010-质点、刚体的角动量、角动量守恒定律Word版
角动量及其守恒定律
m r2 r1 J0
22
因为 1 2, 1 1 2 E k 1 J 1 1 ( J 1 1 ) 1 2 2 相 E k1 E k 2 等 1 1 2 E k 2 J 2 2 ( J 2 2 ) 2 2 2 即系统的机械能不守恒。
23
人双臂收回过程中,内力做功,
J 2
l/2
r dr
2
1 12
l
3
0
1 12
ml
2
如转轴过端点垂直于棒 l 1 2 J r d r ml 2 0 3
例3 一质量为 m 、半径为 R 的均匀圆盘,求通 过盘中心 O 并与盘面垂直的轴的转动惯量 .
解 设圆盘面密度为 , 在盘上取半径为 r ,宽为 d r 的圆环
v M (2 gh )
u l 2
1 2
M
h N
B
l 2 1 12
2
2
把M、N和跷板作为 一个系统, 角动量守恒
mvM l 2 J 2 mu
C l
m l 1 2 1 6 m ( 2 gh )
A l/2
ml
2
解得
mvMl 2 m l
2
2
12 ml
2
2 2 2
质量连续分布刚体的转动惯量
J
m
j
j j
r
2
r dm
2
d m :质量元
例2 一质量为 m 、长为 l 的均匀细长棒,求 通过棒中心并与棒垂直的轴的转动惯量 .
O
l 2
O
dr
l 2
r
dr
O´
角动量 角动量守恒定律大学物理
对定轴转动的刚体 Miin 0 ,合外力矩
M
Miex
d dt
(
mi
ri
2
)
d(J
dt
)
d( J )
dL
M
dt dt
第3章 守恒定律
12
大学物
理学
第二版
t2 t1
Mdt
L2
L1
t2 t1
Mdt
L2
L1
当转轴给定时,作用在物体上的冲量 矩等于角动量的增量.——定轴转动的角 动量定理
第3章 守恒定律
然长度处以
垂直于弹簧运动,当
弹簧与初始位置垂直时,弹簧长度
v
求此时滑块的速度.
v0
第3章 守恒定律
图 3.4
大学物 理学
第二版
【解】 由角动量和机械能守恒
结论:对于有心力问题,系统对力心处的 角动量守恒.
第3章 守恒定律
大学物
理学
第二版
三、角动量守恒定律的应用
(1)常平架回转仪(陀螺仪) (2)直升飞机尾翼
质点角动量定理的推导
L r p r mv
dL
d
(r
p)
r
dp
dr
p
dt dt dr v,v p 0
dt dL
dt
r
dp
r
F
dt
dt
dt
第3章 守恒定律
4
大学物
理学
第二版
dL
M
dt
作用于质点的合外力对参考点 O 的力 矩,等于质点对该点 O 的角动量随时间的 变化率.
13
大学物
理学
第二版
对定轴转动的刚体,受合外力矩M,
质点系角动量守恒定律
前言 质点的角动量 质点系的角动量定理及角动量守恒定律 质点系对质心的角动量定理和守恒定律 对称性 • 对称性与守恒律 经典动力学的适用范围
§5.1 前
一、本章的基本内容及研究思路
言
角动量概念的建立和转动有密切联系,在研究物体的运动 时,人们经常可以遇到质点或质点系绕某一确定点或轴线运动 的情况,并且在这类运动中也存在着某些共同的重要规律。例 如,天文观测表明,行星绕日运动遵从开普勒第二定律,在近 日点附近绕行速度较快,远日点速度较慢,这个特点如果用角 动量及其规律很容易说明。特别是在有些过程中动量和机械能
都不守恒,却遵从角动量守恒定律,这就为求解这类运动问题 开辟了新途径。
角动量不但能描述经典力学中的运动状态,在近代物理理 论中仍然是表征微观运动状态的重要物理量,例如原子核的角 动量,通常称为原子核的自旋,就是描写原子核特性的。 角动量守恒定律和动量守恒定律一样,是自然界最基本最
普遍的定律之一。由于角动量这个物理量,从概念到数学表达,
都比动量要难理解,我们循序渐进逐步深入地来理解。 本章还要触及对称性的概念,尽管经典力学中的对称性没
有在微观领域中那么重要,但是介绍一下与本课水平相当的对
称性问题是十分有益的。
二、本章的基本要求
1. 理解质点及质点系角动量的物理意义; 2. 掌握质点、质点系的角动量定理; 3. 掌握角动量守恒定律; 4. 理解对称性的概念,了解守恒律与对称性的关系。
由上(1)式可以看出,在过程中如果外力对参考点的力矩
的矢量和始终为零,则质点系对该点的角动量保持不变,称为 质点系对该点的角动量守恒定律,即
当τi 0时,
L 常量.
