圆综合测试题提高题
2022学年北师大版九年级数学下册第3章《圆》综合测试题附答案解析
2022-2023学年九年级数学下册第3章《圆》综合测试题(满分120分)一、选择题(每题3分,共30分)1.下列命题为真命题的是()A .两点确定一个圆B .度数相等的弧相等C .垂直于弦的直径平分弦D .相等的圆周角所对的弧相等,所对的弦也相等2.已知⊙O 的半径为5,点P 到圆心O 的距离为6,那么点P 与⊙O 的位置关系是()A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .无法确定3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是()A .70°B .60°C .50°D .30°4.如图,AB ,AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于()A .70°B .64°C .62°D .51°5.如图,AB ︵=BC ︵=CD ︵,OB ,OC 分别交AC ,BD 于点E ,F ,则下列结论不一定正确的是()A .AC =BD B .OE ⊥AC ,OF ⊥BD C .△OEF 为等腰三角形D .△OEF 为等边三角形6.如图,在直角坐标系中,一个圆经过坐标原点O ,交坐标轴于点E ,F ,OE =8,OF =6,则圆的直径长为()A .12B .10C .14D .157.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR ,则∠AOQ 等于()A .60°B .65°C .72°D .75°8.秋千拉绳长3m ,静止时踩板离地面0.5m ,某小朋友荡秋千时,秋千在最高处踩板离地面2m(左右对称),如图所示,则该秋千所荡过的圆弧AB ︵的长为()A .πmB .2πm C.43πm D.32πm9.如图,PA ,PB 切⊙O 于A ,B 两点,CD 切⊙O 于点E ,交PA ,PB 于点C 和点D .若△PCD 的周长为⊙O 半径的3倍,则t a n ∠APB 等于()A.125 B.3513 C.2313 D.51210.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是()A .4B .3+2C .32D .3+3二、填空题(每题3分,共24分)11.如图,AB 为⊙O 的直径,CD ⊥AB ,若AB =10,CD =8,则圆心O 到弦CD 的距离为________.12.如图,EB ,EC 是⊙O 的两条切线,B ,C 是切点,A ,D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,那么∠A =________.13.如图,DB 切⊙O 于点A ,∠AOM =66°,则∠DAM =________.14.如图,AB ,CD 是⊙O 的弦,AB ⊥CD ,BE 是⊙O 的直径,若AC =3,则DE =________.15.如图,水平放置的圆柱形油槽的截面直径是52c m ,装入油后,油深CD 为16c m ,那么油面宽度AB=________.16.如图,在扇形OAB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC为半径作CD ︵交OB 于点D .若OA =2,则阴影部分的面积为________.17.如图,在△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB ,BC 均相切,则⊙O 的半径为________.18.如图,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB .其中正确的结论有_____(填序号).三、解答题(19题8分,20,21每题10分,22,23每题12分,24题14分,共66分)19.如图,AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连接BC ,若∠P =30°,求∠B 的度数.20.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连接AC ,过点D 作DE ⊥AC ,垂足为E .(1)求证:AB =AC .(2)若⊙O 的半径为4,∠BAC =60°,求DE 的长.21.如图,点P 在y 轴上,⊙P 交x 轴于A ,B 两点,连接BP 并延长交⊙P 于点C ,过点C 的直线y =2x+b 交x 轴于点D ,且⊙P 的半径为5,AB =4.(1)求点B ,P ,C 的坐标.(2)求证:CD 是⊙P 的切线.22.如图,CB和CD切⊙O于B,D两点,A为圆周上一点,且∠1:∠2:∠3=1:2:3,BC=3,求∠AOD所对扇形的面积S.23.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80m,桥拱到水面的最大高度为20m.(1)求桥拱所在圆的半径.(2)现有一艘宽60m,顶部截面为长方形且高出水面9m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.24.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线.(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长.(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.参考答案一、1.C 2.A3.B4.B5.D6.B 7.D 8.B 9.A 10.B二、11.3【点拨】如图,连接OC ,设AB ⊥CD 于E .∵AB 为⊙O 的直径,AB =10,∴OC =5.∵CD ⊥AB ,CD =8,∴CE =4,∴OE =OC 2-CE 2=52-42=3.12.99°【点拨】易知EB =EC .又∠E =46°,所以∠ECB =67°.从而∠BCD =180°-67°-32°=81°.在⊙O 中,∠BCD 与∠A 互补,所以∠A =180°-81°=99°.13.147°【点拨】因为DB 是⊙O 的切线,所以OA ⊥DB .由∠AOM =66°,得∠OAM =12×(180°-66°)=57°.所以∠DAM =90°+57°=147°.14.3【点拨】∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠BDC +∠CDE =90°.又∵AB ⊥CD ,∴∠ACD +∠CAB =90°.∵∠CAB =∠BDC ,∴∠ACD =∠CDE .∴AD ︵=CE ︵.∴AD ︵-AE ︵=CE ︵-AE ︵.∴DE ︵=AC ︵.∴DE =AC =3.15.48cm16.32+π12【点拨】连接OE .∵点C 是OA 的中点,∴OC =12OA =1.∵OE =OA =2,∴OC =12OE .∵CE ⊥OA ,∴∠OEC =30°.∴∠COE =60°.在Rt △OCE 中,CE =OE 2-OC 2=3,∴S △OCE =12OC ·CE =32.∵∠AOB =90°,∴∠BOE =∠AOB -∠COE =30°.∴S 扇形BOE =30π×22360=π3.又S 扇形COD =90π×12360=π4.因此S 阴影=S 扇形BOE +S △OCE -S 扇形COD =π3+32-π4=32+π12.17.6718.①②④【点拨】连接OM ,ON ,易证Rt △OMC ≌Rt △OND ,可得MC =ND ,故①正确.在Rt △MOC中,CO =12MO ,可得∠CMO =30°,所以∠MOC =60°.易得∠MOC =∠NOD =∠MON =60°,所以AM ︵=MN ︵=NB ︵,故②正确.易得CD =12AB =OA =OM ,∵MC <OM ,∴MC <CD .∴四边形MCDN 不是正方形,故③错误.易得MN =CD =12AB ,故④正确.三、19.解:∵PA 切⊙O 于A ,AB 是⊙O 的直径,∠P =30°,∴∠AOP =60°.∴∠B =12∠AOP =30°.20.(1)证明:如图,连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°.∵DC =BD ,∴AB =AC .(2)解:由(1)知AB =AC ,∵∠BAC =60°,∠ADB =90°,∴△ABC 是等边三角形,∠BAD =30°.在Rt △BAD 中,∠BAD =30°,AB =8,∴BD =4,即DC =4.又∵DE ⊥AC ,∴DE =DC ·sin C =4·sin 60°=4×32=2 3.21.(1)解:如图,连接CA .∵OP ⊥AB ,∴OB =OA =2.∵OP 2+OB 2=BP 2,∴OP 2=5-4=1,即OP =1.∵BC 是⊙P 的直径,∴∠CAB =90°.∵CP =BP ,OB =OA ,∴AC =2OP =2.∴B (2,0),P (0,1),C (-2,2).(2)证明:∵直线y =2x +b 过C 点,∴b =6.∴y =2x +6.∵当y =0时,x =-3,∴D (-3,0).∴AD =1.∵OB =AC =2,AD =OP =1,∠CAD =∠POB =90°,∴△DAC ≌△POB .∴∠DCA =∠ABC .∵∠ACB +∠ABC =90°,∴∠DCA +∠ACB =90°,即CD ⊥BC .∴CD 是⊙P 的切线.22.解:∵CD 为⊙O 的切线,∴∠ODC =90°,即OD ⊥CD .∵∠1:∠2:∠3=1:2:3,∴∠1=15°,∠2=30°,∠3=45°.连接OB .∵CB 为⊙O 的切线,∴OB ⊥BC ,BC =CD .∴∠CBD =∠3=45°,∴∠OBD =45°.又∠1+∠2=45°,∴∠BOD =90°,即OD ⊥OB .∴OD ∥BC ,CD ∥OB .∴四边形OBCD 为正方形.∵BC =3,∴OB =OD =3.∵∠1=15°,∴∠AOB =30°,∴∠AOD =120°.∴S =120360×π×32=3π.23.解:(1)如图,设点E 是桥拱所在圆的圆心.过点E 作EF ⊥AB 于点F ,延长EF 交AB ︵于点C ,连接AE ,则CF =20m .由垂径定理知,F 是AB 的中点,∴AF =FB =12AB =40m.设半径是r m ,由勾股定理,得AE 2=AF 2+EF 2=AF 2+(CE -CF )2,即r 2=402+(r -20)2.解得r =50.∴桥拱所在圆的半径为50m.(2)这艘轮船能顺利通过.理由:当宽60m 的轮船刚好可通过拱桥时,如图,MN 为轮船顶部的位置.连接EM ,设EC 与MN 的交点为D ,则DE ⊥MN ,∴DM =30m ,∴DE =EM 2-DM 2=502-302=40(m ).∵EF =EC -CF =50-20=30(m),∴DF =DE -EF =40-30=10(m).∵10m>9m ,∴这艘轮船能顺利通过.24.(1)证明:如图,连接CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∴∠CAD +∠ADC =90°.又∵∠PAC =∠PBA ,∠ADC =∠PBA ,∴∠PAC =∠ADC .∴∠CAD +∠PAC =90°.∴PA ⊥DA .而AD 是⊙O 的直径,∴PA 是⊙O 的切线.(2)解:由(1)知,PA ⊥AD ,又∵CF ⊥AD ,∴CF ∥PA .∴∠GCA =∠PAC .又∵∠PAC =∠PBA ,∴∠GCA =∠PBA .而∠CAG =∠BAC ,∴△CAG ∽△BAC .∴AGAC =ACAB ,即AC 2=AG ·AB .∵AG ·AB =12,∴AC 2=12.∴AC =2 3.(3)解:设AF =x ,∵AF ∶FD =1∶2,∴FD =2x .∴AD =AF +FD =3x .易知△ACF ∽△ADC ,∴ACAD =AFAC ,即AC 2=AF ·AD .∴3x 2=12,解得x =2或x =-2(舍去).∴AF =2,AD =6.∴⊙O 的半径为3.在Rt △AFG 中,AF =2,GF =1,根据勾股定理得AG =AF 2+GF 2=22+12=5,由(2)知AG ·AB =12,∴AB =12AG =1255.连接BD ,如图所示.∵AD 是⊙O 的直径,∴∠ABD =90°.在Rt △ABD 中,∵sin ∠ADB =ABAD ,AD =6,AB =1255,∴sin ∠ADB =255.∵∠ACE =∠ADB ,∴sin ∠ACE =255.。
中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.23【答案】(1)证明见解析;(2)AB=DI,理由见解析(3【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD=22OD OA-=22.又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD=2,∴AE=AD﹣DE=22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB=,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.4.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF:(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)2【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是圆O的切线,∴∠EBO=90°,∴∠FBA+∠ABO=90°,∴∠FAB+∠BAO=90°,即∠FAO=90°,∴PA⊥OA,∴PA是圆O的切线;(3)过点F作FH⊥AD于点H,∵BD⊥AD,FH⊥AD,∴FH∥BC,由(2),知∠FBA=∠BAF,∴BF=AF.∵BF=FG,∴AF=FG,∴△AFG是等腰三角形.∵FH⊥AD,∴AH=GH,∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,∴四边形BDHF 是矩形,∴BD =FH ,∵FH ∥BC∴△HFG ∽△DCG ,∴12FH HG CD DG ==, 即12BD CD =, ∴23 2.153≈, ∵O 的半径长为32,∴BC =62,∴BD =13BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.5.如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PB <PC ,PA 交BC 于E ,点F 是PC 延长线上的点,CF=PB ,AB=13,PA=4.(1)求证:△ABP ≌△ACF ;(2)求证:AC 2=PA•AE ;(3)求PB 和PC 的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC ,再利用圆的内接四边形的性质得∠ACF=∠ABP ,于是可根据“SAS”判断△ABP ≌△ACF ;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC ,于是可判断△ACE ∽△APC ,然后利用相似比即可得到结论;(3)先利用AC 2=PA •AE 计算出AE=134 ,则PE=AP-AE=34,再证△APF 为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。
2020-2021中考数学提高题专题复习圆的综合练习题含详细答案
2020-2021中考数学提高题专题复习圆的综合练习题含详细答案一、圆的综合1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.已知▱ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G 为切点,已知⊙O的半径为3▱ABCD的面积.【答案】3【解析】【分析】首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.【详解】设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·OG)=3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴S=3(13+BD);连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴S=3(13+7)=203.即平行四边形ABCD的面积为203.3.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为»AB,P是半径OB上一动点,Q是»AB上的一动点,连接PQ.发现:∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求»BQ的长;(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.【答案】发现: 90°,2;思考:(1)103π=;(2)2+100;(3)点O到折痕PQ30【解析】分析:发现:先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;(2)先在Rt△B'OP中,OP22−10)2=(10-OP)2,解得2−10,最后用面积的和差即可得出结论.探究:先找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,证明四边形OCO′B 是矩形,由勾股定理求O′B ,从而求出O O′的长,则OM=12OO′=30. 详解:发现:∵P 是半径OB 上一动点,Q 是»AB 上的一动点,∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,此时,∠POQ=90°,PQ=22OA OB +=102;思考:(1)如图,连接OQ ,∵点P 是OB 的中点,∴OP=12OB=12OQ . ∵QP ⊥OB ,∴∠OPQ=90° 在Rt △OPQ 中,cos ∠QOP=12OP OQ =, ∴∠QOP=60°,∴l BQ =6010101803ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102,在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2解得OP=102−10,S 阴影=S 扇形AOB -2S △AOP =290101210(10210)3602π⨯-⨯⨯⨯- =25π−1002+100;探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是¼B Q '所在圆的圆心,∴O′C=OB=10,∵折叠后的弧QB′恰好与半径OA 相切于C 点,∴O′C ⊥AO ,∴O′C ∥OB ,∴四边形OCO′B 是矩形,在Rt △O′BP 中,O′B=226425-=, 在Rt △OBO′K ,OO′=2210(25)=230-,∴OM=12OO′=12×230=30, 即O 到折痕PQ 的距离为30.点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=180n R π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.4.如图1,以边长为4的正方形纸片ABCD 的边AB 为直径作⊙O ,交对角线AC 于点E . (1)图1中,线段AE= ;(2)如图2,在图1的基础上,以点A 为端点作∠DAM=30°,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt △ADM 绕点A 逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD 与⊙O 交于点F .①当α=30°时,请求出线段AF 的长;②当α=60°时,求出线段AF 的长;判断此时DM 与⊙O 的位置关系,并说明理由; ③当α= °时,DM 与⊙O 相切.【答案】(1)2(2)①2②2,相离③当α=90°时,DM 与⊙O 相切【解析】(1)连接BE ,∵AC 是正方形ABCD 的对角线,∴∠BAC =45°,∴△AEB 是等腰直角三角形,又∵AB =8,∴AE =4;(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得α=∠NAD=90°.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.5.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.6.如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为_____cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P 开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【答案】(1)t﹣1;(2)S=﹣38t2+3t+3(1<t<4);(3)t=103s.【解析】分析:(1)根据勾股定理求出AB,根据D为AB中点,求出AD,根据点P在AD上的速度,即可求出点P在AD段的运动时间,再求出点P在DP段的运动时间,最后根据DE段运动速度为1c m/s,即可求出DP;(2)由正方形PQMN与△ABC重叠部分图形为五边形,可知点P在DE上,求出DP=t﹣1,PQ=3,根据MN∥BC,求出FN的长,从而得到FM的长,再根据S=S梯形FMHD+S矩形DHQP,列出S与t的函数关系式即可;(3)当圆与边PQ相切时,可求得r=PE=5﹣t,然后由r以0.2c m/s的速度不断增大,r=1+0.2t,然后列方程求解即可;当圆与MN相切时,r=CM=8﹣t=1+0.2t,从而可求得t的值.详解:(1)由勾股定理可知:AB =22AC BC +=10. ∵D 、E 分别为AB 和BC 的中点,∴DE =12AC =4,AD =12AB =5, ∴点P 在AD 上的运动时间=55=1s ,当点P 在线段DE 上运动时,DP 段的运动时间为(t ﹣1)s .∵DE 段运动速度为1c m/s ,∴DP =(t ﹣1)cm .故答案为t ﹣1.(2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP 时,重叠部分为五边形,∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0,解得:t >1,∴1<t <4.∵△DFN ∽△ABC ,∴DN FN =AC BC =86=43. ∵DN =PN ﹣PD ,∴DN =3﹣(t ﹣1)=4﹣t , ∴4t FN -=43,∴FN =344t -(), ∴FM =3﹣344t -()=34t , S =S 梯形FMHD +S 矩形DHQP , ∴S =12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣38t 2+3t +3(1<t <4). (3)①当圆与边PQ 相切时,如图:当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm.∵r以0.2c m/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5﹣t,解得:t=103s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=MQ+CQ=5﹣t+3=(8﹣t)cm,∴1+0.2t=8﹣t,解得:t=356s.∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=356s(舍).综上所述:当t=103s时,⊙O与正方形PQMN的边所在直线相切.点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.7.如图,一条公路的转弯处是一段圆弧»().AB()1用直尺和圆规作出»AB所在圆的圆心O;(要求保留作图痕迹,不写作法)()2若»AB的中点C到弦AB的距离为2080m AB m=,,求»AB所在圆的半径.【答案】(1)见解析;(2)50m【解析】分析:()1连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;()2连接OA OC OC ,,交AB 于D ,如图2,根据垂径定理的推论,由C 为»AB的中点得到1OC AB AD BD AB 402⊥===,,则CD 20=,设O e 的半径为r ,在Rt OAD V 中利用勾股定理得到222r (r 20)40=-+,然后解方程即可.详解:()1如图1,点O 为所求;()2连接OA OC OC ,,交AB 于D ,如图2,C Q 为»AB 的中点,OC AB ∴⊥,1402AD BD AB ∴===, 设O e 的半径为r ,则20OA r OD OD CD r ==-=-,,在Rt OAD V 中,222OA OD AD =+Q ,222(20)40r r ∴=-+,解得50r =,即»AB 所在圆的半径是50m .