固气界面的吸附作用
第五讲:固汽表面作用
p C , f ( p, T )等压线
C , f ( p, T )等量线
2)动力学参量:单位时间单位面积吸附量 吸附速率:与单位时间碰撞分子数和吸附几率 脱附速率:表面覆盖分子数及平均滞留时间
真空与过程装备系
第五讲:固-气界面作用
真空固-气界面现象概述 一、基本应用 1、吸附泵 霜 气相分子---吸附于真空容器表面 冬天 结
第五讲:固-气界面作用
吸附/低温泵(低温泵简介)
低温泵工作原理 低温抽气过程中,无论是冷凝作用还是 吸附作用,冷表面上发生的现象十分复杂(传 导、低温相变、沉积物的增长与变化、多组分 特点)。因此,低温泵的抽气原理是现代物理 学最复杂的问题之一。 一般认为抽气作用是通过如下平衡来实 现的:飞到冷表面上的气体分子停留在冷表面 上,同时另外一些分子会离开冷表面,当前者 数目多于后者,将实现抽气作用。
第二讲:真空物理基础(二) 物理吸附和化学吸附:
2009年5月
真空与过程装备系
第二讲:真空物理基础(二) 本讲的主要内容:
固体表面对气体分子的作用力; 物理吸附和化学吸附; 吸附/脱附速率; 吸附等温线; 混合气体的吸附; 表面迁移 管道有吸附作用时的非稳定气流; 气体在固体中的溶解、渗透和扩散; 电子碰撞脱附; 离子轰击固-气界面。 真空与过程装备系
2009年5月
真空与过程装备系
第五讲:固-气界面作用
吸附/低温泵(溅射离子泵简介)
溅射离子泵对活性气体 N2、O2、CO、CO2 等的抽除主要靠化学吸 附,它们与新鲜钛原子生成 TiN、TiO 和TiC 等钛化合物的衍生物。 其次是物理吸附,新鲜的 Ti 膜表面很快会形成一层气体分子,瞬间 即被新溅射的钛膜掩埋,吸附 ——掩埋——吸附的物理过程泵完成了对 惰性气体的抽除。 以离子态到达阴极的气体分子很可能因离子的连续轰击而解吸 ,对惰 性气体尤其如此。在大气中约含有 1/100 的氩,二极型溅射离子泵对氩的 抽速很低,而且每隔一定时间段还会反复释放出。因此氩是影响溅射离 子泵的极限压力的重要因素。 对于氢,由于其质量小,氢离子轰击钛板的产额很低。氢离子 +H2 和 H + 打到钛板上与电子复合变成氢原子,扩散进入钛的晶格内,形成 TiH 固溶体而被排除。固溶体中 H2 的浓度为0.05﹪,当温度高时,又会分解 释放出氢气,因此溅射离子泵的主要残气是氢气。
第5章-气固界面-1吸附等温式
8.2 Physical and chemical adsorption
Furthermore, the adsorbed atoms are localized at particular sites on the solid surface and only one layer of adsorbate may be chemisorbed. 化学吸附的位点是特定的,吸附的层数只能为一。
ΔG= Δ H-T Δ S
8.1 Introduction 引言
The adsorption of gases plays an important role in many processer, in particular heterogeneous catalysis(异相催化). 气体的吸附在很多进程中其重要作用,尤其是异相催化。
8.2 Physical and chemical adsorption
In chemisorption, on the other hand, a chemical bond is formed. Consequently the enthalpies of the adsorption are much greater (~>80kJ/mol) than for physical adsorption. There are occasional exceptions (e.g. for the chemisorption of hydrogen on glass the enthalpy is only about 12 kJ/mol). 化学吸附存在化学键的形成, 其焓变大得多(~>80kJ/mol) 。 不过也有例外。
“The calculations for the supported system clarify that the γ-Al2O3 support increases NO activation for three-fold sites, while it decreases it for on-top and bridge sites.”
胶体化学第7章-2 固液界面的吸附作用
对稀溶液,Gibbs等温式可写作
c n RT c S
S :固体的比表面
将(1)式代入求导
Sc ( 0 m ) dn n s RT n dc
s 2
s 2
作不定积分
n RT ln n ln c ln a ( 0 m )S
s 2
s
set
n s RT 1 ( 0 m )S n
n ac
s 2
1
n
加而直线降低的关系导出的 关系式,只适用于中等覆盖度的化学吸附或物理 吸附。
1 =n / n ln Ac a s n2 k1 k2 ln c
s 2 s m
