2014届高三数学一轮复习专讲专练31变化率与导数、导数的计算

合集下载

变化率与导数

变化率与导数

变化率与导数、导数的运算课前双击巩固1.变化率与导数 (1)平均变化率: 概念 对于函数y=f (x ),f(x 2)-f(x 1)x 2-x 1=Δy Δx 叫作函数y=f (x )从x 1到x 2的 变化率几何 意义 函数y=f (x )图像上两点(x 1,f (x 1)),(x 2,f (x 2))连线的物理 意义 若函数y=f (x )表示变速运动的质点的运动方程,则ΔyΔx 就是该质点在[x 1,x 2]上的 速度(2)导数:概念点x 0处 limΔx→0ΔyΔx =limΔx→0f(x 0+Δx)−f(x 0)Δx,我们称它为函数y=f (x )在 处的导数,记为f'(x 0)或y'|x=x 0,即f'(x 0)=limΔx→0ΔyΔx= lim Δx→0f(x 0+Δx)−f(x 0)Δx区间 (a ,b )当x ∈(a ,b )时,f'(x )=lim Δx→0ΔyΔx =lim Δx→0 叫作函数在区间(a ,b )内的导数几何 意义 函数y=f (x )在点x=x 0处的导数f'(x 0)就是函数图像在该点处切线的 .曲线y=f (x )在点(x 0,f (x 0))处的切线方程是物理 意义 函数y=f (x )表示变速运动的质点的运动方程,则函数在x=x 0处的导数就是质点在x=x时的 速度,在(a ,b )内的导数就是质点在(a ,b )内的 方程2.导数的运算 常用 导数 公式原函数导函数特例或推广常数函数 C'=0(C 为常数)幂函数(x n)'= (n ∈Z )1x'=-1x 2三角函数(sin x)'=,(cos x)'=偶(奇)函数的导数是奇(偶)函数,周期函数的导数是周期函数指数函数(a x)'=(a>0且a≠1) (e x)'=e x对数函数(log a x)'=(a>0且a≠1)(ln x)'=1x,(ln|x|)'=1x四则运算法则加减[f(x)±g(x)]'=(∑i=1nf i(x))'=∑i=1nf'i(x)乘法[f(x)·g(x)]'=[Cf(x)]'=Cf'(x) 除法f(x)g(x)'=(g(x)≠0)1g(x)'=-g′(x)[g(x)]2复合函数导数复合函数y=f[g(x)]的导数与函数y=f(u),u=g(x)的导数之间具有关系y'x=,这个关系用语言表达就是“y对x的导数等于y对u的导数与u对x的导数的乘积”题组一常识题1.[教材改编]向气球中充入空气,当气球中空气的体积V(单位:L)从1 L增加到2 L时,气球半径r(单位:dm)的平均变化率约为.2.[教材改编]已知将1吨水净化到纯净度为x %时所需费用(单位:元)为c(x)=5284100−x(80<x<100),当净化到纯净度为98 %时费用的瞬时变化率为.3.[教材改编] y=sin(πx+φ)的导数是y'=.4.[教材改编]曲线y=xe x-1在点(1,1)处切线的斜率等于.题组二常错题◆索引:平均变化率与导数的区别;求导时不能掌握复合函数的求导法则致错;混淆f'(x 0)与[f (x 0)]',f'(ax+b )与[f (ax+b )]'的区别.5.函数f (x )=x 2在区间[1,2]上的平均变化率为 ,在x=2处的导数为 .6.已知函数y=sin 2x ,则y'= .7.已知f (x )=x 2+3xf'(2),则f (2)= .8.已知f (x )=x 3,则f'(2x+3)= ,[f (2x+3)]'= .课堂考点探究探究点一 导数的运算1(1)函数f (x )的导函数为f'(x ),且满足关系式f (x )=x 2+3xf'(2)-ln x ,则f'(2)的值为( )A.74 B.-74 C.94 D.-94(2)已知f (x )=-sin x2(1−2cos 2x4),则f'(π3)= .[总结反思] (1)对于复杂函数的求导,首先应利用代数、三角恒等变换等变形规则对函数解析式进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)利用公式求导时要特别注意除法公式中分子的符号,不要与求导的乘法公式混淆. 式题 (1)函数y=sinx x 的导数为y'= .(2)已知f (x )=(x+1)(x+2)(x+a ),若f'(-1)=2,则f'(1)= . 探究点二 导数的几何意义考向1 求切线方程2 函数f (x )=e x·sin x 的图像在点(0,f (0))处的切线方程是 .[总结反思] (1)曲线y=f (x )在点(x 0,f (x 0))处的切线方程为y-f (x 0)=f'(x 0)(x-x 0);(2)求解曲线切线问题的关键是求切点的横坐标,在使用切点横坐标求切线方程时应注意其取值范围;(3)注意过某点的切线和曲线上某点处的切线的区别. 考向2 求切点坐标3设a∈R,函数f(x)=e x+a·e-x的导函数是f'(x),且f'(x)是奇函数.若曲线y=f(x)的一条切线的斜率是32,则切点的横坐标为( )A.ln 2B.-ln 2C.ln22 D.-ln22[总结反思] f'(x)=k(k为切线斜率)的解即为切点的横坐标.考向3求参数的值4已知曲线C在动点P(a,a2+2a)与动点Q(b,b2+2b)(a<b<0)处的切线互相垂直,则b-a的最小值为( )A.1B.2C.√2D.-√2[总结反思](1)利用导数的几何意义求参数的基本方法:利用切点的坐标、切线的斜率、切线方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.(2)注意:①曲线上横坐标的取值范围;②切点既在切线上又在曲线上.强化演练1.【考向1】已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为( )A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=02.【考向3】直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于( )A.2B.-1C.1D.-23.【考向2】已知在平面直角坐标系中,f(x)=aln x+x的图像在x=a处的切线过原点,则a=( )A.1B.eC.1eD.04.【考向2】若曲线y=xln x在点P处的切线平行于直线2x-y+1=0,则点P的坐标是.5.【考向1】函数f(x)=xe x的图像在点P(1,e)处的切线与坐标轴围成的三角形面积为.。

2025高考数学一轮复习-3.1-变化率与导数、导数的计算【课件】

2025高考数学一轮复习-3.1-变化率与导数、导数的计算【课件】

2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是 h(t)=10-4.9t2 +8t(距离单位:米,时间单位:秒),则他在 0.5 秒时的瞬时速度为_____3_._1_______米/秒.
【解析】 ∵h′(t)=-9.8t+8,∴他在 0.5 秒时的瞬时速度为 h′(0.5)=3.1 米/秒.
易错易混 5.(多选)下列求导运算正确的是( BC ) A.x+1x′=1+x12 B.(log2x)′=xl1n2 C.(3x)′=3x·ln3 D.(x2cosx)′=-2xsinx
【解析】
因为
x+1x
′=1-
1 x2
,所以选项A不正确;因为(log2x)′=
1 xln2
,所以选项B
正确;因为(3x)′=3xln3,所以选项C正确;因为(x2cosx)′=2xcosx-x2sinx,所以选项D不正
(2)函数 y=f(x)的导数 f ′(x)反映了函数 f(x)的瞬时变化趋势,其正负号反映了变化的 方向,其大小|f′(x)|反映了变化的快慢,|f ′(x)|越大,曲线在这点处的切线越“陡”.
『基础过关』
思考辨析
1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x0)是函数 y=f(x)在 x=x0 附近的平均变化率.( × ) (2)f ′(x0)与[f(x0)]′表示的意义相同.( × ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (4)函数 f(x)=sin(-x)的导数是 f ′(x)=cosx.( × )
3
2.分别求下列函数的导数 (1)y=x2sinx; (2)y=lnx+1x; (3)y=coesx x; (4)y=ln(2x-5); (5)y=xsin2x+2πcos2x+2π.

