4基本不等式:√ab≤(a+b)2 (二)§3章末复习提升1.1.1 正弦定理(一)[学习目标] 1.通过对任意三角形边长和角度的关系的探索,掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形的内角和定理解决简单的解三角形问题.知识点一 正弦定理 1.正弦定理的表示文字语言 在一个三角形中,各边和它所对角的正弦的比都相等,该比值为三角形外接圆的直径符号语言在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则a sin A =b sin B =csin C=2R2.正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径. (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R(R 为△ABC 外接圆的半径).(3)三角形的边长之比等于对应角的正弦比,即a ∶b ∶c =sin A ∶sin B ∶sin C . (4)a +b +c sin A +sin B +sin C =a sin A =b sin B =csin C . (5)a sin B =b sin A ,a sin C =c sin A ,b sin C =c sin B . 3.正弦定理的证明(1)在Rt △ABC 中,设C 为直角,如图,由三角函数的定义: sin A =a c ,sin B =bc,∴c =a sin A =b sin B =c sin 90°=csin C ,∴a sin A =b sin B =c sin C.(2)在锐角三角形ABC中,设AB边上的高为CD,如图,CD=a sin__B=b sin__A,∴asin A=bsin B,同理,作AC边上的高BE,可得asin A=csin C,∴asin A=bsin B=csin C.(3)在钝角三角形ABC中,C为钝角,如图,过B作BD⊥AC于D,则BD=a sin(π-C)=a sin__C,BD=c sin__A,故有a sin C=c sin__A,∴asin A=csin C,同理,asin A=bsin B,∴asin A=bsin B=csin C.思考下列有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边与它所对角的正弦的比是一定值;④在△ABC 中,sin A∶sin B∶sin C=BC∶AC∶AB.其中正确的个数有()A.1 B.2 C.3 D.4答案 B解析正弦定理适用于任意三角形,故①②均不正确;由正弦定理可知,三角形一旦确定,则各边与其所对角的正弦的比值也就确定了,所以③正确;由正弦定理可知④正确.故选B.知识点二解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.思考正弦定理能解决哪些问题?答案利用正弦定理可以解决以下两类有关三角形的问题:①已知两角和任意一边,求其他两边和第三个角;②已知两边和其中一边的对角,求另一边的对角,从而求出其他的边和角.题型一 对正弦定理的理解例1 在△ABC 中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则下列关于正弦定理的叙述或变形中错误的是( ) A .a ∶b ∶c =sin A ∶sin B ∶sin C B .a =b ⇔sin 2A =sin 2B C.asin A =b +c sin B +sin CD .正弦值较大的角所对的边也较大 答案 B解析 在△ABC 中,由正弦定理得a sin A =b sin B =c sin C=k (k >0),则a =k sin A ,b =k sin B ,c =k sin C ,故a ∶b ∶c =sin A ∶sin B ∶sin C ,故A 正确.当A =30°,B =60°时,sin 2A =sin 2B ,此时a ≠b ,故B 错误. 根据比例式的性质易得C 正确. 大边对大角,故D 正确. 反思与感悟 (1)定理的内容:a sin A =b sin B =c sin C=2R ,在运用正弦定理进行判断时,要灵活使用定理的各种变形. (2)如果a b =cd,那么a +b b =c +dd (b ,d ≠0)(合比定理); a -b b =c -d d (b ,d ≠0)(分比定理); a +b a -b =c +d c -d(a >b ,c >d )(合分比定理); 可以推广为:如果a 1b 1=a 2b 2=…=a n b n ,那么a 1b 1=a 2b 2=…=a n b n =a 1+a 2+…+a nb 1+b 2+…+b n .跟踪训练1 在△ABC 中,下列关系一定成立的是( ) A .a >b sin A B .a =b sin A C .a <b sin A D .a ≥b sin A 答案 D解析 在△ABC 中,B ∈(0,π),∴sin B ∈(0,1], ∴1sin B≥1,由正弦定理a sin A =b sin B 得a =b sin Asin B ≥b sin A .题型二 用正弦定理解三角形例2 (1)在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. (2)在△ABC 中,已知c =6,A =45°,a =2,解这个三角形. 解 (1)∵A =45°,C =30°,∴B =180°-(A +C )=105°, 由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. ∵sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64, ∴b =c sin B sin C =c sin (A +C )sin C =10×sin 75°sin 30°=20×2+64=52+5 6.∴B =105°,a =102,b =52+5 6. (2)∵a sin A =c sin C, ∴sin C =c sin A a =6×sin 45°2=32,∵C ∈(0°,180°),∴C =60°或C =120°.当C =60°时,B =75°,b =c sin Bsin C =6sin 75°sin 60°=3+1;当C =120°时,B =15°,b =c sin Bsin C =6sin 15°sin 120°=3-1.∴b =3+1,B =75°,C =60°或b =3-1,B =15°, C =120°.反思与感悟 (1)已知两角与任意一边解三角形的方法.首先由三角形内角和定理可以计算出三角形的另一角,再由正弦定理可计算出三角形的另两边.(2)已知三角形两边和其中一边的对角解三角形的方法.首先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,当已知的角为大边所对的角时,则能判断另一边所对的角为锐角,当已知的角为小边所对的角时,则不能判断,此时就有两组解,再分别求解即可;然后由三角形内角和定理求出第三个角;最后根据正弦定理求出第三条边.跟踪训练2 (1)在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D .4(2)在△ABC 中,若a =2,b =2,A =30°,则C =______. 答案 (1)C (2)105°或15° 解析 (1)易知A =45°,由a sin A =b sin B得 b =a sin B sin A=8·3222=4 6. (2)由正弦定理a sin A =bsin B ,得sin B =b sin A a =2sin 30°2=22.∵B ∈(0°,180°),∴B =45°或135°,∴C =180°-45°-30°=105°或C =180°-135°-30°=15°. 题型三 判断三角形的形状例3 在△ABC 中,已知a 2tan B =b 2tan A ,试判断三角形的形状. 解 由已知得a 2sin B cos B =b 2sin Acos A ,由正弦定理得sin 2A sin B cos B =sin 2B sin Acos A .∵sin A 、sin B ≠0,∴sin A cos A =sin B cos B . 即sin 2A =sin 2B . ∴2A +2B =π或2A =2B . ∴A +B =π2或A =B .∴△ABC 为等腰三角形或直角三角形.反思与感悟 (1)判断三角形的形状,应围绕三角形的边角关系进行,既可以转化为边与边的关系,也可以转化为角与角的关系.(2)注意在边角互化过程中,正弦定理的变形使用,如a b =sin Asin B等.跟踪训练3 在△ABC 中,b sin B =c sin C 且sin 2A =sin 2B +sin 2C ,试判断三角形的形状. 解 由b sin B =c sin C ,得b 2=c 2, ∴b =c ,∴△ABC 为等腰三角形, 由sin 2A =sin 2B +sin 2C 得a 2=b 2+c 2, ∴△ABC 为直角三角形, ∴△ABC 为等腰直角三角形.1.在△ABC 中,AB =c ,AC =b ,BC =a ,下列等式中总能成立的是( ) A .a sin A =b sin B B .b sin C =c sin A C .ab sin C =bc sin B D .a sin C =c sin A 答案 D解析 由正弦定理a sin A =b sin B =csin C ,得a sin C =c sin A .2.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,b =3,B =60°,那么A 等于( )A .135°B .90°C .45°D .30° 答案 C解析 由a sin A =b sin B 得sin A =a sin Bb =2×323=22, ∴A =45°或135°.又∵a <b ,∴A <B ,∴A =45°.3.在锐角三角形ABC 中,角A ,B 所对的边分别为a ,b ,若2a sin B =3b ,则A 等于( ) A.π12 B.π6 C.π4 D.π3 答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B , 又∵sin B ≠0,∴sin A =32. 又A 为锐角,∴A =π3.4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin A a =cos B b =cos Cc ,则△ABC是( ) A .等边三角形B .直角三角形,且有一个角是30°C .等腰直角三角形D .等腰三角形,且有一个角是30° 答案 C解析 由题a cos B =b sin A , 又由正弦定理a sin B =b sin A , ∴sin B =cos B ,又∵B ∈(0°,180°),∴B =45°. 同理C =45°.故△ABC 为等腰直角三角形.5.在△ABC 中,∠A =2π3,a =3c ,则bc =________.答案 1解析 由a sin A =c sin C 得sin C =c sin A a =13×32=12,又0<C <π3,所以C =π6,B =π-(A +C )=π6.所以b c =sin Bsin C =sin π6sin π6=1.6.在△ABC 中,若b =5,B =π4,tan A =2,则sin A =______,a =________.答案255210 解析 由tan A =2,得sin A =2cos A , 由sin 2A +cos 2A =1,得sin A =255,∵b =5,B =π4,由正弦定理a sin A =bsin B ,得a =b sin A sin B =2522=210.1.正弦定理的表示形式:a sin A =b sin B =csin C =2R ,或a =k sin A ,b =k sin B ,c =k sin C (k >0).2.正弦定理的应用:①已知两角和任一边,求其他两边和一角.②已知两边和其中一边的对角,求另一边和两角.3.利用正弦定理可以实现三角形中边角关系的相互转化:一方面可以化边为角,转化为三角函数问题来解决;另一方面,也可以化角为边,转化为代数问题来解决.1.1.1 正弦定理(二)[学习目标] 1.熟记并能应用正弦定理的有关变形公式解决三角形中的问题.2.能根据条件,判断三角形解的个数.3.能利用正弦定理、三角恒等变换、三角形面积公式解决较为复杂的三角形问题.知识点一 正弦定理及其变形1.定理内容:a sin A =b sin B =c sin C =2R .2.正弦定理的常见变形: (1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin__A ,b =2R sin__B ,c =2R sin__C ; (4)sin A =a 2R ,sin B =b 2R ,sin C =c2R .知识点二 对三角形解的个数的判断已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定,现以已知a ,b 和A 解三角形为例,从两个角度予以说明: (1)代数角度由正弦定理得sin B =b sin Aa,①若b sin A a >1,则满足条件的三角形个数为0,即无解.②若b sin A a=1,则满足条件的三角形个数为1,即一解.③若b sin A a <1,则满足条件的三角形个数为1或2,即一解或两解.(2)几何角度图形关系式解的个数A为①a =b sin A ;②a ≥b一解锐角b sin A <a <b两解a <b sin A无解A 为 钝 角 或 直 角a >b一解a ≤b 无解知识点三 三角形面积公式 任意三角形的面积公式为:(1)S △ABC =12bc sin A =12ac sin B =12ab sin C ,即任意三角形的面积等于任意两边与它们夹角的正弦的乘积的一半.(2)S △ABC =12ah ,其中a 为△ABC 的一边长,而h 为该边上的高的长.(3)S △ABC =12r (a +b +c )=12rl ,其中r ,l 分别为△ABC 的内切圆半径及△ABC 的周长.(4)S △ABC =p (p -a )(p -b )(p -c )(其中p =a +b +c2).题型一 三角形解的个数的判断例1 已知下列各三角形中的两边及其一边的对角,判断三角形是否有解,有解的作出解答. (1)a =10,b =20,A =80°; (2)a =23,b =6,A =30°.解 (1)a =10,b =20,a <b ,A =80°<90°,讨论如下:∵b sin A =20sin 80°>20sin 60°=103, ∴a <b sin A ,∴本题无解.(2)a =23,b =6,a <b ,A =30°<90°, ∵b sin A =6sin 30°=3,a >b sin A , ∴b sin A <a <b ,∴本题有两解.由正弦定理得sin B =b sin A a =6sin 30°23=32,又∵B ∈(0°,180°),∴B 1=60°,B 2=120°.当B 1=60°时,C 1=90°,c 1=a sin C 1sin A =23sin 90°sin 30°=43;当B 2=120°时,C 2=30°,c 2=a sin C 2sin A =23sin 30°sin 30°=2 3.∴B 1=60°时,C 1=90°,c 1=43;B 2=120°时,C 2=30°,c 2=2 3.反思与感悟 已知三角形两边和其中一边的对角时,利用正弦定理求出另一边对角的正弦值后,需利用三角形中“大边对大角”来判断此角是锐角、直角还是钝角,从而确定三角形有两解还是只有一解.也可以用几何法来判断,即比较已知角的对边与另一边和该角正弦值乘积的大小来确定解的个数.跟踪训练1 (1)满足a =4,b =3,A =45°的三角形ABC 的个数为________. (2)△ABC 中,a =x ,b =2,B =45°.若该三角形有两解,则x 的取值范围是________. 答案 (1)1 (2)2<x <2 2解析 (1)因为A =45°<90°,a =4>3=b ,所以△ABC 的个数为一个. (2)由a sin B <b <a ,得22x <2<x ,∴2<x <2 2. 题型二 三角形的面积例2 在△ABC 中,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 ∵cos B 2=255,∴cos B =2cos 2B 2-1=35.∴B ∈(0,π2),∴sin B =45.∵C =π4,∴sin A =sin(B +C )=sin B cos C +cos B sin C =7210.∵a sin A =c sin C ,∴c =a sin C sin A =27210×22=107. ∴S =12ac sin B =12×2×107×45=87.反思与感悟 求三角形的面积关键在于选择适当的公式,因此,要认真分析题目中的条件,结合正弦定理,同时注意三角形内角和定理及三角恒等变换等知识的应用. 跟踪训练2 (1)在△ABC 中,若a =32,cos C =13,S △ABC =43,则b =________.(2)在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于________. 答案 (1)23 (2)32或34解析 (1)∵cos C =13,∴C ∈()0°,90°,∴sin C =1-(13)2=223,又S △ABC =12ab sin C =12·32·b ·223=43,∴b =2 3.(2)由正弦定理得sin C =AB ·sin BAC=3×121=32, 又∵C ∈(0°,180°),∴C =60°或120°,∴A =90°或30°, ∴S △ABC =12AB ·AC ·sin A =32或34.题型三 正弦定理与三角恒等变换的综合应用例3 在△ABC 中,AB =c ,BC =a ,AC =b ,若c =2+6,C =30°,求a +b 的取值范围.解 由正弦定理得c sin C =a sin A =bsin B =a +b sin A +sin B ,∵c =2+6,C =30°,∴a +b sin A +sin B =2+6sin 30°,A +B =180°-30°=150°. sin(150°-A )=sin 150°2cos 150°-2A 2+cos 150°2sin 150°-2A2,① sin A =sin150°2cos 150°-2A 2-cos 150°2sin 150°-2A 2,② 由①②得sin A +sin(150°-A )=2sin 75°cos(75°-A ), ∴a +b =2(2+6)[sin A +sin(150°-A )]=2(2+6)×2sin 75°cos(75°-A ) =2(2+6)×2×6+24cos(75°-A ) =(2+6)2cos(75°-A ). 当A =75°时,(a +b )max =8+4 3. ∵A +B =150°,∴0°<A <150°,-150°<-A <0°. ∴-75°<75°-A <75°, ∴cos(75°-A )∈(6-24,1], ∴a +b >(2+6)2×6-24=2+6, ∴2+6<a +b ≤8+4 3.综上所述,a +b ∈(2+6,8+4 3 ].反思与感悟 (1)求某个式子的取值范围,可以将其转化为一个角的三角函数,再求范围.注意不要因为忽略相应自变量的取值范围而导致错误.(2)三角形的内角和等于180°,这一特殊性质为三角恒等变换在三角形中的应用提供了一些特殊的式子,如sin A =sin(B +C ),cos A =-cos(B +C )等,解题中应注意应用.跟踪训练3 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2A =sin 2B +cos 2C +sin A sin B . (1)求角C 的大小;(2)若c =3,求△ABC 周长的取值范围.解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cosC =7,故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7.例4 在△ABC 中,已知c =6,A =π4,a =2,则b =__________.错解 由正弦定理a sin A =csin C ,得sin C =c sin A a =32,∴C =π3,∴B =5π12,∴b =a sin Bsin A =3+1.答案3+1错因分析 求得sin C =32之后,去求角C 的值时,认为C 为锐角,而忽略了C =23π的情况,导致漏解. 正解 因为6sinπ4<2<6,所以本题有两解. 因为a sin A =c sin C ,所以sin C =c sin A a =32.所以C =π3或2π3.当C =π3时,B =5π12,b =a sin Bsin A =3+1.当C =2π3时,B =π12,b =a sin Bsin A =3-1.答案3+1或3-1误区警示 已知两边和其中一边的对角解三角形时可先由正弦定理求出另一边的对角,该角可能有两解、一解、无解三种情况,故解题时应注意讨论,防止漏解.1.在△ABC 中,A =π3,BC =3,AB =6,则角C 等于( )A.π4或3π4B.3π4C.π4D.π6 答案 C解析 由正弦定理BC sin A =AB sin C 得sin C =AB ·sin ABC=6×323=22,∴C =π4或3π4.又∵AB <BC ,∴C <A ,∴C =π4. 2.已知△ABC 中,b =43,c =2,C =30°,那么此三角形( ) A .有一解 B .有两解 C .无解 D .解的个数不确定 答案 C解析 由正弦定理和已知条件得43sin B =2sin 30°,∴sin B =3>1,∴此三角形无解.3.根据下列条件,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .a =18,b =20,A =60°,有一解 C .a =5,b =2,A =90°,无解 D .a =30,b =25,A =150°,有一解 答案 D解析 对A.a =b sin A ,故有一解; 对B.b sin A <a <b ,故有两解; 对C.a >b sin A ,故有一解; 对D.A 为钝角,且a >b ,故有一解.4.在△ABC 中,AB =c ,BC =a ,AC =b ,若b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理b sin B =c sin C 得1sin B =3sin C .∵sin C =sin2π3=32,∴sin B =12. ∵C =2π3,∴B 为锐角,∴B =π6,A =π6,故a =b =1.5.在△ABC 中,lg(sin A +sin C )=2lg sin B -lg(sin C -sin A ),则此三角形的形状是________. 答案 直角三角形解析 ∵lg(sin A +sin C )=lg sin 2Bsin C -sin A,∴sin2C-sin2A=sin2B,结合正弦定理得c2=a2+b2,∴△ABC为直角三角形.6.在△ABC中,AB=3,D为BC的中点,AD=1,∠BAD=30°,则△ABC的面积S△ABC =________.答案3 2解析∵AB=3,AD=1,∠BAD=30°,∴S△ABD=12·3·1·sin 30°=34,又D是BC边中点,∴S△ABC=2S△ABD=3 2.1.已知两边和其中一边的对角,求第三边和其他两个角.首先求出另一边的对角的正弦值,当正弦值大于1或小于0时,这时三角形解的情况为无解;当正弦值大于0小于1时,再根据已知的两边的大小情况来确定该角有一个值或者两个值.2.判断三角形的形状,一般情况是判断三角形是不是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.1.1.2 余弦定理(一)[学习目标] 1.掌握余弦定理的内容与推论及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理及其证明 1.余弦定理的表示及其推论文字语言三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍 符号语言a 2=b 2+c 2-2bc cos__A ,b 2=a 2+c 2-2ac cos__B , c 2=a 2+b 2-2ab cos__C 推论cos A =b 2+c 2-a 22bc,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab2.余弦定理的证明(1)课本上采用的证明方法:如图,设a =CB →,b =CA →,c =BA →,则c =b -a , ∴|c |2=c ·c =(b -a )2=a 2-2a ·b +b 2=a 2-2ab cos__C +b 2, ∴c 2=a 2+b 2-2ab cos C . (2)利用坐标法证明如图,建立平面直角坐标系,则A (0,0),B (c cos__A ,c sin__A ),C (b ,0)(写出三点的坐标).∴a =BC =(c cos A -b )2+(c sin A -0)2 =c 2-2bc cos A +b 2, ∴a 2=b 2+c 2-2bc cos A .思考1 在△ABC 中,若a 2=b 2+bc +c 2,则A =________. 答案2π3解析 由题意知,cos A =b 2+c 2-a 22bc =-bc 2bc =-12,又A ∈(0,π),∴A =2π3.思考2 勾股定理和余弦定理的联系与区别?答案 二者都反映了三角形三边之间的平方关系,其中余弦定理反映了任一三角形中三边平方间的关系,勾股定理反映了直角三角形中三边平方间的关系,是余弦定理的特例. 知识点二 用余弦定理解三角形的问题 利用余弦定理可以解决以下两类问题: (1)已知两边及其夹角解三角形; (2)已知三边解三角形.思考 已知三角形的两边及一边的对角解三角形,有几种方法? 答案 不妨设已知a ,b ,A ,方法一 由正弦定理a sin A =b sin B可求得sin B ,进而得B ,C ,最后得边c .方法二 由余弦定理a 2=b 2+c 2-2bc cos A 得边c ,而后由余弦或正弦定理求得B ,C .题型一 已知两边及其夹角解三角形例1 在△ABC 中,已知a =2,b =22,C =15°,求角A ,B 和边c 的值(cos 15°=6+24,sin 15°=6-24). 解 由余弦定理知c 2=a 2+b 2-2ab cos C =4+8-2×2×22×6+24=8-43, ∴c =8-43=(6-2)2=6- 2. 由正弦定理得sin A =a sin C c =a sin 15°c=2×6-246-2=12, ∵b >a ,∴B >A ,∴A =30°,∴B =180°-A -C =135°, ∴c =6-2,A =30°,B =135°.反思与感悟 已知三角形的两边及其夹角解三角形的方法(1)先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角)求解.(2)用正弦定理求解时,需对角的取值根据“大边对大角”进行取舍,而用余弦定理就不存在这些问题(因为在(0,π)上,余弦值对应的角是唯一的),故用余弦定理求解较好. 跟踪训练1 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A .4 B.15 C .3 D.17 答案 D解析 由三角形内角和定理可知cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×(-13)=17,所以c =17.题型二 已知三边(或三边的关系)解三角形例2 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22(6+23)(43)=32.∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab =(26)2+(6+23)2-(43)22×26×(6+23)=22,∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=712π,∴A =π6,B =712π,C =π4.反思与感悟 已知三边(或三边的关系)解三角形的方法(1)利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为0,角为直角;值为负,角为钝角.(2)方法一:两次运用余弦定理的推论求出两个内角的余弦值,确定两个角,并确定第三个角.方法二:由余弦定理的推论求一个内角的余弦值,确定角的大小;由正弦定理求第二个角的正弦值,结合“大边对大角、大角对大边”法则确定角的大小,最后由三角形内角和为180°确定第三个角的大小.(3)若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解. 跟踪训练2 将例2中的条件改为“a ∶b ∶c =26∶(6+23)∶43”,求A ,B ,C . 解 ∵a ∶b ∶c =26∶(6+23)∶43, 即a26=b 6+23=c43, 不妨设a26=k ,则a =26k ,b =(6+23)k ,c =43k ,下同例题解法.题型三 已知两边及其中一边的对角解三角形例3 在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,若a =23,b =6,A =45°,求边c .解 方法一 在△ABC 中,根据余弦定理可得 a 2=b 2+c 2-2bc cos A ,即c 2-23c -6=0, 所以c =3±3.又c >0,所以c =3+3.