迭代法求非线性方程的根讲解

合集下载

第4章 非线性方程求根的迭代法

第4章 非线性方程求根的迭代法
{ x k }。这种方法算为简单迭代法。
精选版课件ppt
18
若{ x k }收敛,即lkimxk x 称迭代法收敛,否则称迭代法发散
精选版课件ppt
19
迭代法的几何意义
x (x)yy(xx)交点的横坐标
y=x
x* x2
x1
x0
精选版课件ppt
20
例题
例 试用迭代法求方程
f(x)x3x10
在区间(1,2)内的实根。 解:由x3 x1 建立迭代关系
精选版课件ppt
30
例题
若取迭代函数 (x)x3 1 , 因为|'(x)||3x2|3 x[1,2] 不满足压缩映像原理,故不能肯定 xn1 (xn) n0,1,....收敛到方程的根。
精选版课件ppt
31
简单迭代收敛情况的几何解释
精选版课件ppt
32
是否取到合适的初值,是否构造合适的 迭代格式,对于是否收敛是关键的。
x2 0.739085178
x3 0.739085133 x4 0.739085133
故取 x* x4 0.739085133
精选版课件ppt
48
例题
例 用Newton法计算 。 2
解: f(x)x2a0 其 中 a2
由 f (x) 2x及Newton迭代公式得
xn 1xnx2 n 2x n21 2(xnx 2 n) n0,1 ,......
迭代法及收敛性
考察方程 x(x)。不能直接求出它的
根,但如果给出根的某个猜测值 x 0, 代
入 x(x)中的右端得到x1 (x0) ,再以 x 1
为一个猜测值,代入x(x) 的右端
得 x2 (x1)

Newton迭代法求解非线性方程

Newton迭代法求解非线性方程

Newton迭代法求解非线性方程一、 Newton 迭代法概述构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。

因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。

牛顿(Newton)法就是一种将非线性方程线化的一种方法。

设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即:)x x )(x ('f )x (f )x (f k k k -+≈ (1-1)于是我们得到如下近似方程:0)x x )(x ('f )x (f k k k =-+ (1-2)设0)('≠k x f ,则方程的解为:x ̅=x k +f(x k )f(x k )́ (1-3)取x ~作为原方程(1.1)的新近似根1+k x ,即令: )x ('f )x (f x x k k k 1k -=+, k=0,1,2,… (1-4) 上式称为牛顿迭代格式。

用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。

牛顿法具有明显的几何意义。

方程:)x x )(x ('f )x (f y k k k -+= (1-5) 是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。

迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。

正因为如此,牛顿法也称为切线法。

牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。

一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x 时才能保证收敛。

若要保证初值在较大范围内收敛,则需对)x (f 加一些条件。

如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式:)x ('f )x (f x x k k k 1k λ-=+,⋯=,2,1,0k (1-6)上式中,10<λ<,称为下山因子。

非线性方程求根—牛顿迭代法(新)

非线性方程求根—牛顿迭代法(新)

非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。

设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。

(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。

解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。

求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。

牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。

本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。

我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。

我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。

我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。

通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。

二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。

其基本原理是利用泰勒级数的前几项来寻找方程的根。

如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。

给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。

每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。

牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。

然而,这种方法也有其局限性。

它要求函数在其迭代点处可导,且导数不为零。

牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。

因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法数值分析是一种应用数学方法来分析和解决数学问题的领域。

非线性方程是数值分析中一类重要的问题,其解法包括了迭代法、牛顿法、割线法等。

本文将详细介绍这些数值解法及其原理和应用。

一、迭代法迭代法是解非线性方程的一种常用数值方法。

该方法的基本思想是通过不断迭代逼近方程的根,直到达到所需精度或满足停止准则为止。

迭代法的求根过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = g(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

常用的迭代法有简单迭代法、弦截法和牛顿法。

简单迭代法的迭代公式为xn+1 = f(xn),其中f(x)为原方程的一个改写形式。

该方法的收敛性要求函数f(x)在解附近有收敛性且导数在一个区间内收敛。

弦截法的迭代公式为xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

牛顿法的迭代公式为xn+1 = xn - f(xn) / f'(xn),其中f'(x)为f(x)的导数。

该方法通过用切线来逼近方程的根。

二、牛顿法牛顿法是解非线性方程的一种常用迭代法。

该方法通过使用方程的导数来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = xn - f(xn) / f'(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

