高中数学 2.1.1 平面导学案(无答案) 新人教A版必修2
高中数学人教A版必修2导学案:2.1.1平面
高二数学必修2 2.1.1平面学案主备人: 审核:数学组日期2020年9月【学习目标】1、借助实例,体会生活中平面与立体几何中平面的异同,理解平面的描述性概念及其特性;通过观察和乡下生活中物体运用长方体模型感知点、直线、平面及其位置关系,探索、理解并掌握平面基本性质的三条公理。
2、会把文字语言转化为图形语言和符号语言,发展学生的数学语言交流能力。
【学习重难点】重点:点、线、面的理解与表示以及平面三个公理难点:公理的运用【知识】1、平面的概念:2、平面的画法及表示:3、点与线、点与面、线与面的关系:【学法指导】注意数学符号语言的运用【学习内容】课本43页例1(画图并解答,写在下面)课本43页课后练习1、2、3、4(1,2,3写书上。
4写在下面)4(1) (2) (3)思考:已知:EF ∩GH =P ,E ∈AB ,F ∈AD ,G ∈BC ,H ∈CD,则P 点的位置为( )变式:若α∩β=l ,点 A 、B ∈α,C ∈β,试画出平面 ABC 与平面α、β的交线.【学习小结】数学语言的运用以及三个公理的应用【达标检测】1 下面是一些命题的叙述语,其中命题和叙述方法都正确的是( )A .∵αα∈∈B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βα .C .∵α⊂∈a a A ,,∴A α∈.D .∵α⊂∉a a A ,,∴α∉A .2.下列推断中,错误的是( )A ααα⊂⇒∈∈∈∈lB l B A l A ,,,.B .AB B B A A =⇒∈∈∈∈βαβαβα ,,,C .βα∈∈C B A C B A ,,,,,,且A,B,C 不共线βα,⇒重合D .αα∉⇒∈⊄A l A l ,3.两个平面把空间最多分成___部分,三个平面把空间最多分成__ 部分.【学习反思】:。
最新高中数学 2.1.1平面导学案 新人教A版必修2
最新人教版数学精品教学资料第二章 2.1.1 平面【学习目标】(1)正确理解平面的几何概念,利用生活中的实物对平面进行描述,掌握平面的性质。
(2)熟练掌握三种语言的转换,会用三个公理证明共点共线共面的问题。
(3)掌握平面的表示法及水平放置的直观图;培养学生的空间想象能力。
【学习重点】理解平面的几何概念,掌握平面的性质,会用三个公理证明共点共线共面的问题【基础知识】1.几何里的平面是__无限延展的____的,我们通常把水平的平面画成一个_ 平行四边形___。
2.常用符号的记法:(1)点A 在平面α内,记作__α∈A ____;点B 在平面α外,记作__α∉B ____。
(2)点P 在直线上,记作____l P ∈___;点P 在直线l 外,记作_____l P ∉_____。
(3)直线l 在平面α内,记作__α⊂l ___;直线l 不在平面α内,记作___α⊄l ____。
3.公理1:如果_一条直线上的两点在一个平面内__,那么这条直线在此平面内。
用符号表示 为____________________,图形为________________,其作用是_证明直线在平面内____。
4.公理2:__过不在一条直线上的__的三点,_有且只有_____一个平面。
图形为_________________________,其作用是___确定平面___________。
推论1.经过一条直线和这条直线外一点,有且只有一个平面.推论2.经过两条相交直线,有且只有一个平面.推论3.经过两条平行直线,有且只有一个平面.5.公理3:如果两个不重合的平面 有一个公共点 ,那么它们_有且只有一条过该点____的公共直线。
用符号表示为_________________________,图形为___________________,其作用是___做两个平面的交线_____。
注意:(1)公理中“有且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形唯一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面. “有且只有一个平面”也可以说成“确定一个平面.”(2)过A 、B 、C 三点的平面可记作“平面ABC ”【例题讲解】例1:用符号表示下列图形中点、直线、平面之间的关系。
高中数学 2.1.1平面教案 新人教A版必修2
第一课时平面(一)教学目标1.知识与技能(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力.2.过程与方法(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识.3.情感、态度与价值观使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.(二)教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.难点:平面基本性质的掌握与运用.(三)教学方法师生共同讨论法)符号表示为:l P lαβ=⎧⇒⎨∈⎩ 分析:根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来.备选例题例1 已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面.证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , 但A ∉d ,如图1.∴直线d 和A 确定一个平面α. 又设直线d 与a ,b ,c 分别相交于E ,F ,G , 则A ,E ,F ,G ∈α.∵A ,E ∈α,A ,E ∈a ,∴a ⊂α. 同理可证b ⊂α,c ⊂α. ∴a ,b ,c ,d 在同一平面α内.2o当四条直线中任何三条都不共点时,如图2. ∵这四条直线两两相交,则设相交直线a ,b 确定一个平面α.设直线c 与a ,b 分别交于点H ,K ,则H ,K ∈α. 又 H ,K ∈c ,∴c ⊂α. 同理可证d ⊂α.∴a ,b ,c ,d 四条直线在同一平面α内.说明:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给条件中的部分线(或点)确定一个平面,然后再根据公理1证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.例2 正方体ABCD —A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于点O ,AC 、BD 交于点M ,求证:点C 1、O 、M 共线.分析:要证若干点共线的问题,只需证这些点同在两个相交平面内即可.[来 解答:如图所示A 1A ∥C 1C ⇒确定平面A 1C A 1C ⊂平面A 1C 又O ∈A 1C平面BC 1D ∩直线A 1C = O ⇒O ∈平面BC 1D⇒O 在平面A 1C 与平面BC 1D 的交线上.AC ∩BD = M ⇒M ∈平面BC 1D⇒O ∈平面A 1CM O B 1C 1D 1A 1D CB αb adcG F EAa bcd α H K 图1图2且M∈平面A1C平面BC1D∩平面A1C = C1MO∈C1M,即O、C1、M三点共线.评析:证明点共线的问题,一般转化为证明这些点同是某两个平面的公共点.这样,可根据公理2证明这些点都在这两个平面的公共直线上.。
高中数学 2.1.1 平面的性质教案 新人教A版必修2-新人教A版高中必修2数学教案
2.1 平面的性质〔第1课时〕设计者:田许龙教学内容平面教学目标知识与技能1.了解平面的概念、掌握平面的画法及其表示法;2.初步掌握文字语言、图形语言与符号语言三种语言之间的转化;3.了解公理1、公理2、公理3,并能简单应用性质解决一些简单的问题.过程与方法通过观察现实生活中的面引入平面的概念,从平面的概念入手,逐步引入平面的画法、表示方法、性质,培养学生学会观察、分析、推理、论证的思维方法,培养学生空间想象能力,领悟数形结合的数学思想。
情感、态度与价值观在运用平面的性质解决问题的过程中,逐步养成实事求是、扎实严谨的科学态度,学会用数学思维方法解决问题。
教学重点1、平面的表示方法;2、平面的性质及应用。
教学难点平面的性质及应用。
教学方法自主学习、小组讨论法、师生互动法。
教学准备导学、课件。
