2015-2016年上海市浦东新区八年级(上)期末数学试卷和参考答案
上海市八年级(上)期末数学试卷含答案
八年级(上)期末数学试卷 题号一二三总分得分一、选择题(本大题共6小题,共18.0分)1.下列二次根式中,属于最简二次根式的是( )A. B. C. D. 0.33x 2a 2−b 282.关于x 的方程是一元二次方程,那么ax 2+3x =ax +2( )A. B. C. D. a ≠0a ≠1a ≠2a ≠33.反比例函数的图象经过点,、是图象上另两点,其中y =k x (−1,2)A(x 1,y 1)B(x 2,y 2),那么、的大小关系是x 1<x 2<0y 1y 2( )A. B. C. D. 都有可能y 1>y 2y 1<y 2y 1=y 24.用配方法解方程时,原方程可变形为2x 2−8x−3=0( )A. B. C. D. (x−2)2=−52(x−2)2=112(x +2)2=7(x−2)2=75.下列命题中是真命题的是( )A. 反比例函数,y 随x 的增大而减小y =2x B. 一个三角形的三个内角的度数之比为1:2:3,则三边长度之比是1:2:3C. 直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形D. 如果,那么一定有(a−1)2=1−a a <l6.如图,在平面直角坐标系中,直线AB 与x 轴交于点,与x 轴夹角为,将沿直线AB 翻A(−2,0)30°△ABO 折,点O 的对应点C 恰好落在双曲线y =kx (k ≠0)上,则k 的值为( )A. 4B. −2C. 3D. −3二、填空题(本大题共12小题,共24.0分)7.已知函数,其定义域为______.y =2x−18.不等式的解集是______.3x <2x +19.在实数范围内因式分解______.2x 2−x−2=10.方程的根是______.a 2−a =011.平面上到原点O 的距离是2厘米的点的轨迹是______.12.在工地一边的靠墙处,用32米长的铁栅栏围一个所占地面积为140平方米的长方形临时仓库,并在平行于墙一边上留宽为2米的大门,设无门的那边长为x 米.根据题意,可建立关于x 的方程______.13.已知反比例函数的图象在第二、四象限内,那么k 的取值范围是______.y =k−1x 14.如果点A 的坐标为,点B 的坐标为,那么线段AB 的长等于______ .(−3,1)(1,4)15.已知关于x 的一元二次方程有两个不相等的实数根,那么m 的取mx 2−2x +1=0值范围是______.16.如图,中,于D ,E 是AC 的中点.若,△ABC CD ⊥AB AD =6,则CD 的长等于______.DE =517.如图,中,,,AD 是Rt △ABC ∠C =90°BD =2CD 的角平分线,______度.∠BAC ∠CAD =18.已知,在中,,,将翻折使得点A 与点C 重合,△ABC AB =3∠C =22.5°△ABC 折痕与边BC 交于点D ,如果,那么BD 的长为______.DC =2三、解答题(本大题共8小题,共58.0分)19.计算:2⋅6+(3−1)2+43+120.解方程:4y2−3=(y+2)2s()21.甲、乙两车分别从A地将一批物资运往B地,两车离A地的距离千米与其相关t()的时间小时变化的图象如图所示,读图后填空:(1)A地与B地之间的距离是______千米;(2)甲车由A地前往B地时所对应的s与t的函数解析式及定义域是______;(3)乙车的速度比甲车的速度每小时快______千米.y=y1+y2y1x−1y2x=2y=1 22.已知,与成正比例,与x成反比例,且当时,;当x=−2y=−2时,,求y关于x的函数解析式.23.如图,已知点B、F、C、E在同一直线上,AC、DF相交AB⊥BE DE⊥BE于点G,垂足为B,,垂足为E,且BF=CE AC=DF,,求证:点G在线段FC的垂直平分线上.24.已知,如图,在中,,点E 在AC 上,,.Rt △ABC ∠C =90°AB =12DE AD//BC 求证:.∠CBA =3∠CBE25.如图,已知正比例函数图象经过点,A(2,2)B(m,3)求正比例函数的解析式及m 的值;(1)分别过点A 与点B 作y 轴的平行线,与反比例函(2)数在第一象限的分支分别交于点C 、点C 、D 均在D(点A 、B 下方,若,求反比例函数的解析式;)BD =4AC 在第小题的前提下,联结AD ,试判断(3)(2)△ABD的形状,并说明理由.26.如图,已知在中,,,,,将一个直Rt △ABC ∠ABC =90°AB =3BC =4AD//BC 角的顶点置于点C ,并将它绕着点C 旋转,直角的两边分别交AB 的延长线于点E ,交射线AD 于点F ,联结EF 交BC 于点G ,设.BE =x旋转过程中,当点F 与点A 重合时,求BE 的长;(1)若,求y 关于x 的函数关系式及定义域;(2)AF =y 旋转过程中,若,求此时BE 的长.(3)CF =GC答案和解析1.【答案】C【解析】解:A 、,不是最简二次根式;0.3=310=3010B 、,不是最简二次根式;3x 2=3|x|C 、,是最简二次根式;a 2−b 2D 、,不是最简二次根式;8=22故选:C .根据最简二次根式的概念判断即可.本题考查的是最简二次根式的概念,最简二次根式的概念:被开方数不含分母;(1)(2)被开方数中不含能开得尽方的因数或因式.2.【答案】A【解析】解:,ax 2+3x =ax +2,ax 2+(3−a)x +2=0依题意得:.a ≠0故选:A .直接利用一元二次方程的定义分析得出答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.【答案】B【解析】解:反比例函数的图象经过点,∵y =k x (−1,2),∴k =−2此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,∴,∵x 1<x 2<0、两点均位于第二象限,∴A(x 1,y 1)B(x 2,y 2).∴y 1<y 2故选:B .先代入点求得k 的值,根据k 的值判断此函数图象所在的象限,再根据(−1,2)x 1<x 2<0判断出、所在的象限,根据此函数的增减性即可解答.A(x 1,y 1)B(x 2,y 2)本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数的性质是解答此题的关键.4.【答案】B【解析】解:,∵2x 2−8x−3=0,∴2x 2−8x =3则,x 2−4x =32,即,∴x 2−4x +4=32+4(x−2)2=112故选:B .将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.【答案】C【解析】解:A 、反比例函数,在第一、三象限,y 随x 的增大而减小,本说法是y =2x 假命题;B 、一个三角形的三个内角的度数之比为1:2:3,这三个角的度数分别为、、,30°60°90°则三边长度之比是1::2,本说法是假命题;3C 、直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形是真命题;D 、如果,那么一定有,本说法是假命题;(a−1)2=1−a a ≤l 故选:C .根据反比例函数的性质判断A ;根据三角形内角和定理、直角三角形的性质求出三边长度之比,判断B ;根据等腰直角三角形的性质判断C ;根据二次根式的性质判断D .本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.【答案】D【解析】解:设点C 的坐标为,过点C 作(x,y)CD ⊥x轴,作轴,CE ⊥y 将沿直线AB 翻折,∵△ABO ,,∴∠CAB =∠OAB =30°AC =AO =2,∠ACB =∠AOB =90°,∴CD =y =AC ⋅sin60°=2×32=3,∵∠ACB =∠DCE =90°,∴∠BCE =∠ACD =30°,∵BC =BO =AO ⋅tan30°=2×33=233,CE =|x|=BC ⋅cos30°=233×32=1点C 在第二象限,∵,∴x =−1点C 恰好落在双曲线上,∵y =k x (k ≠0),∴k =x ⋅y =−1×3=−3故选:D .设点C 的坐标为,过点C 作轴,作轴,由折叠的性质易得(x,y)CD ⊥x CE ⊥y ,,,用锐角三角函数的定义∠CAB =∠OAB =30°AC =AO =2∠ACB =∠AOB =90°得CD ,CE ,得点C 的坐标,易得k .本题主要考查了翻折的性质,锐角三角函数,反比例函数的解析式,理解翻折的性质,求点C 的坐标是解答此题的关键.7.【答案】x ≥12【解析】解:依题意有,2x−1≥0解得.x ≥12故答案为:.x ≥12当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.考查了函数自变量的取值范围,关键是熟悉当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零的知识点.8.【答案】x <3+2【解析】解:3x−2x <1x <13−2x <3+2故答案为.x <3+2根据解不等式的过程解题,最后系数化1时进行分母有理化即可求解.本题考查了解一元一次不等式,解决本题的关键是系数化1时进行分母有理化.9.【答案】2(x−1−174)(x−1+174)【解析】解:令2x 2−x−2=0,,∵a =2b =−1c =−2∴△=b 2−4ac =1−4×2×(−2)=17∴x =1±172×2=1±174,∴x 1=1−174x 2=1+174∴2x 2−x−2=2(x−1−174)(x−1+174)故答案为:2(x−1−174)(x−1+174).先求出方程的两个根、,再把多项式写成的形式2x 2−x−2=0x 1x 22(x−x 1)(x−x 2)..本题考查了实数范围内分解因式,明确一元二次方程的根与因式分解的关系,是解题的关键.10.【答案】,a1=0a2=1a2−a=0【解析】解:,a(a−1)=0,a=0a−1=0,,a1=0a2=1,.a1=0a2=1故答案为:,.a(a−1)=0a=0a−1=0把方程的左边分解因式得到,得到,,求出方程的解即可.−−本题主要考查对解一元二次方程因式分解法,解一元一次方程,因式分解提公因式法等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.11.【答案】以原点O为圆心,2厘米长为半径的圆【解析】解:平面上到原点O的距离是2厘米的点的轨迹是以点O为圆心,2厘米长为半径的圆.故答案为:以原点O为圆心,2厘米长为半径的圆.根据圆的定义就可解决问题.本题主要考查的是圆的定义,其中圆是到定点的距离等于定长的点的集合.12.【答案】(34−2x)x=140(34−2x)【解析】解:设所求边长为x,则矩形的长为.(34−2x)x=140根据题意得:.(34−2x)x=140故答案为:.(32−2x+2)设所求边长为x,则矩形的长为,然后根据矩形的面积公式列方程即可.本题主要考查的是一元二次方程的应用以及一元二次方程的解法,根据题意列出方程是解题的关键.13.【答案】k<1k−1<0【解析】解:由题意可得,k<1则.k<1故答案为:.k<0根据时,图象是位于二、四象限即可得出结果.(1)k>0(2)k<0此题主要考查反比例函数图象的性质:时,图象是位于一、三象限.时,图象是位于二、四象限.14.【答案】5AB=(−3−1)2+(1−4)2=5【解析】解:.故答案为:5.利用勾股定理列式计算即可得解.本题考查了点的坐标,此类题目,利用两点的坐标结合勾股定理求解.15.【答案】且m<1m≠0【解析】解:关于x 的一元二次方程有两个不相等的实数根,∵mx 2−2x +1=0,∴{m ≠0△=(−2)2−4m >0解得:且.m <1m ≠0故答案为:且.m <1m ≠0根据二次项系数非零及根的判别式,即可得出关于m 的一元一次不等式组,解之△>0即可得出m 的取值范围.本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式,找出关于m 的一元一次不等式组是解题的关键.△>016.【答案】8【解析】解:如图,中,于D ,E 是AC 的中点,,∵△ABC CD ⊥AB DE =5,∴DE =12AC =5.∴AC =10在直角中,,,,则根据勾股定理,得△ACD ∠ADC =90°AD =6AC =10.CD =AC 2−AD 2=102−62=8故答案是:8.由“直角三角形斜边上的中线等于斜边的一半”求得;然后在直角AC =2DE =10中,利用勾股定理来求线段CD 的长度即可.△ACD 本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC 的长度是解题的难点.17.【答案】30【解析】解:过点D 作于E 点,DE ⊥AB 是的角平分线,,,∵AD ∠BAC DC ⊥AC DE ⊥AB .∴DC =DE ,∵BD =2CD .∴BD =2DE .∴∠B =30°,∵∠C =90°.∴∠CAB =60°.∴∠CAD =12×60°=30°故答案为30.过点D 作于E 点,根据角平分线性质可得,从而,则DE ⊥AB DE =DC BD =2DE ,可知,再利用角平分线的定义可求度数.∠B =30°∠CAB =60°∠CAD 本题主要考查了角平分线的性质、根据角平分线的性质作垂线段的解题的关键.18.【答案】或2+12−1【解析】解:分两种情况:当为锐角时,如图所示,过A 作于F ,①∠B AF ⊥BC由折叠可得,折痕DE 垂直平分AC ,,∴AD =CD =2,∴∠ADB =2∠C =45°是等腰直角三角形,∴△ADF ,∴AF =DF =2又,∵AB =3中,,∴Rt △ABF BF =AB 2−AF 2=1;∴BD =BF +DF =1+2当为钝角时,如图所示,过A 作于F ,②∠ABC AF ⊥BC同理可得,是等腰直角三角形,△ADF ,∴AF =DF =2又,∵AB =3中,,∴Rt △ABF BF =AB 2−AF 2=1;∴BD =DF−BF =2−1故答案为:或.2+12−1过A 作于F ,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角AF ⊥BC 三角形的性质,即可得到BD 的长.本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.【答案】解:原式=2×6+3−23+1+2(3−1)=23+4−23+23−2.=23+2【解析】利用二次根式的乘法法则、完全平方公式和分母有理化进行计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:将方程整理,得:,3y 2−4y−7=0,,,∵a =3b =−4c =−7,∴△=(−4)2−4×3×(−7)=100>0则,y =4±106,.∴y 1=73y 2=−1【解析】先将方程整理成一般式,再利用公式法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【答案】60 40s =20t(0≤t ≤3)【解析】解:从图象可以看出AB 之间的距离为60千米,(1)故答案为60;甲的速度为:,故,(2)60÷3=20s =20t 故答案为:;s =20t(0≤t ≤3)乙的速度为:,(3)60÷1=60故答案为40.从图象可以看出AB 之间的距离为60千米,即可求解;(1)甲的速度为:,即可求解;(2)60÷3=20乙的速度为:,即可求解.(3)60÷1=60此题为一次函数的应用,渗透了函数与方程的思想,重点是求甲乙的速度.22.【答案】解:设,,y 1=k 1(x−1)y 2=k 2x (k 1≠0,k 2≠0).∴y =y 1+y 2=k 1(x−1)+k 2x 把时,;当时,代入可得:,x =2y =1x =−2y =−2{1=k 1(2−1)+k 22−2=k 1(−2−1)+k 2−2解得,,{k 1=12k 2=1关于x 的函数解析式为.∴y y =12(x−1)+1x 【解析】可设,,把已知条件代入则可求得y 与x 的y 1=k 1(x−1)y 2=k 2x (k 1≠0,k 2≠0)函数解析式;本题考查了待定系数法求函数的解析式,注意在本题中的正比例系数和反比例系数是两个不同的值,用不同的字母区分.23.【答案】证明:,∵BF =CE ,即.∴BF +FC =CE +FC BC =EF 又,,∵AB ⊥BE DE ⊥BE .∴∠B =∠E =90°在和中,,Rt △ABC Rt △DEF {AC =DF BC =EF ≌ ∴Rt △ABC Rt △DEF (HL)全等三角形的对应角相等,∴∠ACB =∠DFE()等角对等边,∴GF =GC()点G 在线段FC 的垂直平分线上.∴【解析】证得≌,推知,然后由“等角对等边”Rt △ABC Rt △DEF(HL)∠ACB =∠DFE 证得,即可得出结论.GF =GC 本题考查了全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握等腰三角形的判定与性质,证明三角形全等是解题的关键.24.【答案】证明:取DE 的中点F ,连接AF ,,,∵AD//BC ∠ACB =90°,∴∠DAE =∠ACB =90°,∴AF =DF =EF =12DE ,∵AB =12DE ,∴DF =AF =AB ,,∴∠D =∠DAF ∠AFB =∠ABF ,∴∠AFB =∠D +∠DAF =2∠D ,∴∠ABF =2∠D ,∵AD//BC ,∴∠CBE =∠D .∴∠CBA =∠CBE +∠ABF =3∠CBE 【解析】取DE 的中点F ,连接AF ,根据直角三角形的性质求出AF =DF =FE =12,推出,根据等腰三角形的性质求出,,DE DF =AF =AB ∠D =∠DAF ∠AFB =∠ABF 求出,,即可得出答案.∠ABF =2∠D ∠CBE =∠D 本题考查了等腰三角形的性质,直角三角形的性质,平行线的性质,三角形的外角性质的应用,能正确作出辅助线是解此题的关键,难度适中.25.【答案】解:设正比例函数的解析式为,(1)y =kx 正比例函数图象经过点,∵A(2,2),∴2=2k ,∴k =1比例函数的解析式为;∴y =x 把代入解析式得,;B(m,3)m =3轴,(2)∵AC//BD//y 点的横坐标为2,D 点的横坐标为3,∴C设反比例函数的解析式为,分别代入得,,y =m x y C =m 2y D =m 3,,∴AC =2−m 2BD =3−m 3,∵BD =4AC ,∴3−m 3=4(2−m 2)解得,m =3反比例函数的解析式为;∴y =3x 是等腰直角三角形;(3)△ABD 理由是:由得:,,,(2)D(3,1)A(2,2)B(3,3),,∴AB 2=(3−2)2+(3−2)2=2AD 2=(3−2)2+(2−1)2=2BD 2=(3−3)2+(3−1)2,=4,且,∴BD 2=AB 2+AD 2AB =AD 是等腰直角三角形.∴△ABD 【解析】设正比例函数的解析式为,代入A 的坐标根据待定系数法即可求得(1)y =kx 正比例函数的解析式,把B 代入即可求得m 的值;根据题意得出C 点的横坐标为2,D 点的横坐标为3,设反比例函数的解析式为(2)y =,分别代入得,,进而求得,,根据列方m 3y C =m 2y D =m 3AC =2−m 2BD =3−m 3BD =4AC 程,解方程求得m 的值,即可求得解析式;根据两点的距离公式可得AB 和AD ,BD 的长,根据勾股定理的逆定理可得结论.(3)本题考查了反比例函数和一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据题意求得C 、D 的坐标是解题的关键.26.【答案】解:如图1,,(1)∵∠ABC =90°,,AB =3BC =4,∴AC =32+42=5,∵∠ACE =90°,∴AC 2=AB ⋅AE ,∴52=3AE ,∴AE =253;∴BE =AE−AB =253−3=163过F 作于H ,(2)FH ⊥BC ,∵AD//BC ,∴∠BAD =∠CBE =90°,∴∠FAB =∠ABH =∠BHF =90°四边形ABHF 是矩形,∴,,∴FH =AB =3BH =AF =y ,∴CH =4−y,∵∠FCE =90°,∴∠FCH +∠ECB =∠ECB +∠BEC =90°,∴∠FCH =∠BEC ∽,∴△CFH △ECB ,∴CH BE =FH BC ,∴4−y x =34,;∴y =34x−4(0≤x ≤163),(3)∵CF =GC ,∴∠CGF =∠CFG ,∵AD//BC ,∴∠AFE =∠CGF ,∴∠CFG =∠AFE ,∵∠FAE =∠FCE =90°,∴CE =AE =3+x 在中,Rt △BCE ,∵BC 2+BE 2=CE 2,∴(x +3)2=x 2+42,∴x =76.∴BE =76【解析】如图1,根据勾股定理得到,根据射影定理即可得到结(1)AC =32+42=5论;过F 作于H ,根据平行线的性质得到,根据矩形的性(2)FH ⊥BC ∠BAD =∠CBE =90°质得到,,求得,根据相似三角形的性质即可得FH =AB =3BH =AF =y CH =4−y 到结论;根据等腰三角形的性质和平行线的性质得到,根据角平分线的性质得(3)∠CFG =∠AFE 到,根据勾股定理即可得到结论.CE =AE =3+x 本题考查几何变换综合题、相似三角形的判定和性质、矩形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会正确寻找相似三角形解决问题,学会用方程的思想思考问题,属于中考压轴题.。
沪教版八年级上册数学期末测试卷2套详细答案