方法二 在△ABC 中,由正弦定理得 sin B =b sin Aa =6×2223=12,因为b <a ,所以B <A ,又B ∈(0°,180°),所以B =30°, 所以C =180°-A -B =105°,所以sin C =sin 105°=sin(45°+60°)=sin 45°cos 60°+cos 45°sin 60°=6+24, 故c =a sin Csin A =23×6+2422=3+3.反思与感悟 已知三角形的两边及其中一边的对角解三角形的方法可根据余弦定理列一元二次方程求出第三边(注意边的取舍),再利用正弦定理求其他的两个角;也可以由正弦定理求出第二个角(注意角的取舍),再利用三角形内角和定理求出第三个角,最后利用正弦定理求出第三边.跟踪训练3 已知在△ABC 中,b =3,c =3,B =30°,解此三角形. 解 方法一 由余弦定理b 2=a 2+c 2-2ac cos B 得(3)2=a 2+32-2×a ×3×cos 30°, ∴a 2-33a +6=0,∴a =3或a =2 3. 当a =3时,a =b ,∴A =30°,∴C =120°; 当a =23时,由正弦定理得 sin A =a sin B b =23sin 30°3=1,又∵A ∈(0°,180°),∴A =90°,C =60°.∴C =60°,A =90°,a =23或C =120°,A =30°,a = 3. 方法二 由b <c ,B =30°,b >c sin 30°知本题有两解. 由正弦定理,得sin C =c sin B b =3×123=32,∴C =60°或120°.当C =60°时,A =90°,由勾股定理得a =b 2+c 2=23; 当C =120°时,A =30°=B ,∴a = 3.∴C =60°,A =90°,a =23或C =120°,A =30°,a = 3.1.在△ABC 中,符合余弦定理的是( ) A .c 2=a 2+b 2-2ab cos C B .c 2=a 2-b 2-2bc cos A C .b 2=a 2-c 2-2bc cos A D .cos C =a 2+b 2+c 22ab答案 A解析 由余弦定理及其推论知只有A 正确.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A. 2B. 3 C .2 D .3 答案 D解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝⎛⎭⎫b =-13舍去,故选D. 3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不确定 答案 A解析 cos 120°=a 2+b 2-c 22ab =a 2+b 2-2a 22ab =-12,∴b =5-12a <a . 4.在△ABC 中,若a 2+b 2-c 2=ab ,则角C 的大小为________. 答案π3解析 cos C =a 2+b 2-c 22ab =ab 2ab =12,又B ∈(0,π),∴B =π3.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =________. 答案 56π解析 cos B =a 2+c 2-b 22ac =1+3-72×1×3=-32,又B ∈(0,π),∴B =56π.1.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角. 2.利用余弦定理可以解决两类有关三角形的问题:(1)已知两边和夹角或已知三边能直接利用余弦定理解三角形.(2)若已知两边和一边的对角,既可以用正弦定理又可以用余弦定理解三角形,但用正弦定理时要注意不要漏解或多解.1.1.2 余弦定理(二)[学习目标] 1.熟练掌握余弦定理及其变形形式,能用余弦定理解三角形.2.能应用余弦定理判断三角形形状.3.能利用正弦、余弦定理解决解三角形的有关问题.知识点一 余弦定理及其推论1.a 2=b 2+c 2-2bc cos__A ,b 2=c 2+a 2-2ca cos__B ,c 2=a 2+b 2-2ab cos__C . 2.cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab.3.在△ABC 中,c 2=a 2+b 2⇔C 为直角,c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 知识点二 正弦、余弦定理解决的问题思考 以下问题不能用余弦定理求解的是________. (1)已知两边和其中一边的对角,解三角形; (2)已知两角和一边,解三角形;(3)已知一个三角形的两条边及其夹角,解三角形; (4)已知一个三角形的三条边,解三角形. 答案 (2)题型一 利用余弦定理判断三角形的形状例1 在△ABC 中,cos 2B 2=a +c2c ,其中a ,b ,c 分别是角A ,B ,C 的对边,则△ABC 的形状为( ) A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形 答案 A解析 方法一 在△ABC 中,由已知得 1+cos B 2=12+a2c , ∴cos B =a c =a 2+c 2-b 22ac,化简得c 2=a 2+b 2. 故△ABC 为直角三角形.方法二 原式化为cos B =a c =sin Asin C ,∴cos B sin C =sin A =sin(B +C ) =sin B cos C +cos B sin C , ∴sin B cos C =0,∵B ∈(0,π),sin B ≠0,∴cos C =0, 又∵C ∈(0,π),∴C =π2,即△ABC 为直角三角形.反思与感悟 一般地,如果遇到的式子含角的余弦或是边的二次式,要考虑用余弦定理;反之,若遇到的式子含角的正弦或是边的一次式,则大多用正弦定理;若是以上特征不明显,则要考虑两个定理都有可能用.跟踪训练1 在△ABC 中,B =60°,b 2=ac ,则三角形一定是( ) A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 答案 B解析 由余弦定理cos B =a 2+c 2-b 22ac ,代入得12=a 2+c 2-ac 2ac ,∴a 2+c 2-2ac =0, 即(a -c )2=0,∴a =c .又∵B =60°,∴△ABC 是等边三角形. 题型二 正弦、余弦定理的综合应用例2 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0).则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C,变形可得: sin A sin B =sin A cos B +cos A sin B =sin(A +B ). 在△ABC 中,由A +B +C =π, 有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C .(2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故tan B =sin B cos B=4.反思与感悟 (1)余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息. (2)解题时,还应注意,当把条件转化为角之间的关系时,还应注意三角恒等变换公式的应用.跟踪训练2 在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B ;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)由b sin A =3a cos B 及正弦定理, 得sin B =3cos B ,即tan B =3,因为B 是三角形的内角,所以B =π3.(2)由sin C =2 sin A 及正弦定理得,c =2a . 由余弦定理及b =3,得9=a 2+c 2-2ac cos π3,即9=a 2+4a 2-2a 2,所以a =3,c =2 3. 题型三 利用正弦、余弦定理证明边角恒等式例3 在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,求证:a 2-b 2c 2=sin (A -B )sin C .证明 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B ,∴a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , ∴2(a 2-b 2)=2ac cos B -2bc cos A , 即a 2-b 2=ac cos B -bc cos A , ∴a 2-b 2c 2=a cos B -b cos Ac .由正弦定理得a c =sin A sin C ,b c =sin B sin C,∴a 2-b 2c 2=sin A cos B -cos A sin B sin C =sin (A -B )sin C ,故等式成立.反思与感悟 (1)证明三角恒等式,关键是消除等号两端三角函数式的差异.形式上一般有:左⇒右;右⇒左或左⇒中⇐右三种.(2)利用正弦、余弦定理证明三角形中的恒等式的途径有两种:一是把角的关系通过正弦、余弦定理转化为边的关系;二是把边的关系转化为角的关系. 跟踪训练3 在△ABC 中,若a cos 2C 2+c cos 2 A 2=3b2,求证:a +c =2b .解 由题a (1+cos C )+c (1+cos A )=3b , 即a +a ·a 2+b 2-c 22ab +c +c ·b 2+c 2-a 22bc =3b ,∴2ab +a 2+b 2-c 2+2bc +b 2+c 2-a 2=6b 2, 整理得ab +bc =2b 2,同除b 得a +c =2b , 故等式成立.例4 已知钝角三角形的三边BC =a =k ,AC =b =k +2,AB =c =k +4,求k 的取值范围. 错解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6,①∵k 为三角形的一边长,∴k >0,② 由①②知0<k <6.错因分析 忽略隐含条件k +k +2>k +4,即k >2. 正解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0,∴k 2-4k -12<0,解得-2<k <6,① 由两边之和大于第三边得k +(k +2)>k +4, ∴k >2,② 由①②可知2<k <6.误区警示 在解与三角形的边有关的问题时,一定要注意三角形两边之和大于第三边,两边之差小于第三边.跟踪训练4 若△ABC 为钝角三角形,三边长分别为2,3,x ,则x 的取值范围是( ) A .(1,5) B .(13,5)C .(5,13)D .(1,5)∪(13,5) 答案 D解析 (1)若x >3,则x 对角的余弦值22+32-x 22×2×3<0且2+3>x ,解得13<x <5.(2)若x <3,则3对角的余弦值22+x 2-322×2×x <0且x +2>3,解得1<x < 5.故x 的取值范围是(1,5)∪(13,5).1.在△ABC 中,b cos A =a cos B ,则△ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .锐角三角形 答案 B解析 由题b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac,整理得a 2=b 2,∴a =b .2.在△ABC 中,sin 2A -sin 2C -sin 2B =sin C sin B ,则A 等于( ) A .60° B .45° C .120° D .30° 答案 C解析 由正弦定理得a 2-c 2-b 2=bc , 结合余弦定理得cos A =b 2+c 2-a 22bc =-12,又A ∈(0,π),∴A =120°.3.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为( )A.85B.58C.53D.35 答案 D解析 由余弦定理BC 2=AB 2+AC 2-2·AB ·AC ·cos A 得72=52+AC 2-2·5·AC ·(-12),∴AC =3或-8(舍).∴sin B sin C =AC AB =35.4.已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .(8,10) B .(22,10) C .(22,10) D .(10,8) 答案 B解析 只需让3和a 所对的边均为锐角即可.故⎩⎪⎨⎪⎧12+32-a 22·1·3>012+a 2-322·1·a >01+3>a 1+a >3,解得22<a <10.5.在△ABC 中,若b =1,c =3,C =2π3,则a =________.答案 1解析 由余弦定理得c 2=a 2+b 2-2ab cos C , ∴a 2+1+a =3,即a 2+a -2=0, 解得a =1或a =-2(舍).6.已知△ABC 的三边长分别为2,3,4,则此三角形是________三角形.答案钝角解析4所对的角的余弦为22+32-422×2×3=-14<0,故该角为钝角,故该三角形为钝角三角形.1.判断三角形形状的基本思想是:用正弦定理或余弦定理将所给条件统一为角之间的关系或边之间的关系.若统一为角之间的关系,再利用三角恒等变形化简找到角之间的关系;若统一为边之间的关系,再利用代数方法进行恒等变形、化简,找到边之间的关系.2.解决综合问题时应考虑以下两点(1)正弦定理、余弦定理是解决三角形问题的主要工具,正确选择适合试题特点的公式极为重要,当使用一个定理无法解决问题时,要及时考虑另外一个定理.(2)三角函数中的公式在解决三角形问题时是不可或缺的,应该养成应用三角公式列式化简的习惯.[学习目标]利用正弦、余弦定理解决生产实践中的有关距离的测量问题.知识点一基线的定义在测量上,我们根据测量需要适当确定的线段叫做基线,一般地讲,基线越长,测量的精确度越高.知识点二有关的几个术语(1)方位角:指以观测者为中心,从正北方向线顺时针旋转到目标方向线所形成的水平角.如图所示的θ1,θ2即表示点A和点B的方位角.故方位角的范围是[0°,360°).(2)方向角:指以观测者为中心,指北或指南的方向线与目标方向线所成的小于90°的水平角,它是方位角的另一种表示形式.如图,左图中表示北偏东30°,右图中表示南偏西60°.思考上两图中的两个方向,用方位角应表示为30°(左图),240°(右图).(3)视角:观测者的两条视线之间的夹角称作视角.知识点三解三角形应用题解三角形应用题时,通常都要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解三角形,得到实际问题的解,求解的关键是将实际问题转化为解三角形问题.(1)解题思路。
2017-2018学年高二数学人教A版必修5课件:本章整合2
专题一
专题二
专题三
例 1 根据下面数列的前几项,写出数列的一个通项公式. (1)1,1,7 , 15 , 31,…; (2)2,22,222,2 222,…; (3)3,0,-3,0,3,…. 解 (1)数列即为1 , 3 , 7 , 15 , 31,…,由于分子是等差数列{2n-1}的 各项,分母是数列{2 -1}的各项,故
⑦a,A,b 成等差数列
⇔A=
数 列
特殊数列
������+������ 2 公式: ⑧ ������(������1 +������������ ) 等差数列的前������项和 ⑧ S n= 基本运算——性质 2 ������(������-1) 定义: ⑨ =na1+ d 2 ������������ 公式: ⑩ ⑨ =q(n≥2) 通项公式 ������������-1
∴数列{an}的通项公式为 an= ������ − ������-1(n∈N*).
专题一
专题二
专题三
3.已知递推关系求通项公式 (一)累加法 适用于由形如an+1-an=f(n)型的递推公式求通项公式, (1)当f(n)=d(常数)时,{an}为等差数列,则an=a1+(n-1)d; (2)当f(n)为关于n的函数时,用累加法. 方法如下,由an+1-an=f(n)得 当n≥2时,an-an-1=f(n-1), an-1-an-2=f(n-2), ……
1
由已知可求得 S1=a1=1. 2 ∴数列{������������ }是等差数列,且公差为 1,首项为 1. 2 ∴������������ =1+(n-1)· 1=n. ∵an>0,∴Sn>0.∴Sn= ������.
2017-2018学年高中数学三维设计人教A版浙江专版必修5:课时跟踪检测(十) 等比数列的概念及通项公式
课时跟踪检测(十)等比数列的概念及通项公式层级一学业水平达标1.2+3和2-3的等比中项是()A.1B.-1C.±1 D.2解析:选C设2+3和2-3的等比中项为G,则G2=(2+3)(2-3)=1,∴G=±1.2.在首项a1=1,公比q=2的等比数列{a n}中,当a n=64时,项数n等于()A.4 B.5C.6 D.7解析:选D因为a n=a1q n-1,所以1×2n-1=64,即2n-1=26,得n-1=6,解得n=7.3.设等差数列{a n}的公差d不为0,a1=9d,若a k是a1与a2k的等比中项,则k等于() A.2 B.4C.6 D.8解析:选B∵a n=(n+8)d,又∵a2k=a1·a2k,∴[(k+8)d]2=9d·(2k+8)d,解得k=-2(舍去)或k=4.4.等比数列{a n}的公比为q,且|q|≠1,a1=-1,若a m=a1·a2·a3·a4·a5,则m等于() A.9 B.10C.11 D.12解析:选C∵a1·a2·a3·a4·a5=a1·a1q·a1q2·a1q3·a1q4=a51·q10=-q10,a m=a1q m-1=-q m -1,∴-q10=-q m-1,∴10=m-1,∴m=11.5.等比数列{a n}中,|a1|=1,a5=-8a2,a5>a2,则a n等于()A.(-2)n-1B.-(-2n-1)C.(-2)n D.-(-2)n解析:选A设公比为q,则a1q4=-8a1q,又a1≠0,q≠0,所以q3=-8,q=-2,又a5>a2,所以a2<0,a5>0,从而a1>0,即a1=1,故a n=(-2)n-1.6.等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 解析:∵a 3a 1=q 2,∴q 2=-8-2=4,即q =±2.当q =-2时,a n =a 1q n -1=-2×(-2)n -1=(-2)n ;当q =2时,a n =a 1q n -1=-2×2n -1=-2n .答案:(-2)n 或-2n7.已知等比数列{a n }的各项均为正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=________.解析:由题设a 1,12a 3,2a 2成等差数列可得a 1+2a 2=a 3,即q 2-2q -1=0,所以q =2+1,a 8+a 9a 6+a 7=a 8(1+q )a 6(1+q )=q 2=3+2 2.答案:3+2 28.已知三个数成等比数列,其积为512,如果第一个数与第三个数各减去2,则此时的三个数成等差数列,则原来的三个数的和等于________.解析:依题意设原来的三个数依次为aq ,a ,aq . ∵a q ·a ·aq =512,∴a =8.又∵第一个数与第三个数各减去2后的三个数成等差数列, ∴⎝⎛⎭⎫a q -2+(aq -2)=2a ,∴2q 2-5q +2=0,∴q =2或q =12,∴原来的三个数为4,8,16或16,8,4. ∵4+8+16=16+8+4=28, ∴原来的三个数的和等于28. 答案:289.在四个正数中,前三个成等差数列,和为48,后三个成等比数列,积为8 000,求这四个数.解:设前三个数分别为a -d ,a ,a +d ,则有 (a -d )+a +(a +d )=48,即a =16. 设后三个数分别为bq ,b ,bq ,则有 b q·b ·bq =b 3=8 000,即b =20, ∴这四个数分别为m,16,20,n ,∴m =2×16-20=12,n =20216=25. 即所求的四个数分别为12,16,20,25.10.已知递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项,求a n .解:设等比数列{a n }的公比为q .依题意,知2(a 3+2)=a 2+a 4, ∴a 2+a 3+a 4=3a 3+4=28, ∴a 3=8,a 2+a 4=20,∴8q +8q =20,解得q =2或q =12(舍去). 又a 1=a 3q 2=2,∴a n =2n .层级二 应试能力达标1.设a 1,a 2,a 3,a 4成等比数列,其公比为2,则2a 1+a 22a 3+a 4的值为( )A.14 B.12 C.18D .1解析:选A 原式=2a 1+a 2q 2(2a 1+a 2)=1q 2=14.2.在等比数列{a n }中,已知a 1=13,a 5=3,则a 3=( )A .1B .3C .±1D .±3 解析:选A 由a 5=a 1·q 4=3,所以q 4=9,得q 2=3,a 3=a 1·q 2=13×3=1.3.设a 1=2,数列{1+2a n }是公比为3的等比数列,则a 6等于( ) A .607.5 B .608 C .607D .159解析:选C ∵1+2a n =(1+2a 1)×3n -1, ∴1+2a 6=5×35,∴a 6=5×243-12=607. 4.如图给出了一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,1412,14 34,38,316…记第i 行第j 列的数为a ij (i ,j ∈N *),则a 53的值为( ) A.116 B.18 C.516D.54解析:选C 第一列构成首项为14,公差为14的等差数列,所以a 51=14+(5-1)×14=54.又因为从第三行起每一行数成等比数列,而且每一行的公比都相等,所以第5行构成首项为54,公比为12的等比数列,所以a 53=54×⎝⎛⎭⎫122=516. 5.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________. 解析:由a n =2S n -3得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2), ∴a n =-a n -1(n ≥2),a na n -1=-1(n ≥2). 故{a n }是公比为-1的等比数列,令n =1得a 1=2a 1-3,∴a 1=3,故a n =3·(-1)n -1.答案:a n =3·(-1)n -16.在等差数列{a n }中,a 1=2,a 3=6,若将a 1,a 4,a 5都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为________.解析:设等差数列{a n }的公差为d ,所求的数为m ,则⎩⎪⎨⎪⎧a 1=2,a 3=a 1+2d =6,∴d =2,∴a 4=8,a 5=10,∵a 1+m ,a 4+m ,a 5+m 成等比数列,∴(a 4+m )2=(a 1+m )(a 5+m ),即(8+m )2=(2+m )(10+m ),解得m =-11.答案:-117.已知数列{a n }的前n 项和S n =2-a n ,求证:数列{a n }是等比数列. 证明:∵S n =2-a n ,∴S n +1=2-a n +1.∴a n +1=S n +1-S n =(2-a n +1)-(2-a n )=a n -a n +1. ∴a n +1=12a n .又∵S 1=2-a 1, ∴a 1=1≠0.又由a n +1=12a n 知a n ≠0,∴a n+1a n=12.∴数列{a n}是等比数列.8.已知数列{a n}是各项为正数的等比数列,且a2=9,a4=81.(1)求数列{a n}的通项公式a n;(2)若b n=log3a n,求证:数列{b n}是等差数列.解:(1)求数列{a n}的公比为q,∵a 2=9,a4=81.则q2=a4a2=819=9,又∵a n>0,∴q>0,∴q=3,故通项公式a n=a2q n-2=9×3n-2=3n,n∈N*.(2)证明:由(1) 知a n=3n,∴b n=log3a n=log33n=n,∴b n+1-b n=(n+1)-n=1(常数),n∈N*,故数列{b n}是一个公差等于1的等差数列.。
2017-2018学年高中数学三维设计人教A版浙江专版必修5讲义:第二章-2.2-等差数列-Word
2017-2018学年高中数学三维设计人教A版浙江专版必修5讲义:第二章-2.2-等差数列-Word 版含答案等差数列第一课时等差数列的概念及通项公式预习课本P36~38,思考并完成以下问题(1)等差数列的定义是什么?如何判断一个数列是否为等差数列?(2)等差数列的通项公式是什么?(3)等差中项的定义是什么?[新知初探]1.等差数列的定义如果一个数列从第2项起,每一项与它的前已知等差数列{a n}的首项为a1,公差为d.[点睛]由等差数列的通项公式a n=a1+(n -1)d可得a n=dn+(a1-d),如果设p=d,q=a1-d,那么a n=pn+q,其中p,q是常数.当p≠0时,a n是关于n的一次函数;当p=0时,a n=q,等差数列为常数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列()(2)等差数列{a n}的单调性与公差d有关()(3)根据等差数列的通项公式,可以求出数列中的任意一项()(4)若三个数a,b,c满足2b=a+c,则a,b,c一定是等差数列()解析:(1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d>0时为递增数列;d=0时为常数列;d<0时为递减数列.(3)正确.只需将项数n代入即可求出数列中的任意一项.(4)正确.若a,b,c满足2b=a+c,即b -a=c-b,故a,b,c为等差数列.答案:(1)×(2)√(3)√(4)√2.等差数列{a n}中,a1=1,d=3,a n=298,则n的值等于()A.98B.100C .99D .101解析:选B a n =a 1+(n -1)d =3n -2,令a n =298,即3n -2=298⇒n =100.3.在等差数列{a n }中,若a 1·a 3=8,a 2=3,则公差d =( )A .1B .-1C .±1D .±2解析:选C 由已知得,⎩⎨⎧a 1(a 1+2d )=8,a 1+d =3,解得d =±1.4.若log 32,log 3(2x -1),log 3(2x +11)成等差数列.则x 的值为________.解析:由log 3(2x +11)-log 3(2x -1)=log 3(2x -1)-log 32,得:(2x )2-4·2x -21=0,∴2x =7,∴x =log 27.答案:log 27等差数列的通项公式及应用[典例] 在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ;(2)已知a 1+a 6=12,a 4=7,求a 9.[解] (1)∵a 5=-1,a 8=2,∴⎩⎨⎧ a 1+4d =-1,a 1+7d =2,解得⎩⎨⎧a 1=-5,d =1. (2)设数列{a n }的公差为d .由已知得,⎩⎨⎧ a 1+a 1+5d =12,a 1+3d =7,解得⎩⎨⎧a 1=1,d =2. ∴a n =1+(n -1)×2=2n -1,∴a 9=2×9-1=17.在等差数列{a n }中,首项a 1与公差d 是两个[活学活用]1.2 016是等差数列4,6,8,…的()A.第1 006项 B.第1 007项C.第1 008项D.第1 009项解析:选B∵此等差数列的公差d=2,∴a n=4+(n-1)×2,a n=2n+2,即2 016=2n+2,∴n=1 007.2.已知等差数列{a n}中,a15=33,a61=217,试判断153是不是这个数列的项,如果是,是第几项?解:设首项为a1,公差为d,则a n=a1+(n -1)d,由已知⎩⎨⎧ a 1+(15-1)d =33,a 1+(61-1)d =217,解得⎩⎨⎧a 1=-23,d =4. 所以a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,解得n =45∈N *,所以153是所给数列的第45项. 等差中项的应用[典例] 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.[解] 在等差数列{a n }中,∵ a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎨⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎨⎧ a 2=11,a 4=1或⎩⎨⎧a 2=1,a 4=11.当⎩⎨⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎨⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.三数a ,b ,c 成等差数列的条件是b =a +c 2(或2b =a +c ),可用来进行等差数列的判定或有关等差中项的计算问题.如若证{a n }为等差数列,可证2a n +1=a n +a n +2(n ∈N *).[活学活用]1.已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________.解析:因为8,a,2,b ,c 是等差数列,所以⎩⎪⎨⎪⎧ 8+2=2a ,a +b =2×2,2+c =2b .解得⎩⎪⎨⎪⎧ a =5,b =-1,c =-4.