点睛:本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.8.如图,已知AB 为⊙O 直径,D 是»BC的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线交AD 的延长线于F .(1)求证:直线DE 与⊙O 相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴»»DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.9.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB 、BC 两边都相切.根据角平分线的性质可知要作∠ABC 的角平分线,角平分线与AC 的交点就是点P 的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P 为所求作的圆.(2)∵∠ABC=60°,BP 平分∠ABC ,∴∠ABP=30°,∵ ∠A=90°,∴BP=2APRt △ABP 中,AB=3,由勾股定理可得:AP=3,∴S ⊙P =3π10.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--. 【解析】【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0)∴y =a (x+2)(x ﹣4)把点C (0,3)代入得:﹣8a =3∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D∴∠CDP =∠COB =90°∵∠DCP =∠OCB∴△CDP ∽△COB ∴PC PD BC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个此时,连接FQ ,过点Q 作QG ⊥x 轴于点G∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点∴F (1,0),FQ =FA =3∵T (﹣4,0)∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ =∴FG =35FQ =95∴x Q =1﹣9455=-,QG =2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭①若点Q 在x 轴上方,则Q (41255-,)设直线l 解析式为:y =kx+b ∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论11.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.【答案】(1)证明见解析;(2)①∠OCE=45°;②EF =23【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,中,∠E=30°,利用内角和定理,得:∠OCE=45°.∠EOC=∠DAO=105°,在OCE②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=2,∠OCE=45°.等腰直角三2倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=23则EF=GE-FG=23【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.12.如图1,等腰直角△ABC中,∠ACB=90°,AC=BC,过点A,C的圆交AB于点D,交BC 于点E,连结DE(1)若AD=7,BD=1,分别求DE,CE的长(2)如图2,连结CD,若CE=3,△ACD的面积为10,求tan∠BCD(3)如图3,在圆上取点P使得∠PCD=∠BCD(点P与点E不重合),连结PD,且点D 是△CPF的内心①请你画出△CPF,说明画图过程并求∠CDF的度数②设PC=a,PF=b,PD=c,若(a-2c)(b-2c)=8,求△CPF的内切圆半径长.【答案】(1)DE=1,CE=322)tan∠BCD=14;(3)①135°;②2.【解析】【分析】(1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(a-2c )(b-2c )=8,消去字母a ,b 求出c 值,即求出△CPF 的内切圆半径长为22c . 【详解】(1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得:AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1,∴x 2+x 2=82,解得:x=2.∵⊙O 内接四边形,∠ACD=90°,∴∠ADE=90°,∴∠EDB=90°,∵∠B=45°,∴△BDE 是等腰直角三形.∴DE=DB ,又∵DB=1,∴DE=1,又∵CE=BC-BE ,∴CE=42232=(2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y ,∵S △ACB =S ACD +S DCB , ∴()1114242103y y 222⨯⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).∴EM=1,CM=CE+ME=1+3=4,又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .∵∠CAD=45°,∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心,∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD∴∠CPF=90°∴∠PCF+∠PFC=90° ∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°,即∠CDF 的度数为135°.②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心,∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,∴∠PCF+∠PFC=90°,∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,∴四边形PKDN 是矩形,又∵KD=ND ,∴四边形PKDN 是正方形.又∵∠MBD=∠BDM=45°,∠BDM=∠KDP ,∴∠KDP=45°. ∵PC=a ,PF=b ,PD=c ,∴PN=PK=2C 2, ∴NF=2b -,CK=2a -, 又∵CK=CM ,FM=FN ,CF=CM+FM ,∴CF=a b 2c +,又∵S △PCF =S △PDF +S △PDC +S △DCF , ∴112121ab a c b c (a b 22222=⨯+⨯++-c )×2c , 化简得:ab=()22a b c c +-------(Ⅰ),又∵若(a-2c )(b-2c )=8化简得:()2ab 2c a b 2c 8-++=------(Ⅱ), 将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c 22=,或c 22=-(舍去),∴m=22c 22222=⨯=, 即△CPF 的内切圆半径长为2.【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.13.如图所示,ABC ∆内接于圆O ,CD AB ⊥于D ;(1)如图1,当AB 为直径,求证:OBC ACD ∠=∠;(2)如图2,当AB 为非直径的弦,连接OB ,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作AE BC ⊥于E ,交CD 于点F ,连接ED ,且2AD BD ED =+,若3DE =,5OB =,求CF 的长度.【答案】(1)见解析;(2)成立;(3)145【解析】【分析】 (1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠BOC=2∠A ,求出∠OBC=90°-∠A 和∠ACD=90°-∠A 即可;(3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,在AD 上取DG=BD ,延长CG 交AK 于M ,延长KO 交⊙O 于N ,连接CN 、AN ,求出关于a 的方程,再求出a 即可.【详解】(1)证明:∵AB 为直径,∴ACB 90∠=︒, ∵CD AB ⊥于D , ∴ADC 90∠=︒,∴OBC A 90∠∠+=︒,A ACD 90∠∠+=︒,∴OBC ACD ∠∠=;(2)成立,证明:连接OC ,由圆周角定理得:BOC 2A ∠∠=,∵OC OB =, ∴()()11OBC 180BOC 1802A 90A 22∠∠∠∠=︒-=︒-=︒-, ∵ADC 90∠=︒,∴ACD 90A ∠∠=︒-,∴OBC ACD ∠∠=;(3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,∵AE BC ⊥,CD BA ⊥,∴AEC ADC 90∠∠==︒,∴BCD CFE 90∠∠+=︒,BAH DFA 90∠∠+=︒,∵CFE DFA ∠∠=,∴BCD BAH ∠∠=,∵根据圆周角定理得:BAH BCH ∠∠=,∴BCD BAH BCH ∠∠∠==,∴由三角形内角和定理得:CHE CFE ∠∠=, ∴CH CF =,∴EH EF =,同理DF DK =,∵DE 3=,∴HK 2DE 6==,在AD 上取DG BD =,延长CG 交AK 于M ,则AG AD BD 2DE 6=-==, BC GC =,∴MCK BCK BAK ∠∠∠==,∴CMK 90∠=︒,延长KO 交⊙O 于N ,连接CN 、AN ,则NAK 90CMK ∠∠=︒=,∴CM //AN ,∵NCK ADK 90∠∠==︒,∴CN //AG ,∴四边形CGAN 是平行四边形,∴AG CN 6==,作OT CK ⊥于T ,则T 为CK 的中点,∵O 为KN 的中点, ∴1OT CN 32==, ∵OTC 90∠=︒,OC 5=,∴由勾股定理得:CT 4=,∴CK 2CT 8==,作直径HS ,连接KS ,∵HK 6=,HS 10=,∴由勾股定理得:KS 8=, ∴3tan HSK tan HAK 4∠∠==, ∴1tan EAB tan BCD 3∠∠==, 设BD a =,CD 3a =, ∴AD BD 2ED a 6=+=+,11DK AD a 233==+, ∵CD DK CK +=,∴13a a 283++=, 解得:9a 5=, ∴113DK a 235=+=, ∴2614CF CK 2DK 855=-=-=. 【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.14.如图,AB 是O e 的直径,DF 切O e 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C .(1)求证:ABC C ∠∠=;(2)设CA 的延长线交O e 于E BF ,交O e 于G ,若¼DG的度数等于60o ,试简要说明点D 和点E 关于直线AB 对称的理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)作辅助线,连接OD ,由DF 为⊙O 的切线,可得OD ⊥DF ,又BF ⊥DF ,AC ∥BF ,所以OD ∥AC ,∠ODB=∠C ,由OB=OD 得∠ABD=∠ODB ,从而可证∠ABC=∠C ;(2)连接OG ,OD ,AD ,由BF ∥OD ,»GD =60°,可求证»BG =»»GD AD ==60°,由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.【详解】(1)连接OD ,∵DF 为⊙O 的切线,∴OD ⊥DF .∵BF ⊥DF ,AC ∥BF ,∴OD ∥AC ∥BF .∴∠ODB=∠C .∵OB=OD,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,DE,DE交AB于H,∵BF∥OD,∴∠OBG=∠AOD,∠OGB=∠DOG,∴»»==»BG.GD AD∵»GD=60°,∴»BG=»»==60°,GD AD∴∠ABC=∠C=∠E=30°,∵OD//CE∴∠ODE=∠E=30°.在△ODH中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB⊥DE.∴点D和点E关于直线AB对称.【点睛】本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.15.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点.(1)求证:是小半圆的切线;(2)若,点在上运动(点不与两点重合),设,.①求与之间的函数关系式,并写出自变量的取值范围;②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.。
中考数学圆综合题专题训练
中考数学圆综合题专题训练(第11天)1.如图,以△ABC 的BC 边为直径作⊙O ,分别交AC 、AB 于E 、F 两点,过A 作⊙O 的切线,切点为D ,且点E 、F 为劣弧CD ︵的三等分点.(1)求证:AD ∥BC ;(2)求∠DAC 的大小.2.(成都某校自主招生)如图,在直角坐标系中,点B (-1-3,0),C (1+3,0),△ABC 的内切圆的圆心是I (-1,1),求△ABC 的面积.3.(四川德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O 的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB 的延长线于G.(1)求证:FC=FB;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.4.(四川广安)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=25,sin∠BCP=55,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.CP5.(四川泸州)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,C 是AD ︵的中点,弦CE ⊥AB 于点H ,连接AD ,分别交CE 、BC 于点P 、Q ,连接BD . (1)求证:P 是线段AQ 的中点;(2)若⊙O 的半径为5,AQ =152,求弦CE 的长.B中考数学圆综合题专题训练(第12天)6.(四川宜宾)如图,⊙O1、⊙O2相交于P、Q两点,其中⊙O1的半径r1=2,⊙O2的半径r2=2.过点Q作CD⊥PQ,分别交⊙O1和⊙O2于点C、D,连接CP、DP,过点Q任作一直线AB交⊙O1和⊙O2于点A、B,连接AP、BP、AC、DB,且AC与DB的延长线交于点E.(1)求证:P APB=2;(2)若PQ=2,试求∠E度数.7.(四川资阳)如图,在△ABC 中,AB =AC ,∠A =30°,以AB 为直径的⊙O 交BC 于点D ,交AC 于点E ,连接DE ,过点B 作BP ∥DE ,交⊙O 于点P ,连接EP 、CP 、OP .(1)求证:BD =DC ; (2)求∠BOP 的度数;(3)求证:CP 是⊙O 的切线.AC BD OE P8.(四川某校自主招生)如图,等腰Rt△ABC的直角边AB、AC分别与⊙O相切于点E、D,AD=3,DC=5,直线FG与AC、BC分别交于点F、G,且∠CFG=60°.(1)求阴影部分的面积;FG与⊙O的位置关系,并说明理由.9.如图,在平面直角坐标系中,半径分别为m、n(0<m<n)的两圆⊙O1和⊙O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,⊙O1与x轴、y轴分别切于点M、N,⊙O2与x轴、y轴分别切于点R、H.(1)求两圆的圆心O1、O2所在直线的解析式;(2)求两圆的圆心O1、O2之间的距离d;(3)令四边形PO1QO2的面积为S1,四边形RMO1O2的面积为S2.试探究:是否存在一条经过P、Q两点、开口向下,且在x轴上截得的线段长为|S1-S2|2d的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.中考数学圆综合题专题训练(第13天)10.(湖南怀化)如图,已知AB 是⊙O 的弦,OB =4,∠OBC =30°,点C 是弦AB 上任意一点(不与点A 、B 重合),连接CO 并延长CO 交⊙O 于点D ,连接AD 、DB .(1)当∠ADC =18°时,求∠DOB 的度数;(2)若AC =23,求证△ACD ∽△OCB .ACBDO11.(湖南湘潭)如图,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,AC =12AB ,点P在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作直线PB 的垂线CD 交PB 于D 点. (1)如图1,求证:△PCD ∽△ABC ;(2)当点P 运动到什么位置时,△PCD ≌△ABC ?请在图2中画出△PCD 并说明理由; (3)如图3,当点P 运动到CP ⊥AB 时,求∠BCD 的度数.B 图2D图1B图312.(湖南张家界)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线DC ,点P 为优弧CBA ︵上一动点(不与A 、C 重合).(1)求∠APC 与∠ACD 的度数;(2)当点P 移动到CB ︵的中点时,证明:四边形ACPO 是菱形; (3)P 点移动到什么位置时,由点A 、P 、C 三点构成的三角形与△ABC 全等,请说明理由.B13.(湖北鄂州)如图,梯形ABCD是等腰梯形,且AD∥BC,O是腰CD的中点,以CD长为直径作圆,交BC于E,过E作EH⊥AB于H.(1)求证:OE∥AB;(2)若EH=12CD,求证:AB是⊙O的切线;(3)若BE=4BH,求BHCE的值.中考数学圆综合题专题训练(第14天)14.(湖北恩施)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sin A=513,求⊙O的半径.C15.(湖北十堰)如图1,⊙O 是△ABC 的外接圆,AB 是直径,OD ∥AC ,且∠CBD =∠BAC ,OD 交⊙O 于点E .(1)求证:BD 是⊙O 的切线.(2)若点E 为线段OD 的中点,证明:以O 、A 、C 、E 为顶点的四边形是菱形; (3)作CF ⊥AB 于点F ,连接AD 交CF 于点G (如图2).求FGFC的值.ACB ODE图1A CB ODE图2F G16.(湖北襄阳)如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E,F,过点B作PO 的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.AC BO D EPF17.(湖北某校自主招生)已知扇形AOB 的半径为6,圆心角为90°,E 是半径OA 上一点,F 是AB ︵上一点.将扇形AOB 沿EF 对折,使得折叠后的图形恰好与半径OB 相切于点G .(1)若OE =4,求折痕EF 的长;(2)若G 是OB 中点,求OE 和折痕EF 的长; (3)点E 可移动的最大距离是多少?B中考数学圆综合题专题训练(第15天)18.(湖北某校自主招生)如图,在平面直角坐标系中,点A的坐标为(2,0),以点A为圆心,2为半径的⊙A与x轴交于O、B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,直线CP交⊙A于点Q,连接OQ、AQ.Array(1)当△OCQ是等腰三角形时,求点P的坐标;(2)当△APQ是等腰三角形时,求∠OCQ的度数.19.(湖北模拟)如图,在△ABC中,AB=AC,且⊙O内切于△ABC,D、E、F是切点,CF 交⊙O于G,EG延长线交BC于M,AG交⊙O于K.(1)求证:△MCG∽△MEC;(2)若EM⊥BC,求cos∠FAK的值.20.(湖北模拟)已知矩形ABCD中,半径为r的两个等圆⊙O1、⊙O2外切,且⊙O1与边AB、BC相切,⊙O2与边BC相切.点E是边CD上一点,将△ADE沿AE翻折得△AD′E,AD′恰好与⊙O2相切于点D′.若AD=3,折痕AE的长为10.(1)求r的值;(2)求证:矩形ABCD为正方形.D E。
小学圆形测试题目及答案
小学圆形测试题目及答案一、选择题(每题2分,共10分)1. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5厘米B. 15厘米C. 20厘米D. 25厘米答案:A2. 圆的周长公式是?A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B3. 一个圆的面积是28.26平方厘米,它的半径是多少厘米?A. 3厘米B. 4厘米C. 5厘米D. 6厘米答案:B4. 圆的面积公式是?A. S = πr²B. S = 2πrC. S = πd²D. S = 2πd答案:A5. 一个圆的直径增加到原来的两倍,它的面积会增加到原来的多少倍?A. 2倍B. 4倍C. 8倍D. 16倍答案:B二、填空题(每题2分,共10分)6. 如果一个圆的半径是7厘米,那么它的直径是______厘米。
答案:147. 圆的周长是62.8厘米,那么它的半径是______厘米。
答案:108. 一个圆的面积是50.24平方厘米,它的半径是______厘米。
答案:49. 圆的周长是31.4厘米,那么它的直径是______厘米。
答案:1010. 一个圆的半径是6厘米,那么它的面积是______平方厘米。
答案:113.04三、计算题(每题5分,共20分)11. 计算半径为8厘米的圆的周长。
答案:周长= 2πr = 2 × 3.14 × 8 = 50.24厘米12. 计算直径为14厘米的圆的面积。
答案:面积= πr² = 3.14 × (14/2)² = 153.86平方厘米13. 一个圆的周长是43.96厘米,求它的半径。
答案:半径 = 周长/ (2π) = 43.96 / (2 × 3.14) = 7厘米14. 一个圆的面积是78.5平方厘米,求它的直径。
答案:直径= 2 × √(面积/ π) = 2 × √(78.5 / 3.14) = 10厘米四、解答题(每题10分,共20分)15. 一个圆的直径是12厘米,求它的周长和面积。
中考数学提高题专题复习圆的综合练习题含答案
