2017_2018学年八年级数学下册第6章反比例函数6.1反比例函数习题课件新版浙教版

合集下载

初中数学目录(人教版)

初中数学目录(人教版)

初中数学目录(人教版)七上:第1章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减1.4 有理数的乘除1.5 有理数的乘方第2章整式的加减2.1 整式2.2 整式的加减第3章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)----合并同类项与移项3.3 解一元一次方程(二)----去括号与去分母3.4 实际问题与一元一次方程第4章图形认识实步4.1 多姿多彩的图形4.2 直线、射线、线段4.3 角4.4 课题学习 ---设计制作长方体形状的包装纸盒七下:第5章相交线与平行线5.1 相交线5.2 平行线及其判定5.3 平行线的性质5.4 平移第6章平面直角坐标系6.1平面直角坐标系6.2 坐标方法的简单应用第7章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形的内角和7.4 课题学习----镶嵌第8章二元一次方程组8.1 二元一次方程组8.2 消元-----二元一次方程组的解法8.3 实际问题与二元一次方程组8.4 三元一次方程组解法举例第9章不等式与不等式组9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组第10章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习---从数据谈节水八上:第11章全等三角形11.1 全等三角形11.2 三角形全等的判定11.3 角的平分线的性质第12章轴对称12.1 轴对称12.2 作轴对称图形(信息技术应用)12.3 等腰三角形第13章实数13.1 平方根13.2 立方根13.3 实数第14章一次函数14.1 变量与函数14.2 一次函数14.3 用函数的观点看方程(组)与不等式14.4 课题学习—选择方案第15章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法15.4 因式分解八下:第16章分式16.1 分式16.2 分式的运算16.3 分式方程第17章反比例函数17.1 反比例函数17.2 实际问题与反比例函数第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第19章四边形19.1 平行四边形19.2 特殊的平行四边形19.3 梯形19.4 课题学习—重心第20章数据的分析20.1 数据的代表20.2 数据的波动20.3 课题学习---体质健康测试中的数据分析九上:第21章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减(海伦—秦九韶公式)第22章一元二次方程22.1 一元二次方程22.2 降次—解一元二次方程(黄金分割数)22.3 实际问题与一元二次方程(发现一元二次方程根系关系)第23章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习(图案的设计)第24章圆24.1 圆24.2 与圆有关的位置关系24.3 正多边形和圆24.2 弧长和扇形面积第25章概率初步25.1概率25.2 用例举法求概率25.3 利用频率估计概率25.4 课题学习(键盘上字母的排列规律九下:第26章二次函数26.1 二次函数26.2 用函数的观点看一元二次方程26.3 实际问题与二次函数第27章相似27.1 图形的相似27.2 相似三角形27.3 位似第28章锐角三角函数28.1 锐角三角函数28.2 解直角三角形第29章投影与视图29.1 投影29.2 三视图29.3 课题学习(制作立体模型)人教版初中数学目录及课时安排(当前使用版本)。

八年级数学下册 17.4.2 反比例函数的图象和性质教案 (新版)华东师大版

八年级数学下册 17.4.2 反比例函数的图象和性质教案 (新版)华东师大版

反比例函数的图象和性质
(1)是非零常数;
学做思一:你能作出反比例函数的图像
例:画出函数
导学:画出函数图象一般分为列表,描点、连线三个步骤,
这个
的取值
范围是不等于零的一切
用表里各组对
在直角坐
.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一分支。

这两个分支合起来,就是反比例函数的图象,如图所示。

这种
画出函数的图象。


教师注意指导画函数图象有困难的学生,并评
这个函数的图象在哪两个象限
联系一次函数的性质,你能否总结出反比例函随着自变量
导做:在充分讨论、交流后达成共识:
时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象跟内
时,函数的图象在第二、四象限,在
3。

【最新】浙教版八年级数学下册第六章《反比例函数(1)》公开课课件1(共18张PPT).ppt

【最新】浙教版八年级数学下册第六章《反比例函数(1)》公开课课件1(共18张PPT).ppt

形如 y
k x
(k是常数,k≠0)的函数
叫做反比例函数。
⑴ k叫做反比例函数的比例系数; ⑵ 反比例函数的自变量x的值不能为零。
教学目标
1、从现实情境和已有的知识经验出发,理解 两个变量之间的相依关系,加深对函数概念的 理解;
2、经历抽象反比例函数概念的过程,领会反 比例函数的意义,理解反比例函数的概念
比例系数是
5 3

5 2.5 3x
⑵ 当x=-10时,
y3510
1 6
x
2 3
巩固练习:
3、设面积为10cm的三角形的一边长为a(cm), 这条边上的高为h(cm)。 ⑴ 求h关于a的函数解析式及自变量a的取值 范围; ⑵ h关于a的函数是不是反比例函数?如果 是,请说出它的比例系数 ⑶ 求当边长a=2.5cm时,这条边上的高。
5 x

是反比例函数,
xy6是反比例函数,
比例系数为5。
比例系数为-6。
⑸ y 1
3x

y 1 3-x
是反比例函数,
不是反比例函数
比例系数为 1 。
3
巩固练习:
2、已知反比例函数
y 5 3x

⑴ 说出比例系数;
⑵ 求当x=-10时函数的值;
⑶ 求当y=2.5时自变量x的值。 ⑶ 当y=2.5时,
解:⑴
y2
1 n
y1
所以当动力臂长扩大到原来的n倍时,所需动力缩小到原来的 1
n
知者先行:
1、当m为何值时,函数 y
数,并求出其函数解析式.
4 x2 m2
是反比例函
2、若是函数 yk1xk22是反比例函数,
求此反比例函数.的关系式.

第6章《反比例函数》(解析版)

第6章《反比例函数》(解析版)

