修改-第七章金属和半导体的接触

合集下载

半导体物理第七章金属与半导体的接触

半导体物理第七章金属与半导体的接触

eV kT
⎞ ⎟⎠
J
V<0 当e|V|>>kT J = − J ST
V
-J0
反向饱和电流JsT与外加电压无关,强烈依赖温度
热场发射理论:
适用于平均自由程较长,迁移率较高材料,如硅锗等
半导体物理
25
三. 镜像力(image force)的影响
理论与实际的偏差
当半导体中的电子到达金属-半导体的界面附近时,该 电子将在金属表面感生正电荷。由于金属表面的电力线 必须垂直于表面,因此该电子在金属表面感生电荷的总 和必定等价于金属内部与该电子镜面对称处的一大小相 等的正电荷。
P
E0
E0


Wm

EC
Ws
Wm
EC
Ws Ef

Ef
EV
EV
反阻挡层
半导体物理
阻挡层
8
表面态对接触势垒的影响
理想肖特基势垒接触: qΦB = Wm − χ
金属与半导体接触是否形成接触势垒,取决于它们的功函 数大小。
同一种半导体与不同金属接触时,形成的势垒高度同金属 的功函数成正比。
实际金-半接触: 90%的金属和半导体接触形成势垒,与功函数关系不大。
2o Wm < Ws 时仍有肖特基势垒
半导体物理
肖特基势垒
Φ BN
=
EC
− EFs =
2 Eg 3
13
势垒区的电势分布
假设: (耗尽层近似) 空间电荷区载流子全耗尽;
d 2V dx 2
=
⎪⎧− ⎨ ⎪⎩
qN D
ε 0ε r
0
0≤ x≤d x>d
E( x) = − dV = qN D (x − d )

第七章-金属和半导体的接触

第七章-金属和半导体的接触

在接触开始时,金属和半导体的间距大于原子的 间距,在两类材料的表面形成电势差Vms。
Ws Wm 接触电势差: Vms Vm V q
‘ s
紧密接触后,电荷的流动使得在半导体表面相当 厚的一层形成正的空间电荷区。空间电荷区形成 电场,其电场在界面处造成能带弯曲,使得半导 体表面和内部存在电势差,即表面势Vs。接触电 势差分降在空间电荷区和金属与半导体表面之间 。但当忽略接触间隙时,电势主要降在空间电荷 区。
二、金属和半导体的功函数Wm 、Ws
1、金属的功函数Wm 表示一个起始能量等于费米能级的电子,由 金属内部逸出到表面外的真空中所需要的最 小能量。
即:Wm E0 ( EF )m
E0为真空中静止电子的 能量,又称为真空能级。
Wm (EF)m
E0
金属铯Cs的功函数最低1.93eV,Pt最高为5.36eV
不存在表面态时,Ws=χ+En, 存在表面态时,功函数要有相应的改变,加上 qVD=EF0-EFs0的效应。
E0
Wm
Wl

Ec(0) qVD
En
能带弯曲量 qVD=EF0-EFs0
Ec
EF
EFs
半导体的功函数则变为:
Ws qVD En Ws EF EFs Wl
1 0 0
① N型半导体:
E0
χ
W
s
Ec
En
Ws E E E c F n s
式中:
(EF)s
Ev
En Ec ( EF )s
② P型半导体:
Ws Eo ( EF )s Eg Ep
式中:
Ep ( EF )s Ev

半导体物理_第七章_金属和半导体的接触

半导体物理_第七章_金属和半导体的接触

电流很小,为反向偏置
3. V>0
金属接正极,半导体接负极
外加电压削弱了内建电场的作用,势垒降低;
金属一侧的势垒高度没有变化;
电流很大,为正向偏置
7.2.1 扩散理论
1.扩散理论的适用范围:
适用于厚阻挡层; 势垒宽度比载流子的平均自由程大得多,即
势垒区是耗尽区; ——半导体是非简并的
2.扩散理论的基本思想
扩散方向与漂移方向相反
无外加电压: 扩散与漂移相互抵消——平衡; 反向电压: 漂移增强——反偏;
正向电压:
扩散增强——正偏
3.势垒宽度与外加电压的关系
势垒的高度和宽度都随外加电压变化:
4.势垒区的伏安特性
根据扩散理论,势垒区的电流是由半导体一侧电子的扩散和 漂移运动形成的:
该理论是用于迁移率较小,平均自由程较短的半导体, 如氧化亚铜。
(2)波长为185 nm的紫外光光子的能量为
3 108 34 19 E hv h 6.62 10 1.6 10 6.7eV 9 185 10 c
发射出来的电子能量: E=E0-W=6.7-2.5=4.2 eV
习题
习题
7.2.2 热电子发射理论
1.热电子发射理论的适用范围:
——适用于薄阻挡层 ——势垒高度 >>k0T ——非简并半导体 ln >> d
2.热电子发射理论的基本思想:
薄阻挡层,势垒高度起主要作用。 能够越过势垒的电子才对电流有贡献 ——计算超越势垒的载流子数目,从而求出电流密度。
3.势垒区的伏安特性
1、什么是欧姆接触?
欧姆接触应满足以下三点:
1、伏安特性近似为线性,且是对称的; 2、接触引入的电阻很小(不产生明显的附加阻抗);