一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).3831343n 【解析】分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1.∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h =32a 2,∴1=32-1)2+14a 22,解得a 283. (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2,即1=(nh-1)2+2 12na⎛⎫ ⎪⎝⎭.∵h=3a n,∴1=14a n2+2312nna⎛⎫-⎪⎪⎝⎭,解得a n=43n.2.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O经过D、A、B三点,OD∥BC.(1)求证:BC与⊙O相切;(2)若OD=15,AE=7,求BE的长.【答案】(1)见解析;(2)18.【解析】分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.详解:(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO=180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)解:连接BD.则△ODB是等腰直角三角形,∴∠ODB=45°,BD=OD=15,∵∠ODB=∠A,∠DBE=∠DBA,∴△DBE∽△ABD,∴BD2=BE•BA,∴(15)2=(7+BE)BE,∴BE=18或﹣25(舍弃),∴BE=18.点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.3.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210) 240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t +20﹣t =15,解得:t =10,此时S =100.综上所述:当⊙C 与GH 所在的直线相切时,求此时S 的值为100cm 2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.4.已知,ABC ∆内接于O ,点P 是弧AB 的中点,连接PA 、PB ;(1)如图1,若AC BC =,求证:AB PC ⊥; (2)如图2,若PA 平分CPM ∠,求证:AB AC =; (3)在(2)的条件下,若24sin 25BPC ∠=,8AC =,求AP 的值.【答案】(1)见解析;(2)见解析5 【解析】 【分析】(1)由点P 是弧AB 的中点,可得出AP=BP , 通过证明APC BPC ∆≅∆ ,ACE BCE ∆≅∆可得出AEC BEC ∠=∠进而证明AB ⊥ PC.(2)由PA 是∠CPM 的角平分线,得到∠MPA=∠APC, 等量代换得到∠ABC=∠ACB, 根据等腰三角形的判定定理即可证得AB=AC.(3)过A 点作AD ⊥BC,有三线合一可知AD 平分BC,点O 在AD 上,连结OB ,则∠BOD =∠BAC ,根据圆周角定理可知∠BOD=∠BAC, ∠BPC=∠BAC ,由∠BOD=∠BPC 可得sin sin BDBOD BPC OB∠=∠=,设OB=25x ,根据勾股定理可算出OB 、BD 、OD 、AD 的长,再次利用勾股定理即可求得AP 的值. 【详解】解:(1)∵点P 是弧AB 的中点,如图1, ∴AP =BP ,在△APC 和△BPC 中 AP BP AC BC PC PC =⎧⎪=⎨⎪=⎩, ∴△APC ≌△BPC (SSS ), ∴∠ACP =∠BCP , 在△ACE 和△BCE 中AC BC ACP BCP CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△BCE (SAS ), ∴∠AEC =∠BEC , ∵∠AEC +∠BEC =180°, ∴∠AEC =90°, ∴AB ⊥PC ;(2)∵PA 平分∠CPM , ∴∠MPA =∠APC ,∵∠APC +∠BPC +∠ACB =180°,∠MPA +∠APC +∠BPC =180°, ∴∠ACB =∠MPA =∠APC , ∵∠APC =∠ABC , ∴∠ABC =∠ACB , ∴AB =AC ;(3)过A 点作AD ⊥BC 交BC 于D ,连结OP 交AB 于E ,如图2,由(2)得出AB =AC , ∴AD 平分BC , ∴点O 在AD 上,连结OB ,则∠BOD =∠BAC , ∵∠BPC =∠BAC , ∴sin sin BOD BPC ∠=∠=2425BD OB=, 设OB =25x ,则BD =24x , ∴OD =22OB BD -=7x ,在Rt ABD 中,AD =25x +7x =32x ,BD =24x , ∴AB =22AD BD +=40x ,∵AC =8, ∴AB =40x =8, 解得:x =0.2,∴OB =5,BD =4.8,OD =1.4,AD =6.4, ∵点P 是AB 的中点, ∴OP 垂直平分AB , ∴AE =12AB =4,∠AEP =∠AEO =90°, 在Rt AEO ∆中,OE =223AO AE -=,∴PE =OP ﹣OE =5﹣3=2,在Rt APE ∆中,AP =22222425PE AE +=+=. 【点睛】本题是一道有关圆的综合题,考查了圆周角定理、勾股定理、等腰三角形的判定定理和三线合一,是初中数学的重点和难点,一般以压轴题形出现,难度较大.5.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF 3【答案】(1)详见解析;(2)633π-.【解析】 【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC, ∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º ∴∠PCA=∠OCB, ∵OC=OB,∴∠OBC=∠OCB, ∴∠PCA=∠ABC ; (2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B, ∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形, ∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º, ∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA, 同理,CF =FM,∴AM =2CF=3 Rt △ACM 中,易得AC=33=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º, ∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB, 连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =OA×tan30º=3 , ∵△CDO ≌△EDO(AAS), ∴EG=CD=AC×sin60º=332, ∴1332ABM S AB MO ∆=⨯=, 同样,易求93AOE S ∆=, 260333602BOES ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形=93363333424ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.6.如图,点A ,B ,C ,D ,E 在⊙O 上,AB ⊥CB 于点B ,tanD=3,BC=2,H 为CE 延长线上一点,且AH=10,CH 52=.(1)求证:AH 是⊙O 的切线;(2)若点D 是弧CE 的中点,且AD 交CE 于点F ,求证:HF=HA ; (3)在(2)的条件下,求EF 的长.【答案】(1)证明见解析(2)证明见解析(3102 【解析】【分析】(1)连接AC ,由AB ⊥CB 可知AC 是⊙O 的直径,由圆周角定理可得∠C=∠D ,于是得到tanC=3,故此可知AB=6,在Rt △ABC 中,由勾股定理得:AC 2= 40,从而可得AC 2+AH 2=CH 2,根据勾股定理的逆定理可得AC ⊥AH ,问题得证;(2)连接DE、BE,由弦切角定理可知∠ABD=∠HAD,由D是CE的中点,可得∠CED=∠EBD,再由圆周角定理可得∠ABE=∠ADE,结合三角形的外角即可证明∠HAF=∠AFH,从而可证得AH=HF;(3)由切割线定理可得EH=2,由(2)可知AF=FH=10,从而可得EF=FH﹣EH=10-2.【详解】(1)如图1所示:连接AC.∵AB⊥CB,∴AC是⊙O的直径,∵∠C=∠D,∴tanC=3,∴AB=3BC=3×2=6,在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=40,又∵AH2=10,CH2=50,∴AC2+AH2=CH2,∴△ACH为直角三角形,∴AC⊥AH,∴AH是圆O的切线;(2)如图2所示:连接DE、BE,∵AH是圆O的切线,∴∠ABD=∠HAD,∵D是CE的中点,∴CD ED,∴∠CED=∠EBD,又∵∠ABE=∠ADE,∴∠ABE+∠EBD=∠ADE+∠CED,∴∠ABD=∠AFE,∴∠HAF=∠AFH,∴AH=HF;(3)由切割线定理可知:AH2=EH•CH,即(10)2=52EH,解得:EH=2,∵由(2)可知AF=FH=10,∴EF=FH﹣EH=10-2.【点睛】本题主要考查圆的综合应用,解答主要应用了切线的判定定理、弦切角定理、切割线定理、圆周角定理、勾股定理、勾股定理的逆定理、三角形的外角的性质等,正确添加辅助线是解题的关键.7.如图, Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F, (1)设AB=c, BC=a, AC=b, 求证: 内切圆半径r=12(a+b-c).(2) 若AD交圆于P, PC交圆于H, FH//BC, 求∠CPD;(3)若r=310, PD=18, PC=272. 求△ABC各边长.【答案】(1)证明见解析(2)45°(3)1010,1510,12【解析】【分析】(1)根据切线长定理,有AE=AF,BD=BF,CD=CE.易证四边形BDOF为正方形,BD=BF=r,用r表示AF、AE、CD、CE,利用AE+CE=AC为等量关系列式.(2)∠CPD为弧DH所对的圆周角,连接OD,易得弧DH所对的圆心角∠DOH=90°,所以∠CPD=45°.(3)由PD=18和10,联想到垂径定理基本图形,故过圆心O作PD的垂线OM,求得弦心距OM=3,进而得到∠MOD的正切值.延长DO得直径DG,易证PG∥OM,得到同位角∠G=∠MOD.又利用圆周角定理可证∠ADB=∠G,即得到∠ADB的正切值,进而求得AB.再设CE=CD=x,用x表示BC、AC,利用勾股定理列方程即求出x.【详解】解:(1)证明:设圆心为O,连接OD、OE、OF,∵⊙O分别与BC、CA、AB相切于点D、E、F∴OD⊥BC,OE⊥AC,OF⊥AB,AE=AF,BD=BF,CD=CE∴∠B=∠ODB=∠OFB=90°∴四边形BDOF 是矩形∵OD=OF=r∴矩形BDOF 是正方形∴BD=BF=r∴AE=AF=AB-BF=c-r ,CE=CD=BC-BD=a-r∵AE+CE=AC∴c-r+a-r=b整理得:r=12(a+b-c )(2)取FH 中点O ,连接OD∵FH ∥BC∴∠AFH=∠B=90°∵AB 与圆相切于点F ,∴FH 为圆的直径,即O 为圆心∵FH ∥BC∴∠DOH=∠ODB=90°∴∠CPD=12∠DOH=45°(3)设圆心为O ,连接DO 并延长交⊙O 于点G ,连接PG ,过O 作OM ⊥PD 于M ∴∠OMD=90°∵PD=18∴DM=12PD=9 ∵10∴22OD DM -22(310)9-9081-3∴tan∠MOD=DMOM=3∵DG为直径∴∠DPG=90°∴OM∥PG,∠G+∠ODM=90°∴∠G=∠MOD∵∠ODB=∠ADB+∠ODM=90°∴∠ADB=∠G∴∠ADB=∠MOD∴tan∠ADB=ABBD=tan∠MOD=3∴AB=3BD=3r=910∴AE=AF=AB-BF=910−310=610设CE=CD=x,则BC=310+x,AC=610+x∵AB2+BC2=AC2∴(910)2.+(310+x)2=(610+x)2解得:x=910∴BC=1210,AC=1510∴△ABC各边长AB=910,AC=1510,BC=1210【点睛】本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.8.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=3A,D两点作⊙O,交AB于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.【答案】(1)23(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形(3)不变,理由见解析【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=123ON=33DN=1;当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到33;(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ,则DP-DQ=CQ-DQ=CD,而△ADC为等边三角形,3DP-DQ的值.【详解】解:(1)∵∠BAC=90°,点D是BC中点,BC=3∴AD=12BC=3(2)连DE、ME,如图,∵DM>DE,当ED和EM为等腰三角形EDM的两腰,∴OE⊥DM,又∵AD=AC,∴△ADC为等边三角形,∴∠CAD=60°,∴∠DAO=30°,∴∠DON=60°,在Rt△ADN中,DN=12AD=3,在Rt△ODN中,ON=33DN=1,∴当ON等于1时,三点D、E、M组成的三角形是等腰三角形;当MD=ME,DE为底边,如图3,作DH⊥AE,∵AD=23,∠DAE=30°,∴DH=3,∠DEA=60°,DE=2,∴△ODE为等边三角形,∴OE=DE=2,OH=1,∵∠M=∠DAE=30°,而MD=ME,∴∠MDE=75°,∴∠ADM=90°﹣75°=15°,∴∠DNO=45°,∴△NDH为等腰直角三角形,∴NH=DH=3,∴ON=3﹣1;综上所述,当ON等于1或3﹣1时,三点D、E、M组成的三角形是等腰三角形;(3)当⊙O变动时DP﹣DQ的值不变,DP﹣DQ=23.理由如下:连AP、AQ,如图2,∵∠C=∠CAD=60°,而DP⊥AB,∴AC∥DP,∴∠PDB=∠C=60°,又∵∠PAQ=∠PDB,∴∠PAQ=60°,∴∠CAQ=∠PAD,∵AC=AD,∠AQC=∠P,∴△AQC≌△APD,∴DP=CQ,∴DP﹣DQ=CQ﹣DQ=CD=23.【点睛】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.9.如图,已知等边△ABC,AB=16,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.【答案】(1)证明见解析;(2)6;(3).【解析】试题分析:(1)连接OD,根据等边三角形得出∠A=∠B=∠C=60°,根据OD=OB得到∠ODB=60°,得到OD∥AC,根据垂直得出切线;(2)根据中位线得出BD=CD=6,根据Rt△CDF的三角函数得出CF的长度,从而得到AF的长度,最后根据Rt△AFG的三角函数求出FG的长度;(3)过点D作DH⊥AB,根据垂直得出FG∥DH,根据Rt△BDH求出BH、DH的长度,然后得出∠GDH的正切值,从而得到∠FGD的正切值.试题解析:(1)如图①,连结OD,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线(2)∵OD∥AC,点O为AB的中点,∴OD为△ABC的中位线,∴BD=CD=6.在Rt△CDF中,∠C=60°,∴∠CDF=30°,∴CF=CD=3,∴AF=AC-CF=12-3=9 在Rt△AFG中,∵∠A=60°,∴FG=AF·sinA=9×=(3)如图②,过D作DH⊥AB于H.∵FG⊥AB,DH⊥AB,∴FG∥DH,∴∠FGD=∠GDH.在Rt△BDH中,∠B=60°,∴∠BDH=30°,∴BH=BD=3,DH=BH=3.∴tan∠GDH===,∴tan∠FGD=tan∠GDH=考点:(1)圆的基本性质;(2)三角函数.10.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.【答案】(1)证明见解析;(2)52 BE=【解析】试题分析:(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A作AF⊥CD于点F,由AB=AD,得到∠ACD=∠ACB=45°,在Rt△AFC中可求得AF =3,在Rt△AFD中求得DF=1,所以AB=AD=10,CD= CF+DF=4,再证明△ABE∽△CDA,得出BE ABDA CD=,即可求出BE的长度;试题解析:(1)证明:连结OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB= 90°,∵OA=OB,∴∠OAB=∠OBA=45°,∵∠BAE=45°,∴∠OAE=∠OAB+∠BAE=90°,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°. ∵AB=AD ,∴AB =AD∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =32,∠ACF =45°, ∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴223110AB AD ==+=,且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA ,∴BE AB DA CD =, ∴1010=, ∴52BE =.。
初中圆的综合试题及答案
初中圆的综合试题及答案一、选择题(每题3分,共30分)1. 圆的周长公式是()A. C = 2πrB. C = πdC. C = 2πr + 2dD. C = πr2. 圆的面积公式是()A. S = πr^2B. S = 2πrC. S = πd^2D. S = πr^2 + πd3. 圆的直径是半径的()A. 2倍B. 4倍C. 1/2倍D. 1/4倍4. 圆的半径增加一倍,面积增加()A. 2倍B. 4倍C. 8倍D. 16倍5. 一个圆的半径是5cm,那么它的直径是()A. 10cmC. 2.5cmD. 15cm6. 圆的周长和直径的比值是()A. 2πB. πC. 1D. 27. 圆的直径和半径的比值是()A. 2B. πC. 1D. 48. 圆的面积和半径的比值是()A. πrB. 2πrC. πr^2D. 4πr^29. 圆的周长和面积的比值是()A. 2πrB. πr^2C. 1/πrD. 2/πr10. 如果一个圆的周长是31.4cm,那么它的半径是()A. 5cmB. 10cmD. 20cm二、填空题(每题3分,共30分)1. 一个圆的半径是7cm,那么它的周长是_______cm。
2. 圆的面积公式是S = ________。
3. 圆的直径是半径的______倍。
4. 圆的周长公式是C = ________。
5. 一个圆的直径是14cm,那么它的半径是_______cm。
6. 圆的面积和半径的平方成正比,比例系数是______。
7. 圆的周长和半径的比值是______。
8. 圆的直径和半径的比值是______。
9. 圆的周长和面积的比值是______。
10. 如果一个圆的面积是78.5平方厘米,那么它的半径是_______cm。
三、解答题(每题10分,共40分)1. 已知一个圆的半径是8cm,求它的周长和面积。
2. 一个圆的直径是12cm,求它的周长和面积。
3. 一个圆的周长是62.8cm,求它的半径和面积。
人教 中考数学(圆的综合提高练习题)压轴题训练附答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE=∠DBC .(1)判断直线BE 与⊙O 的位置关系,并证明你的结论; (2)若sin ∠ABE=33,CD=2,求⊙O 的半径.【答案】(1)直线BE 与⊙O 相切,证明见解析;(2)⊙O 的半径为3. 【解析】分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切; (2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC . ∵OD =OE ,∴∠OED =∠ODE . 又∵∠ABE =∠DBC ,∴∠ABE =∠OED , ∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;(2)连接EF ,方法1:∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠= ∴23DCBD sin CBD∠==在Rt △AEB 中,∵CD =2,∴22BC =.∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,=∴=∴=, 由勾股定理求得6BE =.在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2.设⊙O 的半径为r ,则222623r r +=-()(),∴r =3, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°. ∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =33sin ABE ∠=. 设3DC x BD x ==,,则2BC x =.∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,=∴=∴=, ∴E 为AD 中点.∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==,∴⊙O 的半径为3.点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.3.已知:如图,△ABC 中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC 的外接圆,保留作图痕迹,不写作法; (2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π. 【解析】试题分析:(1)按如下步骤作图:①作线段AB 的垂直平分线;②作线段BC 的垂直平分线;③以两条垂直平分线的交点O 为圆心,OA 长为半圆画圆,则圆O 即为所求作的圆. 如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC =3,如图弦AC 所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.4.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O经过D、A、B三点,OD∥BC.(1)求证:BC与⊙O相切;(2)若OD=15,AE=7,求BE的长.【答案】(1)见解析;(2)18.【解析】分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.详解:(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO=180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)解:连接BD.则△ODB是等腰直角三角形,∴∠ODB=45°,BD=OD=15,∵∠ODB=∠A,∠DBE=∠DBA,∴△DBE∽△ABD,∴BD2=BE•BA,∴(15)2=(7+BE)BE,∴BE=18或﹣25(舍弃),∴BE=18.点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.5.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.6.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。
九年级数学圆的综合的专项培优练习题(含答案)附答案解析