2019-2020学年浙教版数学八年级下册培优冲关好卷第六章《反比例函数》一.选择题1.(2020春•思明区校级月考)已知压强的计算公式是P=,我们知道,刀具在使用一段时间后,就好变钝,如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是()A.当压力一定时,压强随受力面积的减小而减小B.当压力一定时,压强随受力面积的减小而增大C.当受力面积一定时,压强随压力的增大而增大D.当受力面积一定时,压强随压力的增大面减小【解析】根据压强的计算公式是P=可知:当压力一定时,S越小,P的值越大,则压强随受力面积的减小而增大,故选:B.2.(2020•蜀山区校级模拟)若将直线y=﹣4x+10向下平移m个单位长度与双曲线y=恰好只有一个公共点,则m的值为()A.2B.18C.﹣2或18D.2或18【解析】将直线y=﹣4x+10向下平移m个单位长度得直线解析式为y=﹣4x+10﹣m,根据题意方程组只有一组解,消去y得=﹣4x+10﹣m,整理得4x2﹣(m﹣10)x+4=0,△=(m﹣10)2﹣4×4×4=0,解得m=2或m=18,故选:D.3.(2020春•江汉区校级月考)对于反比例函数y=,下列说法正确的个数是()①函数图象位于第一、三象限;①函数值y随x的增大而减小①若A(﹣1,y1),B(2,y2),C(1,y3)是图象上三个点,则y1<y3<y2;①P为图象上任一点,过P作PQ⊥y轴于点Q,则△OPQ的面积是定值.A.1个B.2个C.3个D.4个【解析】反比例函数y=,因为k2+1>0,根据反比例函数的性质它的图象分布在第一、三象限,在每个象限内,y随x的增大而减小,故①说法正确,②的说法错误.若A(﹣1,y1),B(2,y2),C(1,y3)是图象上三个点,则y1<0<y2<y3;故说法③错误;P为图象上任一点,过P作PQ⊥y轴于点Q,则△OPQ的面积为(k2+1),故④说法正确;故选:B.4.(2020•河西区一模)下列关于反比例函数y=的说法正确的是()A.y随x的增大而增大B.x>0时,y随x的增大而增大C.y随x的增大而减小D.x>0时,y随x的增大而减小【解析】∵k=6>0,∴图象位于一三象限,且在每个象限内,y随x的增大而减小,故选:D.5.(2020•江岸区校级模拟)若点A(x1,1)、B(x2,﹣2)、C(x3,﹣3)在反比例函数y=﹣的图象上,则x1、x2、x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x1<x2D.x2<x1<x3【解析】∵反比例函数为y=y=﹣中的﹣(k2+1)<0,∴函数图象在第二、四象限,在每个象限内,y随着x的增大而增大,又∵A(x1,1)、B(x2,﹣2)、C(x3,﹣3)∴x1<0,点B、C位于第四象限,∴x2>x3>0.∴x1<x3<x2故选:B.6.(2019秋•南岸区校级期末)如图,已知菱形OABC,OC在x轴上,AB交y轴于点D,点A在反比例函数y1=上,点B在反比例函数y2=﹣上,且OD=2,则k的值为()A.3B.C.D.【解析】∵四边形ABCO是菱形,∴AB∥OC,∴AB⊥y轴,∵OD=2,∴A(,2),B(﹣,2),∴AB=,AD=,∵AB=OA,∴OA=,∵AD2+OD2=OA2,∴()2+(2)2=()2,∴k=2,故选:B.7.(2020•黄石模拟)如图,在平面直角坐标系中,矩形OABC的面积为10,反比例函数y=(x>0)与AB、BC分别交于点D、E,若AD=2BD,则k的值为()A.B.C.D.【解析】设OA=a,矩形OABC的面积为10,所以AB=,∵AD=2BD,∴AD=AB=,因此点D(,a),代入反比例函数关系式得,k=,故选:C.8.(2019秋•沙坪坝区校级月考)如图,在平面直角坐标系中,A是第一象限内一点,过A作AC∥y轴交反比例函数y=(x>0)的图象于B点,E是y轴上一点,AE交反比例函数的图象于点D,若B是AC 的中点,DE:AD=3:2,且△BDE的面积为,则k的值为()A.7B.C.8D.【解析】∵DE:AD=3:2,∴S△BDE:S△ADB=3:2∵△BDE的面积为,∴△ABD的面积为,∴S△ABE=+=,设OC=m,AB=n=BC,∴S△ABE=+==AB•OC=mn,即:mn=∵点B(m,n)在反比例函数y=图象上,∴k=mn=,故选:B.9.(2019秋•沙坪坝区校级月考)如图,正方形ABCD的顶点C、D在函数y=(k≠0)的图象上,已知点A的坐标为(﹣,3),点C的横坐标为4,则k的值为()A.5B.6C.7D.8【解析】连接AC,BD交于点J.设C(4,m).∵四边形ABCD是正方形,∴AJ=JC,∵A(﹣,3),C(4,m),∴J(,),∵点D是由点A绕点J顺时针旋转90°得到D,可得D(,),∵C,D都在y=的图象上,∴4m=•,解得m=或﹣,∴C(4,),∴k=6,补充方法:(可以利用构造全等三角形的方法求出C,D坐标,再利用待定系数法解决问题)故选:B.二.填空题10.(2020•武侯区校级模拟)如图,反比例函数y=(x>0)的图象与矩形ABCO的边AB交于点G,与边BC交于点D,过点A,D作DE∥AF,交直线y=kx(k<0)于点E,F,若OE=OF,BG=GA,则四边形ADEF的面积为.【解析】延长DE交x轴于K,作DH⊥OA于设G(a,),则OA=a,AG=,∵BG=GA,∴BG=,∴DH=AB=AG+BG=,∵DE∥AF,∴∠EKO=∠F AO,在△OEK和△OF A中,,∴△OEK≌△OF A(AAS),∴OK=OA=a,∴AE=2a,∴S四边形ADEF=S四边形ADEO+S△KEO=S△ADK=.故答案为:.11.(2020•蜀山区校级模拟)如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AC=2CD,则k的值为18.【解析】过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=6,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=18,∴k=18,故答案是:18.12.(2020•烟台一模)如图,反比例函数y=的图象经过点A,点B与点A关于x轴对称,点C是y轴上一点,若△ABC的面积为2,则该反比例函数的解析式为y=﹣.【解析】设AB与x轴交于点D,连接OA,∵点B与点A关于x轴对称,∴AB∥y轴,∵△OAB的面积为2,∴△OAD的面积为1,∴|k|=1,∵在第二象限,∴k=﹣2,∴反比例函数的解析式为y=﹣,故答案为y=﹣.13.(2020春•莆田月考)如图,反比例函数y=(k≠0)的图象经过△ABD的顶点A,B,交BD于点C,AB经过原点,点D在y轴上,若BD=4CD,△OBD的面积为15,则k的值为﹣6.【解析】连接OC.作CE⊥x轴于E,BF⊥x轴于F.根据题意设C(m,),则B(4m,),∵S△OBC=S四边形OCBF﹣S△OBF=S四边形OCBF﹣S△OEC=S梯形CEFB,∴S△OBC=(﹣﹣)•(4m﹣m)=﹣k,∵BD=4CD,△OBD的面积为15,∴,∴,∴k=﹣6.故答案为:﹣6.14.(2020•福建模拟)已知点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,点C在第一象限,且∠ACB=120°,点C的位置随着点A的运动在不断变化,但始终在双曲k线y=上,则k的值为1.【解析】连接OC,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,如图所示,∵等腰△ABC中,∠ACB=120°,∴CO⊥AB,∠CAB=30°,∴∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴===tan60°=,则=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴S△AOD=|xy|=AD•DO=,∴S△OCE=k=EC•EO=1=,∴EC•EO=1,∴k=1.故答案为:1.15.(2020春•鼓楼区校级月考)如图,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△=6,BP:CP=2:1,则k的值为﹣3.ABC【解析】如图连接OB,OC,作BE⊥OP于E,CF⊥y轴于F.∵OA∥BC,∴S△OBC=S△ABC=6,∵PB:PC=1:2,∴S△OPB=4,S△OPC=2,∵S△OBE=12=6,∴S△PBE=2,∵△BEP∽△CFP,∴S△CFP=2×=,∴S△OCF=,∴k=﹣3.故答案为:﹣3.16.(2020•锦江区模拟)如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D在双曲线y=(x>0)的图象上,边CD交y轴于点E,若CE=ED,则k的值为4.【解析】∵正方形ABCD的面积为20,∴AB=BC=CD=DA==2,∴CE=DE=,∵∠COE=∠ADE=90°,∠CEO=∠AED,∴△COE∽ADE,∴==,即,==,∴=,∵CE=,∴OE=1,OC=2,过点D作DF⊥x轴,垂足为F,∵CE=DE,∴OF=OC=2,DF=2OE=2,∴D(2,2)代入反比例函数关系式得,k=2×2=4,故答案为:4.17.(2019秋•宝安区期末)如图,点A(1,3)为双曲线上的一点,连接AO并延长与双曲线在第三象限交于点B,M为y轴正半轴上一点,连接MA并延长与双曲线交于点N,连接BM、BN,已知△MBN 的面积为,则点N的坐标为(,).【解析】连接ON,∵点A(1,3)为双曲线上,∴k=3,即:y=;由双曲线的对称性可知:OA=OB,∴S△MBO=S△MAO,S△NBO=S△NAO,∴S△MON=S△BMN=,设点M(0,m),N(n,),∴mn=,即,mn=,①设直线AM的关系式为y=kx+b,将M(0,m)A(1,3)代入得,b=m,k=3﹣m,∴直线AM的关系式为y=(3﹣m)x+m,把N(n,)代入得,=(3﹣m)×n+m,②由①和②解得,n=,当n=时,=,∴N(,),故答案为:(,).18.(2019秋•浦东新区期末)如图,在平面直角坐标系中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是或.【解析】联立y=kx、y=并解得:点A(,2),同理点B(,3),点C(,),∴AB≠AC,①当AB=BC时,()2+(3﹣2)2=(3﹣)2,解得:k=±(舍去负值);②当AC=BC时,同理可得:(﹣)2+(3﹣2)2=(3﹣)2,解得:k=(舍去负值);故答案为:或.三.解答题19.(2020•江岸区校级模拟)如图,直线AB:y=﹣x+m与双曲线y=交于A(1,6)和B点.(1)求B点坐标.(2)根据图象,直接写出<﹣x+m的解集1<x<6.【解析】(1)因为点A(1,6)在两函数图象上,则6=﹣1+m,6=,解得:m=7,k=6,∴一次函数的解析式为y=﹣x+7,反比例函数的解析式y=;联立:,解得:x=1或x=6,又∵点A的坐标为(1,6),故点B的坐标为(6,1);(2)由函数图象得,<﹣x+m的解集为:1<x<6,故答案为:1<x<6.20.(2020•九江模拟)如图,在平面直角坐标系中,直线BC与y轴交于点A(0,4),与x轴交于点D,点B,C是反比列函数y=(x>0)图象上的点,OB⊥BC于点B,∠BOD=60°.(1)求直线AB的解析式;(2)求反比例函数的解析式;(3)若△AOB的面积为S1,△BOC的面积为S2,△DOC的面积为S3,直接写出S1,S2,S3的一个数量关系式:S1+S3=S2【解析】∵A(0,4),∴OA=4,∵∠BOD=60°.∴∠AOB=30°,∵OB⊥BC于点B,∴∠ABO=90°,∴∠OAD=60°,∴OD=OA=4,∴D(4,0),设直线AB的解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=﹣x+4;(2)∵∠AOB=30°,OA=4,∴AB=OA=2,OB=OA=2,∵OA•OD=AD•OB,∴AD===8,∴BD=AD﹣AB=6,∵S△AOD==8,∴S△AOB=×8=2,S△BOD=×=6,设B(m,n),∴S△AOB=m=2,S△BOD==6,∴=2,=6,解得m=,n=3,∴B(,3),∵点B是反比列函数y=(x>0)图象上的点,∴k==3,∴反比例函数的解析式为y=;(3)解得和,∴C(3,1),∴S△COD===2,∴S△BOC=6﹣2=4,∵S1=2,S2=4,S3=2,∴S1+S3=S2.故答案为S1+S3=S2.21.(2020•顺德区模拟)如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于点A、B两点,且与反比例函数y=的图象在第一象限内的部分交于点C,CD垂直于x轴于点D,其中OA=OB=OD=2.(1)直接写出点A、C的坐标;(2)求这两个函数的表达式;(3)若点P在y轴上,且S△ACP=14,求点P的坐标.【解析】(1)∵OA=OB=OD=2.∴A点坐标为(﹣2,0),B点坐标为(0,2),∵OB∥CD,∴OB:CD=OA:AD,∴CD==4,∴C点坐标为(2,4),(2)把C(2,4)代入y=得m=2×4=8,∴反比例函数解析式为y=,把A(﹣2,0),B(0,2)代入y=kx+b得,解得,∴一次函数解析式为y=x+2;(3)设P(0,t),∵S△ACP=14,而S△PBA+S△PBC=S△PAC,∴|t﹣2|×4=14,解得t=9或t=﹣5,∴点P的坐标为(0,9)或(0,﹣5).22.(2020•百色模拟)如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3分别交AB,BC于点M,N,反比例函数y=的图象经过点M,N.(1)求点M,N的坐标及反比例函数的解析式;(2)求四边形BMON的面积S.【解析】(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,把y=2代入y=﹣x+3,得x=2,∴M(2,2),把x=4代入y=﹣x+3,得y=1,∴N(4,1),把M(2,2)代入y=,得k=4,∴反比例函数的解析式是y=;(2)由题意可得:四边形BMON的面积S=S矩形OABC﹣S△AOM﹣S△CON=4×2﹣﹣=4.23.(2020•江西模拟)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象相交于点A(1,2),B(a,﹣1).(1)求反比例函数和一次函数的解析式;(2)若直线y=kx+b(k≠0)与x轴交于点C,x轴上是否存在一点P,使S△APC=4?若存在,请求出点P 坐标;若不存在,说明理由.【解析】(1)把点A(1,2)代入y=得,1=,∴m=2,∴反比例函数的解析式为y=;把B(a,﹣1)代入y=得,a=﹣2,∴B(﹣2,﹣1),把点A(1,2),B(﹣2,﹣1)代入y=kx+b得,解得:,∴一次函数的解析式为:y=x+1;(2)当y=0时,0=x+1,解得:x=﹣1,∴C(﹣1,0),设P(x,0),∴S△APC=,∴x=3或x=﹣5,∴P(3,0)或(﹣5,0).24.(2020•河南模拟)如图所示,反比例函数图象与一次函数图象交于A、B两点,点A在点B的下方且坐标为(3,2).(1)求反比例函数的解析式;(2)连接OA、OB,当△AOB的面积为8时,求直线AB的解析式.【解析】(1)设反比例函数的解析式为y=,把A的坐标(3,2)代入得k=3×2=6,∴反比例函数的解析式为y=;(2)过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,则S梯形ACDB=S△AOB=8,∴(AC+BD)•CD=8,设B(m,),∴(2+)(3﹣m)=16,解得:m=1.m=﹣9(不合题意舍去),∴B(1,6),设直线AB的解析式为:y=kx+b,∴,解得:,∴直线AB的解析式为:y=﹣2x+8.25.(2020•历下区校级模拟)如图,在平面直角坐标系中,直线y=3x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且BC=2AB,BD∥x轴交反比例函数y=(x>0)于点D,连接AD.(1)求b、k的值;(2)求△ABD的面积;(3)若E为射线BC上一点,设E的横坐标为m,过点E作EF∥BD,交反比例函数y=(x>0)的图象于点F,且EF=BD,求m的值.【解析】(1)作CH⊥y轴于点H,∵直线y=3x+b经过点A(﹣1,0),∴﹣1×3+b=0,解得,b=3,对于直线y=3x+3,当x=0时,x=3,∴点B的坐标为(0,3),即OB=3,∵CH∥OA,∴△AOB∽△CHB,∴==,即==,解得,CH=2,BH=6,∴OH=OB+BH=9,∴点C的坐标为(2,9),∴k=2×9=18;(2)∵BD∥x轴,∴点D的纵坐标为3,∴点D的横坐标为=6,即BD=6,∴△ABD的面积=×6×3=9;(3)EF=BD=×6=2,设E(m,3m+3)当0<m<2时,点F的坐标为(m+2,3m+3),∵点F在反比例函数y=上,∴(m+2)(3m+3)=18,解得,m1=﹣4(舍去),m2=1,当m>2时,点F的坐标为(m﹣2,3m+3),∵点F在反比例函数y=上,∴(m﹣2)(3m+3)=18,解得,m3=(舍去),m4=,综上所述,m的值为1或.26.(2020•历下区一模)如图,已知反比例函数y=(x>0)的图象经过点A(4,2),过A作AC⊥y轴于点C.点B为反比例函数图象上的一动点,过点B作BD⊥x轴于点D,连接AD.直线BC与x轴的负半轴交于点E.(1)求反比例函数的表达式;(2)若BD=3OC,求△BDE的面积;(3)是否存在点B,使得四边形ACED为平行四边形?若存在,请求出点B的坐标;若不存在,请说明理由.【解析】(1)∵反比例函数y=(x>0)的图象经过点A(4,2),∴m=8,∴反比例函数y=(x>0).(2)∵AC⊥y轴,A(4,2),∴OC=2,∵BD=3OC,∴BD=6,∵BD⊥x轴,∴B(,6),∵C(0,2),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=3x+2,∴E(﹣,0),∴DE=+=2,∴S△BED=×DE×BD=6.(3)存在.如图,设BD交AC于F.设B(a,),∵A(4,2)∴AC=4,∵四边形BCDE是平行四边形,∴DE=AC=4,且CF∥DE,∴△BCF∽△BED,∴=,即=,解得a=2,∴B(2,4).27.(2019秋•文山市期末)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m ≠0)的图象相交于A,B两点,过点A作AD⊥x轴于点D,AO=5,OD:AD=3:4,B点的坐标为(﹣6,n)(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)P是y轴上一点,且△AOP是等腰三角形,请直接写出所有符合条件的P点坐标.【解析】(1)AO=5,OD:AD=3:4,设:OD=3a,AD=4a,则AD=5a=5,解得:a=1,故点A(3,4),则m=3×4=12,故反比例函数的表达式为:y=,故B(﹣6,2),将点A、B的坐标代入一次函数表达式y=kx+b得:,解得:,故一次函数的表达式为:y=x+2;(2)设一次函数交y轴于点M(0,2),△AOB的面积S=×OM×(xA﹣xB)=2×(3+6)=9;(3)设点P(0,m),而点A、O的坐标分别为:(3,4)、(0,0),AP2=9+(m﹣4)2,AO2=25,PO2=m2,当AP=AO时,9+(m﹣4)2=25,解得:m=8或0(舍去0);当AO=PO时,同理可得:m=±5;当AP=PO时,同理可得:m=;综上,P点坐标为:(0,8)或(0,5)或(0,﹣5)或(0,).28.(2020•锦江区模拟)如图,在直角坐标系中,点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,反比例函数y=(x>0)的图象交AB,BC分别于点E,F.(1)求直线EF的解析式;(2)求四边形BEOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P的坐标.【解析】(1)∵点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,∴点A,点E纵坐标为1,点C,点F的横坐标为2,∵点E,点F在反比例函数y=(x>0)的图象上,∴点E(1,1),点F(2,),设直线EF的解析式的解析式为:y=kx+b,∴∴∴直线EF的解析式的解析式为:y=﹣x+;(2)∵四边形BEOF的面积=S四边形ABCO﹣S△AOE﹣S△OCF,∴四边形BEOF的面积=2﹣﹣=1;(3)∵点E(1,1),∴OE=,若OE=OP=,则点P(0,)或(0,﹣),若OE=EP,且AE⊥AO,∴OA=AP=1,∴点P(0,2)若OP=PE,∴点P在OE的垂直平分线上,即点P(0,1),综上所述:当点P(0,)或(0,﹣)或(0,2)或(0,1)时,△POE是等腰三角形.29.(2020•槐荫区一模)如图,已知一次函数y=x﹣2与反比例函数y=的图象相交于点A(2,n),与x 轴相交于点B.(1)求k的值以及点B的坐标;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)在y轴上是否存在点P,使P A+PB的值最小?若存在,请求出点P的坐标;若不存在,请说明理由.【解析】(1)把点A(2,n)代入一次函数y=x﹣2,可得n=﹣2=3;把点A(2,3)代入反比例函数y=,可得k=xy=2×3=6,∵一次函数y=x﹣2与x轴相交于点B,∴x﹣2=0,解得x=,∴点B的坐标为(,0);(2)∵点A(2,3),B(,0),∴AB===,∵四边形ABCD是菱形,∴AD=AB=,AD∥BC,∵点C在x轴正半轴上,点D在第一象限,∴D(2+,3);(3)存在,如图,作点B(,0)关于y轴的对称点Q的坐标为(﹣,0),连接AQ交y轴于点P,此时PA+PB 的值最小,设直线AQ的解析式为:y=kx+b,则,解得:,∴直线AQ的关系式为y=x+,∴直线AQ与y轴的交点为P(0,).。