半导体物理第七章金属和半导体接触

半导体物理第七章金属和半导体接触

(1)扩散理论
xd>> ln时,电子通过势垒区将发生多次碰撞。 势垒高度qVD>>k0T 时,势垒区内的载流子浓度近似 等于零。
耗尽层中的电荷密度:
q0ND
(0xxd) (xxd)
(1)
代入泊松方程 d 2V
dx 2
r 0

d 2V dx 2
qN D
r 0
0
(0 x xd ) (x xd )
将(3)式代入(4)式,则在xm处的电势降落为:
无镜象力
q
q ns
q
* ns
有镜象力
0 xm
x
镜象势能
qJ反向
q q ns ( q )V ( x m )
q2ND
r0
xm xd
1 4
4
2q7 N D
2
3 r
3 0
(V D
V)
q 可增见大金q反。属n*向一s 偏边q 压有和 效n掺势s杂垒q较高高度时将导半q致导势D V * 体垒 侧最q 有高(V 效点D 势降 垒落 高值度)
讨论
(1)V > 0 时
qV
如果 qVk0TJJSD ek0T
(2)V < 0 时
如果 q Vk 0T JJSD
I
0
V
Mg2Si-nSi与Al-nSi肖特基二极管V-I特性
(2)热电子发射理论 xd<< ln时,电子通过势垒区的碰撞可以忽略。当电
子动能大于势垒顶部时,电子可以自由越过势垒进入另 一边——热电子发射。
N D exp
q (V D V ) k 0T
N c exp
q ns exp k 0T
qV k 0T

半导体物理_第七章_金属和半导体接触

半导体物理_第七章_金属和半导体接触
电子通过M-S接触时,能够不受势垒的阻挡,从一种材料输运到另一种 材料,即其正反偏置的电流输运特征没有差别。
2、如何实现欧姆接触?
总结
总结
总结
总结
总结
需修正:①镜像力;②隧道效应
总结
习题
习题
习题
Ehvhc6.62103470301100891.61019 1.78eV Ehvhc6.621034 40301100891.61019 3.10eV
实质上是半导体价带顶部附近的电子流向金属,填充金 属中EF以下的空能级,而在价带顶附近产生空穴。
加正向电压时,少数载流子电流与总电流值比称为少数 载流子的注入比,用 表示。对n型阻挡层而言:
7.3.2 欧姆接触
1、什么是欧姆接触?
欧姆接触应满足以下三点: 1、伏安特性近似为线性,且是对称的; 2、接触引入的电阻很小(不产生明显的附加阻抗); 3、不会使半导体内部的平衡载流子浓度发生显著改变。
空间电荷区 电子从体内到表面,势能增加,表面能带向上弯曲
2、WS >Wm 电子系统在热平衡状态时应有统一的费米能级
电子反阻挡层;低阻 ——欧姆接触
考虑价带的电子转移,留下更多的空穴,形成空间 电荷区。空穴从体内到表面,势能降低,能带向上 弯曲。
7.1.3 表面态对接触势垒的影响
金属和半导体接触前
7.2.2 热电子发射理论
1.热电子发射理论的适用范围:
——适用于薄阻挡层 ——势垒高度 >>k0T ——非简并半导体
lபைடு நூலகம் >> d
2.热电子发射理论的基本思想:
薄阻挡层,势垒高度起主要作用。 能够越过势垒的电子才对电流有贡献 ——计算超越势垒的载流子数目,从而求出电流密度。