四、自电解质溶液中的吸附
1. 固体表面与介质在液体介质中带电
a.表面基团解离 b.吸附带电 c.非水介质中的带电... 为了保持荷电固体和介质的电中性,介质中的 与固体表面电荷符号相反的离子必将靠近表面 形成双电层(double layer)。
四、自电解质溶液中的吸附
2 双电层
Stern面
滑动面
- - 溶剂分子 - 反离子 - -
表面电势
φ0
Stern电势
φδ
ζ
+- + +- + +- + +- + +- + +-
-
紧密层(Stern层)
扩散层
例:AgNO3+过量KCl →AgCl(晶体)+K++Cl-+NO3-
①Cl-可在AgCl晶体上吸附成牢固的化学结合
b 结构影响 : 碳自水溶液中吸附量 在水中的溶解度
(2)溶剂影响
溶剂/溶质作用强烈,溶解度上升,吸附量降低 溶剂/吸附剂作用强烈,竞争吸附,吸附量降低
(3)吸附剂影响
气体吸附原理
气体吸附原理气体吸附是指气体分子在固体表面上附着的现象,它是一种重要的物理化学过程,广泛应用于化工、环保、能源等领域。
气体吸附原理是指气体分子在与固体表面相互作用时,通过吸附作用在固体表面上形成一层吸附层的过程。
气体吸附过程是一个复杂的物理化学过程,它受到多种因素的影响。
其中,最重要的是吸附剂的性质和气体分子的性质。
吸附剂的性质包括孔径大小、孔隙结构、化学成分等,而气体分子的性质则包括分子大小、极性、化学活性等。
这些因素共同作用,决定了气体在固体表面上的吸附行为。
气体吸附过程可以分为物理吸附和化学吸附两种类型。
物理吸附是指气体分子与吸附剂表面之间的范德华力作用,它是一种弱相互作用力,通常发生在低温下。
而化学吸附则是指气体分子与吸附剂表面发生化学键结合的过程,它是一种强相互作用力,通常发生在高温下。
在气体吸附过程中,吸附剂的孔隙结构对吸附性能起着至关重要的作用。
孔隙结构可以影响吸附剂的比表面积、孔体积和孔径分布等参数,从而影响气体分子在吸附剂表面上的扩散和吸附速率。
通常情况下,孔径越小,吸附剂的比表面积和孔体积越大,气体分子在其表面上的吸附性能也越好。
此外,气体分子的性质也对气体吸附过程产生重要影响。
一般来说,分子大小越小、极性越大、化学活性越高的气体分子,其在固体表面上的吸附性能也越好。
这是因为这些气体分子更容易与吸附剂表面发生相互作用,从而形成稳定的吸附层。
在工业应用中,气体吸附技术被广泛应用于气体分离、气体储存、气体检测等领域。
例如,在天然气净化过程中,气体吸附技术可以有效去除天然气中的杂质气体,提高天然气的纯度。
在气体储存领域,气体吸附技术可以将气体分子吸附到多孔吸附剂中,实现气体的高效储存和释放。
总之,气体吸附原理是一个复杂而重要的物理化学过程,它受到多种因素的影响。
通过深入研究气体吸附原理,可以更好地理解气体分子在固体表面上的吸附行为,为气体吸附技术的应用和发展提供理论基础和技术支持。
第五章_固体表面吸附(固-气界面吸附)
③化学吸附具有选择性
如:CO在金属表面上的吸附
O C MM
OO CC MM
NO + 1/2O2 CH2=CH2 + 1/2O2
NO2 O
NO只在Pt上吸附 只用Ag作催化剂。
无选择性;吸附热与气体凝聚热相近;吸附速度快;多层吸附。
(2)相互作用势能
设 f 代表作用力,r 为粒子间距离,U(r)为粒子间相互作用势能,有:
f U (r) r
或
r
U(r)
f dr
永久偶极矩相互作用势能为:
U (r)
2 3
12 22
3k Tr 6
诱导偶极矩相互作用势能为:
Ui(r)
( i 2 12
使体相中某些组分在表面区产生富集的现象。 其特点为组成随表面吸附质不同而变化。
如:Ag-Pd合金,吸附CO时,体相中的Pd可通过扩散到达 表面与CO形成羰基键,从而使表面富Pd。除去CO后,表面 组成由回到原来的状态。
第二节 物理吸附和化学吸附
1、物理吸附与Lennard-Jone势能曲线
(1)物理吸附特点
S
RT
则:
p
或: bp
b(1 )
1 bp
若有两种气体存于表面而发生竞争吸附时:
则:
A
பைடு நூலகம்
bA pA 1 bA pA bB
pB
B
bB pB 1 bA pA bB
pB
如果吸附解离成两个碎片,且各占据一个吸附位置,则:
f ( ) (1 )2 f '( ) 2
第六章.固体表面--气固界面现象
前面已讨论了固-液界面现象,这里将对气- 前面已讨论了固-液界面现象,这里将对气-固界面即 固体表面进行讨论。 固体表面进行讨论。 1. 固体表面的不均匀性 表面形状:固体按其大小和形状可分为: 表面形状:固体按其大小和形状可分为:普通大小的固 体,纤维状固体,粉末状固体及粒径在10-6m以下的所 纤维状固体,粉末状固体及粒径在10-6m以下的所 10 谓胶体粒子。普通固体表面:固体表面跟液体表面不同, 谓胶体粒子。普通固体表面:固体表面跟液体表面不同, 肉眼看是平滑的,放大1000倍以上则为不平滑的了。 肉眼看是平滑的,放大1000倍以上则为不平滑的了。 1000倍以上则为不平滑的了
Γ=
τ1 + τ 2
2