答案:5 -1 -42.已知数列{a n }中,a 3=2,a 7=1,且数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +1为等差数列,则a 5=________. 解析:由数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n+1为等差数列,则有1a 3+1+1a 7+1=2a 5+1,可解得a 5=75. 答案:75等差数列的判定与证明[典例] 已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.求证:数列{b n }是等差数列.证明:[法一 定义法]∵b n +1=1a n +1-2=1⎝ ⎛⎭⎪⎪⎫4-4a n -2=a n 2(a n -2), ∴b n +1-b n =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12,为常数(n ∈N *). 又b 1=1a 1-2=12, ∴数列{b n }是首项为12,公差为12的等差数列. [法二 等差中项法]∵b n =1a n -2, ∴b n +1=1a n +1-2=1⎝ ⎛⎭⎪⎪⎫4-4a n -2=a n 2(a n -2). ∴b n +2=a n +12(a n +1-2)=4-4a n 2⎝ ⎛⎭⎪⎪⎫4-4a n -2=a n -1a n -2.∴b n +b n +2-2b n +1=1a n -2+a n -1a n -2-2×a n 2(a n -2)=0. ∴b n +b n +2=2b n +1(n ∈N *),∴数列{b n }是等差数列.等差数列判定的常用的2种方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }为等差数列.(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }为等差数列.[活学活用]已知1a ,1b ,1c 成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c ),lg(a -c ),lg(a +c -2b )也成等差数列.解:∵1a,1b,1c成等差数列,∴2b=1a+1c,∴2b=a+cac,即2ac=b(a+c).(a+c)(a+c-2b)=(a+c)2-2b(a+c)=(a+c)2-2×2ac=a2+c2+2ac-4ac=(a-c)2.∵a+c,a+c-2b,a-c均为正数,上式左右两边同时取对数得,lg[(a+c)(a+c-2b)]=lg(a-c)2,即lg(a+c)+lg(a+c-2b)=2lg(a-c),∴lg(a+c),lg(a-c),lg(a+c-2b)成等差数列.层级一学业水平达标1.已知等差数列{a n}的通项公式为a n=3-2n,则它的公差为()A.2B.3C.-2 D.-3解析:选C∵a n=3-2n=1+(n-1)×(-2),∴d =-2,故选C.2.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35,则n =( )A .50B .51C .52D .53解析:选D 依题意,a 2+a 5=a 1+d +a 1+4d =4,代入a 1=13,得d =23. 所以a n =a 1+(n -1)d =13+(n -1)×23=23n -13,令a n =35,解得n =53. 3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( )A .a =-bB .a =3bC .a =-b 或a =3bD .a =b =0解析:选C 由等差中项的定义知:x =a +b 2,x 2=a 2-b 22, ∴a 2-b 22=⎝ ⎛⎭⎪⎫a +b 22,即a 2-2ab -3b 2=0. 故a =-b 或a =3b .4.数列{a n }中,a 1=2,2a n +1=2a n +1,则a 2 015的值是( )A .1 006B .1 007C .1 008D .1 009 解析:选D 由2a n +1=2a n +1,得a n +1-a n =12,所以{a n }是等差数列,首项a 1=2,公差d =12, 所以a n =2+12(n -1)=n +32, 所以a 2 015=2 015+32=1 009. 5.等差数列{a n }的首项为70,公差为-9,则这个数列中绝对值最小的一项为( )A .a 8B .a 9C .a 10D .a 11解析:选B |a n |=|70+(n -1)×(-9)|=|79-9n |=9⎪⎪⎪⎪⎪⎪⎪⎪879-n ,∴n =9时,|a n |最小. 6.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________.解析:设等差数列{a n }的公差为d ,由题意,得⎩⎨⎧ a 1+2d =7,a 1+4d =a 1+d +6.解得⎩⎨⎧a 1=3,d =2. ∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1. ∴a 6=2×6+1=13.答案:137.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________.解析:根据题意得:a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1, ∴a 1=1.又a 3=a 1+2d =1+2d =0,∴d =-12. 答案:-128.已知数列{a n }满足:a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________.解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4.∴数列{a 2n }是公差为4的等差数列,则a 2n =a 21+(n -1)×4=4n -3.∵a n >0,∴a n =4n -3. 答案:4n -39.已知数列{a n }满足a 1=2,a n +1=2a n a n +2,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是否为等差数列?说明理由.解:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,理由如下: 因为a 1=2,a n +1=2a n a n +2, 所以1a n +1=a n +22a n =12+1a n , 所以1a n +1-1a n=12(常数). 所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以1a 1=12为首项,公差为12的等差数列.10.若1b +c ,1a +c ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列.证明:由已知得1b +c +1a +b =2a +c,通分有2b +a +c (b +c )(a +b )=2a +c. 进一步变形有2(b +c )(a +b )=(2b +a +c )(a +c ),整理,得a 2+c 2=2b 2,所以a 2,b 2,c 2成等差数列.层级二 应试能力达标1.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( )A .p +qB .0C .-(p +q ) D.p +q 2解析:选B ∵a p =a 1+(p -1)d ,a q =a 1+(q -1)d ,∴⎩⎨⎧a 1+(p -1)d =q , ①a 1+(q -1)d =p . ② ①-②,得(p -q )d =q -p .∵p ≠q ,∴d =-1.代入①,有a 1+(p -1)×(-1)=q ,∴a 1=p +q -1.∴a p +q =a 1+(p +q -1)d =p +q -1+(p +q -1)×(-1)=0.2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( ) A.m nB.m +1n +1C.n mD.n +1m +1解析:选D 设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.已知数列{a n },对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( )A .公差为2的等差数列B .公差为1的等差数列C .公差为-2的等差数列D .非等差数列解析:选A 由题意知a n =2n +1,∴a n +1-a n=2,应选A.4.如果a1,a2,…,a8为各项都大于零的等差数列,且公差d≠0,则()A.a3a6>a4a5B.a3a6<a4a5C.a3+a6>a4+a5D.a3a6=a4a5解析:选B由通项公式,得a3=a1+2d,a6=a1+5d,那么a3+a6=2a1+7d,a3a6=(a1+2d)(a1+5d)=a21+7a1d+10d2,同理a4+a5=2a1+7d,a4a5=a21+7a1d+12d2,显然a3a6-a4a5=-2d2<0,故选B.5.数列{a n}是首项为2,公差为3的等差数列,数列{b n}是首项为-2,公差为4的等差数列.若a n=b n,则n的值为________.解析:a n=2+(n-1)×3=3n-1,b n=-2+(n-1)×4=4n-6,令a n=b n,得3n-1=4n-6,∴n=5.答案:56.在数列{a n}中,a1=3,且对于任意大于1的正整数n ,点(a n , a n -1)都在直线x -y -3=0上,则a n =________.解析:由题意得a n -a n -1=3,所以数列{a n }是首项为3,公差为3的等差数列,所以a n =3n ,a n =3n 2.答案:3n 27.已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2,且∈N *).(1)求a 2,a 3;(2)证明:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n 是等差数列; (3)求数列{a n }的通项公式a n .解:(1)a 2=2a 1+22=6,a 3=2a 2+23=20.(2)证明:∵a n =2a n -1+2n (n ≥2,且n ∈N *),∴a n 2n =a n -12n -1+1(n ≥2,且n ∈N *), 即a n 2n -a n -12n -1=1(n ≥2,且n ∈N *),∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n 是首项为a 121=12,公差d =1的等差数列.(3)由(2),得a n 2n =12+(n -1)×1=n -12, ∴a n =⎝⎛⎭⎪⎪⎫n -12·2n .8.数列{a n }满足a 1=2,a n +1=(λ-3)a n +2n (n∈N *).(1)当a 2=-1时,求λ及a 3的值;(2)是否存在λ的值,使数列{a n }为等差数列?若存在求其通项公式;若不存在说明理由.解:(1)∵a 1=2,a 2=-1,a 2=(λ-3)a 1+2,∴λ=32. ∴a 3=-32a 2+22,∴a 3=112. (2)∵a 1=2,a n +1=(λ-3)a n +2n ,∴a 2=(λ-3)a 1+2=2λ-4.a3=(λ-3)a2+4=2λ2-10λ+16.若数列{a n}为等差数列,则a1+a3=2a2.即λ2-7λ+13=0.∵Δ=49-4×13<0,∴方程无实数解.∴λ值不存在.∴不存在λ的值使{a n}成等差数列.第二课时等差数列的性质预习课本P39练习第4、5题,思考并完成以下问题(1)等差数列通项公式的推广形式是什么?(2)等差数列的运算性质是什么?[新知初探]1.等差数列通项公式的推广通项公式通项公式的推2.等差数列的性质若{a n}是公差为d的等差数列,正整数m,n,p,q满足m+n=p+q,则a m+a n=a p+a q.(1)特别地,当m+n=2k(m,n,k∈N*)时,a m+a n=2a k.(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a1+a n=a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d 的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若{a n}是等差数列,则{|a n|}也是等差数列()(2)若{|a n|}是等差数列,则{a n}也是等差数列()(3)若{a n}是等差数列,则对任意n∈N*都有2a n+1=a n+a n+2()(4)数列{a n}的通项公式为a n=3n+5,则数列{a n}的公差与函数y=3x+5的图象的斜率相等()解析:(1)错误.如-2,-1,0,1,2是等差数列,但其绝对值就不是等差数列.(2)错误.如数列-1,2,-3,4,-5其绝对值为等差数列,但其本身不是等差数列.(3)正确.根据等差数列的通项可判定对任意n∈N*,都有2a n+1=a n+a n+2成立.(4)正确.因为a n=3n+5的公差d=3,而直线y=3x+5的斜率也是3.答案:(1)×(2)×(3)√(4)√2.在等差数列{a n}中,若a5=6,a8=15,则a14等于()A.32B.33C.-33 D.29解析:选B∵数列{a n}是等差数列,∴a5,a8,a11,a14也成等差数列且公差为9,∴a14=6+9×3=33.3.在等差数列{a n}中,已知a3+a4+a5+a6+a7=450,则a2+a8=()A.90 B.270C.180 D.360解析:选C因为a3+a4+a5+a6+a7=5a5=450,所以a5=90,所以a2+a8=2a5=2×90=180.4.在等差数列{a n}中,已知a2+2a8+a14=120,则2a9-a10的值为________.解析:∵a2+a14=2a8,∴a2+2a8+a14=4a8=120,∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.答案:30等差数列的性质应用[典例](1)已知等差数列{a n}中,a2+a4=6,则a1+a2+a3+a4+a5=()A.30B.15C.5 6 D.10 6(2)设{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37=() A.0 B.37C.100 D.-37[解析](1)∵数列{a n}为等差数列,∴a1+a2+a3+a4+a5=(a1+a5)+(a2+a4)+a3=52(a2+a4)=52×6=15.(2)设c n=a n+b n,由于{a n},{b n}都是等差数列,则{c n}也是等差数列,且c1=a1+b1=25+75=100,c2=a2+b2=100,∴{c n}的公差d=c2-c1=0.∴c37=100,即a37+b37=100.[答案](1)B(2)C本例(1)求解主要用到了等差数列的性质:若m+n=p+q,则a m+a n=a p+a q.对于此性质,应注意:必须是两项相加等于两项相加,否则不一定成立.例如,a15≠a7+a8,但a6+a9=a7+a8;a1+a21≠a22,但a1+a21=2a11.本例(2)应用了等差数列的性质:若{a n},{b n}是等差数列,则{a n+b n}也是等差数列.灵活运用等差数列的某些性质,可以提高我们分析、解决数列综合问题的能力,应注意加强这方面的锻炼.[活学活用]1.已知{a n}为等差数列,若a1+a5+a9=π,则cos(a2+a8)的值为()A .-12B .-32 C.12 D.32 解析:选A a 1+a 5+a 9=3a 5=π,所以a 5=π3,而a 2+a 8=2a 5=2π3,所以cos(a 2+a 8)=cos 2π3=-12,故选A. 2.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=( )A .10B .18C .20D .28解析:选C 由等差数列的性质得:3a 5+a 7=2a 5+(a 5+a 7)=2a 5+(2a 6)=2(a 5+a 6)=2(a 3+a 8)=20,故选C.灵活设元求解等差数列[典例] (1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数.(2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数.[解] (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎨⎧ (a -d )+a +(a +d )=9,(a -d )a =6(a +d ),解得⎩⎨⎧a =3,d =-1.∴这三个数为4,3,2. (2)法一:设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ),依题意,2a =2,且(a -3d )(a +3d )=-8,即a =1,a 2-9d 2=-8,∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0,∴d =1,故所求的四个数为-2,0,2,4.法二:若设这四个数为a ,a +d ,a +2d ,a+3d (公差为d ),依题意,2a +3d =2,且a (a +3d )=-8,把a =1-32d 代入a (a +3d )=-8, 得⎝⎛⎭⎪⎪⎫1-32d ⎝ ⎛⎭⎪⎪⎫1+32d =-8, 即1-94d 2=-8, 化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2,a =-2.故所求的四个数为-2,0,2,4.常见设元技巧(1)某两个数是等差数列中的连续两个数且知其和,可设这两个数为:a -d ,a +d ,公差为2d ;(2)三个数成等差数列且知其和,常设此三数为:a -d ,a ,a +d ,公差为d ;(3)四个数成等差数列且知其和,常设成a -3d ,a -d ,a +d ,a +3d ,公差为2d .[活学活用]已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.解:设这四个数依次为a -3d ,a -d ,a +d ,a +3d (公差为2d ).由题设知⎩⎨⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40, 解得⎩⎪⎨⎪⎧ a =132,d =32或⎩⎪⎨⎪⎧ a =132,d =-32.∴这个数列为2,5,8,11或11,8,5,2.等差数列的实际应用[典例]某公司经销一种数码产品,第一年可获利200万元,从第二年起由于市场竞争方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?[解]设从第一年起,第n年的利润为a n 万元,则a1=200,a n+1-a n=-20(n∈N*),∴每年的利润构成一个等差数列{a n},从而a n=a1+(n-1)d=200+(n-1)×(-20)=220-20n.若a n<0,则该公司经销这一产品将亏损.∴由a n=220-20n<0,得n>11,即从第12年起,该公司经销此产品将亏损.[活学活用]某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,需要支付车费________元.解析:根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4 km处的车费,公差d=1.2,那么当出租车行至14 km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).答案:23.2层级一学业水平达标1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20 D.24解析:选B因为数列{a n}是等差数列,所以a2+a10=a4+a8=16.2.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6C.8 D.10解析:选A由等差数列的性质,得a1+a9=2a5,又∵a1+a9=10,即2a5=10,∴a5=5.3.下列说法中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列解析:选C因为a,b,c成等差数列,则2b=a+c,所以2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),所以a+2,b+2,c+2成等差数列.4.在等差数列{a n}中,a1=2,a3+a5=10,则a 7=( )A .5B .8C .10D .14解析:选B 由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8.5.等差数列{a n }中, a 2+a 5+a 8=9,那么方程x 2+(a 4+a 6)x +10=0的根的情况( )A .没有实根B .两个相等实根C .两个不等实根D .无法判断解析:选A 由a 2+a 5+a 8=9得a 5=3,∴a 4+a 6=6,方程转化为x 2+6x +10=0.因为Δ<0,所以方程没有实根.6.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.解析:设这三个数为a -d ,a ,a +d ,则⎩⎨⎧a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59.解得⎩⎨⎧ a =3,d =4或⎩⎨⎧a =3,d =-4.∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21.答案:-217.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.解析:∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0. ∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2.答案:1或28.已知等差数列{a n }满足a m -1+a m +1-a 2m -1=0,且m >1,则a 1+a 2m -1=________.解析:因为数列{a n }为等差数列,则 a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1,所以a 1+a 2m -1=2a m=2.答案:29.在等差数列{a n}中,若a1+a2+…+a5=30,a6+a7+…+a10=80,求a11+a12+…+a15.解:法一:由等差数列的性质得a1+a11=2a6,a2+a12=2a7,…,a5+a15=2a10.∴(a1+a2+…+a5)+(a11+a12+…+a15)=2(a6+a7+…+a10).∴a11+a12+…+a15=2(a6+a7+…+a10)-(a1+a2+…+a5)=2×80-30=130.法二:∵数列{a n}是等差数列,∴a1+a2+…+a5,a6+a7+…+a10,a11+a12+…+a15也成等差数列,即30,80,a11+a12+…+a15成等差数列.∴30+(a11+a12+…+a15)=2×80,∴a11+a12+…+a15=130.10.有一批影碟机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售.某单位购买一批此类影碟机,问去哪家商场买花费较少.解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元,售价依台数n成等差数列.设该数列为{a n}.a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于等于18台时,每台售价为(800-20n)元,当台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600元.作差:(800-20n)n-600n=20n(10-n),当n<10时,600n<(800-20n)n,当n=10时,600n=(800-20n)n,当10<n≤18时,(800-20n)n<600n,当n>18时,440n<600n.即当购买少于10台时到乙商场花费较少,当购买10台时到两商场购买花费相同,当购买多于10台时到甲商场购买花费较少.层级二应试能力达标1.已知等差数列{a n}:1,0,-1,-2,…;等差数列{b n}:0,20,40,60,…,则数列{a n+b n}是()A.公差为-1的等差数列B.公差为20的等差数列C.公差为-20的等差数列D.公差为19的等差数列解析:选D(a2+b2)-(a1+b1)=(a2-a1)+(b2-b1)=-1+20=19.2.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( )A. 3 B .±3 C .-33D .- 3解析:选D 由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan2π3=- 3.3.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1 B.34 C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2,再设此等差数列的公差为d ,则2a 1+3d =2, ∵a 1=14,∴d =12,∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74,∴|m -n |=|a 1a 4-a 2a 3| =⎪⎪⎪⎪⎪⎪⎪⎪14×74-34×54=12.4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升 B.6766升 C.4744升 D.3733升 解析:选B 设所构成的等差数列{a n }的首项为a 1,公差为d ,则有⎩⎨⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎨⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎪⎨⎪⎧a 1=1322,d =766,则a 5=a 1+4d =6766,故第5节的容积为6766升.5.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________.解析:设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18,即a 4a 7的最大值为18.答案:186.已知数列{a n }满足a 1=1,若点⎝⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n =________.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a nn =1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn =n ,所以a n =n 2.答案:n 27.数列{a n }为等差数列,b n =⎝⎛⎭⎪⎪⎫12a n ,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.解:∵b 1+b 2+b 3=⎝⎛⎭⎪⎪⎫12a 1+⎝ ⎛⎭⎪⎪⎫12a 2+⎝ ⎛⎭⎪⎪⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎪⎪⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3.∵a 1,a 2,a 3成等差数列,∴a 2=1,故可设a 1=1-d ,a 3=1+d ,由⎝⎛⎭⎪⎪⎫121-d +12+⎝ ⎛⎭⎪⎪⎫121+d=218,得2d+2-d=174,解得d =2或d =-2.当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3;当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n+5.8.下表是一个“等差数阵”:a1…47()()()…ja2…712()()()…ja3…()()()()()…ja4…()()()()()…j……………………a i1a i2a i3a i4a i5…a ij………………………其中每行、每列都是等差数列,a ij表示位于第i行第j列的数.(1)写出a45的值;(2)写出a ij的计算公式,以及2 017这个数在“等差数阵”中所在的一个位置.解:通过每行、每列都是等差数列求解.(1)a45表示数阵中第4行第5列的数.先看第1行,由题意4,7,…,a15,…成等差数列,公差d=7-4=3,则a15=4+(5-1)×3=16.再看第2行,同理可得a25=27.最后看第5列,由题意a15,a25,…,a45成等差数列,所以a45=a15+3d=16+3×(27-16)=49.(2)该“等差数阵“的第1行是首项为4,公差为3的等差数列a1j=4+3(j-1);第2行是首项为7,公差为5的等差数列a2j =7+5(j-1);…第i行是首项为4+3(i-1),公差为2i+1的等差数列,∴a ij=4+3(i-1)+(2i+1)(j-1)。
高中数学人教A版三维设计浙江专版必修讲义第二章
若 a 与 b 方向相反,则有 a∥b;零向量与任意向量平行,所以若|a|=0 或|b|=0,则 a∥b.