第一套八年级上册数学期末测试卷2套详细答案一、选择:(本题共6题,每题3分,满分18分)1.已知最简二次根式与是同类二次根式,则x的值是()A.﹣1 B.0 C.1 D.22.下面的代数式中,其中 +1的一个有理化因式是()A.B. C. +1 D.﹣13.如关于x的方程ax2﹣3x+2=0是一元二次方程,则a的取值范围是()A.a>0 B.a≥0 C.a=1 D.a≠04.下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系5.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等6.如图所示,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论正确的是()A.CM=BC B.CB=AB C.∠ACM=30° D.CH•AB=AC•BC二、填空题(本题共12小题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.计算: = .8.计算: = .9.如关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是.10.在实数范围内分解因式x2﹣4x﹣1= .11.函数的定义域是.12.如正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是.13.命题“全等三角形的周长相等”的逆命题是.14.经过已知点A和点B的圆的圆心的轨迹是.15.已知直角坐标平面内两点A(﹣3,1)和B(1,2),那么A、B两点间的距离等于.16.如在四边形ABCD中,∠B=60°,AB=BC=13,AD=12,DC=5,那么∠ADC= .17.边长为5的等边三角形的面积是.18.已知在△AOB中,∠B=90°,AB=OB,点O的坐标为(0,0),点A的坐标为(0,4),点B在第一象限内,将这个三角形绕原点O逆时针旋转75°后,那么旋转后点B的坐标为.三、解答题(本大题共8题,满分58分)19.计算:.20.解方程:(x﹣)2+4x=0.21.已知关于x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,求这个方程根的判别式的值.22.如图所示,在△ABC中,∠C=90°,AC=6cm,AB=10cm,点D 在边AC上,且点D到边AB和边BC的距离相等.(1)作图:在AC上求作点D;(保留作图痕迹,不写作法)(2)求CD的长.23.如图所示,在直角坐标系xOy中,反比例函数图象与直线y=x相交于横坐标为2的点A.(1)求反比例函数的解析式;(2)如点B在直线y=x上,点C在反比例函数图象上,BC∥x 轴,BC=3,且BC在点A上方,求点B的坐标.24.如图示,已知在△ABC中,∠ABC=90°,点E是AC的中点,联结BE,过点C作CD∥BE,且∠ADC=90°,在DC取点F,使DF=BE,分别联结BD、EF.(1)求证:DE=BE;(2)求证:EF垂直平分BD.25.为改善奉贤交通状况,使奉贤区融入上海1小时交通圈内,上海轨交5号线南延伸工程于2014年启动,并将于2017年年底通车.(1)某施工队负责地铁沿线的修路工程,原计划每周修2000米,但由于设备故障第一周少修了20%,从第二周起工程队增加工人和设备,加快了速度,第三周修了2704米,求该工程队第二周、第三周平均每周的增长率.(2)轨交五号线从西渡站到南桥新城站,行驶过程中的路程y (千米)与时间x(分钟)之间的函数图象如图所示.请根据图象解决下列问题:①求y关于x的函数关系式并写出定义域;②轨交五号线从西渡站到南桥新城站沿途经过奉浦站,如果它从西渡站到奉浦站的路程是4千米,那么轨交五号线从西渡站到奉浦站需要多少时间?26.如图示,已知△ABC中,∠ACB=90°,∠ABC=30°,AC=2,点P是边AB上的一个动点,以点P为圆心,PB的长为半径画弧,交射线BC于点D,射线PD交射线AC于点E.(1)当点D与点C重合时,求PB的长;(2)当点E在AC的延长线上时,设PB=x,CE=y,求y关于x的函数关系式,并写出定义域;(3)当△PAD是直角三角形时,求PB的长.第一套:八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)1.如果最简二次根式与是同类二次根式,那么x的值是()A.﹣1 B.0 C.1 D.2【考点】同类二次根式.【分析】根据题意,它们的被开方数相同,列出方程求解即可.【解答】解:由最简二次根式与是同类二次根式,得x+2=3x,解得x=1.故选:C.2.下列代数式中, +1的一个有理化因式是()A.B. C. +1 D.﹣1【考点】分母有理化.【分析】根据有理化因式的定义进行求解即可.两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.【解答】解:∵由平方差公式,()()=x﹣1,∴的有理化因式是,故选D.3.如果关于x的方程ax2﹣3x+2=0是一元二次方程,那么a取值范围是()A.a>0 B.a≥0 C.a=1 D.a≠0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:依题意得:a≠0.故选:D.4.下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系【考点】反比例函数的定义;正比例函数的定义.【分析】分别利用反比例函数、正比例函数以及二次函数关系分别分析得出答案.【解答】解:A、一个人的体重与他的年龄成正比例关系,错误;B、正方形的面积和它的边长是二次函数关系,故此选项错误;C、车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D、水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;故选:C.5.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等【考点】直角三角形全等的判定.【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【解答】解:A、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;B、可以利用边角边判定两三角形全等,不符合题意;C、可以利用边角边或HL判定两三角形全等,不符合题意;D、可以利用角角边判定两三角形全等,不符合题意.故选:A.6.如图,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论正确的是()A.CM=BC B.CB=AB C.∠ACM=30° D.CH•AB=AC•BC【考点】三角形的角平分线、中线和高.【分析】由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH ∽△CHB,然后由相似三角形的对应边成比例,证得CH2=AH•HB;由△ABC中,∠ACB=90°,CM是斜边AB上中线,根据直角三角形斜边的中线等于斜边的一半,即可得CM=AB.【解答】解:△ABC中,∠ACB=90°,CM分别是斜边AB上的中线,可得:CM=AM=MB,但不能得出CM=BC,故A错误;根据直角三角形斜边的中线等于斜边的一半,即可得CM=AB,但不能得出CB=AB,故B错误;△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,无法得出∠ACM=30°,故C错误;由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH∽△CHB,根据相似三角形的对应边成比例得出CH•AB=AC•BC,故D正确;故选D二、填空题(本题共12小题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.计算: = 2.【考点】算术平方根.【分析】根据算术平方根的性质进行化简,即=|a|.【解答】解: ==2.故答案为2.8.计算: = 2a .【考点】二次根式的加减法.【分析】先化简二次根式,再作加法计算.【解答】解:原式=a+a=2a,故答案为:2a.9.如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m 的取值范围是m<﹣4 .【考点】根的判别式.【分析】根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围.【解答】解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4.10.在实数范围内分解因式x2﹣4x﹣1= (x﹣2+)(x﹣2﹣).【考点】实数范围内分解因式.【分析】根据完全平方公式配方,然后再把5写成()2利用平方差公式继续分解因式.【解答】解:原式=x2﹣4x+4﹣5=(x﹣2)2﹣5=(x﹣2+)(x﹣2﹣).故答案为:(x﹣2+)(x﹣2﹣).11.函数的定义域是x>﹣2 .【考点】函数自变量的取值范围.【分析】根据当表达式的分母中含有自变量时,自变量取值要使分母不为零,求解即可.【解答】解:由题意得:>0,即:x+2>0,解得:x>﹣2.故答案为:x>﹣2.12.如正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是k>3 .【考点】正比例函数的性质.【分析】根据正比例函数y=(k﹣3)x的图象经过第一、三象限得出k的取值范围即可.【解答】解:因为正比例函数y=(k﹣3)x的图象经过第一、三象限,所以k﹣3>0,解得:k>3,故答案为:k>3.13.命题“全等三角形的周长相等”的逆命题是周长相等的三角形是全等三角形.【考点】命题与定理.【分析】交换原命题的题设和结论即可得到原命题的逆命题.【解答】解:命题“全等三角形的周长相等”的逆命题是周长相等的三角形是全等三角形,故答案为:周长相等的三角形是全等三角形、14.经过已知点A和点B的圆的圆心的轨迹是线段AB的垂直平分线.【考点】轨迹.【分析】要求作经过已知点A和点B的圆的圆心,则圆心应满足到点A和点B的距离相等,从而根据线段的垂直平分线性质即可求解.【解答】解:据同圆的半径相等,则圆心应满足到点A和点B的距离相等,即经过已知点A和点B的圆的圆心的轨迹是线段AB 的垂直平分线.故答案为线段AB的垂直平分线.15.已知直角坐标平面内两点A(﹣3,1)和B(1,2),那么A、B两点间的距离等于.【考点】两点间的距离公式.【分析】根据两点间的距离公式,可以得到问题的答案.【解答】解:∵直角坐标平面内两点A(﹣3,1)和B(1,2),∴A、B两点间的距离为: =.故答案为.16.如在四边形ABCD中,∠B=60°,AB=BC=13,AD=12,DC=5,那么∠ADC= 90°.【考点】勾股定理的逆定理;等边三角形的判定与性质.【分析】根据等边三角形的判定得出△ABC是等边三角形,求出AC=13,根据勾股定理的逆定理推出即可.【解答】解:连接AC,∵∠B=60°,AB=BC=13,∴△ABC是等边三角形,∴AC=13,∵AD=12,CD=5,∴AD2+CD2=AC2,∴∠AC=90°,故答案为:90°.17.边长为5的等边三角形的面积是.【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可以求得高线AD的长度,根据三角形的面积公式即可得出结果.【解答】解:如图所示:作AD⊥BC于D,∵△ABC是等边三角形,∴D为BC的中点,BD=DC=,在Rt△ABD中,AB=5,BD=,∴AD===,∴等边△ABC的面积=BC•AD=×5×=.故答案为:.18.已知在△AOB中,∠B=90°,AB=OB,点O的坐标为(0,0),点A的坐标为(0,4),点B在第一象限内,将这个三角形绕原点O逆时针旋转75°后,那么旋转后点B的坐标为(,).【考点】坐标与图形变化-旋转;解直角三角形.【分析】易得△AOB的等腰直角三角形,那么OB的长为2,绕原点O逆时针旋转75°后,那么点B与y轴正半轴组成30°的角,利用相应的三角函数可求得旋转后点B的坐标.【解答】解:∵∠B=90°,AB=OB,点O的坐标为(0,0),点A 的坐标为(0,4),∴OA=4.∴OB=2,∵将这个三角形绕原点O逆时针旋转75°,∴点B与y轴正半轴组成30°的角,点B的横坐标为﹣,纵坐标为.∴旋转后点B的坐标为(,).三、解答题(本大题共8题,满分58分)[将下列各题的解答过程,做在答题纸的相应位置上]19.计算:.【考点】二次根式的加减法.【分析】根据二次根式的加减法,即可解答.【解答】解:由题意,得 m>0原式==20.解方程:(x﹣)2+4x=0.【考点】二次根式的混合运算.【分析】利用完全平方公式把原方程变形,根据二次根式的加减法法则整理,解方程即可.【解答】解:,,,,所以原方程的解是:.21.已知关于x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,求这个方程根的判别式的值.【考点】整式的加减—化简求值.【分析】首先根据x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,可得(m﹣2)2=0,据此求出m的值是多少;然后根据△=b2﹣4ac,求出这个方程根的判别式的值是多少即可.【解答】解:∵关于x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,∴(m﹣2)2=0,解得m=2,∴原方程是x2+5x=0,∴△=b2﹣4ac=52﹣4×1×0=25∴这个方程根的判别式的值是25.22.如图,在△ABC中,∠C=90°,AC=6cm,AB=10cm,点D在边AC上,且点D到边AB和边BC的距离相等.(1)作图:在AC上求作点D;(保留作图痕迹,不写作法)(2)求CD的长.【考点】作图—基本作图;全等三角形的判定与性质;角平分线的性质.【分析】(1)直接利用角平分线的做法得出符合题意的图形;(2)直接利用角平分线的性质结合全等三角形的判定与性质得出BC=BE,进而得出DC的长.【解答】解:(1)如图所示:(2)过点D作DE⊥AB,垂足为点E,∵点D到边AB和边BC的距离相等,∴BD平分∠ABC.(到角的两边距离相等的点在这个角的平分线上)∵∠C=90°,DE⊥AB,∴DC=DE.(角平分线上的点到角的两边的距离相等)在Rt△CBD和Rt△EBD中,∴Rt△CBD≌Rt△EBD(HL),∴BC=BE.∵在△ABC中,∠C=90°,∴AB2=BC2+AC2.(勾股定理)∵AC=6cm,AB=10cm,∴BC=8cm.∴AE=10﹣8=2cm.设DC=DE=x,∵AC=6cm,∴AD=6﹣x.∵在△ADE中,∠AED=90°,∴AD2=AE2+DE2.(勾股定理)∴(6﹣x)2=22+x2.解得:.即CD的长是.23.如图所示,在直角坐标系xOy中,反比例函数图象与直线y=x相交于横坐标为2的点A.(1)求反比例函数的解析式;(2)如点B在直线y=x上,点C在反比例函数图象上,BC∥x 轴,BC=3,且BC在点A上方,求点B的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把x=2代入y=x 得出点A 坐标,从而求得反比例函数的解析式;(2)设点C (,m ),根据BC ∥x 轴,得点B (2m ,m ),再由BC=3,列出方程求得m ,检验得出答案.【解答】解:(1)设反比例函数的解析式为y=(k ≠0),∵横坐标为2的点A 在直线y=x 上,∴点A 的坐标为(2,1), ∴1=,∴k=2,∴反比例函数的解析式为;(2)设点C (,m ),则点B (2m ,m ),∴BC=2m ﹣=3,∴2m 2﹣3m ﹣2=0,∴m 1=2,m 2=﹣,m 1=2,m 2=﹣都是方程的解,但m=﹣不符合题意,∴点B 的坐标为(4,2).24.如图,已知在△ABC中,∠ABC=90°,点E是AC的中点,联结BE,过点C作CD∥BE,且∠ADC=90°,在DC取点F,使DF=BE,分别联结BD、EF.(1)求证:DE=BE;(2)求证:EF垂直平分BD.【考点】直角三角形斜边上的中线;线段垂直平分线的性质.【分析】(1)根据直角三角形斜边上的中线的性质求出BE=DE,根据等腰三角形性质求出即可;(2)证出DE=DF,得出∠DEF=∠DFE,证出∠BEF=∠DEF,即可得出结论.【解答】(1)证明:∵∠ABC=90°,∠ADC=90°,点E是AC的中点,∴,.(直角三角形斜边上的中线等于斜边的一半)∴BE=DE.(2)证明:∵CD∥BE,∴∠BEF=∠DFE.∵DF=BE,BE=DE,∴DE=DF.∴∠DEF=∠DFE.∴∠BEF=∠DEF.∴EF垂直平分BD.(等腰三角形三线合一)25.为改善奉贤交通状况,使奉贤区融入上海1小时交通圈内,上海轨交5号线南延伸工程于2014年启动,并将于2017年年底通车.(1)某施工队负责地铁沿线的修路工程,原计划每周修2000米,但由于设备故障第一周少修了20%,从第二周起工程队增加工人和设备,加快了速度,第三周修了2704米,求该工程队第二周、第三周平均每周的增长率.(2)轨交五号线从西渡站到南桥新城站,行驶过程中的路程y (千米)与时间x(分钟)之间的函数图象如图所示.请根据图象解决下列问题:①求y关于x的函数关系式并写出定义域;②轨交五号线从西渡站到南桥新城站沿途经过奉浦站,如果它从西渡站到奉浦站的路程是4千米,那么轨交五号线从西渡站到奉浦站需要多少时间?【考点】一元二次方程的应用;一次函数的应用.【分析】(1)首先表示出第一周修的长度,进而利用结合求第二周、第三周平均每周的增长率,得出等式求出答案;(2)①直接利用待定系数法求出函数解析式,再利用图形得出x 的取值范围;②当y=4代入函数解析式进而求出答案.【解答】解:(1)设该工程队第二周、第三周平均每周的增长率为x ,由题意,得 2000(1﹣20%)(1+x )2=2704.整理,得 (1+x )2=1.69.解得 x 1=0.3,x 2=﹣2.3.(不合题意,舍去)答:该工程队第二周、第三周平均每周的增长率是30%.(2)①由题意可知y 关于x 的函数关系式是y=kx (k ≠0), 由图象经过点(10,12)得:12=10k ,解得:k=.∴y 关于x 的函数关系是:y=x (0≤x ≤10);②由题意可知y=4,∴,解得:x=,答:五号线从西渡站到奉浦站需要分钟.26.如图所示,已知△ABC中,∠ACB=90°,∠ABC=30°,AC=2,点P是边AB上的一个动点,以点P为圆心,PB的长为半径画弧,交射线BC于点D,射线PD交射线AC于点E.(1)当点D与点C重合时,求PB的长;(2)当点E在AC的延长线上时,设PB=x,CE=y,求y关于x的函数关系式,并写出定义域;(3)当△PAD是直角三角形时,求PB的长.【考点】三角形综合题.【分析】(1)根据直角三角形的性质得到AC=AB,根据等腰三角形的性质得到∠PCB=∠B=30°,根据等边三角形的性质即可得到结论;(2)由等腰三角形的性质得到∠PDB=∠B=30°,求得AE=AP,即可得到结论;(3)①如图2所示,当点E在AC的延长线上时,求得∠PDA=90°,根据直角三角形的性质得到PD=AP,解方程得到x=;②如图3,当点E在AC边上时,根据直角三角形的性质得到AP=PD.解方程得到x=.【解答】解:(1)如图1所示,∵在△ABC 中,∠ACB=90°,∠ABC=30°,∴AC=AB,∵AC=2,∴AB=4,∵以点P为圆心,PB的长为半径画弧,交射线BC于点D,点D 与点C重合,∴PD=PB,∴∠PCB=∠B=30°,∴∠APC=∠ACD=60°,∴AP=AC=2,∴BP=2;(2)∵PD=PB,∠ABC=30°,∴∠PDB=∠B=30°,∴∠APE=60°,∠CDE=30°,∵∠ACD=90°,∴∠AEP=60°,∴AE=AP,∵PB=x,CE=y,∴2+y=4﹣x,y=2﹣x.(0<x<2);(3)①如图2,当点E在AC的延长线上时,连接AD,∵△PAD是直角三角形,∠APD=60°,∠PAD<60°,∴∠PDA=90°,∴∠PAD=30°.∴PD=AP,即x=(4﹣x),∴x=;②如图3,当点E在AC边上时,连接AD∵△PAD是直角三角形,∠APD=60°,∠ADP<60°,∴∠PAD=90°,∴∠PDA=30°.∴AP=PD.即4﹣x=x,∴x=.综上所述:当PB的长是或时,△PAD是直角三角形.第二套:八年级上册培优数学试题时间:120分钟 满分150分一、选择 (共10小题,每小题4分,共40分)1. 在平面直角坐标系中,点P(-1,4)一定是在 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.若点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为 ( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)3.一次函数y=﹣2x ﹣3一定不经过 ( )A .第一象限 B. 第二象限 C. 第三象限 D.第四象限4.下列图形当中,为轴对称图形的是 ( )5.函数y=21 x 中的自变量x 的取值范围是 ( )A .x ≠2 B. x <2 C. x ≥2 D.x >26△ABC 中,∠A ﹦31∠B ﹦51∠C ,则△ABC 是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定7.如果一次函数y﹦kx﹢b的图象经过第一象限,且与y轴负半轴相交,那么()A. k﹥0,b﹥0B. k﹥0,b﹤0C. k﹤0,b﹥0D. k﹤0, b﹤08.如图,直线y﹦kx﹢b交坐标轴于A,B两点,则不等式kx﹢b﹥0的解集是()A. x﹥-2B. x﹥3C. x﹤-2D. x﹤39.如图示,OD=OB,AD∥BC,则全等三角形有()A. 2对B. 3对C. 4对D. 5对10. 两个一次函数y=-x+5和y=﹣2x+8的图象的交点坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)二、填空题(本题共4小题,每小题5分,满分20分)11.通过平移把点A(2,-1)移到点A’(2,2),按同样的平移方式,点B(-3,1)移动到点B’,则点B’的坐标是 .12.如图所示,将两根钢条A A’、 B B’的中点O连在一起,使A A’、B B’可以绕着点O自由转动,就做成了一个测量工具,则A’ B’的长等于内槽宽AB,那么判定△OAB≌△OA’ B’的理由是 .13.2008年罕见雪灾发生之后,灾区急需帐篷。
上海市八年级(上)期末数学试卷含答案