初中数学教材章节-人教版精编版

初中数学教材章节-人教版精编版

七年级上册(人教版)第一章有理数1、正数和负数2、有理数(有理数、数轴、相反数、绝对值)3、有理数的加减法(加法法则、交换律、结合律)4、有理数的乘除(倒数、交换律、结合律、分配律)5、有理数的乘方(幂、近似数)第二章整式的加减1、整式(单项式、多项式)2、整式的加减(同类项、合并同类项)第三章一元一次方程1、从算式到方程(一元一次方程、等式的性质)2、解一元一次方程-合并同类项与移项3、解一元一次方程-去括号去分母4、实际问题与一元一次方程第四章几何图形的初步1、几何图形(立体图形、平面图形、三视图、点线面体)2、直线、射线、线段(相交)3、角(度、分、秒、角的比较与运算、角平分线、余角、补角)4、课题设计-设计制作长方形形状的包装纸盒七年级下册第五章相交线与平行线1、相交线(邻补角、对顶角、垂线、同位角、内错角、同旁内角)2、平行线及其判定(3个判定)3、平行线的性质(3个性质、命题、定理、证明)4、平移第六章实数1、平方根(算术平方根);2、立方根;3、实数(无理数)第七章平面直角坐标系1、平面直角坐标系(有序数对、坐标系、原点、横轴、纵轴)2、坐标方法的简单应用(位置、平移)第八章二元一次方程组1、二元一次方程组2、消元-解二元一次方程组3、实际问题与二元一次方程组4、三元一次方程组的解法第九章不等式1、不等式(解集、不等式的性质3个)2、一元一次不等式3、一元一次不等式组第十章数据的收集、整理与描述1、统计调查(全面调查、抽样调查、简单随机抽样)2、直方图(组距、频数);3、课题学习-从数据谈节水八年级上册第十一章 三角形1、与三角形有关的线段(三边关系、高、中线、角平分线、重心、稳定性)2、与三角形有关的角(内角和、外角)3、多边形及其内角和(多边形、内角和、外角和360°)第十二章 全等三角形1、全等三角形(全等形、性质、)2、三角形全等的判定(SSS 、SAS 、AAS 、ASA 、HL )3、角的平分线的性质第十三章 轴对称1、轴对称(对称点、垂直平分线、对称轴、垂直平分线的性质)2、画轴对称图形3、等腰三角形(性质、等边三角形、30°的直角三角形)4、课题学习-最短路径的问题第十四章 整式的乘法与因式分解1、整式的乘法(同底数幂的乘法、幂的乘方、积的乘方、单项式/多项式×单项式/多项式)2、乘法公式(平方差、完全平方公式)3、因式分解(分解因式、提公因式法、公式法)第十五章 分式1、分式(分数-分式、性质、约分、最简分式、通分、最简公分母)2、分式的运算(乘除法则、加减法则、整数指数幂)3、分式的方程(检验)八年级下册第十六章 二次根式1、二次根式(()的区别与22a a 、代数式)2、二次根式的乘除(最简二次根式)3、二次根式的加减(同类二次根式)第十七章 勾股定理1、勾股定理2、勾股定理的逆定理第十八章 平行四边形1、平行四边形(性质、判定、三角形中位线)2、特殊的平行四边形(矩形、直角三角形的中线、菱形、正方形)第十九章 一次函数1、函数(变量、函数、解析式、图像)2、一次函数(正比例函数、一次函数、待定系数法、一次函数与方程/不等式)3、课题学习-选择方案第二十章 数据的分析1、数据的集中趋势(平均数、中位数、众数)2、数据的波动程度(方差)3、课题学习-体质健康测试中的数据分析九年级上册第二十一章一元一次方程1、一元一次方程(定义、根)2、解一元一次方程(配方法、公式法、判别式、因式分解法、根与系数的关系)3、实际问题与一元二次方程第二十二章二次函数1、二次函数的图象和性质2、二次函数与一元一次方程3、实际问题与二次函数第二十三章旋转1、图形的旋转2、中心对称(关于原点对称的点的坐标)3、课题学习-图形设计第二十四章圆1、圆的有关性质(圆心、半径、弦、等圆、垂直弦的直径、圆心角、圆周角)2、点和圆、直线和圆的位置关系3、正多边形和圆4、弧形和扇形面积第二十五章概率初步1、随机事件与概率2、用列举法求概率3、用频率估计概率九年级下册第二十六章反比例函数1、反比例函数(图像、性质)2、实际问题与反比例函数第二十七章相似1、图形的相似(相似比)2、相似三角形(判定、性质、应用)3、位似(位似图形、位似中心)第二十八章锐角三角函数1、锐角三角函数2、解直角三角形及其应用第二十九章投影与视图1、投影(平行投影、中心投影、正投影)2、三视图3、课题学习-制作立体模型。