由(2)式可以看出,有时外力矩对参考点虽不为零,但 是,外力矩沿某固定的 z 轴分量为零,则质点系对 z 轴的角动 量保持不变,叫做质点系对 z 轴的角动量守恒定律。即
质点角动量和角动量守恒定律
二、质点角动量: 质点角动量:
r L v
o
r r r r r L = r × P = r × mυ
角动量的大小
P
m r rϕ r
L
L = rP sin ϕ = mυr sin ϕ
角动量的方向 : 右手螺旋
2
当质点作圆周运动时,则有: 当质点作圆周运动时,则有:
L = rmv = mr ω
注意:同一质点相对于不同的点,角动量可以不同。 注意:同一质点相对于不同的点,角动量可以不同。 在说明质点的角动量时, 在说明质点的角动量时,必须指明是对哪个点而言的
a/2 o
由角动量守恒定律, 由角动量守恒定律,得:
V
a/2
(a/2) mv0 =(a/2)2mv+(a/2)mv ( )
ω =2v0/3a
r r r ×F
M = Fr sinα = Fr⊥
(方向用右手螺旋法规定 方向用右手螺旋法规定) 方向用右手螺旋法规定
v M
r M
r r
r┴
r F
α
o
2. 必须指明对那一固定点 必须指明对那一固定点. r r 3. F ≠ 0, M 可能为零
有心力: 有心力: r r 当力F 的作用线与矢径 r 共线时的力
L0 L0+L
α
v
v0
m
如何求角度α 如何求角度α? 由于质点在有心力 作用下运动, 作用下运动,故角 动量守恒。 动量守恒。有:
Q mv 0 L0 = mv sin(π − α ) ⋅ ( L0 + L) ∴sinα = v0 L0 / v( L0 + L)
例5-2、 、
l0
o
l
刚体动力学刚体的转动与角动量守恒定律
刚体动力学刚体的转动与角动量守恒定律刚体动力学——刚体的转动与角动量守恒定律刚体动力学是研究刚体运动的物理学分支,主要研究刚体的平动和转动。
在刚体的运动过程中,角动量的守恒定律是关键的一条定律,它在很多物理问题的求解中起着重要的作用。
一、刚体转动的基本概念刚体是指具有一定形状和大小的物体,在运动过程中保持其形状和大小不变的情况下,绕一个固定轴线进行旋转。
在刚体转动的过程中,存在着固定轴线上的角位移、角速度、角加速度等概念。
角位移表示刚体在转动过程中的角度变化,通常用符号θ表示;角速度表示单位时间内刚体转动的角度变化率,通常用符号ω表示;角加速度表示单位时间内角速度的变化率,通常用符号α表示。
二、刚体的转动与力矩刚体在转动过程中需受到外力的作用,这些外力可以将刚体带动产生转动现象。
力矩是刚体转动的重要力学量,它描述了力对于刚体转动的影响程度。
力矩的大小等于力乘以作用点到转轴的距离,用数学式表示为:τ = F × r其中τ表示力矩,F表示力的大小,r表示作用点到转轴的距离。
三、刚体的转动惯量与角动量刚体的转动惯量与角动量是刚体转动过程中的另外两个重要概念。
转动惯量描述了刚体对于转动的惯性程度,它的大小取决于刚体的质量分布和几何形状。
角动量描述了刚体在转动过程中的旋转性质,它等于刚体质量的转动惯量乘以角速度,用数学式表示为:L = I × ω其中L表示角动量,I表示转动惯量,ω表示角速度。
四、角动量守恒定律角动量守恒定律是刚体动力学中的一个基本定律,它表明在没有外力矩作用的情况下,刚体转动过程中的角动量保持不变。
如果一个刚体在初态时角动量为L1,在末态时角动量为L2,且没有外力矩作用,则有L1 = L2。
这一定律体现了一个自然规律,对于理解刚体的转动过程和求解相关物理问题具有重要意义。
五、应用案例角动量守恒定律可以应用于各种实际物理问题的求解中,例如刚体的转动稳定性、陀螺的运动等。
物理-定轴转动刚体的角动量定理和角动量守恒定律
或 Lz = I = 恒量
当刚体相对惯性系中某给定转轴的合外力矩为 零时,该刚体对同一转轴的角动量保持不变。
——对转轴的角动量守恒定律
二、定轴转动中的角动量守恒
说明 1、 关于该守恒定律的条件:
Mz Miz 0
特别地,若每一个力的力矩均为零,即 则
二、定轴转动中的角动量守恒
M iz ri Fi sini 0 的几种情况
10
f
20
O1 R1 A
R2 O2 fB
随堂练习
当两圆柱接触处无相对滑动时,两者转速相反
10
20
O1 R1 A
R2 O2 B
且两者接触点的线速率相等!