2014届高三数学一轮复习专讲专练31变化率与导数、导数的计算

2014届高三数学一轮复习专讲专练31变化率与导数、导数的计算
2014届高三数学一轮复习专讲专练31变化率与导数、导数的计算
商务通用Powerpoint模板
2.函数y=f(x)在x=x0处的导数 (1)定义:
称函数y=f(x)在x=x0处的瞬时变化率 □3 __________=
□4 ________为函数y=f(x)在x=x0处的导数,记作f′(x0)或
答案:C
5.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐
标是( )
A.-9
B.-3
C.9
D.15
解析:y′=3x2,所以在P(1,12)处的切线的斜率k=3, 切线方程为3x-y+9=0,故其与y轴交点为(0点分类 案例剖析
研习考点,触类旁通
考点一 导数的运算
□ □ f′xgx-fxg′x
[gx]2
21 f′[v(x)]v′(x)
22 y′u·u′x
名师微博 ●一个区别 曲线y=f(x)“在”点P(x0,y0)处的切线与“过”点 P(x0,y0)的切线的区别:曲线y=f(x)在点P(x0,y0)处的切线 是指P为切点,若切线斜率存在时,切线斜率为k=f′(x0), 是唯一的一条切线;曲线y=f(x)过点P(x0,y0)的切线,是指 切线经过P点,点P可以是切点,也可以不是切点,而且这样 的直线可能有多条.
答案:B
4.若f(x)=x2-2x-4lnx,则f′(x)>0的解集为( ) A.(0,+∞) B.(-1,0)∪(2,+∞) C.(2,+∞) D.(-1,0)
解析:令f′(x)=2x-2-
4 x

2x-2x+1 x
>0,利用数
轴标根法可解得-1<x<0或x>2,又x>0,所以x>2.故选
C.
3.函数f(x)的导函数

一轮复习课时训练§2.10:变化率与导数、导数的计算

一轮复习课时训练§2.10:变化率与导数、导数的计算

第二章§10:变化率与导数、导数的计算(与一轮复习课件对应的课时训练)满分100,训练时间45分钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若曲线y =x 2+ax +b 在点(0,b)处的切线方程是x -y +1=0,则A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-12.若f(x)满足f(x)=13x 3-f ′(1)x 2-x ,则f ′(1)的值为 A .0 B .2 C .1 D .-13.已知函数f(x)在R 上满足f(x)=2f(2-x)+e x -1+x 2,则曲线y =f(x)在点(1,f(1))处的切线方程是A .2x -y -1=0B .x -y -3=0C .3x -y -2=0D .2x +y -3=04.设函数y =xsinx +cosx 的图象上的点(x ,y)处的切线斜率为k ,若k =g(x),则函数 k =g(x)的图象大致为5.如图为一圆锥形容器,其底面圆的直径等于圆锥母线长,现以每分钟9.3升的速度将水注入容器内,则注入水的高度在t =127分钟时瞬时变化率为(取π=3.1) A .27分米/分钟 B .9分米/分钟C .81分米/分钟D .99分米/分钟二、填空题:本大题共3小题,每小题8分,共24分.6.已知函数f(x)=kcosx 的图象经过点P(π3,1),则函数图象上过点P 的切线斜率 等于________.7.函数y =x -1x 2的导数为________. 8.设f(x)是偶函数.若曲线y =f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在点 (-1,f(-1))处的切线斜率为________.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分)设抛物线C 1:y =x 2-2x +2与抛物线C 2:y =-x 2+ax +b 在它们的一个交点处的切线互相垂直.求a ,b 之间的关系.10.(本小题满分18分)已知函数f(x)=ax -6x 2+b的图象在点M(-1,f(-1))处的切线方程为x +2y +5=0,求函数y =f(x)的解析式.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:y ′=2x +a ,y ′|x =0=2×0+a =1.∴a =1,又∵(0,b)在直线x -y +1=0上, ∴b =1.答案:A2.解析:f ′(x)=x 2-2xf ′(1)-1,∴f ′(1)=1-2f ′(1)-1,∴f ′(1)=0. 答案:A3.解析:令x =1得f(1)=-2.对等式两边求导得f ′(x)=-2f ′(2-x)+e x -1+2x ,令x =1,解得f ′(1)=1,所以切线方程为y +2=x -1,即x -y -3=0.答案:B4.解析:y ′=sinx +xcosx -sinx =xcosx ,则g(x)=xcosx ,而g(-x)=-xcos(-x)=-g(x),∴g(x)为奇函数,图象关于(0,0)对称.而x >0,接近于0时,g(x)>0,∴B 项正确.答案:B5.解析:设t 时刻水面高度为h ,半径为r ,则r =33h ,此时水的体积V =13πr 2h =19πh 3,又V =9.3t.∴19πh 3=9.3t ,把π=3.1代入得h =3t 13,求导得h ′=t -23,∴当t =127时, 瞬时变化率为(127)-23=9. 答案:B二、填空题:本大题共3小题,每小题8分,共24分.6.解析:由已知f(π3)=kcos π3=1,∴k =2,∴f(x)=2cosx ,∴f ′(x)=-2sinx ,∴过点P 处的切线斜率f ′(π3)=-2sin π3=- 3. 答案:- 37.解析:y ′=(x -1)′x 2-(x -1)·(x 2)′x 4=x 2-2x (x -1)x 4=x 2-2x 2+2x x 4=-x 2+2x x 4=2-x x3. 答案:y ′=2-x x38.解析:由f(x)是偶函数,∴f(x)的图象关于y 轴对称.从而由已知得在(-1,f(-1))处的切线斜率为-1.答案:-1三、解答题:本大题共2小题,共36分.9.(本小题满分18分)解:设两抛物线的交点为M(x 0,y 0).由题意知x 20-2x 0+2=-x 20+ax 0+b ,整理得2x 20-(2+a)x 0+2-b =0,①由导数可知抛物线C 1、C 2在交点M 处的切线斜率为k 1=2x 0-2,k 2=-2x 0+a.∵两切线垂直,∴k 1k 2=-1.即(2x 0-2)(-2x 0+a)=-1,整理得2[2x 20-(2+a)x 0]+2a -1=0,②联立①②消去x 0,得a +b =52. 10.(本小题满分18分)解:由函数f(x)的图象在点M(-1,f(-1))处的切线方程为x +2y +5=0知-1+2f(-1)+5=0,即f(-1)=-2,f ′(-1)=-12. ∵f ′(x)=a (x 2+b )-2x (ax -6)(x 2+b )2, ∴⎩⎪⎨⎪⎧ -a -61+b =-2a (1+b )+2(-a -6)(1+b )2=-12,即⎩⎪⎨⎪⎧ a =2b -4a (1+b )-2(a +6)(1+b )2=-12. 解得a =2,b =3(∵b +1≠0,∴b =-1舍去).所以所求的函数解析式是f(x)=2x -6x 2+3 .。