答案:①③④
9.如图,O 是正方形 ABCD 的中心.
(1)写出与向量 AB 相等的向量;
(2)写出与 OA 的模相等的向量.
解:(1)与向量 AB 相等的向量是 DC .
(2)与 OA 的模相等的向量有: OB , OC , OD , BO , CO , DO , AO .
寻找共线向量或相等向量的方法 (1)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与 反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量. (2)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同 向共线.
层级一 学业水平达标
选 C.
3.向量 AB 与向量 BC 共线,下列关于向量 AC 的说法中,正确的为( )
A.向量 AC 与向量 AB 一定同向
B.向量 AC ,向量 AB ,向量 BC 一定共线
C.向量 AC 与向量 BC 一定相等
D.以上说法都不正确
解析:选 B 根据共线向量定义,可知 AB , BC , AC 这三个向量一定为共线向量,
层级二 应试能力达标
7
1.如图所示,梯形 ABCD 中,对角线 AC 与 BD 交于点 P,点 E,F 分
别在两腰 AD,BC 上,EF 过点 P,且 EF∥AB,则下列等式成立的是( )
A. AD = BC B. AC = BD
C. PE = PF
D. EP = PF
解析:选 D 根据相等向量的定义,分析可得:
8.给出下列四个条件:①a=b;②|a|=|b|;③a 与 b 方向相反;④|a|=0 或|b|=0.其中
高中数学人教A版三维设计浙江专版必修讲义第二章平面向量数量积的物理背景及其含义含答案
[新知初探]
(1)两个非零向量的数量积:
已知条件
向量 a,b 是非零向量,它们的夹角为 θ
定义
a 与 b 的数量积(或内积)是数量|a||b|cos θ
记法
a·b=|a||b|cos θ
(2)零向量与任一向量的数量积: 规定:零向量与任一向量的数量积均为 0. [点睛] (1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两
即 4a2+4a·b+b2=a2+4a·b+4b2,
∴a2=b2.
∴(a+b)·(a-b)=a2-b2=0.
又 a 与 b 不共线,a+b≠0,a-b≠0,
∴(a+b)⊥(a-b).
题点三:利用夹角和垂直求参数
5
3.已知 a⊥b,|a|=2,|b|=3 且向量 3a+2b 与 ka-b 互相垂直,则 k 的值为( )
[小试身手] 1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)两个向量的数量积仍然是向量.( )
(2)若 a·b=b·c,则一定有 a=c.( )
(3)若 a,b 反向,则 a·b=-|a||b|.( )
(4)若 a·b=0,则 a⊥b.( )
答案:(1)× (2)× (3)√ (4)×
向量数量积的运算
[典例] (1)已知向量 a 与 b 的夹角为 120°,且|a|=4,|b|=2,求:①a·b; ②(a+b)· (a-2b).
(2)如图,正三角形 ABC 的边长为 2, AB =c, BC =a, CA=b,
求 a·b+b·c+c·a. [解] (1)①由已知得 a·b=|a||b|cos θ=4×2×cos 120°=-4. ②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12. (2)∵|a|=|b|=|c|= 2,且 a 与 b,b 与 c,c 与 a 的夹角均为 120°, ∴a·b+b·c+c·a= 2× 2×cos 120°×3=-3.
标题-2017-2018学年高中数学三维设计人教A版浙江专版选修2-2:第二章 2.1 2.1.2 反证法
2.1.2反证法预习课本P89~91,思考并完成下列问题(1)反证法的定义是什么?有什么特点?(2)利用反证法证题的关键是什么?步骤是什么?[新知初探]1.反证法的定义及证题的关键[点睛]对反证法概念的理解(1)反证法的原理是“否定之否定等于肯定”.第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定”.(2)反证法属“间接解题方法”.2.“反证法”和“证逆否命题”的区别与联系(1)联系:通过证明逆否命题成立来证明原命题成立和通过反证法说明原命题成立属于间接证明,都是很好的证明方法.(2)区别:证明逆否命题实际上就是从结论的反面出发,推出条件的反面成立.而反证法一般是假设结论的反面成立,然后通过推理导出矛盾.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)反证法属于间接证明问题的方法.()(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.()(3)反证法的实质是否定结论导出矛盾.()答案:(1)√(2)×(3)√2.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论A.①②B.①②④C.①②③D.②③答案:C3.如果两个实数之和为正数,则这两个数()A.一个是正数,一个是负数B.两个都是正数C.至少有一个正数D.两个都是负数答案:C4.用反证法证明“如果a>b,那么3a>3b”,假设的内容应是________.答案:3a≤3b[典例]已知三个正数a,b,c成等比数列,但不成等差数列.求证:a,b,c不成等差数列.[证明]假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b.∵a,b,c成等比数列,∴b2=ac,即b=ac,∴a+c+2ac=4ac,∴(a-c)2=0,即a=c.从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.1.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.2.用反证法证明数学命题的步骤[活学活用]已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负数根.证明:假设x 0是f (x )=0的负数根, 则x 0<0且x 0≠-1,且ax 0=-x 0-2x 0+1, 由0<ax 0<1⇒0<-x 0-2x 0+1<1, 解得12<x 0<2,这与x 0<0矛盾,所以假设不成立,故方程f (x )=0没有负数根.[0,x 2+2ax -2a =0中至少有一个方程有实数解.[证明] 假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即: ⎩⎪⎨⎪⎧(4a )2-4(-4a +3)<0,(a -1)2-4a 2<0,(2a )2+4×2a <0⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,⇒-32<a <-1,-2<a <0.这与已知a ≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.[一题多变]1.[变条件,变设问]将本题改为:已知下列三个方程x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个方程有实数根,如何求实数a 的取值范围?解:若方程没有一个有实根,则⎩⎪⎨⎪⎧16a 2-4(3-4a )<0,(a -1)2-4a 2<0,4a 2+8a <0,解得⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,即-32<a <-1,-2<a <0.故三个方程至少有一个方程有实根,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥-1或a ≤-32. 2.[变条件,变设问]将本题条件改为三个方程中至多有2个方程有实数根,求实数a 的取值范围.解:假设三个方程都有实数根,则 ⎩⎪⎨⎪⎧(4a )2-4(-4a +3)≥0,(a -1)2-4a 2≥0,(2a )2+4×2a ≥0,即⎩⎪⎨⎪⎧4a 2+4a -3≥0,3a 2+2a -1≤0,a 2+2a ≥0,解得⎩⎪⎨⎪⎧a ≤-32或a ≥12,-1≤a ≤13,a ≤-2或a ≥0.即a ∈∅.所以实数a 的取值范围为实数R.3.[变条件,变设问]已知a ,b ,c ,d ∈R ,且a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ≥0,b ≥0,c ≥0,d ≥0. ∵a +b =c +d =1, ∴(a +b )(c +d )=1, ∴ac +bd +bc +ad =1.而ac +bd +bc +ad >ac +bd >1,与上式矛盾, ∴假设不成立,∴a ,b ,c ,d 中至少有一个是负数.用反证法证明“至多”“至少”等问题的两个关注点(1)反设情况要全面,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.(2)常用题型:对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.用反证法证明唯一性命题[典例]求证:两条相交直线有且只有一个交点.[证明]假设结论不成立,则有两种可能:无交点或不止一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.巧用反证法证明唯一性命题(1)当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明.(2)用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立.(3)证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.[活学活用]求证:过直线外一点只有一条直线与它平行.证明:已知:直线b∥a,A∉a,A∈b,求证:直线b唯一.假设过点A还有一条直线b′∥a.根据平行公理,∵b∥a,∴b∥b′,与b∩b′=A矛盾,∴假设不成立,原命题成立.层级一学业水平达标1.用反证法证明命题:“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:选B根据反证法的三个基本步骤“反设—归谬—结论”可知顺序应为③①②.2.用反证法证明命题“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为()A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除解析:选B“至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”,故选B.3.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是() A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角解析:选B“至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.5.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B∵c>d,∴-c<-d,a>b,∴a-c与b-d的大小无法比较.可采用反证法,当a-c>b-d成立时,假设a≤b,∵-c<-d,∴a-c<b-d,与题设矛盾,∴a >b.综上可知,“a>b”是“a-c>b-d”的必要不充分条件.6.否定“自然数a,b,c中恰有一个偶数”时,正确的反设是________.答案:自然数a,b,c中至少有两个偶数或都是奇数7.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.答案:a≠1或b≠18.和两条异面直线AB,CD都相交的两条直线AC,BD的位置关系是____________.解析:假设AC与BD共面于平面α,则A,C,B,D都在平面α内,∴AB⊂α,CD ⊂α,这与AB,CD异面相矛盾,故AC与BD异面.答案:异面9.求证:1,3,2不能为同一等差数列的三项.证明:假设1,3,2是某一等差数列的三项,设这一等差数列的公差为d,则1=3-md,2=3+nd,其中m,n为两个正整数,由上面两式消去d,得n+2m=3(n+m).因为n+2m为有理数,而3(n+m)为无理数,所以n+2m≠3(n+m),矛盾,因此假设不成立,即1,3,2不能为同一等差数列的三项.10.已知函数f(x)在R上是增函数,a,b∈R.(1)求证:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中的命题的逆命题是否成立?并证明你的结论.解:(1)证明:当a+b≥0时,a≥-b且b≥-a.∵f(x)在R上是增函数,∴f(a)≥f(-b),f(b)≥f(-a),∴f(a)+f(b)≥f(-a)+f(-b).(2)(1)中命题的逆命题为“如果f(a)+f(b)≥f(-a)+f(-b),那么a+b≥0”,此命题成立.用反证法证明如下:假设a+b<0,则a<-b,∴f(a)<f(-b).同理可得f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),这与f(a)+f(b)≥f(-a)+f(-b)矛盾,故假设不成立,∴a+b≥0成立,即(1)中命题的逆命题成立.层级二应试能力达标1.用反证法证明命题“关于x的方程ax=b(a≠0)有且只有一个解”时,反设是关于x 的方程ax=b(a≠0)()A.无解B.有两解C.至少有两解D.无解或至少有两解解析:选D“唯一”的否定是“至少两解或无解”.2.下列四个命题中错误的是()A.在△ABC中,若∠A=90°,则∠B一定是锐角B.17,13,11不可能成等差数列C .在△ABC 中,若a >b >c ,则∠C >60°D .若n 为整数且n 2为偶数,则n 是偶数解析:选C 显然A 、B 、D 命题均真,C 项中若a >b >c ,则∠A >∠B >∠C ,若∠C >60°,则∠A >60°,∠B >60°,∴∠A +∠B +∠C >180°与∠A +∠B +∠C =180°矛盾,故选C.3.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a ( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2解析:选C 假设都大于-2,则a +1b +b +1c +c +1a >-6,但⎝⎛⎭⎫a +1b +⎝⎛⎭⎫b +1c +⎝⎛⎭⎫c +1a =⎝⎛⎭⎫a +1a +⎝⎛⎭⎫b +1b +⎝⎛⎭⎫c +1c ≤-2+(-2)+(-2)=-6,矛盾. 4.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定解析:选B 分△ABC 的直线只能过一个顶点且与对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为钝角,则∠ADC 为锐角.而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD 与△ACD 不可能相似,与已知不符,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意.5.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是________________.解析:至少有一个实根的否定是没有实根, 故要做的假设是“方程x 3+ax +b =0没有实根”. 答案:方程x 3+ax +b =0没有实根6.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0. 但0≠奇数,这一矛盾说明p 为偶数. 解析:据题目要求及解题步骤,∵a 1-1,a 2-2,...,a 7-7均为奇数, ∴(a 1-1)+(a 2-2)+...+(a 7-7)也为奇数. 即(a 1+a 2+...+a 7)-(1+2+...+7)为奇数. 又∵a 1,a 2,...,a 7是1,2,...,7的一个排列, ∴a 1+a 2+...+a 7=1+2+...+7,故上式为0, 所以奇数=(a 1-1)+(a 2-2)+...+(a 7-7) =(a 1+a 2+...+a 7)-(1+2+...+7)=0. 答案:(a 1-1)+(a 2-2)+...+(a 7-7) (a 1+a 2+...+a 7)-(1+2+ (7)7.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+yx<2中至少有一个成立.证明:假设1+x y <2和1+yx <2都不成立, 即1+x y ≥2,1+yx≥2. 又∵x ,y 都是正数,∴1+x ≥2y,1+y ≥2x . 两式相加得到2+(x +y )≥2(x +y ),∴x +y ≤2.与已知x +y >2矛盾,所以假设不成立, 所以1+x y <2和1+yx <2中至少有一个成立.8.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).(1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列. 解:(1)由题意可知,1-a 2n +1=23(1-a 2n ). 令c n =1-a 2n ,则c n +1=23c n . 又c 1=1-a 21=34,则数列{c n }是首项为c 1=34,公比为23的等比数列,即c n =34·⎝⎛⎭⎫23n -1, 故1-a 2n =34·⎝⎛⎭⎫23n -1⇒a 2n=1-34·⎝⎛⎭⎫23n -1. 又a 1=12>0,a n a n +1<0,故a n =(-1)n -11-34·⎝⎛⎭⎫23n -1.b n =a 2n +1-a 2n =⎣⎡⎦⎤1-34·⎝⎛⎭⎫23n -1-34·⎝⎛⎭⎫23n -1=14·⎝⎛⎭⎫23n -1. (2)用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b r >b s >b t ,则只可能有2b s =b r +b t 成立. ∴2·14·⎝⎛⎭⎫23s -1=14·⎝⎛⎭⎫23r -1+14·⎝⎛⎭⎫23t -1,两边同乘以3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s .由于r <s <t ,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.。
2017-2018学年高中数学三维设计人教A版浙江专版必修5讲义:第二章 2.5 等比数列的前n项和 Word版含答案
等比数列的前n项和第一课时等比数列的前n项和[新知初探]1.等比数列的前n 项和公式[点睛]在应用公式求和时,应注意到S n =a 1(1-q n )1-q 的使用条件为q ≠1,而当q =1时应按常数列求和,即S n =na 1.2.等比数列前n 项和的性质 (1)等比数列{a n }中,若项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q . (2)若等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n …成等比数列(其中S n ,S 2n -S n ,S 3n -S 2n …均不为0).(3)若一个非常数列{a n }的前n 项和S n =Aq n -A (A ≠0,q ≠0,n ∈N *),则数列{a n }为等比数列,即S n =Aq n -A (A ≠0,q ≠0,q ≠1,n ∈N *)⇔数列{a n }为等比数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)求等比数列{a n }的前n 项和时可直接套用公式S n =a 1(1-q n )1-q 来求( )(2)首项为a 的数列既是等差数列又是等比数列,则其前n 项和为S n =na ( ) (3)若某数列的前n 项和公式为S n =-aq n +a (a ≠0,q ≠0且q ≠1,n ∈N *),则此数列一定是等比数列( )解析:(1)错误.在求等比数列前n 项和时,首先应看公比q 是否为1,若q ≠1,可直接套用,否则应讨论求和.(2)正确.若数列既是等差数列,又是等比数列,则是非零常数列,所以前n 项和为S n=na .(3)正确.根据等比数列前n 项和公式S n =a 1(1-q n )1-q(q ≠0且q ≠1)变形为:S n =a 11-q -a 11-q q n (q ≠0且q ≠1),若令a =a 11-q, 则和式可变形为S n =a -aq n . 答案:(1)× (2)√ (3)√2.设等比数列{a n }的前n 项和为S n ,已知a 1=2,a 2=4,那么S 10等于( ) A .210+2 B .29-2 C .210-2D .211-2解析:选D 等比数列的公比q =a 2a 1=42=2,所以前10项和S 10=a 1(1-q 10)1-q =2(1-210)1-2=211-2,选D.3.等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( ) A .4 B .-4 C .2D .-2解析:选A 由S 5=a 1[1-(-2)5]1-(-2)=44,得a 1=4.4.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A .2B .4C.152D.172解析:选C S 4a 2=a 1(1-q 4)1-q×1a 1q =1-q 4(1-q )q =152.[典例] 在等比数列{a n }中,公比为q ,前n 项和为S n . (1)a 1=8,a n =14,S n =634,求n ;(2)S 3=72,S 6=632,求a n 及S n .[解](1)显然q ≠1,由S n =a 1-a n q 1-q ,即8-14q 1-q =634,∴q =12.又a n =a 1q n -1,即8×⎝⎛⎭⎫12n -1=14,∴n =6. (2)法一:由S 6≠2S 3知q ≠1,由题意得⎩⎪⎨⎪⎧a 1(1-q 3)1-q=72, ①a 1(1-q 6)1-q =632,②②÷①,得1+q 3=9,∴q 3=8,即q =2.代入①得a 1=12,∴a n =a 1q n -1=12×2n -1=2n -2,S n =a 1(1-q n )1-q=2n -1-12.法二:由S 3=a 1+a 2+a 3,S 6=S 3+a 4+a 5+a 6=S 3+q 3(a 1+a 2+a 3)=S 3+q 3S 3=(1+q 3)S 3. ∴1+q 3=S 6S 3=9,∴q 3=8,即q =2.代入①得a 1=12,∴a n =a 1q n -1=12×2n -1=2n -2,S n =a 1(1-q n )1-q =2n -1-12.在等比数列{a n }的五个量a 1,q ,a n ,n ,S n 中,a 1与q 是最基本的元素,当条件与结论间的联系不明显时,均可以用a 1与q 表示a n 与S n ,从而列方程组求解,在解方程组时经常用到两式相除达到整体消元的目的.这是方程思想与整体思想在数列中的具体应用.[活学活用]已知a 6-a 4=24,a 3·a 5=64,求S 8.解:法一:由题意,得⎩⎪⎨⎪⎧a 1q 5-a 1q 3=24,(a 1q 2)·(a 1q 4)=64,化简得⎩⎪⎨⎪⎧a 1q 3(q 2-1)=24, ①a 1q 3=±8, ②①÷②,得q 2-1=±3,负值舍去, ∴q 2=4,∴q =2或q =-2. 当q =2时,代入①得a 1=1. ∴S 8=a 1(1-q 8)1-q=255.当q =-2时,代入①得a 1=-1. ∴S 8=a 1(1-q 8)1-q=2553.综上知S 8=255或2553.法二:由等比数列的性质得a 3·a 5=a 24=64,∴a 4=±8. 当a 4=8时,∵a 6-a 4=24,∴a 6=32,∴q 2=a 6a 4=4,∴q =±2.当a 4=-8时,a 6-a 4=24,∴a 6=16. ∴q 2=a 6a 4=-2,无解.故q =±2.当q =2时,a 1=a 4q 3=1,S 8=a 1(1-q 8)1-q =255.当q =-2时,a 1=a 4q 3=-1,S 8=a 1(1-q 8)1-q =2553.综上知,S 8=255或2553.[典例] 等比数列{a n }的前n 项和S n =48,前2n 项和S 2n =60,则前3n 项和S 3n =________.[解析]法一:设公比为q ,由已知易知q ≠1,由⎩⎪⎨⎪⎧a 1(1-q n )1-q=48,a 1(1-q2n )1-q=60⇒⎩⎪⎨⎪⎧q n =14,a11-q=64,所以S 3n =a 1(1-q 3n )1-q =a 11-q·[1-(q n )3]=64×⎝⎛⎭⎫1-164=63. 法二:由S n ,S 2n -S n ,S 3n -S 2n 成等比数列,得(S 2n -S n )2=S n ·(S 3n -S 2n ),即(60-48)2=48(S 3n -60)⇒S 3n =63.[答案]63运用等比数列求和性质解题时,一定要注意性质成立的条件.否则会出现失误.如S n ,S 2n -S n ,S 3n -S 2n …成等比数列的前提是S n ,S 2n -S n ,S 3n -S 2n 均不为0.[活学活用]1.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2 B.73C.83D .3解析:选B 由等比数列的性质:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是,由S 6=3S 3,可推出S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.故选B.2.一个项数为偶数的等比数列{a n },全部各项之和为偶数项之和的4倍,前3项之积为64,求数列的通项公式.解:设数列{a n }的首项为a 1,公比为q ,所有奇数项、偶数项之和分别记作S 奇,S 偶,由题意可知,S 奇+S 偶=4S 偶,即S 奇=3S 偶.因为数列{a n }的项数为偶数,所以有q =S 偶S 奇=13.又因为a 1·a 1q ·a 1q 2=64,所以a 31·q 3=64,即a 1=12,故所求通项公式为a n=12×⎝⎛⎭⎫13n -1.等比数列及其前n 项和的综合应用[典例] (1)已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n )B .16(1-2-n )C.323(1-4-n )D.323(1-2-n )(2)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则①a 3=________;②S 1+S 2+…+S 100=________. [解析](1)由a 5=a 2q 3,得q 3=18,所以q =12,而数列{a n a n +1}也为等比数列,首项a 1·a 2=8,公比q 2=14,所以a 1a 2+a 2a 3+…+a n a n +1 =8(1-4-n )1-14=323(1-4-n ).(2)①∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1(n ≥2),∴a n =(-1)n a n -(-1)n -1a n -1+12n .当n 为偶数时,a n -1=-12n ,当n 为奇数时,2a n +a n -1=12n ,∴当n =4时,a 3=-124=-116.②根据以上{a n }的关系式及递推式可求得. a 1=-122,a 3=-124,a 5=-126,a 7=-128,a 2=122,a 4=124,a 6=126,a 8=128.∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100=⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100 =13⎝⎛⎭⎫12100-1. [答案](1)C (2)①-116②13⎝⎛⎭⎫12100-1求解数列综合问题的步骤(1)分析题设条件.(2)分清是a n 与a n +1的关系,还是a n 与S n 的关系.(3)转化为等差数列或等比数列,特别注意a n =S n -S n -1(n ≥2,n 为正整数)在a n 与S n的关系中的应用.(4)整理求解. [活学活用]1.公差不为0的等差数列{a n }的部分项ak 1,ak 2,ak 3,…构成等比数列,且k 1=1,k 2=2,k 3=6,则k 4=________.解析:设等差数列{a n }的公差为d ,因为a 1,a 2,a 6成等比数列,所以a 22=a 1·a 6, 即(a 1+d )2=a 1·(a 1+5d ),所以d =3a 1,所以a 2=4a 1,所以等比数列ak 1,ak 2,ak 3,…的公比q =4, 所以ak 4=a 1·q 3=a 1·43=64a 1.又ak 4=a 1+(k 4-1)·d =a 1+(k 4-1)·(3a 1), 所以a 1+(k 4-1)·(3a 1)=64a 1,a 1≠0, 所以3k 4-2=64,所以k 4=22. 答案:222.(浙江高考)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解:(1)由题意得⎩⎪⎨⎪⎧ a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n , 所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2)设b n =|3n -1-n -2|,n ∈N *,则b 1=2,b 2=1. 