二、定轴转动中的角动量守恒
由定轴转动的角动量定理
Mz
dLz dt
若刚体所受对转轴的合外力矩 M z 0,则有
dLz d ( I ) 0
dt
dt
二、定轴转动中的角动量守恒
(3) 对共轴非刚体系(其中各质元到转轴的距离可 变则)系:统的转动惯量可变,此时系统对转轴的角动量守恒,
即:I =恒量
• 特别地,若各质元的 保持一致,
Lz =I =恒量
当 I 增大时, 就减小; 当 I 减小时, 就增大 。
二、定轴转动中的角动量守恒
例如:花样滑冰运动员在冰面上旋转时 运动了角动量守恒定律
(1)
(2)
(3)
二、定轴转动中的角动量守恒
2、对转轴的角动量守恒定律的适用范围: • 不仅适用于刚体, • 也适用于绕同一转轴转动的任意质点系。
二、定轴转动中的角动量守恒
3、对转轴的角动量守恒的几种典型表现 (1) 对定轴刚体:I 不变, 大小和方向均不变;
刚体角动量定理
转动定律
M = Iβ
解题类型 1.转动惯量和力矩,求角加速度; 转动惯量和力矩,求角加速度; 2.已知转动惯量和角加速度,求力矩。 已知转动惯量和角加速度,求力矩。
解:设转轴向外为正
角动量守恒
lmv 0
1 = lm ( v 0 ) + I ω 4
2
M
1 I = Ml 3
3mv 0 l 9 mv 0 ω= = 4Iω 0
应用程序
I 可变,ω 亦可变,但仍有 可变, 亦可变,但仍有Iω=常数 常数
解题步骤 确定研究对象,选系统。 1. 确定研究对象,选系统。 判断守恒条件。 2. 判断守恒条件。
M ≠ 0 ,用转动定律 M = 0 ,用角动量守恒
3.确定转轴的正方向。 3.确定转轴的正方向。 确定转轴的正方向 确定系统的初、末态。 4. 确定系统的初、末态。 5.列方程 5.列方程
刚体的角动量定理 角动量守恒定律 一、刚体的角动量 刚体的角动量
质点的角动量: 质点的角动量:
ω
ri
vi
L = r × P = r × mv
刚体上任选一质元的角动量
mi
Li = ri mi vi = ri miω
2
刚体绕此轴的角动量
L = ∑ Li = (∑ mi ri )ω = Iω
2 i i
刚体的角动量定理 二、刚体的角动量定理
例1、如图所示,一质量为m的子弹以水平速 如图所示,一质量为 的子弹以水平速 射入一静止悬于顶端的长棒下端, 度v0射入一静止悬于顶端的长棒下端,穿出后 速度损失了3/4, 3/4,求子弹穿出后棒的角速度 速度损失了3/4,求子弹穿出后棒的角速度ω。 已知棒长为l,质量为 . 已知棒长为 ,质量为M.
刚体的角动量定理
《嘿,说说刚体的角动量定理》嘿,朋友们!今天咱来聊聊刚体的角动量定理。
这名字听起来是不是有点高大上?别害怕,其实它没那么难理解。
咱先来说说啥是角动量。
这角动量啊,就像是刚体在旋转时的一种“活力”。
想象一下,一个旋转的陀螺,它转得越快,角动量就越大。
就好像一个充满活力的小朋友,蹦蹦跳跳的,特别有劲儿。
那刚体的角动量定理是啥呢?简单来说,就是描述刚体在旋转过程中角动量变化的规律。
就好比我们玩跷跷板,一边重一边轻的时候,跷跷板就会动起来。
刚体的角动量定理也是这样,当有外力作用在刚体上时,它的角动量就会发生变化。
比如说,一个正在旋转的轮子,如果有个外力突然推它一下,它的旋转速度和方向可能就会改变。
这就是因为外力改变了轮子的角动量。
这个定理在生活中也有很多应用呢。
比如,花样滑冰运动员在旋转的时候,他们会把手臂收起来,这样转得就更快了。
这就是利用了刚体的角动量定理。
当手臂收起来的时候,身体的转动惯量变小了,但是角动量是守恒的,所以旋转速度就会加快。
还有,我们骑自行车的时候,车轮的旋转也涉及到角动量定理。
当我们加速或者刹车的时候,车轮的角动量也会发生变化。
学习刚体的角动量定理也挺有意思的。
可以做一些小实验,比如用绳子拴着一个重物,让它绕着一个点旋转,感受一下角动量的变化。
也可以看看一些科普视频,里面会有更直观的解释。
总之呢,刚体的角动量定理虽然听起来有点复杂,但是只要我们用心去理解,就会发现它其实很有趣。
它不仅能帮助我们更好地理解物理世界,还能让我们在生活中发现很多有趣的现象。