一次函数反比例函数及二次函数课件

一次函数反比例函数及二次函数课件
2.求解与二次函数有关的不等式问题,可借助二次函数的 图象特征,分析不等关系成立的条件.
考点 2 含参数问题的讨论 师生互动 考向 1 区间固定对称轴动型 [例 1]已知函数 f(x)=x2+2ax+2,求 f(x)在[-5,5]上的最 大值与最小值. 解:f(x)=x2+2ax+2=(x+a)2+2-a2,x∈[-5,5],对称 轴为直线 x=-a. (1)当-a<-5,即 a>5 时,函数 f(x)在[-5,5]上单调递 增,如图 2-8-2(1), ∴f(x)max=f(5)=52+2a×5+2=27+10a,
根据图象知,A 选项 b=0 不对 ; B 选项,若 g(x)成立,则 a>0,b>0,- 2ba<0,此时 f(x)图 象不对;
C 选项,若 g(x)成立,则 a<0,b>0,- b >0,此时 f(x)图 2a
象不对;
D 选项显然是正确的,故选 D. 答案:D
2. 设 abc >0,二次函数 f(x) =ax2 +bx +c 的图象可能是 ()
∴f(10)-f(t)=12-t,即 t2-17t+72=0.
解得 t=8(舍去)或 t=9.∴t=9. 综上所述,存在常数 t=15-2 17或 t=8 或 t=9 满足条件.
【考法全练】 2.(多选题)一般地,若函数 f(x)的定义域为[a,b],值域为[ka, kb],则称[a,b]为 f(x)的“k 倍跟随区间”;特别地,若函数 f(x) 的定义域为[a,b],值域也为[a,b],则称[a,b]为 f(x)的“跟随
(2)二次函数在给定区间[m,n]上的最值求解,常见的有以 下四种情况:
①对称轴与区间
③定轴动区间,即对称轴是确定的,区间[m,n]不确定;

第六章反比例函数小结课件浙教版八年级数学下册

第六章反比例函数小结课件浙教版八年级数学下册

O2
x


x<0 或 x>2
畅所欲言
如图所示,过 A,O 两点作直线l1 ,交反比例函数 y
的另一支于点B.
6 的图象
x
问题:求不等式
3 x< 6 2x
的解集.
y
y 3x
2
3
A (2,3)
y 3x 2
y6 x
转化
①② ③④
x O2
当 y 3 x的函数值小于 y 6 的函数
2
x
值时,求自变量x的取值范围.
问题:第一次喷洒消毒液,有效消毒时间持续几分钟?
解:设喷药水时y与x的函数关系式为y=k1x,
把设(喷2药,3水)后代y与入x得请再的思先按k考函1按回=完暂播数32成停放,关后键键∴系!!y式为32 ( x,0y≤xk≤ x2 2),
把(2,3)代入得k2=6,∴ y
6(x>2),令y=1.5 ,1.5
站内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,当空气中每立
方米的含药量为3毫克时停止喷洒,第一次药物喷洒完成后,y与x成反比例(如图
所示),现测得第一次喷洒时间2分钟.
问题:当空气中每立方米
yy(毫克)
的含药量不低于1.5毫克 才能有消毒作用,则第一
D3
A (2,3) E
次喷洒消毒液有效消毒时
问题:第一次喷洒消毒液,有效消毒时间持续几分钟? y(毫克)
转化 已知 y≥1.5,求x的取值范围
3
A
y 3 ( x 0≤x≤2) 2
B(1,1.5)
y 6(x>2) x
C( 4 ,1.5)
B
C
OO1 2 4
x
(分钟)

人教版八年级数学下册反比例函数知识点归纳(重点)

人教版八年级数学下册反比例函数知识点归纳(重点)

人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。

浙教版数学八年级下册《第6章 反比例函数》

浙教版数学八年级下册《第6章 反比例函数》

《第6章反比例函数》一、填空题1.已知反比例函数的解析式为,则m的取值范围是.2.在反比例函数y=﹣中,自变量x的取值范围是.3.如果y与y 1成正比例,y1与x成反比例,且y关于x的函数图象经过点(,﹣1),那么y关于x的函数解析式是.二、选择题4.如果x=3,y=4适合解析式,那么下列也适合的一组数据是()A.x=2,y=6 B.x=﹣2,y=6 C.x=4,y=﹣3 D.x=3,y=﹣45.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I2与R成反比例C.P为定值,I与R成正比例D.P为定值,I2与R成正比例6.对于反比例函数,当自变量x的值从3增加到6时,函数值减少了1,则函数的解析式为()A.B.C.D.三、解答题7.已知y是关于x的反比例函数,当x=1时,y=3;当x=m时,y=﹣2.(1)求该反比例函数的解析式;(2)若一次函数y=3x+b过点(m,﹣2),求一次函数的解析式.8.已知点A(2,﹣3),P(3,),Q(﹣5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求的值.9.已知y=y1+y2,y1与x成正比例,y2与x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y与x的函数关系式.10.学校课外生物小组的同学们准备自己动手,用旧围栏建一个面积固定的矩形饲养场,小强提出矩形两条邻边的长分别为6m和8m,小伟认为这样太浪费围栏,可能有更节省材料的方案.设矩形的一边长为x(m),与它相邻的一边长为y(m).(1)求y关于x的函数表达式,并指出比例系数的实际意义;(2)你能帮小伟找到一种比小强更节省材料的方案吗(要求两邻边不相等)?(3)如果矩形两邻边相等,那么需要多长的旧围栏?(4)如果矩形的一条边长x变大,那么另一条边的长会有什么变化?11.一家名牌上衣专卖店4月份的经营目标是盈利6 000元.(1)写出专卖店4月份每件上衣的利润y(元)关于所需售出的上衣件数x(件)的函数解析式;(2)如果每件上衣的利润是50元,要完成经营目标,该商店4月份至少要卖出多少件上衣?(3)若经理只要求达到5 000元利润,每售出一件上衣,售货员要提成2元,在每件上衣50元利润不变的前提下,营业员至少需要卖出多少件上衣才能完成任务?12.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400250240200150125120销售量y(千克)304048608096100 13.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3…如此继续下去,求y2014的值.《第6章反比例函数》参考答案与试题解析一、填空题1.已知反比例函数的解析式为,则m的取值范围是m≠.【考点】反比例函数的定义.【分析】根据y=,(k是常数,k≠0)是反比例函数,可得答案.【解答】解:比例函数的解析式为,2m﹣1≠0m≠,故答案为:m.【点评】本题考查了反比例函数,y=,(k是常数,k≠0)是反比例函数.2.在反比例函数y=﹣中,自变量x的取值范围是x≠0 .【考点】反比例函数的定义.【分析】根据反比例函数的意义,可得分母不能为0,可得答案.【解答】解:反比例函数y=﹣中,自变量x的取值范围是x≠0,故答案为:x≠0.【点评】本题考查了分式的定义,分母不能为0.3.如果y与y1成正比例,y1与x成反比例,且y关于x的函数图象经过点(,﹣1),那么y关于x的函数解析式是y=﹣.【考点】待定系数法求反比例函数解析式.【分析】根据题意设y=ay1(a≠0),y1=(b≠0).由此易得y=,然后把点(,﹣1)代入函数关系式,可以求得ab的值.【解答】解:根据题意设y=ay1(a≠0),y1=(b≠0).则y=.∵y关于x的函数图象经过点(,﹣1),∴﹣1=,解得,ab=﹣,∴y关于x的函数解析式是:y=﹣.故答案是:y=﹣.【点评】本题考查了待定系数法求反比例函数解析式.注意y与x的函数关系式中的ab作为整体来解答的.二、选择题4.如果x=3,y=4适合解析式,那么下列也适合的一组数据是()A.x=2,y=6 B.x=﹣2,y=6 C.x=4,y=﹣3 D.x=3,y=﹣4【考点】反比例函数图象上点的坐标特征.【分析】先把x=3,y=4代入反比例函数y=求出m2﹣1的值,再对各选项进行逐一判断即可.【解答】解:∵x=3,y=4适合解析式,∴m2﹣1=3×4=12,A、∵2×6=12,∴此点在反比例函数y=的图象上,故本选项正确;B、∵(﹣2)×6=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误;C、∵(﹣3)×4=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误;D、∵3×(﹣4)=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I2与R成反比例C.P为定值,I与R成正比例D.P为定值,I2与R成正比例【考点】反比例函数的定义.【专题】跨学科.【分析】在本题中,P=I2R,即I2和R的乘积为定值,所以根据反比例的概念应该是I2和R成反比例,而并非I与R成反比例.【解答】解:根据P=I2R可以得到:当P为定值时,I2与R的乘积是定值,所以I2与R 成反比例.故选:B.【点评】本题渗透初中物理中“电流”有关的知识,当P为定值时,I2与R成反比例.把I2看作一个整体时,I2与R成反比例,而不是I与R成反比例,这是易忽略的地方,应引起注意.6.对于反比例函数,当自变量x的值从3增加到6时,函数值减少了1,则函数的解析式为()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】分别计算出自变量为3和6的函数值,利用它们的差为1得到﹣=1,然后解此方程求出k即可得到反比例函数解析式.【解答】解:当x=3时,y==;当x=6时,y==,而函数值减少了1,∴﹣=1,解得k=6,所以反比例函数解析式为y=.故选A.【点评】本题考查了用待定系数法求反比例函数解析式:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.三、解答题7.已知y是关于x的反比例函数,当x=1时,y=3;当x=m时,y=﹣2.(1)求该反比例函数的解析式;(2)若一次函数y=3x+b过点(m,﹣2),求一次函数的解析式.【考点】待定系数法求反比例函数解析式;待定系数法求一次函数解析式.【专题】计算题.【分析】(1)设反比例解析式为y=,将x=1,y=3代入求出k的值,即可确定出反比例解析式;(2)将x=m,y=﹣2代入反比例解析式求出m的值,确定出(m,﹣2),代入一次函数求出b的值,即可确定出一次函数解析式.【解答】解:(1)设反比例解析式为y=,将x=1,y=3代入得:k=3,则反比例解析式为y=;(2)将x=m,y=﹣2代入反比例解析式得:﹣2m=3,即m=﹣,将(﹣,﹣2)代入一次函数解析式得:﹣2=﹣+b,即b=,则一次函数解析式为y=3x+.【点评】此题考查了待定系数法求反比例与一次函数解析式,熟练掌握待定系数法是解本题的关键.8.已知点A(2,﹣3),P(3,),Q(﹣5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求的值.【考点】待定系数法求反比例函数解析式.【专题】计算题.【分析】(1)设反比例函数解析式y=,然后把A点坐标代入求出k即可;(2)分别把P点和Q点坐标代入(1)中的解析式,求出a和b的值,然后代入中计算即可.【解答】解:(1)设反比例函数解析式y=,把A(2,﹣3)代入得k=2×(﹣3)=﹣6,所以反比例函数解析式为y=﹣;(2)把P(3,)代入y=﹣得3×=﹣6,解得a=﹣4,把Q(﹣5,b)代入y=﹣得﹣5b=﹣6,解得b=,所以=﹣4+×=﹣3.【点评】本题考查了用待定系数法求反比例函数解析式:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.9.已知y=y1+y2,y1与x成正比例,y2与x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y与x的函数关系式.【考点】待定系数法求反比例函数解析式;二元一次方程的解.【专题】待定系数法.【分析】根据正比例和反比例函数的定义设表达式,再根据给出自变量和函数的对应值求出待定的系数则可.【解答】解:设y1=k1x(k1≠0),y2=∴y=k1x+∵当x=1时,y=﹣1;当x=3时,y=5,∴.所以.所以y=x+.【点评】本题考查了正比例和反比例函数的定义,并且考查了二元一次方程组的解法,难度稍大.10.学校课外生物小组的同学们准备自己动手,用旧围栏建一个面积固定的矩形饲养场,小强提出矩形两条邻边的长分别为6m和8m,小伟认为这样太浪费围栏,可能有更节省材料的方案.设矩形的一边长为x(m),与它相邻的一边长为y(m).(1)求y关于x的函数表达式,并指出比例系数的实际意义;(2)你能帮小伟找到一种比小强更节省材料的方案吗(要求两邻边不相等)?(3)如果矩形两邻边相等,那么需要多长的旧围栏?(4)如果矩形的一条边长x变大,那么另一条边的长会有什么变化?【考点】反比例函数的应用.【分析】(1)利用矩形面积固定进而得出y与x的关系式;(2)利用边长越接近相等,面积不变时,周长越小,进而得出答案;(3)利用一元二次方程的解法得出答案;(4)利用反比例函数增减性得出答案.【解答】解:(1)∵矩形两条邻边的长分别为6m和8m,∴矩形的面积为:6×8=48(cm2),∵设矩形的一边长为x(m),与它相邻的一边长为y(m),∴y=,比例系数即为矩形的面积;(2)当x=7时,y=,∵2(7+)=27<2(6+8),∴这是一种比小强更节省材料的方案;(3)当矩形两邻边相等,则x=,解得:x=±4(负数不合题意舍去),∴需要旧围栏的长为:4×4=16(m);(4)∵y=,48>0,∴矩形的一条边长x变大,那么另一条边的长会变小.【点评】此题主要考查了反比例函数的应用以及反比例函数增减性和一元二次方程的解法等知识,得出y与x的函数关系式是解题关键.11.一家名牌上衣专卖店4月份的经营目标是盈利6 000元.(1)写出专卖店4月份每件上衣的利润y(元)关于所需售出的上衣件数x(件)的函数解析式;(2)如果每件上衣的利润是50元,要完成经营目标,该商店4月份至少要卖出多少件上衣?(3)若经理只要求达到5 000元利润,每售出一件上衣,售货员要提成2元,在每件上衣50元利润不变的前提下,营业员至少需要卖出多少件上衣才能完成任务?【考点】反比例函数的应用.【专题】应用题.【分析】(1)根据盈利=单件利润×售量,可得y与x的函数关系式;(2)将y=50,代入可得x的值;(3)卖出一件上衣的净利润为48元,再由总利润为5000元,可求出需要卖出的数量.【解答】解:(1)由题意得,xy=6000,∴y=.(2)当y=50时,x=120.(3)设卖a件,能完成任务,则(50﹣2)a=5000,解得:a≈104.2.答:营业员至少需要卖出105件上衣才能完成任务.【点评】本题考查了反比例函数的应用,解答本题的关键是根据盈利=单件利润×售量,得出函数关系式.12.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400250240200150125120销售量y(千克)304048608096100【考点】反比例函数的应用.【专题】阅读型;图表型.【分析】首先根据题意,可以用反比例函数刻画这种海产品的每天销售量y与销售价格x之间的关系,且根据图表可得数据,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.【解答】解:(1)函数解析式为;填表如下:第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400300250240200150125120销售量y(千克)30404850608096100(2)2104﹣(30+40+48+50+60+80+96+100)=1600,即8天试销后,余下的海产品还有1600千克,当x=150时,=80.1600÷80=20,所以余下的这些海产品预计再用20天可以全部售出.【点评】本题考查反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.13.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3…如此继续下去,求y2014的值.【考点】反比例函数的定义.【专题】规律型.【分析】根据将x=代入反比例函数y=﹣中,可得y1,再根据又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,可得规律,根据规律,可得答案.【解答】解:y1=﹣,y2=2,y3=﹣,y4=﹣…每三个出现相同的一次,2014÷3=671 (1).【点评】本题考查了反比例函数的定义,计算得出规律是解题关键.初中数学试卷。