半导体 第七章 金属和半导体的接触

半导体 第七章 金属和半导体的接触

两种理论结果表示的阻挡层电流与外加电压变 化关系基本一致,体现了电导非对称性
正向电压,电流随电压指数增加;负向电压, 电流基本不随外加电压而变化
JSD与外加电压有关;JST与外加电压无关,强 烈依赖温度T。当温度一定,JST随反向电压增 加处于饱和状态,称之为反向饱和电流。
③镜像力和隧道效应的影响
Vms
Vm
Vs
Ws
Wm q
Vm和Vs分别为金属和半导体的电势。
随着D的减小
➢ 靠近半导体一侧的金属表面负电荷 密度增加,同时靠近金属一侧的半 导体表面的正电荷密度也随之增加。
➢ 由于半导体中自由电荷密度的限制, 正电荷分布在一层相当厚的表面层 内,即空间电荷区。
➢ 空间电荷区内存在一定电场,造成 能带弯曲。半导体表面和内部之间 存在电势差VS,称为表面势。
P
exp{4
(
2mn*
)
1 2
d0
[qV
(
y
)]
1 2
dy}
h2
0
exp{4
(
mn* R 0
h2ND
)
1 2
[(Vs
)
0
]}
有外加电压时,势垒宽度为d,表面势为
[(Vs)0+V],则隧道概率
P
exp{4
(
mn* R
h2ND
0
)
1
2 [(Vs
上述金半接触模型即为Schottky 模型:
n型
p型
Wm>Ws 阻挡层 反阻挡层
Wm<Ws 反阻挡层 阻挡层
7.1.3表面态对接触电势的影响
势垒高度qns Wm
实验表明:不同金属的功函数虽然相差很大,但与半 导体接触时形成的势垒高度却相差很小。

半导体物理第七章金属和半导体的接触

半导体物理第七章金属和半导体的接触
半导体
半导体的导电性能介于金属和绝缘体 之间。其内部存在一个或多个能隙, 使得电子在特定条件下才能跃迁到导 带。常见的半导体材料有硅、锗等。
接触的物理意义
01
金属和半导体的接触在电子器件 中具有重要应用,如接触电阻、 欧姆接触等。
02
理解金属和半导体的接触性质有 助于优化电子器件的性能,如减 小接触电阻、提高器件稳定性等 。
03
肖特基结模型适用于描述金属 和p型半导体之间的接触。
06
金属和半导体的接触实验 研究
实验设备和方法
实验设备
高真空镀膜系统、电子显微镜、 霍尔效应测量仪等。
实验方法
制备金属薄膜,将其与半导体材 料进行接触,观察接触表面的形 貌、电子输运特性等。
实验结果分析
接触表面的形貌分析
通过电子显微镜观察接触表面的微观结构, 了解金属与半导体之间的相互作用。
详细描述
当金属与半导体相接触时,由于金属和半导体的功函数不同,会产生电子的转移。这种电子的转移会 导致在接触区域形成一个势垒,阻碍电子的流动,从而产生接触电阻。接触电阻的大小与金属和半导 体的性质、接触面的清洁度、温度等因素有关。
热导率
总结词
热导率是指材料传导热量的能力,金属 和半导体的热导率差异较大,这会影响 它们之间的热交换效率。
详细描述
欧姆接触的形成需要满足一定的条件,包括金属与半导体之间要有良好的化学相容性和冶金相容性,以及半导体 内部载流子浓度要足够高。欧姆接触在集成电路和电子器件中具有广泛应用。
隧道结
总结词
隧道结是指金属和半导体之间形成的 具有隧道传输特性的结,当外加电压 达到一定阈值时,电流可以通过隧道 效应穿过势垒。
2
这个接触势垒会影响金属和半导体之间的电流传 输和热传导,进而影响电子器件的性能。

金属和半导体接触引言金属与半导体接触类型1整流接触

金属和半导体接触引言金属与半导体接触类型1整流接触

第七章 金属和半导体接触引言:金属与半导体接触类型:1、 整流接触:金属与轻掺杂半导体形成的接触表现为单向导电性,即具有整流特性,但电流通常由多子所荷载。

由于这种器件主要靠电子导电,消除了非平衡少子的 存储,因而频率特性优于p –n 结;又由于它是在半导体表面上形成的接触,便于散热,所以可以做成大功率的整流器;在集成电路中用作箝位二极管,可以提高集成电路的速度,通常称为肖特基势垒二极管,简称肖特基二极管。

2、 欧姆接触:这种接触正反向偏压均表现为低阻特性,没有整流作用,故也称为非整流接触。

任何半导体器件最后都要用金属与之接触并由导线引出,因此,获得良好的欧姆接触是十分必要的。

§7.1 金属半导体接触及其能带图本节内容:1、 金属和半导体的功函数2、 接触电势差3、 阻挡层与反阻挡层4、 表面态对接触势垒的影响课程重点:金属的功函数:在绝对零度的电子填满了费米能级F E 以下的所有能级,而高于F E 的能级则全部是空着的。