牛顿法的收敛速度较快,但要求方程的导数存在且不为0。

三、割线法割线法是解非线性方程的另一种常用迭代法。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0和x12. 计算下一个近似根xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

3.重复步骤2,直到满足停止准则为止。

割线法的收敛速度介于简单迭代法和牛顿法之间。

简单迭代法求方程的根matlab

简单迭代法求方程的根matlab

简单迭代法求方程的根1. 引言简单迭代法是一种常用的求解非线性方程根的方法。

它基于方程的连续性和局部斜率连续的性质,通过迭代逼近方程的根。

在本文中,我们将详细介绍简单迭代法的原理和步骤,并使用MATLAB编写代码来解决方程求根问题。

2. 简单迭代法原理简单迭代法的基本思想是,将非线性方程转化为迭代形式,通过不断迭代逼近方程的根。

其原理基于不动点定理,即给定一个函数f(x),若存在一个不动点x∗,满足x∗=f(x∗),则迭代过程x k+1=f(x k)中的序列x k将收敛到x∗。

对于求解方程f(x)=0的问题,我们可以将其转化为x=g(x)的形式,其中g(x)= x−f(x),且f′(x)不等于0。

这样,我们可以通过迭代逼近x=g(x)的根,从而得f′(x)到原方程的解。

3. 简单迭代法步骤简单迭代法的步骤如下:3.1 选择初始点选择一个合适的初始点x0作为迭代的起点。

3.2 迭代计算根据迭代公式x k+1=g(x k),计算序列x k的下一个值。

3.3 判断终止条件根据预设的终止条件,判断是否满足终止条件。

常用的终止条件包括: - 迭代次数达到预设的最大值。

- 迭代过程中下一个值与当前值之差小于预设的精度。

3.4 输出结果当满足终止条件时,输出最终的逼近根的值。

4. 简单迭代法在MATLAB中的实现以下是简单迭代法在MATLAB中的实现代码:function root = simple_iter_method(f, g, x0, max_iter, precision) % f: 原方程% g: 迭代函数% x0: 初始点% max_iter: 最大迭代次数% precision: 精度x = x0;iter = 0;while iter < max_iterx_next = feval(g, x); % 使用feval函数计算迭代值if abs(x_next - x) < precisionroot = x_next;return;endx = x_next;iter = iter + 1;enderror('达到最大迭代次数,未找到合适的解');end5. 示例与应用5.1 示例:求解方程x2−3x+2=0。

迭代法解非线性方程

迭代法解非线性方程

则对一个任意接近 x*的初始值,迭代公式
xk1 ( xk )是 p阶收敛的,且有
lim
k
xk1 x * ( xk x*)p
( p)( x*)
p!
定理3可以利用泰勒展开式加以证明
二、弦截法
1. 弦截法的算法过程
(1)过两点(a,f (a)),(b,f (b))作一直线,它与x轴有一个交点,记为x1; (2)如果f (a)f (x1)<0,过两点(a,f (a)),(x1,f (x1 ))作一直线,它与x轴的交点 记为x2, 否则过两点(b,f (b)),(x1,f (x1 ))作一直线,它与x轴的交点记为x2; (3)如此下去,直到|xn-xn-1|< , 就可认为xn为 f (x)=0在区间[a,b]上的一 个根。
2. 弦截法的迭代公式
x1
a
ba f (b) f (a)
f (a),
xk
1
xk
1
a b
xk a f ( xk ) f (a)
xk b f ( xk ) f (b)
f (a), f (b),
f (a) f ( xk ) 0 f (a) f ( xk ) 0
3.弦截法的Matlab编程实现
function root=chord_cut(f,a,b,e)
%弦截法求函数f在区间[a,b]上的一个零点 %f函数名,a区间左端点,b区间右端点,e根的精度,root函数的零点
function [root,n]=chord_cut2(f,a,b,e)
%弦截法求函数f在区间[a,b]上的一个零点 %f函数名,a区间左端点,b区间右端点,e根的精度,root函数的零点,n迭代次数
2. 迭代法的收敛性