2014高考数学一轮汇总训练《变化率与导数、导数的计算_》理_新人教A版

2014高考数学一轮汇总训练《变化率与导数、导数的计算_》理_新人教A版

第十一节变化率与导数、导数的计算 [备考方向要明了][归纳·知识整合]1.导数的概念(1)函数y=f(x)在x=x0处的导数:称函数y=f(x)在x=x0处的瞬时变化率lim Δx→0f x0+Δx-f x0Δx=limΔx→0ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f x0+Δx-f x0Δx.(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x -x0).(3)函数f(x)的导函数:称函数f′(x)=limΔx→0f x+Δx-f xΔx为f(x)的导函数.[探究] 1.f′(x)与f′(x0)有何区别与联系?提示:f′(x)是一个函数,f′(x0)是常数,f′(x0)是函数f′(x)在x0处的函数值.2.曲线y=f(x)在点P0(x0,y0)处的切线与过点P0x0,y0)的切线,两种说法有区别吗?提示:(1)曲线y=f(x)在点P(x0,y0)处的切线是指P为切点,斜率为k=f′(x0)的切线,是唯一的一条切线.(2)曲线y=f(x)过点P(x0,y0)的切线,是指切线经过P点.点P可以是切点,也可以不是切点,而且这样的直线可能有多条.3.过圆上一点P的切线与圆只有公共点P,过函数y=f(x)图象上一点P的切线与图象也只有公共点P吗?提示:不一定,它们可能有2个或3个或无数多个公共点.2.几种常见函数的导数3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f xg x ′=fx g x -f x gx[g x2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[自测·牛刀小试]1.(教材习题改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为( )A .0B .3C .4D .-73解析:选B ∵f (x )=13x 3+2x +1,∴f ′(x )=x 2+2.∴f ′(-1)=3.2.曲线y =2x -x 3在x =-1处的切线方程为( ) A .x +y +2=0 B .x +y -2=0 C .x -y +2=0D .x -y -2=0解析:选A ∵f (x )=2x -x 3,∴f ′(x )=2-3x 2. ∴f ′(-1)=2-3=-1. 又f (-1)=-2+1=-1,∴切线方程为y +1=-(x +1),即x +y +2=0. 3.y =x 2cos x 的导数是( ) A .y ′=2x cos x +x 2sin x B .y ′=2x cos x -x 2sin x C .y =2x cos x D .y ′=-x 2sin x解析:选B y ′=2x cos x -x 2sin x . 4.(教材习题改编)曲线y =sin xx在点M (π,0)处的切线方程是________.解析:∵f (x )=sin x x ,∴f ′(x )=x ·cos x -sin xx2, ∴f ′(π)=-ππ2=-1π.∴切线方程为y =-1π(x -π),即x +πy -π=0.答案:x +πy -π=05.(教材习题改编)如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.解析:由题意知f ′(5)=-1,f (5)=-5+8=3,∴f (5)+f ′(5)=3-1=2. 答案:2[例1] 求下列函数的导数(1)y =(1-x )⎝⎛⎭⎪⎫1+1x ;(2)y =ln xx;(3)y =tan x ; (4)y =3x e x-2x+e.[自主解答] (1)∵y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x 12--x 12,∴y ′=(x 12-)′-(x 12)′=-12x 32--12x 12-.(2)y ′=⎝ ⎛⎭⎪⎫ln x x ′=ln x ′x -x ′ln x x 2=1x·x -ln xx 2=1-ln xx2. (3)y ′=⎝ ⎛⎭⎪⎫sin x cos x ′=sin x ′cos x -sin x cos x ′cos 2x =cos x cos x -sin x -sin x cos 2x =1cos 2x. (4)y ′=(3x e x)′-(2x)′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x-2xln 2=(ln 3+1)·(3e)x-2xln 2.若将本例(3)中“tan x ”改为“sin x 2⎝⎛⎭⎪⎫1-2cos 2x 4”如何求解?解:∵y =sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=-sin x 2cos x 2=-12sin x∴y ′=-12cos x .———————————————————求函数的导数的方法(1)求导之前,应先利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但可在求导前利用代数或三角恒等变形将其化简为整式形式,然后进行求导,这样可以避免使用商的求导法则,减少运算量.1.求下列函数的导数(1)y =x +x 5+sin xx 2;(2)y =(x +1)(x +2)(x +3);(3)y =11-x +11+x ;(4)y =cos 2x sin x +cos x .解:(1)∵y =x 12+x 5+sin xx2=x32-+x 3+sin x x2,∴y ′=(x32-)′+(x 3)′+(x -2sin x )′=-32x 52-+3x 2-2x -3sin x +x -2c os x .(2)y =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.(3)∵y =11-x +11+x =21-x ,∴y ′=⎝ ⎛⎭⎪⎫21-x ′=--x -x2=2-x2.(4)y =cos 2xsin x +cos x=cos x -sin x ,∴y ′=-sin x -cos x . [例2] 求下列复合函数的导数: (1)y =(2x -3)5;(2)y =3-x ; (3)y =sin 2⎝⎛⎭⎪⎫2x +π3;(4)y =ln(2x +5). [自主解答] (1)设u =2x -3,则y =(2x -3)5由y =u 5与u =2x -3复合而成,∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′ =5u 4·2=10u 4=10(2x -3)4.(2)设u =3-x ,则y =3-x 由y =u 12与u =3-x 复合而成. ∴y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′ =12u -12(-1)=-12u 12-=-123-x =3-x 2x -6.(3)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =4sin ⎝ ⎛⎭⎪⎫2x +π3·cos ⎝ ⎛⎭⎪⎫2x +π3 =2sin ⎝⎛⎭⎪⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x , ∴y ′=12x +5·(2x +5)′=22x +5.———————————————————复合函数求导应注意三点一要分清中间变量与复合关系;二是复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的任一环;三是必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其复合关系.2.求下列复合函数的导数:(1)y =(1+sin x )2;(2)y =ln x 2+1; (3)y =1-3x4;(4)y =x 1+x 2.解:(1)y ′=2(1+sin x )·(1+sin x )′ =2(1+sin x )·cos x . (2)y ′=(ln x 2+1)′ =1x 2+1·( x 2+1)′ =1x 2+1·12(x 2+1)12-·(x 2+1)′=xx 2+1.(3)设u =1-3x ,y =u -4.则y x ′=y u ′·u x ′=-4u -5·(-3) =12-3x5.(4)y ′=(x 1+x 2)′=x ′·1+x 2+x () 1+x 2′=1+x 2+x 21+x2=1+2x21+x2.[例3] (1)(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.(2)已知曲线y =13x 3+43.①求曲线在点P (2,4)处的切线方程; ②求斜率为4的曲线的切线方程. [自主解答] (1)y =x 22,y ′=x ,∴y ′|x =4=4,y ′|x =-2=-2.点P 的坐标为(4,8),点Q 的坐标为(-2,2), ∴在点P 处的切线方程为y -8=4(x -4),即y =4x -8.在点Q 处的切线方程为y -2=-2(x +2),即y =-2x -2.解⎩⎪⎨⎪⎧y =4x -8,y =-2x -2,得A (1,-4),则A 点的纵坐标为-4.(2)①∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.②设切点为(x 0,y 0),则切线的斜率k =x 20=4,x 0=±2.切点为(2,4)或⎝⎛⎭⎪⎫-2,-43, ∴切线方程为y -4=4(x -2)或y +43=4(x +2),即4x -y -4=0或12x -3y +20=0. [答案] (1)-4若将本例(2)①中“在点P (2,4)”改为“过点P (2,4)”如何求解? 解:设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43, 则切线的斜率k =y ′|x =x 0=x 20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P,在切线上,∴4=2x 20-23x 30+\f(4,3),即x 30-3x 20+4=0.∴x 30+x 20-4x 20+4=0. ∴x 20x 0+-x 0+x 0-=0.∴x 0+x 0-2=0.解得x 0=-1或x 0=2.故所求的切线方程为4x -y -4=0或x -y +2=0.———————————————————1.求曲线切线方程的步骤(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;(2)由点斜式方程求得切线方程为y -y 0=f ′(x 0)·(x -x 0). 2.求曲线的切线方程需注意两点(1)当曲线y =f (x )在点P (x 0,f (x 0))处的切线平行于y 轴(此时导数不存在)时,切线方程为x =x 0;(2)当切点坐标不知道时,应首先设出切点坐标,再求解.3.已知函数f (x )=2 x +1(x >-1),曲线y =f (x )在点P (x 0,f (x 0))处的切线l 分别交x 轴和y 轴于A ,B 两点,O 为坐标原点.(1)求x 0=1时,切线l 的方程;(2)若P 点为⎝ ⎛⎭⎪⎫-23,233,求△AOB 的面积.解:(1)f ′(x )=1x +1,则f ′(x 0)=1x 0+1, 则曲线y =f (x )在点P (x 0,f (x 0))的切线方程为y -f (x 0)=1x 0+1(x -x 0),即y =x x 0+1+x 0+2x 0+1. 所以当x 0=1时,切线l 的方程为x -2y +3=0. (2)当x =0时,y =x 0+2x 0+1; 当y =0时,x =-x 0-2. S △AOB =12⎪⎪⎪⎪⎪⎪x 0+2x 0+1x 0+=x 0+22 x 0+1, ∴S △AOB =⎝ ⎛⎭⎪⎫-23+222-23+1=839.[例4] 已知a 为常数,若曲线y =ax 2+3x -ln x 存在与直线x +y -1=0垂直的切线,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-12,+∞ B.⎝⎛⎦⎥⎤-∞,-12C.[)-1,+∞D.(]-∞,-1[自主解答] 由题意知曲线上存在某点的导数为1, 所以y ′=2ax +3-1x=1有正根,即2ax 2+2x -1=0有正根. 当a ≥0时,显然满足题意;当a <0时,需满足Δ≥0,解得-12≤a <0.综上,a ≥-12.[答案] A ——————————————————— 导数几何意义应用的三个方面导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.4.若函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ(0<θ<π),且f (x )+f ′(x )是奇函数,则θ=________.