九年级数学圆的综合的专项培优练习题(含答案)附答案解析一、圆的综合1.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O 的半径为3.①若AB AC =53,求BC 的长; ②当AB AC为何值时,AB•AC 的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②32【解析】 分析:(1)由菱形知∠D=∠BEC ,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC ,据此得证;(2)以点C 为圆心,CE 长为半径作⊙C ,与BC 交于点F ,于BC 延长线交于点G ,则CF=CG=AC=CE=CD ,证△BEF ∽△BGA 得BE BG BF BA =,即B F•BG=BE•AB ,将BF=BC-CF=BC-AC 、BG=BC+CG=BC+AC 代入可得; (3)①设AB=5k 、AC=3k ,由BC 2-AC 2=AB•AC 知6k ,连接ED 交BC 于点M ,Rt △DMC 中由DC=AC=3k 、MC=126k 求得22CD CM -3,可知OM=OD-3,在Rt △COM 中,由OM 2+MC 2=OC 2可得答案.②设OM=d ,则MD=3-d ,MC 2=OC 2-OM 2=9-d 2,继而知BC 2=(2MC )2=36-4d 2、AC 2=DC 2=DM 2+CM 2=(3-d )2+9-d 2,由(2)得AB•AC=BC 2-AC 2,据此得出关于d 的二次函数,利用二次函数的性质可得答案. 详解:(1)∵四边形EBDC 为菱形,∴∠D=∠BEC ,∵四边形ABDC 是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC ,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=33k,在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,解得:k=33或k=0(舍),∴62;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC 2=(2MC )2=36﹣4d 2,AC 2=DC 2=DM 2+CM 2=(3﹣d )2+9﹣d 2,由(2)得AB•AC=BC 2﹣AC 2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272, ∴AC=DC=362, ∴AB=964,此时32AB AC =. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.2.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O e 外取一点H ,连接CH 、DH 分别交O e 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)37【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O Q e 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=o ,D E 90∠∠∴+=o ,2D 2E 180∠∠∴+=o ,AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=o .()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===o Q ,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR V 和ODG V 中,A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =,AOR ∴V ≌ODG V ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===o Q ,AF//OC//BT ∴,OA OB =Q ,CT CF 3m ∴==,ET m ∴=,CD Q 为直径,CBD CND 90CBE ∠∠∠∴===o ,E 90EBT CBT ∠∠∠∴=-=o ,tan E tan CBT ∠∠∴=,BT CT ET BT∴=, BT 3m m BT∴=, BT 3m(∴=负根已经舍弃),3m tan E 3∠∴== E 60∠∴=o ,CWD HDE H ∠∠∠=+Q ,HDE HCE ∠∠=,H E 60∠∠∴==o ,MON 2HCN 60∠∠∴==o ,OM ON =Q ,OMN ∴V 是等边三角形,MN ON ∴=,QM OB OM ==Q ,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=o o Q ,MQO P 180H 120∠∠∠+=-=o o , PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN V 中,2222CN CD DN 501448=-=-=,在Rt CHN V 中,CN 48tan H 3HN HN∠===, HN 163∴=,在Rt KNH V 中,1KH HN 832==,3NK HN 24==, 在Rt NMK V 中,2222MK MN NK 25247=-=-=,HM HK MK 837∴=+=+.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.3.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o , 1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=,AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G ,1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==,24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.4.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O e 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题.【详解】()1解:结论:DE 是O e 的切线.理由:连接OD .CDB ADE ∠=∠Q ,ADC EDB ∴∠=∠,//CD AB Q ,CDA DAB ∴∠=∠,OA OD =Q ,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠,AB Q 是直径,90ADB ∴∠=o ,90ADB ODE ∴∠=∠=o ,DE OD ∴⊥,DE ∴是O e 的切线.()2//CD AB Q ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=n n, AC BD ∴=,DCB DAB ∠=∠Q ,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴V ∽DBE V ,CD DB BD BE∴=, 2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.5.在⊙O 中,点C 是AB u u u r 上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是»AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.6.如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO.(1)判断PC与⊙O的位置关系,并说明理由;(2)若AB=6,CB=4,求PC的长.【答案】(1)PC是⊙O的切线,理由见解析;(235 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.7.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF ,BG ,由三角形AED 与三角形BFD 全等,得到ED =FD ,进而得到三角形DEF 为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE =BF =1,在直角三角形BEF 中,利用勾股定理求出EF 的长,利用锐角三角形函数定义求出DE 的长,利用两对角相等的三角形相似得到三角形AED 与三角形GEB 相似,由相似得比例,求出GE 的长,由GE +ED 求出GD 的长,根据三角形的面积公式计算即可.详解:(1)连接BD .在Rt △ABC 中,∠ABC =90°,AB =BC ,∴∠A =∠C =45°. ∵AB 为圆O 的直径,∴∠ADB =90°,即BD ⊥AC ,∴AD =DC =BD =12AC ,∠CBD =∠C =45°,∴∠A =∠FBD .∵DF ⊥DG ,∴∠FDG =90°,∴∠FDB +∠BDG =90°.∵∠EDA +∠BDG =90°,∴∠EDA =∠FDB .在△AED 和△BFD 中,A FBD AD BD EDA FDB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED ≌△BFD (ASA ),∴AE =BF ; (2)连接EF ,BG . ∵△AED ≌△BFD ,∴DE =DF .∵∠EDF =90°,∴△EDF 是等腰直角三角形,∴∠DEF =45°. ∵∠G =∠A =45°,∴∠G =∠DEF ,∴GB ∥EF ,∴∠FEB =∠GBA . ∵∠GBA =∠GDA ,∴∠FEB =∠GDA ;(3)∵AE =BF ,AE =2,∴BF =2.在Rt △EBF 中,∠EBF =90°,∴根据勾股定理得:EF 2=EB 2+BF 2.∵EB =4,BF =2,∴EF∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DEEF. ∵EF=∴DE=2. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EBED,即GE •ED =AE •EB ,∴GE =8,即GE,则GD =GE +ED∴11192252S GD DF GD DE =⨯⨯=⨯⨯==.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.8.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【答案】(1) B(,2).(2)证明见解析.【解析】试题分析:(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可试题解析:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.9.在平面直角坐标系中,已知点A(2,0),点B(0,),点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【答案】(Ⅰ)α=60°,B'(3,);(Ⅱ)见解析;(Ⅲ)点P纵坐标的最小值为﹣2.【解析】【分析】(Ⅰ)作辅助线,先根据点A(2,0),点B(0,),确定∠ABO=30°,证明△AOA'是等边三角形,得旋转角α=60°,证明△COB'是30°的直角三角形,可得B'的坐标;(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A=(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【详解】解:(Ⅰ)如图1,过B'作B'C⊥x轴于C,∵OA=2,OB=2,∠AOB=90°,∴∠ABO=30°,∠BAO=60°,由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°,∵OB=OB'=2,∠COB'=90°﹣60°=30°,∴B'C =OB’=,∴OC=3,∴B'(3,),(Ⅱ)证明:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为-2.理由是:如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,2),∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.【点睛】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP 为半径的圆.10..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A重合),⊙D与AB相切,切点为E,⊙D交射线..BC于..DC于点F,过F作FG⊥EF交直线点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 3r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理得:(3r)2+9=36,解得:3(3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==- ②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2, 即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.11.如图,⊙O 是△ABC 的外接圆,AB 是直径,过点O 作OD ⊥CB ,垂足为点D ,延长DO 交⊙O 于点E ,过点E 作PE ⊥AB ,垂足为点P ,作射线DP 交CA 的延长线于F 点,连接EF ,(1)求证:OD=OP;(2)求证:FE是⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(2)证明△POE≌△ADO可得DO=EO;(3)连接AE,BE,证出△APE≌△AFE即可得出结论.试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BODOE=OB∴△OPE≌△ODB∴OD="OP"(2)连接EA,EB∴∠1=∠EBC∵AB是直径∴∠AEB=∠C=90°∴∠2+∠3=90°∵∠3=∠DEB∵∠BDE=90°∴∠EBC+∠DEB=90°∴∠2=∠EBC=∠1∵∠C=90°∠BDE=90°∴CF∥OE∴∠ODP=∠AFP∵OD=OP∴∠ODP=∠OPD∵∠OPD=∠APF∴∠AFP=∠APF∴AF=AP 又AE=AE∴△APE≌△AFE∴∠AFE=∠APE=90°∴∠FED=90°∴FE是⊙O的切线考点:切线的判定.12.如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A在原点的左上方,且tan∠AOB=3,点C为OB的中点,点D在数轴上对应的数为4.(1)S扇形AOB=(大于半圆的扇形);(2)点P是优弧AB上任意一点,则∠PDB的最大值为°(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②当PD∥AO时,求AD2的值;③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.【答案】(1)103π(2)30(3)①AD=2PC②20+83或20+83③1≤d≤3【解析】【分析】(1)利用扇形的面积公式计算即可.(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.解直角三角形即可解决问题.(3)①结论:AD=2PC.如图2中,连接AB,AC.证明△COP∽△AOD,即可解决问题.②分两种情形:如图3中,当PD∥OA时,设OD交⊙O于K,连接PK交OC于H.求出PC即可.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得.③判断出PC的取值范围即可解决问题.【详解】(1)∵tan∠AOB=3,∴∠AOB=60°,∴S扇形AOB=23002103603ππ⋅⋅=(大于半圆的扇形),(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.∵PD是⊙O的切线,∴OP⊥PD,∴∠OPD =90°, ∵21sin 42OP PDO OD ∠=== ∴∠PDB =30°, 同法当DP ′与⊙O 相切时,∠BDP ′=30°,∴∠PDB 的最大值为30°.故答案为30.(3)①结论:AD =2PC .理由:如图2中,连接AB ,AC .∵OA =OB ,∠AOB =60°,∴△AOB 是等边三角形,∵BC =OC ,∴AC ⊥OB ,∵∠AOC =∠DOP =60°,∴∠COP =∠AOD ,∵2AO OD OC OP==, ∴△COP ∽△AOD , ∴2AD AO PC OC==, ∴AD =2PC . ②如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .∵OP =OK ,∠POK =60°,∴△OPK 是等边三角形,∵PD∥OA,∴∠AOP=∠OPD=90°,∴∠POH+∠AOC=90°,∵∠AOC=60°,∴∠POH=30°,∴PH=12OP=1,OH=3PH=3,∴PC=2222PH CH1(13)523+=++=+,∵AD=2PC,∴AD2=4(5+23)=20+83.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得:PC2=12+(3﹣1)2=5﹣23,AD2=4PC2=20﹣83.③由题意1≤PC≤3,∴在旋转过程中,点C到PD所在直线的距离d的取值范围为1≤d≤3.【点睛】本题属于圆综合题,考查了切线的性质,相似三角形的判定和性质,旋转变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.如图,已知AB是⊙O的直径,BC是弦,弦BD平分∠ABC交AC于F,弦DE⊥AB于H,交AC于G.①求证:AG=GD;②当∠ABC满足什么条件时,△DFG是等边三角形?③若AB=10,sin∠ABD=35,求BC的长.【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;(3)BC 的长为145. 【解析】【分析】 (1)首先连接AD ,由DE ⊥AB ,AB 是O e 的直径,根据垂径定理,即可得到¶¶AD AE =,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE =∠ABD ,又由弦BD 平分∠ABC ,可得∠DBC =∠ABD ,根据等角对等边的性质,即可证得AG=GD ;(2)当∠ABC=60°时,△DFG 是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan ∠ABD 34=,cos ∠ABD =45,再求出DF 、BF ,然后即可求出BC.【详解】(1)证明:连接AD ,∵DE ⊥AB ,AB 是⊙O 的直径,∴¶¶AD AE =,∴∠ADE =∠ABD ,∵弦BD 平分∠ABC ,∴∠DBC =∠ABD ,∵∠DBC =∠DAC ,∴∠ADE =∠DAC ,∴AG =GD ;(2)解:当∠ABC =60°时,△DFG 是等边三角形.理由:∵弦BD 平分∠ABC ,∴∠DBC =∠ABD =30°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB =90°﹣∠ABC =30°,∴∠DFG =∠FAB+∠DBA =60°,∵DE ⊥AB ,∴∠DGF =∠AGH =90°﹣∠CAB =60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD8,∴tan ∠ABD =34AD BD ,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145. ∴BC 的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.14.如图,AB 是半圆⊙O 的直径,点C 是半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接FA ,FC ,若∠AFC =2∠BAC ,求证:FA ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接FA ,FG ,FG 与AC 相交于点P ,且AF =FG .①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE =BD ,∠GOE =90°,⊙O 的半径为2,求EP 的长.【答案】(1)见解析;(2)①结论:∠GFA =2∠ABC .理由见解析;②PE 3. 【解析】【分析】 (1)证明∠OFA =∠BAC ,由∠EAO +∠EOA =90°,推出∠OFA +∠AOE =90°,推出∠FAO =90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为»»=,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.AG AG②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵»»AG AG=,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB =90°,∵CD ⊥AB ,∴∠ABC +∠BCA =90°,∵∠BCD +∠ACD =90°,∴∠ABC =∠ACG ,∴∠GFA =2∠ABC .②如图2﹣1中,连接AG ,作FH ⊥AG 于H .∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=,∴1342333PE,∴PE=36.【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=12AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.【答案】(1)26;(2)①证明见解析;②33﹣3.【解析】试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.试题解析:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===;(2)①如图3,连接OD,交CB于点F,连接BD,∵,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.考点:圆的综合题。
中考数学《圆的综合题》专项练习题及答案
中考数学《圆的综合题》专项练习题及答案一、单选题1.如图,在一块正三角形飞镖游戏板上画一个正六边形(图中阴影部分),假设飞镖投中游戏板上的每一点是等可能的(若投中边界或没有投中游戏板,则重投1次),任意投掷飞镖1次,则飞镖投中阴影部分的概率为()A.13B.49C.12D.232.如图,AB为⊙O的直径,弦DC垂直AB于点E,⊙DCB=30°,EB=3,则弦AC的长度为()A.3 √3B.4√3C.5√3D.6√33.如图,AB是⊙O的弦,半径OC⊙AB于点D,且AB=6cm,OD=4cm。
则DC的长为()A.cm B.1cm C.2cm D.5cm4.如图,四边形ABCD内接于⊙ O,AB为⊙ O的直径,∠ABD=20∘,则∠BCD的度数是()A.90°B.100°C.110°D.120°5.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则⊙ABD=()A.⊙ACD B.⊙ADB C.⊙AED D.⊙ACB6.如图,在⊙O中,弦AB⊙CD,若⊙ABC=40°,则⊙BOD=()A.20°B.40°C.50°D.80°7.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个8.已知如图,PA、PB切⊙O于A,B,MN切⊙O于C,交PB于N;若PA=7.5cm,则⊙PMN的周长是()A.7.5cm B.10cm C.15cm D.12.5cm9.若小李同学掷出的铅球在场地航砸出一个直径为10厘米,深2厘米的小坑,则该铅球的直径为()A.20厘米B.19.5厘米C.14.5厘米D.10厘米10.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形(阴影部分)围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.5√3cm C.8cm D.3√5cm11.如图,△ABC内接于⊙O,∠B=65o,∠C=70o,若BC=2√2,则弧BC长为()A.πB.√2πC.2πD.√2π12.如下图,点B,C,D在⊙O上,若⊙BCD=130°,则⊙BOD的度数是()A.96°B.98°C.102°D.100°二、填空题13.如图,在扇形AOB中,OA=4,⊙AOB=90°,点P是弧AB上的动点,连接OP,点C是线段OP的中点,连接BC并延长交OA于点D,则图中阴影部分面积最小值为.14.如图,在边长为√2的正方形ABCD中,分别以四个顶点为圆心,以边长为半径画弧,分别与正方形的边和对角线相交,则图中阴影部分的面积为(结果保留π).15.如图,⊙ABC的顶点A,B,C均在⊙O上,若⊙ABC+⊙AOC=90°,则⊙AOC的大小是.16.如图:⊙O为⊙ABC的内切圆,⊙C=90°,AO的延长线交BC于点D,AC=4,CD=1,则⊙O的半径为.17.如图,在正八边形ABCDEFGH中,AC、GC是两条对角线,则tan⊙ACG=.18.如图,菱形ABCD中,已知AB=2,∠DAB=60°将它绕着点A逆时针旋转得到菱形ADEF,使AB与AD重合,则点C运动的路线CE⌢的长为.三、综合题19.如图,AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点,连结AC.求证:(1)⊙P=⊙BAC(2)直线CD是⊙O的切线.20.如图,以△ABC的边AB为直径的⊙O交AC于点F,点E是BF⌢的中点,连接BE并延长交AC于点D,若∠CBD=12∠CAB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,cos∠BAC=25,求CD的长.21.如图,⊙O是⊙ABC的外接圆,AC是O的直径,BD=BA=12,BC=5,BE⊙DC,交D的延长线于点E,BD交直径AC于点F.(1)求证:⊙BCA=⊙BAD.(2)求证:BE是⊙O的切线.(3)若BD平分⊙ABC,交⊙O于点D,求AD的长.22.如图,⊙OAB中,OA=OB=10cm,⊙AOB=80°,以点O为圆心,半径为6cm的优弧弧MN分别交OA,OB于点M,N.(1)点P在右半弧上(⊙BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求A T的长.23.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.⌢的中点,CE⊥AB于点E,BD交CE于点F.24.如图,AB是⊙O的直径,C是BD(1)求证:CF=BF;(2)若CD﹦5,AC﹦12,求⊙O的半径和CE的长.参考答案1.【答案】D2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】B8.【答案】C9.【答案】C10.【答案】D11.【答案】A12.【答案】D13.【答案】4π−8√3314.【答案】4-π15.【答案】60°16.【答案】0.817.【答案】118.【答案】2√33π19.【答案】(1)解:证明:∵AB是⊙O的直径∴⊙ACB=90°∴⊙ACP=90°∴⊙P+⊙CAP=90°∵AP⊙O是切线∴⊙BAP=90°即⊙CAP+⊙BAC=90°∴⊙P=⊙BAC;(2)解:∵CD是Rt⊙PAC斜边PA的中线∴CD=AD∴⊙DCA=⊙DAC连接OC∵OC=OA∴⊙OCA=⊙OAC∴⊙DCO=⊙DAO=90°∴CD是⊙O的切线.20.【答案】(1)证明:连接AE,如图所示:∵AB是⊙O的直径∴∠AEB=90°∴∠BAE+∠ABE=90°.∵点E为弧BF的中点∴EF⌢=EB⌢∴∠BAE=∠DAE=12∠CAB.又∵∠CBD=12∠CAB∴∠BAE=∠CBD∴∠CBD+∠ABE=90°∴AB⊥CB∴BC是⊙O的切线.(2)解:∵∠BAE=∠DAE,∠AED=∠AEB=90°∴∠ADE=∠ABE∴AD=AB=2×2=4.∵cos∠BAC=2 5∴在Rt△ABC中即4AC=25,得AC=10∴CD=AC−AD=10−4=6.21.【答案】(1)证明:∵BD=BA ∴∠BDA=∠BAD.∵∠BCA=∠BDA∴∠BCA=∠BAD.(2)证明:连结OB,如图∵∠BCA=∠BAD又∵∠BCE=∠BAD∴∠BCA=∠BCE∵OB=OC∴∠BCO=∠CBO∴∠BCE=∠CBO∴OB//ED.∵BE⊥ED∴EB⊥BO.∴BE是⊙O的切线.(3)解:∵AC是⊙O的直径∴∠ABC=90°∴AC=√AB2+BC2=√122+52=13.∵∠BDE=∠CAB∴△BED∽△CBA∴BDAC=DEAB,即1213=DE12∴DE=14413∴BE=√BD2−DE2=6013∴CE=√BC2−BE2=2513∴CD=DE−CE=119 13∵BD平分⊙ABC ∴∠CBD=∠ABD∴AD=CD=119 13.22.【答案】(1)证明:∵⊙AOB=⊙POP′=80°∴⊙AOB+⊙BOP=⊙POP′+⊙BOP即⊙AOP=⊙BOP′在⊙AOP 与⊙BOP′中 OA=OB ⊙AOP=⊙BOP OP=OP′∴⊙AOP⊙⊙BOP′ ∴AP=BP′(2)解:∵A T 与弧相切,连结OT .∴OT⊙A T在Rt⊙AOT 中,根据勾股定理得,A T= √OA 2−OT 2 ∵OA=10,OT=6 ∴AT=823.【答案】(1)1 (2)1424.【答案】(1)证明:∵AB 是 ⊙O 的直径∴∠ACB =90° ∴∠A +∠ABC =90° 又∵CE ⊥AB ∴∠CEB =90° ∴∠BCE +∠ABC =90° ∴∠BCE =∠A∵C 是 BD ⌢ 的中点 ∴CD⌢=CB ⌢ ∴∠DBC =∠A ∴∠DBC =∠BCE ∴CF =BF(2)解:∵CD⌢=CB ⌢,CD =5 ∴∠DBC =∠BDC∴BC=CD=5∵∠ACB=90°∴AB=√AC2+BC2=√122+52=13∴AO=6.5∵∠BCE=∠A,∠ACB=∠CEB=90°∴△CEB⊙ △ACB∴CE=AC⋅BCAB=12×513=6013故⊙O的半径为6.5,CE的长是6013.第11页共11。