第7章 非线性方程求根

第7章 非线性方程求根

k 且区间长度逐次减半, bk ak (b a) 2 .
非线性方程求根的二分法
二分法基本步骤: 随着k的增大,有根区间长度趋于零,区间端点向 * lim a lim b lim x x . 一点收缩, k k k k k k 显然x*即为f(x)=0的根。而x0, x1, …,xk,…为近似根 * 序列。设要求精度为ε ,即 x xk ,

x1 x* ( )(x0 x* ) M ( x0 x* ), x2 ( x1 ), x2 x M ( x1 x ).
* *
加速迭代法
消去M得
x1 x* x0 x* , * * x2 x x1 x
2
2 x x x ( x x ) 1 0 x* x1 0 2 1 x0 , x2 2 x1 x0 x0 2 x1 x2
斯蒂芬森迭代法
结合埃特金加速法和不动点迭代法形成斯 蒂芬森迭代法:

yk ( xk ), z k ( yk ), ( y k xk ) xk 1 xk z k 2 y k xk
2
(k 0,1, ).
斯蒂芬森迭代法几何意义
定义x点关于方程 x ( x) 的误差为: ( x) ( x) x. * * * * ( x ) ( x ) x 0. 则该方程的根x 的误差
非线性方程的迭代法求根
基本概念 非线性方程f(x)=0的根(解) x*,也称为非线性 函数f(x)的零点,f(x*)=0。 f(x)=0的m重根定义:f(x)=(x-x*)mg(x), g(x*)≠0,则称x*为f(x)=0的m重根,或f(x)的 m重零点。 m重根的判定条件: x*为f(x)=0的m重根当 且仅当 * * ( m1) * ( m) * f (x ) f (x ) f ( x ) 0; f ( x ) 0.

Newton迭代法求解非线性方程

Newton迭代法求解非线性方程

Newton迭代法求解非线性方程Newton迭代法求解非线性方程一、 Newton 迭代法概述构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。

因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。

牛顿(Newton)法就是一种将非线性方程线化的一种方法。

设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即:)x x )(x ('f )x (f )x (f k k k -+≈ (1-1)于是我们得到如下近似方程:0)x x )(x ('f )x (f k k k =-+ (1-2)设0)('≠k x f ,则方程的解为:x ?=x k +f (x k )f (x k )?(1-3)取x ~作为原方程的新近似根1+k x ,即令: )x ('f )x (f x x k k k 1k -=+, k=0,1,2,…(1-4)上式称为牛顿迭代格式。

用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。

牛顿法具有明显的几何意义。

方程:)x x )(x ('f )x (f y k k k -+= (1-5)是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。

迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。

正因为如此,牛顿法也称为切线法。

牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。

一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x时才能保证收敛。

若要保证初值在较大范围内收敛,则需对)x (f 加一些条件。

如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式:)x ('f )x (f x x k k k 1k λ-=+,=,2,1,0k (1-6)上式中,10<λ<,称为下山因子。

牛顿迭代法求根c语言

牛顿迭代法求根c语言

牛顿迭代法求根c语言牛顿迭代法是一种常用的数值计算方法,其可以用来求解非线性方程的根。

本文将介绍牛顿迭代法的基本原理和实现方法,并提供一些使用C语言实现牛顿迭代法求根的示例代码。

一、牛顿迭代法的原理在介绍牛顿迭代法的原理之前,我们先来看一个简单的例子。

假设我们要求解方程f(x) = 0的近似根,其中f(x)是一个可导函数。

我们可以通过利用切线来逼近方程f(x) = 0的根。

具体地,我们可以选择一个起始点x0,然后在x0处取得f(x0)的切线,将其延长到x轴上的交点x1,那么x1就是f(x) = 0的一个近似根。

可以通过数学方法得到x1的表达式:x1 = x0 - f(x0) / f'(x0)其中f'(x0)表示函数f(x)在x0处的导数。

换句话说,我们使用f(x)在x0处的切线来近似替代f(x)的图形,直到得到f(x) = 0的一个近似根为止。

这就是牛顿迭代法的基本思想。

牛顿迭代法的具体步骤如下:1. 选择一个起始点x0;2. 使用f(x)在x0处的切线来近似替代f(x)的图形;3. 在切线上取得x轴的交点x1; 4. 将x1作为新的起始点,重复步骤2和3,直到得到近似根。