解析:∵f (x )=sin ⎝⎛⎭⎪⎫3x +π6+θ, ∴f ′(x )=3cos ⎝ ⎛⎭⎪⎫3x +π6+θ. 于是y =f ′(x )+f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ+3cos ⎝ ⎛⎭⎪⎫3x +π6+θ=2sin ⎝ ⎛⎭⎪⎫3x +π6+θ+π3=2sin ⎝ ⎛⎭⎪⎫3x +θ+π2=2cos(3x +θ),由于y =f (x )+f ′(x )=2cos(3x +θ)是奇函数, ∴θ=k π+π2(k ∈Z ).又0<θ<π,∴θ=π2.答案:π2个区别——“过某点”与“在某点”的区别曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.个防范——导数运算及切线的理解应注意的问题(1)利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. (2)利用导数公式求导数时,只要根据几种基本函数的定义,判断原函数是哪类基本函数,再套用相应的导数公式求解,切不可因判断函数类型失误而出错.(3)直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.(4)曲线未必在其切线的同侧,如曲线y =x 3在其过(0,0)点的切线y =0的两侧.易误警示——导数几何意义应用的易误点[典例] (2013·杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[解析] 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.[答案] A [易误辨析]1.如果审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点,则易误选B. 2.解决与导数的几何意义有关的问题时, 应重点注意以下几点: (1)首先确定已知点是否为曲线的切点是解题的关键;(2)基本初等函数的导数和导数运算法则是正确解决此类问题的保证; (3)熟练掌握直线的方程与斜率的求解是正确解决此类问题的前提. [变式训练]1.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B.12 C .-22D.22解析:选By ′=cos xx +cos x -x -sin xxx +cos x 2=1x +cos x2,故y ′⎪⎪⎪4x π==12.∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12. 2.已知函数f (x )=x 3+f ′⎝ ⎛⎭⎪⎫23x 2-x ,则函数f (x )的图象在点⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线方程是________.解析:由f (x )=x 3+f ′⎝ ⎛⎭⎪⎫23x 2-x ,可得f ′(x )=3x 2+2f ′⎝ ⎛⎭⎪⎫23x -1,∴f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2f ′⎝ ⎛⎭⎪⎫23×23-1,解得f ′⎝ ⎛⎭⎪⎫23=-1,即f (x )=x 3-x 2-x .则f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫233-⎝ ⎛⎭⎪⎫232-23=-2227,故函数f (x )的图象在⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线方程是 y +2227=-⎝⎛⎭⎪⎫x -23,即27x +27y +4=0.答案:27x +27y +4=0一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·永康模拟)函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )解析:选D 据函数的图象易知,x <0时恒有f ′(x )>0,当x >0时,恒有f ′(x )<0. 2.若函数f (x )=cos x +2xf ′⎝ ⎛⎭⎪⎫π6,则f ⎝ ⎛⎭⎪⎫-π3与f ⎝ ⎛⎭⎪⎫π3的大小关系是( )A .f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3B .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π3 C .f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π3 D .不确定解析:选C 依题意得f ′(x )=-sin x +2f ′⎝ ⎛⎭⎪⎫π6, ∴f ′⎝ ⎛⎭⎪⎫π6=-sin π6+2f ′⎝ ⎛⎭⎪⎫π6, f ′⎝ ⎛⎭⎪⎫π6=12,f ′(x )=-sin x +1,∵当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f ′(x )>0, ∴f (x )=cos x +x 是⎝ ⎛⎭⎪⎫-π2,π2上的增函数,注意到-π3<π3,于是有f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π3. 3.已知t 为实数,f (x )=(x 2-4)(x -t )且f ′(-1)=0,则t 等于( ) A .0 B .-1 C.12D .2解析:选C f ′(x )=3x 2-2tx -4,f ′(-1)=3+2t -4=0,t =12.4.曲线y =x e x+2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1D .y =-2x -1解析:选A 依题意得y ′=(x +1)e x+2,则曲线y =x e x+2x -1在点(0,-1)处的切线的斜率为y ′|x =0,故曲线y =x e x+2x -1在点(0,-1)处的切线方程为y +1=3x ,即y =3x -1.5.(2013·大庆模拟)已知直线y =kx 与曲线y =ln x 有公共点,则k 的最大值为( ) A .1 B.1e C.2eD.2e解析:选B 从函数图象知在直线y =kx 与曲线y =ln x 相切时,k 取最大值.y ′=(lnx )′=1x =k ,x =1k (k ≠0),切线方程为y -ln 1k =k ⎝ ⎛⎭⎪⎫x -1k ,又切线过原点(0,0),代入方程解得ln k =-1,k =1e.6.设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2.下面的不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x解析:选A 由已知,令x =0得2f (0)>0,排除B 、D 两项;令f (x )=x 2+14,则2x 2+12+x ⎝⎛⎭⎪⎫x 2+14′=4x 2+12>x 2,但x 2+14>x 对x =12不成立,排除C 项.二、填空题(本大题共3小题,每小题5分,共15分) 7.已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析:f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2. ∴f ′(x )=2x -4.∴f ′(0)=-4. 答案:-48.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )在点P 处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.答案:x -y -2=09.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析:曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解. 又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x=0有正实数解.∴5ax 5=-1有正实数解.∴a <0. 故实数a 的取值范围是(-∞,0). 答案:(-∞,0)三、解答题(本大题共3小题,每小题12分,共36分) 10.已知函数f (x )=ax -6x 2+b的图象在点(-1,f (-1))处的切线方程为x +2y +5=0,求y =f (x )的解析式.解:由已知得,-1+2f (-1)+5=0, ∴f (-1)=-2,即切点为(-1,-2).又f ′(x )=ax -x 2+b -ax -x 2+bx 2+b 2=-ax 2+12x +ab x 2+b 2,∴⎩⎪⎨⎪⎧-a -61+b=-2,-a -12+ab +b 2=-12,解得⎩⎪⎨⎪⎧a =2,b =3.∴f (x )=2x -6x 2+3.11.如右图所示,已知A (-1,2)为抛物线C :y =2x 2上的点,直线l 1过点A ,且与抛物线C 相切,直线l 2:x =a (a <-1)交抛物线C 于点B ,交直线l 1于点D .(1)求直线l 1的方程; (2)求△ABD 的面积S 1.解:(1)由条件知点A (-1,2)为直线l 1与抛物线C 的切点. ∵y ′=4x ,∴直线l 1的斜率k =-4. 所以直线l 1的方程为y -2=-4(x +1), 即4x +y +2=0.(2)点A 的坐标为(-1,2),由条件可求得点B 的坐标为(a,2a 2), 点D 的坐标为(a ,-4a -2),∴△ABD 的面积为S 1=12×|2a 2-(-4a -2)|×|-1-a |=|(a +1)3|=-(a +1)3.12.如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(k =2,…,n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |. 解:(1)设点P k -1的坐标是(x k -1,0), ∵y =e x,∴y ′=e x,∴Q k -1(x k -1,e x k -1),在点Q k -1(x k -1,e x k -1)处的切线方程是y -e x k -1=e x k -1(x -x k -1),令y =0,则x k =x k -1-1(k =2,…,n ).(2)∵x 1=0,x k -x k -1=-1,∴x k =-(k -1), ∴|P k Q k |=e x k =e-(k -1),于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n | =1+e -1+e -2+…+e -(n -1)=1-e -n1-e -1=e -e 1-ne -1, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-ne -1.1.设函数f (x )在x 0处可导,则lim Δx →0 f x 0-Δx -f x 0Δx等于( )A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)解析:选B lim Δx →0 f x 0-Δx -f x 0Δx=-lim Δx →0f [x 0+-Δx-fx 0-Δx=-f ′(x 0).2.求下列各函数的导数: (1)(x )′=12x 12-;(2)(a x)′=a 2ln x ;(3)(x cos x )′=cos x +x sin x ;(4)⎝ ⎛⎭⎪⎫x x +1′=1x +1, 其中正确的有( ) A .0个 B .1个 C .2个D .3个解析:选B 根据函数的求导公式知只有(1)正确.3.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.解析:∵y ′=2x ,∴点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交点为(a k +1,0),∴a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12.∴a 3=4,a 5=1.∴a 1+a 3+a 5=21.答案:214.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +b x2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2知曲线在点P (x 0,y 0)处的切线方程为y-y 0=⎝⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝⎛⎭⎪⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0.从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.。