八年级(上)期末数学试卷题号一二三总分得分一、选择题(本大题共6小题,共12.0分)1.下列计算正确的是( )A. B. 5+6=11a 4=a 2C. D. 7m +3m =2m2a +3a =6a2.下列方程配方正确的是( )A. B. x 2−2x−1=(x +1)2−1x 2−4x +1=(x−2)2−4C. D. x 2−4x +1=(x−2)2−3x 2−2x−2=(x−1)2+13.下列关于x 的二次三项式中表示实数,在实数范围内一定能分解因式的是(m )( )A. B. C. D. x 2−2x +22x 2−mx +1x 2−2x +m x 2−mx−14.下列命题的逆命题是真命题的是( )A. 对顶角相等B. 等角对等边C. 同角的余角相等D. 全等三角形对应角相等5.已知点,,都在反比例函数的图象上,则A(1,y 1)B(2,y 2)C(−2,y 3)y =kx (k >0)( )A. B. C. D. y 1>y 2>y 3y 3>y 2>y 1y 2>y 3>y 1y 1>y 3>y 26.如图,在中,,点O 是、平分△ABC ∠B =90°∠CAB ∠ACB 线的交点,且,,则点O 到边AB 的距BC =4cm AC =5cm 离为( )A. 1cmB. 2cmC. 3cmD. 4cm二、填空题(本大题共12小题,共36.0分)7.计算:______.18−2=8.方程的根是______.x 2+2x =09.已知函数,则______.f(x)=x−1xf(2)=10.函数的定义域是______.y =22x +111.关于x 的方程有两个不相等的实数根,那么m 的取值范围是x 2−3x +m =0______.12.正比例函数经过点,那么y 随着x 的增大而______填“增大”y =kx(k ≠0)(2,1).(或“减小”)13.平面内到点O 的距离等于3厘米的点的轨迹是______.14.已知直角坐标平面内两点和,则A 、B 两点间的距离等于A(−3,1)B(3,−1)______.15.如果直角三角形的面积是16,斜边上的高是2,那么斜边上的中线长是______.16.如图,中,,,交BC 于点D ,,则△ABC AB =AC ∠BAC =120°AD ⊥AC AD =4______.BC =17.把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角45°顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一直线上.若,则______.AB =2CD =18.如图,已知两个反比例函数:和:在第C 1y =1x C 2y =13x 一象限内的图象,设点P 在上,轴于点C ,交C 1PC ⊥x 于点A ,轴于点D ,交于点B ,则四边形C 2PD ⊥y C 2PAOB 的面积为______.三、解答题(本大题共8小题,共52.0分)19.计算:12+13−2−6×320.解方程:2x(x−3)+3(x−3)=021.已知y与成正比例,且当时,,求y与x的函数解析式.2x−3x=4y=1022.已知:如图,,,AB=12cm AD=13cm,,求的面CD=4cm BC=3cm∠C=90°.△ABD积.23.为了响应“低碳环保,绿色出行”的公益活动,小燕和妈妈决定周日骑自行车去图书馆借书.她们同时从家出发,小燕先以150米分的速度骑行一段时间,休息了5/分钟,再以m 米分钟的速度到达图书馆,而妈妈始终以120米分钟的速度骑行,//两人行驶的路程米与时间分钟的关系如图,请结合图象,解答下列问题:y()x()图书馆到小燕家的距离是______米;(1)______,______,______;(2)a =b =m =妈妈行驶的路程米关于时间分钟的函数解析式是______;定义域是______.(3)y()x()24.已知:如图,,于点E ,点A 在的角平分线上,且点A 到∠F =90°AE ⊥OC ∠FOC 点B 、点C 的距离相等.求证:.BF =EC25.已知:如图,在中,于点E ,点A 是△BCD CE ⊥BD 边CD 的中点,EF 垂直平分线AB 求证:;(1)BE =12CD 当,时,求的度数.(2)AB =BC ∠ABD =25°∠ACB26.如图,在平面直角坐标系中,,轴于OA ⊥OB AB ⊥x 点C ,点在反比例函数的图象上.A(3,1)y =kx 求反比例函数的表达式;(1)y =kx 求的面积;(2)△AOB 在坐标轴上是否存在一点P ,使得以O 、B 、P 三(3)点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P 的坐标:若不存在,简述你的理由.答案和解析1.【答案】B(A)=5+6【解析】解:原式,故选项A错误;(B)=a2原式,故选项B正确;(C)=7m+3m原式,故选项C错误;(D)=2a+3a原式,故选项D错误;故选:B.根据二次根式的运算法则即可求出答案.本题考查二次根式,解题的关键是正确理解二次根式的运算法则,本题属于基础题型.2.【答案】CA.x2−2x−1=(x+1)2−2【解析】解:,此选项配方错误;B.,此选项配方错误;x2−4x+1=(x−2)2−3C.,此选项配方正确;x2−4x+1=(x−2)2−3D.,此选项配方错误;x2−2x−2=(x−1)2−3故选:C.配上一次项系数一半的平方,然后再整理即可得.−本题主要考查解一元二次方程配方法,解题的关键是熟练掌握完全平方公式.3.【答案】Dx2−2x+2=0△=4−4×2=−4<0x2【解析】解:选项A,,,方程没有实数根,即−2x+2在数范围内不能分解因式;2x2−mx+1=0△=m2−82x2−mx+1选项B,,的值有可能小于0,即在数范围内不一定能分解因式;x2−2x+m=0△=4−4m x2−2x+m选项C,,的值有可能小于0,即在数范围内不一定能分解因式;x2−mx−1=0△=m2+4>0x2−mx−1选项D,,,方程有两个不相等的实数根,即在数范围内一定能分解因式.故选:D.对每个选项,令其值为0,得到一元二次方程,计算判别式的值,即可判断实数范围内一定能分解因式的二次三项式.本题考查二次三项式在实数范围内的因式分解.解题的关键是把问题转化为一元二次方程是否有实数根的问题.4.【答案】B【解析】解:A、逆命题为:相等的角是对顶角,不成立,如位于不同平面上的两个相等的角就不是对顶角,是假命题;B、逆命题为:等边对等角,成立,是真命题;C、逆命题为:相等的角为同一个角的余角,不成立,因为钝角没有余角,是假命题;D、逆命题为:对应角相等的三角形全等,不成立,如形状相同的两个大小不一样的三角板,是假命题;故选:B .分别写出各个命题的逆命题,然后判断正误即可.考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,难度不大.5.【答案】A【解析】解:函数图象如图所示:,y 1>y 2>y 3故选:A .画出函数图象,利用图象法即可解决问题.本题考查反比例函数图象上的点的指标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.6.【答案】A【解析】解:点O 为与的平分线的交点,∵∠CAB ∠ACB点O 在的角平分线上,∴∠ACB 点O 为的内心,∴△ABC 过O 作,连接OB ,OP ⊥AB S △ABC =S △AOC +S △OAB +S △OBC =12OP ⋅AC +12OP ⋅AB +12OP ⋅BC =12OP ⋅,(AB +BC +AC)又,,为直角三角形,∵AC =5BC =4△ABC ∠B =90°,∴AB =3,∴12×3×4=12⋅OP(3+4+5)解得:.OP =1故选:A .直接利用内心的定义结合三角形面积求法得出答案.此题主要考查了角平分线的性质以及三角形面积求法,正确表示出三角形面积是解题关键.7.【答案】22【解析】解:18−2 =32−2.=22故答案为:.22先将二次根式化为最简,然后合并同类二次根式即可得出答案.本题考查二次根式的减法运算,难度不大,注意先将二次根式化为最简是关键.8.【答案】,x 1=0x 2=−2【解析】解:,x(x +2)=0或,x =0x +2=0,,x 1=0x 2=−2故答案为,.x 1=0x 2=−2先提公因式,再化为两个一元一次方程即可得出答案.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.9.【答案】12【解析】解:把代入,可得:,x =2f(x)=x−1xf(2)=2−12=12故答案为:12把代入函数解答即可.x =2此题考查函数的值,关键是把代入函数解答.x =210.【答案】x >−0.5【解析】解:函数的定义域是,y =22x +12x +1>0解得:,x >−0.5故答案为:x >−0.5根据二次根式的性质和分母不能等于0解答即可.此题考查函数自变量的取值范围,关键是根据二次根式的性质和分母不能等于0解答.11.【答案】m <94【解析】解:根据题意得,△=(−3)2−4m >0解得.m <94故答案为.m <94根据判别式的意义得到,然后解不等式即可.△=(−3)2−4m >0本题考查了一元二次方程的根的判别式:当,ax 2+bx +c =0(a ≠0)△=b 2−4ac △>0方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有△=0△<0实数根.12.【答案】增大【解析】解:点在正比例函数的图象上,∵(2,1)y =kx(k ≠0),∴k =12故,y =12x 则y 随x 的增大而增大.故答案为:增大.直接利用待定系数法求出正比例函数解析式进而得出答案.此题主要考查了待定系数法求正比例函数解析式以及正比例函数的图象与性质,正确求出解析式是解题关键.13.【答案】以点O 为圆心,3厘米长为半径的圆【解析】解:平面内到点O 的距离等于3厘米的点的轨迹是以点O 为圆心,3厘米长为半径的圆.故答案为:以点O 为圆心,3厘米长为半径的圆.只需根据圆的定义就可解决问题.本题主要考查的是圆的定义,其中圆是到定点的距离等于定长的点的集合.14.【答案】210【解析】解:直角坐标平面内两点 和,∵A(3,−1)B(−1,2)、B 两点间的距离等于,∴A (−3−3)2+(−1−1)2=210故答案为.210根据两点间的距离公式解答即可.d =(x 2−x 1)2+(y 2−y 1)2本题考查了两点间的距离公式,比较简单.掌握两点间的距离公式是解题的关键件.15.【答案】8【解析】解:设直角三角形的斜边长为x ,由题意得,,12×2×x =16解得,,x =16则斜边上的中线长,=12×16=8故答案为:8.根据三角形的面积公式求出斜边长,根据直角三角形的性质解答即可.本题考查的是直角三角形的性质、三角形的面积计算,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.16.【答案】12【解析】解:中,,,∵△ABC AB =AC ∠BAC =120°,∴∠C =∠B =30°交BC 于点D ,∵AD ⊥AC ,,∴CD =2AD =8∠BAD =30°=∠B ,∴BD =AD =4.∴BC =BD +CD =4+8=12故答案为:12.依据等腰三角形的内角和,即可得到,依据交BC 于点D ,即∠C =∠B =30°AD ⊥AC 可得到,,进而得出BC 的长.CD =2AD =8∠BAD =30°=∠B 本题主要考查了含角的直角三角形的性质以及等腰三角形的性质,解题时注意:在30°直角三角形中,角所对的直角边等于斜边的一半.30°17.【答案】6−2【解析】解:如图,过点A 作于F ,AF ⊥BC 在中,,Rt △ABC ∠B =45°,,∴BC =2AB =22BF =AF =22AB =2两个同样大小的含角的三角尺,∵45°,∴AD =BC =22在中,根据勾股定理得,,Rt △ADF DF =AD 2−AF 2=6,∴CD =BF +DF−BC =2+6−22=6−2故答案为:.6−2先利用等腰直角三角形的性质求出,,再利用勾股定理求出BC =22BF =AF =2DF ,即可得出结论.此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.18.【答案】23【解析】解:轴,轴,∵PC ⊥x PD ⊥y ,,∴S △AOC =S △BOD =12⋅|13|=12×13=16S 矩形PCOD =1四边形PAOB 的面积,∴=1−2×16=23故答案为.23根据反比函数比例系数k 的几何意义得到,,然S △AOC =S △BOD =12×13=16S 矩形PCOD =1后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB 的面积.本题考查了反比函数比例系数k 的几何意义:在反比例函数图象中任取一点,过y =k x 这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值.|k|19.【答案】解:原式=23+3+2−3×6=23+3+2−32.=33−22【解析】先分母有理化,再进行二次根式的乘法运算,然后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:,∵2x(x−3)+3(x−3)=0,∴(x−3)(2x +3)=0则或,x−3=02x +3=0解得:,.x 1=3x 2=−32【解析】利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【答案】解:与成正比例,∵y 2x−3设,∴y =k(2x−3)(k ≠0)将,代入得:,解得,x =4y =1010=(2×4−3)×k k =2所以,,y =2(2x−3)所以y 与x 的函数表达式为:.y =4x−6【解析】根据正比例函数的定义设,然后把x 、y 的值代入求出y−1=k(x +1)(k ≠0)k 的值,再整理即可得解.本题考查了待定系数法求一次函数解析式,注意利用正比例函数的定义设出函数关系式.22.【答案】解:,,,∵CD =4cm BC =3cm ∠C =90°,∴BD =42+32=5cm ,,∵AB =12cm AD =13cm ,∴BD 2+AB 2=AD 2,∴∠ABD =90°.∴S △ABD =12AB ⋅BD =12×12×5=30cm 2【解析】根据勾股定理的逆定理证明是直角三角形,即可求解.△ABD 此题主要是考查了勾股定理及其逆定理.关键是根据勾股定理的逆定理证明是直△ABD 角三角形.23.【答案】3000 10 15 200 y =120x 0≤x ≤25【解析】解:由图象可得,(1)图书馆到小燕家的距离是3000米,故答案为:3000;,(2)a =1500÷150=10,b =a +5=10+5=15,m =(3000−1500)÷(22.5−15)=200故答案为:10,15,200;妈妈行驶的路程米关于时间分钟的函数解析式是,(3)y()x()y =kx 当时,,y =3000x =3000÷120=25则,得,3000=25k k =120即妈妈行驶的路程米关于时间分钟的函数解析式是,定义域是y()x()y =120x ,0≤x ≤25故答案为:,.y =120x 0≤x ≤25根据函数图象中的数据可以直接写出图书馆到小燕家的距离;(1)根据题意和函数图象中的数据可以得到a 、b 、m 的值;(2)根据函数图象中的数据可以得到妈妈行驶的路程米关于时间分钟的函数解析(3)y()x()式以及定义域.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.【答案】证明:点A 在的角平分线上,,,∵∠FOC ∠F =90°AE ⊥OC ,∴AE =AF 点A 到点B 、点C 的距离相等,∵,∴AB =AC ,∵∠F =∠AEC =90°≌,∴Rt △ABF Rt △ACE(HL).∴BF =EC 【解析】证明≌即可解决问题.Rt △ABF Rt △ACE(HL)本题考查全等三角形的判定和性质,角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.【答案】证明:连接AE ,(1),点A 是边CD 的中点,∵CE ⊥BD ,∴AE =AD =12CD 垂直平分线AB ,∵EF ,∴EA =EB ;∴BE =12CD ,(2)∵EA =EB ,∴∠EAB =∠ABD =25°,∴∠AED =∠EAB +∠ABD =50°,∵EA =AD ,∴∠D =∠AED =50°,∴∠BAC =∠ABD +∠D =75°,∵AB =BC .∴∠ACB =∠BAC =75°【解析】连接AE ,根据直角三角形的性质得到,根据线段垂直平分(1)AE =AD =12CD 线的性质得到,等量代换证明结论;EA =EB 根据等腰三角形的性质、三角形的外角性质求出,根据等腰三角形的性质计算,(2)∠AED 得到答案.本题考查的是直角三角形的性质、线段垂直平分线的性质、三角形的外角性质,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.26.【答案】解:将代入,得:,(1)A(3,1)y =k x 1=k 3解得:,k =3反比例函数的表达式为.∴y =3x 点A 的坐标为,轴于点C ,(2)∵(3,1)AB ⊥x ,,∴OC =3AC =1,∴OA =AC 2+OC 2=2=2AC .∴∠AOC =30°,∵OA ⊥OB ,∴∠AOB =90°,∴∠B =∠AOC =30°,∴AB =2OA =4.∴S △AOB =12AB ⋅OC =12×4×3=23在中,,,,(3)Rt △AOB OA =2∠AOB =90°∠ABO =30°.∴OB =OA tan 30∘=23分三种情况考虑:当时,如图2所示,①OP =OB ,∵OB =23,∴OP =23点P 的坐标为,,,;∴(−23,0)(23,0)(0,−23)(0,23)当时,如图3,过点B 做轴于点D ,则②BP =BO BD ⊥y ,OD =BC =AB−AC =3,∵BP =BO 或,∴OP =2OC =23OP =2OD =6点P 的坐标为,;∴(23,0)(0,−6)当时,如图4所示.③PO =PB 若点P 在x 轴上,,,∵PO =PB ∠BOP =60°为等边三角形,∴△BOP ,∴OP =OB =23点P 的坐标为;∴(23,0)OP=a PD=3−a若点P在y轴上,设,则,∵PO=PB,∴PB2=PD2+BD2a2=(3−a)2+12,即,a=2解得:,∴(0,−2)点P的坐标为.综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角(−23,0)(23,0)(0,−23)(0,23)(0,−6)(0,−2)形,点P的坐标为,,,,,.(1)【解析】根据点A的坐标,利用待定系数法可求出反比例函数的表达式;(2)OA=2=2AC由点A的坐标可得出OC,AC的长,利用勾股定理可得出,进而可得∠AOC=30°∠B=∠AOC=30°30°出,结合三角形内角和定理可得出,利用角所对的直△AOB角边为斜边的一半可求出AB的长,再利用三角形的面积公式即可求出的面积;(3)OP=OB BP=BO PO=PB通过解直角三角形可求出OB的长,分,及三种情况,利用等腰三角形的性质可求出点P的坐标,此题得解.本题考查了待定系数法求反比例函数解析式、解直角三角形、三角形的面积以及等腰三(1)角形的性质,解题的关键是:根据点的坐标,利用待定系数法求出反比例函数的关(2)(3)OP=OB BP=BO PO=PB系式;通过解直角三角形,求出AB的长;分,及三种情况,利用等腰三角形的性质求出点P的坐标.。
2015-2016学年八年级上学期期末考试数学试题及答案
2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。
2016学年第一学期浦东新区八年级数学期末卷
—初二数学1—2015学年度浦东新区第一学期期末质量抽查初二数学试卷一、选择题:(本大题共6题,每题2分,满分12分)1.下列根式中,与2是同类二次根式的是……………………………………… ( ) (A )8; (B )4; (C )20; (D)32 .2.下列根式中,是最简二次根式的是 ………………………………………………( ) (A 3ab (B 3a b + (C 222a b ab +- (D 8a .3.用配方法解关于x 的方程0p 2=++q x x ,方程可变形为 ……………………( ) (A )44222)(qp P x -=+; (B )44222)(p q P x -=+;(C )44222)(qp P x -=-; (D )44222)(p q P x -=-. 4.正比例函数1(1)y k x =+(11k ≠-)与反比例函数2k y x=(20k ≠)的 大致图像如图所示,那么1k 、2k 的取值范围是……………… ( ) (A )11k >-,20k >; (B )11k >-,20k <; (C )11k <-,20k >; (D )11k <-,20k <.5.分别以下列各组线段为边的三角形中不是直角三角形的是………………………( ) (A )10,24,26;(B )15,20,25;(C )8,10,12; (D )123 6.下列命题正确的是 …………………………………………………………………( ) (A )到角的两边距离相等的点在这个角的平分线上;(B )线段的垂直平分线上的点与该线段的两端点均能构成等腰三角形; (C )三角形一边的两端到这边中线所在的直线的距离相等; (D )两边及第三边上的高对应相等的两个三角形全等。
二、填空题:(本大题共12题,每题3分,满分36分) 7.方程x x x =-)2(的根是_____________.8.在实数范围内分解因式:221x x --= .9. 已知1-<x 且0>y ,化简:=+32)1(yx .10. 函数x y -=2的定义域为 .11. 写出命题“等腰三角形两腰上的高相等”的逆命题:如果 ,—初二数学2—那么 .12. 平面内到点O 的距离等于3厘米的点的轨迹是 . 13. 直角坐标平面内的两点)6,2(-P 、)3,2(Q 的距离为 .14. 在等腰△ABC 中,AB =AC =10,点D 、E 分别是BC 、AC 边上的中点,那么DE = . 15.如图,已知:△ABC 中,∠C =90°,AC = 40,BD 平分∠ABC 交AC 于D ,AD :DC =5:3,则D 点到AB 的距离 .16. 如图,在△ABC 中,BC =8cm , BC 边的垂直平分线交BC 于点D ,交AB 于点E ,如果△AEC 的周长为15 cm ,那么△ABC 的周长为 cm .17. 如图,在△ABC 中,AB=AC ,∠A =120°,D 是BC 的中点,DE ⊥AB ,垂足是E ,则AE ︰BE = .18. 在ABC ∆中,90ACB ∠=︒,CA CB =,AD 是ABC ∆中CAB ∠的平分线,点E 在边AB 上,如果2DE CD =,那么ADE ∠=___________度.三、解答题(本大题共8题,满分52分)19.(本题满分5分)计算:)681(2)2124(+--20.(本题满分5分)已知关于x 的方程222(1)0x m x m -++= (1)当m 取何值时,方程有两个相等的实数根;(2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个根。
八年级上册上海数学全册全套试卷测试卷(解析版)
又∵DP+PE=DE,
∴a+(2a-6)=4,
解得a=
∴2a-3= ,
∴P( , );
当点P在AC下方时,过P作y轴的垂线,垂足为D,交BC于E,
a=2,
此时,CE=2,BE=2,
即BC=2+2=4>AO,不合题意;
综上所述,点P的坐标为P( , )
故答案为P( , ).