二、牛顿迭代法的实现牛顿迭代法的实现过程比较简单,但需要注意一些细节。

具体实现可以分为以下几个步骤:1. 定义一个函数f(x),表示待求解的方程;2. 定义一个函数f_prime(x),表示函数f(x)在x处的导数;3. 定义一个起始点x0;4. 通过牛顿迭代公式计算出x1; 5. 将x1作为新的起始点,重复步骤4,直到满足精度要求为止。

下面,我们提供一段使用C语言实现牛顿迭代法求根的代码示例:```c #include<stdio.h> #include<math.h>#define EPSILON 0.0001double f(double x) { // 表示待求解的非线性方程 return x*x*x - x*x + 2; }double f_prime(double x) { // 表示f(x)在x 处的导数 return 3*x*x - 2*x; }double newton_raphson(double x) { // 牛顿迭代法求根 double x0 = x;while (1) { double x1 = x0 - f(x0) / f_prime(x0);if (fabs(x1 - x0) < EPSILON) return x1;x0 = x1; } }int main() { double x = 0;printf("The root is: %lf\n",newton_raphson(x));return 0; } ```代码中,定义了非线性方程f(x)和它在x处的导数f_prime(x),然后利用牛顿迭代法计算出方程的近似根。

非线性方程的求解方法

非线性方程的求解方法

非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。

然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。

本文将介绍几种非线性方程的求解方法。

一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。

该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。

牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。

牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。

二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。

与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。

割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。

三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。

该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。

二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。

二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。

四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。

它和二分法类似,都是通过缩小根所在的区间来逼近根。

不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法非线性方程在数学和工程中都有广泛的应用,对非线性方程进行求解是数学分析中的一项重要任务。

在数值分析中,求解非线性方程的方法可以分为直接法和迭代法两种,而迭代法又是非常常用的方法之一。

本文将介绍三种新的非线性方程迭代法,分别是Newton 法、Secant法和Broyden法。

Newton法是最经典的非线性方程迭代法之一,它是通过不断迭代来逼近方程的根。

Newton法的基本思想是在给定初始值的情况下,通过计算方程的导数来获得更接近根的逼近值,然后不断迭代直到满足精度要求为止。

具体的迭代公式为:\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]\(x_n\)是第n次迭代的逼近值,\(f(x)\)是要求解的非线性方程,\(f'(x)\)是\(f(x)\)的导数。

在实际应用中,Newton法通常要求方程的一阶导数存在且连续,同时初始值的选取也对迭代的收敛性有很大的影响。

Secant法是Newton法的一种改进方法,它是通过直线的斜率来近似代替导数的方法来进行迭代。

Secant法的迭代公式为:Secant法相比于Newton法来说更加灵活,因为它不需要求解方程的导数,而直接利用两个相邻点的函数值来进行迭代。

然而Secant法的收敛速度相对较慢,而且在一些特殊情况下可能会出现迭代发散的情况。

Broyden法是一种迭代算法,它是通过不断更新雅各比矩阵的逆来逼近方程的根。

Broyden法的迭代公式为:\(x_n\)是第n次迭代的逼近值,\(J_n\)是第n次迭代的雅各比矩阵。

Broyden法适用于一些特殊情况下,比如方程的雅各比矩阵难以求解的情况,或者求解方程的雅各比矩阵耗时较长的情况。

Newton法、Secant法和Broyden法都是针对非线性方程迭代求解的常用方法,它们各自有着不同的特点和适用范围。

在实际应用中,我们需要根据具体的情况来选择合适的迭代方法,并且在迭代过程中需要考虑其收敛性、稳定性和计算效率等因素。

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法1. 引言1.1 介绍迭代法迭代法是一种重要的数值计算方法,广泛应用于非线性方程的求解、函数极值点的求解等问题中。