所以啊,朋友们,让我们一起好好研究研究刚体的角动量定理吧!。
《大学物理》3.4刚体定轴转动的角动量定理 角动量守恒定律
我国第一颗人造地球卫星沿椭圆轨道绕地球运动, 例:我国第一颗人造地球卫星沿椭圆轨道绕地球运动,地心为该椭圆 的一个焦点。 的一个焦点。已知地球半径 R ,卫星的近地点到地面距离 l ,卫星的远 地点到地面距离 l 。若卫星在近地点速率为 v1 ,求它在远地点速率 v2 。
1 2
卫星在运动过程中,所受力主要是万有引力, 解:卫星在运动过程中,所受力主要是万有引力,其它力忽 略不计,故卫星在运动过程中对地心角动量守恒。 略不计,故卫星在运动过程中对地心角动量守恒。 m
0
r
A
θ = 90
0
mv
质点作圆周运动的角动量
θ
L = rmv = mr ω
2
2.2刚体的角动量 刚体的角动量 刚体对 oz轴的角动量为
z
ω
v
2
i
L = ∑ m r ω = (∑ m r )ω
2 i i i i
o
r
i
m
i
∑ m r 刚体绕 oz 轴的转动惯量
2 i i
L = Jω
L = Jω
刚体对转轴的角动量等于其转动惯量与角速度乘积。 刚体对转轴的角动量等于其转动惯量与角速度乘积。
1 m v 0 a = ( ML2 + ma 2 )ω 3
子弹射入后一起摆动的过程只有重力做功,故系统机 械能守恒。
1 1 L 2 2 2 ( ML + ma )ω = mga (1 cos60°) + Mg (1 cos60°) 2 3 2
ω=
3(2ma + ML)g 2(3ma 2 + ML2 )
二、角动量定理和角动量守恒定理
1× mv 对时间求导 = r × (mv ) + × mv dt dt dt dr d dL ∵ = v , F = (mv ) M = dt dt dt dL 质点所受合外力矩等于质 ∴ = r × F + v × mv dt 点角动量对时间的变化率
大学物理角动量 角动量守恒定律
解 小虫与细杆的碰撞视为完全非弹性碰撞,碰撞 前后系统角动量守恒
1 mv0 ml 12 4 l
2
m( ) 4 l
2
12 v 0 7 l
5 – 3 角动量 角动量守恒定律
12 v 0 7 l
第五章 刚体的转动
由角动量定理
M dL dt d ( J ) dt dJ dt
第五章 刚体的转动
v A (v0 v ) 1 v B 1709 m s
mM m R h
2
2
1 2
飞船在 A点喷出气体后, 在到 达月球的过程中, 机械能守恒
1 2 m v A G 1 2
2
vB
B
vA
v0
R
O h
v
u
2
A
m v B G
2
2
mM m
质点的角动量定理和角动量守恒定律
pi
pj
5 – 3 角动量 角动量守恒定律
第五章 刚体的转动
1 质点的角动量 质量为 m 的质点以速度 v 在空间运动,某时刻相对原点 O 的位矢为 r ,质点相对于原 点的角动量
L
z
v
r
o
L r p r mv 大小 L rm v sin
第五章 刚体的转动
二
刚体定轴转动的角动量定理和角动量守恒定律
1 刚体定轴转动的角动量
L
i
m i ri v i ( m i ri )
2 i
z
O ri
mi
L J
2 刚体定轴转动的角动量定理
刚体的角动量和角动量守恒定律
如图所示,刚体绕转轴 Oz 以角速度 ω 转动。 由于刚体上的每个质元都绕转轴 Oz 做圆周运动,因此都具有一定的角动量。 设第 i 个质元的质量为 mi ,它到转轴的垂直位矢为 ri ,线速度为 vi ,则该质元对转轴的角动量 Li 大 小为 Li miviri miri2
刚体的角动量和角动量守恒定律
计转轴处的摩擦力和空气阻力)。
【解】 把人和转台看作一个系统,系统不受外力矩作用,
其角动量守恒,即 mR2 1 MR2 0
2
解得 2 m
M 负号表示转台转动的方向与人跑动的方向相反。
大学物理
大学物理
刚体的角动量和角动量守恒定律 1.1 角动量
1.质点的角动量
如图所示,质量为 m 的质点相对于某一参考点 O 运动,在某一时刻,质点相对于参考点 O 的位矢为 r, 质点的速度为 v,质点的动量为 p mv ,则位矢 r 与动量 p 的矢积称为质点相对于 O 点的角动量(动量矩), 用 L 表示,即 L r p r mv