导数的概念及其意义 、导数的运算(高三一轮复习)

导数的概念及其意义 、导数的运算(高三一轮复习)


gfxx′=f′xgx[g-xf]2xg′x(g(x)≠0);
[cf(x)]′= 16 cf′(x)

— 8—
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
5.复合函数的定义及其导数
(1)一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x 的函数,那么称这个函数为函数y=f(u)与u=g(x)的复合函数,记作y= 17 f(g(x)) .
— 20 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 导数的几何意义
考向1 求切线方程
例2
(1)(2022·湖南衡阳二模)函数f(x)=xln(-2x),则曲线y=f(x)在x=-
e 2
处的
切线方程为 4x-2y+e=0
.
(2)(2y0=22-·新1e高x 考Ⅱ卷.)曲线y=ln|x|过坐标原点的两条切线的方程为
(2)f1x′=-f[′fxx]2(f(x)≠0). (3)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次函数的图 象相切只有一个公共点. (4)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变 化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越 “陡”.
f(x)=xα(α∈Q且α≠0) f′(x)= 7αxα-1
f(x)=sin x
f′(x)= 8 cos x
f(x)=cos x
f′(x)= 9 -sin x
— 6—
数学 N 必备知识 自主学习 关键能力 互动探究
f(x)=ax(a>0且a≠1) f′(x)= 10 axln a

变化率与导数导数的计算

变化率与导数导数的计算

变化率与导数导数的计算一、变化率与导数的关系在数学中,变化率是指一个量相对于另一个量的变化程度,常用来衡量两个变量之间的关系。

而导数则是描述函数在其中一点上的变化率的概念。

在一个数学函数中,比如说y=f(x),x和y分别代表自变量和因变量。

那么,当x发生微小变化Δx时,对应的y值也会发生一定的变化Δy。

这时,我们可以计算出y随着x的变化而变化的速率,也就是变化率。

变化率可以通过求平均变化率和瞬时变化率来进行计算。

平均变化率指的是通过两个点之间的变化率来计算,可以用Δy/Δx来表示。

而瞬时变化率则是在其中一点上的变化率,通过取Δx趋近于0时的极限来计算,也就是导数。

二、导数的定义与计算导数是用来衡量函数在其中一点上的变化率的数值,用dy/dx来表示。

导数的定义是:f'(x) = lim(Δx→0) (f(x+Δx) - f(x))/Δx导数表示函数f(x)在x点处的瞬时变化率。

导数可以用各种方法进行计算,其中最常用的方法包括求导法则和导数的性质。

1.求导法则(1)常数法则:如果c是一个常数,那么d(c)/dx = 0。

(2)幂法则:如果f(x) = x^n,那么d(f(x))/dx = nx^(n-1)。

(3)和差法则:如果f(x)=u(x) ± v(x),那么d(f(x))/dx =d(u(x))/dx ± d(v(x))/dx。

(4)乘法法则:如果f(x) = u(x)v(x),那么d(f(x))/dx =u(x)d(v(x))/dx + v(x)d(u(x))/dx。

(5)除法法则:如果f(x) = u(x)/v(x),那么d(f(x))/dx =(v(x)d(u(x))/dx - u(x)d(v(x))/dx)/v(x)^2(6)复合函数法则:如果f(x) = g(u(x)),那么d(f(x))/dx =g'(u(x))d(u(x))/dx。

2.导数的性质(1)导数的和差性:(f(x)±g(x))'=f'(x)±g'(x)。

(完整版)变化率与导数及导数的计算

(完整版)变化率与导数及导数的计算

第十一节变化率与导数、导数的计算一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.二、基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2. ∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________. 解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.典题导入[例1] 用定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2, 所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解). 解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法一(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法二(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导入[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 解:(1)y ′=(e x ·ln x )′ =e x ln x +e x ·1x =e x ⎝⎛⎭⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导入[例3] (1)(2011·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2. 又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程. 解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20.又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.由题悟法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. (2)(2013·乌鲁木齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线方程为y =-2x .4.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·黑龙江哈尔滨二模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin ⎝⎛⎭⎫x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan ⎝⎛⎭⎫2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1), 得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a 23,因斜率最小的切线与12x +y =6平行, 即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x , 以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.【基础自测】1.(2013全国高考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =( )A.9B.6C.-9D.-62.(2014宁夏一模)如果过曲线12++=x x y 上的点P 处的切线平行于直线2+=x y ,那么点P 的左标为 ( )A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州一模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜角的取值范围为]4,0[π,则点P 横坐标的取值范围为 ( ) A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知二次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最小值为 ( ) A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x fx f B. x f x x f x x f x x f )()(.C )()(.A )()(lim,)(000'0'000--∆-∆-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线方程求曲线过点处的切线方程;求曲线在】已知曲线【例--=+=x x y。

高三数学一轮复习 变化率与导数 导数的计算课件 北师大版

高三数学一轮复习 变化率与导数 导数的计算课件 北师大版

__________.
解析:曲线y= 和y=x2的交点为A(1,1),在A点处曲线y= 的斜率
.切线l1:y=-1×(x-1)+1.在A点处曲线y=x2的斜率 y′|x=1=2x|x=1=2,切线l2:y=2(x-1)+1.l1与x轴的交点B(2,0),l2与x轴的 交点C( 答案: ,0).故 .
解析: 因为半径为 R 的球的表面积为 S(R) = 4πR2 ,体积 V(R) = V′(R)=S(R),故第一个空填为(
πR3 ,显然
πR3)′=4πR2.从而②式用语言叙述为:球的
体积函数的导数等于球的表面积函数. 答案: ( πR3)′=4πR2 球的体积函数的导数等于球的表面积函数
(1). 函数在x=x0 处的导数是用函数极限定义的 可利用导数的定义判断函数在x=x0处的极 限是否存在.导数与连续的关系是:可导必连续,连续但不一定可 导. (2).函数的导数与在点 x0处的导数不是同一概念;在点 x0处的导数是 函数的导数在x=x0处的函数值.
记作f′(ቤተ መጻሕፍቲ ባይዱ0)或y′|x=x0,即
2.导数的几何意义 如右图所示,设y=f(x)的函数图像是一条平滑的曲线,
从图象上可以看出:当△x取不同的值,可以得到不
同的割线;当△x趋近于零时,点B将沿着曲线y=f(x)
趋向于点A,割线AB将绕点A转动最后趋于直线l.直线l
和曲线y=f(x)在点A处“相切”.称直线l为曲线y=f(x)在点A处的切线.该切
【例1】利用导数的定义求函数f(x)=x3在x=x0处的导数,并求曲线f(x)=x3在x=x0
处切线与曲线f(x)=x3的交点. 解答: 曲线f(x)=x3在x=x0处的切线方程为y-x=3x·(x-x0), 即 得(x-x0)2(x+2x0)=0,解得x=x0,x=-2x0. 若x0≠0,则交点坐标为(x0, ),(-2x0,- );若x0=0,则交点坐标为(0,0).

高考数学一轮复习 第三章 导数及其应用 3.1 变化率与导数、导数的计算真题演练集训 理 新人教A版

高考数学一轮复习 第三章 导数及其应用 3.1 变化率与导数、导数的计算真题演练集训 理 新人教A版

计算真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第三章导数及其应用3.1 变化率与导数、导数的计算真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第三章导数及其应用3.1 变化率与导数、导数的计算真题演练集训理新人教A版的全部内容。

数的计算真题演练集训理新人教A版1.[2014·大纲全国卷]曲线y=x e x-1在点(1,1)处切线的斜率等于()A.2e B.eC.2 D.1答案:C解析:y′=e x-1+x e x-1=(x+1)e x-1,故曲线在点(1,1)处的切线斜率为y′|x=1=2.2.[2014·新课标全国卷Ⅱ]设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )A.0 B.1C.2 D.3答案:D解析:y′=a-错误!,由题意得y′|x=0=2,即a-1=2,所以a=3.3.[2016·新课标全国卷Ⅲ]已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是________.答案:y=-2x-1解析:由题意可得,当x>0时,f(x)=ln x-3x,则f′(x)=错误!-3,f′(1)=-2,则在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.4.[2016·新课标全国卷Ⅱ]若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x +1)的切线,则b=________。