② 晶体的自然外形及表面自由焓 一般固体的外形主要取决于加工, 一般固体的外形主要取决于加工,自然晶形则与晶体 的表面自由焓直接相关。 的表面自由焓直接相关。可以将多晶面固体加工成球 正方形等任何形状, 形、正方形等任何形状,但当我们将这某一特定形状 的多晶面体加热融熔后,冷却或溶解后再浓缩析出时, 的多晶面体加热融熔后,冷却或溶解后再浓缩析出时, 定会自发地呈现原来的多晶面形状。 定会自发地呈现原来的多晶面形状。这是因为固体分 子呈有序排列时,在某种状态下自由焓最低。 子呈有序排列时,在某种状态下自由焓最低。即一定 体积的固体必然要构成总的表面自由焓最低的形状。 体积的固体必然要构成总的表面自由焓最低的形状。
铁:570oC以下 570oC以下 Fe2O3/ Fe3O4/ Fe
金属的氧化程度取决于与其共存的氧的分压。 分 金属的氧化程度取决于与其共存的氧的分压 。 压高, 则易生成深度氧化物, 压高 , 则易生成深度氧化物 , 否则即生成不完全 氧化物。 氧化物。 合金的情况更复杂。 Fe和 Cr的合金就因 Cr的含量不 的合金就因Cr 合金的情况更复杂 。 如 Fe 和 Cr 的合金就因 Cr 的含量不 同, 其表面结构也不同: 其表面结构也不同: 5% Cr Fe2 /Fe3 /FeO/FeO Cr2 /Fe+Cr2 Fe2O3/Fe3O4/FeO/FeO· Cr2O3/Fe+Cr2O3/Fe+Cr 10% 10%Cr Fe2 /Fe3 /FeO· Cr2 /Fe+Cr2 Fe2O3/Fe3O4 /FeO Cr2O3/Fe+Cr2O3/Fe +Cr 23% 23%Cr : Cr2 Cr2O3/Fe + Cr
第5章 固-气界面的物理吸附
固-气界面的物理吸附
1
1、物理吸附和化学吸附
正由于固体表面原子受力不对称和表面结构不均匀性,它可以吸附 气体或液体分子,使表面自由能下降。它是固体表面最重要的性质之一。根
据吸附力的本质,气体的吸附可分为物理吸附和化学吸附二类。
1.1 物理吸附 具有如下特点的吸附称为物理吸附: 1.吸附力是由固体和气体分子之间的范德华引力产生的,一般比较弱。 2.吸附热较小,接近于气体的液化热,一般在几个kJ/mol以下。 3.吸附无选择性,任何固体可以吸附任何气体,当然吸附量会有所不同。 4.吸附稳定性不高,吸附与解吸速率都很快。 5.吸附可以是单分子层的,但也可以是多分子层的。 6.吸附不需要活化能,吸附速率并不因温度的升高而变快。 总之:物理吸附仅仅是一种物理作用,没有电子转移,没有化学键的生 成与破坏,也没有原子重排等。
Q q
T
(1)直接用实验测定 在高真空体系中,先将吸附剂脱附干净,然后 用精密的量热计测量吸附一定量气体后放出的热量。这样测得的是积分 吸附热。 (2)从吸附等量线求算 在一组吸附等量线上求出不同温度下的 (p/T)q值,再根据克劳修斯-克莱贝龙方程得
ln p Q ( )q T RT 2
式中Q就是某一吸附量时的等量吸附热,近似的看作微分吸附热. (3)色谱法 用气相色谱技术测定吸附热。
9
2、吸附剂和吸附质(adsorbent,adsorbate)
当气体或蒸汽在固体表面被吸附时,固体称为吸附剂,被吸附的气 体称为吸附质。 常用的吸附剂有:硅胶、分子筛、活性炭等。 为了测定固体的比表面,常用的吸附质有:氮气、水蒸气、苯或环 己烷的蒸汽等。
吸附热的分类
积分吸附热 等温条件下,一定量的固体吸附一定量的气体所放出的 热,用Q表示。积分吸附热实际上是各种不同覆盖度下吸附热的平均值。
3.5 固液界面(吸附作用)
4.自电解质溶液中的吸附
(1)、离子吸附与电双层 1) 离子吸附的原因 a、 体相中和固液界面上某组分的化学势不同, 从而发生离子的迁移和吸附; b、 固体表面的可离解基团由于介质pH的变化而 产生不同程度的离解而使表面带电。 (2)、双电层形成 由于固体表面带有电荷,因此溶液中的反离子必 将靠近表面而形成双电层。
双电层模型
双电层与 ζ 电势 (1)胶团结构 因为胶粒的大小介于 1~100nm 之间,故每一胶粒必然是 由许多分子或原子聚集而成的。我们往往将组成胶粒核心 部分的固态微粒称为胶核。例如用稀 AgNO3 溶液和 KI 溶 液制备 AgI 溶胶时,由反应生成的 AgI 微粒首先形成胶核。 胶核常具有晶体结构,它很容易从溶液中选择性地吸附某 种组成与之相似的离子而使胶核带电,因此,胶核实际上 应包括固体微粒表层的带电离子。
2.自浓溶液中的吸附
设溶液由1和2两种相互混溶的液体组成。其组 成可从纯的1变为纯的2,即任何一种组分的组成 变化范围均为0→1,浓度用x表示。 1)复合吸附等温线 吸附前 n0= n10+ n20 吸附平衡 n10 = n1b+m n1s n20 = n2b+m n2s 以x1和x2 表示溶液体相中1、2组分的摩尔分数
d为紧密层电势为吸附势能可见决定吸附能力大小的除静电作用外还有非静电作用也有离子在带电符号相同的固体表面上吸附的例子此时吸附主要是非电性力起作用如范得华引力2离子交换m1rm2m2rm1交换离子固体离子交换剂交换吸附的平衡常数k的大小反映了离子交换过程的趋势有时也用g的值来表示交换能力大小
2.4 固液界面—吸附作用
b x1 n1 b x2 n2 b b n1 x2 n2 x1
自浓溶液中的吸附
固气界面现象解析
固气表面的界面现象