m2 Lv0
Байду номын сангаас
m2 Lv
1 3
m1L2
根据线量与角量的关系 v L ,
可解得子弹和杆一起运动时的角速度 ω 为 3m2v0
(3m2 m1)L
刚体的角动量和角动量守恒定律
, ,
,
,
例题讲解 5
如图所示,质量为 M、半径为 R 的转台,可绕过中心的竖直轴转动。质量为 m 的人站在台的边缘。最
初人和台都静止,后来人在台的边缘开始跑动。设人相对地面的角速度为 ω,求转台转动的角速度 (不
刚体的角动量和角动量守恒定律 1.1 角动量
1.质点的角动量
刚体角动量和角动量守恒定律
• 刚体角动量介绍 • 角动量守恒定律 • 刚体角动量的应用 • 刚体角动量与现实世界的关系 • 刚体角动量与未来科技的关系
01
刚体角动量介绍
刚体的定义
刚体
在运动过程中,其内பைடு நூலகம்任意两点 间的距离始终保持不变的物体。
刚体的特性
在刚体的运动过程中,其形状和 大小不会发生变化,只改变其位 置和姿态。
刚体的角动量定义
角动量
一个物体绕固定点旋转时所具有的动 量,其大小等于物体质量、速度和旋 转半径的乘积。
刚体的角动量
当刚体绕固定点旋转时,其角动量等 于刚体质量、旋转轴上的速度和旋转 半径的乘积。
刚体的角动量的计算公式
角动量计算公式:L = mvr
其中,L表示角动量,m表示刚体的质量,v表示刚体上任意一点相对于旋转轴的速度,r表示该点到旋转 轴的距离。
证明方法一
证明方法二
证明方法三
03
刚体角动量的应用
在物理实验中的应用
陀螺仪
刚体角动量在陀螺仪中有着重要 的应用,通过测量旋转轴的角速 度,可以确定物体的方向和姿态。
摆锤实验
通过观察摆锤的摆动,可以验证 刚体角动量守恒定律,了解力矩 对刚体角动量的影响。
磁力矩实验
利用磁力矩对刚体角动量的作用, 可以研究刚体的旋转运动和磁场 的相互作用。
角动量守恒定律在设计和优化机械系 统,如电机、陀螺仪和风力发电机等 方面有广泛应用。
对体育运动的影响
在体育运动中,角动量守恒定律有助于理解旋转运动,如滑冰、花样滑冰和乒乓 球等项目的旋转动作和技巧。
运动员通过合理运用角动量守恒定律,可以调整旋转速度、方向和稳定性,提高 运动表现和竞技水平。
质点的角动量角动量守恒定律
第五版
角动量概念的提出与自然界普遍存在的物体的转动 有关,大到星系,小到电子、中微子都具有转动的特征。 角动量概念在18世纪才在物理学中被定义和使用,19世 纪人们才把它看成是力学中最基本的概念之一,到20世 纪,它成为和动量、能量同样重要的物理量。角动量守 恒与空间旋转对称性相对应。因此它是自然界最基本最
普遍的规律之一。
角动量
角动量 变化率
角动量 角动量守
力矩
定理
恒定律
物理学
第五版
一、质点的角动量 质量为 的质点以
速度 在空间运动,某 时对 O 的位矢为 ,质 点对O的角动量
大小 的方向符合右手法则 角动量单位:kg·m2·s-1
物理学
第五版
质点以 作半径为 的圆运动,相对圆心
质点在一条直线上运动, 质点对 o点的角动量?
o•
m
力矩是矢量,M 的方向垂直于r和 F所决定的平面,其指向
用右手螺旋法则确定。
2 、 力矩的单位、 牛·米(N·m)
3 、力矩的计算: M 的大小、方向均与参考点的选择有关
物理学
第五版
力对固定点的力矩为零的情况:
A)
B)力的方向沿矢径的方向(
)
有心力的力矩为零.
※在直角坐标系中,其表示式为
物理学
第五版
三、质点的角动量定理 质点角动量定理的推导
物理学
第五版
作用于质点的合力对参考点 O
的力矩,等于质点对该点 O 的角动量
随时间的变化率.
冲量矩
质点的角动量定理:对同一参考点O, 质点所受的冲量矩等于质点角动量的增量.
与质点的动量定理比较:
物理学
第五版
例 一半径为 R 的 光滑圆环置于竖直平面 内. 一质量为 m 的小球 穿在圆环上, 并可在圆 环上滑动. 小球开始时 静止于圆环上的点 A (该点在通过环心 O 的 水平面上),然后从 A 点开始下滑.设小球与圆环间的摩擦略去 不计.求小球滑到点 B 时对环心 O 的角动 量和角速度.