当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3. 设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,因为当n =2时,也符合T n =3n -n 2-5n +112.所以T n=⎩⎨⎧2, n =1,3n-n 2-5n +112,n ≥2,n ∈N *.层级一 学业水平达标1.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q 等于( ) A .1 B .0 C .1或0D .-1解析:选A 因为S n -S n -1=a n ,又{S n }是等差数列,所以a n 为定值,即数列{a n }为常数列,所以q =a na n -1=1.2.已知数列{a n }是公比为3的等比数列,其前n 项和S n =3n +k (n ∈N *),则实数k 为( ) A .0B .1C .-1D .2解析:选C 由数列{a n }的前n 项和S n =3n +k (n ∈N *), 当n =1时,a 1=S 1=3+k ; 当n ≥2时,a n =S n -S n -1=3n +k -(3n -1+k ) =2×3n -1.因为数列{a n }是公比为3的等比数列,所以a 1=2×31-1=3+k ,解得k =-1. 3.已知等比数列的公比为2,且前5项和为1,那么前10项和等于( ) A .31 B .33 C .35D .37解析:选B 根据等比数列性质得S 10-S 5S 5=q 5,∴S 10-11=25,∴S 10=33.4.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=52,且a 2+a 4=54,则S n a n =( )A .4n -1 B .4n -1 C .2n -1D .2n -1解析:选D 设等比数列{a n }的公比为q ,则⎩⎨⎧a 1(1+q 2)=52,a 1q (1+q 2)=54,解得⎩⎪⎨⎪⎧a 1=2,q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=2×⎝⎛⎭⎫1-12n 1-122×⎝⎛⎭⎫12n -1=2n -1.故选D. 5.等比数列{a n }的前n 项和为S n ,S 5=2,S 10=6,则a 16+a 17+a 18+a 19+a 20等于( ) A .8 B .12 C .16D .24解析:选C 设等比数列{a n }的公比为q ,因为S 2n -S n =q n S n ,所以S 10-S 5=q 5S 5,所以6-2=2q 5,所以q 5=2,所以a 16+a 17+a 18+a 19+a 20=a 1q 15+a 2q 15+a 3q 15+a 4q 15+a 5q 15=q 15(a 1+a 2+a 3+a 4+a 5)=q 15S 5=23×2=16.6.等比数列{a n }共有2n 项,它的全部各项的和是奇数项的和的3倍,则公比q =________.解析:设{a n }的公比为q ,则奇数项也构成等比数列,其公比为q 2,首项为a 1, 偶数项之和与奇数项之和分别为S 偶,S 奇, 由题意S 偶+S 奇=3S 奇, 即S 偶=2S 奇,因为数列{a n }的项数为偶数, 所以q =S 偶S 奇=2.答案:27.等比数列{a n }中,若a 1+a 3+…+a 99=150,且公比q =2,则数列{a n }的前100项和为________.解析:由a 2+a 4+…+a 100a 1+a 3+…+a 99=q ,q =2,得a 2+a 4+…+a 100150=2⇒a 2+a 4+…+a 100=300,则数列{a n }的前100项的和S 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=150+300=450.答案:4508.在等比数列{a n }中,a 1+a 2+…+a 6=10,1a 1+1a 2+…+1a 6=5,则a 1·a 2·…·a 6=________.解析:由等比数列的前n 项和公式,a 1+a 2+…+a 6=a 1-a 6q 1-q =10,1a 1+1a 2+…+1a 6=1a 1-1a 6·1q 1-1q =a 6q -a 1a 1a 6q -1=5,把a 1-a 6q =10(1-q )代入,得a 1a 6=2,又a 1·a 2·…·a 6=(a 1·a 6)3=23=8.答案:89.设等比数列{a n }的前n 项和为S n .已知a 2=6,6a 1+a 3=30,求a n 和S n .解:设{a n }的公比为q ,由题设得⎩⎪⎨⎪⎧a 1q =6,6a 1+a 1q 2=30,解得⎩⎪⎨⎪⎧ a 1=3,q =2或⎩⎪⎨⎪⎧a 1=2,q =3.当a 1=3,q =2时,a n =3×2n -1,S n =3(2n -1); 当a 1=2,q =3时,a n =2×3n -1,S n =3n -1.10.已知{a n }为递减的等比数列,且{a 1,a 2,a 3}{-4,-3,-2,0,1,2,3,4}. (1)求数列{a n }的通项公式;(2)当b n =1-(-1)n 2a n 时,求证:b 1+b 2+b 3+…+b 2n -1<163.解:(1)∵{a n }是递减的等比数列, ∴数列{a n }的公比q 是正数,又∵{a 1,a 2,a 3}{-4,-3,-2,0,1,2,3,4}, ∴a 1=4,a 2=2,a 3=1. ∴q =a 2a 1=24=12,∴a n =a 1q n -1=82n .(2)证明:由已知得b n =8[1-(-1)n ]2n +1, 当n =2k (k ∈N *)时,b n =0, 当n =2k -1(k ∈N *)时,b n =a n .即b n =⎩⎪⎨⎪⎧0,(n =2k ,k ∈N *),a n ,(n =2k -1,k ∈N *),∴b 1+b 2+b 3+…+b 2n -2+b 2n -1=a 1+a 3+…+a 2n -1=4⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=163⎣⎡⎦⎤1-⎝⎛⎭⎫14n <163. 层级二 应试能力达标1.设S n 为等比数列{a n }的前n 项和,且8a 2+a 5=0,则S 5S 2等于( )A .11B .5C .-8D .-11解析:选D 设{a n }的公比为q .因为8a 2+a 5=0. 所以8a 2+a 2·q 3=0.所以a 2(8+q 3)=0. 因为a 2≠0,所以q 3=-8.所以q =-2.所以S 5S 2=a 1(1-q 5)1-q a 1(1-q 2)1-q=1-q 51-q 2=1+321-4=33-3=-11.故选D.2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5B.3116或5C.3116D.158解析:选C 由题意,q ≠1,由9S 3=S 6,得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q =2,故a n =a 1q n -1=2n -1,1a n=⎝⎛⎭⎫12n -1,∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,其前5项和为1×⎣⎡⎦⎤1-⎝⎛⎭⎫1251-12=3116.3.在等比数列{a n }中,若a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n =( )A .(2n -1)2B.13(4n -1)C.13(2n -1) D .4n -1解析:选B 由a 1+a 2+…+a n =2n -1,得a 1=1,a 2=2,所以{a n }是以1为首项,2为公比的等比数列,所以{a 2n }是以1为首项,4为公比的等比数列,所以a 21+a 22+…+a 2n =1×(1-4n )1-4=13(4n -1). 4.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )A .190B .191C .192D .193解析:选C 设最下面一层灯的盏数为a 1,则公比q =12,n =7,由a 1⎣⎡⎦⎤1-⎝⎛⎭⎫1271-12=381,解得a 1=192.5.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________. 解析:依题意得a 1=1,a 2=-2,a 3=4,a 4=-8,所以a 1+|a 2|+a 3+|a 4|=15. 答案:156.设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎫n ,S n n (n ∈N *)均在直线y =x +12上.若b n =则数列{b n }的前n 项和T n =________.解析:依题意得S n n =n +12,即S n =n 2+12n .当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫n 2+12n -[(n -1)2+12(n -1)]=2n -12;当n =1时,a 1=S 1=32,符合a n =2n -12,所以a n =2n -12(n ∈N *),则b n =32n ,由b n +1b n=32(n +1)32n =32=9,可知{b n }为等比数列,b 1=32×1=9,故T n =9(1-9n )1-9=9n +1-98.答案:9n +1-987.某地本年度旅游业收入估计为400万元,由于该地出台了一系列措施,进一步发展旅游业,预计今后旅游业的收入每年会比上一年增加14.(1)求n 年内旅游业的总收入;(2)试估计大约几年后,旅游业的总收入超过8 000万元. 解:(1)设第n 年的旅游业收入估计为a n 万元, 则a 1=400,a n +1=⎝⎛⎭⎫1+14a n =54a n , ∴a n +1a n=54,∴数列{a n }是公比为54的等比数列,∴S n =a 1(1-q n)1-q =400⎣⎡⎦⎤1-⎝⎛⎭⎫54n 1-54精品教育资料=1 600⎣⎡⎦⎤⎝⎛⎭⎫54n -1, 即n 年内旅游业总收入为1 600⎣⎡⎦⎤⎝⎛⎭⎫54n -1万元. (2)由(1)知S n =1 600⎣⎡⎦⎤⎝⎛⎭⎫54n -1, 令S n >8 000,即1 600⎣⎡⎦⎤⎝⎛⎭⎫54n -1>8 000, ∴⎝⎛⎭⎫54n >6,∴lg ⎝⎛⎭⎫54n >lg 6, ∴n >lg 6lg 54≈8.029 6.∴大约第9年后,旅游业总收入超过8 000万元.8.在数列{a n }中,若a n =⎩⎪⎨⎪⎧1,n =1,a n -1+12,n ≥2,求数列{a n }的前n 项和.解:当n =1时,S 1=a 1=1. 当n ≥2时,若a =0,有a n =⎩⎪⎨⎪⎧1,n =1,12,n ≥2,则S n =1+12(n -1)=n +12.精品教育资料若a =1,有a n =⎩⎪⎨⎪⎧1,n =1,32,n ≥2,则S n =1+32(n -1)=3n -12.若a ≠0且a ≠1,则S n =1+⎝⎛⎭⎫12+a +⎝⎛⎭⎫12+a 2+…+⎝⎛⎭⎫12+a n -1 =1+12(n -1)+(a +a 2+…+a n -1)=n +12+a -a n 1-a.综上所述,S n=⎩⎪⎪⎨⎪⎪⎧1,n =1,n +12,a =0且n ≥2,3n -12,a =1且n ≥2,n +12+a -a n1-a ,a ≠0且a ≠1且n ≥2.第二课时 数列求和(习题课)[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q( ) (2)当n ≥2时,1n 2-1=12⎝⎛⎭⎫1n -1-1n +1( )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得( )(4)数列⎩⎨⎧⎭⎬⎫12n +2n -1的前n 项和为n 2+12n ( )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12( )解析:(1)正确.公比不等于1的等比数列的前n 项和S n =a 1(1-q n )1-q =a 1-a n +11-q .(2)正确.化简即得. (3)错误.a 的值不能确定.(4)错误.设数列的通项公式为a n =12n +2n -1,则用分组转化法求和,S n =⎝⎛⎭⎫12+122+…+12n +()2+4+…+2n -n =12⎝⎛⎭⎫1-12n 1-12+(2+2n )n 2-n=1-12n +n +n 2-n =1-12n +n 2.(5)正确.由题意a n =a 1+a 2-a 1+…+a n -1-a n -2+a n -a n -1=1-3n 1-3=3n -12.答案:(1)√ (2)√ (3)× (4)× (5)√2.已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则S 40=( )A .290B .390C .410D .430解析:选C 设数列{a n }的公差为d .∵S 2=a 3,∴2a 1+d =a 1+2d ,∴d =12,∴S 40=40×12+40×392×12=410.3.设等比数列{a n }的前n 项和为S n ,已知a 1=2,且a n +2a n +1+a n +2=0(n ∈N *),则S 2 016=________.解析:设等比数列{a n }的公比为q ,则a n +2a n +1+a n +2=a n (1+2q +q 2)=0,∵a n ≠0,∴q 2+2q +1=0.解得q =-1,∴S 2 016=0. 答案:04.已知数列{a n }的通项公式a n =2n -12n ,其前n 项和S n =32164,则项数n 等于________.解析:a n =2n -12n =1-12n ,∴S n =n -12⎝⎛⎭⎫1-12n 1-12=n -1+12n =32164=5+164,∴n =6. 答案:6[典例] 已知数列{c n }:112,214,318,…,试求{c n }的前n 项和.[解] 令{c n }的前n 项和为S n , 则S n =112+214+318+…+⎣⎡⎦⎤n +⎝⎛⎭⎫12n =(1+2+3+…+n )+⎣⎡⎦⎤12+14+18+…+⎝⎛⎭⎫12n=n (n +1)2+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=n (n +1)2+1-⎝⎛⎭⎫12n . 即数列{c n }的前n 项和为S n =n 2+n 2+1-⎝⎛⎭⎫12n .若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.[活学活用]1.数列{(-1)n n }的前n 项和为S n ,则S 2 016等于( ) A .1 008 B .-1 008 C .2 016D .-2 016解析:选A S 2 016=(-1+2)+(-3+4)+…+(-2 015+2 016)=1 008.2.数列{a n }的通项a n =n 2⎝⎛⎭⎫cos 2 n π3-sin 2 n π3,其前n 项和为S n ,则S 30为________. 解析:∵a n =n 2⎝⎛⎭⎫cos 2 n π3-sin 2 n π3=n 2cos 2n π3, ∴S 30=12·cos2π3+22·cos 4π3+32·cos 2π+…+302·cos 20π =-12×12-12×22+32-12×42-12×52+62+…-12×282-12×292+302=-12[(12+22-2×32)+(42+52-2×62)+…+(282+292-2×302)]。
高中数学人教A版三维设计浙江专版必修讲义第二章
CE
2. 如图,点 O 是平行四边形 ABCD 的中心,E,F 分别在边 CD,AB 上,且 AF ED=FB=
12.
求证:点 E,O,F 在同一直线上.
证明:设 AB =m, AD =n,
由ECDE=AFFB=12,知 E,F 分别是 CD,AB 的三等分点,
∴
FO
=
FA
+
AO
=1 3
BA+
12AC
则|a|=|b|,a·b=0,
又 DE = DA + AE =-a+12b,
AF = AB + BF =b+12a,
( )( ) 所以 AF · DE =
b+12a · -a+12b
13 1
11
= - 2a2- 4a·b+ 2b2= - 2|a|2+ 2|b|2= 0.故
AF
⊥
DE ,即 AF⊥DE.
的形状为________.
[解] (1) 如图,设 AB 表示水流的速度, AD 表示渡船的速度, AC 表示渡船实际垂
直过江的速度.
因为 AB + AD = AC ,所以四边形 ABCD 为平行四边形. 在 Rt△ ACD 中 ,∠ACD=90°,| DC |= | AB |= 12.5,| AD |=
25,所以∠CAD=30°,即渡船要垂直地渡过长江,其航向应为北偏西 30°.
解:W=F· AB =(F1+F2)· AB =[(3,4)+(6,-5)]·(-13,-15)=(9,-1)·(-13,-15)=
9×(-13)+(-1)×(-15)=-117+15=-102(焦). 2.[变条件]本例(2)条件变为:两个力 F1=i+j,F2=4i-5j 作用于同一质点,使该质点
7
2017-2018学年新人教A版高中数学必修5全册教案精编227P
2017~2018学年新人教A版高中数学必修5全册教案汇编目录第一章解三角形 (1)1.1.1 正弦定理 (1)1.1.2 余弦定理 (12)1.1.3 解三角形的进一步讨论 (21)1.2.1 解决有关测量距离的问题 (28)1.2.2 解决有关测量高度的问题 (36)1.2.3 解决有关测量角度的问题 (42)1.2.4 解决有关三角形计算的问题 (48)1.3 实习作业 (55)第二章数列 (61)2.1.1 数列的概念与简单表示法(一) (61)2.1.2 数列的概念与简单表示法(二) (67)2.2.1 等差数列的概念、等差数列的通项公式 (74)2.2.2 等差数列的通项公式 (81)2.3.1 等差数列的前n项和(一) (87)2.3.2 等差数列的前n项和(二) (95)2.4.1 等比数列的概念及通项公式 (101)2.4.2 等比数列的概基本性质及其应用 (111)2.5.1 等比数列前n项和公式的推导与应用 (118)2.5.2 求数列前n项和知识的运用 (126)第三章不等式 (136)3.1.1 不等关系与不等式(一) (136)3.1.2 不等关系与不等式(一) (144)3.2.1 一元二次不等式的概念和一元二次不等式的解法 (152)3.2.2 一元二次不等式的解法的应用(一) (160)3.2.3 一元二次不等式的解法的应用(二) (169)3.3.1 二元一次不等式(组)与平面区域 (179)3.3.2 简单线性规划问题 (193)3.4.1 基本不等式的证明 (209)3.4.2 基本不等式的应用(一) (217)3.4.3 基本不等式的应用(二) (223)第一章解三角形1.1.1 正弦定理在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角如右图,在Rt△ABC是锐角三角形时,设边ABsin B=B sin A,则sinR c B 2='.1.1.2余弦定理+B2=C2能否用b、c、A求解a?1.1.2B)、A来表示A.由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过的长分别是c、a、b.1.1.3解三角形的进一步讨论: AB∶BC=AD∶DC.b=5,c =3,判断△ABC的类型.是直角三角形,是钝角三角形,△是锐角三角形。
2017-2018学年高中数学三维设计人教A版浙江专版必修5讲义:第一章 1.1 正弦定理和余弦定理 Word版含答案
正弦定理和余弦定理1.1.1正弦定理[新知初探]1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C. [点睛]正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)正弦定理适用于任意三角形( )(2)在△ABC 中,等式b sin A =a sin B 总能成立( ) (3)在△ABC 中,已知a ,b ,A ,则此三角形有唯一解( ) 解析:(1)正确.正弦定理适用于任意三角形. (2)正确.由正弦定理知a sin A =b sin B,即b sin A =a sin B. (3)错误.在△ABC 中,已知a ,b ,A ,此三角形的解有可能是无解、一解、两解的情况,具体情况由a ,b ,A 的值来定.答案:(1)√ (2)√ (3)× 2.在△ABC 中,下列式子与sin Aa的值相等的是( ) A.b c B.sin B sin AC.sin C cD.c sin C解析:选C 由正弦定理得,a sin A =csin C ,所以sin A a =sin C c .3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .52B .10 3C.1033D .5 6解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =π6,b =2,以下错误的是( )A .若a =1,则c 有一解B .若a =3,则c 有两解C .若a =45,则c 无解 D .若a =3,则c 有两解解析:选D a =2 sin π6=1时,c 有一解;当a <1时,c 无解;当1<a <2时,c 有两个解;a >2时,c 有一解.故选D.[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解]A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角. (2)由正弦定理公式的变形,求另外的两条边.[注意]若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43B .2 3 C. 3D.32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.已知两边及其中一边的对角解三角形[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解]由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°.当A =60°时,C =180°-45°-60°=75°,c =b sin Csin B =2sin 75°sin 45°=6+22;当A =120°时,C =180°-45°-120°=15°,c =b sin Csin B =2sin 15°sin 45°=6-22.综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22.∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°.∴B =75°,b =c sin Bsin C =6·sin 75°sin 60°=3+1.三角形形状的判断[典例] 在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,判断△ABC 的形状.解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B.由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.利用正弦定理判断三角形的形状的两条途径(1)化角为边......将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如a =b ,a 2+b 2=c 2等,进而确定三角形的形状.利用的公式为:sin A =a 2R ,sin B =b 2R ,sin C =c2R. (2)化边为角......将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.利用的公式为:a =2R sin A ,b =2R sin B ,c =2R sin C .[活学活用]在△ABC 中,已知a cos A =b cos B ,试判断△ABC 的形状. 解:由正弦定理,a sin A =b sin B =csin C=2R ,所以a cos A =b cos B 可化为sin A cos A =sin B cos B ,sin 2A =sin 2B ,又△ABC 中,A ,B ,C ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 的形状为等腰或直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37D.57解析:选A 根据正弦定理得sin A sin B =a b =53.2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos Cc,则C 的值为( ) A .30°B .45° C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc , 则cos C =sin C ,即C =45°,故选B.4.△ABC 中,A =π6,B =π4,b =2,则a 等于( )A .1B .2 C.3D .2 3解析:选A由正弦定理得asin π6=2sinπ4,∴a=1,故选A.5.在△ABC中,角A,B,C所对的边分别是a,b,c,且a=3b sin A,则sin B=()A. 3B.3 3C.63D.-63解析:选B由正弦定理得a=2R sin A,b=2R sin B,所以sin A=3sin B sin A,故sinB=33.6.下列条件判断三角形解的情况,正确的是______(填序号).①a=8,b=16,A=30°,有两解;②b=18,c=20,B=60°,有一解;③a=15,b=2,A=90°,无解;④a=40,b=30,A=120°,有一解.解析:①中a=b sin A,有一解;②中c sin B<b<c,有两解;③中A=90°且a>b,有一解;④中a>b且A=120°,有一解.综上,④正确.答案:④7.在△ABC中,若(sin A+sin B)(sin A-sin B)=sin2C,则△ABC的形状是________.解析:由已知得sin2A-sin2B=sin2C,根据正弦定理知sin A=a2R,sin B=b2R,sin C=c2R,所以⎝⎛⎭⎫a2R2-⎝⎛⎭⎫b2R2=⎝⎛⎭⎫c2R2,即a2-b2=c2,故b2+c2=a2.所以△ABC是直角三角形.答案:直角三角形8.在锐角△ABC中,BC=1,B=2A,则ACcos A=________.解析:由正弦定理及已知得1sin A=ACsin 2A,∴ACcos A=2.答案:29.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长.解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1,所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =c sin C ,∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°, ∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°解析:选A ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C ,∴tan C =- 3.又0°<C <180°,∴C =120°.故选A.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A.2B .2 C .4 D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a ,∵△ABC 的周长为4(2+1),∴⎩⎪⎨⎪⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C. 3.在△ABC 中,A =60°,a =13,则a +b +c sin A +sin B +sin C 等于( )A.833B.2393C.2633D .2 3解析:选B 由a =2R sin A ,b =2R sin B ,c =2R sin C 得a +b +c sin A +sin B +sin C =2R =asin A =13sin 60°=2393. 4.在△ABC 中,若A <B <C ,且A +C =2B ,最大边为最小边的2倍,则三个角A ∶B ∶C =( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .4∶5∶6解析:选A 由A <B <C ,且A +C =2B ,A +B +C =π,可得B =π3,又最大边为最小边的2倍,所以c =2a ,所以sin C =2sin A ,即sin ⎝⎛⎭⎫2π3-A =2sin A ⇒tan A =33,又0<A <π,所以A =π6,从而C =π2,则三个角A ∶B ∶C =1∶2∶3,故选A.5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=b sin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BCsin A ,即sin C =AB ·sin ABC=5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314.答案:33147.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a sin A =c3cos C .(1)求角C 的大小;(2)如果4,求△ABC 的面积. 解:(1)由⎩⎨⎧a sin A =c sin C,asin A =c3cos C,得sin C =3cos C ,故tan C =3,又C ∈(0,π),所以 C =π3.