教学步骤教什么怎样教如何组织教学一、温故〔情境导入〕(5分钟)平面的概念新课引入,〔出示《课件1》〕观察日常生活中的平面实例,提出问题:平面具有几个特点?它还具有以下几个特点:①平面是平的;②平面是没有厚度的;③平面是没有边界的;④平面是有空间点、线组成的无限集合;⑤平面图形是空间图形的重要组成部分。
同学们,我们观察日常生活中的面〔如桌面、黑板面、海面〕对平面有什么印象呢?几何中平面的概念是什么呢?几何里所说的平面,是从课桌面、黑板面、海面这样的一些物体中抽象出来的,但是几何里的平面是无限延展的,二、知新〔自主学习合作平面的画法及1、学生看书,2分钟后由学生毛遂自荐上黑板作图,然后老师出示课件,纠正或规同学们,大家看完书并解决如下几个问题:你能把平面画探究展示能力〕(35分钟)表示法X平面的画法。
2、平面的表示方法及空间几何的符号体系〔学生看书2分钟〕老师指定中等偏下学生回答,回答后出示《课件2》的第一XPPT。
平面的画法⑴水平放置的平面通常画成一个平行四边形,它的锐角通常画成45,并且横边长等于其邻边长的2倍,如图1;图2⑵如果一个平面被另一个平面挡住了,为了增强它的立体感,被挡住部分用虚线画出来,如图2所示;跟平面几何不同的是,在立体几何中,添加辅助线的时候遵循的原那么是“眼见为实,眼不见为虚〞。
高中数学 (2.1.1 平面)示范教案 新人教A版必修2.doc
第二章点、直线、平面之间的位置关系本章教材分析本章将在前一章整体观察、认识空间几何体的基础上,以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系;通过大量图形的观察、实验和说理,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,初步体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题.本章主要内容:2.1点、直线、平面之间的位置关系,2.2直线、平面平行的判定及其性质,2.3直线、平面垂直的判定及其性质.2.1节的核心是空间中直线和平面间的位置关系.从知识结构上看,在平面基本性质的基础上,由易到难顺序研究直线和直线、直线和平面、平面和平面的位置关系.本章在培养学生的辩证唯物主义观点、公理化的思想、空间想象力和思维能力方面,都具有重要的作用.2.2和2.3节内容的编写是以“平行”和“垂直”的判定及其性质为主线展开,依次讨论直线和平面平行、平面和平面平行的判定和性质;直线和平面垂直、平面和平面垂直的判定和性质.“平行”和“垂直”在定义和描述直线和直线、直线和平面、平面和平面的位置关系中起着重要作用.在本章它集中体现在:空间中平行关系之间的转化、空间中垂直关系之间的转化以及空间中垂直与平行关系之间的转化.本章教学时间约需12课时,具体分配如下(仅供参考):2.1 空间点、直线、平面之间的位置关系2.1.1 平面整体设计教学分析平面是最基本的几何概念,教科书以课桌面、黑板面、海平面等为例,对它只是加以描述而不定义.立体几何中的平面又不同于上面的例子,是上面例子的抽象和概括,它的特征是无限延展性.为了更准确地理解平面,教材重点介绍了平面的基本性质,即教科书中的三个公理,这也是本节的重点.另外,本节还应充分展现三种数学语言的转换与翻译,特别注意图形语言与符号语言的转换.三维目标1.正确理解平面的几何概念,掌握平面的基本性质.2.熟练掌握三种数学语言的转换与翻译,结合三个公理的应用会证明共点、共线、共面问题.3.通过三种语言的学习让学生感知数学语言的美,培养学生学习数学的兴趣.重点难点三种数学语言的转换与翻译,利用三个公理证明共点、共线、共面问题.课时安排1课时教学过程导入新课思路1.(情境导入)大家都看过电视剧《西游记》吧,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,孙悟空可以看作是一个点,他的运动成为一条直线,大家说如来佛的手掌像什么?对,像一个平面,今天我们开始认识数学中的平面.思路2.(事例导入)观察长方体(图1),你能发现长方体的顶点、棱所在的直线,以及侧面、底面之间的关系吗?图1长方体由上、下、前、后、左、右六个面围成.有些面是平行的,有些面是相交的;有些棱所在的直线与面平行,有些棱所在的直线与面相交;每条棱所在的直线都可以看成是某个面内的直线等等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.推进新课新知探究提出问题①怎样理解平面这一最基本的几何概念;②平面的画法与表示方法;③如何描述点与直线、平面的位置关系?④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线在平面内?⑤根据自己的生活经验,几个点能确定一个平面?⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示;⑦描述点、直线、平面的位置关系常用几种语言?⑧自己总结三个公理的有关内容.活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下:①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等.②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母表示.③点在直线上和点在直线外;点在平面内和点在平面外.④确定一条直线需要几个点?⑤引导学生观察教室的门由几个点确定.⑥两个平面不可能仅有一个公共点,因为平面有无限延展性.⑦文字语言、图形语言、符号语言.⑧平面的基本性质小结.讨论结果:①平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它,因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一定不错).②我们的桌面看起来像平行四边形,因此平面通常画成平行四边形,有些时候我们也可以用圆或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把它遮挡的部分用虚线画出来,如图3.图2 图3平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图4);(2)用平行四边形的四个字母表示,如平面ABCD(图5);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC(图5).图4 图5③下面我们总结点与直线、平面的位置关系如下表:④直线上有一个点在平面内,直线没有全部落在平面内(图7),直线上有两个点在平面内,则直线全部落在平面内.例如用直尺紧贴着玻璃黑板,则直尺落在平面内.公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内.这是用文字语言描述,我们也可以用符号语言和图形语言(图6)描述.空间图形的基本元素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.公理1也可以用符号语言表示:若A∈a,B∈a,且A∈α,B∈α,则a⊂α.图6 图7请同学们用符号语言和图形语言描述直线与平面相交.若A∈a,B∈a,且A∉α,B∈α,则a⊄α.如图(图7).⑤在生活中,我们常常可以看到这样的现象:三脚架可以牢固地支撑照相机或测量用的平板仪等等.上述事实和类似的经验可以归纳为下面的公理.公理2:经过不在同一直线上的三点,有且只有一个平面.如图(图8).图8公理2刻画了平面特有的性质,它是确定一个平面位置的依据之一.⑥我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?不是,因为平面是无限延展的.直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象(课件演示给学生看).问:两个平面会不会只有一个公共点?不会,因为平面是无限延展的,应当有很多公共点.正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?可见,这无数个公共点在一条直线上.这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理 3.如图(图9),用符号语言表示为:P∈α,且P∈β⇒α∩β=l,且P∈l.