迭代法的基本思想是通过逐步逼近的方式,找到函数的根或者极值点。

这种方法在面对复杂的数学问题时具有很大的优势,可以通过简单的计算步骤逐渐接近最终解。

与解析解相比,迭代法更适用于无法通过代数运算求解的问题,或者求解过程较为繁琐的问题。

迭代法的实现通常需要选择一个初始值,并通过反复迭代计算来逼近真实解。

在每一步迭代中,都会根据当前的估计值计算新的估计值,直到满足一定的精度要求为止。

迭代法虽然不能保证每次都能得到精确解,但在实际应用中往往能够取得较好的结果。

迭代法是一种简单而有效的数值计算方法,尤其适用于非线性方程求解等复杂问题。

通过逐步逼近的方式,迭代法可以帮助我们解决那些传统方法难以处理的问题,为现代科学技术的发展提供重要支持。

1.2 非线性方程的求解意义非线性方程在数学和工程领域中广泛存在,其求解具有重要的理论和实际意义。

非线性方程的求解能够帮助解释和预测许多自然现象,包括流体动力学、电路分析、材料力学等领域中的问题。

非线性方程的求解也是许多科学研究和工程设计中必不可少的一环,例如在经济学、生物学、物理学等多个学科中都有非线性方程存在。

传统的解析方法难以解决非线性方程,因此迭代法成为求解非线性方程的重要工具。

迭代法是一种通过不断逼近解的方法,逐步逼近方程的解。

通过迭代法,可以在复杂的非线性方程中找到数值解,从而解决实际问题。

非线性方程的求解意义在于帮助我们更好地理解和掌握复杂系统的性质和行为。

通过求解非线性方程,我们可以揭示系统中隐藏的规律和关系,为科学研究和工程设计提供重要的参考和支持。

发展高效的迭代法求解非线性方程具有重要意义,可以推动科学技术的进步,促进社会的发展和进步。

2. 正文2.1 牛顿迭代法牛顿迭代法是一种非常经典的求解非线性方程的方法,其基本思想是通过不断逼近函数的零点来求解方程。

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法求解非线性方程是数学中一个重要且复杂的问题,对于很多实际问题的建模和计算都离不开对非线性方程的求解。

在数值计算中,我们通常使用迭代法来解决非线性方程,其中牛顿迭代法、割线法和试位法是常用的迭代方法。

除了这些传统的迭代法,近年来也出现了一些新的迭代方法,本文将介绍三种新的迭代法来求解非线性方程。

1. 定点迭代法定点迭代法是一种简单而又常用的迭代方法,它的基本思想是将原方程转化为一个等价的形式 x=g(x),其中函数 g(x) 称为迭代函数。

通过不断迭代计算,可以逐步逼近方程的根。

定点迭代法的关键在于选择合适的迭代函数 g(x),以保证收敛性和收敛速度。

近年来,有学者提出了一种基于自适应迭代函数的新的定点迭代法。

传统的定点迭代法通常需要提前选定一个迭代函数 g(x),而这个函数可能不是最优的。

自适应迭代函数的优势在于可以根据当前迭代点的情况自动调整迭代函数,以提高迭代的效率和收敛性。

加速迭代法是一种可以提高收敛速度的迭代方法,它的核心思想是通过一些技巧和技术手段来加快迭代的收敛速度。

传统的迭代法通常需要进行多次迭代才能到达精度要求,而加速迭代法可以在更少的迭代次数内达到相同的精度要求,从而提高了计算效率。

3. 自适应步长迭代法自适应步长迭代法是一种动态调整迭代步长的迭代方法,它可以根据当前迭代点的情况来自动调整迭代步长,以提高收敛速度和准确性。

传统的迭代方法通常使用固定的迭代步长,这可能导致迭代过程中出现震荡或者收敛速度过慢的情况。

而自适应步长迭代法可以根据迭代点的梯度信息来智能地调整步长,从而有效地克服了传统迭代方法的局限性。

总结在数值计算中,求解非线性方程是一个重要且复杂的问题。

传统的迭代方法如牛顿迭代法、割线法和试位法等在实际应用中已经得到了广泛的应用,但是它们也存在一些局限性,比如收敛速度慢、收敛性差等问题。

近年来,一些新的迭代方法如自适应迭代函数、基于神经网络的加速迭代法和基于深度学习的自适应步长迭代法等不断涌现,这些方法克服了传统迭代方法的一些局限性,具有更高的收敛速度和更好的收敛性能。

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根1.实验目的掌握迭代法求非线性方程根的基本原理和使用方法,加深对数值计算方法的理解与应用。