(2)由C =12ba =4得ab =8, 所以S △ABC =12ab sin C =12×8×32=2 3.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0.(1)求B ;(2)若b =3,求a +c 的取值范围.解:(1)由正弦定理知:sin B cos C +3sin B sin C -sin A -sin C =0, ∵sin A =sin (B +C )=sin B cos C +cos B sin C 代入上式得: 3sin B sin C -cos B sin C -sin C =0. ∵sin C >0,∴3sin B -cos B -1=0, 即sin ⎝⎛⎭⎫B -π6=12, ∵B ∈(0,π),∴B =π3.(2)由(1)得:2R =bsin B =2,a +c =2R (sin A +sin C )=23sin ⎝⎛⎭⎫C +π6. ∵C ∈⎝⎛⎭⎫0,2π3,∴23sin ⎝⎛⎭⎫C +π6∈(3,23], ∴a +c 的取值范围为(3,23].1.1.2 余弦定理[新知初探] 余弦定理[点睛]余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形( ) (2)在△ABC 中,若a 2>b 2+c 2,则△ABC 一定为钝角三角形( ) (3)在△ABC 中,已知两边和其夹角时,△ABC 不唯一( )解析:(1)正确.余弦定理反映了任意三角形的边角关系,它适合于任何三角形. (2)正确.当a 2>b 2+c 2时,cos A =b 2+c 2-a 22bc <0.因为0<A <π,故A 一定为钝角,△ABC 为钝角三角形.(3)错误.当△ABC 已知两边及其夹角时可利用余弦定理求得第三边长且唯一,因此△ABC唯一确定.答案:(1)√ (2)√ (3)×2.在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ) A.39B .8 3 C .102D .7 3解析:选D 由余弦定理得: c =92+(23)2-2×9×23×cos 150°=147 =7 3.3.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .60°B .45° C .120°D .30°解析:选C 由cos A =b 2+c 2-a 22bc =-12,∴A =120°.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24D.23解析:选B 由b 2=ac 且c =2a 得cos B =a 2+c 2-b 22ac=a 2+4a 2-2a 22a ·2a =34.故选 B.已知两边与一角解三角形[典例](1)在△ABC中,已知b=60 cm,c=60 3 cm,A=π6,则a=________cm;(2)在△ABC中,若AB=5,AC=5,且cos C=910,则BC=________.[解析](1)由余弦定理得:a=602+(603)2-2×60×603×cosπ6=4×602-3×602=60(cm).(2)由余弦定理得:(5)2=52+BC2-2×5×BC×910,所以BC2-9BC+20=0,解得BC=4或BC=5.[答案](1)60(2)4或5已知三角形的两边及一角解三角形的方法先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角)求解.若用正弦定理求解,需对角的取值进行取舍,而用余弦定理就不存在这些问题(在(0,π)[活学活用]在△ABC 中,a =23,c =6+2,B =45°,解这个三角形. 解:根据余弦定理得,b 2=a 2+c 2-2ac cos B =(23)2+(6+2)2-2×23×(6+2)×cos 45°=8, ∴b =2 2.又∵cos A =b 2+c 2-a 22bc =8+(6+2)2-(23)22×22×(6+2)=12,∴A=60°,C =180°-(A +B )=75°.[典例] 在△ABC 中,已知a =23,b =6,c =3+3,解此三角形. [解]法一:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.同理可求B =30°,故C =180°-A -B =180°-45°-30°=105°. 法二:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.由正弦定理a sin A =b sin B 知23sin 45°=6sin B ,得sin B =6·sin 45°23=12. 由a >b 知A >B ,∴B =30°.故C =180°-A -B =180°-45°-30°=105°.(1)已知三边求角的基本思路是:利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为负,角为钝角,其思路清晰,结果唯一.(2)若已知三角形的三边的关系或比例关系,常根据边的关系直接代入化简或利用比例性质,转化为已知三边求解.[活学活用]已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )·(a +b +c )=ab ,则C 的大小为( )A .60°B .90°C .120°D .150°解析:选C ∵(a +b -c )(a +b +c )=ab , ∴c 2=a 2+b 2+ab ,由余弦定理可得,cos C =a 2+b 2-c 22ab=a 2+b 2-(a 2+b 2+ab )2ab =-ab 2ab =-12,∵0°<C <180°,∴C =120°,故选C.利用余弦定理判断三角形形状[典例] 在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.解:[法一 化角为边] 将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝ ⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab,∴b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.∴A =90°.∴△ABC 是直角三角形. [法二 化边为角]由正弦定理,已知条件可化为sin 2C sin 2B +sin 2C sin 2B =2sin B sin C cos B cos C . 又sin B sin C ≠0,∴sin B sin C =cos B cos C ,即cos(B +C )=0. 又∵0°<B +C <180°,∴B +C =90°,∴A =90°. ∴△ABC 是直角三角形.利用余弦定理判断三角形形状的两种途径(1)化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. (2)化角的关系:将条件转化为角与角之间关系,通过三角变换得出关系进行判断. [活学活用]在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.题点一:利用正、余弦定理解三角形1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB.(1)求角B 的大小;(2)若A =75°,b =2,求a ,c . 解:(1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B. 故cos B =22,因此B =45°. (2)sin A =sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64.故由正弦定理得a =b ·sin Asin B =1+ 3.由已知得,C =180°-45°-75°=60°, c =b ·sin Csin B =2×sin 60°sin 45°= 6.题点二:利用正、余弦定理证明三角形中的恒等式 2.在△ABC 中,求证a 2sin 2B +b 2sin 2A =2ab sin C .。
高中数学三维设计人教A版浙江专版必修5讲义:第二章2.3等差数列前n项和含答案
等差数列的前n项和本P42~45,思考并完成以下数列前n和的定是什么?通常用什么符号表示?(2)能否根据首、末与数求出等差数列的前n和?(3)能否根据首、公差与数求出等差数列的前n和?[新知初探]1.数列的前 n和于数列{a n},一般地称a1+a2+⋯+a n数列{a n}的前n和,用S n表示,即S n=a1+a2+⋯+a n.2.等差数列的前n和公式量首,末与数首,公差与数用na1+an nn-1dSn=S n=na1+公式22[小身手]1.判断以下命是否正确.(正确的打“√〞,的打“×〞)(1)数列的前n和就是指从数列的第1a1起,一直到第n a n所有的和()(2)an=Sn-Sn-1(n≥2)化后关于n与an的函数式即数列{an}的通公式()(3)在等差数列{an}中,当数m偶数2n,S偶-S奇=an+1()解析:(1)正确.由前n和的定可知正确..例如数列{a n}中,S n=n2+2.n≥2,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1缺乏a n=S n-S n-1=2n-1,故命..当数m偶数2n,S偶-S奇=nd.答案:(1)√(2)×(3)×2.等差数列{a n }中,a 1=1,d =1,那么S n 等于( )A .nB .n(n +1)C .n(n -1)D.nn +12解析:选D因为a =1,d =1,所以S =n +nn -1×1= 2n +n 2-n n 2+n nn +1,==1n2222应选D.3.设等差数列{a n }的前n 项和为S n ,假设a 1=1,S 4=20,那么S 6等于()2A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d ,4×3即 由得4a 1+ 2 d =20,4×1+4×3d =20,解得d =3,1 226×5S 6=6×2+2×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,那么S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以 2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12等差数列的前 n 项和的有关计算[典例] 等差数列{a n }.(1)a 1 = 5,a 15=- 3,S n =-5,求d 和n ;6 2 (2)a 1 =4,S 8=172,求a 8和d.[解](1)∵a 15=5+(15-1)d =-3,∴d =-1.62 6S n =na 1+nn -1d =-5,2解得n =15或n =-4(舍).(2) 由,得S 8=8a 1+a 8=84+a 8=172,22解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列中的根本计算(1)利用根本量求值:等差数列的通项公式和前n 项和公式中有五个量 a 1,d ,n ,a n 和三求二〞.一般是利用公式列出根本量a 1和d 的方程组,解出a 1和S n ,这五个量可以“知d ,便可解决问题.解题时注意整体代换的思想.结合等差数列的性质解题:等差数列的常用性质:假设 m +n =p +q(m ,n ,p ,q ∈N *),那么a m +a n =a p +a q ,常与求和公式S n =na 1+a n结合使用.2[活学活用]设S n 是等差数列{a n }的前n 项和, a 2=3,a 8=11,那么S 9等于() A .13 B .35C .49D .63解析:选D ∵{a n }为等差数列,∴a 1+a 9=a 2+a 8,S 9=9a 2+a8=9×14=63.22S n 求a n 问题= [典例] 数列{a n }的前n 项和S n =-2n 2+n +2.求{a n }的通项公式;判断{a n }是否为等差数列?[解](1)∵S n =-2n 2+n +2,∴当n ≥2时,S n -1=-2(n -1)2+(n -1)+2=-2n 2+5n -1,a n =S n -S n -1(-2n 2+n +2)-(-2n 2+5n -1)=-4n+3.又a1=S1=1,不满足a n=-4n+3,1,n=1,∴数列{a n}的通项公式是a n=-4n+3,n≥2.由(1)知,当n≥2时,a n+1-a n=[-4(n+1)+3]-(-4n+3)=-4,但a2-a1=-5-1=-6≠-4,∴{a n}不满足等差数列的定义,{a n}不是等差数列.(1)S n求a n,其方法是a n=S n-S n-1(n≥2),这里常常因为忽略条件“n≥2而〞出错.在书写{a n}的通项公式时,务必验证n=1是否满足a n(n≥2)的情形.如果不满足,那么通项公式只能用a n=S1,n=1,表示.S n-S n-1,n≥2[活学活用]1.数列{a n}的前n项和为S n=-n2,那么()A.a n=2n+1B.a n=-2n+1C.a n=-2n-1D.a n=2n-1解析:选B当n=1时,a1=S1=-1;n≥2时,a n=S n-S n-1=-n2+(n-1)2=-2n+1,此时满足a1=-1.综上可知a n=-2n+1.2.S n是数列{a n}的前n项和,根据条件求 a n.S n=2n2+3n+2;S n=3n-1.解:(1)当n=1时,a1=S1=7,n≥2时,a n=S n-S n-1=(2n2+3n+2)-[2(n-1)2+3(n-1)+2]=4n+1,又a1=7不适合上式,7,n=1,所以a n=4n+1,n≥2.当n=1时,a1=S1=2,n≥2时,a n=S n-S n-1=(3n-1)-(3n-1-1)=2×3n-1,显然a1适合上式,所以a n=2×3n-1(n∈N*).等差数列的前n项和性质[典例](1)等差数列前n 的和30,前2n 的和100,它的前3n 的和()A .130B .170C .210D .260(2)等差数列{a n }共有2n +1,所有的奇数之和132,所有的偶数之和120,n 等于________.n2n +2 5(3){a n },{b n }均等差数列,其前n 和分S n ,T n ,且S=,a =________.T nn +3b 5[解析](1)利用等差数列的性:(2) S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n -S n ),30+(S 3n -100)=2(100-30),解得S 3n =210.因等差数列共有2n +1,所以S 奇-S 偶=a n +1=S 2n+1,即132-120=132+120,2n +12n +1解得n =10.由等差数列的性,知a 1+a 9 a 1+a 9×9=S 9=2×9+2=5a 5=2 = 2.b 5b 1+b 9b 1+b 9T 99+332×925[答案] (1)C (2)10(3)3等差数列的前 n 和常用的性等差数列的依次k 之和,S k ,S 2k -S k ,S 3k -S 2k ⋯成公差k 2d 的等差数列.数列{a n }是等差数列?S n =an 2+bn(a ,b 常数)?数列S n n 等差数列.(3)假设S 奇表示奇数的和, S 偶表示偶数的和,公差d ,①当数偶数2n ,S 偶-S 奇=nd ,S奇=a n;Sa偶n +1②当数奇数2n -1,S 奇-S 偶=a n ,S奇n .=S 偶n -1[活学活用]1.等差数列 {a n }的前n 和S n ,假设S 4=8,S 8=20,a 11+a 12+a 13+a 14=()A .18B .17C .16D .15解析:选A设{a n }的公差为d ,那么a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 41=16d ,解得d =4,a 11+a 12+a 13+a 14=S 4+40d =18.S n2.等差数列{a n }的通项公式是 a n =2n +1,其前n 项和为S n ,那么数列n 的前10项和________.解析:因为a n =2n +1,所以a 1=3,所以 S n =n3+2n +1=n 2+2n ,2S n所以n =n +2, 所以Snn是公差为 1,首项为 3的等差数列,10×9所以前10项和为3×10+ ×1=75.答案:75等差数列的前 n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解]由S 17=S 9,得17×17-19×9-1d ,25×17+2d =25×9+2解得d =-2,[法一公式法]S n =25n +nn -1×(-2)=-(n -13)2+169.2由二次函数性质得,当 n =13 时,S n 有最大值169.[法二邻项变号法]a n =25-2n -1≥0,∵a 1=25>0,由a n +1=25-2n ≤0,n ≤13 1,2得即121≤n ≤131.n ≥12 1,2 22又n ∈N *,∴当n =13时,S有最大值169.n求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+nn -1d 2dn 配方,转化为求二次函数的最值问题,借助函2d =n +a 1-22数单调性来解决.(2)邻项变号法:当a 1>0,d<0时,满足a n ≥0,的项数n 使S n 取最大值.a n +1≤0当a 1<0,d>0时,满足a n ≤0,的项数n 使S n 取最小值.a n +1≥0[活学活用]{a n }为等差数列,假设a 11 S n 取得最小正<-1,且它的前n 项和S n 有最大值,那么当a 10值时,n =()A .11B .17C .19D .21解析:选C∵S n 有最大值,∴d<0,那么a 10>a 11,又a 11<-1,∴a 11<0<a 10,a 10+a 11<0,a 10S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.应选 C.层级一 学业水平达标1.数列{a n }的通项公式为a n =2-3n ,那么{a n }的前n 项和S n 等于()3 2nB .- 32 - nA .-n +2 n 22 232 n3 2nC.n +2D.n -222解析:选A∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n -1+2-3n=-3n 2+n .22 2 2.等差数列{a n }的前n 项和为S n ,假设a 7>0,a 8<0,那么以下结论正确的选项是()A .S 7<S 8B .S 15<S 16C .S 13>0D .S 15>0解析:选C由等差数列的性质及求和公式得,S 13=13a 1+a 13=13a 7>0,S 15=215 a 1+a 15=15a 8<0,应选C.23.设等差数列 {a n }的前n 项和为S n ,假设S 3=9,S 6=36,那么a 7+a 8+a 9等于()A .63B .45C .36D .27解析:选B∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.等差数列 {a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,那么S n 取得最小值时 n 的值为( )A .5B .6C .7D .8解析:选B由7a 5+5a 9=0,得a 1=-17.d 3a 9>a 5,所以d>0,a 1<0.因为函数y =d 2+a 1-d的图象的对称轴为 =1-a 1=1+17=37,取最接近的整数2x2xx 2d2366,故S n 取得最小值时 n 的值为6.5.设S n 是等差数列{a n }的前n 项和,假设 a 5=5,那么S 9等于()a 3 9 S 5A .1B .-11C .2D.299×2a 59 2a 1+a9解析:选ASS 5=5a 1+a 5= 5×2a 32= 9a 5=9×5=1.5a 3596.假设等差数列 {a n }的前n 项和为S n =An 2+Bn ,那么该数列的公差为 ________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当 n ≥2时,a n =S n -S n -1=An 2+Bn A(n -1)2-B(n -1)=2An +B -A ,当n =1时满足,所以d =2A. 答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,那么m =________.解析:因为S n 是等差数列{a n }的前n 项和,所以数列S n是等差数列,所以S m +S m+2=nm +2m 2S m +1 -2 3=0,解得m =4. + ,即 m ++m 1 m 2答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为 33,那么这个数列的中=是________,数是________.解析:等差数列{a n}的数 2n +1, S 奇=a 1+a 3+⋯+a 2n +1n +1a 1+a2n +12(n +1)a n +1,S 偶=a 2+a 4+a 6+⋯+a 2n =na 2+a 2n=na n +1,2S 奇n +144所以 = = ,解得n =3,所以数 2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11所求中.答案:11 79.数列{a n }的前n 和S n ,且足 log 2(S n +1)=n +1,求数列{a n }的通公式.n +1S n =2n +1-1.n =1,a 1=S 1=3,n ≥2,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n ,又当n =1,3≠21,3,n =1,a n =2n ,n ≥2. 10.在等差数列 {an }中,S n 其前n 的和,a 1+a 3=22,S 5=45.求a n ,S n ;数列{S n }中最大S k ,求k.解:(1)由得2a 2=22, a 2=11, 5a 3=45,即a 3=9,a 1=13, 所以a n =-2n +15,S n =-n 2+14n.所以d =-2,由a n ≥0可得n ≤7,所以S 7最大,k =7.二 能力达1.等差数列 {a n }的前n 和S n ,S 4=40,S n =210,S n -4=130,n =( )A .12B .14C .16D .18解析:B因S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以 4(a 1+a n )=120,a 1+a n =30,由S n =na 1+a n=210,得n =14.22.在等差数列{a n }中,S n 是其前n 项和,且S 2021=S 2021,S k =S 2021,那么正整数k 为( )A . 2021B .2021C . 2021D .2021解析:选C因为等差数列的前 n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2021=S 2021,S k =S 2021,可得2021+2021=2021+k,解得k =2021.应选C.223.S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,那么S n 取最小值时,n 的值为()A . 11B .12C . 13D .14解析:选A 设等差数列{a n }的公差为 d ,由2S 21+S 25=0得,67a 1+720d =0,又d>0,67a 11=67(a 1+10d)=67a 1+670d<0,67a 12=67(a 1+11d)=67a 1+737d>0,即a 11<0,a 12>0.应选A.4.等差数列{a n }和{b n }的前n 项和分别为A n 7n +45a nA n 和B n ,且B n =+3 ,那么使得b n 为整n数的正整数n 的个数是()A .2B .3C .4D .5a 1+a 2n-1a 1+a 2n-12n -1解析:选D ∵a n=22+45= 14n +38=7==A 2n -1=72n -1b n+b -+b --- ++b 12n1b 12n1B 2n132n -12n12n222+12 ,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5.n + 15.假设数列{a n }是等差数列,首项 a 1<0,a 203+a 204>0,a 203·a 204<0,那么使前n 项和S n <0的最大自然数n 是________.(1) 解析:由a 203+a 204>0?a 1+a 406>0?S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d>0,那么数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.等差数列 {a n }的前n 项和为S n ,假设S 4≤4,S 5≥15,那么a 4的最小值为________.解析:S 4=2(a 1+a 4)≤4?2a 3-d ≤2,S 5=5a 3≥15?a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.等差数列 {a n }的公差d>0,前n 项和为S n ,且a 2a 3=45,S 4=28.求数列{a n }的通项公式;S n(2)假设b n =n +c (c 非零常数),且数列{b n }也是等差数列,求 c 的. 解:(1)∵S 4=28,∴a 1+a 4×4=28,a 1+a 4=14,a 2+a 3=14,2 a 2a 3=45,公差d>0, ∴a 2<a 3,∴a 2=5,a 3=9, a 1+d =5, a 1=1, ∴解得 ∴a n =4n -3. a 1+2d =9,d =4,n = 2n 2-n (2)由(1),知S n =2n 2-n ,∴b n =S ,n +c n +c ∴ b 1=1,b 2=6,b 3=15. 即 1+c2+c 3+c{b n }也是等差数列,∴b 1+b 3=2b 2,2×6=1+15, 2+c1+c3+c1 解得c =-2(c =0舍去). 8.在等差数列 {a n }中,a 10=23,a 25=-22.数列{a n }前多少和最大? 求{|a n |}的前n 和S n . a 1+9d =23, a 1=50,解:(1)由 得 a 1+24d =-22,d =-3, a n =a 1+(n -1)d =-3n +53.53 令a n >0,得 n<3, ∴当n ≤17,n ∈N *,a n >0;n ≥18,n ∈N *,a n <0,∴{a n }的前17和最大. 当n ≤17,n ∈N *,|a 1|+|a 2|+⋯+|a n|=a 1+a 2+⋯+a n =na 1+nn -12 = n ≥18,n ∈N *,|a 1|+|a 2|+⋯+|a n | a 1+a 2+⋯+a 17-a 18-a 19-⋯-a n32103d =-2n +2n.=2(a 1+a 2+⋯+a 17)-(a 1+a 2+⋯+a n )2-3×172+103×17--3n 2+103n 2222 32 103=n - 2 n +884. 23 2 103 * ,-n + 2 n ,n ≤17,n ∈N ∴S n = 23 2 103*. n - 2 n +884,n ≥18,n ∈N2。
高中数学三维设计人教A版浙江专版必修5讲义:第二章 2.4 等比数列 含答案