在一定温度下,只有F E 附近的少数电子受到热激发,由低于F E 的能级跃迁到高于F E 的能级上去,但是绝大部分电子仍不能脱离金属而逸出体外,这说明金属中的电子虽然能在金属中自由运动,但绝大多数所处的能级都低于体外能级。

要使电子从金属中逸出,必须由外界给它以足够的能量。

所以,金属内部的电子是在一个势阱中运动。

用0E 表示真空中静止电子的能量,金属功函数的定义是0E 与F E 能量之差,用m W 表示,即m F m E E W )(0-=它表示一个起始能量等于费米能级的电子,由金属内部逸出到真空中所需要的最小能量。

功函数的大小标志着电子在金属中束缚的强弱,m W 越大,电子越不容易离开金属。

半导体的功函数和金属类似:即把真空电子静止能量0E 与半导体费米能级S F E )(之差定义为半导体的函数,即s F s E E W )(0-=。

因为半导体的费米能级随杂质浓度变化,所以半导体的功函数也与杂质浓度有关。

半导体物理 第七章

半导体物理 第七章
24
四、肖特基势垒二极管
(一) 概念 一 肖特基势垒:势垒宽度依赖于外加电压的势垒; 肖特基势垒 肖特基势垒二极管:利用金属-半导体整流接触特性制成的 肖特基势垒二极管 二极管。
25
(二)肖特基势垒二极管与 结二极管的异同点 二 肖特基势垒二极管与pn结二极管的异同点 肖特基势垒二极管与 1. 相同点 具有类似的电流—电压关系,即它们都有单向导电性。 2. 区别点 就载流子的运动形式 运动形式而言,pn结正向导通时,由p区注入n 运动形式 区的空穴或由n区注入p区的电子,都是少数载流子 少数载流子,它们 少数载流子 先形成一定的积累,然后靠扩散运动形成电流。这种注入 的非平衡载流子的积累称为电荷存贮效应 电荷存贮效应,它严重地影响 电荷存贮效应 了pn结的高频性能。而肖特基势垒二极管的正向电流,主 要是由半导体中的多数载流子 多数载流子进入金属形成的。它是多数 多数载流子 载流子器件。因此,肖特基势垒二极管比pn结二极管有更 好的高频特性 高频特性。 高频特性
指阻挡层的整流理论。
一、外加电压对n型阻挡层的影响 外加电压对 型阻挡层的影响
(一) 处于平衡态的 型阻挡层 一 处于平衡态的n型阻挡层 对于处于平衡态的阻挡层,从半导体进入金属的电子 流和从金属进入半导体的电子流大小相等,方向相反,构 成动态平衡,因此阻挡层中没有净电流流过 阻挡层中没有净电流流过。 阻挡层中没有净电流流过 对于n型阻挡层,其表面势:
(Vs ) 0 > 0
23
三、整流理论的种类
扩散理论(肖特基提出):对于n型阻挡层,当势垒的宽度比 电子的平均自由程大得多时,电子通过势垒区要发生多次 碰撞,这样的阻挡层称为厚阻挡层 厚阻挡层。扩散理论正是适用于 厚阻挡层 厚阻挡层理论; 热电子发射理论(贝特提出):当n型阻挡层很薄,以至于电 子平均自由程远大于势垒宽度时,电子在势垒区的碰撞可 以忽略,因此,势垒的性质不重要,起决定作用的是势垒 高度,扩散理论不再适用,适用的是热电子发射理论; 热电子发射与扩散的综合理论(施敏提出) 考虑镜像力与隧道效应的影响来修正整流理论。 考虑镜像力与隧道效应的二、外加电压对p型阻挡层的影响 外加电压对 型阻挡层的影响