(完整版)变化率与导数及导数的计算

(完整版)变化率与导数及导数的计算

(完整版)变化率与导数及导数的计算第⼗⼀节变化率与导数、导数的计算⼀、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)⼏何意义:函数f (x )在点x 0处的导数f ′(x 0)的⼏何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线⽅程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.⼆、基本初等函数的导数公式原函数导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1 x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·⼴东⾼考)曲线y =x 3-x +3在点(1,3)处的切线⽅程为________.解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2.∴该切线⽅程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________.解析:y ′=(x cos x )′-(sin x )′=x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,⼀般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应⽤,⽽且要特别注意求导法则对求导的制约作⽤,在实施化简时,⾸先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯⼀的⼀条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,⽽且这样的直线可能有多条.典题导⼊[例1] ⽤定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[⾃主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2,所以limΔx →0 Δy Δx =lim Δx →0 ?-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.⼀质点运动的⽅程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(⽤定义及导数公式两种⽅法求解).解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法⼀(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法⼆(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导⼊[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [⾃主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利⽤代数或三⾓恒等变换对函数进⾏化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使⽤商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x x 2+1x +1x 3;解:(1)y ′=(e x ·ln x )′=e x ln x +e x ·1x =e x ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导⼊[例3] (1)(2011·⼭东⾼考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线⽅程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[⾃主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线⽅程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线⽅程为y =2x +1,∴g ′(1)=k =2. ⼜f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线⽅程.解:因点P 不在曲线上,设切点的坐标为(x 0,y 0),由y =x 3+11,得y ′=3x 2,∴k =y ′|x =x 0=3x 20.⼜∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线⽅程为y -10=3(x +1),即3x -y +13=0.由题悟法导数的⼏何意义是切点处切线的斜率,应⽤时主要体现在以下⼏个⽅⾯: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解⽅程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利⽤k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线⽅程为________. (2)(2013·乌鲁⽊齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线⽅程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.⼜切点1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动⽅程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线⽅程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x ,∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线⽅程为y =-2x .4.设曲线y =1+cos x sin x 在点π2,1处的切线与直线x -ay +1=0平⾏,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意⼀点,则点P 到直线y =x -2的最⼩距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最⼩,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满⾜f ′(x )=g ′(x ),则f (x )与g (x )满⾜( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0,即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁⾼考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线⽅程为y =4x -8,过点Q 的切线⽅程为y =-2x -2,联⽴两个⽅程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·⿊龙江哈尔滨⼆模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan 2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11. 11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同⼀条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3,曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线⽅程为y -f (1)=3(x -1),得:y +1=3(x -1),即切线⽅程为3x -y -4=0. 曲线y =g (x )在x =1处的切线⽅程为y -g (1)=3(x -1).得y +6=3(x -1),即切线⽅程为3x -y -9=0,所以,两条切线不是同⼀条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最⼩的切线与直线12x +y =6平⾏时,求a 的值.解:f ′(x )=3x 2+2ax -9=3x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最⼩值-9-a 23,因斜率最⼩的切线与12x +y =6平⾏,即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘⼆模)等⽐数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8),∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′=(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1π2+f 2π2+…+f 2 012π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x ,以此类推,可得出f n (x )=f n +4(x ),⼜∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1π2+f 2π2+…+f 2 012π2=503f 1π2+f 2π2+f 3π2+f 4π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上⼀点P (1,-2),过点P 作直线l ,根据以下条件求l 的⽅程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线⽅程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另⼀点(x 0,y 0),则f ′(x 0)=3x 20-3. ⼜直线过(x 0,y 0),P (1,-2),故其斜率可表⽰为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3,即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =314-1=-94. 所以l 的⽅程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线⽅程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任⼀点处的切线与直线x =0和直线y =x 所围成的三⾓形⾯积为定值,并求此定值.解:(1)⽅程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.⼜f ′(x )=a +bx2,则2a -b 2=12,a +b 4=74,解得?a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任⼀点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线⽅程为y -y 0=1+3x 20·(x -x 0),即y -x 0-3x 0=1+3x 20(x -x 0).令x =0得y =-6x 0,从⽽得切线与直线x =0的交点坐标为0,-6x 0.令y =x 得y =x =2x 0,从⽽得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三⾓形⾯积为12-6x 0|2x 0|=6. 故曲线y =f (x )上任⼀点处的切线与直线x =0,y =x 所围成的三⾓形的⾯积为定值,此定值为6.【基础⾃测】1.(2013全国⾼考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =()A.9B.6C.-9D.-62.(2014宁夏⼀模)如果过曲线12++=x x y 上的点P 处的切线平⾏于直线2+=x y ,那么点P 的左标为()A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州⼀模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜⾓的取值范围为]4 ,0[π,则点P 横坐标的取值范围为()A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知⼆次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最⼩值为() A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x f x f B. x f xx f x x f x x f )()(.C )()(.A )()(lim ,)(000'0'000--?-?-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线⽅程求曲线过点处的切线⽅程;求曲线在】已知曲线【例--=+=x x y。