图9公理3告诉我们,如果两个不重合的平面有一个公共点,那么这两个平面一定相交,且其交线一定过这个公共点.也就是说,如果两个平面有一个公共点,那么它们必定还有另外一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线.由此看出公理3不仅给出了两个平面相交的依据,还告诉我们所有交点在同一条直线上,并给出了找这条交线的方法.⑦描述点、直线、平面的位置关系常用3种语言:文字语言、图形语言、符号语言.⑧“平面的基本性质”小结:应用示例思路1例1 如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.图10活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中巡视,发现问题及时纠正,并及时评价.解:在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.变式训练1.画图表示下列由集合符号给出的关系:(1)A∈α,B∉α,A∈l,B∈l;(2)a⊂α,b⊂β,a∥c,b∩c=P,α∩β=c.解:如图11.图112.根据下列条件,画出图形.(1)平面α∩平面β=l,直线AB⊂α,AB∥l,E∈AB,直线EF∩β=F,F∉l;(2)平面α∩平面β=a,△ABC的三个顶点满足条件:A∈a,B∈α,B∉a,C∈β,C∉a.答案:如图12.图12点评:图形语言与符号语言的转换是本节的重点,主要有两种题型:(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.例2 已知直线a和直线b相交于点A.求证:过直线a和直线b有且只有一个平面.图13证明:如图13,点A是直线a和直线b的交点,在a上取一点B,b上取一点C,根据公理2经过不在同一直线上的三点A、B、C有一个平面α,因为A、B在平面α内,根据公理1,直线a在平面α内,同理直线b在平面α内,即平面α是经过直线a和直线b的平面.又因为A、B在a上,A、C在b上,所以经过直线a和直线b的平面一定经过点A、B、C.于是根据公理2,经过不共线的三点A、B、C的平面有且只有一个,所以经过直线a和直线b的平面有且只有一个.变式训练求证:两两相交且不共点的四条直线在同一平面内.证明:如图14,直线a、b、c、d两两相交,交点分别为A、B、C、D、E、F,图14∵直线a∩直线b=A,∴直线a和直线b确定平面设为α,即a,b⊂α.∵B、C∈a,E、F∈b,∴B、C、E、F∈α.而B、F∈c,C、E∈d,∴c、d⊂α,即a、b、c、d在同一平面内.点评:在今后的学习中经常遇到证明点和直线共面问题,除公理2外,确定平面的依据还有:(1)直线与直线外一点.(2)两条相交直线.(3)两条平行直线.思路2例1 如图15,已知α∩β=EF,A∈α,C、B∈β,BC与EF相交,在图中分别画出平面ABC与α、β的交线.图15活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对作图不准确的学生提示引导考虑问题的思路. 解:如图16所示,连接CB , ∵C∈β,B∈β,∴直线CB ⊂β.图16∵直线CB ⊂平面ABC ,∴β∩平面ABC=直线CB. 设直线CB 与直线EF 交于D,∵α∩β=EF,∴D∈α,D∈平面ABC. ∵A∈α,A∈平面ABC , ∴α∩平面ABC=直线AD. 变式训练1.如图17,AD∩平面α=B,AE∩平面α=C ,请画出直线DE 与平面α的交点P ,并指出点P 与直线BC 的位置关系.图17解:AD 和AC 是相交直线,它们确定一个平面ABC , 它与平面α的交线为直线BC ,DE ⊂平面ABC , ∴DE 与α的交点P 在直线BC 上.2.如图18,正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,图18(1)画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线. (2)设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.解:(1)设M 、N 、P 三点确定的平面为α,则α与平面AA 1B 1B 的交线为直线MP ,设MP∩A 1B 1=R ,则RN 是α与平面A 1B 1C 1D 1的交线,设RN∩B 1C 1=Q ,连接PQ ,则PQ 是所要画的平面α与平面BB 1C 1C 的交线.如图18.(2)正方体棱长为8 cm ,B 1R=BM=4 cm ,又A 1N=4 cm ,B 1Q=31A 1N,∴B 1Q=31×4=34(cm ).在△PB 1Q 中,B 1P=4 cm ,B 1Q=34cm , ∴PQ=10342121=+Q B P B cm.点评:公理3给出了两个平面相交的依据,我们经常利用公理3找两平面的交点和交线. 例2 已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线. 解:如图19,∵A、B 、C 是不在同一直线上的三点,图19∴过A 、B 、C 有一个平面β. 又∵AB∩α=P ,且AB ⊂β,∴点P 既在β内又在α内.设α∩β=l,则P ∈l, 同理可证:Q ∈l,R ∈l, ∴P、Q 、R 三点共线. 变式训练三个平面两两相交于三条直线,若这三条直线不平行,求证:这三条直线交于一点. 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行. 求证:l 1、l 2、l 3相交于一点.证明:如图20,α∩β=l 1,β∩γ=l 2,α∩γ=l 3,图20∵l 1⊂β,l 2⊂β,且l 1、l 2不平行, ∴l 1与l 2必相交.设l 1∩l 2=P , 则P ∈l 1⊂α,P ∈l 2⊂γ, ∴P∈α∩γ=l 3.∴l 1、l 2、l 3相交于一点P.点评:共点、共线问题是本节的重点,在高考中也经常考查,其理论依据是公理3. 知能训练画一个正方体ABCD —A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由. 解:如图21,图21∵F∈CD′,∴F∈平面ACD′. ∵E∈AC ,∴E∈平面ACD′.∵E∈BD,∴E∈平面BDC′.∵F∈DC′,∴F∈平面DC′B.∴EF为所求.拓展提升O1是正方体ABCD—A1B1C1D1的上底面的中心,过D1、B1、A作一个截面,求证:此截面与对角线A1C 的交点P一定在AO1上.解:如图22,连接A1C1、AC,图22因AA1∥CC1,则AA1与CC1可确定一个平面AC1,易知截面AD1B1与平面AC1有公共点A、O1,所以截面AD1B1与平面AC1的交线为AO1.又P∈A1C,得P∈平面AC1,而P∈截面AB1D1,故P在两平面的交线上,即P∈AO1.点评:证明共点、共线问题关键是利用两平面的交点必在交线上.课堂小结1.平面是一个不加定义的原始概念,其基本特征是无限延展性.2.通过三个公理介绍了平面的基本性质,及作用.3.利用三个公理证明共面、共线、共点问题.作业课本习题2.1 A组5、6.设计感想本节的引入精彩独特,用如来佛的手掌形象地刻画了平面的基本特征;本节设计了较多的语言转换题目,反复训练学生的读图、作图能力,以及用符号语言表达数学问题的能力,因为这是学好立体几何的基础,是本节的重点;本节的难点是利用三个公理证明共面、共线、共点问题,本节设计了大量题目来突破这一难点,每个题目都精彩活泼难度适中,我相信这是一节值得期待的精彩课例.。
高中数学 2.1.1平面教案 新人教A版必修2
四、课堂小结
1.平面的概念及表示;2.平面基本性质.
归纳概括,升华知识
学生回顾反思、归纳知识
总结教学,帮助学生建立知识结构.
五、作业布置
课本51页 1、2题,《红对勾》第9课时.
学生独立完成
巩固所学知识
2.1.1 平面
3.在对公理的简单应用中促进学生对公理的
理解与掌握.
公理2
1.空间中,经过一条直线可以作多少个平面?经过
两点可以作多少个平面?经过三点可以作多少个平面?
2.公理2的作用及三种语言形式;
3.牛刀小试(公理2的三个推论及简单应用).
1.引导学生演示操作,得出公理2;
2.引导学生用三种语言形式表述公理2;
教学重点
平面的基本性质
教学难点
三个公理的简单应用及文字语言、图形语言、符号语言三种数学语言形式的相互转化.