自学初中数学资料-反比例函数-(资料附答案)

自学初中数学资料-反比例函数-(资料附答案)

自学资料年份题量分值考点题型201514反比例函数与几填空何综合201613反比例函数图象选择2017110反比例函数的简解答单应用2018210反比例函数的基解答本运算及反比例函数图象2019110反比例函数的应解答用一、正比例函数、反比例函数、一次函数、二次函数的概念【知识探索】1.解析式形如(为常数,)的函数叫做反比例函数.其中也叫做比例系数.反比例函数的定义域是不等于零的一切实数.【错题精练】例1.已知函数y=(m+2)x m2−10是反比例函数,且图象在第二、四象限内,则m的值是()A. 3B. -3C. ±3D. -13【解答】解:由函数y=(m+2)x m2−10为反比例函数可知m2-10=-1,解得m=-3,m=3,又∵图象在第二、四象限内,第1页共36页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第3页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第4页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴函数图象的两个分支分别位于第二四象限,且在每个象限内,y随x的增大而增大;(3)∵反比例函数的关系式为:y=-2x,∴当x=-3时,y=23;当x=-12时,y=4,∴-3≤y≤4.二、用待定系数法求正比例、反比例、一次、二次函数的解析式【知识探索】1.以求正比例函数的解析式为例:先设解析式为(),其中系数待定;再利用已知条件确定的值,这样的方法称为“待定系数法”.【错题精练】例1.已知变量y与x成反比例,且当x=2时,y=-6.求:(1)y与x之间的函数表达式;(2)当y=2时,x的值.【答案】解:(1)∵变量y与x成反比例,∴可设y=kx,∵x=2时,y=-6,∴k=2×(-6)=-12,∴y与x之间的函数关系式是y=−12x;(2)当y=2时,y=−12x=2,解得:x=-6.例2.如图,点A,B在反比例函数y=mx的图象上,点A的坐标为(√3,3),点C在x轴上,且使△AOC是等边三角形,BC∥OA.第5页共36页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第6页 共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼 非学科培训(1)求反比例函数的解析式和OC 的长; (2)求点B 的坐标;(3)求直线BC 的函数解析式.【答案】解:(1)点A (√3,3)在反比例函数y =mx 的图象上,∴3=m√3,m =3√3,∴y =3√3x,OC =OA =√(√3)2+32=2√3.(2)过点B 作BE ⊥x 轴于点E ,设CE=a ,则OE =2√3+a ,BE =√3a , ∵点B 在y =3√3x上, ∴√3a =3√32√3+a,即a 2+2√3a −3=0,解得a =−√3±√6, ∵a >0,∴a =√6−√3,OE =2√3+√6−√3=√6+√3,BE =√3(√6−√3)=3√2−3, ∴B 的坐标为(√6+√3,3√2−3);(3)设直线BC 为y=kx+b ,则{2√3k +b =0(√6+√3)k +b =3√2−3,两式相减得,(√6−√3)k =3√2−3,k =3√2−3√6−√3=√3,∴b =−2√3k =−6,∴所求的直线解析式是y =√3x −6.例3.如图,函数y={2x,(0≤x ≤3)−x +9,(x >3)的图象与双曲线y=kx (k≠0,x >0)相交于点A (3,m )和点B .第7页 共36页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训(1)求双曲线的解析式及点B 的坐标;(2)若点P 在y 轴上,连接PA ,PB ,求当PA+PB 的值最小时点P 的坐标.【答案】解:(1)把A (3,m )代入y=2x ,可得 m=2×3=6, ∴A (3,6),把A (3,6)代入y=kx ,可得k=3×6=18, ∴双曲线的解析式为y=18x ;当x >3时,解方程组{y =−x +9y =18x,可得 {x =6y =3或{x =3y =6(舍去), ∴点B 的坐标为(6,3);(2)如图所示,作点A 关于y 轴的对称点A'(-3,6),连接A'P ,则A'P=AP , ∴PA+PB=A'P+BP≥A'B ,∴当A',P ,B 三点共线时,PA+PB 的最小值等于A'B 的长, 设A'B 的解析式为y=ax+b ,把A'(-3,6),B (6,3)代入,可得{6=−3a+b 3=6a+b,解得{a=−13b=5,∴A'B的解析式为y=-13x+5,令x=0,则y=5,∴点P的坐标为(0,5).【举一反三】1.如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8 ).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)求经过点P的反比例函数的解析式.【答案】解:(1)作图如右,点P即为所求作的点;---图形(2分),痕迹(2分)(2)设AB的中垂线交AB于E,交x轴于F,由作图可得,EF⊥AB,EF⊥x轴,且OF=3,∵OP是坐标轴的角平分线,∴P(3,3),经过点P的反比例函数的解析式设为:y=kx,得出:xy=k=3×3=9,即经过点P的反比例函数的解析式为:y=9x.第8页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训2.已知函数y=y1-y2,其中y1与x成正比例,y2与x成反比例,且当x=1时,y=1;x=3时,y=5.求:(1)求y关于x的函数解析式;(2)当x=2时,y的值.【答案】解:(1)设y1=k1x(k1≠0),y2=k2x(k2≠0),∴y=k1x-k2x.∵当x=1时,y=1.当x=3时,y=5,∴{k1−k2=13k1−k23=5,∴{k1=74k2=34,∴y关于x的函数解析式是:y=74x-34x;(2)由(1)知,y=74x-34x.则当x=2时,y=74×2-38=258.3.如图,在平面直角坐标系中,点A是反比例函数y=kx(k≠0)图象上一点,AB⊥x轴于B点,一次函数y=ax+b(a≠0)的图象交y轴于D(0,-2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.第9页共36页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵D(0,-2),△AOD的面积为4,∴12•2•OB=4,∴OB=4,∵C为OB的中点,∴OC=BC=2,C(2,0)又∵∠COD=90°∴△OCD为等腰直角三角形,∴∠OCD=∠ACB=45°,又∵AB⊥x轴于B点,∴△ACB为等腰直角三角形,∴AB=BC=2,∴A点坐标为(4,2),把A(4,2)代入y=kx,得k=4×2=8,即反比例函数解析式为y=8x,将C(2,0)和D(0,-2)代入一次函数y=ax+b,可得{0=2a+b −2=b ,解得{a=1b=−2,∴直线AE解析式为:y=x-2;(2)设Q的坐标为(t,8t),∵S△BAC=12×2×2=2,∴S△QAB=4S△BAC=8,即12•2•|t-4|=8,解得t=12或-4,在y=8x 中,当x=12时,y=23;当x=-4时,y=-2,∴Q点的坐标为(12,23)或(-4,-2).三、正比例、反比例、一次、二次函数图像上的点及图像与坐标轴的第10页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训交点【知识探索】1.反比例函数(是常数,)的图像的两支都无限接近于轴和轴,但不会与轴和轴相交.【错题精练】例1.如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数y=2x的图象经过P,D两点,则AB的长是______.【解答】解:设D(m,2m ),则P(2m,1m),作PH⊥AB于H.∵四边形ABCD是正方形,∴PA=PB,∵PH⊥AB,∴AH=HB=m,∴AB=AD=2m,∴2m=2m,∴m=1或-1(舍弃),∴AB=2m=2,故答案为2.【答案】2例2.如图,已知点A在反比例函数y=2x在第一象限上运动,过点O作OB⊥OA,当tanA=√2时,点B恰好落在反比例函数y=kx在第二象限的图象上,则k的值为______.【解答】解:过A作AN⊥x轴于N,过B作BM⊥x轴于M.∵第一象限内的点A在反比例函数y的图象上,∴设A(x,2x)(x>0),ON•AN=2.∵tan∠A=√2,∴OBOA=√2,∵OA⊥OB,∴∠BMO=∠ANO=∠AOB=90°,∴∠MBO+∠BOM=90°,∠MOB+∠AON=90°,∴∠MBO=∠AON,∴△MBO∽△NOA,∴BMON =OMAN=OBOA=√2,∴BM=√2ON,OM=√2AN.又∵第二象限的点B在反比例函数y=kx上,∴k=-OM•BM=-√2ON×√2AN=-4.故答案为-4.【答案】-4例3.已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF⊥BD于点F,AE⊥x轴于点E,连接OB,AD,若△OBD∽△DAE,则点A的坐标是______.【解答】解:AF与BC为对应边,设AE=3y,则AF=DE=2y,∵OD=2,OC=3,∴反比例函数的解析式为:y=6x,由题意得,2+2y=63y,整理得,y2+y-1=0,解得,y1=−1−√52(舍去),y2=−1+√52,∴点A的坐标是(√5+1,3√5−32),故答案为:(√5+1,3√5−32).【答案】(√5+1,3√5−32)例4.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=kx(k≠0)的图象恰好经过A′,B,则k的值为______.【解答】解:∵四边形ABCO是矩形,AB=2,∴设B(m,2),∴OA=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=√32m,∴A′(12m,√32m),∵反比例函数y=kx(k≠0)的图象恰好经过A′,B,∴12m•√32m=2m=k,∴m=8√33,∴k=16√33.故答案为:16√33.【答案】16√33例5.在反比例函数y=-2019x图象上有三个点A(x1,y1)B(x2,y2)C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A. y1<y3<y2B. y2<y3<y1C. y3<y1<y2D. y3<y2<y1【解答】解:k=-2019,故图象在二、四象限,x>0,y随x增大而增大,y2<y3,且均为负值,x<0时,y>0,故选:B.【答案】B例6.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=k的图象上,OA=1,OC=6,x试求出正方形ADEF的边长.【答案】解:∵OA=1,OC=6,四边形OABC是矩形,∴点B的坐标为(1,6),∵反比例函数y=k的图象过点B,x∴k=1×6=6.设正方形ADEF的边长为a(a>0),则点E的坐标为(1+a,a),∵反比例函数y=k的图象过点E,x∴a(1+a)=6,解得:a=2或a=-3(舍去),∴正方形ADEF的边长为2.例7.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),反比例函数y=k(kx >0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求反比例函数的表达式及点E的坐标;(2)点F是OC边上一点,若△FBC∽△DEB,求点F的坐标.【答案】解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=kx(x>0)得:k=1×3=3;∴反比例函数的表达式y=3x,∵BA∥y轴,∴点E的横坐标与点B的横坐标相等为2,∵点E在双曲线上,∴y=32,∴点E的坐标为(2,32);(2)∵点E的坐标为(2,32),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=32,BC=2,∵△FBC∽△DEB,∴CFDB =BC EB,即:CF1=232,∴FC=43,∴点F的坐标为(0,53).例8.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、……、A n-1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、……、A n-1A n都在y轴上(n≥2),点P1(x1,y1),点P2(x2,y2),……,点P n(x n,y n)在反比例函数y=kx(x>0)的图象上,已知B1(-1,1).(1)反比例函数解析式为______;(2)求点P3和点P2的坐标;(3)点P n的坐标为(______)(用含n的式子表示),△P n B n O的面积为______.【解答】解:(1)在正方形OP1A1B1中,OA1是对角线,则B1与P1关于y轴对称,∵B1(-1,1),∴P1(1,1),则k=1×1=1,即反比例函数解析式为y=1;x;故答案为:y=1x,(2)设P2(a,a+2),代入y=1x∴a(a+2)=1,∴a=-1±√2,∵a>0,∴a=√2-1,∴P2(√2-1,√2+1),设P3(b,b+2√2),代入y=1,x∴b(b+2√2)=1,∴b=-√2±√3,∵b>0,∴b=√3-√2∴P3(√3-√2,√3+√2),(3)连接B1P1交y轴于C,B2P2交y轴于E,B3P3交y轴于F,连接OB2、OP2,由P1(1,1)、P2(√2-1,√2+1),P3(√3-√2,√3+√2),知点P n的坐标为(√n−√n−1,√n+√n−1),∵S△P1B1O =2S△P1CO=2×12=1,S△P2B2O=2S△P2EO=2×12=1,…∴△P n B n O的面积为1,故答案为:(√n-√n−1,√n+√n−1),1.【答案】y=1x√n−√n−1,√n+√n−11【举一反三】1.