质点系的角动量定理及角动量守恒定律
对质点系
Mi内z
Mi外z
d dt
(ri
mi vi
sin
i
)
而
Mi内 0
Mi内z 0
Mi外z
d dt
(ri mivi
sin
i
)
d dt
Lz
——称质点系对z 轴的角动量定理.
3.质点系对轴的角动量守恒定律
若
Mi外z 0
Lz rimivi sin i 常量
若质点系各质点绕 z 作圆周运动
Liz ri mivi sin i
质点系对轴的角动量
Lz rimivi sin i
2.质点系对轴的角动量定理 质点在垂直于z 轴的平面内运动,第i个 质点
Miz
dLi dt
d dt
(ri
mivi
sin
i
)
M iz M i外z M i内z
M i内z
M
sin
i)
m 2gh v
2m m
本题也可以利用对点的角动量守恒求解,读者可自行完成.
§5.2质点系的角动量定理 及角动量守恒定律
§5.2.1质点系对参考点的角动量定理及守恒律
1.质点系对参考点的角动量
对参考点
L Li ri pi ri mivi
i
i
i
对质点系中的第 i 个质点,有
Mi
dLi dt
其中
Mi Mi外 Mi内
M i内
M i外
dLi dt
对质点系,有
M i内
M i外
dLi dt
2.内力的力矩
ri
Fij i
因质点i与质点 j 间的相互 作用力
i
质点角动量定理及角动量守恒定律
角动量的定义为
L=r×mv
将角动量对时间求导,可得
因此上式可变为
所以
上式右方为质点所受合力对参考点的力矩,τ于是就得到
(3.6)
上式表明,在惯性系中,作用在质点上的合力对某参考点的力矩,等于质点对同一参考点角动量对时间的变化率.这个结论叫做质点的角动量定理.
把质点角动量定理在直角坐标系中表达,可得到三个分量方程:
解质点作圆周运动时,其速度v处处与位置矢量r垂直,r和mv
L的方向由右手螺旋法则确定,即将右手的四指由r的正向以小于π的角度转向mv的正向,则拇指所指即为L的方向.这里角动量L的方向垂直于圆平面向外.
设质点的角速度大小为ω,因v=rω,所以上式也可写作
L=mr2ω
(3.3)
如果写作矢量式,则有
L=mr2ω
质点角动量定理及角动量守恒定律
3.1.1质点的角动量
设一质量为m的质点相对于参考系中某参考点O的位置矢量为r,其瞬时速度为v,如图3-1a所示.则定义质点相对于O点的角动量L为
L=r×mv
(3.1)
上式表明:质点相对于O位置矢量r与其动量mv的矢量积称为质点相对于O点的角动量.由矢量积的定义可知,质点相对于某参考点的角动量是一个矢量,L的方向与r和mv所在的平面垂直,且r、mv和L构成一右手螺旋系统.L的大小等于以r和mv作邻边的平行四边形面积,即
例2质量为m的质点在xy平面内以速度v作匀速直线运动,如图3-3所示.求此质点相对于原点O的角动量.
解根据角动量的定义式L=r×mv,设k为沿z轴的单位矢量,则质点的角动量为
L=r×mv=rmvsinφ(k)
即L指向z轴负方向.由图3-3代入上式得
角动量守恒定律是物理学中最基本的定律之一,和动量守恒定律一样,它不仅适用于宏观物体的运动,而且对于牛顿第二定律不能适用的微观粒子的运动,它也适用.