• 前面已讨论了固-液界面现象,这里对气固 即固体表面进行讨论。
• 1固体表面的不均匀性 • 表面形状:固体表面按大小和形状可分为:
普通大小的固体,纤维状固体,粉末状固 体。 • 普通固体表面:固体表面跟液体表面不同, 肉眼看是平滑的,放大1000倍以上则为不 平滑的了。
固气表面的界面现象
固体的吸附作用
固体的吸附作用
(一)吸附物与吸附剂 通常将被吸附的物质称为吸附质,能有效 吸附吸附质的物质叫吸附剂。吸附剂多为 多孔性大比表面固体。
固体的吸附作用
吸附剂: ①大的比表面 • ②好的化学稳定性(不与吸附质发生反应) • ③良好的热稳定性和机械强度 • 非极性吸附剂:活性炭、炭黑 • 极性吸附剂:硅胶、分子筛、活性氧化铝
因为如此,才为吸附、润湿、催化、摩擦 等提供了基础。如宇宙飞船的密封问题的 关键就是研究表面粗糙度及其定量的表示 方法。
固气的吸附作用
固体的吸附作用
概念:气体分子在固体面上发生的滞留现 象称为气体在固体表面的吸附 • 由于固体表面的力场的不饱和性,所以当 固体与气体接触时,气体必将自发的吸附 于固体表面吸附可分为几种类型: • 物理吸附和化学吸附,下面比较一下两种 的不同
吸附剂在环保领域中的应用
• 3 吸附分离净化工业废气 • 工业生产中产生大量的CO2、S O2、NOx等
有害气体,它们引起温室效应、酸雨和光 化学烟雾等现象,破坏地球和人们的生活 环境。因此人们一直在致力于开发各种方 法来治理这些有害气体。其中的吸附分离 的方法是有效的治理方法之一。 • 硅胶、泥煤和活性炭等是良好的NOx吸附剂。
• 2 吸附法去除汞
• 一些工业气体中含有汞,汞对是环境是一 种很有害的物质,天然气中存在的微量的 汞会引起铝管和热交换器变脆和断裂。适 用的吸附剂有活性炭和分子筛等。活性炭 可通过充氯、充碘化钾或负载金、银、铝 等金属改性。浸渍了元素硫的活性炭是从 空气或其他气流中脱除汞的有效吸附剂; 据报道吸附的汞可通过体外热氧化回收。
气固界面知识点
ቤተ መጻሕፍቲ ባይዱ (3) 外来粒子在固体表面上相互作用,并形成另一种新相 例如金属表面的氧化
化学吸附的特点:
(1) 吸附力是由吸附剂与吸附质分子之间产生的化 学键力,一般较强。
(2) 吸附热较高,接近于化学反应热,一般在 40kJ/mol 以上。
(3) 吸附有选择性,固体表面的活性位只吸附与之 可发生反应的气体分子,如酸位吸附碱性分子, 反之亦然。
四、吸附等温方程式
BET理论认为,固体对气体的物理吸附是Vander waals 引力造成的后果。因为分子之间也有Vander wanls力,所以 分子撞在已被吸附的分子上时也有被吸附的可能,也就是 说,吸附可以形成多分子层。
BET接受了Langmuir理论中关于固体表面是均匀的观 点,但他们认为吸附是多分子层的。当然第一层吸附与第二 层吸附不同,因为相互作用的对象不同,因而吸附热也不同, 第二层及以后各层的吸附热接近与凝聚热。
总之:物理吸附仅仅是一种物理作用,没有电 子转移,没有化学键的生成与破坏,也没有原子重 排等。
外来粒子与固体表面的相互作用主要有三种类型: (1) 形成离子键为主的离子吸附;
(2) 以共价键吸附外来粒子 此时,没有电子从固体能带中 转移出来,只是吸附粒子与固 体的一个或几个表面原子间的 化学结合。这种吸附可以发生 在有“悬空键”的表面上,如 图(b)中氧吸附在锗表面, 与表面原子形成定域双键。
(4) 吸附很稳定,一旦吸附,就不易解吸。 (5) 吸附是单分子层的。 (6) 吸附需要活化能,温度升高,吸附和解吸速 率加快。
总之:化学吸附相当与吸附剂表面分子与吸 附质分子发生了化学反应,在红外、紫外-可见 光谱中会出现新的特征吸收带。
物理-化学共存吸附情况?
气体在固体表面的吸附
30.12.2020
编辑ppt
16
❖ 在达到吸附平衡条件下,单位质量的吸附剂所吸附 气体的物质的量x或换算成气体在标准状态下所占的 体积V,称为吸附量,以a表示
τ1=τ2=γs。
30.12.2020
编辑ppt
6
❖ 5.2.3表面张力与表面能
❖ 在一定温度压力下形成固体表面面积为A时,
体系的吉布斯函数增量为d(AGs),它等于反 抗表面张力所需的可逆功。
❖或
dAsG sdA
A dG sG sdAsdA
❖ 所以
s
Gs
AGs A
30.12.2020
编辑ppt
理吸附,则化学吸附的活化能等于X2的解离能,但 若先发生物理吸附,则将沿着能量低得多的途径接
近固体表面,然后在曲线PP’和曲线CC’的交叉点O
上由物理吸附转为化学吸附。交叉点O的高度是化
学吸附的活化能Ea。显然E比X2的解离能D小得多。
❖ 若化学吸附的活化能较高,则低温时化学吸附速率
很慢,以致不能发生,实际上只能观察到物理吸附。
所以说,物理吸附是化学吸附的前奏。
30.12.2020
编辑ppt
15
❖ 5.3.2吸附曲线和吸附热力学
❖ (1)吸附平衡与吸附量
❖ 气相中的气体分子可以被吸附到固体表面上来,已 被吸附的分子也可以脱附(或叫解吸)而回到气相。
❖ 在温度和吸附质的分压恒定的条件下,当吸附速率 与脱吸附速率相等时,即单位时间内被吸附到固体 表面上的量与脱吸附回到气相的量相等时,达到吸 附平衡。此时固体表面上的吸附量不再随时间而变。 吸附平衡是一种动态平衡。