2.实验原理迭代法是一种通过不断逼近的方法求解非线性方程的根。

根据不同的函数特点和问题需求,可以选择不同的迭代公式进行计算,如牛顿迭代法、二分法、弦截法等。

3.实验内容本次实验使用牛顿迭代法求解非线性方程的根。

牛顿迭代法基于函数的局部线性逼近,通过不断迭代逼近零点,直至满足收敛条件。

具体步骤如下:Step 1:选择初始点X0。

Step 2:计算函数f(x)在X0处的导数f'(x0)。

Step 3:计算迭代公式Xn+1 = Xn - f(Xn) / f'(Xn)。

Step 4:判断收敛准则,若满足则迭代结束,输出解Xn;否则返回Step 2,继续迭代。

Step 5:根据实际情况判断迭代过程是否收敛,并输出结果。

4.实验步骤步骤一:选择初始点。

根据非线性方程的特点,选择恰当的初始点,以便迭代公式收敛。

步骤二:计算导数。

根据选择的非线性方程,计算函数f(x)的导数f'(x0),作为迭代公式的计算基础。

步骤三:迭代计算。

根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),计算下一个迭代点Xn+1步骤四:判断收敛。

判断迭代过程是否满足收敛条件,通常可以通过设置迭代次数上限、判断前后两次迭代结果的差值是否足够小等方式进行判断。

步骤五:输出结果。

根据实际情况,输出最终的迭代结果。

5.实验结果与分析以求解非线性方程f(x)=x^3-x-1为例,选择初始点X0=1进行迭代计算。

根据函数f(x)的导数计算公式,得到导数f'(x0)=3x0^2-1,即f'(1)=2根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),带入计算可得:X1=X0-(X0^3-X0-1)/(3X0^2-1)=1-(1-1-1)/(3-1)=1-0/2=1根据收敛准则,判断迭代结果是否满足收敛条件。

牛顿迭代法在求解方程中的应用

牛顿迭代法在求解方程中的应用

牛顿迭代法在求解方程中的应用牛顿迭代法是一种常用的求解非线性方程的方法。

它是通过线性逼近来不断迭代,逐渐趋近于方程的根。

在实际生活中,很多问题都可以转化为方程求解问题。

因此,牛顿迭代法在实际应用中有着广泛的应用。

本文将介绍牛顿迭代法的基本原理及其在求解方程中的应用,并通过实际案例的方式来说明该方法的实用性。

一、基本原理牛顿迭代法的基本原理是通过求导数,利用导数的局部线性逼近来逼近非线性函数的根。

以一元函数f(x)为例,设x0为f(x)=0的一个近似解,那么可以用切线来逼近f(x)。

根据切线公式,可以得到:f(x) = f(x0) + f'(x0) (x - x0)将f(x)置为0,得到牛顿迭代法的迭代公式:x(n+1) = x(n) - f(x(n)) / f'(x(n))其中f'(x)代表函数f(x)在点x处的导数。

该公式即为牛顿迭代法的核心公式。

迭代开始时,选择任意一个近似解x0,根据该公式进行逐步迭代,直到形成收敛的数列x(1),x(2)...x(n),其中xn作为方程的近似解。

牛顿迭代法收敛速度较快,一般只需要很少的迭代次数就可以得到较为精确的解。

二、实际应用牛顿迭代法在实际应用中非常广泛。

下面将详细介绍该方法在求解方程中的应用。

1、求解一元方程对于一元方程f(x)=0,可以利用牛顿迭代法求解。

例如,给定方程x^3-4x^2+x+6=0,要求解该方程。

首先,需要选择一个初始值x0,比如x0=2。

然后,根据牛顿迭代法的公式进行逐步迭代,可以得到如下数列:x(0) = 2,f'(x0) = 13x(1) = x(0) - f(x(0))/f'(x(0)) = 2-(-6)/(13) = 2.4615x(2) = x(1) - f(x(1))/f'(x(1)) = 2.4615 - (0.2639)/(18.568) = 2.3668 x(3) = x(2) - f(x(2))/f'(x(2)) = 2.3668 - (0.0167)/(21.707) = 2.3459 x(4) = x(3) - f(x(3))/f'(x(3)) = 2.3459 - (0.0005)/(22.239) = 2.3448经过4次迭代,在x=2.3448处精确到小数点后4位得到方程的解。