如图,正方形ABCD和正方形DEFG的顶点在y轴上,顶点D、F在x轴上,点C在DE边上,反比例函数y=kx(k≠0)的图象经过B,C和边EF的中点M,若S四边形ABCD=8,则正方形DEFG的面积是()A. 239B. 1289C. 16D. 154【解答】解:作BH⊥y轴于B,连结EG交x轴于P,如图,∵正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,∴∠EDF=45°,3.如图,矩形ABCD的顶点A在y轴上,反比例函数y=kx(x>0)的图象恰好过点B和点C,AD与x 轴交于点E,且AE:DE=1:3,若E点坐标为(2,0),且AD=2AB,则k的值是()A. 6B. 8C. 10D. 12【解答】解:如图,作DM⊥x轴于M,作BN⊥y轴于N,设OA=a,则△AOE∽△DME,∴OADM =OEEM=AEED,∵AE:DE=1:3,E点坐标为(2,0),∴EM=6,DM=3a,∴点D的坐标为(8,-3a),∵AD=2AB,∴AB=2AE,∵∠EAO=90°-∠NAB=∠ABN,∠AOE=∠BNA=90°,∴△EAO∽△ABN,∴OEAN =OABN=AEAB,∴AN=4,BN=2a,∴点B的坐标为(2a,a+4),由平移可得,点C的坐标为(2a+8,-3a+4),∵反比例函数y=kx(x>0)的图象恰好过点B和点C,∴2a(a+4)=(2a+8)(-3a+4)=k,解得a=1或a=-4(舍去),∴k=10.故选:C.【答案】C4.如图,已知点A,C在反比例函数y=ax (a>0)的图象上,点B,D在反比例函数y=bx(b<0)的图象上,AB∥CD∥y轴,AB,CD在y轴的同侧,AB=3,CD=2,AB与CD的距离为1,则a-b的值是______.【解答】解:设点A、B的横坐标为m(m>0),则点C、D的横坐标为m+1,∴A(m,am ),B(m,bm),C(m+1,am+1),D(m+1,bm+1),∵AB=3,CD=2,∴{a−bm=3a−bm+1=2,解得:{a−b=6m=2.故答案为:6.【答案】65.如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,顶点D恰好落在双曲线y=kx.若将正方形沿x轴向左平移b个单位长度后,点C恰好落在该双曲线上,则b的值为______.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=-3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO 中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA ,在△OAB 和△FDA 中,{∠DAF =∠OBA∠BOA =∠AFD AD =AD,∴△OAB ≌△FDA (AAS ),同理,△OAB ≌△FDA ≌△BEC ,∴AF=OB=EC=3,DF=OA=BE=1,故D 的坐标是(4,1),C 的坐标是(3,4).代入y=k x 得:k=4,则函数的解析式是:y=4x . ∴OE=4,则C 的纵坐标是4,把y=4代入y=4x 得:x=1.即G 的坐标是(1,4),∴CG=2,∴b=2.故答案为:2.【答案】26.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx 在第一象限的图象经过点B .①若OC=3,BD=2,则k=______;②若OA 2-AB 2=18.则k=______.【解答】解:①∵△OAC 和△BAD 都是等腰直角三角形,∴OC=AC=3,BD=AD=2,∴OC+BD=5,CD=3-2=1,即B (5,1),∵反比例函数y=k x 在第一象限的图象经过点B ,∴k=5×1=5.②设点B (a ,b ),∵△OAC和△BAD都是等腰直角三角形,∴OA=√2AC,AB=√2AD,OC=AC,AD=BD,∵OA2-AB2=18,∴2AC2-2AD2=18即AC2-AD2=9∴(AC+AD)(AC-AD)=9,∴(OC+BD)•CD=9,∴ab=9,∴k=9,故答案为:5,9.【答案】597.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在(k>0,x>0)的图象上,点D的坐标为(√5,2).反比例函数y=kx(1)求k的值;(k>0,x>0)的图象上(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y=kx时,求菱形ABCD平移的距离.【答案】解:(1)作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(√5,2),∴DO=AD=3,∴A点坐标为:(√5,5),∴k=5√5;(x>0)的图象上D′,(2)∵将菱形ABCD向右平移,使点D落在反比例函数y=kx∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2=5√5x ,解得x=5√52, ∴FF′=OF′-OF=5√52-√5=3√52, ∴菱形ABCD 平移的距离为3√52,同理,将菱形ABCD 向右平移,使点B 落在反比例函数y=k x (x >0)的图象上,菱形ABCD 平移的距离为53√5,综上,当菱形ABCD 平移的距离为3√52或5√53时,菱形的一个顶点恰好落在函数图象上.8.如图,菱形OABC 的边OC 在x 轴正半轴上,点B 的坐标为(8,4).(1)请求出菱形的边长;(2)若反比例函数y=kx 经过菱形对角线的交点D ,且与边BC 交于点E ,请求出点E 的坐标.【答案】解:(1)如图,BM ⊥x 轴于点M ,∵点B 的坐标为(8,4),OC=BC ,∴CM=8-BC ,在Rt △BCM 中,BC 2=CM 2+BM 2,即BC 2=(8-BC )2+42,解得,BC=5,即菱形的边长为5;(2)∵D 是OB 的中点,∴点D 的坐标为:(4,2),∵点D 在反比例函数y=kx 上, ∴k=xy=4×2=8,y=8x ,又∵OC=5,∴C (5,0),(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?【答案】解:(1)设反比例函数解析式为y=k x (k≠0),将(25,6)代入解析式得k=25×6=150,则函数解析式为y=150x(x≥15), 将y=10代入解析式得,10=150x , x=15,故A (15,10),设正比例函数解析式为y=nx ,将A (15,10)代入上式即可求出n 的值,n=1015=23,则正比例函数解析式为y=23x (0<x <15).(2)当y=2时,150x=2, 2=23x 1(0<x <15).解得x=75.答:师生至少在75分钟内不能进入教室.例3.在面积都相等的所有矩形中,当其中一个矩形的一条边长为1时,它的另一边长为3(1)设另一条矩形的相邻两边分别为x 、y(2)若△ABC为等边三角形,则有y=√32x,∵y=12√3x∴12√3x =√32x,∴x=√24=2√6∵2<2√6<8∴能【答案】(1)y=12√3x;(2)【举一反三】1.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120∘,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx上运动,则k的值为.【答案】3.2.为预防“非典”,某学校对教室采取药熏的方式进行消毒,已知药物燃烧时室内每立方米空气中含药量y(mg)与时间x(min)成正比例,药物燃烧后y与x成反比例,已知药物8min燃烧完,此时室内空气中每立方米的含药量为6mg.(1)研究表明:当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需几分钟后,学生才能回教室?(2)研究表明:当空气中每立方米的含药量不低于3mg,且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【答案】解:(1)①由题意xy=12,∴y=12x (x≥65).②y≥4时,65≤x≤3.(2)当2x+12x =9.5时,整理得:4x 2-19x+24=0,△<0,方程无解.当2x+12x =10.5时,整理得:4x 2-21x+24=0,△=57>0,符合题意;∴小凯的说法错误,洋洋的说法正确.1.下列函数中,反比例函数是( )A. y=-2xB. y =1x+1C. y=x-3D. y =13x【解答】解:根据反比例函数定义,y =13x 是反比例函数.故选:D .【答案】D2.如果函数y=kx k-2是反比例函数,那么k=______,此函数的解析式是______.【解答】解:根据题意,k-2=-1,解得k=1,且k≠0,∴函数的解析式为:y=1x .故答案为:1,y=1x .【答案】1y=1x3.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A. y=400x B. y=14xC. y=100x D. y=1400x【解答】解:设y=kx,400度近视眼镜镜片的焦距为0.25m,∴k=0.25×400=100,∴y=100x.故选:C.【答案】C4.如图,在平面直角坐标系中,反比例函数y=kx经过▱ABCD的顶点B,D,点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=6.(1)填空:点A的坐标为______,k=______;(2)求AB所在直线的解析式.【解答】解:(1)∵点D 的坐标为(2,1),点A 在y 轴上,且AD ∥x 轴,∴点A 的坐标(0,1),∵y =kx 的图象经过点D (2,1),∴k=2×1=2,故答案为:(0,1),2;(2)∵D (2,1),AD ∥x 轴,∴AD=2,AO=1,∵S 平行四边形ABCD =6,∴AE=3,∴OE=2,∴B 点纵坐标为-2,把y=-2代入y =2x 得,-2=2x ,解得x=-1,∴B (-1,-2),设直线AB 的解析式为y=ax+b ,代入A (0,1),B (-1,-2)得: {b =1−a +b =−2, 解得:{a =3b =1, ∴AB 所在直线的解析式为y=3x+1.【答案】(0,1)25.如图,一次函数y=-x+4的图象与反比例函数y=kx (k 为常数,且k≠0)的图象交于A (1,a ),B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA+PB 的值最小,求满足条件的点P 的坐标及△PAB 的面积.【答案】解:(1)把点A (1,a )代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A 的坐标为(1,3).把点A (1,3)代入反比例函数y=kx ,得:3=k ,∴反比例函数的表达式y=3x ,联立两个函数关系式成方程组得:{y =−x +4y =3x , 解得:{x =1y =3,或{x =3y =1, ∴点B 的坐标为(3,1).(2)作点B 作关于x 轴的对称点D ,交x 轴于点C ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小,连接PB ,如图所示.∵点B 、D 关于x 轴对称,点B 的坐标为(3,1),∴点D 的坐标为(3,-1).设直线AD 的解析式为y=mx+n ,把A ,D 两点代入得:{m +n =33m +n =−1, 解得:{m =−2n =5, ∴直线AD 的解析式为y=-2x+5.令y=-2x+5中y=0,则-2x+5=0,解得:x=52,∴点P 的坐标为(52,0). S △PAB =S △ABD -S △PBD =12BD•(x B -x A )-12BD•(x B -x P )=12×[1-(-1)]×(3-1)-12×[1-(-1)]×(3-52)=32.6.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,……均是等腰直角三角形,其直角顶点P 1(4,4),P 2,P 3……P n 均在反比例函数y=kx (k >0)的图象上(1)求k的值;(2)分别求出P2、P3的坐标;(3)试用含n的式子表示P n的坐标(直接写出).(k>0)的图象上,【答案】解:(1)∵点P1(4,4)在反比例函数y=kx∴k=4×4=16;(2)作P1A⊥OA1于A,P2B⊥A1A2于B,P3⊥A2A3于C,如图所示:∵P1(4,4),∴OA=P1A,△OAP1时等腰直角三角形,∴∠OP1A=45°,∴∠A1P1A=45°,∵P1A⊥OA1,∴△AA1P1是等腰直角三角形,∴AA1=OA=4,△P1OA1,△P2A1A2,△P3A2A3,……均是等腰直角三角形,∴OA1=8,设P2(8+b,b),则b(8+b)=16,解得:b1=-4-4√2(舍去),b2=-4+4√2,∴OB=8-4+4√2=4+4√2,∴P2(4+4√2,-4+4√2),A2A1=2b=-8+8√2,∴OA2=8-8+8√2=8√2,设P3(8√2+c,c),则c(8√2+c)=16,解得:c1=-4√2-4√3(舍去),c2=-4√2+4√3,∴OC=8√2-4√2+4√3=4√2+4√3,∴P3(4√2+4√3,-4√2+4√3);(3)由(2)得:P n的坐标为(4√n+4√n−1,4√n-4√n−1).7.已知反比例函数y=6的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关x系是______.【解答】解:∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2,故答案为y1<y2.【答案】y1<y2的图象经过点A(2,1),点M(m,n)(0<m<2)是该函数图象上一8.如图,已知反比例函数y=kx动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当∠OAM=90°时,求点M的坐标.得k=2×1=2,【答案】解:(1)把A(2,1)代入y=kx;所以反比例函数解析式为y=2x(2)∵∠OAM=90°,∴∠MAD+∠CAO=90°,而∠CAO+∠AOC=90°,∴∠AOC=∠MAD,∴Rt△AMD∽Rt△OAC,∴AD:OC=MD:AC,即(n-1):2=(2-m):1,∴n-1=4-2m,∵点M(m,n)在y=2的图象上,x,∴n=2m-1=4-2m,∴2m整理得2m2-5m+2=0,解得m1=1,m2=2(舍去),2∴n=4,∴点M的坐标为(1,4).2。