A.120°B.135°C.150°D.不能确定
【答案】B
【解析】
【分析】
先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.
【详解】
解:
∵∠1+∠2=90°,
【答案】(-4,2)或(-4,3)
【解析】
【分析】
【详解】
把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC全等.
故答案为(-4,2)或(-4,3).
14.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.
本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.
8.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()
A.α-β+γ=180°B.α+β-γ=180°C.α+β+γ=360°D.α-β-γ=90°
【答案】B
第一学期上海市八年级数学期末卷
AD E B C 2015学年度第一学期八年级数学期终试卷(测试时间90分钟,满分100分)一、填空题(本大题共14题,每题2分,满分28分) 1x 的取值范围是 2.b a +的一个有理化因式是___________.3.已知关于x 的一元二次方程043)2(2=-++-m x x m 有一个根是0,则m=__________. 4.方程01832=-+x x 的解是__________.5.某种型号的书包原价为a 元,如果连续两次以相同的百分率x 涨价,那么两次涨价后的价格为_________元(用含a 和x 的代数式表示). 6.如果11)(-=x x f ,那么=)2(f __________. 7.在实数范围内分解因式:243x x --= _________________.8.已知0<mn ,那么函数x n my =的图像经过第__________象限. 9.若2>m ,则反比例函数xm y 2-=的图像在每个象限内,y 的值随x 的值增大而10.在Rt △ABC 中,∠C=90°,AB =32,BC=3,那么∠B = 度.11.经过已知点A 和点B 的圆的圆心的轨迹是______________________________________. 12.如图,等腰△ABC 的腰长为8,底边BC = 5,如果AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,那么△BEC 的周长为.13. 如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,AE 为折痕。
已知AB =8,BC =10,则EC 的长为 。
14. 已知在△ABC 中,AB=15,AC=13,BC 边上的高为12,那么BC 的长是 .第13题图第12题图二、选择题(本大题共4题,每题3分,满分12分)15是同类二次根式的是……………………………( )(A (B (C (D 16.如果a 、c 异号,b ≠0,那么关于x 的方程02=++c bx ax …………………( ) (A )有两个相等的实数根; (B )有两个不相等的实数根; (C )仅有一个实数根 (D )没有实数根.17.在Rt △ABC 中,90A ∠=︒,∠B 与∠C 的平分线相交于点O ,那么∠BOC 等于…………………………………………………………………………………( ) (A )100°; (B )120°; (C )135°; (D )150°. 18.下列命题是假命题的是…………………………………………( ). (A) 三条边对应相等的两个三角形全等;(B )斜边和一条直角边对应相等的两个直角三角形全等; (C) 两边和第三边上的高对应相等的两个三角形全等; (D) 关于某条直线对称的两个三角形全等. 三、解答题(满分60分)19. (本题6分) 计算:⎫20.(本题7分) 解方程:2550x x --=.DCE AHFB FECBA D21.(本题7分)已知关于x 的方程()2212(1)0a x bx c x -+++=有两个相等的实数根,且,,a b c 是ABC ∆的三边,试判断ABC ∆的形状,并说明理由。
(完整word版)上海市黄浦区 八年级上学期期末数学试卷(解析版)
上海市黄浦区2014-2015学年八年级上学期期末数学试卷(解析版)2014-2015学年上海市黄浦区八年级(上)期末数学试卷一、选择题:(每题2分,共12分)1.在二次根式 A. 1个、、B. 2个22中,最简二次根式的个数() C. 3个 D. 0个 2.关于x的一元二次方程(m﹣2)x+3x+m﹣4=0有一个根是0,则m的值为()A. m=2 B. m=﹣2 C. m=﹣2或2 D.m≠03.在同一坐标系中,正比例函数y=x与反比例函数的图象大致是()A.B.C.D.4.已知反比例函数y=(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且x1<x2<0,则y1与y2的大小关系是()A. y1<y2 B. y1>y2 C. y1=y2 D.不能确定5.下列定理中,有逆定理存在的是()A.对顶角相等B.垂直平分线上的点到线段两端点的距离相等C.全等三角形的面积相等D.凡直角都相等6.如图,在等腰Rt△ABC中,∠A=90°,AB=AC,BD平分∠ABC,交AC 于点D,DE⊥BC,若BC=10cm,则△DEC的周长为()A. 8cm B. 10cm二、填空题:(每题3分,共36分)7.化简:=. C. 12cm D. 14cm第1页(共19页)8.分母有理化=.9.方程x(x﹣5)=6的根是10.某种品牌的笔记本电脑原价为5000元,如果连续两次降价的百分率都为10%,那么两次降价后的价格为元.11.函数12.如果13.在实数范围内分解因式:2x﹣x﹣2= .14.经过A、B两点的圆的圆心的轨迹是15.已知直角坐标平面内两点A(4,﹣1)和B(﹣2,7),那么A、B 两点间的距离等于.16.请写出符合以下条件的一个函数的解析式.①过点(3,1);②当x>0时,y随x的增大而减小.17.如图,已知OP平分∠AOB,∠AOB=60°,CP=4,CP∥OA,PD⊥OA 于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长为.2的自变量的取值范围是,那么= .18.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.第2页(共19页)三、简答题:(每题6分,共36分)19.化简:20.已知:关于x的一元二次方程(m﹣1)x﹣2mx+m+3=0.当m为何值时,方程有两个实数根?21.如图,已知点P(x,y)是反比例函数图象上一点,O是坐标原点,PA⊥x轴,S△PAO =4,且图象经过(1,3m﹣1);求:(1)反比例函数解析式.(2)m的值.2.22.假定甲乙两人在一次赛跑中,路程S(米)与时间t(秒)的关系式如图所示,那么可以知道:(1)这是一次米赛跑.(2)甲乙两人中,先到达终点的是.(3)乙在这次赛跑中的速度为.23.已知:如图,在△ABC中,AD是BC边上的高,CE是中线,F是CE 的中点,CD=AB,求证:DF⊥CE.24.已知:如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,以AC为边作等边△ACD,并作斜边AB的垂直平分线EH,且EB=AB,联结DE交AB于点F,求证:EF=DF.第3页(共19页)四、解答题:(每题8分,共16分)25.如图,直线y=x与双曲线y=(k>0)交于A点,且点A的横坐标为4,双曲线y=(k>0)上有一动点C(m,n),(0<m<4),过点A作x轴垂线,垂足为B,过点C作x轴垂线,垂足为D,连接OC.(1)求k的值.(2)设△COD与△AOB的重合部分的面积为S,求S关于m的函数解析式.(3)连接AC,当第(2)问中S的值为1时,求△OAC的面积.26.如图,正方形ABCD的边长为4厘米,(对角线BD平分∠ABC)动点P从点A出发沿AB边由A向B以1厘米/秒的速度匀速移动(点P不与点A、B重合),动点Q从点B出发沿折线BC﹣CD以2厘米/秒的速度匀速移动.点P、Q同时出发,当点P停止运动,点Q也随之停止.联结AQ,交BD 于点E.设点P运动时间为t秒.(1)用t表示线段PB的长;(2)当点Q在线段BC上运动时,t为何值时,∠BEP和∠BEQ相等;(3)当t为何值时,P、Q之间的距离为2cm.第4页(共19页)2014-2015学年上海市黄浦区八年级(上)期末数学试卷参考答案与试题解析一、选择题:(每题2分,共12分)1.在二次根式、、中,最简二次根式的个数()A. 1个 B. 2个 C. 3个 D. 0个考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:==,被开方数含能开得尽方的因数,不是最简二次根式;被开方数含分母,不是最简二次根式;符合最简二次根式的定义,是最简二次根式.故选:A.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.关于x的一元二次方程(m﹣2)x+3x+m﹣4=0有一个根是0,则m的值为()A. m=2 B. m=﹣2 C. m=﹣2或2 D.m≠0考点:一元二次方程的解;一元二次方程的定义.分析:根据一元二次方程的解的定义、一元二次方程的定义求解,把x=0代入一元二次方程即可得出m的值.22解答:解:把x=0代入方程(m﹣2)x+3x+m﹣4=0,2得m﹣4=0,解得:m=±2,∵m﹣2≠0,∴m=﹣2,故选B.点评:本题逆用一元二次方程解的定义易得出m的值,但不能忽视一元二次方程成立的条件m﹣2≠0,因此在解题时要重视解题思路的逆向分析.3.在同一坐标系中,正比例函数y=x与反比例函数的图象大致是()22第5页(共19页)A.B.C.D.考点:反比例函数的图象;正比例函数的图象.分析:根据正比例函数与反比例函数图象的性质解答即可.解答:解:∵正比例函数y=x中,k=1>0,故其图象过一、三象限,反比例函数y=﹣的图象在二、四象限,选项C符合;故选C.点评:本题主要考查了反比例函数的图象性质和正比例函数的图象性质,关键是由k的取值确定函数所在的象限.4.已知反比例函数y=(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且x1<x2<0,则y1与y2的大小关系是()A. y1<y2 B. y1>y2考点:反比例函数图象上点的坐标特征. C. y1=y2 D.不能确定分析:由于反比例函数y=(k<0)的k<0,可见函数位于二、四象限,由于x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,于是根据二次函数的增减性判断出y1与y2的大小.解答:解:∵反比例函数y=(k<0)的k<0,可见函数位于二、四象限,∵x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,由于在二四象限内,y随x的增大而增大,∴y1<y2.故选A.点评:本题考查了反比例函数图象上的点的坐标特征,函数图象上的点的坐标符合函数解析式.同时要熟悉反比例函数的增减性.5.下列定理中,有逆定理存在的是()A.对顶角相等B.垂直平分线上的点到线段两端点的距离相等C.全等三角形的面积相等D.凡直角都相等考点:命题与定理.分析:先写出四个命题的逆命题,然后分别根据对顶角的定义、线段垂直平分线的逆定理、全等三角形的判定和直角的定义进行判断.第6页(共19页)解答:解:A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;B、“垂直平分线上的点到线段两端点的距离相等”的逆命题为“到线段两端点的距离相等的点在线段的垂直平分线上”,此逆命题为真命题,所以B选项正确;C、“全等三角形面积相等”的逆命题为“面积相等的三角形全等”,此逆命题为假命题,所以C选项错误;D、“凡直角都相等”的逆命题为“相等的角都是直角”,此逆命题为假命题,所以D选项错误.故选B.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了定理.6.如图,在等腰Rt△ABC中,∠A=90°,AB=AC,BD平分∠ABC,交AC 于点D,DE⊥BC,若BC=10cm,则△DEC的周长为()A. 8cm B. 10cm C. 12cm D. 14cm考点:角平分线的性质;等腰直角三角形.分析:根据角平分线上的点到角的两边距离相等可得DE=AD,利用“HL”证明Rt△ABD和Rt△EBD全等,根据全等三角形对应边相等可得AB=AE,然后求出△DEC的周长=BC,再根据BC=10cm,即可得出答案.解答:解:∵BD是∠ABC的平分线,DE⊥BC,∠A=90°,∴DE=AD,在Rt△ABD和Rt△EBD中,∵,∴Rt△ABD≌Rt△EBD(HL),∴AB=AE,∴△DEC的周长=DE+CD+CE=AD+CD+CE,=AC+CE,=AB+CE,=BE+CE,=BC,∵BC=10cm,∴△DEC的周长是10cm.故选B.点评:本题考查的是角平分线的性质,涉及到等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质并求出△DEC的周长=BC是解题的关键.第7页(共19页)二、填空题:(每题3分,共36分)7.化简:=.考点:二次根式的性质与化简.分析:把被开方数化为两数积的形式,再进行化简即可.解答:解:原式= =3.故答案为:3.点评:本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.8.分母有理化=考点:分母有理化.分析:先找出分母的有理化因式,再把分子与分母同时乘以有理化因式,即可得出答案.解答:解:=﹣﹣1;故答案为:﹣﹣1.点评:此题考查了分母有理化,找出分母的有理化因式是本题的关键,注意结果的符号.9.方程x(x﹣5)=6考点:解一元二次方程-因式分解法.专题:计算题.分析:先把方程化为一般式,然后利用因式分解法解方程.2解答:解:x﹣5x﹣6=0,(x+1)(x﹣6)=0,x+1=0或x﹣6=0,所以x1=﹣1,x2=6.故答案为x1=﹣1,x2=6.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).10.某种品牌的笔记本电脑原价为5000元,如果连续两次降价的百分率都为10%,那么两次降价后的价格为 405O 元.考点:一元二次方程的应用.分析:先求出第一次降价以后的价格为:原价×(1﹣降价的百分率),再根据现在的价格=第一次降价后的价格×(1﹣降价的百分率)即可得出结果.解答:解:第一次降价后价格为5000×(1﹣10%)=4500元,第二次降价是在第一次降价后完成的,所以应为4500×(1﹣10%)=4050元.第8页(共19页)答:两次降价后的价格为405O元.故答案为:405O.点评:本题考查一元二次方程的应用,根据实际问题情景列代数式,难度中等.若设变化前的量为2a,平均变化率为x,则经过两次变化后的量为a(1±x).11.函数的自变量的取值范围是.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.专题:计算题;压轴题.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故答案为x≥1且x≠2.点评:本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.如果,那么=考点:函数值.分析:把自变量的值代入函数关系式计算即可得解.解答:解:f()==1.故答案为:1.点评:本题考查了函数值求解,准确计算是解题的关键.13.在实数范围内分解因式:2x﹣x﹣2= 2(x﹣考点:实数范围内分解因式;因式分解-十字相乘法等.分析:因为2x﹣x﹣2=0的两根为x1=﹣).222)(x﹣).,x2=,所以2x﹣x﹣2=2(x﹣2)(x解答:解:2x ﹣x﹣2=2(x﹣2)(x﹣). 2点评:先求出方程2x﹣x﹣2=0的两个根,再根据ax+bx+c=a(x﹣x1)(x﹣x2)即可因式分解.14.经过A、B两点的圆的圆心的轨迹是.第9页(共19页)考点:轨迹.分析:要求作经过已知点A和点B的圆的圆心,则圆心应满足到点A 和点B的距离相等,从而根据线段的垂直平分线性质即可求解.解答:解:根据同圆的半径相等,则圆心应满足到点A和点B的距离相等,即经过已知点A和点B的圆的圆心的轨迹是线段AB的垂直平分线.故答案为:线段AB的垂直平分线.点评:此题考查了点的轨迹问题,熟悉线段垂直平分线的性质是解题关键.15.已知直角坐标平面内两点A(4,﹣1)和B(﹣2,7),那么A、B 两点间的距离等于.考点:两点间的距离公式.分析:根据两点间的距离公式进行计算,即A(x,y)和B(a,b),则AB=解答:解:A、B两点间的距离为:==10..故答案是:10.点评:此题考查了坐标平面内两点间的距离公式,能够熟练运用公式进行计算.16.请写出符合以下条件的一个函数的解析式.①过点(3,1);②当x>0时,y随x的增大而减小.考点:一次函数的性质.专题:开放型.分析:根据“y随x的增大而减小”所写函数的k值小于0,所以只要再满足点(3,1)即可.解答:解:根据题意,所写函数k<0,例如:y=﹣x+4,此时当x=3时,y=﹣1+4=3,经过点(3,1).所以函数解析式为y=﹣x+4(答案不唯一).点评:本题主要考查一次函数的性质,是开放性题目,答案不唯一,只要满足条件即可.17.如图,已知OP平分∠AOB,∠AOB=60°,CP=4,CP∥OA,PD⊥OA 于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长为 2 .考点:角平分线的性质;直角三角形斜边上的中线.分析:根据角平分线性质得出PD=PE,根据平行线性质和角平分线定义、三角形外角性质求出∠PCE=60°,角直角三角形求出PE,得出PD长,求出OP,即可求出答案.第10页(共19页)解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠BOP=30°,∵PD⊥OA,PE⊥OB,∴PD=PE,∵CP∥OA,∠AOP=∠BOP=30°,∴∠CPO=∠AOP=30°,∴∠PCE=30°+30°=60°,在Rt△PCE中,PE=CP×sin60°=4×=2,即PD=2,∵在Rt△AOP中,∠ODP=90°,∠DOP=30°,PD=2∴OP=2PD=4,∵M为OP中点,∴DM=OP=2,,故答案为:2.点评:本题考查了角平分线性质,平行线的性质,三角形外角性质,直角三角形斜边上中线性质,含30度角的直角三角形性质,解直角三角形的应用,题目比较典型,综合性比较强.18.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为 3或6 .考点:翻折变换(折叠问题).分析:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.解答:解:当△CEB′为直角三角形时,有两种情况:第11页(共19页)①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,222∵EB′+CB′=CE,222∴x+4=(8﹣x),解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.点评:本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.三、简答题:(每题6分,共36分)19.化简:.考点:二次根式的加减法.分析:先把各根式化为最简二次根式,再合并同类项即可.解答:解:原式=•2=a+2a=2a.﹣a +8a•﹣a•2 第12页(共19页)点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.20.已知:关于x的一元二次方程(m﹣1)x﹣2mx+m+3=0.当m为何值时,方程有两个实数根?考点:根的判别式;一元二次方程的定义.2分析:(m﹣1)x﹣2mx+m+3=0,方程有两个实数根,从而得出△≥0,即可解出m的范围.解答:解:∵方程有两个实数根,∴△≥0;(﹣2m)﹣4(m﹣1)(m+3)≥0;∴; 22又∵方程是一元二次方程,∴m﹣1≠0;解得m≠1;∴当且m≠1时方程有两个实数根.点评:本题考查了根的判别式以及一元二次方程的定义,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.如图,已知点P(x,y)是反比例函数图象上一点,O是坐标原点,PA⊥x轴,S△PAO =4,且图象经过(1,3m﹣1);求:(1)反比例函数解析式.(2)m的值.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义.分析:(1)此题可从反比例函数系数k的几何意义入手,△PAO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=|k|,再结合反比例函数所在的象限确定出k的值,则反比例函数的解析式即可求出;(2)将(1,3m﹣1)代入解析式即可得出m的值.解答:解:(1)设反比例函数解析式为∵过点P(x,y),∴xy=4,∴xy=8,第13页(共19页),∴k=xy=8,∴反比例函数解析式是:;(2)∵图象经过(1,3m﹣1),∴1×(3m﹣1)=8,∴m=3.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.22.假定甲乙两人在一次赛跑中,路程S(米)与时间t(秒)的关系式如图所示,那么可以知道:(1)这是一次 100 米赛跑.