教 学 过 程
一、提出问题,引入新课
1.空间几何里平面的概念是什么?平面有哪些几何性质?
2.空间中,点、直线、平面之间有哪些基本位置关系?
教师活动
学生活动
设计意图
从长方体模型出发,提出问题,引入本章内容,明确本节学习任务.
教学目标
知识与技能
1.学生掌握平面的画法和表示以及平面的三个公理;2.学生初步建立图形、文字、符号这三种数学语言的联系.
过程与方法
1.学生从实际生活感性经验出发,通过观察、讨论和思考,得出平面的三个公理;2.在练习过程中,学生初步体会平面三个公理的应用及三种语言的转化.
情感态度与价值观
1.从感性经验出发,通过演示、观察、讨论和抽象,形成知识,激发学生的学习兴趣;2.通过数学符号的应用感受数学的简洁美.
高中数学2.1.1平面学案设计新人教A版必修2
第二章点、直线、平面之间的位置关系空间点、直线、平面之间的位置关系2.1.1 平面学习目标1.利用生活中的实物对平面进行描述;2.掌握平面的表示法及水平放置的直观图;3.掌握平面的大体性质及作用;4.培育学生的空间想象能力.合作学习一、设计问题,创设情境请你从适当的角度和距离观察桌面、黑板或门的表面,它们呈现出如何的形象?二、自主探索,尝试解决问题1:以上实物都给咱们以平面的印象,那么,平面的含义是什么呢?三、信息交流,揭露规律按照学生讨论结果,教师引导,得出平面的含义:1.平面含义问题2:在平面几何中,如何画平面?2.平面的画法问题3:清楚了平面的含义,会画水平放置的平面,那么平面如何表示呢?3.平面的表示问题4:若是直线l与平面α有一个公共点P,直线l是不是在平面α内?问题5:若是直线l与平面α有两个公共点呢?问题6:生活中,咱们看到三脚架可以牢固地支撑照相机或测量用的平板仪等……自行车要放稳需几个点?问题7:把一个三角板的一个角立在课桌上,三角板所在的平面与桌面所在的平面是不是只相交于一点B,为何?四、运用规律,解决问题【例1】用符号表示下列图形中点、直线、平面之间的关系.【例2】不共面的四点可以肯定几个平面?共点的三条直线可以肯定几个平面?【例3】点A∉平面BCD,E,F,G,H别离是AB,BC,CD,DA上的点,若EH与FG交于点P(这样的四边形ABCD就叫做空间四边形).求证:P在直线BD上.五、变式演练,深化提高1.判断下列命题的真假,真的打“√”,假的打“×”.(1)可画一个平面,使它的长为4cm,宽为2cm.( )(2)一条直线把它所在的平面分成两部份,一个平面把空间分成两部份.( )(3)一个平面的面积为20cm2.( )(4)通过面内任意两点的直线,若直线上各点都在这个面内,那么这个面是平面.( )2.(1)一条直线与一个平面会有几种位置关系?.(2)如图所示,两个平面α,β,若相交于一点,则会发生什么现象?(3)几位同窗的一次野炊活动,带去一张折叠方桌,不小心弄坏了桌脚,有一同窗提议可将几根一样长的木棍在等高处用绳捆扎一下作桌脚(如图所示),问至少要几根木棍才可能使桌面稳定?六、反思小结,观点提炼请同窗们总结一下本节课所学习内容:1.平面的概念;2.平面的画法、表示方式及两个平面相交的画法;3.点、直线、平面间大体关系的文字语言、图形语言和符号语言之间关系的转换;4.平面的大体性质.七、作业精选,巩固提高试用集合符号表示下列各语句,并画出图形:(1)点A在平面α内,但不在平面β内;(2)直线a通过不属于平面α的点A,且a不在平面α内;(3)平面α与平面β相交于直线l,且l通过点P;(4)直线l通过平面α外一点P,且与平面α相交于点M.参考答案二、问题1:几何里所说的平面就是从这样的一些物体中抽象出来的.可是,几何里的平面是无穷延展的.平面的两个特征:①无穷延展;②平的(没有厚度).问题2:(1)一个平面画法:水平放置的平面通常画成一个平行四边形,平行四边形的锐角通常画成45°,且横边长等于邻边长的2倍(如图).(2)直线与平面相交,如图(2)(3);(3)两个相交平面:画两个相交平面时,若一个平面的一部份被另一个平面遮住,应把被遮挡部份的线段画成虚线或不画(如图).问题3:(1)平面通常常利用希腊字母α,β,γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个极点,或相对的两个极点的大写英文字母来表示,如平面ABCD、平面AC等.(2)空间图形的大体元素是点、直线、平面,从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.问题4:学生思考容易发现,直线l不必然在平面α内.问题5:若是一条直线上的两点在一个平面内,那么这条直线在此平面内.问题6:自行车放稳需要3个点.引导学生取得公理2.公理2:过不在一条直线上的三点,有且只有一个平面.问题7:两个平面不是只相交于一点B,而是交于过B点的一条直线.公理3:若是两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.四、【例1】解:图1中,α∩β=l,a∩α=A,a∩β=B.图2中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.【例2】解:不共面的四点可以肯定4个平面(如三棱锥);共点的三条直线可以肯定1个或3个平面.【例3】证明:∵EH∩FG=P,∴P∈EH,P∈FG,∵E,H别离属于直线AB,AD,∴EH⊂平面ABD,∴P∈平面ABD,同理:P∈平面CBD,又∵平面ABD∩平面CBD=BD,所以,P在直线BD上.五、1.(1)×(2)√(3)×(4)√2.(1)3种(2)相交于通过这个点的一条直线(3)至少3根。
最新人教A版必修2高中数学 2.1.1 平面的性质配套导学案(精品)
2.1.1 平面的性质一、温故思考【自主学习·质疑思考】 (一).平面 (Ⅰ)平面的概念几何里所说的平面,是从课桌面、黑板面、海面这样的一些物体中抽象出来的,但是几何里的平面是 的,同时它还具有以下几个特点:①平面是平的;②平面是没有厚度的;③平面是没有边界的;④平面是有空间点、线组成的无限集合;⑤平面图形是空间图形的重要组成部分。
(Ⅱ)平面的画法⑴水平放置的平面通常画成一个 ,它的锐角通常画成 ,并且横边长等于其邻边长的 ,如图1;⑵如果一个平面被另一个平面挡住了,为了增强它的立体感,被挡住部分用 画出来,如图2所示;跟平面几何不同的是,在立体几何中,添加辅助线的时候遵循的原则是“眼见为实,眼不见为虚”。
(Ⅲ)平面的表示图2DABC图1为了表示平面,我们常把希腊字母,,αβγ等写在代表平面的平行四边形的一个角上,如平面α、平面β;也可以用代表平面的平行四边形的顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.如图1所示,平面通常可以表示为: 。
(二).空间几何的符号语言体系平面内有无数个点,平面可以看做点的集合;如果点A 在平面β内,记作 ;点A 不在平面β内,记作 。
平面内的直线可以看成点的集合;点P 在直线l 上(或直线l 经过点P ),记作 ;点P 在直线l 外(或直线l 不经过点P ),记作 。
平面内的直线可以看成平面的子集;如果直线l 上的所有点都在平面α内,就说直线l 在平面α内,或者说平面α经过直线l ,记作 ;否则就说直线l 在平面α外,记作 。
平面内任意一个点可以看成两条直线的公共点,如果点P 是直线1l 和2l 的公共点,称点P 是直线1l 和2l 的交点,记作 ,这是一个记号,请注意和集合语言中的区别。
平面内任意一条直线可以看成两个平面的公共线,如果直线l 是平面α和β的公共线,称直线l 是平面α和β的交线,记作 。
如果直线l 和平面α有且仅有一个公共点P ,称P 为直线l 和平面α的交点,记作 。
高中数学人教A版必修2《2.1.1平面》教学案4