半导体物理:金属和半导体的接触

半导体物理:金属和半导体的接触
WM<WS, 金属的费米能级高于 n型半导体的费米能级,金属 中的电子向半导体中移动,在 半导体表面形成电子累积的 负空间电荷区.
Wm<Ws
n型反阻挡层(理想欧姆接触)
半导体表面带负电,空间电荷区电场的方向由半导体表面指向 体内,表面电子的能量低于体内,能带向下弯曲,表面处电子 浓度远大于体内。所以此时的空间电荷区是一个很薄的高电导 层,称之为反阻挡层(表面电子积累),对半导体和金属的接 触电阻影响很小。
在空间电荷区内便存在一定的电场,造成能带弯曲,使半 导体表面和内部之间存在电势差Vs,即表面势。
这时接触电势差一部分降落在空间电荷区,另一部分降落 在金属和半导体表面之间。
Ws
Wm q
Vms
Vs
若D小到可以与原子间 距相比较,电子可自由 穿过间隙
接触电势差绝大部分降 落在空间电荷区。
电子亲合能X
定义:E0与Ec之差
E0 EC
半导体功函数
半导体功函数
Ws E0 (EF )s
电子亲合能,它表示要使半导
体导带底的电子逸出体外所 需要的
Ws [Ec (EF )s ] En
En Ec (EF )s
n
=
En q
半导体的功函数与杂质浓度的关系
的流动。
它们之间的电势差完全补偿了原来费米能级的不同
Vms
Vm
Vs Ws
Wm q
随着D的减小,靠近半导体一侧的金属表面负电荷密度增 加,同时,靠近金属一侧的半导体表面的正电荷密度也随 之增加。
由于半导体中电荷密度的限制,这些正电荷分布在半导体 表面相当厚的一层表面层内,即空间电荷区。
半导体中的电子将向金属流动,使金属表面带负电,半导体表

2012_半导体物理_7_金属和半导体的接触-2014-05-21

2012_半导体物理_7_金属和半导体的接触-2014-05-21
第7章 金属和半导体的接触
半导体物理学
SCNU 光电学院
5
n型半导体的功函数

电子亲合能的定义: c = E0 - EC 它表示要使半导体导带底的电子逸出体外所需要的最小能量。 利用亲合能,半导体的功函数又可表示为 Ws= c + [EC - (EF)s ] = c +En 不同掺杂浓度的Ge、Si及GaAs的功函数: 表7-1。
表面受主态密度很高的n型半导体与金属接触能带图
半导体物理学 第7章 金属和半导体的接触
SCNU 光电学院
20
半导体表面态对接触势垒高度的影响



极限情况:当半导体的表面态密度很高时,由于它可屏蔽 金属接触的影响,使半导体内的势垒高度和金属的功函数 几乎无关,而基本上由半导体的表面性质所决定,接触电 势差全部降落在两个表面之间。 实际情况:由于表面态密度不同,形成金属-半导体接触时, 接触电势差总有一部分降落在半导体表面以内,因此金属 功函数对表面势垒会产生不同程度的影响,但影响不大, 这种解释符合实际测量的结果。 根据这一概念,不难理解,即便当Wm<Ws 时,也可能形 成n型阻挡层。
外加电压对n型阻挡层的影响
半导体物理学 第7章 金属和半导体的接触
SCNU 光电学院
23
外加偏压对阻挡层的影响: 反向偏压



图7-10(c)表示加反向电压(即V<0)时的情形。 从半导体进入金属的电子数目减少,金属进入半导体的电子流占优势, 形成一股由半导体到金属的反向电流。 由于金属中的电子要越过相当高的势垒qfns才能到达半导体中,因此 反向电流是很小的。 金属一边的势垒不随外加电压变化,所以从金属到半导体的电子流是 恒定的。当反向电压提高,使半导体到金属的电子流可以忽略不计时, 反向电流将趋于饱和值。

半导体与器件-金属和半导体的接触

半导体与器件-金属和半导体的接触

基本要求: 掌握金属和半导体功函数的定义,这是讨
论接触电势差的基础;理解形成接触电势 差的过程,掌握肖特基势垒模型.
理解巴丁模型即表面态对接触势垒的影响 以及阻挡层与反阻挡层(高电导)的概念.
即由于表面态的影响,也可能产生与表 (7-2)相反的情况。
§7.2 金属半导体接触整流理论(阻挡层的 整流理论)
若金属的功函数小于半导体的功函数,则金 属与n型半导体接触时,电子将从金属流向半 导体,在半导体表面形成负的空间电荷区。 其中电场方向由表面指向体内,表面势大于 零,能带向下弯曲。这里电子浓度比体内大 的多,因而是一个高电导的区域,称之为反 阻挡层。
反阻挡层是很薄的高电导区,它对半导体和 金属接触电阻的影响是很小的。所以反阻挡 层与阻挡层不同,在平常的实验中观察不到 它的存在(P181,图7-6,表7-2)。
(Vs)0+V 电子势垒为:-q[(Vs)0+V]
a>.当正偏,V>0,与(Vs)0异号反向,阻挡层势垒 降低为-q[(Vs)0+V],图7-10,(b),则使电子从n型 半导体向金属一边流动,形成从金属向半导体 的正向电流I. I主要由n型半导体中多子构成.
b>.当反偏,V<0,与(Vs)0同号同向,阻挡层势垒 升高为-q[(Vs)0+V],图7-10,(c),则使电子从金属 向n型半导体一边流动,形成从半导体向金属 的反向电流I’. 但由于金属势垒qns很高,电子 要脱离金属到达半导体很不易,故I’很小,类似 与p-n结的整流特性,正向导通,反向截止.
当半导体表面态密度很高时(图7-8), 它可屏蔽金属接触的影响,使半导体内 的势垒高度和金属的功函数几乎无关, 而基本上由半导体的表面性质所决定 (表面态的定扎现象Pinned,P182)。