数学浙教版八年级下册第6章反比例函数6.1反比例函数教案

数学浙教版八年级下册第6章反比例函数6.1反比例函数教案

6.1 反比例函数教学目标知识与技能理解反比例函数的定义,根据实际问题能列出反比例函数关系式.过程与方法经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.情感态度与价值观通过教学活动,培养学生乐于探究,合作学习的习惯,增强学生之间的交流与合作意识. 教学重点反比例函数的定义.教学难点用反比例函数的知识解决实际问题.教学设计—、情境导入利用多媒体演示课件“反比例函数”.通过观察发现:无论三角形的底边和底边上的高怎样变化,它们的积保持不变(等于一个非零常数).二、课前热身1.在正比例函数中,两个变量的商具有什么特征?2.回顾小学所学的反比例,请举出两个成反比例关系的实例.(例如,当路程一定时,速度与时间成反比;当矩形的面积一定时,长与宽成反比等)三、合作探究1.整体感知本节课我们着重探讨两个变量的积是一个非零常数的函数的相关概念及表达式的求法.2.师生互动互动1师:利用多媒体演示幻灯片.问题1 甲、乙两地相距120千米,汽车匀速从甲地驶往乙地.显然,汽车的行驶时间由行驶速度确定,时间是速度的函数,试写出这个函数的关系式.明确和其他实际问题一样,要探求两个变量之间的关系,应先选用适当的字母表示变量,再根据题意列出相应的函数关系式.设汽车行驶的速度是v 千米/时,从甲地到乙地的行驶时间是t 小时.因为在匀速运动中,时间=路程÷速度,所以.vt 120互动2师:利用多媒体演示课件“你能建围栏吗?”问题2 学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24 米2的矩形饲养场.设它的一边长为x 米,求另一边的长y (米)与x (米)的函数关系式.生:观察课件,讨论发现的问题,并解答问题.明确根据矩形的面积可知y ·x =24,即x y 24=. 互动3师:上述函数(1)(2)具有怎样的共同特征?能否用一个统一的函数关系式把它们表示出来?说出你的想法.生:相互交流自己的观点,逐渐达成共识.明确在上述函数中,两个变量的积等于一个非零常数,都可以写成:x k y =(k ≠0)的形式.一般地,形如xk y =(k 是常数,k ≠0)的函数叫做反比例函数. 互动4师:请同学们把正比例函数与反比例函数进行比较,说出它们有哪些不同.生:讨论交流,逐个举手回答自己的观点.明确从形式上来看,正比例函数是关于自变量的整式,反比例函数是关于自变量的分式;从内涵上来看,正比例函数两个变量的商是一个非零常数,反比例函数两个变量的积是一个非零常数;从自变量和函数的取值范围来看,正比例函数中的自变量和函数值都可以为0,反比例函数中的自变量和函数值都不能为0.四、例题解析例1 如图,阻力为1000 N ,阻力臂为5 cm.设动力为y (N),动力臂长为x (cm)(图中杠杆本身所受重力略去不计.杠杆平衡时,动力×动力臂=阻力×阻力臂).例2 已知y 是关于x 的反比例函数,当x =0.3时,y =-0.6.求y 关于x 的函数表达式和自变量x 的取值范围.五、学习小结1.内容总结反比例函数:意义(表达形式)、表达式的求法.2.方法归纳确定反比例函数表达式的条件是已知一对自变量和函数的对应值(或其图象上一点的坐标),可以利用待定系数法求反比例函数的表达式.六、延伸拓展链接生活火车从马鞍山驶往相距约200千米的合肥,求火车行驶的速度v(千米/时)与行驶的时间t (时)之间的函数关系式.。