必修二《2.1.1平面》教学案一、教学目标:1、知识与技能(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图;(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力.2、过程与方法(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识.3、情感与价值使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.二、教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.难点:平面基本性质的掌握与运用.三、学法与教学用具1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标.2、教学用具:投影仪、投影片、正(长)方形模型、三角板四、教学思想(一)实物引入、揭示课题师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?引导学生观察、思考、举例和互相交流.与此同时,教师对学生的活动给予评价.师:那么,平面的含义是什么呢?这就是我们这节课所要学习的内容.(二)研探新知1、平面含义师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的.2、平面的画法及表示师:在平面几何中,怎样画直线?(一学生上黑板画)之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等.如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片)课本P 41 图 2.1-4 说明平面内有无数个点,平面可以看成点的集合.点A 在平面α内,记作:A ∈α点B 在平面α外,记作:B α2.1-43、平面的基本性质教师引导学生思考教材P 41的思考题,让学生充分发表自己的见解.师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(教师引导学生阅读教材P 42前几行相关内容,并加以解析)符号表示为A ∈L D CB A α α β α β ·B ·A α LA · α ·BB ∈L => L αA ∈αB ∈α公理1作用:判断直线是否在平面内师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等…… 引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面.符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α.公理2作用:确定一个平面的依据.教师用正(长)方形模型,让学生理解两个平面的交线的含义.引导学生阅读P 42的思考题,从而归纳出公理3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3作用:判定两个平面是否相交的依据4、教材P 43 例1通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用.5、课堂练习:课本P 44 练习1、2、3、46、课时小结:(师生互动,共同归纳)(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么? 7、作业布置(1)复习本节课内容;(2)预习:同一平面内的两条直线有几种位置关系?C ·B · A · α P · α L β。
高中数学 必修二(2.1.1 平面)示范教案 新人教A版必修2
第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面教学过程导入新课思路1.(情境导入)大家都看过电视剧《西游记》吧,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,孙悟空可以看作是一个点,他的运动成为一条直线,大家说如来佛的手掌像什么?对,像一个平面,今天我们开始认识数学中的平面.思路2.(事例导入)观察长方体(图1),你能发现长方体的顶点、棱所在的直线,以及侧面、底面之间的关系吗?图1长方体由上、下、前、后、左、右六个面围成.有些面是平行的,有些面是相交的;有些棱所在的直线与面平行,有些棱所在的直线与面相交;每条棱所在的直线都可以看成是某个面内的直线等等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.推进新课新知探究提出问题①怎样理解平面这一最基本的几何概念;②平面的画法与表示方法;③如何描述点与直线、平面的位置关系?④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线在平面内?⑤根据自己的生活经验,几个点能确定一个平面?⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示;⑦描述点、直线、平面的位置关系常用几种语言?⑧自己总结三个公理的有关内容.活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下:①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等.②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母表示.③点在直线上和点在直线外;点在平面内和点在平面外.④确定一条直线需要几个点?⑤引导学生观察教室的门由几个点确定.⑥两个平面不可能仅有一个公共点,因为平面有无限延展性.⑦文字语言、图形语言、符号语言.⑧平面的基本性质小结.讨论结果:①平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它,因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一定不错).②我们的桌面看起来像平行四边形,因此平面通常画成平行四边形,有些时候我们也可以用圆或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把它遮挡的部分用虚线画出来,如图3.图2 图3平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图4);(2)用平行四边形的四个字母表示,如平面ABCD (图5);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC (图5).图4 图5 ③下面我们总结点与直线、平面的位置关系如下表:点A 在直线a 上(或直线a 经过点A )A∈a 元素与集合间的关系点A 在直线a 外(或直线a 不经过点A )A ∉a 点A 在平面α内(或平面α经过点A ) A∈α 点A 在平面α外(或平面α不经过点A )A ∉α④直线上有一个点在平面内,直线没有全部落在平面内(图7),直线上有两个点在平面内,则直线全部落在平面内.例如用直尺紧贴着玻璃黑板,则直尺落在平面内.公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内. 这是用文字语言描述,我们也可以用符号语言和图形语言(图6)描述.空间图形的基本元素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.公理1也可以用符号语言表示:若A∈a,B∈a,且A∈α,B∈α,则a ⊂α.图6 图7请同学们用符号语言和图形语言描述直线与平面相交.若A∈a,B∈a,且A∉α,B∈α,则a⊄α.如图(图7).⑤在生活中,我们常常可以看到这样的现象:三脚架可以牢固地支撑照相机或测量用的平板仪等等.上述事实和类似的经验可以归纳为下面的公理.公理2:经过不在同一直线上的三点,有且只有一个平面.如图(图8).图8公理2刻画了平面特有的性质,它是确定一个平面位置的依据之一.⑥我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?不是,因为平面是无限延展的.直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象(课件演示给学生看).问:两个平面会不会只有一个公共点?不会,因为平面是无限延展的,应当有很多公共点.正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?可见,这无数个公共点在一条直线上.这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图(图9),用符号语言表示为:P∈α,且P∈β⇒α∩β=l,且P∈l.图9公理3告诉我们,如果两个不重合的平面有一个公共点,那么这两个平面一定相交,且其交线一定过这个公共点.也就是说,如果两个平面有一个公共点,那么它们必定还有另外一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线.由此看出公理3不仅给出了两个平面相交的依据,还告诉我们所有交点在同一条直线上,并给出了找这条交线的方法.⑦描述点、直线、平面的位置关系常用3种语言:文字语言、图形语言、符号语言.⑧“平面的基本性质”小结:名称作用公理1 判定直线在平面内的依据公理2 确定一个平面的依据公理3 两平面相交的依据应用示例思路1例1 如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.