迭代法求非线性方程的根

迭代法求非线性方程的根
迭代法求非线性方程的根
迭代法是求解非线性方程近似根的一 种方法,这种方法的关键是确定迭代函数 (x),简单迭代法 用直接的方法从原方程 中隐含的求出x,从而确定迭代函数(x), 这种迭代法收敛速度较慢,迭代次数多, 因此常用于理论中,Newton迭代法采用另一 种迭代格式, 具有较快的收敛速度,由牛顿 迭代法可以得到很多其他迭代格式。
下一页
7
返回
实用中(1.2)式常用
| ( x ) | L 1 x ( a , b )
定理一:假定函数( x) 满足下列条件:
a ,b 1、对任意 x 有
;(1.1) a ( x ) b
2、存在正数 L<1,使对任意
( x ) ( x ) L x x
1 2 1 2
有 ,x a , b x
1 2
0 L 1
(1.2)
则迭代过程 x 对于任意初值 x (x a ,b k 1 k) 0
(x)的根 x ,且有如下的误差估计式: 均收敛于方程 x
k L x x x x k 1 0 1 L *
*
(1.3)
方程
f ( x ) f ( x ) f ( x )( x x ) 0 k k k
x • 设 f (x k ) 0,令其解为 k 1
,得 f (xk ) xk1 xk • f (xk ) • 这称为f(x)=0的牛顿迭格式。
3
(1) 下一页 返回
它对应的迭代方程为 x x
(x ) R 总有 。这是因为
* * * * , ( x ) x ( x ) ( x ) L x x x x
依据定义三,可以断定,迭代过程 值

斯蒂芬森迭代法公式

斯蒂芬森迭代法公式

斯蒂芬森迭代法公式以斯蒂芬森迭代法公式为标题,探讨一种用于求解非线性方程的迭代方法。

在数学和科学领域中,求解非线性方程是一个重要的问题。

非线性方程是指方程中包含未知数的非线性项的方程,不同于线性方程可以通过代数方法直接求解。

而斯蒂芬森迭代法是一种常用的数值求解非线性方程的方法。

斯蒂芬森迭代法的基本思想是通过不断迭代逼近方程的根。

假设我们要解的非线性方程为f(x)=0。

首先,我们需要选择一个初始值x0作为迭代的起点。

然后,根据斯蒂芬森迭代公式进行迭代计算,直到满足预设的精度要求。

斯蒂芬森迭代公式可以表示为:x_(n+1) = x_n - f(x_n) / f'(x_n)其中,x_n表示第n次迭代的近似解,f(x_n)表示方程在x_n处的函数值,f'(x_n)表示方程在x_n处的导数值。

斯蒂芬森迭代法的优点是收敛速度较快,且具有良好的数值稳定性。

它适用于一般的非线性方程求解问题,并且可以通过调整初始值和迭代次数来控制精度和计算时间。

下面以一个具体的例子来说明斯蒂芬森迭代法的应用。

假设我们要求解方程x^3 - 2x - 5 = 0在区间[1, 2]内的根。

首先,我们选择初始值x0=1.5。

然后,根据斯蒂芬森迭代公式进行迭代计算。

第一次迭代:x_1 = x_0 - (x_0^3 - 2x_0 - 5) / (3x_0^2 - 2)= 1.5 - (1.5^3 - 2*1.5 - 5) / (3*1.5^2 - 2)≈ 1.3571第二次迭代:x_2 = x_1 - (x_1^3 - 2x_1 - 5) / (3x_1^2 - 2)= 1.3571 - (1.3571^3 - 2*1.3571 - 5) / (3*1.3571^2 - 2)≈ 1.3652继续进行迭代计算,直到满足预设的精度要求。