初中数学精品课件: 反比例函数的图象和性质(1)教版课件(共24张PPT)

初中数学精品课件: 反比例函数的图象和性质(1)教版课件(共24张PPT)

0
x
反比例函数 y k x
任意一组变量的乘积是一个定值,即xy=k
y
长方形的面积为 ︳m n︱= ︳k︱
三角形的面积为 SAOP
k 2
B
P(m,n)
o
A
x 面积不变性
课内练习:
3.如图,P是反比例函数 y 4 x
图象上的一点,PD⊥x轴于D.
则△POD的面积为 2.
y
P oD x
4.如图,P是反比例函数图象上的一
对称性 双曲线是中心对称图形.
适度拓展,探究思考
为了预防“甲流”,某校对教室采用药熏消毒法进
行消毒。已知药物燃烧时,室内每立方米空气中的
含药量 y(mg)与时间x(min)成正比例,药物燃烧
完后,y与x成反比例。现在测得药物8min燃毕,此
时室内空气中每立方米含药量6mg,请根据题中所
提供信息,解答下列问题:
y(mg)
(1)药物燃烧时,y关于x的函数
关系式 为
y3x 4
,自变量x的取值6
范围 0 x 8 ,药物燃烧后y关
于x的函数关系式为
y 48 x

o
8
x(min)
y(mg)
(2)研究表明,每立方米的含
药量低于1.6mg时,学生方可进
教室,那么从消毒开始,至少 6 需要经过 30 分钟,学生才能

. -3
-4 D´
x
1. 已知k<0,则函数 y1=kx,y2=
k x
在同一坐标
系中的图象大致是 ( D )
y
y
y
y
O
x
0
x
0
x
0

《反比例函数与几何综合题之解题策略》教学PPT课件【初中数学】公开课

《反比例函数与几何综合题之解题策略》教学PPT课件【初中数学】公开课

PM 4
t
t
∴t²=3,∴t= 3 (t= - 3舍去)
y (t, 8)
t (2,4) (5,4)
(3,0)
y8 x
x
活动二 链接中考
如图,在平面直角坐标系xOy中,点C(3,0),函数 y
k x
(k>0,x>0)的图象经过□OABC
的顶点A(m,n) 和边BC的中点D.(1)求m的值;(2)若△OAD的面积等于6,求k的值;
时,求t的值.
PM 4
解:(1)由题意得A(m,n),B(m+3,n)
,D

m
2
6
,
n 2

∴mn= m 6·n
(m,n) (m+3,n)

m
2
6
,
n 2

22
∴两边除以n,m=2
(3,0) x
活动二 链接中考
变式:如图,在平面直角坐标系xOy中,点C(3,0),函数
x
直线l与x轴上方的□ABCD的一边交于点N,设点P的横坐标为t,当
PN

1时,求t的值.
PM 4
解:(3)设A(2,4),k=8,P(t,8 ),PM 8 (t>0)
t
t
①∴直线PlN与O8A交 2于t 点N,yOA=2x,∴N(t,2t)
t
当 PN 1 时,4(8 2t) 8 (0<t≤2)
G是否在反比例函数的图象上,并说明理由.
拓展作业
1、找找近3年各地中考数学试卷中关于 反比例函数的题目,看看都考查了反比 例函数的哪些知识点,与其他哪些知识 相关联。
2、试着给其他同学出一道反比例函数与 几何图形综合的题目。

新浙教版初中数学教材目录

新浙教版初中数学教材目录

【七年级上册】第1章有理数1.1 从自然数到有理数1.2 数轴1.3 绝对值1.4 有理数的大小比较第2章有理数的运算2.1 有理数的加法2.2 有理数的减法2.3 有理数的乘法2.4 有理数的除法2.5 有理数的乘方2.6 有理数的混合运算2.7 近似数和计算器的使用第3章实数3.1 平方根3.2 实数3.3 立方根3.4 实数的运算第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式4.5 合并同类项4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 等式的基本性质5.3 一元一次方程的解法第6章图形的初步知识6.1 几何图形6.2 线段、射线和直线6.3 线段的大小比较6.4 线段的和差6.5 角与角的度量6.6 角的大小比较6.7 角的和差6.8 余角和补角6.9 相交直线【八年级上册】第1章三角形的初步知识1.1 认识三角形1.2 定义与命题1.3 证明1.4 全等三角形1.5 全等三角形的判定1.6 尺规作图第2章特殊三角形2.1 图形的轴对称2.2 等腰三角形2.3 等腰三角形的性质定理2.4 等腰三角形的判定定理2.5 逆命题与逆定理2.6 直角三角形2.7 探索勾股定理2.8 直角三角形全等的判定第3章一元一次不等式3.1 认识不等式3.2 不等式的基本性质3.3 一元一次不等式3.4 一元一次不等式组第4章图形与坐标4.1 探索确定位置的方法4.2 平面直角坐标系4.3 坐标平面内的图形运动第5章一次函数5.1 常量与变量5.2 认识函数5.3 一次函数5.4 一次函数的图象5.5 一次函数的简单应用【九年级上册】第1章二次函数1.1 二次函数1.2 二次函数的图象1.3 二次函数的性质1.4 二次函数的应用第2章简单事件的概率2.1 事件的可能性2.2 简单事件的概率2.3 用频率估计概率2.4 概率的简单应用第3章圆的基本性质3.1 圆3.2 图形的旋转3.3 垂径定理3.4 圆心角3.5 圆周角3.6 圆内接四边形3.7 正多边形3.8 弧长及扇形的面积第4章相似三角形4.1 比例线段4.2 由平行线截得的比例线段4.3 相似三角形4.4 两个三角形相似的判定4.5 相似三角形的性质及应用4.6 相似多边形【七年级下册】第1章平行线1.1 平行线1.2 同位角、内错角、同旁内角1.3 平行线的判定1.4 平行线的性质1.5 图形的平移第2章二元一次方程组2.1 二元一次方程2.2 二元一次方程组2.3 解二元一次方程组2.4 二元一次方程组的简单应用2.5 三元一次方程组及其解法(选学)第3章整式的乘除3.1 同底数幂的乘法3.2 单项式的乘法3.3 多项式的乘法3.4 乘法公式3.5 整式的化简3.6 同底数幂的除法3.7 整式的除法第4章因式分解4.1 因式分解4.2 提取公因式法4.3 用乘法公式分解因式第5章分式5.1 分式5.2 分式的基本性质5.3 分式的乘除5.4 分式的加减5.5 分式方程第6章数据与统计图表6.1 数据的收集与整理6.2 条形统计图和折线统计表6.3 扇形统计图6.4 频数与频率6.5 频数分布直方图【八年级下册】第1章二次根式1.1 二次根式1.2 二次根式的性质1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程2.2 一元二次方程的解法2.3 一元二次方程的应用2.4 一元二次方程的根与系数的关系第3章数据分析初步3.1 平均数3.2 中位数和众数3.3 方差和标准差第4章平行四边形4.1 多边形4.2 平行四边形及其性质4.3 中心对称4.4 平行四边形的判定定理4.5 三角形的中位线4.6 反证法第5章特殊平行四边形5.1 矩形5.2 菱形5.3 正方形第6章反比例函数6.1 反比例函数6.2 反比例函数的图象和性质6.3 反比例函数的应用【九年级下册】第1章解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形第2章直线与圆的位置关系2.1 直线与圆的位置关系2.2 切线长定理2.3 三角形的内切圆第3章投影和三视图3.1 投影3.2 简单几何体的三视图3.3 由三视图描述几何体3.4 简单几何体的表面展开图。

初二数学《反比例函数》说课稿(通用5篇)

初二数学《反比例函数》说课稿(通用5篇)

初二数学《反比例函数》说课稿初二数学《反比例函数》说课稿(通用5篇)作为一无名无私奉献的教育工作者,常常要根据教学需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。

写说课稿需要注意哪些格式呢?下面是小编为大家收集的初二数学《反比例函数》说课稿(通用5篇),仅供参考,大家一起来看看吧。

初二数学《反比例函数》说课稿1各位评委:大家好!今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。

我将从如下步骤进行。

一、说教材1、内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。

因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

2、学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

二、说教学目标根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:1、从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

三、说教法本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。

于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

6.3.反比例函数的实际应用(教案)

6.3.反比例函数的实际应用(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数的实际应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过路程与时间成反比的情况?”比如,汽车以固定速度行驶,行驶时间越长,路程就越远。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
(3)解决问题:给出实际问题,如物体在反比例力作用下做直线运动,要求学生运用反比例函数的性质求解物体的运动规律。例如,物体在反比例力F = k/x的作用下,从x=2处开始运动,求物体在x=4时的速度。
在教学过程中,针对难点内容,教师应采用举例、绘图、实际操作等多种教学方法,帮助学生透彻理解反比例函数的核心知识,突破难点。
五、教学反思
在上完这节《反比例函数的实际应用》后,我对整个教学过程进行了深入的思考。首先,我发现学生在理解反比例函数的概念上存在一定难度,尤其是对于函数表达式中常数k的理解。在今后的教学中,我需要更加注重从生活实例出发,让学生在实际问题中感受反比例函数的含义。
在讲授新课的过程中,我尽量用简洁明了的语言解释反比例函数的定义和性质,并通过图像展示来加深学生的印象。然而,从学生的反馈来看,这部分内容的讲解还可以更加生动有趣,可以尝试加入一些互动环节,让学生在课堂上就能及时消化吸收所学知识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(其中k为常数,k≠0)的函数。它在描述现实生活中的反比关系中非常重要。
2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以每小时50公里的速度行驶,那么它行驶的时间t与路程s的关系可以表示为s = 50/t。这个案例展示了反比例函数在实际中的应用,以及它如何帮助我们解决问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档