等比数列第一课时等比数列的概念及通项公式[新知初探]1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).[点睛](1)“从第2项起”,也就是说等比数列中至少含有三项;(2)“每一项与它的前一项的比”不可理解为“每相邻两项的比”;(3)“同一常数q”,q是等比数列的公比,即q=a na n-1(n≥2)或q=a n+1a n.特别注意,q不可以为零,当q=1时,等比数列为常数列,非零的常数列是特殊的等比数列.2.等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,这三个数满足关系式G=±ab.[点睛](1)G是a与b的等比中项,则a与b的符号相同,符号相反的两个实数不存在等比中项.G=±ab,即等比中项有两个,且互为相反数.(2)当G 2=ab 时,G 不一定是a 与b 的等比中项.例如02=5×0,但0,0,5不是等比数列.3.等比数列的通项公式等比数列{a n }的首项为a 1,公比为q (q ≠0),则通项公式为:a n =a 1q n -1.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若一个数列从第二项起每一项与前一项的比为常数,则该数列为等比数列( ) (2)等比数列的首项不能为零,但公比可以为零( ) (3)常数列一定为等比数列( ) (4)任何两个数都有等比中项( )解析:(1)错误,根据等比数列的定义,只有比值为同一个常数时,该数列才是等比数列.(2)错误,当公比为零时,根据等比数列的定义,数列中的项也为零. (3)错误,当常数列不为零时,该数列才是等比数列.(4)错误.当两数同号时才有等比中项,异号时不存在等比中项. 答案:(1)× (2)× (3)× (4)× 2.下列数列为等比数列的是( ) A .2,22,3×22,… B.1a ,1a 2,1a 3,… C .s -1,(s -1)2,(s -1)3,…D .0,0,0,…解析:选B A 、C 、D 不是等比数列,A 中不满足定义,C 、D 中项可为0,不符合定义.3.等比数列的首项为98,末项为13,公比为23,则这个数列的项数为( )A .3B .4C .5D .6解析:选B ∵13=98·⎝⎛⎭⎫23n -1,∴827=⎝⎛⎭⎫23n -1,即⎝⎛⎭⎫233=⎝⎛⎭⎫23n -1, ∴n -1=3,∴n =4.4.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________.解析:设公比为q ,则3(a n +a n q 2)=10a n q ,即3q 2-10q +3=0,解得q =3或q =13,又因为a 1=-2且数列{a n }为等比递增数列,所以q =13.答案:13[典例] (1)在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( )A .3B .4C .5D .6(2)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.[解析] (1)因为a n =a 1q n -1,所以12×⎝⎛⎭⎫12n -1=132,即⎝⎛⎭⎫12n =⎝⎛⎭⎫125,解得n =5. (2)由2(a n +a n +2)=5a n +1⇒2q 2-5q +2=0⇒q =2或12,由a 25=a 10=a 1q 9>0⇒a 1>0,又数列{a n }递增,所以q =2.a 25=a 10⇒(a 1q 4)2=a 1q 9⇒a 1=q =2,所以数列{a n }的通项公式为a n =2n.[答案] (1)C (2)2n[活学活用] 在等比数列{a n }中, (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .解:(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ②由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=2253n .(2)法一:因为⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ③a 3+a 6=a 1q 2+a 1q 5=9, ④由④③得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1, 即26-n =20,所以n =6.法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32. 由a n =a 1q n -1=1,得n =6.[典例] (1)在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项是( )A .±4B .4C .±14D.14(2)已知b 是a ,c 的等比中项,求证:ab +bc 是a 2+b 2与b 2+c 2的等比中项. [解析] (1)由a n =18×2n -1=2n -4知,a 4=1,a 8=24,所以a 4与a 8的等比中项为±4.答案:A(2)证明:因为b 是a ,c 的等比中项, 所以b 2=ac ,且a ,b ,c 均不为零,又(a 2+b 2)(b 2+c 2)=a 2b 2+a 2c 2+b 4+b 2c 2=a 2b 2+2a 2c 2+b 2c 2,(ab +bc )2=a 2b 2+2ab 2c +b 2c 2=a 2b 2+2a 2c 2+b 2c 2,所以(ab +bc )2=(a 2+b 2)(b 2+c 2),即ab +bc 是a 2+b 2与b 2+c 2的等比中项.[活学活用]1.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9D .b =-3,ac =-9解析:选B 因为b 2=(-1)×(-9)=9,且b 与首项-1同号, 所以b =-3,且a ,c 必同号. 所以ac =b 2=9.2.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________. 解析:由已知可得(a +1)2=(a -1)(a +4), 解得a =5,所以a 1=4,a 2=6, 所以q =a 2a 1=64=32,所以a n =4×⎝⎛⎭⎫32n -1. 答案:4×⎝⎛⎭⎫32n -1[典例] 在数列{a n }中,若a n >0,且a n +1=2a n +3(n ∈N *).证明:数列{a n +3}是等比数列.证明:[法一 定义法] ∵a n >0,∴a n +3>0. 又∵a n +1=2a n +3,∴a n +1+3a n +3=2a n +3+3a n +3=2(a n +3)a n +3=2. ∴数列{a n +3}是首项为a 1+3,公比为2的等比数列. [法二 等比中项法] ∵a n >0,∴a n +3>0. 又∵a n +1=2a n +3, ∴a n +2=4a n +9. ∴(a n +2+3)(a n +3) =(4a n +12)(a n +3) =(2a n +6)2 =(a n +1+3)2.即a n +3,a n +1+3,a n +2+3成等比数列, ∴数列{a n +3}是等比数列.[活学活用](1)已知各项均不为0的数列{a n }中,a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数成等差数列,证明:a 1,a 3,a 5成等比数列.(2)已知数列{a n }是首项为2,公差为-1的等差数列,令b n =⎝⎛⎭⎫12a n ,求证数列{b n }是等比数列,并求其通项公式.证明:(1)由已知,有2a 2=a 1+a 3,① a 23=a 2·a 4,② 2a 4=1a 3+1a 5.③由③得2a 4=a 3+a 5a 3·a 5,所以a 4=2a 3·a 5a 3+a 5.④由①得a 2=a 1+a 32.⑤将④⑤代入②,得a 23=a 1+a 32·2a 3·a 5a 3+a 5. ∴a 3=(a 1+a 3)a 5a 3+a 5,即a 3(a 3+a 5)=a 5(a 1+a 3).化简,得a 23=a 1·a 5.又a 1,a 3,a 5均不为0,所以a 1,a 3,a 5成等比数列. (2)依题意a n =2+(n -1)×(-1)=3-n , 于是b n =⎝⎛⎭⎫123-n .而b n b n -1=⎝⎛⎭⎫123-n⎝⎛⎭⎫124-n =⎝⎛⎭⎫12-1=2. ∴数列{b n }是公比为2的等比数列,通项公式为b n =2n -3.层级一 学业水平达标1.2+3和2-3的等比中项是( ) A .1 B .-1 C .±1D .2解析:选C 设2+3和2-3的等比中项为G , 则G 2=(2+3)(2-3)=1, ∴G =±1.2.在首项a 1=1,公比q =2的等比数列{a n }中,当a n =64时,项数n 等于( ) A .4 B .5 C .6D .7解析:选D 因为a n =a 1q n -1,所以1×2n -1=64,即2n -1=26,得n -1=6,解得n =7.3.设等差数列{a n }的公差d 不为0,a 1=9d ,若a k 是a 1与a 2k 的等比中项,则k 等于( )A .2B .4C .6D .8解析:选B ∵a n =(n +8)d ,又∵a 2k =a 1·a 2k , ∴[(k +8)d ]2=9d ·(2k +8)d , 解得k =-2(舍去)或k =4.4.等比数列{a n }的公比为q ,且|q |≠1,a 1=-1,若a m =a 1·a 2·a 3·a 4·a 5,则m 等于( ) A .9 B .10 C .11D .12解析:选C ∵a 1·a 2·a 3·a 4·a 5=a 1·a 1q ·a 1q 2·a 1q 3·a 1q 4=a 51·q 10=-q 10,a m =a 1q m -1=-q m -1,∴-q 10=-q m -1,∴10=m -1,∴m =11.5.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( ) A .(-2)n -1B .-(-2n -1)C .(-2)nD .-(-2)n解析:选A 设公比为q ,则a 1q 4=-8a 1q , 又a 1≠0,q ≠0,所以q 3=-8,q =-2, 又a 5>a 2,所以a 2<0,a 5>0, 从而a 1>0,即a 1=1,故a n =(-2)n -1.6.等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 解析:∵a 3a 1=q 2,∴q 2=-8-2=4,即q =±2.当q =-2时,a n =a 1q n -1=-2×(-2)n -1=(-2)n ; 当q =2时,a n =a 1q n -1=-2×2n -1=-2n . 答案:(-2)n 或-2n7.已知等比数列{a n }的各项均为正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=________.解析:由题设a 1,12a 3,2a 2成等差数列可得a 1+2a 2=a 3,即q 2-2q -1=0,所以q =2+1,a 8+a 9a 6+a 7=a 8(1+q )a 6(1+q )=q 2=3+2 2.答案:3+2 28.已知三个数成等比数列,其积为512,如果第一个数与第三个数各减去2,则此时的三个数成等差数列,则原来的三个数的和等于________.解析:依题意设原来的三个数依次为aq ,a ,aq . ∵a q·a ·aq =512,∴a =8. 又∵第一个数与第三个数各减去2后的三个数成等差数列, ∴⎝⎛⎭⎫a q -2+(aq -2)=2a ,∴2q 2-5q +2=0,∴q =2或q =12,∴原来的三个数为4,8,16或16,8,4. ∵4+8+16=16+8+4=28, ∴原来的三个数的和等于28. 答案:289.在四个正数中,前三个成等差数列,和为48,后三个成等比数列,积为8 000,求这四个数.解:设前三个数分别为a -d ,a ,a +d ,则有 (a -d )+a +(a +d )=48,即a =16. 设后三个数分别为bq ,b ,bq ,则有b q·b ·bq =b 3=8 000,即b =20, ∴这四个数分别为m,16,20,n , ∴m =2×16-20=12,n =20216=25.即所求的四个数分别为12,16,20,25.10.已知递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项,求a n .解:设等比数列{a n }的公比为q .依题意,知2(a 3+2)=a 2+a 4, ∴a 2+a 3+a 4=3a 3+4=28, ∴a 3=8,a 2+a 4=20,∴8q +8q =20,解得q =2或q =12(舍去). 又a 1=a 3q 2=2,∴a n =2n .层级二 应试能力达标1.设a 1,a 2,a 3,a 4成等比数列,其公比为2,则2a 1+a 22a 3+a 4的值为( )A.14 B.12 C.18D .1解析:选A 原式=2a 1+a 2q 2(2a 1+a 2)=1q 2=14.2.在等比数列{a n }中,已知a 1=13,a 5=3,则a 3=( )A .1B .3C .±1D .±3解析:选A 由a 5=a 1·q 4=3,所以q 4=9,得q 2=3,a 3=a 1·q 2=13×3=1.3.设a 1=2,数列{1+2a n }是公比为3的等比数列,则a 6等于( ) A .607.5 B .608 C .607D .159解析:选C ∵1+2a n =(1+2a 1)×3n -1, ∴1+2a 6=5×35,∴a 6=5×243-12=607.4.如图给出了一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,14 12,1434,38,316…记第i 行第j 列的数为a ij (i ,j ∈N *),则a 53的值为( ) A.116B.18C.516D.54解析:选C 第一列构成首项为14,公差为14的等差数列,所以a 51=14+(5-1)×14=54.又因为从第三行起每一行数成等比数列,而且每一行的公比都相等,所以第5行构成首项为54,公比为12的等比数列,所以a 53=54×⎝⎛⎭⎫122=516. 5.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________. 解析:由a n =2S n -3得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2), ∴a n =-a n -1(n ≥2),a na n -1=-1(n ≥2).故{a n }是公比为-1的等比数列,令n =1得a 1=2a 1-3,∴a 1=3,故a n =3·(-1)n -1. 答案:a n =3·(-1)n -16.在等差数列{a n }中,a 1=2,a 3=6,若将a 1,a 4,a 5都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为________.解析:设等差数列{a n }的公差为d ,所求的数为m ,则⎩⎪⎨⎪⎧a 1=2,a 3=a 1+2d =6,∴d =2,∴a 4=8,a 5=10,∵a 1+m ,a 4+m ,a 5+m 成等比数列,∴(a 4+m )2=(a 1+m )(a 5+m ),即(8+m )2=(2+m )(10+m ),解得m =-11.答案:-117.已知数列{a n }的前n 项和S n =2-a n ,求证:数列{a n }是等比数列. 证明:∵S n =2-a n ,∴S n +1=2-a n +1.∴a n +1=S n +1-S n =(2-a n +1)-(2-a n )=a n -a n +1. ∴a n +1=12a n .又∵S 1=2-a 1, ∴a 1=1≠0.又由a n +1=12a n 知a n ≠0,∴a n +1a n=12.∴数列{a n }是等比数列.8.已知数列{a n }是各项为正数的等比数列,且a 2=9,a 4=81. (1)求数列{a n }的通项公式a n ;(2)若b n =log 3a n ,求证:数列{b n }是等差数列. 解:(1)求数列{a n }的公比为q , ∵a 2=9,a 4=81.则q 2=a 4a 2=819=9,又∵a n >0,∴q >0,∴q =3,故通项公式a n =a 2q n -2=9×3n -2=3n ,n ∈N *. (2)证明:由(1) 知a n =3n ,∴b n =log 3a n =log 33n =n ,∴b n +1-b n =(n +1)-n =1(常数),n ∈N *,故数列{b n }是一个公差等于1的等差数列.第二课时 等比数列的性质[新知初探] 等比数列的性质(1)若数列{a n },{b n }是项数相同的等比数列,则{a n ·b n }也是等比数列.特别地,若{a n }是等比数列,c 是不等于0的常数,则{c ·a n }也是等比数列.(2)在等比数列{a n }中,若m +n =p +q ,则a m a n =a p a q .(3)数列{a n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项的积. (4)在等比数列{a n }中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等比数列,公比为q k +1.(5)当m ,n ,p (m ,n ,p ∈N *)成等差数列时,a m ,a n ,a p 成等比数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积( ) (2)当q >1时,{a n }为递增数列( ) (3)当q =1时,{a n }为常数列( )解析:(1)正确,根据等比数列的定义可以判定该说法正确. (2)错误,当q >1,a 1>0时,{a n }才为递增数列.(3)正确,当q =1时,数列中的每一项都相等,所以为常数列. 答案:(1)√ (2)× (3)√2.由公比为q 的等比数列a 1,a 2,…依次相邻两项的乘积组成的数列a 1a 2,a 2a 3,a 3a 4,…是( )A .等差数列B .以q 为公比的等比数列C .以q 2为公比的等比数列D .以2q 为公比的等比数列解析:选C 因为a n +1a n +2a n a n +1=a n +2a n =q 2为常数,所以该数列为以q 2为公比的等比数列.3.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( ) A .35 B .63 C .21 3D .±21 3解析:选B ∵{a n }成等比数列. ∴a 4,a 6,a 8成等比数列 ∴a 26=a 4·a 8,即a 8=2127=63.4.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________.解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41,又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49,∵数列各项都是正数, ∴a 4+a 8=7.答案:7[典例] (1)在1与100之间插入n 个正数,使这n +2个数成等比数列,则插入的n 个数的积为( )A .10nB .n 10C .100nD .n 100(2)在等比数列{a n }中,a 3=16,a 1a 2a 3…a 10=265,则a 7等于________. [解析] (1)设这n +2个数为a 1,a 2,…,a n +1,a n +2, 则a 2·a 3·…·a n +1=(a 1a n +2)n 2=(100)n2=10n .(2)因为a 1a 2a 3…a 10=(a 3a 8)5=265,所以a 3a 8=213, 又因为a 3=16=24,所以a 8=29. 因为a 8=a 3·q 5,所以q =2. 所以a 7=a 8q =256.[答案] (1)A (2)256[活学活用]1.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7解析:选D 因为数列{a n }为等比数列,所以a 5a 6=a 4a 7=-8,联立⎩⎪⎨⎪⎧a 4+a 7=2,a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以q 3=-12或q 3=-2,故a 1+a 10=a 4q3+a 7·q 3=-7.2.已知等比数列{a n }的公比为正数,且4a 2a 8=a 24,a 2=1,则a 6=( )A.18B.116C.132D.164解析:选B 由4a 2a 8=a 24,得4a 25=a 24,∴q =12,∴a 6=a 2q 4=116.[典例] (1)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________.(2)有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们之和为12,求这四个数.[解析] (1)设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即⎩⎪⎨⎪⎧2(aq -1)=(a -1)+(aq 2-4),2(aq 2-4)=(aq -1)+(aq 3-13),整理得⎩⎪⎨⎪⎧a (q -1)2=3,aq (q -1)2=6,解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45.[答案] 45(2)解:法一:设前三个数为aq ,a ,aq , 则a q ·a ·aq =216, 所以a 3=216.所以a =6. 因此前三个数为6q ,6,6q . 由题意知第4个数为12q -6.所以6+6q +12q -6=12,解得q =23.故所求的四个数为9,6,4,2.法二:设后三个数为4-d,4,4+d ,则第一个数为14(4-d )2,由题意知14(4-d )2×(4-d )×4=216,解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或352B .4或352C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=352.[典例] 某工厂2016年1月的生产总值为a 万元,计划从2016年2月起,每月生产总值比上一个月增长m %,那么到2017年8月底该厂的生产总值为多少万元?[解] 设从2016年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %.∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列.∴a n =a (1+m %)n -1. ∴2017年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).[活学活用]如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝⎛⎭⎫22n ,故a 7=2×⎝⎛⎭⎫226=14. 答案:14层级一 学业水平达标1.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .24解析:选A 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3,即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D.3.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( )A.56B.65C.23D.32解析:选D 设公比为q ,则由等比数列{a n }各项为正数且a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6.∴a 5=6,a 4+a 6=6q+6q =5. 解得q =26,∴a 5a 7=1q 2=⎝⎛⎭⎫622=32.4.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则m n =( )A.23 B.32或23 C.32D .以上都不对解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b =92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或23,故选B.5.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100 B .-100 C .10 000D .-10 000解析:选C ∵a 3a 8a 13=a 38,∴lg(a 3a 8a 13)=lg a 38=3lg a 8=6.∴a 8=100.又a 1a 15=a 28=10000,故选C.6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,成等比数列,则此未知数是________.解析:设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,(a -6)2=3b ,解得⎩⎪⎨⎪⎧ a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27.答案:3或277.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________.解析:由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18. 答案:188.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048. 答案:2 0489.在由实数组成的等比数列{a n }中,a 3+a 7+a 11=28,a 2·a 7·a 12=512,求q . 解:法一:由条件得⎩⎪⎨⎪⎧a 7q -4+a 7+a 7q 4=28, ①a 7q -5·a 7·a 7q 5=512, ②由②得a 37=512,即a 7=8. 将其代入①得2q 8-5q 4+2=0.解得q 4=12或q 4=2,即q =±142或q =±42.法二:∵a 3a 11=a 2a 12=a 27,∴a 37=512,即a 7=8.于是有⎩⎪⎨⎪⎧a 3+a 11=20,a 3a 11=64,即a 3和a 11是方程x 2-20x +64=0的两根,解此方程得x =4或x =16.因此⎩⎪⎨⎪⎧ a 3=4,a 11=16或⎩⎪⎨⎪⎧a 3=16,a 11=4.又∵a 11=a 3·q 8,∴q =±⎝⎛⎭⎫a 11a 318=±418=±42或q =±⎝⎛⎭⎫1418=±142. 10.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解:∵a 1a 5=a 23,a 3a 7=a 25, ∴由题意,得a 23-2a 3a 5+a 25=36, 同理得a 23+2a 3a 5+a 25=100,∴⎩⎪⎨⎪⎧ (a 3-a 5)2=36,(a 3+a 5)2=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧ a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧ a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =2n -2或a n =26-n .层级二 应试能力达标1.在等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1D .a 5=1解析:选B 由题意,可得a 1·a 2·a 3·a 4·a 5=1,即(a 1·a 5)·(a 2·a 4)·a 3=1,又a 1·a 5=a 2·a 4=a 23,所以a 53=1,得a 3=1.2.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( )A .2B .4C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.3.在各项均为正数的等比数列{b n }中,若b 7·b 8=3,则log 3b 1+log 3b 2+…+log 3b 14等于( )A .5B .6C .7D .8解析:选C log 3b 1+log 3b 2+…+log 3b 14=log 3 (b 1b 2…b 14)=log 3 (b 7b 8)7=7log 33=7.4.设各项为正数的等比数列{a n }中,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30=( )A .230B .210C .220D .215 解析:选C ∵a 1·a 2·a 3·…·a 30=230,∴a 301·q 1+2+3+…+29=a 301·q 29×302=230, ∴a 1=2-272, ∴a 3·a 6·a 9·…·a 30=a 103·(q 3)9×102=(2-272×22)10×(23)45=220. 5.已知{a n }为公比q >1的等比数列,若a 2 015和a 2 016是方程4x 2-8x +3=0的两根,则a 2 017+a 2 018的值是______.解析:设等比数列的公比为q .因为a 2 015和a 2 016是方程4x 2-8x +3=0的两个根,所以a 2 015+a 2 016=2,a 2 015·a 2 016=34, 所以a 2 015(1+q )=2 ,①a 2 015·a 2 015q =34,②故由①②2得, (1+q )2q =2234=163. 又因为q >1,解得q =3,所以a 2 017+a 2 018=a 2 015·q 2+a 2 015·q 3.=a 2 015(1+q )·q 2=2×32=18.答案:186.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则a 2-a 1b 2=________. 解析:由题意,知a 2-a 1=-1-(-7)3=2,b 22=(-4)×(-1)=4.又因为b 2是等比数列中的第三项,所以b 2与第一项同号,即b 2=-2,所以a 2-a 1b 2=2-2=-1. 答案:-17.已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列ab 1,ab 2,…,ab n ,…为等比数列,其中b 1=1,b 2=5,b 3=17.求数列{b n }的通项公式.解:依题意a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),所以a 1d =2d 2,因为d ≠0,所以a 1=2d ,数列{ab n }的公比q =a 5a 1=a 1+4d a 1=3, 所以ab n =a 13n -1,①又ab n =a 1+(b n -1)d =b n +12a 1,② 由①②得a 1·3n -1=b n +12·a 1.因为a 1=2d ≠0,所以b n =2×3n -1-1.8.已知数列{a n }满足a 1=1,a 2=2,且a n +1=2a n +3a n -1(n ≥2,n ∈N *).(1)设b n =a n +1+a n (n ∈N *),求证{b n }是等比数列;(2)求数列{a n }的通项公式.解:(1)证明:由已知得a n +1+a n =3(a n +a n -1)(n ≥2,n ∈N *),则b n +1=3b n , 又b 1=3,则{b n }是以3为首项,3为公比的等比数列.(2)由a n +1+a n =3n,得a n +13n +1+13·a n 3n =13. 设c n =a n 3n ,则c n +1+13c n =13, 可得c n +1-14=-13⎝⎛⎭⎫c n -14, 又c 1=13,故c n -14=112×⎝⎛⎭⎫-13n -1, 则a n =3n -(-1)n 4.。
标题-2017-2018学年高中数学三维设计人教A版浙江专版选修2-2:复习课(二) 直接证明与间接证明(部分)
法二:分析法 1 1 1 因为a>0,b>0,a+b=1,要证a+b+ab≥8.