30.12.2020
编辑ppt
5
❖ 5.2.2固体的表面应力与表面张力 ❖ 使固体新表面上的分子(或原子)维持在未形成
气固吸附理论
42气固吸附理论气固吸附是界面吸附的一个主要组成部分,它涉及到催化、气体的净化和分离、环境保护等工业过程,具有重要的应用背景。
二十世纪前半期,人们已相继提出了许多吸附等温方程,并从模型入手建立了若干气固吸附理论,使吸附现象得到了定量乃至本质的描述。
本专题旨在介绍几个有影响的气固吸附理论和吸附等温式。
1. Langmuir 单分子层吸附理论1916年,美国物理化学家Langmuir Irving (朗缪尔)根据固体表面原子的力的不饱和性和分子间作用力随距离增大迅速衰减的事实,首先提出了一个单分子层吸附理论,这个理论建立在如下模型的基础上:① 固体表面存在一定数量的活性位site) (active ,它们能够吸附气体分子,但每个活性位只能吸附一个分子,因此,吸附是单分子层的。
② 这些活性位均匀地分布在固体表面上,且每一个活性位具有相同的吸附活性,或者说,无论气体分子吸附在哪个活性位上,释放的热量是一样的。
③ 已吸附的气体分子间不相互作用,换句话说,气体分子的吸附和脱附均与已吸附的周围分子无关。
于是,Langmuir 根据吸附达动态平衡时,吸附速率应等于脱附速率,用动力学方法作了如下推导:设吸附达平衡时,已被吸附的活性位占总活性位的分数为θ,气体的平衡压力为p ,则吸附速率不仅与压力p 成正比,而且也应与裸露的活性位分数θ−1成正比,即)1(θα−=p r a (42-1)式中α为比例系数。
脱附速率则除了与活性位的覆盖分数θ成正比外,还应与已吸附的气体分子中具有逃离活性位所需能量的分子分数成正比。
这个分子分数按Boltzmann 分布定律可表示为RTq kTf qN N //a *a aae e −−==ε (42-2)式中a N 是已吸附的气体分子总数;*a N 是具有逃离活性位所需最低能量a ε的分子数;q 是已吸附分子的配分函数,对于指定的温度和系统,这个定域子的配分函数是一个常数。
它的倒数即f ;k 是Boltzmann 常数;m ads a a H L q Δ−==ε即吸附能或吸附热的绝对值。
请分别简述物理吸附和化学吸附的主要特征
请分别简述物理吸附和化学吸附的主要特征
物理吸附和化学吸附是储存和处理蒸汽或气体中许多分子的过程。
它们是固体
或液体表面上发生的常见物理过程,用于捕获和分离混合物中分子。
物理吸附是分子在固-液界面上体系实现游离-结合状态变换之后形成的表面热
力相互作用。
物理吸附的反应速率很快,可以在几乎真空中进行,并且可以在室温条件下进行。
物理吸附的物理原理是亲合静电力和空间不断压缩和扩散的机制,其形成的吸附力非常有限,吸附的分子体积可以持续不断地被强制外部因素扰动而发生变化,使物理吸附更容易被去除。
而化学吸附则是一种气固界面反应,通常指固定相上分子之间发生的气固界面
化学反应,和物理吸附相比,它的吸附更为牢固,具有很强的吸附力。
化学吸附可以使混合物的性质发生全面变化,它的催化机制可以经历极性和结合反应,在化学过程中可以产生大量的共价和电之间发生的化学变化,从而使吸附分子更加牢固。
在某种程度上,物理吸附和化学吸附都可以用来进行捕获和分离混合物中的分子,然而,这两种吸附方式具有不同的特征。
物理吸附依赖于分子宗教相互作用,吸附分子体积可以持续不断被外部因素扰动,吸附力较弱,而化学吸附可以使混合物的性质全面变化,具有很强的吸附力,并可以通过极性和结合反应产生极大的化学变化。
总之,物理吸附和化学吸附都是学科和工业开发中的有用化学和物理手段,应得到重视和探索。
吸附理论模型及应用
吸附理论模型及应用摘要:吸附是一种重要的传质过程,吸附技术应用领域及其广泛。
本文对几种主要的吸附理论模型及其应用进行了概述,科学研究中可以根据实际情况进行选择。
关键词:分子吸附吸附模型物理吸附化学吸附当流体与多孔固体接触时,流体中某一组分或多个组分在固体表面处产生积蓄,此现象称为吸附。
吸附也指固体物质表面吸住周围介质(液体或气体)中的分子或离子现象。
吸附主要是因为固体表面分子或原于所处的状态与固体内部分子或原子所处的状态不同,固体内部分子或原子受到邻近四周分子的作用力是对称的,作用力总和为零,但界面处的分子同时受到不相等的两相分子的作用力,因此界面分子所受力是不对称的。
作用力的总和不为零,合力方向指向固体内部,所以表面上的力场是不饱和的,微粒能自发的吸附分子、原于或离子,并在其表面附近形成多分子层或单分子层,其实质是趋向于使表面能降到最低。
吸附现象的作用力主要有三类:物理吸附、化学吸附和离子交换吸附。
物理吸附的作用力是固体表面与气体分子之间,以及已被吸附分子与气体分子间的范德华引力,包括静电力诱导力和色散力。
物理吸附过程不产生化学反应,不发生电子转移、原子重排及化学键的破坏与生成。
由于分子间引力的作用比较弱,使得吸附质分子的结构变化很小。