新高考数学一轮复习第三章导数及其应用1第1讲变化率与导数导数的计算高效演练分层突破

新高考数学一轮复习第三章导数及其应用1第1讲变化率与导数导数的计算高效演练分层突破

第1讲 变化率与导数、导数的计算[基础题组练]1.函数y =x 2cos x 在x =1处的导数是( ) A .0 B .2cos 1-sin 1 C .cos 1-sin 1D .1解析:选B.因为y ′=(x 2cos x )′=(x 2)′cos x +x 2·(cos x )′=2x cos x -x 2sin x ,所以y ′|x =1=2cos 1-sin 1.2.(2020·衢州高三月考)已知t 为实数,f (x )=(x 2-4)(x -t )且f ′(-1)=0,则t 等于( )A .0B .-1 C.12D .2解析:选C.依题意得,f ′(x )=2x (x -t )+(x 2-4)=3x 2-2tx -4,所以f ′(-1)=3+2t -4=0,即t =12.3.(2020·温州模拟)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12 B .1 C.32D .2解析:选B.因为x 1<x 2<0,f (x )=x 2+2x , 所以f ′(x )=2x +2,所以函数f (x )在点A ,B 处的切线的斜率分别为f ′(x 1),f ′(x 2), 因为函数f (x )的图象在点A ,B 处的切线互相垂直, 所以f ′(x 1)f ′(x 2)=-1. 所以(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0,所以x 2-x 1=12[-(2x 1+2)+(2x 2+2)]≥-(2x 1+2)(2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32,x 2=-12时等号成立.所以x 2-x 1的最小值为1.故选B.4.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .8解析:选D.因为f ′(x )=4ax 3-b sin x +7. 所以f ′(-x )=4a (-x )3-b sin(-x )+7 =-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14. 又f ′(2 018)=6,所以f ′(-2 018)=14-6=8,故选D.5.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B.由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.6.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B. 2 C.22D. 3解析:选B.因为定义域为(0,+∞),令y ′=2x -1x=1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2.7.已知f (x )=ln xx 2+1,g (x )=(1+sin x )2,若F (x )=f (x )+g (x ),则F (x )的导函数为________.解析:因为f ′(x )=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2, g ′(x )=2(1+sin x )(1+sin x )′=2cos x +sin 2x ,所以F ′(x )=f ′(x )+g ′(x )=x 2+1-2x 2ln xx (x 2+1)2+2cos x +sin 2x .答案:x 2+1-2x 2ln x x (x 2+1)2+2cos x +sin 2x8.(2020·绍兴市柯桥区高三模拟)已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.解析:设切点为(m ,n )(m >0),y =14x 2-3ln x 的导数为y ′=12x -3x ,可得切线的斜率为12m -3m =-12,解方程可得,m =2. 答案:29.(2020·金华十校高考模拟)函数f (x )的定义域为R ,f (-2)=2 018,若对任意的x ∈R ,都有f ′(x )<2x 成立,则不等式f (x )<x 2+2 014的解集为________.解析:构造函数g (x )=f (x )-x 2-2 014,则g ′(x )=f ′(x )-2x <0,所以函数g (x )在定义域上为减函数,且g (-2)=f (-2)-22-2 014=2 018-4-2 014=0,由f (x )<x2+2 014有f (x )-x 2-2 014<0,即g (x )<0=g (-2),所以x >-2,不等式f (x )<x 2+2 014的解集为(-2,+∞).答案:(-2,+∞)10.如图,已知y =f (x )是可导函数,直线l 是曲线y =f (x )在x =4处的切线,令g (x )=f (x )x,则g ′(4)=________.解析:g ′(x )=⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2.由题图可知,直线l 经过点P (0,3)和Q (4,5), 故k 1=5-34-0=12.由导数的几何意义可得f ′(4)=12,因为Q (4,5)在曲线y =f (x )上,故f (4)=5. 故g ′(4)=4×f ′(4)-f (4)42=4×12-542=-316.答案:-31611.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.12.已知函数f (x )=ax +bx(x ≠0)在x =2处的切线方程为3x -4y +4=0. (1)求a ,b 的值;(2)求证:曲线上任一点P 处的切线l 与直线l 1:y =x ,直线l 2:x =0围成的三角形的面积为定值.解:(1)由f (x )=ax +b x ,得f ′(x )=a -b x2(x ≠0). 由题意得⎩⎪⎨⎪⎧f ′(2)=34,3×2-4f (2)+4=0.即⎩⎪⎨⎪⎧a -b 4=34,5-2⎝ ⎛⎭⎪⎫2a +b 2=0.解得a =1,b =1.(2)证明:由(1)知f (x )=x +1x,设曲线的切点为P ⎝ ⎛⎭⎪⎫x 0,x 0+1x 0,f ′(x 0)=1-1x 20,曲线在P 处的切线方程为y -⎝⎛⎭⎪⎫x 0+1x 0=⎝ ⎛⎭⎪⎫1-1x 20(x -x 0).即y =⎝⎛⎭⎪⎫1-1x20x +2x 0.当x =0时,y =2x 0.即切线l 与l 2:x =0的交点坐标为A ⎝⎛⎭⎪⎫0,2x 0.由⎩⎪⎨⎪⎧y =⎝ ⎛⎭⎪⎫1-1x 20x +2x 0,y =x ,得⎩⎪⎨⎪⎧x =2x 0,y =2x 0,即l 与l 1:y =x 的交点坐标为B (2x 0,2x 0).又l 1与l 2的交点为O (0,0),则所求的三角形的面积为S =12·|2x 0|·⎪⎪⎪⎪⎪⎪2x 0=2.即切线l 与l 1,l 2围成的三角形的面积为定值.[综合题组练]1.若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x(x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.2.(2020·金华十校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 3解析:选D.令f (x )=x 2,f ′(x )=2x ,f (x 0)=x 20,所以直线l 的方程为y =2x 0(x -x 0)+x 20=2x 0x -x 20,因为l 也与函数y =ln x (x ∈(0,1))的图象相切,令切点坐标为(x 1,ln x 1),y ′=1x ,所以l 的方程为y =1x 1x +ln x 1-1,这样有⎩⎪⎨⎪⎧2x 0=1x 1,1-ln x 1=x 20,所以1+ln(2x 0)=x 20,x 0∈(1,+∞),令g (x )=x 2-ln(2x )-1,x ∈(1,+∞),所以该函数的零点就是x 0,又因为g ′(x )=2x -1x =2x 2-1x,所以g (x )在(1,+∞)上单调递增,又g (1)=-ln 2<0,g (2)=1-ln 22<0,g (3)=2-ln 23>0,从而2<x 0<3,选D.3.(2020·宁波四中高三月考)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″ (x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上是凸函数的是________(把你认为正确的序号都填上).①f (x )=sin x +cos x ; ②f (x )=ln x -2x ; ③f (x )=-x 3+2x -1;④f (x )=x e x.解析:①中,f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎪⎫x +π4<0在区间⎝ ⎛⎭⎪⎫0,π2上恒成立;②中,f ′(x )=1x -2(x >0),f ″(x )=-1x 2<0在区间⎝⎛⎭⎪⎫0,π2上恒成立;③中,f ′(x )=-3x 2+2,f ″(x )=-6x 在区间⎝ ⎛⎭⎪⎫0,π2上恒小于0.④中,f ′(x )=e x +x e x ,f ″(x )=2e x +x e x =e x(x +2)>0在区间⎝⎛⎭⎪⎫0,π2上恒成立,故④中函数不是凸函数.故①②③为凸函数.答案:①②③4.(2020·浙江省十校联合体期末检测)已知函数f (x )=a e x+x 2,g (x )=cos (πx )+bx ,直线l 与曲线y =f (x )切于点(0,f (0)),且与曲线y =g (x )切于点(1,g (1)),则a +b=________,直线l 的方程为________.解析:f ′(x )=a e x+2x ,g ′(x )=-πsin (πx )+b ,f (0)=a ,g (1)=cos π+b =b -1, f ′(0)=a ,g ′(1)=b ,由题意可得f ′(0)=g ′(1),则a =b , 又f ′(0)=b -1-a1-0=a ,即a =b =-1,则a +b =-2; 所以直线l 的方程为x +y +1=0. 答案:-2 x +y +1=05.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,②-2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去).所以k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5.④ 将④代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝ ⎛⎭⎪⎫92,-4. 6.(2020·绍兴一中月考)已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a , 因为f ′(-1)=0,所以3a -6-6a =0,所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,所以y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

2014届高三数学一轮复习专讲专练(基础知识):2.11变化率与导数、导数的计算

2014届高三数学一轮复习专讲专练(基础知识):2.11变化率与导数、导数的计算

课时跟踪检测(十四) 变化率与导数、导数的计算1.下列求导运算正确的是( ) A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(3x )′=3x log 3eD .(x 2cos x )′=-2sin x2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194B.174C.154D.1343.(2012·海口模拟)曲线y =e 2x 在点(0,1)处的切线方程为( ) A .y =12x +1B .y =-2x +1C .y =2x -1D .y =2x +14.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .25.在函数y =x 32-x 的图像上,满足在点P 处的切线的倾斜角小于π4,且点P 的横、纵坐标都为整数,则切线方程为( )A .x +2y -1=0B .x -2y -1=0C .x -2y +1=0D .x +2y +1=06.(2012·新田模拟)已知函数f (x )的图像如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)7.(2012·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 8.(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.9.设曲线y =x n +1(n ∈N +)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2 013x 1+log2 013x2+…+log2 013x2 012的值为________.10.求下列函数的导数.(1)y=x·tan x;(2)y=(x+1)(x+2)(x+3);(3)y=3sin 4x.11.设函数f(x)=x3+ax2-9x-1,当曲线y=f(x)斜率最小的切线与直线12x+y=6平行时,求a的值.12.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值.并判断两条切线是否为同一条直线.1.(2012·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .2122.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N +,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________. 3.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l . (1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l和y=f(x)相切且切点异于P的直线方程.答案课时跟踪检测(十四)A级1.B2.选D ∵s ′=2t -3t 2,∴t =2时,v =4-34=134.3.选D ∵y ′=(e 2x )′=2e 2x ,k =2·e 2×0=2,∴切线方程为y -1=2(x -0), 即y =2x +1.4.选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x .由条件知1a =-1,∴a =-1. 5.选B 设P (x 0,y 0),由y ′=32x -1,得0<32x 0-1<1,即49<x 0<169,又x 0∈Z ,所以x 0=1,y 0=0,切线斜率k =12.切线方程为y =12(x -1),即x -2y -1=0.6.选B 由导数的几何意义可知,f ′(2)、f ′(3)分别表示曲线在x =2,x =3处的切线的斜率,而f (3)-f (2)表示直线AB 的斜率,即k AB =f (3)-f (2).由图形可知0<f ′(3)<f (3)-f (2)<f ′(2). 7.解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3, ∴f ′(-1)=-2,∴f ′(1)=1+4+3=8. 答案:88.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.解析:y ′=(n +1)x n ,曲线y =x n +1在点(1,1)处的切线方程为y -1=(n +1)(x -1),所以x n =n n +1.log 2 013x 1+log 2 013x 2+…+log 2 013x 2 012=log 2 01312×23×…×2 0112 012×2 0122 013=-1.答案:-110.解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x=tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)·[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.(3)y ′=(3sin 4x )′=3cos 4x ·(4x )′=12cos 4x .11.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a3时,函数f ′(x )取得最小值-9-a 23,因斜率最小的切线与12x +y =6平行,即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3. 12.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a . 所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1), 得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.B 级1.选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x ,以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503×f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:03.解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2), 故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,又x 30-3x 0+2x 0-1=3x 20-3,即x 30-3x 0+2=3(x 20-1)(x 0-1),解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为 k =3⎝⎛⎭⎫14-1=-94. 所以y -(-2)=-94(x -1),即9x +4y -1=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析:(1)y′= 2
x12+1·2x=
x x2+1.
(2)y′=(2sin2x)(cos2x)×2=2sin4x.
(3)y′=(-e-x)sin2x+e-x(cos2x)×2=e-x(2cos2x-
sin2x).
(4)y′=
1 1+x2·2
11+x2·2x=1+x x2.
考点三 导数的几何意义
第三章 导数及其应用
§3.1 变化率与导数、导数的计算
01教材回扣 02考点分类 03课堂内外 双基限时练
[高考调研 明确考向] 考纲解读
•了解导数概念的实际背景. •理解导数的几何意义. •能根据导数的定义求函数y=c,y=x,y=x2,y=1x的导数. •能利用给出的基本初等函数的导数公式和导数的四则运算法 则求简单的函数的导数. •能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.
[例3] 已知函数f(x)=x3-4x2+5x-4. (1)求曲线f(x)在x=2处的切线方程; (2)求经过点A(2,-2)的曲线f(x)的切线方程.
解析:(1)f′(x)=3x2-8x+5,f′(2)=1,又f(2)=-2.
∴曲线f(x)在x=2处的切线方程为y-(-2)=x-2,即x
-y-4=0.
因此经过A(2,-2)的曲线f(x)的切线方程为x-y-4=0
或y+2=0.
方法点睛 首先要分清是求曲线y=f(x)在某处的切线还 是求过某点曲线的切线.①求曲线y=f(x)在x=x0处的切线方 程可先求f′(x0),利用点斜式写出所求切线方程;②求过某 点的曲线的切线方程要先设切点坐标,求出切点坐标后再写 切线方程.
解析:f′(x)=(x-a)2+(x+2a)[2(x-a)]=3(x2-a2). 答案:C
3.曲线y=sinxs+inxcosx-12在点M4π,0处的切线的斜率为
()
A.-12
1 B.2
C.-
2 2
2 D. 2
解析:y′=cosxsinx+csoinsxx+-csoisnxx2cosx-sinx= 1+s1in2x,把x=4π代入得导数值为12.
□17
1 x
□18 f′(x)±g′(x) □19 f′(x)g(x)+f(x)g′(x) □20
□ □ f′xgx-fxg′x
[gx]2
21 f′[v(x)]v′(x)
22 y′u·u′x
名师微博 ●一个区别 曲线y=f(x)“在”点P(x0,y0)处的切线与“过”点 P(x0,y0)的切线的区别:曲线y=f(x)在点P(x0,y0)处的切线 是指P为切点,若切线斜率存在时,切线斜率为k=f′(x0), 是唯一的一条切线;曲线y=f(x)过点P(x0,y0)的切线,是指 切线经过P点,点P可以是切点,也可以不是切点,而且这样 的直线可能有多条.
□ 函数y=f(x)从x1到x2的平均变化率为 1 __________,若
□ Δx=x2-x1,Δy=f(x2)-f(x1),则平均变化率可表示为 2 ___.
2.函数y=f(x)在x=x0处的导数 (1)定义:
称函数y=f(x)在x=x0处的瞬时变化率 □3 ____பைடு நூலகம்_____=
□4 ________为函数y=f(x)在x=x0处的导数,记作f′(x0)或
变式训练3 若直线y=kx与曲线y=x3-3x2+2x相切,试 求k的值.
解析:设y=kx与y=x3-3x2+2x相切于P(x0,y0),则y0 =kx0,①
y0=x30-3x20+2x0.② 又y′=3x2-6x+2,∴k=y′|x=x0=3x20-6x0+2.③ 由①②③得:(3x20-6x0+2)x0=x30-3x20+2x0, 即(2x0-3)x20=0. ∴x0=0或x0=32,∴k=2或k=-14.
考情分析
•导数的运算是导数的基本内容,在高考中每年必 考,一般不单独命题,而在考查导数应用的同时进 行考查. •导数的几何意义是高考重点考查的内容,常与解 析几何知识交汇命题. •多以选择题和填空题的形式出现,有时也出现在 解答题中关键的一步.
01教材回扣 自主学习
必考必记,学教相长
知识梳理 1.函数y=f(x)从x1到x2的平均变化率
答案:B
4.若f(x)=x2-2x-4lnx,则f′(x)>0的解集为( ) A.(0,+∞) B.(-1,0)∪(2,+∞) C.(2,+∞) D.(-1,0)
解析:令f′(x)=2x-2-
4 x