第七章 金属-半导体接触

第七章 金属-半导体接触

若 xd0 xm, 从上式得到
xm
1
4(NDxd0)1/2
势能的极大值小于qΦns。这说明,镜象力使 势垒顶向内移动,并且引起势垒的降低 q 。
q q2 rN 0 Dm m xd1 4 2 q 27N r 3D 0 3V D V 1/4
镜像力所引起的势垒降低量随反向电压的增加 而缓慢地增大 当反向电压较高时,势垒的降低变得明显, 镜像力的影响显得重要。
E F E V ( 0 ) ( E C E F )
则 p(0) 值应和 n0 值相近,n(0)也近似等于p0
势垒中空穴和电子所处的情况几乎完全相同,只 是空穴的势垒顶在阻挡层的内边界。
在加正向电压时,空穴将流向半导体,但它们并
不能立即复合,必然要在阻挡层内界形成一定的积 累,然后再依靠扩散运动继续进入半导体内部。
2、金属半导体接触整流理论
整流理论-阻挡层 平衡态阻挡层—无净电流
从半导体进入 金属的电子流
从金属进入 半导体的电子流
在金属和半导体之间
加上外加电压?
-q(Vs+V)
qVD
以n型半导体为例:
qΦns
Ec
阻挡层为高阻区域
—外加电压主要降落在阻挡层
(EF)s
平衡态时:表面势VS<0 势垒高度qVD=-qVs 外加正电压:V>0
2
xc
隧道效应引起的势垒降低为
2qr3N0DVDV1/2xc
反向电压较高时,势垒的降低才明显
④肖特基势垒二极管
肖特基势垒二极管: 利用金属-半导体整流接触特性制成的二极管。 肖特基势垒二极管与pn结二极管的区别: (1)多数载流子器件和少数载流子器件 (2)无电荷存贮效应和有电荷存贮效应 (3)高频特性好。 (4)正向导通电压小。

半导体物理第七章

半导体物理第七章

E0
E Fs
Ec
Ev
假设金属和 n型半导体相接触且 Wm Ws
接触中 :
Wm
EFm
接触后:
E0
Ws

Ec EFs
qm
EF
qVD
Ec EF
Ev xD Ev
≌- qVs 接触势垒 Wm-Ws=-q(Vms+Vs)
导带底电子向金属运动时必须越过的 势垒的高度: qVD=Wm-Ws
金属一边的电子运动到半导体一边也需要 越过的势垒高度:
(b) Wm<Ws
E0 Ec EFs
电子反阻挡层:
Wm
EFm
Ws

Ec EF
Ev
qVD Ws Wm
Ev
(2)金属-p型半导体接触 (1)Ws>Wm 空穴阻挡层:
E0 Wm

EFm
Ec Ws
EFs
Ev
接触后:
Ec
EF Ev
qVD=Ws-Wm xD
半导体一边的势垒 qVD Ws Wm
–具有受主表面态的n型半导体与金属接触
• 平衡时费米能级达到同一水平,半导体的费米能级EFs相对 于金属的费米能下降了(Wm—Ws)。在间隙D中,从金属到 半导体电势下降 -(Wm—Ws)/q。空间电荷区的正电荷等于 表面受主态上留下的负电荷与金属表面负电荷之和。紧密 接触时电子可自由地穿过,极限情形下的能带如图(c)
电子依旧与金属保持平衡状态 而与近似等于平衡状态电子浓 度
已接近半导体体内电子浓度
于是
J
xd 0
q[ns (Vs )0 ] qV ( x) qV exp[ ]dx qDn n0 exp{ }[exp[ ] 1] k0T k0T k0T