最终,可以得到方程在区间[1, 2]内的根约为1.3652。

斯蒂芬森迭代法的应用不仅局限于求解非线性方程,还可以用于求解其他数值问题,如求解方程组、求解积分等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
迭代法求非线性方程的根
迭代法是求解非线性方程近似根的一 种方法,这种方法的关键是确定迭代函数 (x),简单迭代法 用直接的方法从原方程 中隐含的求出x,从而确定迭代函数(x), 这种迭代法收敛速度较慢,迭代次数多, 因此常用于理论中,Newton迭代法采用另一 种迭代格式, 具有较快的收敛速度,由牛顿 迭代法可以得到很多其他迭代格式。
( p ) ( )
p!
用条件(*),则有 ( x
k
) (x )
*
( xk x * ) p
*
注意到 ( xk ) xk 1, ( x * )
( p) ( ) * p * x x ( x x ) 由上式得 k 1 k x p!
11
下一页
返回
ek 1 ( p ) ( x*) 因此对迭代误差有: p 。这表明迭代过程 p! ek
1
下一页
迭代法
• • • • • • • 一、简单迭代法的概念与结论 二、 Newton迭代法的基本思想 三、牛顿法的几何意义 四、牛顿迭代法的步骤 五、例题 六、其他注意的事项
2
一、简单迭代法的概念与结论
• 简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求 得近似根。即由方程f(x)=0变换为x=(x), 然后建立迭代格式, •
x0 均收敛。证毕。 R
下一页
14
返回
二. Newton迭代法的基本思想
• 设X K 是f(x)=0的一个近似根,把f(x)在 X K 处作泰勒展开
的邻近连续,并且 / ( x* ) ( x* ) ( p1) ( x* ) 0 (*) ( p ) ( x * ) 0
则该迭代过程在点 x * 邻近是P阶收敛的。
证明:由于 ( x) 0 。据定理一,立即可以断定迭 代过程
xk 1 ( xk ) 具有局部收敛性。再将( xk ) 在根 x * 处展开,利
下一页
7
返回
实用中(1.2)式常用
| ( x) | L 1 x (a, b)
定理一:假定函数( x) 满足下列条件:
1、对任意 x a, b有
a ( x) b;(1.1)
2、存在正数 L<1,使对任意
( x1 ) ( x2 ) L x1 x2
故当 k 时迭代值 xk x * 按(1.2)式 有 xk 1 xk ( xk ) ( xk 1 ) L xk xk 1 (1.4), 据此反复递推得:xk 1 xk Lk x1 x0 于是对任意正整数p有
x k p x k x k p x k p 1 x k p 1 x k p 2 x k 1 x k
xk 1 ( xk )
确实为P阶收敛,证毕。 上述定理告诉我们,迭代过程的收敛速度依赖于迭代函数. 如果选取当 x a, b 时( x) 0,则该迭代过程只能是线性
f ( x) 收敛。对于牛顿迭代公式(1),其迭代函数为 ( x) x f ( x)
,假定 x * 是f(x)的一个单根, f ( x* ) 0 ( x * ) 0 , 即 f ( x * ) 0 则由上式知 。 于是依据定理二可以断定,牛顿法在根 的邻近是平方 x* 12 下一页 返回 收敛的。 由于 ( x)
xk 1 ( xk )
• 当给定处值x0 后, 由迭代格式可求得数列{xk}。如果{xk}收敛于x*, 则它就是方程的根。因为: • * *
x lim x k 1 lim ( xk ) (lim xk ) ( x )
k k k
• 但迭代格式有多种,迭代格式如何建立才能保证迭代法的数列收 敛?有如下定理:
*
x , x a, b
1 2

(1.2)
0 L 1
则迭代过程 xk 1 ( xk ) 对于任意初值 x0 a, b 均收敛于方程 x ( x) 的根 x ,且有如下的误差估计式:
xk x
*
Lk x1 x0 1 L
(1.3)
8
下一页
返回
证明:设方程 x ( x) 在区间 a, b 内有根 x * ,
f ( x) :如果存在 x * 的某个邻域R : x x *
,使迭代过程
xk 1 ( xk ) 对于任意初值x0 R 均收敛,则称迭代过程 xk 1 ( xk ) 在根 x * 邻近具有局部收敛性。
定理三:设 x *为方程 x ( x) 的根,( x)在 x * 的邻近连续。 且则迭代过程在邻近具有局部收敛性。
下一页
13
返回
证明:由连续函数的性质,存在 x * 的某个邻域 R : x x *
,使对于任意 x R 成立 ( x) L 1 。此外,对于任意 x R 总有( x) R。这是因为 依据定义三,可以断定,迭代过程 值
xk 1 ( xk ) 对于任意初
* ( x) x * ( x) ( x * ) L x x * x x,
k L ( Lk p 1 Lk p 2 Lk ) x1 x0 x1 x0 1 L
在上式令 p ,注意到 lim xk p x * 即得式(1.3)。证毕。
p
10
下一页
返回
定理二:对于迭代过程xk 1 ( xk ),如果 ( p) ( x) 在所求根x *
则有 x* ( x* )

xk 1 ( xk )
| xk 1 x* || ( xk ) ( x* ) | L | xk x* |

x k 1 x * L x k x *
据此反复递推有
x k x * Lk x 0 x *
9
下一页
返回
相关文档
最新文档