刚体的角动量守恒
第四节
定轴转动刚体的角动量是无数质点对公共转轴的角动量的叠加 任一质元(视为质点)的质量 其角动量大小
4-4
全部质元的总角动量
∑ ∑ law of conservation of angular momentum of rigid-body
对质量连续分布的刚体
∑
所有质点都以其垂轴 距离为半径作圆周运动
静 止 释 放
∑ 总合外力矩 对O的角动量 对O的角动量 ∑ 由 得
主要公式归纳
(微分形式) (积分形式)
∑ ∑
∑
是矢量式 与质点平动对比
刚体的角动量守恒定律
由 若 则 刚体所受合外力矩 即
当刚体所受的合外力矩 刚体的角动量
等于零时, 保持不变。
回转仪定向原理 回转仪定向原理
(转动惯量 ) 回转体
回转体质量呈轴对称分布; 轴摩擦及空气阻力很小。
受合外力矩为零 角动量守恒 恒矢量
其中转动惯量 基 座 万 向 支 架 使其以角速度 为常量 高速旋转
若将回转体转轴指向任一方向 则转轴将保持该方向不变 而不会受基座改向的影响
乘积
角动量守恒的另一类现象 角动量守恒的另一类现象 保持不变, 变小则 变大, 变大则
初态 全静
轮、转台与人系统
末态 末
轮 初
轮
人沿某一转 向拨动轮子
轮 人台 初
轮 人台 人台 轮
得
人台 人台
人台 轮
导致人台 反向转动
直升飞机防止机身旋动的措施
直升飞机防旋措施
用 尾 浆
(美洲豹 SA300) ( 海豚 Ⅱ )
用两个对 转的顶浆
(支奴干 CH47)
A、B两轮共轴 A以ωΑ作惯性转动
质点的角动量守恒定律
质点的角动量守恒定律
质点的角动量守恒定律是物理学中的一个基本定律,它指出,在没有外力作用的情况下,一个质点的角动量保持不变。
角动量是描述物体旋转运动的物理量,它的大小等于物体的质量乘以旋转半径和旋转速度的乘积。
当一个物体在自身轴线上旋转时,它的角动量可以表示为:
L = Iω
其中L是角动量,I是质量分布在旋转轴周围的惯性矩,ω是角速度。
如果在旋转过程中没有外力作用,那么固定在旋转轴上的惯性矩
I不会改变,因此角速度ω也不会改变。
这意味着角动量L将保持恒定,即L = 常数。
例如,当一个自行车车轮在自行车轴上旋转时,如果没有外力作用,那么车轮的角动量将保持不变。
当自行车轮开始旋转时,它的角动量由于角速度的增加而增加,但当自行车轮停止旋转时,它的角动量将保持不变。
类似地,一个旋转的陀螺在没有外力作用时也会保持角动量恒定。
这种现象被广泛应用于导航和稳定控制系统中。
总之,质点的角动量守恒定律是一个非常重要的定律,它被广泛应用于许多物理问题的解决中,包括机械、电磁和量子力学等领域。
只要没有外力作用,角动量将保持不变,这为物理学研究提供了一个强有力的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
010-质点、刚体的角动量、角动量守恒定律1. 选择题1. 一质点作匀速率圆周运动时,[ ](A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. 答案:(C )2. 刚体角动量守恒的充分而必要的条件是[ ](A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. 答案:(B )3. 地球绕太阳作椭圆轨道运动,太阳的中心在椭圆的一个焦点上,把地球看作一个质点,则地球的[ ](A) 动能守恒. (B) 动量守恒. (C) 对太阳中心的角动量守恒.(D) 对太阳中心的角动量守恒,动能守恒. 答案:(C )4. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?[ ](A)角动量从小到大,角加速度从大到小. (B)角动量从小到大,角加速度从小到大. (C)角动量从大到小,角加速度从大到小. (D)角动量从大到小,角加速度从小到大.答案:(A )5. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的[ ](A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒. (D)对地心的角动量不守恒,动能守恒. 答案:(C )6. 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有[ ](A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA <E KB . (C) L A =L B ,E KA >E KB . (D) L A <L B ,E KA <E KB . 答案:(C )7. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统[ ](A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 答案:(C )8. 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是[ ](A) 动能. (B) 绕木板转轴的角动量. (C) 机械能. (D) 动量. 答案:(B )9. 将一质量为m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住.先使小球以角速度在桌面上做半径为r 1的圆周运动,然后缓慢将绳下拉,使半径缩小为r 2,在此过程中小球的[ ](A)速度不变. (B)速度变小. (C)速度变大. (D)速度怎么变,不能确定. 答案:(C )10. 如图所示,钢球A 和B 质量相等,正被绳牵着以角速度ω绕竖直轴转动,二球与轴的距离都为r 1.现在把轴上环C 下移,使得两球离轴的距离缩减为r 2.则钢球的角速度[ ] (A)变大. (B )变小. (C)不变.(D)角速度怎么变,不能确定. 答案:(A )11. 一个物体正在绕固定光滑轴自由转动,[ ] (A)它受热膨胀或遇冷收缩时,角速度不变. (B)它受热时角速度变大,遇冷时角速度变小. (C)它受热或遇冷时,角速度均变大. (D)它受热时角速度变小,遇冷时角速度变大. 答案:(D )12. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为[ ] (A)310. (B) ()3/10. (C) 3. (D) 3.答案:(D )13. 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,在人跑向转台边缘的过程中,转台的角速度[ ](A) 不变. (B) 变小. (C) 变大. (D)不能确定角速度是否变化. 