1 1 a+b 只要证a+b+ ab ≥8, 1 1 1 1 1 1 只要证 a+b + b+a ≥8,即证a+b≥4.+ b ≥4.即证a+b≥2, b a 由基本不等式可知,当a>0,b>0时,a+b≥2成立, 所以原不等式成立.
[典例]
ax 设a>0,f(x)= ,令a1=1,an+1=f(an),n∈N*. a+x
(1)写出a2,a3,a4的值,并猜想数列{an}的通项公式; (2)用数学归纳法证明你的结论.
[解] (1)∵a1=1, a ∴a2=f(a1)=f(1)= ; 1+ a a a a3=f(a2)= ;a =f(a3)= . 2+a 4 3+a a 猜想an= (n∈N*). (n-1)+a
[解析]
(1)自然数a,b,c的奇偶性共有四种情形:3个都是
奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以 否定“自然数a,b,c中恰有一个偶数”时正确的反设为“a, b,c中都是奇数或至少有两个偶数.” 答案:D (2)证明:假设两方程都没有实数根.则Δ1=a2-4b<0与Δ2= c2-4d<0,有a2+c2<4(b+d),而a2+c2≥2ac, 从而有4(b+d)>2ac,即ac<2(b+d), 与已知矛盾,故原命题成立.
∴m≤9,即m的最大值等于9.
2.若a>b>c>d>0且a+d=b+c, 求证: d+ a< b+ c.
证明:要证 d+ a< b+ c, 只需证( d+ a)2<( b+ c)2, 即a+d+2 ad<b+c+2 bc, 因a+d=b+c,只需证 ad< bc, 即ad<bc,设a+d=b+c=t, 则ad-bc=(t-d)d-(t-c)c=(c-d)(c+d-t)<0, 故ad<bc成立,从而 d+ a< b+ c成立.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列第一课时 等差数列的概念及通项公式[新知初探]1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.[点睛] (1)“从第2项起”是指第1项前面没有项,无法与后续条件中“与前一项的差”相吻合.(2)“每一项与它的前一项的差”这一运算要求是指“相邻且后项减去前项”,强调了:①作差的顺序;②这两项必须相邻.(3)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差中项如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.这三个数满足的关系式是A =a +b2. 3.等差数列的通项公式已知等差数列{a n }的首项为a 1,公差为d .[点睛] 由等差数列的通项公式a n =a 1+(n -1)d 可得a n =dn +(a 1-d ),如果设p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,a n 是关于n 的一次函数;当p =0时,a n =q ,等差数列为常数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列( )(2)等差数列{a n }的单调性与公差d 有关( )(3)根据等差数列的通项公式,可以求出数列中的任意一项( ) (4)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列( )解析:(1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d >0时为递增数列;d =0时为常数列;d <0时为递减数列. (3)正确.只需将项数n 代入即可求出数列中的任意一项.(4)正确.若a ,b ,c 满足2b =a +c ,即b -a =c -b ,故a ,b ,c 为等差数列. 答案:(1)× (2)√ (3)√ (4)√2.等差数列{a n }中,a 1=1,d =3,a n =298,则n 的值等于( ) A .98 B .100 C .99D .101解析:选B a n =a 1+(n -1)d =3n -2,令a n =298,即3n -2=298⇒n =100. 3.在等差数列{a n }中,若a 1·a 3=8,a 2=3,则公差d =( ) A .1 B .-1 C .±1D .±2解析:选C 由已知得,⎩⎪⎨⎪⎧a 1(a 1+2d )=8,a 1+d =3,解得d =±1.4.若log 32,log 3(2x -1),log 3(2x +11)成等差数列.则x 的值为________.解析:由log 3(2x +11)-log 3(2x -1)=log 3(2x -1)-log 32,得:(2x )2-4·2x -21=0,∴2x=7,∴x =log 27.答案:log 27[典例] n(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9. [解] (1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧ a 1+4d =-1,a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧ a 1+a 1+5d =12,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a n =1+(n -1)×2=2n -1, ∴a 9=2×9-1=17.[活学活用]1.2 016是等差数列4,6,8,…的( ) A .第1 006项 B .第1 007项 C .第1 008项D .第1 009项解析:选B ∵此等差数列的公差d =2,∴a n =4+(n -1)×2,a n =2n +2,即2 016=2n +2,∴n =1 007.2.已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?解:设首项为a 1,公差为d ,则a n =a 1+(n -1)d ,由已知⎩⎪⎨⎪⎧a 1+(15-1)d =33,a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23,d =4.所以a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,解得n =45∈N *,所以153是所给数列的第45项.[典例] 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.[解] 在等差数列{a n }中,∵ a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎪⎨⎪⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎪⎨⎪⎧ a 2=11,a 4=1或⎩⎪⎨⎪⎧a 2=1,a 4=11. 当⎩⎪⎨⎪⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎪⎨⎪⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.三数a ,b ,[活学活用]1.已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________.解析:因为8,a,2,b ,c 是等差数列, 所以⎩⎪⎨⎪⎧8+2=2a ,a +b =2×2,2+c =2b .解得⎩⎪⎨⎪⎧a =5,b =-1,c =-4.答案:5 -1 -42.已知数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 5=________.解析:由数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则有1a 3+1+1a 7+1=2a 5+1,可解得a 5=75.答案:75[典例] 已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.求证:数列{b n }是等差数列.证明:[法一 定义法]∵b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2),∴b n +1-b n =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12,为常数(n ∈N *).又b 1=1a 1-2=12, ∴数列{b n }是首项为12,公差为12的等差数列.[法二 等差中项法] ∵b n =1a n -2, ∴b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2).∴b n +2=a n +12(a n +1-2)=4-4a n 2⎝⎛⎭⎫4-4a n -2=a n -1a n -2.∴b n +b n +2-2b n +1=1a n -2+a n -1a n -2-2×a n 2(a n -2)=0. ∴b n +b n +2=2b n +1(n ∈N *), ∴数列{b n }是等差数列.[活学活用]已知1a ,1b ,1c 成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c ),lg(a -c ),lg(a +c -2b )也成等差数列.解:∵1a ,1b ,1c 成等差数列,∴2b =1a +1c , ∴2b =a +cac ,即2ac =b (a +c ).(a +c )(a +c -2b )=(a +c )2-2b (a +c )=(a +c )2-2×2ac =a 2+c 2+2ac -4ac =(a -c )2. ∵a +c ,a +c -2b ,a -c 均为正数,上式左右两边同时取对数得,lg[(a +c )(a +c -2b )]=lg(a -c )2,即lg(a +c )+lg(a +c -2b )=2lg(a -c ),∴lg(a +c ),lg(a -c ),lg(a +c -2b )成等差数列.层级一 学业水平达标1.已知等差数列{a n }的通项公式为a n =3-2n ,则它的公差为( ) A .2 B .3 C .-2D .-3解析:选C ∵a n =3-2n =1+(n -1)×(-2),∴d =-2,故选C. 2.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35,则n =( )A .50B .51C .52D .53解析:选D 依题意,a 2+a 5=a 1+d +a 1+4d =4,代入a 1=13,得d =23.所以a n =a 1+(n -1)d =13+(n -1)×23=23n -13,令a n =35,解得n =53.3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( ) A .a =-b B .a =3b C .a =-b 或a =3bD .a =b =0 解析:选C 由等差中项的定义知:x =a +b2, x 2=a 2-b 22,∴a 2-b 22=⎝⎛⎭⎫a +b 22,即a 2-2ab -3b 2=0.故a =-b 或a =3b .4.数列{a n }中,a 1=2,2a n +1=2a n +1,则a 2 015的值是( ) A .1 006 B .1 007 C .1 008D .1 009解析:选D 由2a n +1=2a n +1,得a n +1-a n =12,所以{a n }是等差数列,首项a 1=2,公差d =12,所以a n =2+12(n -1)=n +32,所以a 2 015=2 015+32=1 009.5.等差数列{a n }的首项为70,公差为-9,则这个数列中绝对值最小的一项为( )A .a 8B .a 9C .a 10D .a 11解析:选B |a n |=|70+(n -1)×(-9)|=|79-9n |=9⎪⎪⎪⎪879-n ,∴n =9时,|a n |最小. 6.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 解析:设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+2d =7,a 1+4d =a 1+d +6.解得⎩⎪⎨⎪⎧a 1=3,d =2.∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1. ∴a 6=2×6+1=13. 答案:137.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 解析:根据题意得:a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1, ∴a 1=1.又a 3=a 1+2d =1+2d =0, ∴d =-12.答案:-128.已知数列{a n }满足:a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________. 解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4.∴数列{a 2n }是公差为4的等差数列,则a 2n =a 21+(n -1)×4=4n -3.∵a n >0,∴a n =4n -3. 答案:4n -39.已知数列{a n }满足a 1=2,a n +1=2a na n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a na n +2, 所以1a n +1=a n +22a n =12+1a n,所以1a n +1-1a n =12(常数). 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=12为首项,公差为12的等差数列.10.若1b +c ,1a +c ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列. 证明:由已知得1b +c +1a +b =2a +c ,通分有2b +a +c (b +c )(a +b )=2a +c. 进一步变形有2(b +c )(a +b )=(2b +a +c )(a +c ),整理,得a 2+c 2=2b 2, 所以a 2,b 2,c 2成等差数列.层级二 应试能力达标1.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0 C .-(p +q )D.p +q2解析:选B ∵a p =a 1+(p -1)d ,a q =a 1+(q -1)d ,∴⎩⎪⎨⎪⎧a 1+(p -1)d =q , ①a 1+(q -1)d =p . ②①-②,得(p -q )d =q -p . ∵p ≠q ,∴d =-1.代入①,有a 1+(p -1)×(-1)=q ,∴a 1=p +q -1. ∴a p +q =a 1+(p +q -1)d =p +q -1+(p +q -1)×(-1)=0.2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +1解析:选D 设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.已知数列{a n },对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( ) A .公差为2的等差数列 B .公差为1的等差数列 C .公差为-2的等差数列D .非等差数列解析:选A 由题意知a n =2n +1,∴a n +1-a n =2,应选A.4.如果a 1,a 2,…,a 8为各项都大于零的等差数列,且公差d ≠0,则( ) A .a 3a 6>a 4a 5 B .a 3a 6<a 4a 5 C .a 3+a 6>a 4+a 5D .a 3a 6=a 4a 5解析:选B 由通项公式,得a 3=a 1+2d ,a 6=a 1+5d ,那么a 3+a 6=2a 1+7d ,a 3a 6=(a 1+2d )(a 1+5d )=a 21+7a 1d +10d 2,同理a 4+a 5=2a 1+7d ,a 4a 5=a 21+7a 1d +12d 2,显然a 3a 6-a 4a 5=-2d 2<0,故选B.5.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为________.解析:a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6, 令a n =b n ,得3n -1=4n -6,∴n =5. 答案:56.在数列{a n }中,a 1=3,且对于任意大于1的正整数n ,点(a n , a n -1)都在直线x-y -3=0上,则a n =________.解析:由题意得a n -a n -1=3,所以数列{a n }是首项为3,公差为3的等差数列,所以a n =3n ,a n =3n 2.答案:3n 27.已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2,且∈N *). (1)求a 2,a 3;(2)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(3)求数列{a n }的通项公式a n .解:(1)a 2=2a 1+22=6,a 3=2a 2+23=20. (2)证明:∵a n =2a n -1+2n (n ≥2,且n ∈N *), ∴a n 2n =a n -12n -1+1(n ≥2,且n ∈N *), 即a n 2n -a n -12n -1=1(n ≥2,且n ∈N *), ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 121=12,公差d =1的等差数列.(3)由(2),得a n 2n =12+(n -1)×1=n -12,∴a n =⎝⎛⎭⎫n -12·2n.8.数列{a n }满足a 1=2,a n +1=(λ-3)a n +2n (n ∈N *). (1)当a 2=-1时,求λ及a 3的值;(2)是否存在λ的值,使数列{a n }为等差数列?若存在求其通项公式;若不存在说明理由. 解:(1)∵a 1=2,a 2=-1,a 2=(λ-3)a 1+2,∴λ=32.∴a 3=-32a 2+22,∴a 3=112.(2)∵a 1=2,a n +1=(λ-3)a n +2n , ∴a 2=(λ-3)a 1+2=2λ-4. a 3=(λ-3)a 2+4=2λ2-10λ+16. 若数列{a n }为等差数列,则a 1+a 3=2a 2. 即λ2-7λ+13=0.∵Δ=49-4×13<0,∴方程无实数解.∴λ值不存在.∴不存在λ的值使{a n }成等差数列.第二课时 等差数列的性质[新知初探]1.等差数列通项公式的推广2.若{a n }是公差为d 的等差数列,正整数m ,n ,p ,q 满足m +n =p +q ,则a m +a n =a p+a q .(1)特别地,当m +n =2k (m ,n ,k ∈N *)时,a m +a n =2a k .(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若{a n}是等差数列,则{|a n|}也是等差数列()(2)若{|a n|}是等差数列,则{a n}也是等差数列()(3)若{a n}是等差数列,则对任意n∈N*都有2a n+1=a n+a n+2()(4)数列{a n}的通项公式为a n=3n+5,则数列{a n}的公差与函数y=3x+5的图象的斜率相等()解析:(1)错误.如-2,-1,0,1,2是等差数列,但其绝对值就不是等差数列.(2)错误.如数列-1,2,-3,4,-5其绝对值为等差数列,但其本身不是等差数列.(3)正确.根据等差数列的通项可判定对任意n∈N*,都有2a n+1=a n+a n+2成立.(4)正确.因为a n=3n+5的公差d=3,而直线y=3x+5的斜率也是3.答案:(1)×(2)×(3)√(4)√2.在等差数列{a n}中,若a5=6,a8=15,则a14等于()A.32B.33C.-33 D.29解析:选B∵数列{a n}是等差数列,∴a5,a8,a11,a14也成等差数列且公差为9,∴a14=6+9×3=33.3.在等差数列{a n}中,已知a3+a4+a5+a6+a7=450,则a2+a8=()A.90 B.270C.180 D.360解析:选C因为a3+a4+a5+a6+a7=5a5=450,所以a5=90,所以a2+a8=2a5=2×90=180.4.在等差数列{a n}中,已知a2+2a8+a14=120,则2a9-a10的值为________.解析:∵a2+a14=2a8,∴a2+2a8+a14=4a8=120,∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.答案:30[典例] (1)已知等差数列{a n }中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=( ) A .30 B .15 C .5 6D .10 6(2)设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37 C .100D .-37[解析] (1)∵数列{a n }为等差数列,∴a 1+a 2+a 3+a 4+a 5=(a 1+a 5)+(a 2+a 4)+a 3=52(a 2+a 4)=52×6=15.(2)设c n =a n +b n ,由于{a n },{b n }都是等差数列, 则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100, c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0. ∴c 37=100,即a 37+b 37=100. [答案] (1)B (2)C[活学活用]1.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B .-32C.12D.32解析:选A a 1+a 5+a 9=3a 5=π,所以a 5=π3,而a 2+a 8=2a 5=2π3,所以cos(a 2+a 8)=cos2π3=-12,故选A. 2.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=( ) A .10 B .18 C .20D .28解析:选C 由等差数列的性质得:3a 5+a 7=2a 5+(a 5+a 7)=2a 5+(2a 6)=2(a 5+a 6)=2(a 3+a 8)=20,故选C.[典例] (1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数. (2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数. [解] (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧(a -d )+a +(a +d )=9,(a -d )a =6(a +d ), 解得⎩⎪⎨⎪⎧a =3,d =-1.∴这三个数为4,3,2.(2)法一:设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ), 依题意,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.法二:若设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得⎝⎛⎭⎫1-32d ⎝⎛⎭⎫1+32d =-8, 即1-94d 2=-8,化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2, a =-2.故所求的四个数为-2,0,2,4.[活学活用]已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.解:设这四个数依次为a -3d ,a -d ,a +d ,a +3d (公差为2d ). 由题设知⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40, 解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.∴这个数列为2,5,8,11或11,8,5,2.[典例] 某公司经销一种数码产品,第一年可获利200万元,从第二年起由于市场竞争方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?[解] 设从第一年起,第n 年的利润为a n 万元, 则a 1=200,a n +1-a n =-20(n ∈N *), ∴每年的利润构成一个等差数列{a n },从而a n =a 1+(n -1)d =200+(n -1)×(-20)=220-20n . 若a n <0,则该公司经销这一产品将亏损. ∴由a n =220-20n <0,得n >11,即从第12年起,该公司经销此产品将亏损.[活学活用]某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,需要支付车费________元.解析:根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4 km处的车费,公差d=1.2,那么当出租车行至14 km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).答案:23.2层级一学业水平达标1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20 D.24解析:选B因为数列{a n}是等差数列,所以a2+a10=a4+a8=16.2.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6C.8 D.10解析:选A由等差数列的性质,得a1+a9=2a5,又∵a1+a9=10,即2a5=10,∴a5=5.3.下列说法中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列解析:选C因为a,b,c成等差数列,则2b=a+c,所以2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),所以a +2,b +2,c +2成等差数列.4.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10D .14解析:选B 由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 5.等差数列{a n }中, a 2+a 5+a 8=9,那么方程x 2+(a 4+a 6)x +10=0的根的情况( ) A .没有实根 B .两个相等实根 C .两个不等实根D .无法判断解析:选A 由a 2+a 5+a 8=9得a 5=3,∴a 4+a 6=6,方程转化为x 2+6x +10=0.因为Δ<0,所以方程没有实根.6.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________. 解析:设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4.∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21. 答案:-217.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.解析:∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 答案:1或28.已知等差数列{a n }满足a m -1+a m +1-a 2m -1=0,且m >1,则a 1+a 2m -1=________. 解析:因为数列{a n }为等差数列,则 a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1,所以a 1+a 2m -1=2a m =2.答案:29.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.解:法一:由等差数列的性质得a 1+a 11=2a 6,a 2+a 12=2a 7,…,a 5+a 15=2a 10.∴(a 1+a 2+…+a 5)+(a 11+a 12+…+a 15)=2(a 6+a 7+…+a 10).∴a 11+a 12+…+a 15=2(a 6+a 7+…+a 10)-(a 1+a 2+…+a 5)=2×80-30=130.法二:∵数列{a n}是等差数列,∴a1+a2+…+a5,a6+a7+…+a10,a11+a12+…+a15也成等差数列,即30,80,a11+a12+…+a15成等差数列.∴30+(a11+a12+…+a15)=2×80,∴a11+a12+…+a15=130.10.有一批影碟机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售.某单位购买一批此类影碟机,问去哪家商场买花费较少.解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元,售价依台数n 成等差数列.设该数列为{a n}.a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于等于18台时,每台售价为(800-20n)元,当台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600元.作差:(800-20n)n-600n=20n(10-n),当n<10时,600n<(800-20n)n,当n=10时,600n=(800-20n)n,当10<n≤18时,(800-20n)n<600n,当n>18时,440n<600n.即当购买少于10台时到乙商场花费较少,当购买10台时到两商场购买花费相同,当购买多于10台时到甲商场购买花费较少.层级二应试能力达标1.已知等差数列{a n}:1,0,-1,-2,…;等差数列{b n}:0,20,40,60,…,则数列{a n +b n}是()A.公差为-1的等差数列B.公差为20的等差数列C.公差为-20的等差数列D.公差为19的等差数列解析:选D(a2+b2)-(a1+b1)=(a2-a1)+(b2-b1)=-1+20=19.2.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为()A. 3 B.±3C.-33D.- 3解析:选D由等差数列的性质得a1+a7+a13=3a7=4π,∴a7=4π3.∴tan(a2+a12)=tan(2a7)=tan 8π3=tan2π3=- 3.3.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1 B.34 C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2, 再设此等差数列的公差为d ,则2a 1+3d =2, ∵a 1=14,∴d =12,∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74,∴|m -n |=|a 1a 4-a 2a 3| =⎪⎪⎪⎪14×74-34×54=12.4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升 B.6766升 C.4744升 D.3733升 解析:选B 设所构成的等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4, 即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,则a 5=a 1+4d =6766, 故第5节的容积为6766升.5.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________.解析:设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18,即a 4a 7的最大值为18.答案:186.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn =n ,所以a n =n 2.答案:n 27.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n ,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3.∵a 1,a 2,a 3成等差数列,∴a 2=1,故可设a 1=1-d ,a 3=1+d , 由⎝⎛⎭⎫121-d +12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2.当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3; 当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5.8.下表是一个“等差数阵”:ij (1)写出a 45的值;(2)写出a ij 的计算公式,以及2 017这个数在“等差数阵”中所在的一个位置. 解:通过每行、每列都是等差数列求解. (1)a 45表示数阵中第4行第5列的数.先看第1行,由题意4,7,…,a 15,…成等差数列, 公差d =7-4=3,则a 15=4+(5-1)×3=16. 再看第2行,同理可得a 25=27.最后看第5列,由题意a 15,a 25,…,a 45成等差数列,所以a 45=a 15+3d =16+3×(27-16)=49.(2)该“等差数阵“的第1行是首项为4,公差为3的等差数列a 1j =4+3(j -1); 第2行是首项为7,公差为5的等差数列a 2j =7+5(j -1); …第i 行是首项为4+3(i -1),公差为2i +1的等差数列, ∴a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j =i (2j +1)+j .要求2 017在该“等差数阵”中的位置,也就是要找正整数i ,j ,使得i (2j +1)+j =2 017, ∴j =2 017-i 2i +1.又∵j ∈N *,∴当i =1时,得j =672.∴2 017在“等差数阵”中的一个位置是第1行第672列.。