(2)甲乙两人中,先到达终点的是甲.(3)乙在这次赛跑中的速度为 8米/秒.考点:函数的图象.分析:(1)根据函数图象的纵坐标,可得答案;(2)根据函数图象的横坐标,可得答案;(3)根据乙的路程除以乙的时间,可得答案.解答:解:(1)由纵坐标看出,这是一次 100米赛跑;(2)由横坐标看出,先到达终点的是甲;(3)由纵坐标看出,乙行驶的路程是100米,由横坐标看出乙用了12.5秒,乙在这次赛跑中的速度为100÷12.5=8米/秒,故答案为:100,甲,8米/秒.点评:本题考查了函数图象,观察函数图象的纵坐标得出路程,横坐标得出时间是解题关键.23.已知:如图,在△ABC中,AD是BC边上的高,CE是中线,F是CE 的中点,CD=AB,求证:DF⊥CE.第14页(共19页)考点:直角三角形斜边上的中线;等腰三角形的判定与性质.专题:证明题.分析:连接DE,根据直角三角形斜边上的中线等于斜边的一半可得DE=AB,再求出DE=CD,然后根据等腰三角形三线合一的性质证明即可.解答:证明:连接DE,∵AD是BC边上的高,在Rt△ADB中,CE是中线,∴DE=AB,∵CD=AB,∴DC=DE,∵F是CE中点,∴DF⊥CE.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.24.已知:如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,以AC为边作等边△ACD,并作斜边AB的垂直平分线EH,且EB=AB,联结DE交AB于点F,求证:EF=DF.考点:全等三角形的判定与性质;线段垂直平分线的性质;含30度角的直角三角形.专题:证明题.分析:根据直角三角形性质和线段垂直平分线求出BC=AB,BH=AB,推出BC=BH,推出Rt△ACB≌Rt△EHB,根据全等得出EH=AC,求出EH=AD,∠CAD=60°,∠BAD=90°,根据AAS推出△EHF≌△DAF,根据全等三角形的性质得出即可.解答:证明:∵在Rt△ABC中,∠BAC=30°,∴BC=AB,∵EH垂直平分AB,∴BH=AB,∴BC=BH,在Rt△ACB和Rt△EHB中,,∴Rt△ACB≌Rt△EHB(HL),∴EH=AC,∵等边△ACD中,AC=AD,∴EH=AD,∠CAD=60°,∠BAD=60°+30°=90°,在△EHF和△DAF中,,∴△EHF≌△DAF (AAS)∴EF=DF.点评:本题考查了线段垂直平分线性质,等边三角形的性质,含30度角的直角三角形的性质,全等三角形的性质和判定的应用,能综合运用性质进行推理是解此题的关键,难度适中.四、解答题:(每题8分,共16分)25.如图,直线y=x与双曲线y=(k>0)交于A点,且点A的横坐标为4,双曲线y=(k>0)上有一动点C(m,n),(0<m<4),过点A作x轴垂线,垂足为B,过点C作x轴垂线,垂足为D,连接OC.(1)求k的值.(2)设△COD与△AOB的重合部分的面积为S,求S关于m的函数解析式.(3)连接AC,当第(2)问中S的值为1时,求△OAC的面积.考点:反比例函数与一次函数的交点问题.分析:(1)由题意列出关于k的方程,求出k的值,即可解决问题.(2)借助函数解析式,运用字母m表示DE、OD的长度,即可解决问题.(3)首先求出m的值,求出△COD,△AOB的面积;求出梯形ABDC的面积,即可解决问题.解答:解:(1)设A点的坐标为(4,λ);由题意得:,解得:k=8,即k的值=8.(2)如图,设E点的坐标为E(m,n).则n=m,即DE=m;而OD=m,∴S=OD•DE=m×m=,.即S关于m的函数解析式是S=(3)当S=1时,=1,解得m=2或﹣2(舍去),∵点C在函数y=的图象上,∴CD==4;由(1)知:OB=4,AB=2;BD=4﹣2=2;∴,=4;∴S△AOC=S梯形ABDC+S△COD﹣S△AOB=6+4﹣4=6.=6,点评:该题主要考查了一次函数与反比例函数图象的交点问题;解题的关键是数形结合,灵活运用方程、函数等知识来分析、判断、求解或证明.26.如图,正方形ABCD的边长为4厘米,(对角线BD平分∠ABC)动点P从点A出发沿AB边由A向B以1厘米/秒的速度匀速移动(点P不与点A、B重合),动点Q从点B出发沿折线BC﹣CD以2厘米/秒的速度匀速移动.点P、Q同时出发,当点P停止运动,点Q也随之停止.联结AQ,交BD 于点E.设点P运动时间为t秒.(1)用t表示线段PB的长;(2)当点Q在线段BC上运动时,t为何值时,∠BEP和∠BEQ相等;(3)当t为何值时,P、Q之间的距离为2cm.考点:四边形综合题.分析:(1)由正方形的性质和已知条件即可得出结果;(2)由正方形的性质得出∠PBE=∠QBE,由AAS证明△BEP≌△BEQ,得出对应边相等BP=BQ,得出方程,解方程即可;(3)分两种情况讨论:①当0<t≤2时;②当2<t<4时;由勾股定理得出方程,解方程即可.解答:解:(1)PB=AB﹣AP,∵AB=4,AP=1×t=t,∴PB=4﹣t;(2)t=时,∠BEP和∠BEQ相等;理由如下:∵四边形ABCD正方形,∴对角线BD平分∠ABC,∴∠PBE=∠QBE,当∠BEP=∠BEQ时,在△BEP与△BEQ中,∴△BEP≌△BEQ(AAS),∴BP=BQ,即:4﹣t=2t,解得:t=;(3)分两种情况讨论:①当0<t≤2时;(即当P点在AB上,Q点在BC上运动时),连接PQ,如图1所示:根据勾股定理得:即(4﹣t)+(2t)=(222,,), 2解得:t=2或t=﹣(负值舍去);②当2<t<4时,(即当P点在AB上,Q点在CD上运动时),作PM⊥CD于M,如图2所示:则PM=BC=4,CM=BP=4﹣t,∴MQ=2t﹣4﹣(4﹣t)=3t﹣8,根据勾股定理得:MQ+PM=PQ,即解得t=或t=2(舍去);时;PQ之间的距离为2cm., 222综上述:当t=2或点评:本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、解方程等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,根据勾股定理得出方程,解方程才能得出结果.。
【八年级上.数学.浦东新区区卷】上海市浦东新区第一学期初二数学期末质量抽测(含答案)
ADE B C 浦东新区第一学期期末质量抽测初二数学试卷(完卷时间:90分钟,满分:100分)一、选择题:(本大题共6题,每题3分,满分18分)1.下列根式中,与2是同类二次根式的是……………………………………………( ) (A )8; (B )4; (C )20; (D)32 .2.下列二次根式中,属于最简二次根式的是……………………………………………( ) (A (B )8; (C )2x ; (D )12+x .3( ) (A )022=-x x ; (B )0)3)(1(=--x x ; (C )022=-x ; (D )012=++x x . 4.已知反比例函数xky =的图像经过点(3,2-),则k 的值是………………………( ) (A )6-;(B )6;(C )32; (D )32-. 5.正比例函数x k y 1=(01≠k )与反比例函数xk y 12-=(12≠k )的大致图像如图所示,那么1k 、2k 的取值范围是…………………( ) (A )01>k ,12>k ; (B )01>k ,12<k ;(C )01<k ,12>k ; (D )01<k ,12<k . 6.如图,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE交AB 于点D ,交AC 于点E ,则△BEC 的周长为…………( ) (A )13; (B )14; (C )15; (D )16.(第16题图)(第17题图)(第18题图)DCBA二、填空题:(本大题共12题,每题3分,满分36分) 7.计算:28÷a = . 8.分母有理化:251+= .9x 的取值范围是 .10.分解因式:12-+x x = .11.如果关于x 的一元二次方程02=+-a x x 有两个不相等的实数根,那么a 的取值范围是_______________.12.如果函数kx y =的图像经过点(–2,3),那么y 随着x 的增大而 _______. 13.命题:“两直线平行,同位角相等”的逆命题是 . 14.经过已知线段AB 的两个端点的圆的圆心的轨迹是 . 15.已知直角坐标平面内的ABC ∆三个顶点A 、B 、C 的坐标分别为(4,3)、(1,2)、(3,4-),则ABC ∆的形状是 .16.如图,Rt △ABC 中,∠C =90°,BD=2CD ,AD 是BAC ∠的角平分线,=∠B 度. 17.如图,在△ABC 中,∠ACB =90º,∠B =28º, D 为AB 的中点,=∠ACD 度. 18.如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边4=AB ,则图中阴影部分的面积为___________.三、简答题(本大题共3题,每题5分,满分15分) 19.计算:⎛÷ ⎝ 20.解方程:x 2-6x +1=0.HFEAD CBA(第22题图)(第21题图)OEDCB A21.已知:如图,在ABC ∆中,AC BD ⊥,AB CE ⊥, 垂足分别为D 、E ,BD 与CE 相交于点O ,且CE BD =.求证:OC OB =.四、解答题(本大题共4题,第22、23、24每题7分,第25题10分,满分31分) 22.如图所示,在Rt ABC △中,9030C A ∠=∠=°,°.(1)尺规作图:作线段AB 的垂直平分线l (保留作图痕迹,不写作法,写出结论); (2)在已作的图形中,若l 分别交AB AC 、及BC 的延长线于点D E F 、、,连接BE .求证:2EF DE =.23.要对一块长60米、宽40米的矩形荒地ABCD 进行绿化和硬化.设计方案如图所示,矩形P 、Q 为两块绿地,其余为硬化路面,P 、Q 两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD 面积的14,求P 、Q 两块绿地周围的硬化路面的宽.CB A DCBA(第24题图)NCA24.如图,点P 的坐标为(2,23),过点P 作x 轴的平行线交y 轴于点A ,交双曲线xky =(x >0)于点N ;作PM ⊥AN 交双曲线xky =(x >0)于点M ,连结AM ,且PN =4. (1)求k 的值.(2)求△APM 的面积.25.已知:如图,在ABC ∆中,4,90==︒=∠BC AC C ,点M 是边AC 上一动点(与点A 、C不重合),点N 在边CB 的延长线上,且BN AM =,联结MN 交边AB 于点P . (1)求证:NP MP =;(2)若设y BP x AM ==,,求y 与x 之间的函数关系式,并写出它的定义域; (3)当BPN ∆是等腰三角形时,求AM 的长.浦东新区2011学年度第一学期期末质量抽测初二数学试卷参考答案一、选择题:(本大题共6题,每题3分,满分18分)1.A 2.D 3.D 4.A 5.C 6.A二、填空题:(本大题共12题,每题3分,满分36分) 7.a 2 8.25- 9.1≥x 10.⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛++251251x x 11.41<a 12.减小 13.同位角相等,两直线平行 14.线段AB 的垂直平分线 15.直角三角形 16.30 17.62 18.8三、简答题(本大题共3题,每题5分,满分15分) 19.原式32)3433236(÷+-= ………………………………(1分,1分, 1分) 323328÷=………………………………………………………………………(1分) =314……………………………………………………………………………………(1分)20.解法1: ∵ b 2-4ac =(-6)2-4=32 ……………………………………………(1分) ∴ x =-b ±b 2-4ac 2a =6±322=3±22.………………………………………………(2分)即x 1=3+22,x 2=3-22.……………………………………………………………(2分)解法2: (x -3)2-8=0……………………………………………………………………(1分) (x -3)2 =8 ………………………………………………………………………………(1分) x -3=±22………………………………………………………………………………(1分) 即x 1=3+22,x 2=3-22.……………………………………………………………(2分)21.证明:∵AC BD AB CE ⊥⊥,,∴EBC ∆和DCB ∆都是直角三角形.……………………………………………………(1分) 在EBC Rt ∆与DCB Rt ∆中⎩⎨⎧==CE BD CBBC ∴EBC Rt ∆≅DCB Rt ∆.…………………………………………………………………(2分) ∴∠BCE =∠CBD .…………………………………………………………………………(1分) ∴OB=OC .…………………………………………………………………………………(1分) 四、解答题(本大题共4题,第22、23、24每题7分,第25题10分,满分31分) 22.(1)直线l 即为所求.………………………………………(1分) 作图正确.………………………………………………………(1分) (2)证明:在Rt ABC △中,AB第22题图FEDl3060A ABC ∠=∴∠=°,°,又∵l 为线段AB 的垂直平分线,∴EA EB =.……………………………………………………(1分) ∴3060EBA A AED BED ∠=∠=∠=∠=°,°, ∴3060EBC EBA FEC ∠==∠∠=°,°.…………………(1分) 又∵ED AB EC BC ⊥,⊥,∴ED EC =.………………………………………………………………………………(1分) 在Rt ECF △中,6030FEC EFC ∠=∴∠=°,°,∴2EF EC =,……………………………………………………………………………(1分) ∴2EF ED =.……………………………………………………………………………(1分)23.解:设P Q 、两块绿地周围的硬化路面的宽都为x 米.……………………………(1分) 根据题意,得1(603)(402)60404x x -⨯-=⨯⨯.……………………………………(2分) 整理,得0300402=+-x x .……………………………………………………………(1分) 解得:121030x x ==,.…………………………………………………………………(1分) 经检验,230x =不符合题意,舍去.……………………………………………………(1分) 答:两块绿地周围的硬化路面宽都为10米.……………………………………………(1分)24.解:(1)∵点P 的坐标为(2,23),∴AP =2,OA =23.…………………………(1分) ∵PN =4,∴AN =6,∴点N 的坐标为(6, 23).…………………………………………(1分)把N (6,23)代入y=xk 中,得k =9.……………………………………………………(1分) (2)∵k =9,∴y =x9.………………………………………………………………………(1分)当x =2时,y =29∴MP =-2923=3.………………………………………………………(1分) ∴S △APM =21×2×3=3.……………………………………………………………………(2分)25.(1)证明:过点M 作MD ∥BC 交AB 于点D .……………………………………(1分) ∵MD ∥BC ,∴∠MDP =∠NBP .…………………………………………………………(1分)∵AC=BC ,∠C =90°∴∠A =∠ABC=45°. ∵MD ∥BC ,∴∠ADM =∠ABC=45°. ∴∠ADM=∠A ,∴AM=DM .∵AM=BN ,∴BN=DM .………………(1分) 在MDP ∆和NBP ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BN DM NPB MPD NBP MDP ∴NBP MDP ∆≅∆.………………………………………………………………………(1分) ∴MP=NP .…………………………………………………………………………………(1分 (2)在Rt ABC ∆中,∵4,90==︒=∠BC AC C ,∴24=AB . ∵MD ∥BC ,∴∠AMD =∠C=90°. 在Rt ADM ∆中,x DM AM ==,∴x AD 2=.∵NBP MDP ∆≅∆,∴DP=BP=y . ∵AB PB DP AD =++, ∴242=++y y x .∴所求的函数解析式为2222+-=x y .……………………………………………(2分) 定义域为40<<x .………………………………………………………………………(1分)(3)∵NBP MDP ∆≅∆,∴BN=MD=x .∵∠ABC +∠PBN=180°,︒=∠45ABC ,∴︒=∠135PBN . ∴当BPN ∆是等腰三角形时,只有BN BP =,即y x =.∴2222+-=x x ,解得424-=x .……………………………………………(1分) ∴当BPN ∆是等腰三角形时,AM 的长为424-.……………………………………(1分)。
浦东新区2016学年度第一学期八年级数学期末教学质量检测试卷
浦东新区2016学年度第一学期期末教学质量检测八年级数学(完卷时间:100分钟,满分:100分) 2017.1一、选择题(本大题共6题,每题2分,满分12分)(每题只有一个选项正确) 1.下列方程是一元二次方程的是……………………………………………………………( ) (A )20y =;(B )210x x-=; (C )22310x y -+=;(D )25(1)x x x -=-.2.在反比例函数xky =(0>k )的图像上有两点(x 1,y 1),(x 2,y 2),如果21x x <,那么下列说法正确的是……………………………………………………………………………… ( )(A )12y y >;(B )21y y >;(C )12y y =;(D )无法确定.3.在△ABC 中,AC =3,BC =4,AB =5,那么点C 到AB 的距离是 ………………………… ( )(A )2.2;(B )2.4;(C )2.6;(D )2.8.4.下列命题是真命题的是………………………………………………………………… ( )(A )斜边上的中线相等的两直角三角形全等; (B )有一个锐角对应相等的两直角三角形全等; (C )有两边及第三边上的高对应相等的两三角形全等; (D )有一直角边和斜边对应相等的两直角三角形全等.5.如图,将正方形ABCD 分割成面积为s 的正方形①、面积为2s 的正方形②和两个长方形,那么下列说法不正确的是………………………………………………………………( ) (A )正方形②的边长与正方形①的边长的比值为2; (B )两个长方形的面积都为2s ; (C )正方形ABCD 的边长为3s ; (D )正方形ABCD 的面积为()223+s .题 号 一 二 三 四 总 分得 分A DC②① (第5题图)B6.为了预防“流感”,某学校对教室采取“药熏”消毒.已知该药燃烧时,教室内每立方米的含药量y (毫克)与时间x (分)成正比例;药物燃烧结束后,y 与x 成反比例;这两个变量之间的关系如图所示.根据图中所提供的信息,下列说法错误的是……………………( ) (A )第8分钟后,教室内的含药量逐渐减小;(B )第12分钟时,教室内的含药量为4毫克/立方米; (C )第50分钟时,教室内含药量为0毫克;(D )教室内含药量不低于3毫克/立方米的持续时间为12分钟.二、填空题(本大题共12题,每题3分,满分36分)7有意义,那么实数x 的取值范围是 .8.某旅游景点三月份共接待游客25万人次,五月份共接待游客36万人次,如果每月接待游客的增长率相同,那么这个增长率为 . 9.在实数范围内分解因式:122--x x = . 10.已知()321xf x x -=+,那么()0f = . 11.已知正比例函数(1)y k x =-,如果y 的值随着x 的值增大而减小,那么k 的取值范围是 .12.如果点A (-1,-3)、B (5,n )在同一个反比例函数的图像上,那么n = . 13.“直角三角形的两个锐角互余”的逆命题是 . 14.如果一个直角三角形的两条直角边分别为5和12,那么斜边上的中线的长为 . 15.如图,小明画线段AB 的垂直平分线l ,垂足为点C ,然后以点B 为圆心,线段AB 为半径画弧,与直线l 相交于点D ,联结BD ,那么∠CDB 的度数是 °.16.已知:如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,点E 是AB 边的中点,EF ⊥AC ,垂足为点F ,如果∠BCD =30°,BC =3cm ,那么EF 的长为 . 17.在直角坐标平面内,已知点A 的坐标为(2,3),点B 在x 轴上,且AB =5,那么点B 的坐标为 .18.已知:如图,∠MON =30°,点A 、B 在射线ON 上,OA =2,OB=,如果点P 是∠MON 的平分线上一点,那么P A +PB 的最小值为 .(第6题图)(第16题图)(第18题图)(第15题图)三、简答题(本大题共4题,每题5分,满分20分)191)---. 20.解方程:04132=--x x .21.已知关于x 的方程22(21)10x m x m ++++=有两个不相等的实数根,请判断关于y 的方程20y y m --=是否有两个相等的实数根,并说明理由.22.已知:如图,在△ABC 中,AB =AC ,点F 是BC 的中点,点D 、E 分别是AB 、AC 边上的点,且BD =CE .求证:FD =FE .(第22题图)四、解答题(本大题共4题,第23题7分,第24题7分、第25题8分、第26每题10分,满分32分) 23.已知y =y 1+y 2,并且y 1与x 成反比例,y 2与(x -2)成正比例.当x =2时,y =1; 当x =-2时,y =11.(1)求y 关于x 的函数解析式;(2)试判断点M (3,-2)是否在y 关于x 的函数图像上.24.如图,已知:△ABC .(1)尺规作图:在BC 边上求作一点D ,使得点D 到AB 、AC 的距离相等(不写作法,保留作图痕迹);(2)在(1)的条件下,若点D 是BC 的中点,求证:∠B =∠C .(第24题图)25.已知:如图,在直角坐标平面内,点A 的坐标为(2,2),AB ⊥x 轴,垂足为点B ,反比例函数ky x=(0>k )图像在第一象限的分支经过AB 的中点C ,并且与线段OA 相交于点D .(1)求这个反比例函数的解析式; (2)求点D 的坐标;(3)在直线OA 上是否存在点P ,使△BCP 为等腰三角形?若不存在,请说明理由;若存在,请求出点P 的坐标.(第25题图)26.已知:如图,在△ABC 中,∠ACB =90°,∠BAC =30°,BC =6.点D 是AB 边的中点,点E 是射线BC 上的一动点(点E 不与点B 重合),点F 在ED 的延长线上,且 DF =DE ,DG ⊥EF ,垂足为点D ,DG 交边AC 于点G . (1)求证:AF ∥BC ;(2)当点E 在线段BC 上时,设AG =x ,CE =y ,求y 关于x 的函数解析式,并指出函数的定义域;(3)当CE =1时,直接写出AG 的长.(第26题图)(第26题备用图)。