化学吸附,是指吸附剂与吸附质之间发生化学作用,生成化学键引起的吸附,在吸附过程中不仅有引力,还运用化学键的力,因此吸附能较大,要逐出被吸附的物质需要较高的温度,而且被吸附的物质即使被逐出,也已经产生了化学变化,不再是原来的物质了,一般催化剂都是以这种吸附方式起作用。
离子交换吸附简称离子交换,固体表面通过静电引力吸附带相反电荷的离子,吸附过程发生电荷转移。
吸附现象普遍存在,研究者对其进行了大量的理论研究,也提出了很多的吸附模型。
许多的研究工作表明,固体表面吸附液体或气体,当达到平衡时,其吸附量q*与温度和液体或气体浓度c有关:温度一定时,吸附量q*与浓度c之间的函数关系称为吸附等温线,即等温情况下的吸附模型。
固液界面吸附实验报告
固液界面吸附实验报告实验目的:1.了解吸附现象的基本原理和特点;2.了解吸附剂的吸附性能和表征方法;3.掌握吸附剂的活化方法及其对吸附性能的影响。
实验原理:吸附是指气体、液体或溶液中分子、原子或离子等在液体或固体表面上附着的现象。
吸附作用有物理吸附和化学吸附两种。
物理吸附是指吸附剂表面的物理力与被吸附物相互作用,并把被吸附物附在吸附剂表面上的吸附现象。
该吸附作用是可逆的,一般发生在低温和低吸附浓度条件下。
而化学吸附是指化学元素与被吸附物化学键结合在一起,形成化学键的吸附作用,该吸附作用是不可逆的,一般发生在高温和高吸附浓度条件下。
在固液界面的吸附过程中,液态溶剂上浮的本质原因是溶剂的表面张力较低,此时吸附在固体表面的分子具有吸引液体的作用,表面液体向着固体表面收缩,将固体表面润湿。
如果液体表面张力过大,则液体不能充分润湿固体表面。
所以,吸附剂表面性质至关重要,而表面化学性质恰恰是与润湿性质有关的一个非常重要的性质。
吸附剂表面活性位数量的多少和分布情况直接影响吸附能力的大小。
实验步骤:1.将炭黑样品称重并加入玻璃瓶中;2.加入一定量的硫酸铜,并用磁力搅拌器搅拌20分钟;3.放置120分钟,定量取20ml样品待用;5.待吸附剂充分吸附后,用滤纸过滤样品并取得滤液;6.测定滤液中吸附剂的浓度,并计算出吸附量;7.记录数据,并做出吸附以及吸附的等温线。
实验数据:样品炭黑质量 2.5g样品溶液体积 500mL硫酸铜的质量 100mg吸附剂质量 0.5g吸附率 85%实验结果:通过实验可以发现,吸附剂的吸附率为85%,表明吸附剂对样品中的杂质具有较强的吸附能力。
而吸附等温线的形状可以反映吸附剂表面的化学性质和吸附动力学特征。
通过本实验我们可以发现,吸附作用是固液界面的一种物理现象,其特征是发生在液体和固体表面之间。
吸附剂的性质也是影响吸附能力的重要因素,而吸附剂表面活性位数量和分布情况直接决定了吸附能力的强弱。
表面与胶体化学—表面吸附
3.氢键作用
当固体表面有氢原子的基团,其中的氢
原子可与吸附分子中电负性大的原子的孤对
电子作用,形成氢键。例如水吸附在硅胶的
羟基化表面上:
HH O
OH HO
OH HO
Si O Si + H2O
Si O Si
表征各类吸 附等温线的方 程式称为吸附 等温式。
四、吸附热
吸附过程进行的热效应统称为吸附热。
吸附热的大小直接反应了吸附剂和吸 附质分子间的作用力性质。
吸附热分为两类:
积分吸附热
qi
( U n
)T ,V , A
微分吸附热 qd
( U n
)T ,V , A
q st
( H n
)T
, p,A
(等量吸附热)
若在自由表面可吸附无限多层,可导出BET两 常数公式:
V
VmCp
( p0 p)[1 (C 1) p p0 ]
或
p
(C 1) p 1
V ( p0 p) VmCp0 VmC
式中,V是平衡压力p时之吸附量(体积);Vm是单分 子层饱和吸附量;p0是吸附质的饱和蒸气压;C是第一 层吸附热吸附热E1和吸附质液化热EL有关的常数。
一.物理吸附与化学吸附
按吸附作用力的不同,可将吸附区分 为物理吸附和化学吸附。
物理吸附的作用力是分子间力,如 范德华力和氢键。
化学吸附的作用力是化学键力。
物理吸附和化学吸附的基本区别
物理吸附
吸附热 吸附力
近似液化热 ( <40kJ·mol-1)
范德华力,弱
吸附层数 单分子层或多分子层
吸附技术介绍
吸附技术介绍一、吸附基本知识1.1吸附利用某些固体能够从流体混合物中选择性地凝聚一定组分在其表面上的能力,使混合物中的组分彼此分离的单元操作过程。
1.2吸附原理1、吸附是一种界面现象,其作用发生在两个相的界面上。
2、根据吸附剂对吸附质之间吸附能力的不同,可分为物理吸附和化学吸附。
1.2.1物理吸附概念:当气体或液体分子与固体表面分子间的作用力为分子间力时产生的吸附。
特点:1、是一种可逆过程;2、吸附质在吸附剂表面形成单层或多层分子吸附时,其吸附热比较低;3、吸附无选择性,任何固体可以吸附任何气体,当然吸附量会有所不同;4、吸附稳定性不高,吸附和解吸速率都很快;5、吸附不需要活化能,吸附速率并不因温度的升高而变快。
1.2.2化学吸附概念:由吸附质与吸附剂表面原子间的化学键合作用造成的,即在吸附质与吸附剂之间发生了电子转移、原子重排或化学键的破坏与生成等现象。
特点:1、化学吸附往往是不可逆的;2、化学吸附的吸附热接近于化学反应的反应热,比物理吸附大的多;3、吸附很稳定,一旦吸附,不易解吸;4、吸附是单分子层的;5、吸附需要活化能,温度升高,吸附和解吸速率加快。