图10活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中巡视,发现问题及时纠正,并及时评价.解:在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.变式训练1.画图表示下列由集合符号给出的关系:(1)A∈α,B∉α,A∈l,B∈l;(2)a⊂α,b⊂β,a∥c,b∩c=P,α∩β=c.解:如图11.图112.根据下列条件,画出图形.(1)平面α∩平面β=l,直线AB⊂α,AB∥l,E∈AB,直线EF∩β=F,F∉l;(2)平面α∩平面β=a,△ABC的三个顶点满足条件:A∈a,B∈α,B∉a,C∈β,C∉a. 答案:如图12.图12点评:图形语言与符号语言的转换是本节的重点,主要有两种题型:(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.例2 已知直线a和直线b相交于点A.求证:过直线a和直线b有且只有一个平面.图13证明:如图13,点A是直线a和直线b的交点,在a上取一点B,b上取一点C,根据公理2经过不在同一直线上的三点A、B、C有一个平面α,因为A、B在平面α内,根据公理1,直线a在平面α内,同理直线b在平面α内,即平面α是经过直线a和直线b的平面.又因为A、B在a上,A、C在b上,所以经过直线a和直线b的平面一定经过点A、B、C. 于是根据公理2,经过不共线的三点A、B、C的平面有且只有一个,所以经过直线a和直线b的平面有且只有一个.变式训练求证:两两相交且不共点的四条直线在同一平面内.证明:如图14,直线a、b、c、d两两相交,交点分别为A、B、C、D、E、F,图14∵直线a∩直线b=A,∴直线a和直线b确定平面设为α,即a,b⊂α.∵B、C∈a,E、F∈b,∴B、C、E、F∈α.而B、F∈c,C、E∈d,∴c、d⊂α,即a、b、c、d在同一平面内.点评:在今后的学习中经常遇到证明点和直线共面问题,除公理2外,确定平面的依据还有:(1)直线与直线外一点.(2)两条相交直线.(3)两条平行直线.思路2例1 如图15,已知α∩β=EF,A∈α,C、B∈β,BC与EF相交,在图中分别画出平面ABC 与α、β的交线.图15活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对作图不准确的学生提示引导考虑问题的思路.解:如图16所示,连接CB,∵C∈β,B∈β,∴直线CB⊂β.图16∵直线CB⊂平面ABC,∴β∩平面ABC=直线CB.设直线CB与直线EF交于D,∵α∩β=EF,∴D∈α,D∈平面ABC.∵A∈α,A∈平面ABC,∴α∩平面ABC=直线AD.变式训练1.如图17,AD∩平面α=B,AE∩平面α=C ,请画出直线DE 与平面α的交点P ,并指出点P 与直线BC 的位置关系.图17解:AD 和AC 是相交直线,它们确定一个平面ABC ,它与平面α的交线为直线BC ,DE ⊂平面ABC ,∴DE 与α的交点P 在直线BC 上.2.如图18,正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,图18(1)画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2)设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.解:(1)设M 、N 、P 三点确定的平面为α,则α与平面AA 1B 1B 的交线为直线MP ,设MP∩A 1B 1=R ,则RN 是α与平面A 1B 1C 1D 1的交线,设RN∩B 1C 1=Q ,连接PQ ,则PQ 是所要画的平面α与平面BB 1C 1C 的交线.如图18.(2)正方体棱长为8 cm ,B 1R=BM=4 cm ,又A 1N=4 cm ,B 1Q=31A 1N, ∴B 1Q=31×4=34(cm ).在△PB 1Q 中,B 1P=4 cm ,B 1Q=34cm , ∴PQ=10342121=+Q B P B cm. 点评:公理3给出了两个平面相交的依据,我们经常利用公理3找两平面的交点和交线. 例2 已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线. 解:如图19,∵A、B 、C 是不在同一直线上的三点,图19∴过A 、B 、C 有一个平面β.又∵AB∩α=P ,且AB ⊂β,∴点P 既在β内又在α内.设α∩β=l,则P ∈l,同理可证:Q ∈l,R ∈l,∴P、Q、R三点共线.变式训练三个平面两两相交于三条直线,若这三条直线不平行,求证:这三条直线交于一点.已知平面α、β、γ两两相交于三条直线l1、l2、l3,且l1、l2、l3不平行.求证:l1、l2、l3相交于一点.证明:如图20,α∩β=l1,β∩γ=l2,α∩γ=l3,图20∵l1⊂β,l2⊂β,且l1、l2不平行,∴l1与l2必相交.设l1∩l2=P,则P∈l1⊂α,P∈l2⊂γ,∴P∈α∩γ=l3.∴l1、l2、l3相交于一点P.点评:共点、共线问题是本节的重点,在高考中也经常考查,其理论依据是公理3.知能训练画一个正方体ABCD—A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.解:如图21,图21∵F∈CD′,∴F∈平面ACD′.∵E∈AC,∴E∈平面ACD′.∵E∈BD,∴E∈平面BDC′.∵F∈DC′,∴F∈平面DC′B.∴EF为所求.拓展提升O1是正方体ABCD—A1B1C1D1的上底面的中心,过D1、B1、A作一个截面,求证:此截面与对角线A1C的交点P一定在AO1上.解:如图22,连接A1C1、AC,图22因AA1∥CC1,则AA1与CC1可确定一个平面AC1,易知截面AD1B1与平面AC1有公共点A、O1,所以截面AD1B1与平面AC1的交线为AO1.又P∈A1C,得P∈平面AC1,而P∈截面AB1D1,故P在两平面的交线上,即P∈AO1.点评:证明共点、共线问题关键是利用两平面的交点必在交线上.。
高中数学2.1.1平面导学案(无答案)新人教A版必修2
§2.1.1平面【使用说明及学法指导】1.先自学课本,理解概念,完成导学提纲;2.小组合作,动手实践。
【学习目标】1.掌握平面的表示法,点、直线与平面的关系,有关平面的三个公理;2.会用符号表示图形中点、直线、平面之间的关系;【重点】1.与平面有关的三个公理;【难点】2.三个公理的理解和应用;一、自主学习(一)复习回顾阅读课本P40的“思考?”内容;(二)导学提纲阅读课本P40-43,并完成下列问题:1.生活里的“平面”和几何里的“平面”的概念一样吗?2.平面怎么画?怎么表示?3.公理1:公理2:公理3:4.你能举出生活中应用三个公理的例子吗?例1:用符号表示下列图形中点、直线、平面之间的关系。
变式1:用符号表示下列语句(1) 点A 在平面α内,点B 在平面α外(2)直线l 经过平面α外的一点M例2 不共面的四点可以确定几个平面?共点的三条直线可以确定几个平面?变式2:判断正误1.经过一条直线和这条直线外的一点,有且只有一个平面( )2.如果两个平面有三个不共线的公共点,那么这两个平面重合( )方法、规律总结:三、拓展研究例3. 画出同时满足下列条件的图形:l =βα ,α⊂AB ,β⊂CD ,AB ∥l ,CD ∥l变式训练:如右图,试根据下列要求,把被遮挡的部分改为虚线:(1) AB 没有被平面α遮挡;(2) 画出AB 被平面α遮挡;方法、规律总结四、课堂小结1. 知识2. 数学思想、方法3. 能力五、课后巩固(一)完成课本P51第3题:(二)完成以下试题1.空间中ABCDE 五点中,ABCD 在同一平面内,BCDE 在同一平面内,那么这五点( )A 共面B 不一定共面C 不共面D 以上都不对2. 分别和两条异面直线都相交的两条直线一定是( )A.异面直线 B.相交直线 C.不相交直线D.不平行直线3. 三条直线相交于一点,可能确定的平面有( ) A.1个 B.2个 C.3个 D.1个或3个 4.直线12l l ∥,在1l 上取3点,2l 上取2点,由这5点能确定的平面有( ) A.9个 B.6个 C.3个 D.1个5.给出下列命题:和直线a 都相交的两条直线在同一个平面内;三条两两相交的直线在同一平面内;有三个不同公共点的两个平面重合;两两平行的三条直线确定三个平面.其中正确命题的个数是( )A.0 B.1 C.2 D.36.已知下列四个命题:① 很平的桌面是一个平面;② 一个平面的面积可以是4m 2;③ 平面是矩形或平行四边形;④ 两个平面叠在一起比一个平面厚.其中正确的命题有( )A.0个 B.1个 C.2个 D.3个7.解答题: 已知正方体1111ABCD A BC D -中,E ,F 分别为11D C ,1C B 的中点,AC BD P =,11AC EF Q =.求证:(1)D ,B ,F ,E 四点共面;(2)若1AC 交平面DBFE 于R 点,则P ,Q ,R。