半导体物理第七章半导体和金属的接触

半导体物理第七章半导体和金属的接触

EC
EF
EV
p (0 )=p0
⎛ exp ⎜

qVD k0T
⎞ ⎟ ⎠
>
p0
扩散
M
n−S
漂移
一、少数载流子的注入
在正向电压作用下,金属和n型半导体接触使得半导体中空穴浓 度增加的现象称为少子的注入。
实质上是半导体价带顶部附近的电子流向金属,填充金属中EF 以下的空能级,而在价带顶附近产生空穴。
注入程度:
<1>正向电压: J= J ST
⎛ exp ⎜

qV k0T
⎞ ⎟ ⎠
<2>反向电压: J = − J ST
− J ST
Ge、Si、GaAs有较高的载流子迁移率、较大的平均自由程, 主要是热电子发射。
整流理论对比
扩散理论
热电子发射理论
¾厚阻挡层 ¾电流源于半导体一侧电子的 漂移或扩散
J
=
J SD
⎡⎛ ⎢exp ⎜ ⎢⎣ ⎝
中的电子数:
⎪⎩vz ~vz + dvz
( ) dn'
=
n0
⎛ ⎜ ⎝
mn∗
2π k0T
3
⎞2 ⎟ ⎠
⎡ exp ⎢−
⎢⎣
mn∗
vx2 + vy2 + vz2 2k0T

⎥ ⎥⎦
dvx
dvy
dvz
三、热电子发射理论
能够运动到M-S界面的电子数为:
( ) vxdn'
=
n0
⎛ ⎜ ⎝
mn∗
2π k0T
扩散方向与漂移方向相反
无外加电压: 扩散与漂移相互抵消——平衡; 反向电压: 漂移增强——反偏; 正向电压: 扩散增强——正偏

半导体物理学——半导体与金属的接触

半导体物理学——半导体与金属的接触
n0 = Nce k0T
( ) NC =
2mn*k0T 3/2
4π 3/2h3
23
半导体物理学 黄整
第七章 金属和半导体的接触
或者
dn′
=
n0
⎛ ⎜ ⎝
mn*
2π k0T
3
⎞2 ⎟ ⎠

mn*
(
vx2
+v
2 y
+vz2
)
e 2k0T dvxdvydvz
换一种思路,考虑动量空间
dn =
An e dp dp dp −
第七章 金属和半导体的接触
达到界面的电子要越过势垒,必须满足
1 2
mn*vx2

−q
⎡⎣(Vs
) 0
+V
⎤⎦
所需要的x方向的最小速度
1
1 2
mn*vx20
=
−q
⎡⎣(Vs
) 0
+V
⎤⎦
vx0
=
⎧⎪⎨− ⎪⎩
2q
⎡⎣(Vs
) 0
mn*
+V
⎤⎦
⎫⎪ ⎬
⎭⎪
2
规定电流的正方向是从金属到半导体,则从
2qN
D
ε
VD
rε0
−V
⎫2 ⎬ ⎭
− qVD
e k0T
⎛ qV ⎝⎜⎜ e k0T
⎞ −1⎠⎟⎟
金属半导体接 触伏安特性
21
半导体物理学 黄整
第七章 金属和半导体的接触
热电子发射理论
当n型阻挡层很薄,电子平均自由程远大于势 垒宽度。起作用的是势垒高度而不是势垒宽 度。电流的计算归结为超越势垒的载流子数 目。

第七章 半导体的接触现象

第七章 半导体的接触现象

第七章 半导体的接触现象半导体的接触现象主要有半导体与金属之间的接触(肖特基结和欧姆接触)、半导体与半导体之间的接触(同质结和异质结)及半导体与介质材料之间的接触。

§7-1 外电场中的半导体无外加电场时,均匀掺杂的半导体中的空间电荷处处等于零。

当施加外电场时,在半导体中引起载流子的重新分布,从而产生密度为)(rρ的空间电荷和强度为)(r∈的电场。

载流子的重新分布只发生在半导体的表面层附近,空间电荷将对外电场起屏蔽作用。

图7-1a 表示对n 型半导体施加外电场时的电路图。

在图中所示情况下,半导体表面层的电子密度增大而空穴密度减小(见图7-1b 、c ),从而产生负空间电荷。

这些空间电荷随着离开样品表面的距离的增加而减少。

空间电荷形成空间电场s ∈,在半导体表面s ∈达到最大值0s ∈(见图7-1d )。

空间电场的存在将改变表面层电子的电势和势能(见图7-1e 、f ),从而改变样品表面层的能带状况(见图7-1g )。

电子势能的变化量为)()(r eV r U -=,其中)(r V是空间电场(也称表面层电场)的静电势。

此时样品的能带变化为)()(r U E r E c c+=)(r E v =)(r U E v+ (7-1) 本征费米能级变化为 )()(r U E r E i i+=杂质能级变化为 )()(r U E r E d d+= (7-2)由于半导体处于热平衡状态,费米能级处处相等。