答案:(B )14. 人造地球卫星,绕地球作椭圆轨道运动,地球的中心在椭圆的一个焦点上,设地球的半径为BACR ,卫星的近地点高度为R ,卫星的远地点高度为2R ,卫星的近地点速度为1v ,则卫星的远地点速度2v 为[ ](A)12v . (B) 121v . (C) 132v . (D) 123v .答案:(C )15. 将一质量为m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住.先使小球以角速度在桌面上做半径为r 1的圆周运动,然后缓慢将绳放松,使半径扩大为2 r 1 ,此时小球做圆周运动的角速度为[ ](A)1ω. (B) 121ω. (C) 12ω. (D) 141ω.答案:(D )16. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是[ ] (A)甲先到达. (B)乙先到达. (C)同时到达. (D)谁先到达不能确定. 答案:(C )17. 光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为[ ] (A)L 32v . (B) L 54v . (C) L 76v . (D) L98v . 答案:(C )18. 如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为[ ] (A) 2. (B). (C)21 0. (D)041ω.答案:(D )19. 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度0转动,此时有一质量为m 的人站在转台边缘.随后人沿半径向转台中心跑去,当人到达转台中心时,转台的角速度为[ ]O v v俯视图O d dl(A) 02ωmR J J +. (B) 02ωJ mR J +. (C) 02ωmRJ. (D) 0ω. 答案:(B )2.填空题1. 一个刚体绕轴转动,若刚体所受的合外力矩为零,则刚体的________________守恒. 答案:角动量2. 长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一子弹水平地射入杆中.则在此过程中,由_____________组成的系统对转轴O的角动量守恒.答案:杆和子弹3. 质量为m 的质点以速度v沿一直线运动,则它对该直线上任一点的角动量为________. 答案:零4. 质量为m 的质点以速度v沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是__________. 答案:mvd4. 一杆长l =50 cm ,可绕通过其上端的水平光滑固定轴O 在竖直平面内转动,相对于O 轴的转动惯量J =5 kg ·m 2.原来杆静止并自然下垂.若在杆的下端水平射入质量m =0.01 kg 、速率为v =400 m/s 的子弹并嵌入杆内,则杆的角速度为=__________________. 答案:0.4 rad/s 5. 质量为0.05 kg 的小块物体,置于一光滑水平桌面上.有一绳一端连接此物,另一端穿过桌面中心的小孔(如图所示).该物体原以3 rad/s 的角速度在距孔0.2 m 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之转动半径减为0.1 m .则物体的角速度=_______________.答案:12 rad/s6. 如图所示,钢球A 和B 质量相等,正被绳牵着以4 rad/s 的角速度绕竖直轴转动,二球与轴的距离都为r 1=15 cm .现在把轴上环C 下移,使得两球离轴的距离缩减为r 2=5 cm .则钢球的角速度_ _ . 答案: 36 rad/s7. 哈雷慧星绕太阳的轨道是以太阳为一个焦点的椭圆.它离太阳最近的距离是r 1=O MB A C8.75×1010 m ,此时它的速率是v 1=5.46×104m/s .它离太阳最远时的速率是v 2=9.08×102m/s ,这时它离太阳的距离是r 2= .答案:5.26×1012m8. 一质量为m 的质点沿着一条曲线运动,其位置矢量在空间直角座标系中的表达式为j t b i t a rωωsin cos +=,其中a 、b 、 皆为常量,则此质点对原点的角动量L =________. 答案:m ab9. 如图所示,x 轴沿水平方向,y 轴竖直向下,在t =0时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点对原点O的角动量L =__________________. 答案:mgbt10. 一飞轮以角速度0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度=__________________. 答案:031ω11. 有一半径为R 的匀质圆形水平转台,可绕通过盘心O 且垂直于盘面的竖直固定轴OO '转动,转动惯量为J .台上有一人,质量为m .当他站在离转轴r 处时(r <R ),转台和人一起以1的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度2=__________________________.答案:()212mRJ mr J ++ω12. 一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动.圆盘质量为M ,半径为R ,对轴的转动惯量J =21MR 2.当圆盘以角速度0转动时,有一质量为m 的子弹沿盘的直径方向射入而嵌在盘的边缘上.子弹射入后,圆盘的角速度=______________. 答案:mM M 20+ω13. 在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4m ·s 1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =_ _ _. 答案:sm N 1⋅⋅Orω1BAvAOBv dOy a xb14. 在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s 1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体速度的大小v =_ . 答案:m/s 115. 一质量均匀分布的圆盘,质量为m ,半径为R ,放在一粗糙水平面上,圆盘可绕通过其中心O 的竖直固定光滑轴转动,圆盘和粗糙水平面之间摩擦力矩的大小为M f .开始时,圆盘的角速度为0ω,经过时间 =∆t 后,圆盘停止转动。