九年级数学《圆》综合提高题
四、解答题(题型注释)1.已知:⊙O是△ABC的外接圆,点M为⊙O上一点.(1)如图,若△ABC为等边三角形,BM=1,CM=2,求AM的长;小明在解决这个问题时采用的方法是:延长MC到E,使ME=AM,从而可证△AME为等边三角形,并且△ABM≌△ACE,进而就可求出线段AM的长.请你借鉴小明的方法写出AM的长,并写出推理过程.(2)若△ABC为等腰直角三角形,∠BAC=90︒,BM a=,CM b=(其中b a>),直接写出AM的长(用含有a,b的代数式表示).2.如图,AB为⊙O的直径,CD是弦,且AB CD于点E.连接AC、OC、BC。
(1)求证:ACO=BCD.(2)若EB=18cm,CD=,求⊙O的半径.3.(本题满分7分)已知:如图,ABC∆内接于⊙O,点D在OC的延长线上,30B CAD∠=∠=.⊥∠∠24cm(1)求证:AD 是⊙O 的切线;(2)若OD AB ⊥,4BC =,求AD 的长.4.在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?5.(12分)如图,圈O 1与圈O 2相交于A 、B 两点,若AB=O 1A=4,O 2A=.求:(1)∠O 1AO 2的度数;(2)O 1与O 2之间的距离.6.)以原点为圆心,cm 1为半径的圆分别交x 、y 轴的正半轴于A 、B 两点,点P 的坐标为)0,2(.(1)如图一,动点Q 从点B 处出发,沿圆周按顺时针方向匀速运动一周,设经过的时间为t 秒,当1=t 时,直线PQ 恰好与⊙O 第一次相切,连接OQ.求此时点Q 的运动速度(结果保留π);(2)若点Q 按照⑴中的方向和速度继续运动,①当t 为何值时,以O 、P 、Q 为顶点的三角形是直角三角形;②在①的条件下,如果直线PQ 与⊙O 相交,请求出直线PQ 被⊙O 所截的弦长.7.(本题满分10分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,60BAD ∠=,点A 的坐标为(-2,0).(1)求C 点的坐标;(2)求直线AC 的函数关系式;(3)动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?。
2023年中考九年级数学高频考点提升练习--圆的综合(含答案)
2023年中考九年级数学高频考点提升练习--圆的综合1.如图,AB是⊙O的直径,点C为⊙O上一点,OE⊥BC于点H,交⊙O于点E,点D为OE的延长线上一点,DC的延长线与BA的延长线交于点F﹐且∠BOD=∠BCD,连结BD、AC、CE.(1)求证:DF为⊙O的切线;(2)过E作EG⊥FD于点G,求证:△CHE≌△CGE;(3)如果AF=1,sin∠FCA=√33,求EG的长.2.如图,在平面直角坐标系中,直线y=−12x+2与x轴交于点A,与y轴交于点B,抛物线y=−23x 2+bx+c过点B且与直线相交于另一点C(52,34).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0) (0<n<52)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?3.综合与探究如图,抛物线y=−x2+bx+c经过A(−1,0),D(3,4)两点,直线AD与y 轴交于点Q.点P(m,n)是直线AD上方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,并且交直线AD于点E.(1)请直接写出抛物线与直线AD的函数关系表达式;(2)当CP//AD时,求出点P的坐标;(3)是否存在点P,∠CPE=∠QFE?若存在,求出m的值;若不存在,请说明理由.4.如图,在梯形ABCD中,AD⊙BC,⊙B=90°,BC=6,AD=3,⊙DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动,已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边⊙EFG,设E点移动距离为x(x>0).(1)⊙EFG的边长是(用含有x的代数式表示),当x=2时,点G的位置在;(2)若⊙EFG与梯形ABCD重叠部分面积是y,求y与x之间的函数关系式;(3)探究(2)中得到的函数y在x取何值时,存在最大值?并求出最大值.5.如图,抛物线y=−34x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3),点M(m,0)为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.(1)求抛物线的解析式,并写出此抛物线的对称轴;(2)如果以点P、N、B、O为顶点的四边形为平行四边形,求m的值;(3)若△BPN与△OPM面积相等,直接写出点M的坐标.6.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时,﹣12)⊙O的“完①点M( 32,0)⊙O的“完美点”,点(﹣√32美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.7.平面直角坐标系xOy中有点P和某一函数图象M,过点P作x轴的垂线,交图象M 于点Q ,设点P ,Q 的纵坐标分别为 y P , y Q .如果 y P >y Q ,那么称点P 为图象M 的上位点;如果 y P =y Q ,那么称点P 为图象M 的图上点;如果 y P <y Q ,那么称点P 为图象M 的下位点. (1)已知抛物线 y =x 2−2 .① 在点A (-1,0),B (0,-2),C (2,3)中,是抛物线的上位点的是 ;② 如果点D 是直线 y =x 的图上点,且为抛物线的上位点,求点D 的横坐标 x D 的取值范围;(2)将直线 y =x +3 在直线 y =3 下方的部分沿直线 y =3 翻折,直线 y =x +3 的其余部分保持不变,得到一个新的图象,记作图象G .⊙H 的圆心H 在x 轴上,半径为 1 .如果在图象G 和⊙H 上分别存在点E 和点F ,使得线段EF 上同时存在图象G 的上位点,图上点和下位点,求圆心H 的横坐标 x H 的取值范围.8.在平面直角坐标系xOy 中,⊙O 的半径为1,点A 在⊙O 上,点P 在⊙O 内,给出如下定义:连接AP 并延长交⊙O 于点B ,若AP =kAB ,则称点P 是点A 关于⊙O 的k 倍特征点.(1)如图,点A 的坐标为(1,0).①若点P 的坐标为(−12,0),则点P 是点A 关于⊙O 的 ▲倍特征点;②在C 1(0,12),C 2(12,0),C 3(12,−12)这三个点中,点 ▲是点A 关于⊙O 的12倍特征点; ③直线l 经过点A ,与y 轴交于点D ,∠DAO =60°.点E 在直线l 上,且点E 是点A 关于⊙O 的12倍特征点,求点E 的坐标;(2)若当k取某个值时,对于函数y=−x+1(0<x<1)的图象上任意一点M,在⊙O上都存在点N,使得点M是点N关于⊙O的k倍特征点,直接写出k的最大值和最小值.9.如图,已知抛物线y=x2+bx-3c经过点A(1,0)和点B(0,-3),与x 轴交于另一点C .(1)求抛物线的解析式;(2)若点P 是抛物线上的动点,点Q 是抛物线对称轴上的动点,是否存在这样的点P ,使以点A、C、P、Q 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,在⊙ABC中,⊙ACB =90°,AB=10,AC=8,CD是边AB的中线.动点P 从点C出发,以每秒5个单位长度的速度沿折线CD-DB向终点B运动.过点P作PQ⊙AC于点Q,以PQ为边作矩形PQMN,使点C、N始终在PQ的异侧,且PN= 2.设矩形PQMN与⊙ACD重叠部分图形的面积是S,点P的运动时间为t(s)3PQ(t>0).(1)当点P在边CD上时,用含t的代数式表示PQ的长.(2)当点N落在边AD上时,求t的值.(3)当点P在CD上时,求S与t之间的函数关系式.(4)连结DQ,当直线DQ将矩形PQMN分成面积比为1:2的两部分时,直接写出t的值.11.如图1,在平面直角坐标系中,抛物线y= √36x2﹣114x+3 √3与x轴交于点A、B两点(点A在点B的左侧),与y轴交于点C,过点C作CD⊙x轴,且交抛物线于点D,连接AD,交y轴于点E,连接AC.(1)求S⊙ABD的值;(2)如图2,若点P是直线AD下方抛物线上一动点,过点P作PF⊙y轴交直线AD于点F,作PG⊙AC交直线AD于点G,当⊙PGF的周长最大时,在线段DE上取一点Q,当PQ+ 35QE的值最小时,求此时PQ+35QE的值;(3)如图3,M是BC的中点,以CM为斜边作直角⊙CMN,使CN⊙x轴,MN⊙y 轴,将⊙CMN沿射线CB平移,记平移后的三角形为⊙C′M′N′,当点N′落在x轴上即停止运动,将此时的⊙C′M′N′绕点C′逆时针旋转(旋转度数不超过180°),旋转过程中直线M′N′与直线CA交于点S,与y轴交于点T,与x轴交于点W,请问⊙CST是否能为等腰三角形?若能,请求出所有符合条件的WN′的长度;若不能,请说明理由.12.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=12x2−32x−2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若⊙DPQ与⊙ABC相似,求其“共根抛物线”L2的顶点P的坐标.13.如图,已知抛物线与x轴交于A(−1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x 轴于点F,交BC于点E,过点D作DM⊥BC,垂足为M.求线段DM的最大值;(3)已知P为抛物线对称轴上一动点,若△PBC是直角三角形,求出点P的坐标.14.如图,D是⊙ABC的BC边上一点,连接AD,作⊙ABD的外接圆,将⊙ADC沿直线AD折叠,点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)填空:①当⊙CAB=90°,cos⊙ADB=13,BE=2时,边BC的长为.②当⊙BAE=时,四边形AOED是菱形.15.如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x轴正半轴上一点,连结AB,过点A作AC⊙AB,交x轴于点C,点D是点C关于点A的对称点,连结BD,以AD为直径作⊙Q交BD于点E,连结AE并延长交x轴于点F,连结DF.(1)求线段AE的长;(2)若AB﹣BO=2,求tan⊙AFC的值;(3)若⊙DEF与⊙AEB相似,求BEDE的值.16.如图,已知AB为⊙O的直径,C为⊙O上一点,BG与⊙O相切于点B,交AC的延长线于点D(点D在线段BG上),AC = 8,tan⊙BDC = 4 3(1)求⊙O的直径;(2)当DG= 52时,过G作GE//AD,交BA的延长线于点E,说明EG与⊙O相切.答案解析部分1.【答案】(1)证明:如图,连结OC ,∵OE⊙BC , ∴⊙OHB=90°, ∴⊙OBH+⊙BOD=90°, ∵OB=OC , ∴⊙OBH=⊙OCB , ∵⊙BOD=⊙BCD , ∴⊙BCD+⊙OCB=90°, ∴OC⊙CD ,∵点C 为⊙O 上一点, ∴DF 为⊙O 的切线(2)证明:∵⊙OCD=90°, ∴⊙ECG+⊙OCE=90°, ∵OC=OE , ∴⊙OCE=⊙OEC , ∴⊙ECG+⊙OEC=90°, ∵⊙OEC+⊙HCE=90°, ∴⊙ECG=⊙HCE , 在⊙CHE 和⊙CGE 中, {∠CHE =∠CGE =90°∠ECG =∠HCE CE =CE,∴⊙CHE⊙⊙CGE (AAS ) (3)解:∵AB 是⊙O 的直径,∴⊙ACB=90°, ∴⊙ABC+⊙BAC=90°, ∵DF 为⊙O 的切线, ∴⊙OCA+⊙FCA=90°, ∵OA=OC , ∴⊙OAC=⊙OCA , ∴⊙FCA=⊙ABC ,∴sin∠ABC =sin∠FCA =√33,设AC= √3a ,则AB=3a ,∴BC =√AB 2−AC 2=√(3a)2−(√3a)2=√6a , ∵⊙FCA=⊙ABC ,⊙AFC=⊙CFB , ∴⊙ACF⊙⊙CFB ,∴AF CF =CF BF =AC BC =1√2,∵AF=1, ∴CF= √2 , ∴BF =(√2)21=2 ,∴BF-AF=AB=1,∴OC =12,BC =√63,∵OE⊙BC ,∴CH =12BC =√66,∴OH =√OC 2−CH 2=(12)2−(√66)2=√36,∴HE=OE-OH= 12−√36,∵⊙CHE⊙⊙CGE ,∴EG=HE= 12−√36.2.【答案】(1)解:∵直线 y =−12x +2 与x 轴交于点A ,与y 轴交于点B ,令x=0,则y=2,令y=0,则x=4, ∴A (4,0),B (0,2),∵抛物线 y =−23x 2+bx +c 经过B (0,2), C(52,34) ,∴{2=c 34=−23×254+52b +c ,解得: {b =76c =2 , ∴抛物线的表达式为: y =−23x 2+76x +2 ; (2)解:当点P 在x 轴上方时,点P 与点C 重合,满足 ∠PAO =∠BAO , ∵C(52,34) ,∴P(52,34) ,当点P 在x 轴下方时,如图,AP 与y 轴交于点Q ,∵∠PAO =∠BAO ,∴B ,Q 关于x 轴对称,∴Q (0,-2),又A (4,0),设直线AQ 的表达式为y=px+q ,代入,{−2=q0=4p +q ,解得: {p =12q =−2 ,∴直线AQ 的表达式为: y =12x −2 ,联立得:{y =12x −2y =−23x 2+76x +2,解得:x=3或-2,∴点P 的坐标为(3, −12 )或(-2,-3),综上,当 ∠PAO =∠BAO 时,点P 的坐标为: (52,34) 或(3,−12 )或(-2,-3); (3)解:①如图,⊙MNC=90°,过点C 作CD⊙x 轴于点D ,∴⊙MNO+⊙CND=90°,∵⊙OMN+⊙MNO=90°,∴⊙CND=⊙OMN,又⊙MON=⊙CDN=90°,∴⊙MNO⊙⊙NCD ,∴MO ND =NO CD ,即 m 52−n =n 34 , 整理得: m =−43n 2+103n ; ②如图,∵⊙MNC=90°,以MC 为直径画圆E ,∵N(n,0) (0<n <52) , ∴点N 在线段OD 上(不含O 和D ),即圆E 与线段OD 有两个交点(不含O 和D ), ∵点M 在y 轴正半轴,当圆E 与线段OD 相切时,有NE= 12 MC ,即NE 2= 14MC 2, ∵M (0,m ), C(52,34) , ∴E ( 54, 38+m 2 ), ∴(38+m 2)2 = 14[(52)2+(m −34)2] , 解得:m= 2512, 当点M 与点O 重合时,如图,此时圆E 与线段OD (不含O 和D )有一个交点,∴当0<m < 2512时,圆E 与线段OD 有两个交点, 故m 的取值范围是:0<m < 2512. 3.【答案】(1)解:∵抛物线 y =−x 2+bx +c 经过 A(−1,0) , D(3,4) 两点,∴{−(−1)2+b ×(−1)+c =0−32+b ×3+c =4,解之得: {b =3c =4 ∴抛物线的函数关系表达式为 y =−x 2+3x +4 ,设直线 AD 的函数关系表达式为 y =kx +b ,∵直线 AD 经过 A(−1,0) , D(3,4) 两点,∴{k ×(−1)+b =0k ×3+b =4,解之得: {k =1b =1 ∴直线 AD 的函数关系表达式为 y =x +1 .(2)解:把 x =0 代入 y =−x 2+3x +4 ,得 y =4 .∴点 C 坐标是(0,4),∵CP//AD∴k CP =k AD =1 ,设直线 CP 的函数关系表达式为 y =x +b ,∵将点 C (0,4),代入 y =x +b 得: b =4 ,∴直线 CP 的函数关系表达式为 y =x +4 ,∵直线 CP 与抛物线 y =−x 2+3x +4 相交于 P ,则有: x +4=−x 2+3x +4 ,解之得: x 1=0 , x 2=2 ,把 x =2 代入 y =x +4 ,得 y =6 ,∴点P 的坐标是(2,6).(3)解:存在点 P ,使得 ∠CPE =∠QFE .过点 C 作 CG ⊥PF ,垂足为 G .过点 Q 作 QH ⊥PF ,垂足为 H .则四边形CGHQ为矩形.∴CG=QH,∠CGP=∠QHF=90°.∴当PG=HF时,△CGP≌△QHF,这时∠CPG=∠QFH,即∠CPE=∠QFE.设P(m,−m2+3m+4),则PG=−m2+3m+4−4=−m2+3m.∵HF=QO=1.∴−m2+3m=1,解得m=3+√52或m=3−√52.4.【答案】(1)x;D(2)解:①当0<x≤2时,⊙EFG在梯形ABCD内部,所以y= √34x2;②分两种情况:⊙.当2<x<3时,如图1,点E、点F在线段BC上,⊙EFG与梯形ABCD重叠部分为四边形EFNM,∵⊙FNC=⊙FCN=30°,∴FN=FC=6﹣2x.∴GN=3x﹣6.∵在Rt⊙NMG中,⊙G=60°,GN=3x﹣6,∴GM= 12(3x﹣6),由勾股定理得:MN= √32(3x﹣6),∴S⊙GMN= 12×GM×MN= 12× 12(3x﹣6)× √32(3x﹣6)= √38(3x﹣6)2,所以,此时y= √34x2﹣√38(3x﹣6)2=﹣7√38x2+9√32x−9√32;⊙.当3≤x≤6时,如图2,点E在线段BC上,点F在射线CH上,⊙EFG与梯形ABCD重叠部分为⊙ECP,∵EC=6﹣x,∴y= √38(6﹣x)2= √38x2﹣3√32x+ 9√32,⊙.当x>6时,点E,F都在线段BC的延长线上,没公共部分,∴y=0(3)解:当0<x≤2时,∵y= √34x2,在x>0时,y随x增大而增大,∴x=2时,y最大= √3;当2<x<3时,∵y=﹣9√37x 2+9√32x−9√32在x= 187时,y最大= 9√37;当3≤x≤6时,∵y= √38x−3√32x+9√32,在x<6时,y随x增大而减小,∴x=3时,y最大= 9√38.综上所述:当x= 187时,y最大=9√37.5.【答案】(1)解:∵抛物线y=−34x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3),∴{−34×16+4 b+c=0c=3,解得{b=94c=3,∴抛物线y=−34x 2+94x+3=−34(x−32)2+7516;∴抛物线的对称轴为直线x=32(2)解:设直线A(4,0),B(0,3)的解析式为y=ax+d,∴{4a+d=0d=3,解得{a=−34 d=3,∴直线AB的表达式为:y=−34x+3;∵点M(m,0)为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴PN//y轴,即PN//OB,且点N在点P上方,若以点P、N、B、O为顶点的四边形为平行四边形,则只需要PN=OB,∴−34m2+94m+3−(−34m+3)=3,解得m=2;即当m=2时,以点P、N、B、O为顶点的四边形为平行四边形.(3)解:M(1,0)6.【答案】(1)不是;是;解:如图1,根据题意,|PA−PB|=2,∴|OP+2−(2−OP)|=2,∴OP=1. 若点P在第一象限内,作PQ⊙x轴于点Q,∵点P在直线y=34x上,OP=1,∴OQ=45,PQ=3 5 .∴P( 45,35). 若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35). 综上所述,PO的长为1,点P的坐标为( 45,35)或(−45,−35)).(2)解:对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C 移动到与y 轴相切且切点在点D 的上方时,t 的值最大.设切点为E ,连接CE ,∵⊙C 的圆心在直线y =﹣2x+1上,∴此直线和y 轴,x 轴的交点D(0,1),F( 12,0), ∴OF = 12,OD =1, ∵CE⊙OF ,∴⊙DOF⊙⊙DEC ,∴OD DE =OF CE, ∴1DE =12, ∴DE =2,∴OE =3,t 的最大值为3,当⊙C 移动到与y 轴相切且切点在点D 的下方时,t 的值最小.同理可得t 的最小值为﹣1.综上所述,t 的取值范围为﹣1≤t≤3.7.【答案】(1)解:① A ,C ②∵点D 是直线 y =x 的图上点,∴点D 在 y =x 上. 又∵点D 是 y =x 2−2 的上位点, ∴点D 在 y =x 与y =x 2−2 的交点R ,S 之间运动. ∵{y =x 2−2,y =x.∴{x 1=−1,y 1=−1. {x 2=2,y 2=2.∴点R( −1 , −1 ),S( 2 , 2 ). ∴−1<x D <2 .(2)解:如图,当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求.将y=x+3沿直线y=3翻折后的直线的解析式为y=−x+3当y=x+3=0时,x=−3,∴A(-3,0),OA=3当x=0时,y=x+3=3∴C(0,3),OC=3∴OA=OC∵∠AOC=90°∴∠CAO=45°∴AH1=rsin45°=1√22=√2∵A(-3,0)∴x H1=−3+√2同理可得x H2=3−√2∴线段EF上同时存在图象G的上位点,图上点和下位点,圆心H的横坐标x H的取值范围为x H>3−√2或x H<−3+√2.8.【答案】(1)解:①34②C3③如图所示,设直线AD交圆O于B,连接OE,过点E作EF⊙x轴于F,∵点E 是点A 关于⊙O 的12倍的特征点, ∴AE AB =12, ∴E 是AB 的中点,∴OE⊙AB ,∵⊙EAO=60°,∴⊙EOA=30°,∴AE =12OA =12,EF =12OE , ∴OE =√OA 2−AE 2=√32, ∴EF =√34, ∴OF =√OE 2−EF 2=34, ∴点E 的坐标为(34,√34); (2)k 的最小值为2−√24,k 有最大值为2+√249.【答案】(1)解:把A (1,0),B (0,-3)代入 y=x 2+bx-3c ,得 {1+b −3c =0−3c =−3解得 {b =2c =1∴抛物线的解析式为y=x 2+2x-3;(2)解:对于y=x 2+2x-3,∵x =−b 2a=−1 ,A(1,0)∴C 点坐标为(-3,0),AC=4,Q点的横坐标为-1.如图所示:若以点A、C、P、Q 为顶点的平行四边形以AC为边,则PQ=AC=4.①当P点的横坐标为x1=-1-4=-5时,y1=x2+2x−3=25−10−3=12,即P1(-5,12)②当P点的横坐标为x2=-1+4=3时,y2=x2+2x−3=9+6−3=12,即P2(3,12);若以点A、C、P、Q为顶点的平行四边形以AC为对角线,则设P3的横坐标为x3,则有x3−12=−3+12,解得x3=-1,y3=x2+2x−3=1−2−3=−4,即P3(-1,-4)。