高中数学 2.1.1 平面学案 新人教A版必修2(2)
甘肃省永昌县第一中学高中数学 2.1.1 平面学案 新人教A 版必修21利用生活中的实物对平面进行描述;2掌握平面的表示法及水平放置的直观图;3掌握平面的基本性质及作用;4培养学生的空间想象能力。
学习重点、难点学习重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。
学习难点:平面基本性质的掌握与运用。
学习过程一、展示目标师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?引导学生观察、思考、举例和互相交流。
与此同时,教师对学生的活动给予评价。
师:那么,平面的含义是什么呢?这就是我们这节课所要学习的内容。
二、自主学习1、平面含义 以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。
2、平面的画法及表示在平面几何中,怎样画直线?(一学生上黑板画)之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长。
平面通常用希腊字母γβα,,等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画。
三、交流互动1、平面的基本性质教师引导学生思考教材41P 的思考题,让学生充分发表自己的见解。
师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(教师引导学生阅读教材42P 前几行相关内容,并加以解析)公理1作用:判断直线是否在平面内。
·B2、典例讲解例1.画出两个竖直放置的相交平面。
例2.把下列语句用集合符号表示,并画出直观图。
高中数学 2.1.1《平面》导学案 新人教A版必修2
2.1.1《平面》导学案【学习目标】知识与技能:利用生活中的实物对平面进行描述;掌握平面的表示法及水平放置的直观图;掌握平面的基本性质及作用;培养学生的空间想象能力。
过程与方法:通过共同讨论,增强对平面的感性认识;归纳整理本节所学知识情感态度与价值观:认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
【重点难点】学习重点:1、平面的概念及表示;2、平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言。
学习难点:平面基本性质的掌握与运用。
【学法指导】通过阅读教材,联系身边的实物思考、交流,从而较好地完成本节课的学习目标。
【知识链接】生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?【学习过程】A问题1、平面含义A问题2、平面的画法A问题3、平面的表示平面通常用希腊字母()等表示,如()等,也可以用表示平面的平行四边形的()来表示,如()等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成()A问题4、点与平面的关系:平面内有无数个点,平面可以看成点的集合。
点A在平面α内,记作:点B在平面α外,记作:A例1、判断下列各题的说法正确与否,在正确的说法的题号后打√,否则打×:1)、一个平面长 4 米,宽 2 米; ( )2)、平面有边界; ( )3)、一个平面的面积是 25 cm 2; ( )4)、菱形的面积是 4 cm 2; ( )5)、一个平面可以把空间分成两部分. ( )A问题5如果直线l与平面α有一个公共点,直线l是否在平面α内?如果直线l与平面α有两个公共点呢?·BA 问题6公理1:符号表示为公理1作用:判断直线是否在平面内B 问题7公理2:符号表示为:公理2作用:确定一个平面的依据。
注意:(1)公理中“有且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形惟一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面.“有且只有一个平面”也可以说成“确定一个平面.B 问题8公理3:符号表示为:公理3作用:判定两个平面是否相交的依据B 例题教材P43 例1【基础达标】B 课本P43 练习1、2、3、4①为什么有的自行车后轮旁只安装一只撑脚?②三角形、梯形是否一定是平面图形?为什么?③四条线段顺次首尾连接,所得的图形一定是平面图形吗?为什么?④用符号表示下列语句,并画出图形:⑴点A 在平面α内,点B 在平面α外;⑵直线L 在平面α内,直线m 不在平面α内;⑶平面α和β相交于直线L⑷直线L 经过平面α外一点P 和平面α内一点Q ;⑸直线L 是平面α和β的交线,直线m 在平面α内, 和m 相交于点P.【学习反思】1.平面的概念,画法及表示方法.2.平面的性质及其作用3.符号表示C · B· A · α P · α L β。
高中数学 2、1 平面 教案 新人教版必修2A
第1课时 §2.1.1 平面一、教学目标:(一)知识目标:1.能够从日常生活实例中抽象出数学中所说的“平面”2.理解平面的无限延展性3.理解公理1、2、3(二) 能力目标:1.正确地用图形和符号表示点、直线、平面以及它们之间的关系2初步掌握文字语言、图形语言与符号语言三种语言之间的转化3.初步应用公理1、2、3解决简单的点、线共线共面问题(三)情感目标:1.提高空间想像能力2.通过图形、符号、语言的转换体会数学的美,激发学习兴趣二、教学重点、难点(一)重点:平面基本性质的三个公理(二)难点:1.三种语言的转化2.三个公理的简单应用三、教 具:多媒体、实物投影仪四、教学过程(一)课题导入在初中,我们主要学习了平面图形的性质平面图形就是由同一平面内的点、线所构成的图形平面图形以及我们学过的长方体、圆柱、圆锥等都是空间图形,空间图形就是由空间的点、线、面所构成的图形这节课我们就来认识够构成这些空间图形的基本元素及它们之间的关系和简单性质(二)新知探研1.平面的两个特征:①无限延展 ②平的(没有厚度)平面是没有厚薄的,可以无限延伸,这是平面最基本的属性一个平面把空间分成两部分,一条直线把平面分成两部分2.平面的画法及其表示方法:①在立体几何中,常用平行四边形表示平面当平面水平放置时,通常把平行四边形的锐角画成45,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面α,平面AC 等③两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如图2)4空间图形是由点、线、面组成的 a βαB A βB A αβB A ααβa 图 2空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示点、线、面的基本位置关系如下表所示:集合中“∈”的符号只能用于点与直线,点与平面的关系,“⊂”和“ ”的符号只能用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言α⊄a (平面α外的直线a )表示α⊄a (平面α外的直线a )表示a α=∅ 或a A α=5 平面的基本性质立体几何中有一些公理,构成一个公理体系.人们经过长期的观察和实践,把平面的三条基本性质归纳成三条公理.公理1 如果一条直线的两点在一个平面内,那么这条直线在此这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面,如泥瓦工用直的木条刮平地面上的水泥浆.①判定直线在平面内;②判定点在平面内模式:a A A aαα⊂⎧⇒∈⎨∈⎩.公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈.应用:①确定平面;②证明两个平面重合“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.实例:(1)门:两个合页,一把锁;(2)摄像机的三角支架;(3)自行车的撑脚公理2及其下一节要学习的三个推论是空间里确定一个平面位置的方法与途径,而确定平面是将空间问题转化为平面问题的重要条件,这个转化使得立体几何的问题得以在确定的平面内充分使用平面几何的知识来解决,是立体几何中解决相当一部分问题的主要的思想方法.公理3如果两个不重合的平面有一个公共点,那么它们有且只有这些公共点的集合是一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示: 或者:∵,A A αβ∈∈,∴,l A l αβ=∈应用:①确定两相交平面的交线位置;②判定点在直线上公理3揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.6 典例及练习例题 课本P47例1练习课本P48练习(三)课堂总结1、点、线、面的位置关系2、平面的基本性质(公理1、2、3)及作用(四)课外练习及作业课本P56习题2、1A 组1、2。