2x-2x+1 x
>0,利用数
轴标根法可解得-1<x<0或x>2,又x>0,所以x>2.故选
方法点睛 由复合函数的定义可知,中间变量的选择应 是基本函数的结构,解这类问题的关键是正确分析函数的复 合层次,一般是从最外层开始,由外向内,一层一层地分 析,把复合函数分解成若干个常见的基本函数,逐步确定复 合过程.
变式训练2 求下列函数的导数: (1)y= x2+1;(2)y=sin22x;(3)y=e-xsin2x; (4)y=ln 1+x2.
lim
Δx→0
fx0+Δx-fx0 Δx
6 (x0,f(x0))
□ □ 7 切线的斜率 8 y-y0=f′(x0)(x-x0)
□ □ □ □ 9
lim
Δx→0
fx+Δx-fx Δx
10 0
11 nxn-1
12 cosx
□13 -sinx □14 axlna(a>0) □15 ex □16 xl1na(a>0,且a≠1)
方法点睛 ①熟记基本初等函数的导数公式及四则运算 法则是正确求导的基础;②必要时对于某些求导问题可先化 简函数解析式再求导.
变式训练1 求下列函数的导数:
(1)y=xnex;(2)y=
cosx sinx
;(3)y=exlnx;(4)y=(x+1)2(x-
1).
解析:(1)y′=nxn-1ex+xnex=xn-1ex(n+x). (2)y′=-sins2ixn-2xcos2x=-sin12x. (3)y′=exlnx+ex·1x=ex1x+lnx. (4)∵y=(x+1)2(x-1)=(x+1)(x2-1)=x3+x2-x-1, ∴y′=3x2+2x-1.
(logax)′=
lnx lna
′=
1 xlna
;④(ax)′=(elnax)′=(exlna)′=
exlnalna=axlna,其中正确的个数是( )
A.1
B.2
C.3
D.4
答案:D
2.函数f(x)=(x+2a)(x-a)2的导数为( ) A.2(x2-a2) B.2(x2+a2) C.3(x2-a2) D.3(x2+a2)
C.
答案:C
5.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐
标是( )
A.-9
B.-3
C.9
D.15
解析:y′=3x2,所以在P(1,12)处的切线的斜率k=3, 切线方程为3x-y+9=0,故其与y轴交点为(0,9),故选C.
答案:B
02考点分类 案例剖析
研习考点,触类旁通
考点一 导数的运算
●三个防范 1.利用公式求导时要特别注意除法公式中分子的符 号,防止与乘法公式混淆. 2.要正确理解直线与曲线相切和直线与曲线只有一个 交点的区别. 3.正确分解复合函数的结构,由外向内逐层求导,做 到不重不漏.
基础自测
1.下列求导过程中①
1 x
′=-
1 x2
;②(
x
)′=
1 2
x
;③
3.函数f(x)的导函数
称函数f′(x)=□9 ________为f(x)的导函数,导函数有时
也记作y′.
4.基本初等函数的导数公式
原函数
导函数
f(x)=c
f′(x)=□10 __________
f(x)=xn(n∈Q*)
f′(x)=□11 __________
f(x)=sinx
f′(x)=□12 __________
原函数 f(x)=cosx f(x)=ax(a>0,且a≠1)
f(x)=ex f(x)=logax(a>0,且a≠1)
f(x)=lnx
导函数
f′(x)=□13 __________ f′(x)=□14 __________ f′(x)=□15 __________ f′(x)=□16 __________ f′(x)=□17 __________
(2)设切点坐标为(x0,x
3 0
-4x
2 0
+5x0-4),f′(x0)=3x
2 0

8x0+5,则切线方程为y-(-2)=(3x
2 0
-8x0+5)(x-2),又切
线过(x0,x03-4x20+5x0-4)点,则x30-4x02+5x0-2=(3x20-8x0
+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,
错因:在导数几何意义的应用问题中,往往只考虑导数 本身的应用问题,而没有充分考虑导数与实际问题的结合, 导致错误.虽然点P 2,83 在曲线上,但过点P的切线不一定 以P为切点.本题中所求的是“过P点的切线”,而不只是求 “切点为P”的切线,所以过点P但不以P为切点的切线方程 也是符合题意的.
正解:(1)当P为切点时,同上解; (2)当P点不是切点时,设切点为Q(x0,y0), 则切线方程为y-13x30=x02(x-x0), 因为切线过点P 2,83 ,把P点的坐标代入以上切线方 程,求得x0=-1或x0=2(即点P,舍去), 所以切点为Q-1,-13,
考点二 求复合函数的导数
[例2] 求下列复合函数的导数. (1)y=(2x-3)5;(2)y= 3-x;(3)y=sin22x+3π; (4)y=ln(2x+5).
相关文档
最新文档