圆综合测试题(含详细解析及答案)
《圆》的综合测试题学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )A .2cmB .1.5cmC .cmD .1cm2.已知⊙1O 的半径为5cm ,⊙2O 的半径为3cm ,两圆的圆心距为7cm ,则两圆的位置关系是( ),A 外离 ,B 外切 ,C 内切 ,D 相交3.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD∥OB,则图中休闲区(阴影部分)的面积是【 】A .91032π⎛⎫- ⎪⎝⎭米2B .932π⎛⎫- ⎪⎝⎭米2 C .9632π⎛⎫- ⎪⎝⎭米2 D .()693π-米24.如右图,圆心角∠AOB=100°,则∠ACB 的度数为( )OA BCA 、100°B 、50°C 、80°D 、45°5.如图,⊙O 是△ABC 的外接圆,已知∠ABO=30º,则∠ACB 的大小为( )A .30ºB .45ºC .50ºD .60º6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为3cm,则圆心O 到弦CD 的距离为( )A .错误!cmB .3 cmC .3错误!cmD .6cm7.圆心角为120°,弧长为12π的扇形半径为( )A .6B .9C .18D .368.⊙O 的直径AB =10cm ,弦CD ⊥AB ,垂足为P .若OP :OB =3:5,则CD 的长为( )A .6cmB .4cmC .8cmD .91cm 9.如图,在△ABC 中,∠A =90º,AB =AC =2.以BC 的中点O 为圆心的圆弧分别与AB 、AC 相切于点D 、E ,则图中阴影部分的面积是【 】A .1-4πB .4πC .1-2πD .2-2π 10.如图,PA 、PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交PA,PB 于C 、D ,若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( )A 51312.125 C 3135 D 2133二、填空题(题型注释)11.母线长为4,底面圆的半径为1的圆锥的侧面积为___________。
六年级圆的综合测试题
六年级圆的综合测试题一、选择题(每题3分,共30分)1. 圆的半径扩大3倍,它的周长就扩大()倍。
A. 3B. 6C. 9D. 12解析:圆的周长公式为公式,当半径公式扩大3倍变为公式时,新的周长公式。
公式,所以周长扩大3倍,答案是A。
2. 一个圆的直径是10厘米,这个圆的面积是()平方厘米。
A. 314B. 78.5C. 31.4D. 15.7解析:圆的面积公式为公式,已知直径公式厘米,那么半径公式厘米。
所以公式,公式取3.14时,公式平方厘米,答案是B。
3. 圆的周长总是它直径的()倍。
B. 公式C. 3D. 6.28解析:根据圆的周长公式公式,所以圆的周长总是它直径的公式倍,答案是B。
4. 一个半圆的半径是公式,它的周长是()。
A. 公式B. 公式C. 公式D. 公式解析:半圆的周长为圆周长的一半加上直径,圆的周长公式,圆周长的一半是公式,直径是公式,所以半圆的周长是公式,答案是C。
5. 在一个边长为公式厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米。
A. 50.24B. 200.96C. 64解析:在正方形内画最大的圆,这个圆的直径等于正方形的边长公式厘米,所以半径公式厘米。
圆的面积公式,公式取3.14时,公式平方厘米,答案是A。
6. 把一个圆平均分成若干份,拼成一个近似的长方形,这个长方形的长相当于圆的()。
A. 半径B. 直径C. 周长D. 周长的一半解析:把圆平均分成若干份拼成近似长方形时,长方形的长相当于圆周长的一半,宽相当于圆的半径,答案是D。
7. 一个圆的半径由公式厘米增加到公式厘米,圆的面积增加了()平方厘米。
A. 15.7B. 12.56C. 28.26D. 18.84解析:原来圆的面积公式平方厘米,后来圆的面积公式平方厘米。
面积增加了公式,公式取3.14时,公式平方厘米,答案是A。
8. 车轮滚动一周,所行的路程是求车轮的()。
A. 直径B. 周长C. 面积D. 半径解析:车轮滚动一周的路程就是车轮边缘一周的长度,也就是车轮的周长,答案是B。
2021年中考数学复习:《圆的提高题》专项练习题(含答案)
2021年中考数学复习:《圆的提高题》专项练习题1.如图,在△ABC中,∠C=90°,以AC为直径的⊙O交AB于点D,点E在BC上,且BE=DE.(1)求证:DE是⊙O的切线;(2)试判断DE与BC的数量关系,并说明理由;(3)若∠B=30°,AB=8,求阴影部分的面积(结果保留π).2.如图,已知AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE是⊙O的切线;(3)若⊙O的半径为6,∠BAC=60°,求DE的长度.3.如图1,△ABC和△ADE是有公共顶点A的两个三角形,D在线段BC上,∠DAE=90°,AD=AE.【问题发现】(1)如图2,若∠BAC=90°,AB=AC,连接CE,则BD、CE的关系是(请直接写出结果).【解决问题】(2)如图3,如果∠BAC<90,AB≠AC,∠ACB=45°,AC=2,且满足tan∠ADC =2,连接CE,求DE的长.小明经过思考发现可以构造如图3所示的图形解决问题,过点A作AF⊥AC,交CB的延长线于点F,证明△AFD≌△ACE,从而求出DE的长.请你按照小明的思路求出DE长.【拓展探究】(3)如图4,在⊙O中,BC是直径,点D为直径上方半圆上一点,DB=3,DC=9,若点A也在⊙O上,且满足AB=AC,直线AB与直线CD交于点E,请直接写出线段AE 的长.4.如图,△ABC中,AB=3,BC=4,AC=5,∠ABC的平分线交AC于点O,若⊙O与AB相切于点D.(1)判断BC与⊙O的位置关系并说明理由;(2)求⊙O的半径长.5.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD边相切于点E,BC交⊙O 于点F(AF>BF),连接AE,EF.(1)求证:∠AFE=45°;(2)求证:EF2=AFCF;(3)若⊙O的半径是,且,求AD的长.6.如图,四边形ABCD内接于⊙O,AB是直径,OD平分∠AOC,BD分别交AC,OC于点E,F.已知⊙O的半径是2.(1)求证:OD∥BC;(2)如图②,若CE=CF.①求的值;②求阴影部分面积.7.某数学活动小组在一次活动中,对一个数学问题作如下探究:【问题探究】如图1,AD,BD为⊙O的两条弦(AD<BD),点C为的中点,过C作CE⊥BD、垂足为E.求证:BE=DE+AD.小明同学的思路是:如图2.在BE上截取BF=AD,连接CA,CB,CD,CF…请你按照小明的思路完成上述问题的证明过程.【结论运用】如图3,△ABC是⊙O的内接等边三角形,点D是上一点,∠ACD=45°,连接BD,CD.过点A作AE⊥CD,垂足为E.若AB=6,求△BCD的周长.【变式探究】如图4,若将(问题探究)中“点C为的中点”改为“点C为优弧ACB 的中点”,其他条件不变,请写出BE、AD、DE之间的等量关系,并加以证明.8.如图,在△ABC中,AC=BC,∠ACB=120°,AC的垂直平分线MN交AB于点O,以O为圆心,OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,求图中阴影部分的面积.9.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,连接AC,若CA=CP,∠A=30°.(1)求证:CP是⊙O的切线;(2)若OA=2,求弦AC的长.10.如图,AB是⊙O的直径,PB,PC是⊙O的两条切线,切点分别为B,C.连接PO交⊙O于点D,交BC于点E,连接AC.(1)求证:OE=AC;(2)若点E是OD的中点,⊙O的半径为6,求PB的长.参考答案1.解:DE=BC,理由如下:连接OE,如图:由(1)得:∠ODE=∠C=90°,在Rt△ODE和Rt△OCE中,,∴Rt△ODE≌Rt△OCE(HL),∴DE=CE,∵BE=DE,∴DE=CE=BE,∴DE=BC;(3)解:∵∠C=90°,∠B=30°,AB=8,∴∠A=60°,AC=AB=4,BC=AC=12,∴∠COD=2∠A=120°,由(2)得:Rt△ODE≌Rt△OCE,CE=BC=6,∵OC=AC=2,∴阴影部分的面积=四边形ODEC的面积﹣扇形OCD的面积=2××2×6﹣=12﹣4π.2.证明:连接OD,如图:∵DE⊥AC,∴∠CED=90°,∵OA=OB,DC=BD,∴OD是△ABC的中位线,∴OD∥AC,∴∠ODE=∠CED=90°,∴DE⊥OD,又∵OD是⊙O的半径,∴DE是⊙O的切线;(3)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴BC=AB,∵⊙O的半径为6,∴AB=BC=12,∴CD=BC=6.∵∠C=60°,DE⊥AC,∴∠CDE=30°,∴CE=CD=3,DE=CE=3.3.解:(1)∵∠BAC=∠DAE=90°,AB=AC,∴∠BAD=∠CAE,∠ABC=∠ACB=45°,又∵AD=AE,AB=AC,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=45°,BD=CE,∴∠ACE+∠ACB=90°=∠BCE,∴BD⊥CE,故答案为:BD=CE,BD⊥CE;(2)如图3,过点A作AN⊥BC于N,∵AF⊥AC,∠ACB=45°,∴∠ACB=∠F=45°,∴AC=AF=2,∴CF=F A=4,∵AN⊥FC,AF⊥AC,AC=AF,∴AN=NC=FN=2,∵tan∠ADC==2,∴DN=1,∴FD=1,∵∠F AC=∠DAE=90°,∴∠F AD=∠CAE,又∵AF=AC,AD=AE,∴△F AD≌△CAE(SAS),∴∠ACE=∠F=45°,FD=CE=1,∴∠DCE=∠ACB+∠ACE=90°,∴DE===;(3)当点A与点D在BC同侧时,如图4,过点A作AF⊥CD于F,∵BC是直径,∴∠BAC=∠BDC=90°,∴BC===3,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,BC=AC,∴AB=AC=3,∵∠ADC=∠ABC=45°,AF⊥CD,∴∠ADC=∠DAF=45°,∴AF=DF,∵AC2=AF2+CF2,∴45=AF2+(9﹣AF)2,∴AF=3或AF=6(不合题意舍去),∵AF⊥CD,BD⊥CD,∴AF∥BD,∴,∴==1,∴BE=AE,∵AB=3,∴AE=BE=,当点A与点D在BC的异侧时,如图4﹣1,过点A作AF⊥CD于F,同理可求AF=6,∵AF∥BD,∴,∴,∴AE=2BE,∵AB=3,∴AE=6,综上所述:AE为或6.4.解:(1)BC与⊙O相切,理由如下:连接OD,作OE⊥BC,垂足为E,∵⊙O与AB相切于点D,∴OD⊥AB,∵BO平分∠ABC,OE⊥BC,OD⊥AB,∴OE=OD,∴BC与⊙O相切;(2)∵AB=3,BC=4,AC=5,∴AB2+BC2=AC2,∴△ABC为直角三角形,∠ABC=90°,=×3×4=6,∴S△ABC∵OD⊥AB,OE⊥BC,∴S=×3×OD+×4×OE,△ABC解得,OD=OE=,即⊙O的半径为.5.解:(1)连接OE,∵CD是圆O的切线,故OE⊥CD,而四边形ABCD是平行四边形,则AB∥CD,OE⊥AB,则∠AOE=90°,∴∠AFE=45°;(2)∵AB是圆的直径,故∠AFB=90°=∠AFC,而∠AFE=45°,故∠CFE=90﹣∠AFE=45°=∠AFE,∵CD是圆的切线,故∠CEF=∠EAF,∴△FCE∽△FEA,∴,∴EF2=AFCF;(3)∵,故设CF=2m,AF=9m,则EF2=AFCF=2m9m=18m2,解得EF=3m,在△AEF中,EF=3m,AF=9m,∠AFE=45°,过点E作EH⊥AF于点H,则EH=FH=EF=3m,AH=AF﹣HF=9m﹣3m=6m,则AE===AO=×=3,解得m=1,则FB===3,则BC=BF+CF=3+2m=3+2=5=AD,即AD=5.6.解:(1)∵OD平分∠AOC,OA=OC,∴OD⊥AC,∵AB 是直径,故∠ACB =90°,即BC ⊥AC ,∴OD ∥BC ;(2)①∵CE =CF ,∴∠CEB =∠CFD =∠BFO ,∵OD 平分∠AOC ,故,∴∠CBE =∠FBO ,∴△BFO ∽△BEC ,∴∠FOB =∠ECB =90°,, 即CO ⊥AB ,则BC =BO , 故=; ②∵∠FOB =90°=∠COA ,则∠DOA =45°,则阴影部分面积=S 扇形AOD ﹣S △AOD =×πr 2﹣×AO ×CO sin45°, =×π×4×2×2×=.7.解:【问题探究】如图2,在BE 上截取BF =AD ,连接CA ,CB ,CD ,CF , ∵点C 为的中点, ∴=,∴AC =BC ,由圆周角定理得,∠DAC =∠DBC ,在△DAC 和△FBC 中,,∴△DAC ≌△FBC (SAS )∴CD =CF ,又CE ⊥BD ,∴DE =EF ,∴BE =EF +BF =DE +AD ;【结论运用】连接AD,在CE上截取CF=AD,连接AF,由【问题探究】可知,△DAB≌△F AC,∴BD=CF,AD=AF,∵AE⊥CD,∴DE=EF,∴EC=EF+CF=DE+BD,∴DB+DC=2EC,在Rt△AEC中,∠ACE=45°,∴EC=AC=6,∴△BCD的周长=DB+DC+BC=12+6;【变式探究】BE+AD=DE,理由如下:在线段DE上截取DF=AD,连接CB、CF、CD、CA,∵点C为优弧ACB的中点,∴=,∴AC=CB,∠ADC=∠BDC,在△ADC和△FDC中,,∴△ADC≌△FDC(SAS),∴CA=CF,∵CA=CB,∴CF=CB,又CE⊥BD,∴BE=EF,∴DE=DF+EF=BE+AD.8.(1)证明:连接OC.∵MN是AC的垂直平分线,∴OC=OA.∴点C在⊙O上.∵AC=BC,∠ACB=120°,∴∠A=∠B=30°.∵OA=OC,∴∠ACO=∠A=30°.∴∠OCB=∠ACB﹣∠ACO=90°.即OC⊥BC,∴BC是⊙O的切线.(2)解:∵∠A=30°,∴∠COD=2∠A=60°.∴S==6π,扇形DOC在Rt△OCB中,BC=OC tan60°=6,∴S=﹣6π.阴影9.(1)证明:连接OC,如图1,∵OA=OC,∠A=30°,∴∠A=∠ACO=30°,∵CA=CP,∴∠A=∠P=30°,∴∠ACP=180°﹣∠A﹣∠P=180°﹣30°﹣30°=120°,∴∠OCP=∠ACP﹣∠ACO=120°﹣30°=90°,∴OC⊥CP,∴CP是⊙O的切线;(2)解:如图2,连接BC,∵OA=OB=2,∴AB=4,∵AB是⊙O的直径,∴∠ACB=90°。
2021年春九年级数学中考复习《圆综合型解答题》专项提升训练(附答案)
2021年春九年级数学中考复习《圆综合型解答题》专项提升训练(附答案)1.如图,AB和CD为⊙O的直径,AB⊥CD,点E为CD上一点,CE=CA,延长AE交⊙O 于点F,连接CF交AB于点G.(1)求证:CE2=AE•AF;(2)求证:∠ACF=3∠BAF;(3)若FG=2,求AE的长.2.如图,AB为⊙O的直径,点C为⊙O上一点,点D为AB延长线上一点,连接CD,作CE⊥AB于点E,∠OCE=∠D.(1)求证:CD是⊙O的切线;(2)点F为CD上一点,连接OF交CE于点G,G为OF中点,求证:OC2=CD•CF;(3)在(2)的条件下,CF=DF,若OC=2,求CG.3.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.4.在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以原点O为圆心,半径为3的⊙O上,连接OC,过点O作OD⊥OC,OD与⊙O相交于点D(其中点C,O,D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为;(2)连接AC,BC,点C在⊙O上运动的过程中,当△ABC的面积最大时,请直接写出△ABC面积的最大值是.(3)连接AD,当OC∥AD,点C位于第二象限时,①求出点C的坐标;②直线BC是否为⊙O的切线?并说明理由.5.已知⊙O的直径AB=4,点P为弧AB上一点,联结P A、PO,点C为劣弧AP上一点(点C不与点A、P重合),联结BC交P A、PO于点D、E.(1)如图,当cos∠CBO=时,求BC的长;(2)当点C为劣弧AP的中点,且△EDP与△AOP相似时,求∠ABC的度数;(3)当AD=2DP,且△BEO为直角三角形时,求四边形AOED的面积.6.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.7.如图,AB为⊙O的直径,P为AB延长线上的点,PD为⊙O的切线,切点为D,CD⊥AB,垂足为E,连接,CO,AC,PC.(1)求证:PC为⊙O的切线;(2)求证:AB2=4OE•OP;(3)若OE=2,cos∠CAB=,求BP的长.8.已知:AB,CF都是⊙O的直径,AH,CD都是⊙O的弦,CD⊥AB于点E,AH=CD.(1)如图1,求证:AH⊥CF;(2)如图2,延长AH,CD交于点P,求证:PH=PD;(3)如图3,在(2)的条件下,延长AC,HE交于点Q,若∠Q=45°,CQ=2,求HE的长.9.如图,已知▱ABCD中,AB=8,BC=12,AC=10,P为边BC上一动点,过点P,A,C作⊙O分别交边CD,AD于点E,F,连结EF.(1)求证:△DEF∽△BCA.(2)当点O落在AC边上,求DF的长.(3)在点P的整个运动过程中,若点O到EF的距离与它到▱ABCD某一边所在的直线的距离相等,求所有满足条件的BP的长.10.如图,在Rt△ABC中,∠ABC=90°,E为AB边上一点,过E、B、C三点的圆交线段AC于点D,点A关于直线BD的对称点F落在⊙O上,连CF.(1)求证:∠BCA=45°;(2)若AB=6,点E在运动过程中,当点F关于直线CD的对称点正好落在△BDF的边上时,求CD的长;(3)当tan∠CDF=时,设△CDF的面积为S1,△BDE的面积为S2,求的值.11.已知:如图BC是⊙的直径,点A是圆上一点,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若CD=3,求⊙O的半径.(3)若AE⊥BC于F,P为上一点,连接AP,CP,EP,请找出AP,CP,EP之间的关系,并证明.12.如图,A,B,C是⊙O上的三点,且AB=AC,BC=8,点D为优弧BDC上的动点,且cos∠ABC=.(1)如图1,若∠BCD=∠ACB,延长DC到F,使得CF=CA,连接AF,求证:AF是⊙O的切线;(2)如图2,若∠BCD的角平分线与AD相交于E,求⊙O的半径与AE的长;(3)如图3,将△ABC的BC边所在的直线l1绕点A旋转得到l2,直线l2与⊙O相交于M,N,连接AM,AN.l2在运动的过程中,AM•AN的值是否发生变化?若不变,求出其值;若变化,说明变化规律.13.如图,AB与⊙O相切于点C,且C为线段AB的中点,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.(1)求证:∠CDF=∠CDE;(2)①若DE=10,DF=8,则CD=;②连接CO,CF,当∠B的度数为时,四边形ODFC是菱形.14.已知△ABC内接于⊙O,点O在△ABC的内部,点D为弧AB上一点,连接OD交AB 于点H,连接OB,∠BOD=∠ACB.(1)如图1,求证:OD⊥AB;(2)如图2,点P为线段BA延长线上一点,连接OP,∠POH=∠ABC,求证:∠BAC+∠POB=180°;(3)如图3,在(2)的条件下,延长DO交BC于点F,延长CA至点E,使AE=AB,射线ED交AB于点G,若∠ABC=60°,P A=6,OF=,求线段DG的长.15.如图1,把△ACD绕点C逆时针旋转90°得△BCE,点A,D分别对应点B,E,且满足A,D,E三点在同一条直线上.连接DE交BC于点F,△CDE的外接圆⊙O与AB 交于G,H两点.(1)求证:BE是⊙O切线;(2)如图2,连接OB,OC,若sin∠CAE=,判断四边形BECO的形状,并说明理由;(3)在(2)的条件下,若CF=,求GH的长.16.如图,在四边形ABCD中,∠ABC=∠DAB=90°,以AB为直径的⊙O与CD相切于点E,连接OD,OC.(1)求证:OD⊥OC;(2)若AB=4,tan∠BCO=,求sin∠BCD的值;(3)如图2,在(2)的条件下,连接OE,BD交于点F,求的值.17.如图,CD是⊙O的直径,且CD⊥AB,垂足为H,连接BC,过弧AD上一点E作EF ∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)若sin F=,BC=5,①求⊙O的半径;②若CD的延长线与FE的延长线交于点M,求DM的长度.18.如图,点C是半圆O上一点(不与A、B重合),沿BC所在直线折叠半圆O,使点A 落在A'点处,A'B交半圆O于M,AB=2.(1)M到AB的最大距离为.(2)已知点O的对应点为M,连接AM.①求AM的长;②求阴影部分的面积;(3)设A'B的中点为O',若线段BO'与半圆O仅有一个公共点,求∠ABC的取值范围.19.如图,在四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:AE=CE;(2)若AC=2BC,证明:DA是⊙O的切线;(3)在(2)条件下,连接BD交⊙O于点F,连接EF,若⊙O的直径为,求EF的长.20.【问题情境】(1)点A是⊙O外一点,点P是⊙O上一动点.若⊙O的半径为2,且OA =5,则点P到点A的最短距离为.【直接运用】(2)如图1,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.【构造运用】(3)如图2,已知正方形ABCD的边长为6,点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,连接AM和BN交于点P,则点P到点C的最短距离,并说明理由.【灵活运用】(4)如图3,⊙O的半径为4,弦AB=4,点C为优弧AB上一动点,AM ⊥AC交直线CB于点M,则△ABM的面积最大值是.参考答案1.解:(1)∵AB和CD为⊙O的直径,AB⊥CD,∴,∴∠ACE=∠AFC,∵∠CAE=∠F AC,∴△ACE∽△AFC,∴,∴AC2=AE•AF,∵AC=CE,∴CE2=AE•AF;(2)∵AB⊥CD,∴∠AOC=90°,∵OA=OC,∴∠ACE=∠OAC=45°,∴∠AFC=∠AOC=45°,∵AC=CE,∴∠CAE=∠AEC=(180°﹣∠ACO)=67.5°,∴∠BAF=∠CAF﹣∠OAC=22.5°,∵∠AEC=∠AFC+∠DAF=45°+∠DCF=67.5°,∴∠DCF=22.5°,∴∠ACF=∠OCA+∠DAF=67.5°=3×22.5°=3∠BAF;(3)如图,过点G作GH⊥CF交AF于H,∴∠FGH=90°,∵∠AFC=45°,∴∠FHG=45°,∴HG=FG=2,∴FH=2,∵∠BAF=22.5°,∠FHG=45°,∴∠AGH=∠FHG﹣∠BAF=22.5°=∠BAF,∴AH=HG=2,∴AF=AH+FH=2+2,由(2)知,∠OAE=∠OCG,∵∠AOE=∠COG=90°,OA=OC,∴△AOE≌△COG(SAS),∴OE=OG,∠AEO=∠CGO,∴∠OEF=∠OGF,连接EG,∵OE=OG,∴∠OEG=∠OGE=45°,∴∠FEG=∠FGE,∴EF=FG=2,∴AE=AF﹣EF=2+2﹣2=2.2.证明:(1)∵CE⊥AB,∴∠D+∠DCE=90°,∵∠OCE=∠D,∴∠OCE+∠DCE=90°,∴∠OCD=90°,又∵OC是半径,∴CD是⊙O的切线;(2)∵∠OCF=90°,G为OF中点,∴CG=GF=OF,∴∠GCF=∠GFC,∵∠D+∠COD=90°=∠D+∠DCE,∴∠DCE=∠COE=∠CFG,又∵∠OCF=∠OCD=90°,∴△OCF∽△DCO,∴,∴OC2=CF•CD;(3)∵CF=DF,∴CD=2CF,∵OC2=CF•CD,∴4=CF×2CF,∴CF=,∴OF===,∴CG=.3.