1.3常见的吸附剂常见的吸附剂有:活性炭、硅胶、活性氧化铝、合成沸石和天然沸石分子筛。
目前用在VOCs治理中的吸附剂主要是活性炭。
1.3.1吸附剂的性能要求1、有较大的比表面积2、对吸附质有较高的吸附能力和高选择性3、较高的强度和耐磨性4、颗粒大小均匀5、具有良好的化学稳定性、热稳定性以及价廉易得6、容易再生二、吸附法技术优缺点2.1吸附法优点1、可回收有机溶剂2、可净化大风量、低浓度、低温度废气3、废气不需要加热,低温或常温操作4、可回收痕量物质2.2吸附法缺点1、需要预处理废气中的粉尘、烟等杂质2、高温废气需要冷却3、吸附剂使用寿命不长4、投资费用较大三、吸附法适用范围吸附法用于治理喷漆、包装、印刷、机械、化工及生产过程产生苯类、酯、醇、酮、醛、酚汽油等场合。
3-第三章-固气界面-3.1
第三章固气界面§3-1 吸附概述§3-2 吸附等温式§3-3 多孔性固体的吸附性质液体可以通过表面分子数的减少(变为球形),减少表面积,从而降低表面能。
但固体表面的质点不能自由移动,那么,固体降低表面能的方式都有哪些?自行调整外来因素固体可以通过吸附降低表面能。
吸附是固体表面最重要的性质之一。
吸附现象是固气界面普遍存在的一种现象。
由于固体表面上原子或分子的力场是不饱和的,就有吸引其它分子的能力,从而使环境介质在固体表面上的浓度大于体相中的浓度,这种现象称为吸附。
当气体或蒸汽在固体表面被吸附时,固体称为吸附剂(adsorbent),被吸附的气体称为吸附质(adsorbate)。
常用的吸附剂:硅胶、分子筛、活性炭等。
,吸附主要成分即SiO2非极性溶剂中的极性物质,孔径2-5nm。
常用的吸附剂:硅胶、分子筛、活性炭等。
一种天然或人工合成的沸石型硅铝酸盐。
Al 2O 3nSiO 2mH 2O,其晶体结构中有规整而均匀的孔道,孔径为分子大小的数量级,因只允许直径比孔径小的分子进入,能将混合物中的分子按大小加以筛分,故称分子筛。
常用的吸附剂:硅胶、分子筛、活性炭等。
课堂演示实验:活性炭从水溶液中吸附色素比表面一般500-1500m 2/g,孔结构复杂。
大部分为微孔,也有中孔和大孔。
人们很早就发现并利用了吸附现象,如生活中用木炭脱湿和除臭等。
随着新型吸附剂的开发及吸附分离工艺条件等方面的研究,吸附在化学工业、石油加工工业、农业、医药工业、生活小窍门:手机落水的正确操作(1)关机取出电池(2)纸巾擦干吸干(3)干燥剂吸干(4)专业人士维修切不可吹风机吹或台灯烘烤以固体表面和吸附分子间作用力的性质区分,吸附作用可分为物理吸附与物理吸附示意图化学吸附示意图物理吸附:吸附质与吸附剂之间以范德华力为主的吸附。
任何气体在其临界温度以下,都会在其和固体表面之间的范德华力作用下,被固体吸附。
但两者之间没有电子转移。
表面与胶体化学—第七章表面吸附
第七章 固气界面上的吸附作用
第一节 吸附作用
吸附作用是一种最为重要的界面现象, 当互不相溶的两相接触时,两体相内的某 种或几种组分的浓度与其在两相界面上的 浓度不同的现象称为吸附 吸附。 吸附 在界面上被吸附的物质称为吸附质, 能有效吸附吸附质的物质称为吸附剂。
固体表面层的物质粒子受到指向内部 的拉力,这种不平衡力场的存在导致表面 吉布斯函数的产生。固体物质不能象液体 那样可通过收缩表面来降低系统的表面吉 布斯函数,但它可以利用表面上的剩余力, 从周围的介质中捕获其它的物质粒子,使 其不平衡力场得到某种程度的补偿,从而 导致表面吉布斯函数的降低。
吸附滞后
Zigmondy对吸附滞后的解释是吸附时 液态吸附质润湿孔壁的过程,接触角是前 进角;脱附是液体从一润湿的表面上退出 的过程,接触角是后退角。而前进角一般 总是大于后退角。因而脱附时平衡相对压 力小于吸附时的。
吸附滞后圈的形状与孔结构
吸附滞后环的起始点与吸附质的性质 有关,与吸附剂性质关系不大。吸附等温 线、滞后环的形状与孔的形状、孔径大小 有关。
1.Van der Waals 力 固体表面原子和吸附质分子间相互接 近时都有色散力产生,当吸附质分子或固 体表面原子具有极性或有极性基团时,它 们之间可以有静电力或诱导力的作用。但 是,色散力比静电力、诱导力都大。
这种吸附属于物理吸附。
2.电性作用力 固体表面可因多种原因带有某种电荷。 固体表面带电有时会对吸附产生影响。 当固体表面有以离子键结合的原子或基 团时,它们可与某些溶质(吸附质)发生 交换作用—离子交换。
(2)杂质和吸附平衡时间的影响 杂质可能极大地影响溶质的吸附结果; 对于有些体系,液相吸附达到平衡时间长。
(3)液相吸附的吸附量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吸附剂:①大的比表面 ②好的化学稳定性(不与吸附质发生 反应) ③良好的热稳定性和机械强度 非极性吸附剂:活性炭、炭黑 极性吸附剂:硅胶、分子筛、活性氧化铝
A:活性炭(active carbon) ①比表面:500-1500m2/g,特殊2000- 3000m2/g ②孔结构复杂(一般认为大孔~50nm,2~50nm 中孔,<2nm微孔) 大部分为微孔,也有中孔和大孔
8.3
吸附量与吸附曲线