2015-2016年上海市普陀区八年级(上)期末数学试卷含参考答案
2015-2016学年上海市普陀区八年级(上)期末数学试卷一、填空题(本大题共有14题,每题2分,满分28分)1.(2分)化简:(x>0)=.2.(2分)方程2x2﹣x=0的根是.3.(2分)函数:的定义域是.4.(2分)某件商品原价为100元,经过两次促销降价后的价格为64元,如果连续两次降价的百分率相同,那么这件商品降价的百分率是.5.(2分)在实数范围内分解因式:2x2+3x﹣1=.6.(2分)如果函数f(x)=,那么f()=.7.(2分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是.8.(2分)正比例函数y=(2a﹣1)x的图象经过第二、四象限,那么a的取值范围是.9.(2分)已知点,A(x1,y1)和点B(x2,y2),在反比例函数y=的图象上,如果当0<x1<x2,可得y1>y2,那么k0.(填“>”、“=”、“<”)10.(2分)经过定点A且半径为2cm的圆的圆心的轨迹是.11.(2分)请写出“等腰三角形的两底角相等”的逆命题:.12.(2分)如图,在△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,BC=5,BD=3,那么点D到AB的距离是.13.(2分)如果点A的坐标为(﹣3,1),点B的坐标为(1,4),那么线段AB 的长等于.14.(2分)在Rt△ABC中,∠C=90°,将这个三角形折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,如果BN=2AC,那么∠B=度.二、选择题(本大题共有4题,每题3分,满分12分)15.(3分)下列方程中,是一元二次方程的是()A.4x2=3y B.x(x+1)=5x2﹣1 C.﹣3=5x2﹣D.+3x﹣1=016.(3分)已知等腰三角形的周长等于20,那么底边长y与腰长x的函数解析式和定义域分别是()A.y=20﹣2x(0<x<20)B.y=20﹣2x(0<x<10)C.y=20﹣2x(5<x<10)D.y=(5<x<10)17.(3分)下列问题中,两个变量成正比例的是()A.圆的面积S与它的半径rB.正方形的周长C与它的边长aC.三角形面积一定时,它的底边a和底边上的高hD.路程不变时,匀速通过全程所需要的时间t与运动的速度v18.(3分)如图,在△ABC中,AB=AC,∠A=120°,如果D是BC的中点,DE⊥AB,垂足是E,那么AE:BE的值等于()A.B.C.D.三、(本大题共有7题,满分60分)19.(7分)计算:(﹣6)﹣(﹣).20.(7分)用配方法解方程:3x2+6x﹣1=0.21.(7分)已知y=y1+y2,y1与x成正比例,y2与x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y与x的函数关系式.22.(8分)已知:如图,在△ABC中,∠ACB=45°,AD是边BC上的高,G是AD 上一点,联结CG,点E、F分别是AB、CG的中点,且DE=DF.求证:△ABD≌△CGD.23.(8分)已知:如图,在△ABC中,∠ACB=90°,AD为△ABC的外角平分线,交BC的延长线于点D,且∠B=2∠D.求证:AB+AC=CD.24.(11分)如图,在平面直角坐标系xOy中,已知直线y=x与反比例函数y=(k≠0)的图象交于点A,且点A的横坐标为1,点B是x轴正半轴上一点,且AB⊥OA.(1)求反比例函数的解析式;(2)求点B的坐标;(3)先在∠AOB的内部求作点P,使点P到∠AOB的两边OA、OB的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P)25.(12分)如图,在△ABC中,D是AB的中点,E是边AC上一动点,联结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,联结EF、AG,已知AB=10,BC=6,AC=8.(1)求证:AC⊥AG;(2)设AE=x,CF=y,求y与x的函数解析式,并写出定义域;(3)当△BDF是以BF为腰的等腰三角形时,求AE的长.2015-2016学年上海市普陀区八年级(上)期末数学试卷参考答案与试题解析一、填空题(本大题共有14题,每题2分,满分28分)1.(2分)化简:(x>0)=3x.【解答】解:(x>0)=3x,故答案为:3x.2.(2分)方程2x2﹣x=0的根是x1=0,x2=.【解答】解:左边因式分解,得:x(2x﹣1)=0,∴x=0或2x﹣1=0,解得:x1=0,x2=,故答案为:x1=0,x2=.3.(2分)函数:的定义域是x≥2.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.4.(2分)某件商品原价为100元,经过两次促销降价后的价格为64元,如果连续两次降价的百分率相同,那么这件商品降价的百分率是20%.【解答】解:设每次降价的百分率为x,第二次降价后价格变为100(x﹣1)2元,根据题意得:100(x﹣1)2=64,即x﹣1=0.8,解之得x1=1.8,x2=0.2.因x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故答案为:20%.5.(2分)在实数范围内分解因式:2x2+3x﹣1=2(x﹣)(x﹣).【解答】解:令2x2+3x﹣1=0,则x1=,x2=,∴2x2+3x﹣1=2(x﹣)(x﹣).故答案是:2(x﹣)(x﹣).6.(2分)如果函数f(x)=,那么f()=﹣1.【解答】解:f()==.7.(2分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是k<且k≠0.【解答】解:∵kx2﹣x+1=0有两个不相等的实数根,∴△=1﹣4k>0,且k≠0,解得,k<且k≠0;故答案是:k<且k≠0.8.(2分)正比例函数y=(2a﹣1)x的图象经过第二、四象限,那么a的取值范围是a.【解答】解:∵正比例函数y=(2a﹣1)x的图象经过第二、第四象限,∴2a﹣1<0,∴a.故答案为:a.9.(2分)已知点,A(x1,y1)和点B(x2,y2),在反比例函数y=的图象上,如果当0<x1<x2,可得y1>y2,那么k>0.(填“>”、“=”、“<”)【解答】解:∵点A(x1,y1)和点B(x2,y2)在反比例函数y=的图象上,∴y1=,y2=,∵y1>y2,∴>,而0<x1<x2,∴k>0.故答案为>.10.(2分)经过定点A且半径为2cm的圆的圆心的轨迹是以点A为圆心,2cm 为半径的圆.【解答】解:所求圆心的轨迹,就是到A点的距离等于2厘米的点的集合,因此应该是一个以点A为圆心,2cm为半径的圆,故答案为:以点A为圆心,2cm为半径的圆.11.(2分)请写出“等腰三角形的两底角相等”的逆命题:两个角相等三角形是等腰三角形.【解答】解:∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“两个底角相等三角形是等腰三角形”,故答案为:两个角相等三角形是等腰三角形.12.(2分)如图,在△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,BC=5,BD=3,那么点D到AB的距离是2.【解答】解:过点D作DE⊥AB于点E,∵∠C=90°,AD是△ABC中∠CAB的角平分线,DE⊥AB于E,∴DE=CD,∴BC=5,BD=3,∴CD=BC﹣BD=5﹣3=2,∴DE=2.故答案为:2.13.(2分)如果点A的坐标为(﹣3,1),点B的坐标为(1,4),那么线段AB 的长等于5.【解答】解:AB==5.故答案为:5.14.(2分)在Rt△ABC中,∠C=90°,将这个三角形折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,如果BN=2AC,那么∠B=15度.【解答】解:如图,∵三角形折叠,得点B与点A重合,折痕交AB于点M,交BC于点N,∴∠1=∠B,NA=NB,∵BN=2AC,∴AN=2AC,∵∠C=90°,∴∠2=30°,∵∠2=2∠B,∴∠B=15°,故答案为:15.二、选择题(本大题共有4题,每题3分,满分12分)15.(3分)下列方程中,是一元二次方程的是()A.4x2=3y B.x(x+1)=5x2﹣1 C.﹣3=5x2﹣D.+3x﹣1=0【解答】解:A、4x2=3y是二元二次方程,故A错误;B、x(x+1)=5x2﹣1是一元二次方程,故B正确;C、﹣3=5x2﹣是无理方程,故C错误;D、+3x﹣1=0是分式方程,故D错误;故选:B.16.(3分)已知等腰三角形的周长等于20,那么底边长y与腰长x的函数解析式和定义域分别是()A.y=20﹣2x(0<x<20)B.y=20﹣2x(0<x<10)C.y=20﹣2x(5<x<10)D.y=(5<x<10)【解答】解:∵等腰三角形的周长等于20,底边长y,腰长x,∴2x+y=20,∴y=20﹣2x,∵两边之和大于第三边,∴,解得5<x<10.故选:C.17.(3分)下列问题中,两个变量成正比例的是()A.圆的面积S与它的半径rB.正方形的周长C与它的边长aC.三角形面积一定时,它的底边a和底边上的高hD.路程不变时,匀速通过全程所需要的时间t与运动的速度v【解答】解:A、圆的面积=π×半径2,不是正比例函数,故本选项错误;B、正方形的周长=边长×4,是正比例函数,故本选项正确;C、三角形面积S一定时,它的底边a和底边上的高h的关系s=ah,不是正比例函数,故本选项错误;D、设路程为s,则依题意得s=vt,则v与t不是正比例关系.故选:B.18.(3分)如图,在△ABC中,AB=AC,∠A=120°,如果D是BC的中点,DE⊥AB,垂足是E,那么AE:BE的值等于()A.B.C.D.【解答】解:连接AD,∵AB=AC,∠A=120°,∴∠BAD=60°,∠B=30°,∴AD=AB,AE=AD,∴AE=AB,∴AE:BE=,故选:A.三、(本大题共有7题,满分60分)19.(7分)计算:(﹣6)﹣(﹣).【解答】解:原式=(﹣2)﹣(﹣5)=﹣2﹣+5=+3.20.(7分)用配方法解方程:3x2+6x﹣1=0.【解答】解:把方程x2+2x﹣=0的常数项移到等号的右边,得x2+2x=,方程两边同时加上一次项系数一半的平方,得x2+2x+1=+1配方得(x+1)2=,开方得x+1=±,解得x=±﹣1.21.(7分)已知y=y1+y2,y1与x成正比例,y2与x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y与x的函数关系式.【解答】解:设y1=k1x(k1≠0),y2=∴y=k1x+∵当x=1时,y=﹣1;当x=3时,y=5,∴.所以.所以y=x+.22.(8分)已知:如图,在△ABC中,∠ACB=45°,AD是边BC上的高,G是AD 上一点,联结CG,点E、F分别是AB、CG的中点,且DE=DF.求证:△ABD≌△CGD.【解答】证明:∵AD是边BC上的高,点E、F分别是AB、CG的中点,∴DE=AB,DF=GC,∵DE=DF,∴AB=GC,∵∠ACB=45°,AD是边BC上的高,∴∠CAD=45°,∴∠CAD=∠ACD,∴AD=CD,在Rt△ABD和Rt△CGD中,,∴Rt△ABD≌Rt△CGD(HL).23.(8分)已知:如图,在△ABC中,∠ACB=90°,AD为△ABC的外角平分线,交BC的延长线于点D,且∠B=2∠D.求证:AB+AC=CD.【解答】证明:过点D作DE⊥AB,垂足为点E,又∵∠ACB=90°(已知),∴DE=DC(在角的平分线上的点到这个角的两边的距离相等).在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(H.L).∴AC=AE,∠CDA=∠EDA.∵∠B=2∠D(已知),∴∠B=∠BDE.∴BE=DE.又∵AB+AE=BE,∴AB+AC=CD.24.(11分)如图,在平面直角坐标系xOy中,已知直线y=x与反比例函数y=(k≠0)的图象交于点A,且点A的横坐标为1,点B是x轴正半轴上一点,且AB⊥OA.(1)求反比例函数的解析式;(2)求点B的坐标;(3)先在∠AOB的内部求作点P,使点P到∠AOB的两边OA、OB的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P)【解答】解:(1)由题意,设点A的坐标为(1,m),∵点A在正比例函数y=x的图象上,∴m=.∴点A的坐标(1,),∵点A在反比例函数y=的图象上,∴=,解得k=,∴反比例函数的解析式为y=.(2)过点A作AC⊥OB⊥,垂足为点C,可得OC=1,AC=.∵AC⊥OB,∴∠ACO=90°.由勾股定理,得AO=2,∴OC=AO,∴∠OAC=30°,∴∠ACO=60°,∵AB⊥OA,∴∠OAB=90°,∴∠ABO=30°,∴OB=2OA,∴OB=4,∴点B的坐标是(4,0).(3)如图作∠AOB的平分线OM,AB的垂直平分线EF,OM与EF的交点就是所求的点P,∵∠POB=30°,∴可以设点P坐标(m,m),∵PA2=PB2,∴(m﹣1)2+(m﹣)2=(m﹣4)2+(m)2,解得m=3,∴点P的坐标是(3,).25.(12分)如图,在△ABC中,D是AB的中点,E是边AC上一动点,联结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,联结EF、AG,已知AB=10,BC=6,AC=8.(1)求证:AC⊥AG;(2)设AE=x,CF=y,求y与x的函数解析式,并写出定义域;(3)当△BDF是以BF为腰的等腰三角形时,求AE的长.【解答】(1)证明:∵BC=6,AC=8,∴BC2+AC2=36+64=100,∵AB2=100,∴BC2+AC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵D是AB的中点,∴AD=BD,在△ADG和△BDF中,∴△ADG≌△BDF,∴∠GAB=∠B,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠CAB+∠GAB=90°,∴∠EAG=90°,即:AC⊥AG;(2)连接EG,∵AE=x,AC=8,∴EC=8﹣x,∵∠ACB=90°,由勾股定理,得EF2=(8﹣x)2+y2,∵△ADG≌△BDF,∴AG=BF,∵CF=y,BC=6,∴AG=BF=6﹣y,∵∠EAG=90°,由勾股定理,得EG2=x2+(6﹣y)2,∵DG=DF,DF⊥DE,∴EF=EG,∴(8﹣x)2+y2=x2+(6﹣y)2,∴y=,定义域:<x<;(3)①当BF=DB时,6﹣y=5,∴y=1,∴1=,∴x=,即AE=;②当DF=FB时,连接DC,过点D作DH⊥FB,垂足为点H,可得DF=FB=6﹣y,∵∠ACB=90°,D是AB的中点,∴DC=DB=5,∵DH⊥FB,BC=6,∴CH=HB=3,∴FH=3﹣y,∵DH⊥FB,由勾股定理,得DH=4,在Rt△DHF中,可得(6﹣y)2=42+(3﹣y)2,解得:y=,∴=解得x=,即AE=,综上所述,AE的长度是,.。
2015-2016学年上海市浦东新区八年级(上)期末数学试卷
2015-2016学年上海市浦东新区八年级(上)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.(3分)下列根式中,与是同类二次根式的是()A.B. C.D.2.(3分)下列关于x的方程一定是一元二次方程的是()A.ax2+bx+c=0 B.x2+bx+c=0 C.x2++c=0 D.cx+b+x3=03.(3分)在直角坐标平面内,任意一个正比例函数的图象都经过点()A.(1,1) B.(1,0) C.(0,1) D.(0,0)4.(3分)在函数y=(k<0)的图象上有三点(x1,y1),(x2,y2),(x3,y3),已知x1<x2<0<x3,那么下列各式中,正确的是()A.y2>y1>y3B.y3>y1>y2C.y2>y3>y1D.y1>y3>y25.(3分)下列说法错误的是()A.经过已知点P和Q的圆的圆心轨迹是线段PQ的垂直平分线B.到点A的距离等于2cm的点的轨迹是以点A为圆心,2cm长为半径的圆C.与直线AB距离为3的点的轨迹是平行于直线AB且和AB距离为3的两条直线D.以线段AB为底边的等腰三角形两底角平分线交点的轨迹是线段AB的垂直平分线6.(3分)小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)计算:=.8.(3分)一块长方形绿地的面积为1200平方米,并且长比宽多10米,如果设长为x米,根据题意可列出方程.9.(3分)在实数范围内分解因式x2﹣4x﹣1=.10.(3分)函数f(x)=的定义域是.11.(3分)如果点P(4,b)在函数y=的图象上,那么b=.12.(3分)已知y=y1+y2,其中y1与x成反比例,且比例系数为k1,y2与x2成正比例,且比例系数为k2,当x=﹣1时,y=0,那么k1与k2之间的数量关系是.(用代数式表示)13.(3分)“有两角及其中一角的平分线对应相等的两个三角形全等”是命题(填“真”或“假”).14.(3分)“等边三角形的三个内角都等于60°”的逆命题是.15.(3分)如图,△ABC中,D是AC边上的一点,AD=9,BD=12,BC=13,CD=5,那么△ABC的面积是.16.(3分)Rt△ABC中,已知∠C=90°,有一点D同时满足以下三个条件:①在直角边BC上;②在∠CAB 的角平分线上;③在直角边AB的垂直平分线上,那么∠B=度.17.(3分)如图,点A在直线l1:y=﹣3x上,点B在经过原点O的直线l2上,如果点A的纵坐标与点B 的横坐标相等,且OA=OB,那么直线l2的函数解析式是.18.(3分)如图,Rt△ABC中,∠ACB=90°,AC=15,BC=20,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,那么线段B′F的长为.三、解答题(本大题共3题,每题5分,满分15分)19.(5分)计算:+﹣6.20.(5分)解方程:x2﹣2x﹣6=0.21.(5分)已知:如图,AB=DC,AC=BD.求证:∠B=∠C.四、解答题(本大题共4题,第22题7分,第23、24、25每题8分,满分31分)22.(7分)已知关于x的方程x2+2x﹣a+1=0没有实数根,试判断关于y的方程y2+ay+a=1是否一定有两个不相等的实数根,并说明理由.23.(8分)已知:如图,Rt△ABC中,AC>BC,∠ACB=90°,CD是△ABC的中线,点E在CD上,且∠AED=∠B.求证:AE=BC.24.(8分)已知,点B、C是双曲线y=在第一象限分支上的两点,点A在x轴正半轴上,△AOB为等腰直角三角形,∠B=90°,AC垂直于x轴.(1)求点C的坐标;(2)点D为x轴上一点,当△BCD为等腰三角形时,求点D的坐标.25.(8分)已知,如图,点D在射线AB上,且AD=2,点P是射线AC上的一个动点,线段PD的垂直平分线与射线AC交于点E,与∠BAC的平分线交于点F.连结DF、PF、EF.(1)当DF∥AC时,求证:AD=PF.(2)当∠BAC=60°时,设AP=x,AF=y,求y关于x的函数解析式.2015-2016学年上海市浦东新区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)1.(3分)下列根式中,与是同类二次根式的是()A.B. C.D.【解答】解:不是二次根式,A不正确;=2,与不是同类二次根式,B不正确;=,与不是同类二次根式,C不正确;=,与是同类二次根式,D正确;故选:D.2.(3分)下列关于x的方程一定是一元二次方程的是()A.ax2+bx+c=0 B.x2+bx+c=0 C.x2++c=0 D.cx+b+x3=0【解答】解:A、a=0,ax2+bx+c=0是一元一次方程,故A错误;B、x2+bx+c=0是一元二次方程,故B正确;C、x2++c=0是分式方程,故C错误;D、cx+b+x3=0是一元三次方程,故D错误;故选:B.3.(3分)在直角坐标平面内,任意一个正比例函数的图象都经过点()A.