证明:(1)∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC;(2)①连接OA,AC,∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线;②过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴==,∵CE=3,∴BE=,∵BC⊥AD,∴,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴,∴AE2=3×=,∵AE>0,∴AE=,∴AH=AE=,∵∠G=∠G,∠CHG=∠AEG=90°,∴△GHC∽△GEA,∴,∴=,解得x=7,y=2,∴AG=2+=.4.解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=90°+∠OBA=135°;综上所述,∠BOC的度数为45°或135°,故答案为:45°或135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图1:此时C点到AB的距离的最大值为CE的长,∴OE=AB=3,∴CE=OC+OE=3+3,∴△ABC的面积=CE•AB=×(3+3)×6=9+18;即当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18;故答案是:9+18;(3)①过C点作CF⊥x轴于F,如图2:∵OC∥AD,∴∠COF=∠DAO,又∵∠ADO=∠CFO=90°,∴△OCF∽Rt△AOD,∴=,即=,解得:CF=,在Rt△OCF中,OF===,∴C点坐标为(﹣,);②直线BC是⊙O的切线.理由如下:由①得:(﹣,),在Rt△OCF中,OC=3,CF=,∴CF=OC,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADO=90°,∴OC⊥BC,∴直线BC为⊙O的切线.5.解:(1)解法一:如图1,过点O作OG⊥BC于点G,∴BG=BC,∵AB=4,∴OB=2,∵cos∠CBO==,∴BG=,∴BC=2BG=;解法二:如图2,连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴cos∠ABC=,∴,∴BC=;(2)如图3,连接OC,∵∠P=∠P,△EDP与△AOP相似,∴△DPE∽△OP A,∴∠DPE=∠P AO,∵C是的中点,∴∠AOC=∠COP,设∠ABC=α,则∠AOC=∠COP=2α,∵OB=OC,∴∠OCB=∠OBC=α,∵C是的中点,∴OC⊥AP,∴∠P AO=90°﹣2α,∴∠DEP=∠OEB=90°﹣2α,在△OEB中,∠AOP=∠OEB+∠ABC,∴4α=90°﹣2α+α,∴α=18°,∴∠ABC=18°;(3)分两种情况:①如图4,当∠EOB=90°时,过D作DH⊥AB于H,∴DH∥PO,∴,∵AD=2PD,∴AH=2HO,∵AB=4,∴AH=,OH=,BH=,∵AO=OP,∠AOP=90°,∴∠A=45°,∴AH=DH=,∵OE∥DH,∴,即=,∴OE=1,∴S四边形AOED=S△ABD﹣S△OEB=﹣=﹣1=;②如图5,当∠OEB=90°时,连接AC,∵∠C=∠OEB=90°,∴AC∥OE,CE=BE,∵AD=2DP,同理得AC=2PE,∵AO=BO,∴AC=2OE,∴OE=PE=OP,∴AC=AB,∴∠ABC=30°,∵AB=4,∴OB=2=AC,OE=1,BE=,BC==2,∴CE=,∵AC∥PE,∴=2,∵CD+DE=,∴CD=,∴S四边形AOED=S△ABC﹣S△OEB﹣S△ACD=﹣﹣=.综上,四边形AOED的面积是或.6.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=,∴,∴EF=3.7.(1)证明:连接OD,∵PD是⊙O的切线,∴∠PDO=90°,∵OD=OC,CD⊥AB于点E,∴CE=DE,∠POD=∠POC,又∵PO=PO,∴△PDO≌△PCO(SAS),∴∠PCO=∠PDO=90°,∴OC⊥PC,∴PC为⊙O的切线;(2)证明:∵∠PCO=∠PEC=90°,∴∠OCE+∠COF=90°,∠OPC+∠COP=90°,∴∠OCE=∠OPC,∴△OCE∽△OPC,∴,即CO2=OE•OP,又∵AB=2OC,(3)解:∵cos,∴,设CE=x,则AE=3x,∵OE=2,∴OA=OC=3x﹣2,在Rt△COE中,由勾股定理,得(3x﹣2)2=x2+22,解得,,x2=0(不合题意,舍去),∴CE=,OA=OC=3x﹣2=,∵△OCE∽△OPC,∴,即OC2=OP•OE,∵,∴OP=,∴PB=OP﹣OB==.8.(1)证明:∵AH=CD,∴,∵AB是直径,CD⊥AB,∴,∵∠AOF=∠BOC,∴,∴AH⊥CF;(2)证明:连接AC,如图2所示:∵AH=CD,∴,∴,∴,∴∠PCA=∠P AC,∴PC=P A,又∵AH=CD,∴P A﹣AH=PC﹣CD,即PH=PD;(3)解:过点A作AK⊥QH于点K,连接DH,如图3所示:∵四边形ACDH内接于⊙O,∴∠P AC=∠PDH,由(2)知,∠P AC=∠PCA,∴∠PDH=∠PCA,∴DH∥AC,∴∠CQE=∠DHE,∵∠CEQ=∠DHE,CE=DE,∴△CQE≌△DHE(AAS),∴EQ=EH,CQ=DH=2,∵∠Q=45°,AK⊥QH,∴∠Q=∠QAK=45°,∴AK=QK,∵∠CEQ+∠AEK=180°﹣∠AEC=90°,∠AEK+EAK=90°,∴∠EAK=CEQ=∠PCA﹣∠Q=∠P AC﹣∠QAK=∠HAK,∵∠AKE=∠AKH=90°,AK=AK,∠EAK=∠HAK,∴△EAK≌△HAK(ASA),∴EK=HK,AE=AH=CD,设EK=x,则EH=EQ=2x,∴AK=QK=3x,AQ=,AE===x=AH=CD,∴CE==,∴AC===,∵AQ﹣AC=CQ,∴,解得:x=,∴EH=.9.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAC=∠ACD∵∠DFE=∠ACD,∴∠DFE=∠BAC,∴△DEF∽△BCA;(2)解:连接CF,如图1所示:∵AC为直径,∴∠AFC=90°,∵△DEF∽△BCA,∴DF:EF:DE=AB:AC:BC=8:10:12=4:5:6,设DF=4x,则DE=6x,EF=5x,AF=12﹣4x,在Rt△AFC和Rt△CFD中,由勾股定理得:102﹣(12﹣4x)2=82﹣(4x)2,解得:x=,∴DF=4×=;(3)解:过点A,C分别作AR⊥BC于点R,CH⊥AD于点H,连接CF,如图2所示:则四边形ARCH为矩形,∴AR=CH,∠ARP=∠CHF=90°,在△ARP和△CHF中,,∴△ARP≌△CHF(AAS),∴RP=HF,由(2)得:DH=BR=,RP=FH=﹣4x,则BP=9﹣4x,①连接PF,如图3所示:∵AD∥BC,∴∠AFP=∠FPC,∵∠AFP=∠ACB,∴∠ACB=∠FPC,由已知可得∠B≠∠ACB,∴∠B≠∠FPC,∴PF与CD不平行,∴EF≠CP,∴不存在点O到EF的距离等于O到BC的距离的BP的值;②过点O作OQ⊥EF于Q,如图4所示:当O到AD的距离等于OQ时,则AF=EF,∴12﹣4x=5x,∴;③如图4,当O到CD的距离等于OQ时,则EF=CE,即5x=8﹣6x,∴x=,∴BP=9﹣4x=;④当O到AB的距离等于OQ时,延长BA交⊙O于N,连接NF并延长交CD于S,连接AE,如图5所示:则AN=EF=5x,∴AE∥NS,∵AN∥CD,∴四边形ANSE是平行四边形,∴SE=AN=5x,∴DS=DE﹣SE=6x﹣5x=x,∵AB∥CD,∴△ANF∽△DSF,∴=,即=,∴∴BP=9﹣4x=7;综上所述,BP的长为或或7.10.(1)证明:∵点A、点F关于直线BD对称,∴△ABD≌△FBD,∠A=∠BFD,∵∠BFD=∠BCA,∴∠A=∠BCA,又∵∠ABC=90°,∴∠BCA=∠A=45°;(2)解:由(1)得:∠ABD=∠FBD=∠DCF,∠BCA=∠A=45°,∴AB=BC,∵∠BFC=∠BDC=∠A+∠ABD=45°+∠ABD,∠BCD=∠BCA+∠DCF=45°+∠DCF,∴∠BFC=∠BCD,∴BF=BC=AB=6,分两种情况:①当点F关于直线CD的对称点正好落在△BDF的BD边上G点时,连接GF,如图1所示:则∠FDC=∠BDC,∵∠FDC=∠FBC,∠BDC=∠CFB,∴∠FBC=∠CFB,∴FC=BC,∴△BCF为等边三角形,∴∠BDC=∠CFB=60°,过B作BH⊥AC于H,在Rt△CBH中,∠BCH=45°,∴CH=BH=BC=3,在Rt△DBH中,∠BDC=60°,∴∠DBH=30°,∴DH=BH=,∴CD=CH+DH=3+;②当点F关于直线CD的对称点正好落在△BDF的BF边上I点时,设BF与CD交于点M,连接DI,如图2所示:则DI=DF,∵∠DFI=∠BCA=45°,∴△DFI是等腰直角三角形,∴△DMF、△BMC也是等腰直角三角形,∴DM=FM,BM=CM,∴CD=BF=AB=6;综上所述,当点F关于直线CD的对称点正好落在△BDF的边上时,CD的长为3+或6;(3)解:作BJ⊥CF交AC于J,连接FJ,作FL⊥DC于L,作DK⊥AB于K,如图3所示:∵BF=BC,∴JF=JC,∠BFC=∠BCF,∴∠JFC=∠JCF,∴∠BFJ=∠BCJ=45°,∴∠DFJ=45°+45°=90°,∵tan∠CDF==,∴设FJ=4a,则DF=3a,由勾股定理得:DJ===5a,∵JC=JF=4a,∴DC=5a+4a=9a,∵DF•FJ=DJ•FL,∴FL===a,∴S1=×9a×a=a2,∵点A、点F关于直线BD对称,∴AD=DF,∠ABD=∠FBD,∴DE=DF,∴DE=DF=3a,∵∠KED=∠EBD+∠EDB=∠DCB=45°,∴△DKE是等腰直角三角形,∴DK=DE=×3a=a,∵DK⊥AB,∠ABC=90°,∴DK∥BC,∴△ADK∽△ACB,∴===,∴BC=4KD=4×a=6a,∴AB=BC=6a,∵∠CDE+∠ABC=180°,∠ABC=90°,∴∠CDE=90°,∴∠ADE=90°,∵∠A=45°,∴△ADE是等腰直角三角形,∴BE=DE=×3a=3a,∴BE=AB﹣AE=6a﹣3a=3a,∴S2=×3a×a=a2,∴==.11.(1)证明:如图1,连接AC,OA,∵∠AEC=30°,∴∠ABC=∠AEC=30°,∵AB=AD,∴∠D=∠ABC=30°,∴∠BAD=120°,∵OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD﹣∠OAB=90°,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)解:如图1,连接AC,由(1)知,∠D=30°,∠OAD=90°,∴∠AOC=90°﹣∠D=60°,∴△AOC是等边三角形,∴OC=AC,∠OAC=60°,∴∠CAD=∠OAD﹣∠OAC=30°=∠D,∴AC=CD=3,∴OC=3,即⊙O的半径为3;(3)EP+AP=CP,理由:如图2,∵∠AEC=30°,∴∠APC=∠AEC=30°,连接AC,延长PE至M,使EM=AP,连接CM,∵AE⊥BC,BC为⊙O的直径,∴AC=EC,∵四边形APEC是⊙O的内接四边形,∴∠CAP=∠CEM,∴△ACP≌△ECM(SAS),∴CM=CP,∠APC=∠M=30°,过点C作CN⊥PM于N,∴PM=2MN,在Rt△CNM中,cos M=,∴cos30°==,∴MN=CM,∴PM=2MN=CM=CP,∵PM=PE+EM=PE+AP,∴PE+AP=CP,即EP+AP=CP.12.(1)证明:连接AO,如图1所示:∵AB=AC,∴∠ABC=∠ACB,∵∠BCD=∠ACB,∴∠BCD=∠ABC,∴AB∥DF,∵CF=CA,∴CF=AB,∴四边形ABCF是平行四边形,∴AF∥BC,∵AB=AC,∴=,∴OA⊥BC,∴OA⊥AF,∵OA是⊙O的半径,∴AF是⊙O的切线;(2)解:连接AO交BC于H,连接OB,如图2所示:∵OA⊥BC,∴BH=CH=BC=4,∵cos∠ABC==,∴AB=BH=×4=5,在Rt△AHB中,由勾股定理得:AH===3,设⊙O的半径为x,则OA=OB=x,OH=x﹣3,在Rt△BOH中,由勾股定理得:x2=(x﹣3)2+42,解得:x=,∴⊙O的半径为,∵CE平分∠BCD,∴∠BCE=∠DCE,∵∠ABC=∠ADC,∴∠AEC=∠ADC+∠DCE=∠ABC+∠DCE=∠ACB+∠BCE=∠ACE,∴AE=AC=AB=5;(3)解:连接AO,并延长AO交⊙O于Q,连接NQ,过点A作AP⊥l2于P,如图3所示:则AQ是⊙O的直径,∴∠AMQ=90°,∵AP⊥l2,∴∠APN=90°,∴∠AMQ=∠APN,∵∠AQM=∠ANP,∴△AQM∽△ANP,∴=,∴AM•AN=AP•AQ,由(2)可知,点A到直线l1的距离为3,直线l1绕点A旋转得到l2,∴点A到直线l2的距离始终等于3,不会发生改变,∴AP=3,∵AQ=2OA=2×=,∴AM•AN=AP•AQ=3×=25,∴l2在运动的过程中,AM•AN的值不发生变化,其值为25.13.(1)证明:连接OC.如图1所示:∵AB是⊙O的切线,∴∠OCA=90°,∵C为线段AB的中点,∴OC垂直平分线段AB,∴OA=OB,∴∠AOC=∠BOC,∵∠CDF=∠BOC,∠CDE=∠AOC,∴∠CDF=∠CDE;(2)解:①连接OC,过点O作ON⊥DF于N,延长DF交AB于M,如图2所示:∵ON⊥DF,OD=OF,∴DN=NF=DF=4,∵DE=10,∴OD=5,在Rt△OND中,由勾股定理得:ON===3,∵OC=OD,∴∠CDE=∠OCD,∵∠CDF=∠CDE,∴∠CDF=∠OCD,∴OC∥DF,∴∠OCM+∠CMN=180°,∵∠OCM=90°,∴∠CMN=90°,∵∠ONM=90°,∴四边形OCMN是矩形,∴ON=CM=3,MN=OC=5,∴DM=DN+MN=4+5=9,在Rt△CMD中,由勾股定理得:CD===3,故答案为:3;②如图3所示:∵四边形ODFC是菱形,∴OC=CF,∵OC=OF,∴△OCF是等边三角形,∴∠COB=60°,∵∠OCB=90°,∴∠B=30°,故答案为:30°.14.(1)证明:连接OA,∵∠AOB=2∠ACB,∠ACB=∠BOD,∴∠AOB=2∠BOD,∵∠AOB=∠AOD+∠BOD,∴2∠BOD=∠AOD+∠BOD,∴∠BOD=∠AOD,又∵OA=OB,∴OD⊥AB;(2)证明:延长PO交BC于点K,连接OC,∵OH⊥AB,∴∠P+∠POH=90°,∵∠POH=∠ABC,∴∠P+∠ABC=90°,∴∠PKB=90°,∴PK⊥BC,∵OB=OC,∴∠KOB=∠COB,∵∠BAC=∠COB,∴∠BAC=∠KOB,∵∠KOB+∠POB=180°,∴∠BAC+∠POB=180°;(3)解:延长PO交BC于点K,连接OA,OC,AD,BD,∵∠ABC=60°,∠PHO=∠PKB=90°,∴∠POH=60°,∠P=30°,∠HFB=30°,∴BF=2BH,∵OD⊥AB,∴AB=2BH,∴BF=AB,∵AE=AB,∴BF=AE,设AH=BH=a,则PB=2a+6,KB=PB=a+3,∵OF=,∴OK=OF=,∴FK=OK=2,∴FB=a+5,∴a+5=2a,∴a=5,∴KB=8,PH=11,∵OH⊥AB,∴AD=BD,∵∠EAD+∠CAD=180°,∠DBC+∠CAD=180°,∴∠DBC=∠EAD,∴△ADE≌△BDF(SAS),∴∠E=∠DFB=30°,∵∠AOC=2∠ABC=120°,OA=OC,∴∠CAO=30°,∴∠CAO=∠E,∴OA∥EG,∴∠OAH=∠GDH,∵∠OKC=90°,∴OC==,∴OD=,∴OH=PH•tan P=11×=,∴HD=OD﹣OH==,∵sin∠OAH=,∴sin∠GDH=,∴DG=.15.(1)证明:∵把△ACD绕点C逆时针旋转90°得△BCE,∴∠CAD=∠CBE,∠ACB=∠ECD=90°,∵∠AFC=∠BFE,∴∠BEF=∠ACF=90°,∴AE⊥BE,又∵∠ECD=90°,∴ED为⊙O的直径,∴BE为⊙O的切线;(2)解:四边形BECO为平行四边形.理由如下:∵把△ACD绕点C逆时针旋转90°得△BCE,点A,D分别对应点B,E,∴DC=EC,∠DCE=90°,BE=AD,∵OE=OD,∴CO⊥ED,∴∠COE=90°,∵∠BEO=90°,∴∠COE=∠BEO,∴BE∥OC,在Rt△AOC中,sin∠CAE=,设OC=x,则AC=x,∴AO==2x,∵OA=OD+AD,OD=OC,∴AD=OC=x,∴BE=OC,∴四边形BECO是平行四边形;(3)解:过点O作OM⊥GH于点M,连接OG,则GH=2MG,∵∠FCO+∠OCA=∠OCA+∠CAE=90°,∴∠FCO=∠CAE,∴sin∠FCO=sin∠CAE=,∴sin∠FCO=,∴FO=,∴CO==2,∵四边形BECO为平行四边形,∴OF=BE=,OB=CE,∴OE=2OF=2,∴CE===2,∴OB=2,由(1)(2)知△ACB和△BEO都为等腰直角三角形,∴∠EBO=∠CBA=45°,∴∠EBF=∠OBA,∵BE∥CO,∴∠EBF=∠FCO,∴∠OBA=∠FCO,∴sin∠OBM=,∴,∴OM=2,∵OG=OC=2,∴MG===2,∴GH=2MG=4.16.解:(1)∵∠ABC=∠DAB=90°,∴AD∥BC,又∵⊙O与CD相切,∴OE=OA,∠OED=90°,在Rt△OAD和Rt△OED中,,∴Rt△OAD≌Rt△OED(HL),∴∠ADO=∠EDO,∴∠ODC=∠ADC,同理:∠OCD=∠BCD,∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠ODC+∠OCD=(∠ADC+∠BCD)=90°,∴∠DOC=90°,∴OD⊥OC;(2)∵AB=4,∴OA=OB=2,在Rt△OBC中,tan∠BCO==,∴BC=2OB=4,∵∠DOC=∠DAB=90°,∴∠AOD+∠BOC=∠AOD+∠ODA=90°,∴∠BOC=∠ODA,又∠ABC=∠DAB,∴△OAD∽△CBO,∴,即,∴AD=1,∵∠ABC=∠DAB=90°,∵AB为⊙O的直径,∴AD,BC都与⊙O相切,又∵⊙O与CD相切,∴AD=ED,BC=EC,∴CD=AD+BC=5,如图1,过点D作DG⊥BC于点G,则四边形为ABGD为矩形,∴DG=AB=4,在Rt△CDG中,sin∠BCD==;(3)如图2,连接BE,与OC交于点H,在Rt△OAD中,AD=1,OA=2,∴,在Rt△OBC中,OB=2,BC=4,∴,∵BC=EC,∠OCB=∠OCE,∴OC⊥BE,∵BE=2BH,∴,∴,∴,∴,∵OC⊥BE,OD⊥OC,∴OD∥BE,∴△ODF∽△EBF,∴.17.(1)证明:连接OE,∵H是AB的中点,CD是直径,∴CH⊥AB,∴∠GCH+∠CGH=90°,∵FE=FG,∴∠FGE=∠FEG,∵OE=OC,∴∠OCE=∠OEC,又∵∠CGH=∠EGF,∴∠FEO=∠FEG+∠CEO=∠CGH+∠GCH=90°,∴EF是⊙O的切线;(2)解:①∵EF∥BC,CD⊥AB,∴∠F=∠CBH,∠BHC=90°,在Rt△BCH中,BC=5,sin B=sin F=,∴CH=BC•sin B=5=3,由勾股定理得:HB===4,连接OB,设半径为r,则在Rt△OHB中,由勾股定理得:OH2+BH2=OB2,∴,解得:r=,∴⊙O的半径为.②∵EF∥BC,∴∠M=∠BCH,∴sin M=sin∠BCH===,在Rt△OEM中,OM==,∴DM=OM﹣OD==.18.解:(1)如图1,过点M作MH⊥AB于H,则点M到AB的距离为MH,当点H在点O处时,MH最大,其最大值为OA=AB=1,故答案为:1;(2)①如图2,连接OM,∵点O的对应点为M,∴BC是OM的垂直平分线,∴BM=OB,∵OM=OB,∴OM=OB=BM,∴△BOM是等边三角形,∴∠OBM=60°,∵AB为半圆O的直径,且AB=2,∴BM=2,∠AMB=90°,在Rt△AMB中,根据勾股定理得,AM===;②如图2,连接OC,CM,由①知,△OBM是等边三角形,∴OB=BM,∠BOM=60°,∴∠AOC+∠COM=120°,由折叠知,,∴∠AOC=∠COM=60°,∴S扇形AOC=S扇形COM,过点C作CG⊥AB于G,则∠OGC=60°,∴∠OCG=30°,∴OG=OC=,∴CG=,∴S阴影部分=S扇形AOC+S△BOC﹣S△BMC﹣S弓形=S扇形AOC+S△BOC﹣S△COM﹣S弓形=S扇形AOC+S△BOC﹣S扇形COM=S△BOC=OB•CG=×1×=;(3)如图3,∵线段BO'与半圆O仅有一个公共点,且点B在半圆O上,∴点O'在半圆O内或线段O'B都在半圆外,当点O'在半圆内时,∴BO'<BM,当BO'=BM时,即点O'与M重合,(满足(2)的条件)如图2,由(2)知,∠AOC=60°,∴∠ABC=∠AOC=30°,当线段O'B在半圆O外部时,∠ABA'≥90°,∴∠ABC≥45°,∴45°≤∠ABC<90°,即线段BO'与半圆O仅有一个公共点时,0°<∠ABC<30°或45°≤∠ABC<90°.19.(1)证明:如图1,连接OC,∵AO=CO,AD=CD,OD=OD,∴△ADO≌△CDO(SSS),∴∠AOD=∠COD,∵OA=OC,∴AE=CE;(2)证明:由(1)得:∠ADO=∠CDO,∵AD=CD,∴OD⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,设BC=a,则AC=2a,AE=AC=a,∴AB===a,∵AO=OB,AE=CE,∴OE∥BC,OE=BC=a,∴DE===2a,∴OD=OE+DE=a+2a=a,∴AD2=(a)2=5a2,OA2=(a)2=,OD2==,∴OA2+AD2=OD2,∴∠OAD=90°,∴DA是⊙O的切线;(3)如图2,连接AF,过F作FM⊥EF交OD于M,∵AB=AD,∠OAD=90°,∴△ABD为等腰直角三角形,∵AB为直径,∴∠AFB=90°,∠DAF=45°,∵∠AED=∠AFD=90°,∴∠DAF=∠DEF=45°,∴AF=DF,∴∠AFE=∠DFM,∵∠EAF=∠FDM,∴△AEF≌△DMF(ASA),∵OA=AB=,由(2)知:OE=a,AE=a,∴AE=DM=1,DE=2,∴EM=DE﹣DM=2﹣1=1,∴EF=.20.解:(1)连接AP、OP,如图4所示:∵⊙O的半径为2,∴OP=2,∴OA﹣OP=5﹣2=3,∴P A≥OA﹣OP,∴P A≥3,∴当点P在OA上时,P A最短,最小值为3,故答案为:3;(2)连接OA,交半圆于P′,连接OP,如图1所示:∵AC=BC=2,BC为半圆的直径,∴OP=OC=BC=1,∵∠ACB=90°,∴OA===,∵AP≥OA﹣OP,∴AP≥﹣1,∴当点P在OA上时,AP最短,最小值为﹣1,故答案为:﹣1;(3)点P到点C的最短距离为3﹣3,理由如下:取AB中点O,连接OP、OC、PC,如图2所示:∵点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,∴BM=CN,∵四边形ABCD是正方形,∴AB=BC=6,∠ABM=∠BCN=90°,在△ABM和△BCN中,,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠BAM+∠ABN=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上运动,∵OP=OA=OB=AB=3,OC===3,又∵PC≥OC﹣OP,∴PC≥3﹣3,∴PC的最小值为3﹣3;(4)连接OA、OB,如图3所示:∵OA=OB=4=AB,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=×60°=30°,∵AM⊥AC,∴∠M=60°,∴点M在以∠ADB=120°的⊙D上,∵AB=4,S△ABM最大,则点M到AB的距离最大,∴当AM=BM时点M到AB的距离最大,∴△ABM是等边三角形,∴S△ABM=AB×AB=×4××4=4,故答案为:4.。
2020-2021中考数学提高题专题复习圆的综合练习题附答案解析