1)吸附量:1g吸附剂(或1m2吸附剂表面积) 上吸附物质的量(质量、体积、摩尔分数) 来表示。 取决于:吸附质、吸附剂、温度压力
吸附曲线:吸附量~温度~压力,三者之一 恒定后二者的关系
2)吸附等温线的基本类型
Ⅰ:较低压力时吸附量迅速增加,一定相对压 力吸附量趋于恒定(单分子层饱和吸附, 或微孔填充满孔) ⅡⅢ:吸附剂非孔或孔很大,吸附层数原则上 不受限制 ⅣⅤ:吸附剂孔性的(不是微孔,或不全是微 孔),P/P01时,为孔满填充的量 ⅡⅣ:斜率大变小,起始段凸向吸附量轴 ⅢⅤ:斜率小变大,起始段凸向压力轴
Γ:单位面积吸附的mol数 S:比表面 V0:吸附气体mol体积 V:1g吸附剂吸附气体体积
近于液化热(<40kJ/mol) 近于化学反应热 (80-400kJ/mol)
吸附温度
吸附速度
较低(低于临界温度) 相当高(远高于 沸点)
快 有时较慢(也有 快) 有 单层 困难,常有化学 变化
选择性
吸附层数 脱附性质
无
单层、多层 完全脱附
物理吸附常用于:脱水、脱气、净化分离。 (三)物理吸附力本质(自学)
3)吸附等温线与吸附等压线、等量线
三者可互相转化
4)吸附等温线的测定 动态法:常压流动法、色谱法 静态法:容量法、重量法
目前主要用的是色谱法: N2吸附质,H2载气,液氮冷却,低温吸附, 高(常)温脱吸附 一般根据 脱吸附面积/标准脱附峰面积 求算吸附量(考虑N2在混合气体中成分)
8.4
物理吸附:吸附力是物理性的,主要是 Vander Waals力。吸附发生时,吸附分子和 固体表面组成均不会改变。
化学吸附:吸附分子与固体表面间有某种化 学作用,即它们之间有电子交换、转移或共 有,从而导致原子的重排,化学键的形或破 坏。
性质 吸附力 吸附热
物理吸附 Vander Waals力
化学吸附 化学键力
第八章 固气界面 的吸附作用
8.1
固体的表面
固体表面特性 1)表面分子(原子)活动性差 表面分子寿命:水(250C)10-6S,钨(250C) 1032S(3.2×1024年) 即:常温下固体表面原子和气态原子发生交 换的可能性较小 二维表面运动:Cu原子扩散速度 100A/1027S(1019年)
②若考虑吸附分子本身面积,则有:
( A b) RT
类似的有:
P K( )e 1
volmer方程
1
③Harkins-Jura方程 当表面压较高时,不溶物膜为凝聚态
b qA
借用于固体对气体吸附:
d qdA
d RT d ln P
qdA RT d ln P Aq q 2 d ln P dA dA RT 2 RT 2 2 qS v0 q 1 ' ' P ln B 2 B 2 P0 2 RT 2:典型的极性吸附剂
①pH对比表面、孔体积影响巨大 ②主要吸附非极性溶剂中的极性物质,孔径 20-50A ③表面羟基:自由羟基+缔合羟基 ④耐热性优于活性炭,生产工艺简单,成本 低廉,再生产温度低,机械强度好
C:分子筛(molecular sieves) 一种天然或人工合成的沸石型硅铝酸盐。 Al2O3 nSiO2 mH2O ①结构特点:Si-O四面体+Al-O四面体 分为3A、4A、5A、13X、Y、丝光沸石等类型
②孔性吸附:分子筛孔径均匀,孔径属微孔范 围。吸附分子在腔体内受到孔壁四周的叠加 作用。因而分子筛由独特的吸附选择性和极 强的吸附能力。(临界分子直径小于笼孔径 大小) ③高温、高流速、低蒸气压时,仍有良好的吸 附能力 ④选择吸附极性,不饱和有机分子,非极性分 子中选择吸附极化率大的
(二)吸附机制
2)固体表面的粗糙性和不完整性
3)固体表面不均匀 固体表面对吸附分 子的作用能不仅与其 对表面的垂直距离有 关,而且常随其水平 位置改变而变化。分 为均匀表面,不均匀 表面。
4)固体的表面能 表面能:生产1cm2新固体表面所需的等温可 逆功 固体表面能的测定有多种方法,但仍无一种 公认的简便标准方法。 a:熔融外推法 假设固态与液态性质相近 (-T关系外推) b:劈裂功法 测力装置测量劈裂固体形成 新表面功 c:溶解热法 d:接触角法
吸附热(自学)
8.5
物理吸附的理论模型
1)非定位吸附 2)定位吸附 3)吸附势场:无明确吸附图象假设 4)毛细凝结理论:针对孔性固体
8.6 二维吸附膜模型及相应的等温式
① 二维理想气体
Vm 1
斜率 b 斜率 截距
H P
m
, H P
'
Herry定律或Herry吸附等温式
固体表面能数值较大,但不同方法测量差距 不小 云母 5400、375、2400 同一种方法也相差不小 云母(2400-5400) 5)固体性质与历史有关(造成表面自由能数值 常常不相同)
8.2
固体表面的吸附作用
气体分子在固体表面上发生的滞留现象称为气 体在固体表面的吸附。
(一)吸附物与吸附剂 通常将被吸附的物质称为吸附质,能有效地 吸附吸附质的物质叫吸附剂。吸附剂多为多 孔性大比表面固体。
③表面基团:除C原子外,还有少量非碳元素 (O,H,P,N,S等) 一般含氧基团:羰基、羧基、内脂基、醌基、 酚羟基 ④主要吸附非极性物质及长链极性物质(孔吸 附,非极性体现) 由于存在表面含氧基团,也可吸附某些极性 物质 ⑤活性炭制备:由有机物(果壳、木材、骨、 血、煤炭、合成有机聚合物)制造 工业生产方法分物理法和化学法两大类