因此费米能级与能带之间的距离在表面层附近发生变化。

无外电场时这个距离为(f c E E -)和(v f E E -) (7-3)而外场存在时则为[]f c E r U E -+)( 和-f E [)(r U E v+] (7-4)比较(7-3)和(7-4)式则知如果E c 和E f 之间的距离减少)(r U,E f 与E v 之间的距离则增加)(r U。

当外电场方向改变时,n 型半导体表面层的电子密度将减少,空穴密度将增加,在样品表面附近的导电类型有可能发生变化,从而使半导体由n 型变为p 型,产生反型层,在离表面一定距离处形成本征区,此处的费米能级位于禁带的中央,见图7-2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

qVD Wm Ws EFN EFm
mN EC EFm
7.2
金属半导体接触的整流效应
E
金属
+
N型半导体
J J
-
+
平衡时即未加偏压 电子从半导体进入 金属的数目等于 从金属到半导体的 数目
金属加负压 半导体加正压 半导体中势垒增加 打破平衡,出现电子 从金属到半导体净流入 反向电流 正向时,半导体一边的势垒随外加电压的增加而减小, 反向时金属一边的势垒不随外加电压变化,所以从金属到半导体的 电子流是恒定,出现反向饱和电流 。--整流效应
7.1
金属半导体接触的接触势垒
半导体的功函数
Ws E0 EFN
若 N型半导体同一金属紧密接触, Wm>Ws,即 EFm< EFN
界面
接触势垒(阻挡层)
半导体中电子能量较大—易进入金属—金属带负电—半导体 带正电(施主离子 )—形成空间电荷区(类似PN结)—能带 将弯曲—形成势垒—接触电位差—到平衡—费米能级拉平 半导体一侧电子的势垒高度(接触势垒) 金属一侧电子的势垒高度
M
金属
N
半导体基体
7.1
金属半导体接触的接触势垒
金属的功函数(也称逸出功——逃离能)
周围外部空间
金属的功函数
Wm E0 EFm
真空中静止电子的能量
金属中电子 的最高能量
金属体内
金属功函数表示一个起始能量等于费米能级的电子,由金属内
部逸出到真空中所需要的最小能量。功函数的大小标志着电子
在金属中束缚的强弱,越大,电子越不容易离开金属。
导通电压
肖特基二极管的电流电压特性曲线及符号
导通电压
肖特基二极管与PN结二极管有一些不同的特点:
1、肖特基势垒二极管的正向电流,主要是由半导体中的多
数载流子进入金属形成的,它是多数载流子器件,载流子 不发生积累,具有更好的高频特性。 PN结主要是少子器件, 且注入的非平衡载流子会发生积累(电荷存储效应),严 重影响PN结高频性能。 2、对于同样的使用电流,肖特基二极管有较低的正向导 通电压,一般为 0.3 V 左右 。 正是以上特点,肖特基二极管在高速集成电路、微波技术
第七章 金属和半导体的接触
7.1 金属半导体接触的接触势垒 7.2 金属半导体接触的整流效应
7.3 欧姆接触
当金属与半导体接触时,有二种物理接触效果: 整流接触——在半导体表面形成了一个接触势垒 (阻挡 层),和PN结类似,有整流作用。 ——肖特基接触(势垒) ; 欧姆接触——形成没有整流作用的反阻挡层(高电导区)。 等效为一个小电阻(低阻率)。
第八章 半导体表面与MIS结构
8.1 表面态概念
8.2 表面电场效应
8.3 MIS结构的C-V特性
8.1表面态概念
8.1.1 理想表面
8.1表面态概念
8.1.2 真实表面
8.2 表面电场效应
8.2.1 空间电荷层
8.2 表面电场效应
8.2.1 空间电荷层
8.2 表面电场效应
8.2.2 半导体表面层的5种基本状态
金属加正压 半导体加负压 半导体中势垒降低 打破平衡,出现电子从 半导体到金属净流入 产生正向电流
同理,若P型半导体紧密接触金属,功函数 Ws > Wm,
接触势垒(阻挡层)
半导体一侧空穴势垒高度
金属一侧空穴的势垒高度
qVD ( EFm EFP )
mP EFm EV
肖特基二极管----利用金-半接触具有整流特性制成的二极管 PN结二极管的电流电压特性曲线及符号
等许多领域都有很重要的应用。
7.3
欧姆接触(指不产生明显附加阻抗的接触)
如果将N型半导体同功函数较小的金属接触(a), 或 P型半导体同功函数较大的金属接触(b), 则在平衡时靠近表面处将形成一个载流子浓度更大的高电导区 ——反阻挡层
EFm > EHale Waihona Puke N 反阻挡层:(高电导层)
没有整流作用! EFm < EFP
相关文档
最新文档