河北省邢台市第二中学高中数学必修二导学案《2.1.1 平面》 无答案
2。
1。
1平面一、学习目标:知识与技能:利用生活中的实物对平面进行描述;掌握平面的表示法及水平放置的直观图;掌握平面的基本性质及作用;培养学生的空间想象能力。
过程与方法:通过共同讨论,增强对平面的感性认识;归纳整理本节所学知识情感态度与价值观:认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
二、学习重、难点学习重点:1、平面的概念及表示;2、平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言。
学习难点:平面基本性质的掌握与运用。
三、使用说明及学法指导:通过阅读教材,联系身边的实物思考、交流,从而较好地完成本节课的学习目标.四、知识链接:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?五、学习过程:A问题1、平面含义A问题2、平面的画法A问题3、平面的表示平面通常用希腊字母()等表示,如( )等,也可以用表示平面的平行四边形的() 来表示,如()等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成( )A问题4、点与平面的关系:平面内有无数个点,平面可以看成点的集合。
点A在平面α内,记作:点B在平面α外,记作:A例1、判断下列各题的说法正确与否,在正确的说法的题号后打√,否则打×:1)、一个平面长4 米,宽2 米;() 2)、平面有边界;()·3)、一个平面的面积是25 cm 2;()4)、菱形的面积是4 cm 2;()5)、一个平面可以把空间分成两部分。
()A问题5如果直线l与平面α有一个公共点,直线l是否在平面α内?如果直线l 与平面α有两个公共点呢?A问题6公理1:符号表示为公理1作用:判断直线是否在平面内 B 问题7公理2: 符号表示为:公理2作用:确定一个平面的依据。
注意:(1)公理中“有且只有一个"的含义是:“有”,是说图形存在,“只有一个",是说图形惟一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面.“有且只有一个平面”也可以说成“确定一个平面. B 问题8公理3:符号表示为:公理3作用:判定两个平面是否相交的依据B 例题教材P43 例1六、达标训练B 课本P43 练习1、2、3、4①为什么有的自行车后轮旁只安装一只撑脚? ②三角形、梯形是否一定是平面图形?为什么?③四条线段顺次首尾连接,所得的图形一定是平面图形吗? 为什么?④用符号表示下列语句,并画出图形: ⑴点A 在平面α内,点B 在平面α外;⑵直线L 在平面α内,直线m 不在平面α内; ⑶平面α和β相交于直线L⑷直线L 经过平面α外一点P 和平面α内一点Q ;⑸直线L 是平面α和β的交线,直线m 在平面α内, 和m 相交于点P.C ·B·A · α。
高中数学人教A版必修22.1.1平面导学案(无答案)
优质资料---欢迎下载2.1空间点、直线、平面之间的位置关系2.1. 1平面【学习目标】1.利用生活中的实物对平面进行描述;2.掌握平面的表示法及水平放置的直观图;3.掌握平面的基本性质及作用;培养学生的空间想象能力。
预习案要点1平面的特征1.2.3.要点2平面的表示要点3平面的基本性质(图形语言自己画)(1)公理1:如果一条直线上的_______在一个平面内,那么这条直线在此平面内.符号语言:_________________________作用:_________________________(2)公理2:过_________________________的三点,有且只有一个平面.符号语言:_________________________作用:_________________________(3)公理3:如果两个不重合的平面有__________公共点,那么它们有且只有一条过该点的______________.符号语言:_________________________作用:_________________________要点4三个公理的推论推论1:经过一条直线和____________的一点,有且只有一个平面.推论2:经过两条______________,有且只有一个平面.推论3:经过两条______________,有且只有一个平面.问题:1.用两张全等的矩形纸,按下列各图所示的两个平面的位置进行摆放.小结:2.一个平面把空间分成几部分?两个平面把空间分成几部分?3.“线段AB在平面α内,直线AB不全在平面α内”这一说法是否正确?为什么?思考题在正方体ABCD-A1B1C1D1中,(1)如图①作出平面ABC1D1与平面A1B1CD的交线;(2)如图②作出平面A1C1CA与平面A1DCB1的交线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1平面
【学习目标】
(1)掌握平面的表示法及水平放置的直观图
(2)掌握平面的基本性质及作用;
(3)培养学生的空间想象能力。
【学习重点、难点】
学习重点:1、平面的概念及表示;
2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.
学习难点:平面基本性质的掌握与运用.
【学法指导】自主探究,合作交流。
【知识链接】平行四边形:矩形:正方体。
【预习提纲】
问题1:判定下列命题是否正确:
①书桌面是平面;
②②8个平面重叠起来要比6个平面重叠起来厚;
③有一个平面的长是50m,宽是20m;
④④平面是绝对的平,无厚度,可以无限延展的抽象的数学概念
问题2:2.平面的画法及表示
(1)平面的画法
(2)平面的表示法1:
法2:
(3)点与平面的关系
问题3:平面的基本性质
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
(1)公理1的图形表示:
(2)符号表示为:
(3)公理1的作用:。
公理2:过不在一条直线上的三点有且只有一个平面
(1)公理2的图形表示:
(2)符号表示为:
(3)公理2的作用:。
注意:
(1)公理中“有且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形惟一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面. “有且只有一个平面”也可以说成“确定一个平面.”
(2)过A、B、C三点的平面可记作“平面ABC”
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
(1)公理3的图形如图(2)符号表示为:
(3)公理3作用:。
【合作探究】
例1:例1 如图,用符号表示下图图形中点、直线、平面之间的位置关系.
【课堂自测】
1.下列命题正确的是()
A.经过三点确定一个平面; B.经过一条直线和一个点确定一个平面;
C.四边形确定一个平面; D.两两相交且不共点的三条直线确定一个平面。
2.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果与EF,
GH能相交于点P,那么()
A.点P不在直线AC上; B.点P必在直线BD上;
C.点P必在平面ABC内; D.点P必在平面ABC外。
3.(1)不共面的四点可以确定几个平面?
(2)共点的三条直线可以确定几个平面?
4.用符号表示下列语句,并画出相应的图形:
(1)点A在平面内,但点B在平面外;
(2)直线a经过平面外的一点M;
(3)直线a既在平面内,又在平面内.
【课后探究】
1.空间不重合的三个平面可以把空间分成()
A. 4或6或7个部分;
B. 4或6或7或8个部分;
C. 4或7或8个部分;
D. 6或7或8个部分。
2.如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG交于点O.
求证:B、D、O三点共线。
2。
正方体ABCD—A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,求证:点C1、O、M共线. 分析:要证若干点共线的问题,只需证这些点同在两个相交平面内即可.
【归纳小结】。