(1,1) B.(1,0) C.(0,1) D.(0,0)【解答】解:∵正比例函数的解析式是y=kx(k≠0),∴当x=0时,y=0,∴任意一个正比例函数的图象都经过点(0,0).故选D.4.(3分)在函数y=(k<0)的图象上有三点(x1,y1),(x2,y2),(x3,y3),已知x1<x2<0<x3,那么下列各式中,正确的是()A.y2>y1>y3B.y3>y1>y2C.y2>y3>y1D.y1>y3>y2【解答】解:∵k<0,∴函数图象在第二、四象限,在每个象限内,y随x的增大而增大,又∵x1<x2<0<x3,∴y2>y1>y3.故选A.5.(3分)下列说法错误的是()A.经过已知点P和Q的圆的圆心轨迹是线段PQ的垂直平分线B.到点A的距离等于2cm的点的轨迹是以点A为圆心,2cm长为半径的圆C.与直线AB距离为3的点的轨迹是平行于直线AB且和AB距离为3的两条直线D.以线段AB为底边的等腰三角形两底角平分线交点的轨迹是线段AB的垂直平分线【解答】解:A、经过已知点P和Q的圆的圆心轨迹是线段PQ的垂直平分线正确;B、到点A的距离等于2cm的点的轨迹是以点A为圆心,2cm长为半径的圆正确;C、空间内与直线AB距离为3的点的轨迹是平行于直线AB且和AB距离为3的无数条直线,故错误;D、以线段AB为底边的等腰三角形两底角平分线交点的轨迹是线段AB的垂直平分线,正确,故选C.6.(3分)小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.【解答】解:小明步行到学校参加联欢会,小明离开家的距离增大,按照原来的速度步行回家取道具,小明离开家的距离由大变小,随后骑自行车加快速度返回学校,小明离开家的距离增大,斜度增大,故选C.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)计算:=a.【解答】解:原式==a.8.(3分)一块长方形绿地的面积为1200平方米,并且长比宽多10米,如果设长为x米,根据题意可列出方程x(x+10)=1200.【解答】解:设长方形绿地的宽为x米,则长为(x+10)米,由题意得:x(x+10)=1200.故答案为:x(x+10)=1200.9.(3分)在实数范围内分解因式x2﹣4x﹣1=(x﹣2+)(x﹣2﹣).【解答】解:原式=x2﹣4x+4﹣5=(x﹣2)2﹣5=(x﹣2+)(x﹣2﹣).故答案为:(x﹣2+)(x﹣2﹣).10.(3分)函数f(x)=的定义域是x≠2.【解答】解:由f(x)=,得2x﹣4≠0.解得x≠2,故答案为:x≠2.11.(3分)如果点P(4,b)在函数y=的图象上,那么b=.【解答】解:点P(4,b)在函数y=的图象上,得b==,故答案为:.12.(3分)已知y=y1+y2,其中y1与x成反比例,且比例系数为k1,y2与x2成正比例,且比例系数为k2,当x=﹣1时,y=0,那么k1与k2之间的数量关系是k1=k2.(用代数式表示)【解答】解:根据题意得:y1=,y2=k2x2,∴y=y1+y2=+k2x2,把x=﹣1,y=0代入得:﹣k1+k2=0,即k1=k2,故答案为:k1=k213.(3分)“有两角及其中一角的平分线对应相等的两个三角形全等”是真命题(填“真”或“假”).【解答】已知:△ABC和△A′B′C′中,∠A=∠A',∠B=∠B′,∠B、∠B′的角平分线,BD=B′D′,求证:△ABC≌△A′B′C′.证明:∵∠B=∠B'且∠B、∠B′的角平分线分别为BD和B′D′,∴∠ABD=∠A′B′D′=∠B,∵BD=B'D',∠A=∠A′,∴△ABD≌△A′B′D′,∴AB=A′B′,∵∠A=∠A′,∠B=∠B′,∴△ABC≌△A′B′C′.∴“有两角及其中一角的平分线对应相等的两个三角形全等”是真命题,故答案为:真.14.(3分)“等边三角形的三个内角都等于60°”的逆命题是三个内角都等于60°的三角形是等边三角形.【解答】解:命题“等边三角形的三个内角都等于60°”的逆命题是“三个内角都等于60°的三角形是等边三角形”.故答案为:三个内角都等于60°的三角形是等边三角形.15.(3分)如图,△ABC中,D是AC边上的一点,AD=9,BD=12,BC=13,CD=5,那么△ABC的面积是84.【解答】解:∵BD=12,BC=13,CD=5,CD2+BD2=25+144=169,BC2=169,∴CD2+BD2=BC2,∴BD⊥AC(勾股定理的逆定理),∴△ABC的面积=AC•BD=×(9+5)×12=84.故答案为:84.16.(3分)Rt△ABC中,已知∠C=90°,有一点D同时满足以下三个条件:①在直角边BC上;②在∠CAB 的角平分线上;③在直角边AB的垂直平分线上,那么∠B=30度.【解答】解:∵D在直角边AB的垂直平分线上,∴DA=DB,∴∠DAB=∠B,∵D在∠CAB的角平分线上,∴∠DAB=∠DAC,∴∠CAD=∠DAB=∠B=30°,故答案为:30.17.(3分)如图,点A在直线l1:y=﹣3x上,点B在经过原点O的直线l2上,如果点A的纵坐标与点B 的横坐标相等,且OA=OB,那么直线l2的函数解析式是y=x.【解答】解:过A作AC⊥y轴于C,过B作BD⊥x轴于D,∵点A的纵坐标与点B的横坐标相等,∴AC=BD,在Rt△AOC与Rt△BOD中,,∴Rt△AOC≌Rt△BOD,∴OC=OD,∵点A在直线l1:y=﹣3x上,∴设A(﹣m,3m),∴AC=BD=m,OC=OD=3m,∴B(3m,m),设直线l2的解析式为:y=kx,∴k=,∴直线l2的解析式为:y=x.故答案为:y=x.18.(3分)如图,Rt△ABC中,∠ACB=90°,AC=15,BC=20,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,那么线段B′F的长为4.【解答】解:根据折叠的性质可知:CD=AC=15,B′C=BC=20,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=20﹣15=5,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S=AC•BC=AB•CE,△ABC∴AC•BC=AB•CE,∵根据勾股定理求得AB=25,∴CE=12,∴EF=12,ED=AE==9,∴DF=EF﹣ED=3,∴B′F==4.故答案为:4.三、解答题(本大题共3题,每题5分,满分15分)19.(5分)计算:+﹣6.【解答】解:原式=+﹣2=+﹣﹣2=.20.(5分)解方程:x2﹣2x﹣6=0.【解答】解:x2﹣2x﹣6=0,x2﹣2x=6,x2﹣2x+()2=6+()2,(x﹣)2=9,x﹣=±3,x1=3+,x2=﹣3+.21.(5分)已知:如图,AB=DC,AC=BD.求证:∠B=∠C.【解答】解:如图,连接AD,在△ABD和△DCA中,,∴△ABD≌△DCA(SSS),∴∠B=∠C.四、解答题(本大题共4题,第22题7分,第23、24、25每题8分,满分31分)22.(7分)已知关于x的方程x2+2x﹣a+1=0没有实数根,试判断关于y的方程y2+ay+a=1是否一定有两个不相等的实数根,并说明理由.【解答】解:∵方程x2+2x﹣a+1=0没有实数根,∴△1=4﹣4(﹣a+1)=4a<0,∴a<0,对于关于y的方程y2+ay+a=1,△2=a2﹣4a(a﹣1)=(a﹣2)2,∵a<0,∴(a﹣2)2>0,即△2>0,∴方程y2+ay+a=1一定有两个不相等的实数根.23.(8分)已知:如图,Rt△ABC中,AC>BC,∠ACB=90°,CD是△ABC的中线,点E在CD上,且∠AED=∠B.求证:AE=BC.【解答】证明:延长CD到F使DF=CD,连接AF,∵CD是△ABC的中线,∴AD=BD,在△ADF与△BCD中,,∴△ADF≌△BCD,∴∠F=∠BCD,BC=AF,∵∠ACB=90°,CD是△ABC的中线,∴CD=BD,∴∠B=∠BCD,∵∠AED=∠F,∴AE=AF,∴AE=BC.24.(8分)已知,点B、C是双曲线y=在第一象限分支上的两点,点A在x轴正半轴上,△AOB为等腰直角三角形,∠B=90°,AC垂直于x轴.(1)求点C的坐标;(2)点D为x轴上一点,当△BCD为等腰三角形时,求点D的坐标.【解答】解:(1)过点B作BH⊥OA于点H,∵△AOB是等腰直角三角形,∠B=90°,∴BH=OH=OA.∵点B在第一象限,∴设B(a,a)(a>0).∵点B在双曲线y=上,∴a2=4,∴a=2或a=﹣2(不合题意,舍去),∴B(2,2),∴A(4,0).∵AC⊥x轴,∴设C(4,y),∵点C在双曲线y=上,∴C(4,1);(2)∵设D(x,0),∴BC2=5,BD2=x2﹣4x+8,CD2=x2﹣8x+17,当△BCD是等腰直角三角形时,BC=BD,BC=CD或BD=CD.当BC=BD,即BC2=BD2时,x2﹣4x+8=5,解得x=1或x=3,∴D(1,0)或(3,0);当BC=CD,即BC2=CD2时,x2﹣8x+17=5,解得x=2或x=6,当D(6,0)时,BC=CD=,BD=2,∴BC+CD=BD,不能构成三角形,∴x=6不合题意,∴D(2,0);当BD=CD,即BD2=CD2,x2﹣4x+8=x2﹣8x+17,解得x=,∴D(,0).综上所述,D(1,0),(3,0),(2,0),(,0).25.(8分)已知,如图,点D在射线AB上,且AD=2,点P是射线AC上的一个动点,线段PD的垂直平分线与射线AC交于点E,与∠BAC的平分线交于点F.连结DF、PF、EF.(1)当DF∥AC时,求证:AD=PF.(2)当∠BAC=60°时,设AP=x,AF=y,求y关于x的函数解析式.【解答】解:(1)∵AF平分∠BAC,∴∠BAF=∠FAC,∵DF∥AC,∴∠DAF=∠FAC,∴∠DAF=∠DFA,∴AD=DF,∵EF垂直平分DP,∴DF=PF,∴AD=PF;(2)过点F作FG⊥AC于G,FH⊥AB于H,∵AF平分∠BAC,FG⊥AC,FH⊥AB,∴FH=FG,∵∠BAC=60°,∴∠FAC=30°,∴FG=AF,AG=AF,同理FH=AF,AH=AF,∵EF垂直平分DP,∴FD=FP,在Rt△FDH与Rt△FPG中,,∴Rt△FDH≌Rt△FPG,∴PG=DH,∵AD=2,AP=x,AF=y,∴x=y+(y﹣2),∴y=x+.。
2015~2016学年度上学期期末考试试卷八年级数学附答案
2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。
上海市浦东新区八年级数学上学期期末考试试题(扫描版)沪教版五四制(new)
上海市浦东新区2017-2018学年八年级数学上学期期末考试试题
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
沪教版2016年八年级上学期数学期末练习卷免费范文
篇一:2015-2016年沪教版八年级上册期末数学试卷2015-2016学年度八年级第一学期期末数学试卷1一、选择题1、下列运算中,正确的是()(A)x?2x?3x;(B)32?22?1;(C)2+5=2;(D)ax?bx?(a?b)x 2、在下列方程中,整理后是一元二次方程的是()(A)3x2?(x?2)(3x?1) (B) (x?2)(x?2)?4?01(C)x(x2?1)?0 (D) 2?x?3?1x3、已知点(1,-1)在y?kx的图像上,则函数y?k的图像经过(). x(A)第一、二象限; (B)第二、三象限; (C)第一、三象限; (D)第二、四象限. 4、下列命题中,是假命题的是().(A)对顶角相等(B)互为补角的两个角都是锐角(C)如果两条直线都和第三条直线平行,那么这两条直线也互相平行(D)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 5、已知:如图,△ABC中,?C?900,BD平分?ABC,BC?则点D到AB的距离为().1AB,BD=2,25题图(A)1 (B)2 (C)3 (D)36、如图,在Rt△ABC,∠ACB=90°,CD、CE是斜边上的高和中线,AC =CE=10cm,则BD长为()(A)25cm;(B) 5cm;(C)15cm;(D)10cm.二、填空题x?0)化成最简二次根式是第6题图28、关于x的方程4x?6x?m?0有两个相等的实数根,则m的值为9、已知正比例函数y?(2?3a)x的图像经过第一、三象限,则a的取值范围是____________;710、如果函数f(x)?1x,那么f(2);EFADC11、命题:“同角的余角相等”的逆命题是; 12、到点A的距离等于6cm 的点的轨迹是; 13、已知直角坐标平面内两点 A(3,-1)和B(-1,2),则A、B两点间的距离等于; 14、如图,将△ABC绕点A按逆时针方向旋转得到△ADE,DE交AC于F,交BC于G,若∠C=35°,∠EFC=60°,则这次旋转了 °; 15、三角形三边的垂直平分线的交点到的距离相等; 16、在Rt△ABC中,∠C=90°,AB=18,BC=9,那么∠B=°;17、如图,?CD?90?,请你再添加一个条件:使?ABCBAD; 18、已知直角三角形的两边长分别为5,12,那么第三边的长为 . 三、简答题 19、计算:27?1第14题图第17题图B23?1?912?(?2)?. 20、解方程:?x?1?x?16 321、已知一个正比例函数的图像与反比例函数y?析式.9的图像都经过点A(m,?3)。
2015-2016八年级数学上册期末综合训练题(新人教附答案)
2015-2016八年级数学上册期末综合训练题(新人教附答案)说明:1.本训练卷是2014~2015上学期对自贡市八年级期末统一检测数学试题的两套模拟训练的合卷.训练题是按新教材、新课标的要求从纸制资料上选编和改编的,具有较强的应试针对性,题型结构与统考题型结构接轨;两套卷分别安排在每道大题的前后两半部分,共48道小题,200分的题量.2.本合卷的每大题的后半部分共24道题组成一套模拟试题,设计有该部分题的答题卡(答题卡上有题号);考试时间120分钟,满分100分;考试结束后将答题卡收回,由老师批阅.一、选择题(本大题共16道小题,每小题3分)1、在分式+2xx y中,若将、x y 都扩大为原来的2倍,则所得分式的值 ( )A.不变B.扩大为原来的2倍C.扩大为原来的4倍D.缩小为原来的122、如果一个等腰三角形的两边长分别是5cm 和6cm ,则此三角形的周长是 ( ) A.15cm B.16cm C.17cm D.16cm 或17cm3、一个多边形的内角和为540°,则它的对角线共有 ( ) A.3条 B.5条 C.6条 D.12条4、已知a b 2+=,则22a b 4b -+的值是 ( ) A.2 B.3 C.4 D.65、如图,,DA AB CB AB ⊥⊥,垂足分别为A B 、,BD AC =,根据这些条件,不能推出的结论是 ( )A.AD BCB.AD BC =C.AC 平分DAB ∠D.C D ∠=∠6、化简()21x 1x 3x 3x 1+⎛⎫-⋅- ⎪--⎝⎭的结果是 ( ) A.2 B.2x 1- C.2x 3- D.-x 47、如图,用尺规作图法作出OBF AOB ∠=∠,作图痕迹弧 MN 是( )A.以点B 为圆心,OD 长为半径的圆弧;B.以点B 为圆心,DC 长为半径的圆弧;C.以点E 为圆心,OD长为半径的圆弧;D.以点E 为圆心,DC 长为半径的圆弧.8、在ABC中,,AB ACA 120BC 6cm =∠== ,,AB 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为 ( )A.2cmB.5cm 2C.3cmD.7cm 29、计算()32a -的结果是( )A.6a -B.6aC.5a -D.5a10、已知-=-111a b 2,则-aba b 的值是 ( )A.12B.2C.-12D.-2 11、如图,已知,AE CF AFD CEB =∠=∠,则添加下列一个条件后,仍无法判定ADF≌CBE的是 ) A.A C ∠=∠ B.AD CB = C.BE DF = D.AD BC12、一个n 边形除了一个内角外,其余内角之和是2570) A.90° B.15° C.120° D.130°13、一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以40海里/时的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为 ( ) A.40海里 B.60海里 C.70海里 D.80海里 14、如图,在ABC,ADE中,,,BAC DAE 90AB AC ∠=∠==三点在同一直线上,连接BD BE 、,以下四个结论:①.BD CE =;②.BD CE ⊥;③.ACE DBC 45∠+∠= ;④.DA 平分其中正确的是A.1 B.2 C.3 D.4 15、将正方形OABC 放在平面直角坐标系中,点O 是原点,点 A 的坐标为(1,则点C 的坐标为 ( )A.()1 B.(1- C.)1 D.()1-16、某早点店的某种食品的售价开始n 根/元,第一次涨价后售价(为b ;从开始到第二次涨价后的涨价增长率为c ,则下列判断中,错误的是 ( ) A.a b c << B.2a c < C.a b c += D.2b c =二、填空题(本大题共12道小题,每小题3分)N 北17、化简:22a 4a 4a 4-++= .18、某电子元件的面积大约为.200000007mm ,用科学记数法表示为 2mm .19、分解因式:()222a 3b b +-= .20、已知点A B 、的坐标分别为()(),,2024,,点O 是原点,以点A B P 、、为顶点的三角形与ABO 全等,写出一个符合条件的点P 的坐标为 .21、如图,△ABC 中,CD 是AB 边上的高,若2ACB 3B 6A ∠=∠=∠:BC AD = .22、如图,ABC中,C 90BAC 30AB 8∠=∠== ,,,AD平分BAC ∠,点P Q 、分别是AB AD 、上的动点,则()PQ BQ + 的最小值是 .23、若()-2x 3x 2-的值为负数,则x 24、若22x x m -+是完全平方式,则m25、如图,在ABC中,DE 垂直平分AC 交AB 于点E , A 30ACB 80∠=∠= ,,则BCE ∠= .26、如图,ABE和ADC 是ABC分别沿AB AC 、边翻折180°形成的;若BAC 130∠= ,则DAE ∠的度数为 .27、将4个数a b c d 、、、排成两行两列,两边各加一条竖线记成a b c d ,定义a bad bc c d=-,上述符号就叫二阶列式;若x 11x81x x 1+-=-+,则x = . 28、甲计划用若干天完成某项工作,在甲独立工作2天后,乙加入此项工作,且甲、乙两人工效相同,结果提前2天完成任务,设甲计划完成此项工作的天数是x ,则x 的值为 .三、解答题(本大题共10道小题,每小题5分)29、已知点()-P 31,关于y 轴对称点Q 的坐标是(),a b 1b +-,求b a 的值.30、如图,在ABC,点D E 、分别在AB AC 、上,CF AB 交DE 的延长线于点F ,,DE EF = AB 8CF 5==,,求BD 的长度.31、若,a b 7ab 12+==,求22a 3ab b ++ 的值?32、一个正多边形的每个内角都比相邻的外角的3倍还多20°,求这个正多边形的边数?33、若关于x 的分式分式方程2m x 21x 3x+-=-无解,求m 的值.34、若多项式2x ax a 3++-分解因式的结果为()()x b x 1+-,分别求a b 、的值?35()()320142015112013828π-⎛⎫⎛⎫---+- ⎪ ⎪⎝⎭⎝⎭36、如图,在ABC中,B 47∠= ,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,求AEC ∠F37、先化简,再求值:()()()()22x 32x 34x x 1x 2+---+-,其中x 是3x 31x 22x-+=--的解.38、作图题:(不要求写作法)如图,ABC在平面直角坐标系中,其中点A B C 、、 的坐标分别为()()(),,,,,A 21B 45C 52---.⑴.作ABC 关于直线:l x 1=-的对称的111A B C ;⑵.写出点111A B C 、、的坐标.四、解答题(本大题共6道小题,每小题6分)39、先化简,再求值:y 20+=,求代数式()()()-2x y x y x y 2x ⎡⎤++-÷⎣⎦的值.40、先化简,再求代数式23x 11x 2x 2-⎛⎫-÷ ⎪++⎝⎭的值,其中x 是不等式组x 302x 96+≥⎧⎨+<⎩的整数解.41、四边形ABCD 是正方形,对角线AC BD 、相较于点O ,CDE 是等边三角形,连接AE 交BD 于点E .求证:⑴.AF 2OF =;⑵.FE FB =.42、先化简:-⎛⎫÷-+ ⎪⎝⎭a 11a 2aa ,然后任选一个你喜欢的a 的值代入求值.43、在直角坐标系中,点B 的坐标为()a b ,,且满足2a 4a 40-+=.⑴.求点B 的坐标;⑵.点A 为y 轴上一动点,过点B 作BC AB ⊥交x 轴正半轴于点C . 求证:BA BC =44、一轮船在顺水中航行46km 与在逆水中航行34km 所用的时间和恰好等于该船在静水中航行80km 所用的时间,已知水流速度是/3km h ,求该船在静水中航行的速度.五、解答题(本大题共4道小题,45、47题各7分,46、48题各8分)45、某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同. ⑴.甲、乙工程队每天各能铺设多少米?⑵.如果要求完成该项工程的工期不超过10天,那么为两个工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计.46、研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定. 定义:六个内角相等的六边形叫等角六边形. ⑴.研究性质:①.等角六边形的每个内角是多少度?②.如图①,等角六边形ABCDEF 中,三组正对边AB 与DE ,BC 与EF ,CD 与AF 分别有什么位置关系?证明你的结论③.如图②,等角六边形ABCDEF 中,如果有AB=DE ,则其余两组正对边BC 与EF ,CD 与AF 相等吗?证明你的结论 ⑵.探索判定:如图③所示,三组正对边分别平行的六边形ABCDEF 中,A C 120∠=∠= ,该六边形一定是等角六边形吗?为什么?47、⑴.如图①,点B C 、分别在MAN ∠的边AM AN 、上,点E F 、在MAN ∠内部的射线AD上,12∠∠、分别是ABE ❒、CAF ❒的外角.已知,AB AC 12BAC =∠=∠=∠.求证:ABE ❒≌CAF ❒.⑵. 如图②,在等腰三角形ABC 中,,AB AC AB BC =>;点D 在边BC 上,CD 2BD =.点E F 、在线段AD 上,12BAC ∠=∠=∠;若ABC ❒的面积为9,求ABE ❒的面积与CDF❒的面积之和.48、阅读下面的解题过程:已知2x 13x 1=+,求24x x 1+的值. 解:由2x 13x 1=+,知x 0≠,所以2x 13x +=,即1x 3x +=.所以242222x 111x x 2327x x x +⎛⎫=+=+-=-= ⎪⎝⎭所以24x x 1+的值为7的倒数,即17.以上解法中先将已知等式的两边取“倒数”,然后求出待式子倒数值,我们把此题的这种解法叫做“倒数法”。