2020-2021中考数学提高题专题复习圆的综合练习题附答案解析一、圆的综合1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,»»BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵»»BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,,解得:在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA 在旋转过程中所扫过的面积; (2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM 的度数; (3)利用全等把△MBN 的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A 点第一次落在直线y=x 上时停止旋转,直线y=x 与y 轴的夹角是45°,∴OA 旋转了45°.∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=. (2)∵MN ∥AC ,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM .∴BM=BN .又∵BA=BC ,∴AM=CN .又∵OA=OC ,∠OAM=∠OCN ,∴△OAM ≌△OCN .∴∠AOM=∠CON=12(∠AOC-∠MON )=12(90°-45°)=22.5°. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45°-22.5°=22.5°. (3)在旋转正方形OABC 的过程中,p 值无变化.证明:延长BA 交y 轴于E 点,则∠AOE=45°-∠AOM ,∠CON=90°-45°-∠AOM=45°-∠AOM ,∴∠AOE=∠CON .又∵OA=OC ,∠OAE=180°-90°=90°=∠OCN .∴△OAE ≌△OCN .∴OE=ON ,AE=CN .又∵∠MOE=∠MON=45°,OM=OM ,∴△OME ≌△OMN .∴MN=ME=AM+AE .∴MN=AM+CN ,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC 的过程中,p 值无变化.考点:旋转的性质.3.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O e 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题.【详解】()1解:结论:DE 是O e 的切线.理由:连接OD .CDB ADE ∠=∠Q ,ADC EDB ∴∠=∠,//CD AB Q ,CDA DAB ∴∠=∠,OA OD =Q ,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠,AB Q 是直径,90ADB ∴∠=o ,90ADB ODE ∴∠=∠=o ,DE OD ∴⊥,e的切线.DE∴是O()2//Q,CD AB∠=∠,∴∠=∠,CDB DBEADC DABn n,∴=AC BD∴=,AC BD∠=∠Q,EDB DABDCB DAB∠=∠,∴∠=∠,EDB DCB∴V∽DBECDBV,CD DB∴=,BD BE2∴=⋅,BD CD BE2∴=⋅.AC CD BE【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.4.如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长.【答案】(1)证明见解析(2)3【解析】试题分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°进而得出答案;(2)首先得出△CAG∽△BAC,进而得出AC2=AG·AB,求出AC即可.试题解析:(1)连接CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠D=90°,∵∠PAC=∠PBA,∠D=∠PBA,∴∠CAD+∠PAC=90°,即∠PAD=90°,∴PA⊥AD,∴PA是⊙O的切线;(2)∵CF⊥AD,∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,∴∠ACF=∠D,∴∠ACF=∠B,而∠CAG=∠BAC,∴△ACG∽△ABC,∴AC:AB=AG:AC,∴AC2=AG•AB=12,∴AC=23.5.如图AB是△ABC的外接圆⊙O的直径,过点C作⊙O的切线CM,延长BC到点D,使CD=BC,连接AD交CM于点E,若⊙OD半径为3,AE=5,(1)求证:CM⊥AD;(2)求线段CE的长.【答案】(1)见解析;(25【解析】分析:(1)连接OC,根据切线的性质和圆周角定理证得AC垂直平分BD,然后根据平行线的判定与性质证得结论;(2)根据相似三角形的判定与性质证明求解即可.详解:证明:(1)连接OC∵CM切⊙O于点C,∴∠OCE=90°,∵AB是⊙O的直径,∴∠ACB=90°,∵CD=BC,∴AC垂直平分BD,∴AB=AD,∴∠B=∠D∵∠B=∠OCB∴∠D=∠OCB∴OC∥AD∴∠CED=∠OCE=90°∴CM⊥AD.(2)∵OA=OB,BC=CD∴OC=1AD2∴AD=6∴DE=AD-AE=1易证△CDE~△ACE∴CE DEAE CE∴CE2=AE×DE∴5点睛:此题主要考查了切线的性质和相似三角形的判定与性质的应用,灵活判断边角之间的关系是解题关键,是中档题.6.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12AC,∠CBD=∠C=45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,A FBDAD BDEDA FDB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED≌△BFD(ASA),∴AE=BF;(2)连接EF,BG.∵△AED≌△BFD,∴DE=DF.∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.∵∠GBA=∠GDA,∴∠FEB=∠GDA;(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF 2=EB 2+BF 2.∵EB =4,BF =2,∴EF =2242+=25. ∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DE EF . ∵EF =25,∴DE =25×22=10. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EB ED ,即GE •ED =AE •EB ,∴10•GE =8,即GE =4105,则GD =GE +ED =9105. ∴119101109222S GD DF GD DE =⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.7.如图,一条公路的转弯处是一段圆弧»().AB ()1用直尺和圆规作出»AB 所在圆的圆心O ;(要求保留作图痕迹,不写作法) ()2若»AB 的中点C 到弦AB 的距离为2080m AB m =,,求»AB 所在圆的半径.【答案】(1)见解析;(2)50m【解析】分析:()1连结AC 、BC ,分别作AC 和BC 的垂直平分线,两垂直平分线的交点为点O ,如图1;()2连接OA OC OC ,,交AB 于D ,如图2,根据垂径定理的推论,由C 为»AB 的中点得到1OC AB AD BD AB 402⊥===,,则CD 20=,设O e 的半径为r ,在Rt OAD V 中利用勾股定理得到222r (r 20)40=-+,然后解方程即可.详解:()1如图1,点O 为所求;()2连接OA OC OC ,,交AB 于D ,如图2,C Q 为»AB 的中点,OC AB ∴⊥,1402AD BD AB ∴===, 设O e 的半径为r ,则20OA r OD OD CD r ==-=-,,在Rt OAD V 中,222OA OD AD =+Q ,222(20)40r r ∴=-+,解得50r =,即»AB 所在圆的半径是50m .点睛:本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.8.如图,O 是△ABC 的内心,BO 的延长线和△ABC 的外接圆相交于D ,连结DC 、DA 、OA 、OC ,四边形OADC 为平行四边形.(1)求证:△BOC ≌△CDA .(2)若AB =2,求阴影部分的面积.【答案】(1)证明见解析;(2)433π-.【解析】分析: (1)根据内心性质得∠1=∠2,∠3=∠4,则AD=CD,于是可判断四边形OADC为菱形,则BD垂直平分AC,∠4=∠5=∠6,易得OA=OC,∠2=∠3,所以OB=OC,可判断点O 为△ABC的外心,则可判断△ABC为等边三角形,所以∠AOB=∠BOC=∠AOC=120°,BC=AC,再根据平行四边形的性质得∠ADC=∠AOC=120°,AD=OC,CD=OA=OB,则根据“SAS”证明△BOC≌△CDA;(2)作OH⊥AB于H,如图,根据等腰三角形的性质和三角形内角和定理得到∠BOH=30°,根据垂径定理得到BH=AH=12AB=1,再利用含30度的直角三角形三边的关系得到OH=3BH=3,OB=2OH=23,然后根据三角形面积公式和扇形面积公式,利用S阴影部分=S扇形AOB-S△AOB进行计算即可.详解:(1)证明:∵O是△ABC的内心,∴∠2=∠3,∠5=∠6,∵∠1=∠2,∴∠1=∠3,由AD∥CO,AD=CO,∴∠4=∠6,∴△BOC≌△CDA(AAS)(2)由(1)得,BC=AC,∠3=∠4=∠6,∴∠ABC=∠ACB∴AB=AC∴△ABC是等边三角形∴O是△ABC的内心也是外心∴OA =OB =OC设E 为BD 与AC 的交点,BE 垂直平分AC .在Rt △OCE 中,CE=12AC=12AB=1,∠OCE=30°, ∴OA=OB=OC=233∵∠AOC=120°,∴=AOB AOB S S S -V 阴影扇=21202313()23602π-⨯⨯ =4339π- 点睛: 本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了等边三角形的判定与性质和扇形面积的计算.9.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线;(2)若AE =4,tan ∠ACD =3,求FC 的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案; (2)根据正切的性质求出EC 的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OCB +∠ACO =90°.∵OB =OC ,∴∠B =∠OCB.又∵∠FCA =∠B ,∴∠FCA =∠OCB ,∴∠FCA +∠ACO =90°,即∠FCO =90°,∴FC ⊥OC ,∴FC 是⊙O 切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE33∠==,设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+(43)2,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC=22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.10.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.11.如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A在原点的左上方,且tan∠AOB=3,点C为OB的中点,点D在数轴上对应的数为4.(1)S扇形AOB=(大于半圆的扇形);(2)点P是优弧AB上任意一点,则∠PDB的最大值为°(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②当PD∥AO时,求AD2的值;③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.【答案】(1)103(2)30(3)①AD=2PC②20+83或20+83③1≤d≤3【解析】【分析】(1)利用扇形的面积公式计算即可.(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.解直角三角形即可解决问题.(3)①结论:AD=2PC.如图2中,连接AB,AC.证明△COP∽△AOD,即可解决问题.②分两种情形:如图3中,当PD∥OA时,设OD交⊙O于K,连接PK交OC于H.求出PC即可.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得.③判断出PC 的取值范围即可解决问题.【详解】(1)∵tan ∠AOB =3, ∴∠AOB =60°,∴S 扇形AOB =23002103603ππ⋅⋅= (大于半圆的扇形), (2)如图1中,当PD 与⊙O 相切时,∠PDB 的值最大.∵PD 是⊙O 的切线,∴OP ⊥PD ,∴∠OPD =90°,∵21sin 42OP PDO OD ∠=== ∴∠PDB =30°, 同法当DP ′与⊙O 相切时,∠BDP ′=30°,∴∠PDB 的最大值为30°.故答案为30.(3)①结论:AD =2PC .理由:如图2中,连接AB ,AC .∵OA =OB ,∠AOB =60°,∴△AOB 是等边三角形,∵BC =OC ,∴AC ⊥OB ,∵∠AOC =∠DOP =60°,∴∠COP =∠AOD ,∵2AO OD OC OP ==, ∴△COP ∽△AOD , ∴2AD AO PC OC==, ∴AD =2PC . ②如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .∵OP =OK ,∠POK =60°,∴△OPK 是等边三角形,∵PD ∥OA ,∴∠AOP =∠OPD =90°,∴∠POH +∠AOC =90°,∵∠AOC =60°,∴∠POH =30°,∴PH =12OP =1,OH =3PH =3, ∴PC =2222PH CH 1(13)523+=++=+,∵AD =2PC ,∴AD 2=4(5+23)=20+83.如图④中,当PA ∥OA 时,作PK ⊥OB 于K ,同法可得:PC 2=12+(3﹣1)2=5﹣23,AD 2=4PC 2=20﹣83.③由题意1≤PC ≤3,∴在旋转过程中,点C 到PD 所在直线的距离d 的取值范围为1≤d ≤3.【点睛】本题属于圆综合题,考查了切线的性质,相似三角形的判定和性质,旋转变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.12.如图①,已知Rt ABC ∆中,90ACB ∠=o ,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O e ,过C 作CE 切O e 于E ,交AB 于F .(1)若O e 的半径为2,求线段CE 的长;(2)若AF BF =,求O e 的半径;(3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)42CE =(2)O e 的半径为3;(3)G 、E 两点之间的距离为9.6.【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r =610,解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC=,即12108GE =,解得即可. 【详解】(1)如图,连结OE .∵CE 切O e 于E ,∴90OEC ∠=︒.∵8AC =,O e 半径为2,∴6OC =,2OE =. ∴2242CE OC OE =-=;(2)设O e 半径为r .在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =,∴226BC AB AC =-=. ∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵CE 切O e 于E ,∴90OEC ∠=︒.∴OEC ACB ∠=∠,∴OEC BCA ∆~∆.∴OE OC BC BA =, ∴8610r r -=, 解得3r =.∴O e 的半径为3;(3)连结EG 、OE ,设EG 交AC 于点M ,由对称性可知,CB CG =.又CE CB =,∴CE CG =.∴EGC GEC ∠=∠.∵CE 切O e 于E ,∴90GEC OEG ∠+∠=︒.又90EGC GMC ∠+∠=︒,∴OEG GMC ∠=∠.又GMC OME ∠=∠,∴OEG OME ∠=∠.∴OE OM =.∴点M 与点D 重合.∴G 、D 、E 三点在同一条直线上.连结AE 、BE ,∵AD 是直径,∴90AED ∠=︒,即90AEG ∠=︒.又CE CB CG ==,∴90BEG ∠=︒.∴180AEB AEG BEG ∠=∠+∠=︒,∴A 、E 、B 三点在同一条直线上.∴E 、F 两点重合.∵90GEB ACB ∠=∠=︒,B B ∠=∠,∴GBE ABC ∆~∆. ∴GB GE AB AC =,即12108GE =. ∴9.6GE =.故G 、E 两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.13.如图,直角坐标系中,直线y kx b =+分别交x ,y 轴于点A (-8,0),B (0,6),C (m ,0)是射线AO 上一动点,⊙P 过B ,O ,C 三点,交直线AB 于点D (B ,D 不重合). (1)求直线AB 的函数表达式.(2)若点D 在第一象限,且tan ∠ODC =53,求点D 的坐标.【答案】(1)364y x =+;(2)D (8825,21625). 【解析】【分析】 (1)把A 、B 两点坐标代入y=kx+b 求出k 、b 的值即可;(2)连结BC ,作DE ⊥OC 于点E ,根据圆周角定理可得∠OBC=∠ODC ,由tan ∠ODC=53可求出OC 的长,进而可得AC 的长,利用∠DAC 的三角函数值可求出DE 的长,即可得D 点纵坐标,代入直线AB 解析式求出D 点横坐标即可得答案.【详解】(1)∵A (-8,0)、B (0,6)在y=kx+b 上,∴086k b b=-+⎧⎨=⎩, 解得346k b ⎧=⎪⎨⎪=⎩,∴直线AB 的函数表达式为y=34x+6. (2)连结BC ,作DE ⊥OC 于点E ,∵∠BOC=90°,∴BC 为⊙P 的直径,∴∠ADC=90°,∵∠OBC=∠ODC ,tan ∠ODC=53, ∴OC 5OB 3=, ∵OB=6,OA=8,∴OC=10,AC=18,AB=10, ∵cos ∠DAC=OA AB =45,sin ∠DAC=OB AB =35, 472AD AC cos DAC 1855∠=⋅=⨯=, 723216DE AD sin DAC 5525∠=⋅=⨯=, ∵D 点在直线AB 上, ∴2163x 6254=+, 解得:88x 25=,∴D (8825,21625)【点睛】本题考查待定系数法求一次函数解析式、圆周角定理及锐角三角函数的定义,熟练掌握直径所对的圆周角等于90°及正切、正弦、余弦等三角函数的定义是解题关键.14.如图,已知,,BAC AB AC O ∆=为ABC ∆外心,D 为O e 上一点,BD 与AC 的交点为E ,且2·BC AC CE =.①求证:CD CB =;②若030A ∠=,且O e 的半径为33+,I 为BCD ∆内心,求OI 的长.【答案】①证明见解析; ②3【解析】【分析】①先求出BC CE AC BC=,然后求出△BCE 和△ACB 相似,根据相似三角形对应角相等可得∠A =∠CBE ,再根据在同圆或等圆中,同弧所对的圆周角相等可得∠A =∠D ,然后求出∠D =∠CBE ,然后根据等角对等边即可得证;②连接OB 、OC ,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠BOC =60°,然后判定△OBC 是等边三角形,再根据等腰三角形三线合一的性质以及三角形的内心的性质可得OC 经过点I ,设OC 与BD 相交于点F ,然后求出CF ,再根据I 是三角形的内心,利用三角形的面积求出IF ,然后求出CI ,最后根据OI =OC ﹣CI 计算即可得解.【详解】①∵BC2=AC•CE,∴BC CE AC BC=.∵∠BCE=∠ECB,∴△BCE∽△ACB,∴∠CBE=∠A.∵∠A=∠D,∴∠D=∠CBE,∴CD=CB;②连接OB、OC.∵∠A=30°,∴∠BOC=2∠A=2×30°=60°.∵OB=OC,∴△OBC是等边三角形.∵CD=CB,I是△BCD的内心,∴OC经过点I,设OC与BD相交于点F,则CF=BC×sin30°12=BC,BF=BC•cos30°3=BC,所以,BD=2BF=23⨯BC3=BC,设△BCD内切圆的半径为r,则S△BCD12=BD•CF12=(BD+CD+BC)•r,即12•3BC•12BC12=(3BC+BC+BC)•r,解得:r3223=+()BC2332-=BC,即IF2332-=BC,所以,CI=CF﹣IF12=BC233--BC=(23-)BC,OI=OC﹣CI=BC﹣(23-)BC=(3-1)BC.∵⊙O的半径为33+,∴BC=33+,∴OI=(3-1)(33+)=33+3﹣3323-=.【点睛】本题是圆的综合题,主要考查了相似三角形的判定与性质,等腰三角形的判定与性质,圆周角定理,等边三角形的判定与性质,三角形的内心的性质,(2)作辅助线构造出等边三角形并证明得到OC经过△BCD的内心I是解题的关键.15.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=32tan∠ADC=3,求BE的长.【答案】(1)证明见解析;(2)52BE = 【解析】试题分析:(1)连接OA 、OB ,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF =3,在Rt △AFD 中求得DF =1,所以AB =AD =10 ,CD = CF +DF =4,再证明△ABE ∽△CDA ,得出BE AB DA CD =,即可求出BE 的长度; 试题解析:(1)证明:连结OA ,OB ,∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°.∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =32∠ACF =45°,∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF=, ∴DF =1,∴22==+=,3110 AB AD且CD= CF+DF=4,∵四边形ABCD内接于⊙O,∴∠ABE=∠CDA,∵∠BAE=∠DCA,∴△ABE∽△CDA,∴BE AB=,DA CD∴10=,410∴5BE=.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆
一、填空
1、小圆的直径是4厘米,大圆的半径是4厘米,大圆的周长和小圆的周长的比是(),面积比是()。
2、一个半圆的半径是r,它的周长是(),面积是()。
3、同一个圆里,半径与周长的比是(),直径与半径的比值是(),周长与直径的比是(),比值是()。
4、用同样长的铁丝分别围成一个长方形、正方形、圆,()的面积最大,()的面积最小。
5、一张长方形纸,长6分米,宽4分米。
如果在上面剪出一个最大的圆,这个圆的半径是()分米,周长是(),面积是()。
如果在上面剪出半径是1分米的圆,最多可以剪出()个。
6、一个圆的周长扩大5倍,面积扩大()倍。
如果一个圆的直径减少13CM ,周长减少(),。
7、用铁丝把2根横截面直径都是20厘米的圆木捆在一起,如果接头处铁丝长5厘米,那么捆一周至少需要()厘米的铁丝。
二,判断题
1如果两个圆的周长相等,那个这两个圆的面积也相等.( )
2甲圆直径是乙圆的半径,乙圆的面积是甲圆面积的2倍.( )
3在一个正方形内画两个最大的圆,圆的直径等于边长的一半.( )
4圆的大小是由半径,直径或周长决定的.( )
5当圆的半径为2厘米时,它的周长和面积相等.( )
6圆的周长与它的直径的比值约是.( )
7在周长相等的平面图形中,面积最大的是圆.( ).
二、应用题
1、在一块直径为40米的圆形操场周围栽树,每隔6.28米栽一棵,一共可栽多少棵
2、一根铁丝可以围成一个直径是12分米的圆,如果把它围成一个最大的正方形,它的边长是多少
3、一张长30厘米,宽20厘米的长方形纸,在纸上剪一个最大的圆。
还剩下多少平方厘米的纸没用
4、一种汽车轮胎的外直径是1米,它每分钟可以转动400周。
这辆汽车通过一座长千米的大桥需要多少分钟
5、在一个圆形喷水池的周长是62.8米,绕着这个水池修一条宽2米的水泥路。
求路面的面积。
6、一个挂钟的分针长5厘米,从上午8点到下午4点,分针针尖走过的距离是多少厘米
7、一种自行车轮胎的外直径是70厘米,它每分钟可以转200周。
小明骑着这辆自行车从学校到家里用了10分钟。
小明从家里到学校的路程是多少米
8、小华和小军沿着一个半径是500米的圆形湖边同时从同一点相背而行。
小华每分钟行81米,小军每分钟行76米。
两人经过多少分钟相遇
9、有一个周长是3140米的圆形湖,在湖的中间有一个面积是5000平方米的小岛。
如果在湖中种上白莲,每平方米水面可以收白莲千克。
一共可以收白莲多少千克
10、小明家距学校大约1千米,他打算每天从家出发去学校用8分钟,已知他骑自行车轮胎的外直径是0。
65米,如果平均每分钟自行车轮胎转80周,那么他能在计划时间内到学校吗
11、有一个直径是8米的圆形花坛,在它的外围修一条宽3米的小路,求这条小路的面积是多少
12、把一个圆形纸片剪开后,拼成一个宽等于半径,面积相等的近似长方形。
这个长方形的周长是24.84厘米,原来这个圆形纸片的面积是多少平方厘米
13、一个半圆的周长是分米,这个半圆的面积是多少平方分米
5、一块草地的形状如下图的阴影部分,它的周长和面积各是多少
求阴影部分的面积(单位:厘米)
20
30
20。