上海市浦东新区2014-2015年八年级上期末考试数学试题
浦东新区2013学年度第一学期期末质量抽测初二数学(测试时间100分钟,满分100分)题号一二三总分得分一、选择题:(本大题共5题,每题2分,满分10分)1.下列二次根式中,与属同类二次根式的是………………………………………( a 3)(A );(B );(C );(D ).a 9227a 218ab 227ab 2.下列各数中,是方程的根的是……………………………………………( 3522=+x x )(A )-3;(B )-1;(C )1;(D )3.3.直线不经过点…………………………………………………………………( x y 32-=)(A )(0,0);(B )(-2,3);(C )(3,-2);(D )(-3,2).4.如果反比例函数的图像经过点(-8,3),那么当x >0时,y 的值随x 的值的增大而……( )(A )减小;(B )不变;(C )增大;(D )无法确定.5.在命题:“三角形的一个外角大于三角形的每一个内角”、“底边及一个内角相等的两个等腰三角形全等”、“两条平行线被第三条直线所截,一对同旁内角的平分线互相垂直”中,真命题的个数有…………………………………………………………………………( )(A )0个;(B )1个;(C )2个;(D )3个.二、填空题:(本大题共15题,每题2分,满分30分)6.化简:= .2)4(-π7.计算:= .4312-8.方程的解是 .2142=-x x 9.如果关于x 的方程没有实数根,那么m 的取值范围是.032=-+m x x 10.分解因式:=.232--x x11.函数的定义域是 .12-+=x x y 12.已知函数,那么=.53)(-=x xx f )2(f 13.把化成的形式是.362+-x x n m x ++2)(14.已知直角坐标平面中两点分别为A (2,-1)、B (5,3),那么AB = .15.某人从甲地行走到乙地的路程S (千米)与时间t (时)的函数关系如图所示,那么此人行走3千米,所用的时间是 (时).16.在Rt △ABC 中,如果∠C =90°,∠A =60°,AB =14,那么BC = .17.经过定点A 、B 的圆的圆心的轨迹是 .18.命题“等腰三角形两底角的平分线相等”的逆命题是 .19.已知在Rt △ABC 中,P 为斜边AB 上一点,且PB =BC ,PA =2,AC =8,那么AB = .20.已知在△ABC 中,CD 是角平分线,∠A =2∠B ,AD =3,AC =5,那么BC = .三、解答题:(本大题共8题,满分60分)21.(本题满分6分)已知:,求代数式的值.321+=x 48262++-+x xx x x 22.(本题满分6分)如果关于x 的方程是一元二次方程,试判断关于y 42522+=-x x mx 的方程根的情况,并说明理由.y m my m y y -=+--+12)1((第15题图)23.(本题满分7分)已知:点P (m ,4)在反比例函数的图像上,正比例函数的图xy 12-=像经过点P 和点 Q (6,n ).(1)求正比例函数的解析式;(2)在x 轴上求一点M ,使△MPQ 的面积等于18.24.(本题满分7分)已知:如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA ,垂足为点D ,PE ⊥OB ,垂足为点E ,点M 、N 分别在线段OD 和射线EB 上,PM =PN ,∠AOB =68°.求:∠MPN 的度数.A OBP MN C(第24题图)D E25.(本题满分8分)如图,已知△ABC .(1)根据要求作图:在边BC 上求作一点D ,使得点D 到AB 、AC 的距离相等,在边AB 上求作一点E ,使得点E 到点A 、D 的距离相等;(不需要写作法,但需要保留作图痕迹和结论)(2)在第(1)小题所作出的图中,求证:DE ∥AC .26.(本题满分8分)如图,在一块长为60米,宽为40米的空地上计划开辟花圃种植鲜花,要求在花圃的四周留出宽度相等的道路,如果花圃的面积为2016平方米.(1)求道路的宽度;(2)如果道路拓宽1米,求花圃的面积将减少多少平方米.(第26题图)B(第25题图)27.(本题满分8分)已知:在△ABC中,AB=2BC,∠ABC=60°.(1)如图1,求证:∠BAC=30°;(2)分别以AB、AC为边,在△ABC外作等边三角形ABD和等边三角形ACE,联结DE,交AB于点F(如图2).求证:DF=EF.(第27题图AB CACDEF(第27题图B28.(本题满分10分)已知在平面直角坐标系xOy 中,点A (m ,n )在第一象限内,AB ⊥OA ,且AB =OA ,反比例函数的图像经过点A .xky =(1)当点B 的坐标为(6,0)时(如图1),求这个反比例函数的解析式;(2)当点B 也在反比例函数的图xky =像上,且在点A 的右侧时(如图2),用m 、n 的代数式表示点B 的坐标;(3)在第(2)小题的条件下,求的nm值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年上海市浦东新区八年级(上)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.(3分)下列根式中,与是同类二次根式的是()A.B. C.D.2.(3分)下列关于x的方程一定是一元二次方程的是()A.ax2+bx+c=0 B.x2+bx+c=0 C.x2++c=0 D.cx+b+x3=03.(3分)在直角坐标平面内,任意一个正比例函数的图象都经过点()A.(1,1) B.(1,0) C.(0,1) D.(0,0)4.(3分)在函数y=(k<0)的图象上有三点(x1,y1),(x2,y2),(x3,y3),已知x1<x2<0<x3,那么下列各式中,正确的是()A.y2>y1>y3B.y3>y1>y2C.y2>y3>y1D.y1>y3>y25.(3分)下列说法错误的是()A.经过已知点P和Q的圆的圆心轨迹是线段PQ的垂直平分线B.到点A的距离等于2cm的点的轨迹是以点A为圆心,2cm长为半径的圆C.与直线AB距离为3的点的轨迹是平行于直线AB且和AB距离为3的两条直线D.以线段AB为底边的等腰三角形两底角平分线交点的轨迹是线段AB的垂直平分线6.(3分)小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)计算:=.8.(3分)一块长方形绿地的面积为1200平方米,并且长比宽多10米,如果设长为x米,根据题意可列出方程.9.(3分)在实数范围内分解因式x2﹣4x﹣1=.10.(3分)函数f(x)=的定义域是.11.(3分)如果点P(4,b)在函数y=的图象上,那么b=.12.(3分)已知y=y1+y2,其中y1与x成反比例,且比例系数为k1,y2与x2成正比例,且比例系数为k2,当x=﹣1时,y=0,那么k1与k2之间的数量关系是.(用代数式表示)13.(3分)“有两角及其中一角的平分线对应相等的两个三角形全等”是命题(填“真”或“假”).14.(3分)“等边三角形的三个内角都等于60°”的逆命题是.15.(3分)如图,△ABC中,D是AC边上的一点,AD=9,BD=12,BC=13,CD=5,那么△ABC的面积是.16.(3分)Rt△ABC中,已知∠C=90°,有一点D同时满足以下三个条件:①在直角边BC上;②在∠CAB的角平分线上;③在直角边AB的垂直平分线上,那么∠B=度.17.(3分)如图,点A在直线l1:y=﹣3x上,点B在经过原点O的直线l2上,如果点A的纵坐标与点B的横坐标相等,且OA=OB,那么直线l2的函数解析式是.18.(3分)如图,Rt△ABC中,∠ACB=90°,AC=15,BC=20,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,那么线段B′F的长为.三、解答题(本大题共3题,每题5分,满分15分)19.(5分)计算:+﹣6.20.(5分)解方程:x2﹣2x﹣6=0.21.(5分)已知:如图,AB=DC,AC=BD.求证:∠B=∠C.四、解答题(本大题共4题,第22题7分,第23、24、25每题8分,满分31分)22.(7分)已知关于x的方程x2+2x﹣a+1=0没有实数根,试判断关于y的方程y2+ay+a=1是否一定有两个不相等的实数根,并说明理由.23.(8分)已知:如图,Rt△ABC中,AC>BC,∠ACB=90°,CD是△ABC的中线,点E在CD上,且∠AED=∠B.求证:AE=BC.24.(8分)已知,点B、C是双曲线y=在第一象限分支上的两点,点A在x轴正半轴上,△AOB为等腰直角三角形,∠B=90°,AC垂直于x轴.(1)求点C的坐标;(2)点D为x轴上一点,当△BCD为等腰三角形时,求点D的坐标.25.(8分)已知,如图,点D在射线AB上,且AD=2,点P是射线AC上的一个动点,线段PD的垂直平分线与射线AC交于点E,与∠BAC的平分线交于点F.连结DF、PF、EF.(1)当DF∥AC时,求证:AD=PF.(2)当∠BAC=60°时,设AP=x,AF=y,求y关于x的函数解析式.2015-2016学年上海市浦东新区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)1.(3分)下列根式中,与是同类二次根式的是()A.B. C.D.【解答】解:不是二次根式,A不正确;=2,与不是同类二次根式,B不正确;=,与不是同类二次根式,C不正确;=,与是同类二次根式,D正确;故选:D.2.(3分)下列关于x的方程一定是一元二次方程的是()A.ax2+bx+c=0 B.x2+bx+c=0 C.x2++c=0 D.cx+b+x3=0【解答】解:A、a=0,ax2+bx+c=0是一元一次方程,故A错误;B、x2+bx+c=0是一元二次方程,故B正确;C、x2++c=0是分式方程,故C错误;D、cx+b+x3=0是一元三次方程,故D错误;故选:B.3.(3分)在直角坐标平面内,任意一个正比例函数的图象都经过点()A.(1,1) B.(1,0) C.(0,1) D.(0,0)【解答】解:∵正比例函数的解析式是y=kx(k≠0),∴当x=0时,y=0,∴任意一个正比例函数的图象都经过点(0,0).故选:D.4.(3分)在函数y=(k<0)的图象上有三点(x1,y1),(x2,y2),(x3,y3),已知x1<x2<0<x3,那么下列各式中,正确的是()A.y2>y1>y3B.y3>y1>y2C.y2>y3>y1D.y1>y3>y2【解答】解:∵k<0,∴函数图象在第二、四象限,在每个象限内,y随x的增大而增大,又∵x1<x2<0<x3,∴y2>y1>y3.故选:A.5.(3分)下列说法错误的是()A.经过已知点P和Q的圆的圆心轨迹是线段PQ的垂直平分线B.到点A的距离等于2cm的点的轨迹是以点A为圆心,2cm长为半径的圆C.与直线AB距离为3的点的轨迹是平行于直线AB且和AB距离为3的两条直线D.以线段AB为底边的等腰三角形两底角平分线交点的轨迹是线段AB的垂直平分线【解答】解:A、经过已知点P和Q的圆的圆心轨迹是线段PQ的垂直平分线正确;B、到点A的距离等于2cm的点的轨迹是以点A为圆心,2cm长为半径的圆正确;C、空间内与直线AB距离为3的点的轨迹是平行于直线AB且和AB距离为3的无数条直线,故错误;D、以线段AB为底边的等腰三角形两底角平分线交点的轨迹是线段AB的垂直平分线,正确,故选:C.6.(3分)小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.【解答】解:小明步行到学校参加联欢会,小明离开家的距离增大,按照原来的速度步行回家取道具,小明离开家的距离由大变小,随后骑自行车加快速度返回学校,小明离开家的距离增大,斜度增大,故选:C.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)计算:=a.【解答】解:原式==a.8.(3分)一块长方形绿地的面积为1200平方米,并且长比宽多10米,如果设长为x米,根据题意可列出方程x(x﹣10)=1200.【解答】解:设长方形绿地的长为x米,则长为(x﹣10)米,由题意得:x(x﹣10)=1200.故答案为:x(x﹣10)=1200.9.(3分)在实数范围内分解因式x2﹣4x﹣1=(x﹣2+)(x﹣2﹣).【解答】解:原式=x2﹣4x+4﹣5=(x﹣2)2﹣5=(x﹣2+)(x﹣2﹣).故答案为:(x﹣2+)(x﹣2﹣).10.(3分)函数f(x)=的定义域是x≠2.【解答】解:由f(x)=,得2x﹣4≠0.解得x≠2,故答案为:x≠2.11.(3分)如果点P(4,b)在函数y=的图象上,那么b=.【解答】解:点P(4,b)在函数y=的图象上,得b==,故答案为:.12.(3分)已知y=y1+y2,其中y1与x成反比例,且比例系数为k1,y2与x2成正比例,且比例系数为k2,当x=﹣1时,y=0,那么k1与k2之间的数量关系是k1=k2.(用代数式表示)【解答】解:根据题意得:y1=,y2=k2x2,∴y=y1+y2=+k2x2,把x=﹣1,y=0代入得:﹣k1+k2=0,即k1=k2,故答案为:k1=k213.(3分)“有两角及其中一角的平分线对应相等的两个三角形全等”是真命题(填“真”或“假”).【解答】已知:△ABC和△A′B′C′中,∠A=∠A',∠B=∠B′,∠B、∠B′的角平分线,BD=B′D′,求证:△ABC≌△A′B′C′.证明:∵∠B=∠B'且∠B、∠B′的角平分线分别为BD和B′D′,∴∠ABD=∠A′B′D′=∠B,∵BD=B'D',∠A=∠A′,∴△ABD≌△A′B′D′,∴AB=A′B′,∵∠A=∠A′,∠B=∠B′,∴△ABC≌△A′B′C′.∴“有两角及其中一角的平分线对应相等的两个三角形全等”是真命题,故答案为:真.14.(3分)“等边三角形的三个内角都等于60°”的逆命题是三个内角都等于60°的三角形是等边三角形.【解答】解:命题“等边三角形的三个内角都等于60°”的逆命题是“三个内角都等于60°的三角形是等边三角形”.故答案为:三个内角都等于60°的三角形是等边三角形.15.(3分)如图,△ABC中,D是AC边上的一点,AD=9,BD=12,BC=13,CD=5,那么△ABC的面积是84.【解答】解:∵BD=12,BC=13,CD=5,CD2+BD2=25+144=169,BC2=169,∴CD2+BD2=BC2,∴BD⊥AC(勾股定理的逆定理),∴△ABC的面积=AC•BD=×(9+5)×12=84.故答案为:84.16.(3分)Rt△ABC中,已知∠C=90°,有一点D同时满足以下三个条件:①在直角边BC上;②在∠CAB的角平分线上;③在直角边AB的垂直平分线上,那么∠B=30度.【解答】解:∵D在直角边AB的垂直平分线上,∴DA=DB,∴∠DAB=∠B,∵D在∠CAB的角平分线上,∴∠DAB=∠DAC,∴∠CAD=∠DAB=∠B=30°,故答案为:30.17.(3分)如图,点A在直线l1:y=﹣3x上,点B在经过原点O的直线l2上,如果点A的纵坐标与点B的横坐标相等,且OA=OB,那么直线l2的函数解析式是y=x.【解答】解:过A作AC⊥y轴于C,过B作BD⊥x轴于D,∵点A的纵坐标与点B的横坐标相等,∴AC=BD,在Rt△AOC与Rt△BOD中,,∴Rt△AOC≌Rt△BOD,∴OC=OD,∵点A在直线l1:y=﹣3x上,∴设A(﹣m,3m),∴AC=BD=m,OC=OD=3m,∴B(3m,m),设直线l2的解析式为:y=kx,∴k=,∴直线l2的解析式为:y=x.故答案为:y=x.18.(3分)如图,Rt△ABC中,∠ACB=90°,AC=15,BC=20,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,那么线段B′F的长为4.【解答】解:根据折叠的性质可知:CD=AC=15,B′C=BC=20,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=20﹣15=5,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,=AC•BC=AB•C E,∵S△ABC∴AC•BC=AB•CE,∵根据勾股定理求得AB=25,∴CE=12,∴EF=12,ED=AE==9,∴DF=EF﹣ED=3,∴B′F==4.故答案为:4.三、解答题(本大题共3题,每题5分,满分15分)19.(5分)计算:+﹣6.【解答】解:原式=+﹣2=+﹣﹣2=.20.(5分)解方程:x2﹣2x﹣6=0.【解答】解:x2﹣2x﹣6=0,x2﹣2x=6,x2﹣2x+()2=6+()2,(x﹣)2=9,x﹣=±3,x1=3+,x2=﹣3+.21.(5分)已知:如图,AB=DC,AC=BD.求证:∠B=∠C.【解答】解:如图,连接AD,在△ABD和△DCA中,,∴△ABD≌△DCA(SSS),∴∠B=∠C.四、解答题(本大题共4题,第22题7分,第23、24、25每题8分,满分31分)22.(7分)已知关于x的方程x2+2x﹣a+1=0没有实数根,试判断关于y的方程y2+ay+a=1是否一定有两个不相等的实数根,并说明理由.【解答】解:∵方程x2+2x﹣a+1=0没有实数根,∴△1=4﹣4(﹣a+1)=4a<0,∴a<0,对于关于y的方程y2+ay+a=1,△2=a2﹣4a(a﹣1)=(a﹣2)2,∵a<0,∴(a﹣2)2>0,即△2>0,∴方程y2+ay+a=1一定有两个不相等的实数根.23.(8分)已知:如图,Rt△ABC中,AC>BC,∠ACB=90°,CD是△ABC的中线,点E在CD上,且∠AED=∠B.求证:AE=BC.【解答】证明:延长CD到F使DF=CD,连接AF,∵CD是△ABC的中线,∴AD=BD,在△ADF与△BCD中,,∴△ADF≌△BCD,∴∠F=∠BCD,BC=AF,∵∠ACB=90°,CD是△ABC的中线,∴CD=BD,∴∠B=∠BCD,∵∠AED=∠F,∴AE=AF,∴AE=BC.24.(8分)已知,点B、C是双曲线y=在第一象限分支上的两点,点A在x轴正半轴上,△AOB为等腰直角三角形,∠B=90°,AC垂直于x轴.(1)求点C的坐标;(2)点D为x轴上一点,当△BCD为等腰三角形时,求点D的坐标.【解答】解:(1)过点B作BH⊥OA于点H,∵△AOB是等腰直角三角形,∠B=90°,∴BH=OH=OA.∵点B在第一象限,∴设B(a,a)(a>0).∵点B在双曲线y=上,∴a2=4,∴a=2或a=﹣2(不合题意,舍去),∴B(2,2),∴A(4,0).∵AC⊥x轴,∴设C(4,y),∵点C在双曲线y=上,∴C(4,1);(2)∵设D(x,0),∴BC2=5,BD2=x2﹣4x+8,CD2=x2﹣8x+17,当△BCD是等腰直角三角形时,BC=BD,BC=CD或BD=CD.当BC=BD,即BC2=BD2时,x2﹣4x+8=5,解得x=1或x=3,∴D(1,0)或(3,0);当BC=CD,即BC2=CD2时,x2﹣8x+17=5,解得x=2或x=6,当D(6,0)时,BC=CD=,BD=2,∴BC+CD=BD,不能构成三角形,∴x=6不合题意,∴D(2,0);当BD=CD,即BD2=CD2,x2﹣4x+8=x2﹣8x+17,解得x=,∴D(,0).综上所述,D(1,0),(3,0),(2,0),(,0).25.(8分)已知,如图,点D在射线AB上,且AD=2,点P是射线AC上的一个动点,线段PD的垂直平分线与射线AC交于点E,与∠BAC的平分线交于点F.连结DF、PF、EF.(1)当DF∥AC时,求证:AD=PF.(2)当∠BAC=60°时,设AP=x,AF=y,求y关于x的函数解析式.【解答】解:(1)∵AF平分∠BAC,∴∠BAF=∠FAC,∵DF∥AC,∴∠DAF=∠FAC,∴∠DAF=∠DFA,∴AD=DF,∵EF垂直平分DP,∴DF=PF,∴AD=PF;(2)过点F作FG⊥AC于G,FH⊥AB于H,∵AF平分∠BAC,FG⊥AC,FH⊥AB,∴FH=FG,∵∠BAC=60°,∴∠FAC=30°,∴FG=AF,AG=AF,同理FH=AF,AH=AF,∵EF垂直平分DP,∴FD=FP,在Rt△FDH与Rt△FPG中,,∴Rt△FDH≌Rt△FPG,∴PG=DH,∵AD=2,AP=x,AF=y,∴x=y+(y﹣2),∴y=x+.。