初三数学ppt

合集下载

初三数学复习课课件

初三数学复习课课件

总结词:掌握代数方程与不等式的解题技巧。
二次根式与一元二次方程
详细描述:通过解决涉及二次根式和一元二次方程的题 目,学生可以更好地理解两者之间的关联,掌握解题方 法,提高解决复杂代数问题的能力。
几何模拟试题
三角形与四边形
详细描述:通过解决三角形与四边形的题目,学生可以 深入理解三角形与四边形的性质和判定条件,掌握解题 方法,提高解决几何问题的能力。 总结词:掌握圆的基本性质及其应用。
几何重点难点
几何变换
掌握平移、旋转和轴对称的变换性质,理解变换在几何问题中的应用。
函数重点难点
一次函数与反比例函数
01
二次函数
03
02
掌握一次函数和反比例函数的图像和性质, 理解函数图像的平移和对称变换。
04
掌握二次函数的图像和性质,理解二次函 数的顶点和对称轴。
函数的应用
05
06
掌握函数在实际问题中的应用,理解函数 的最大值和最小值的求解方法。
03
复习解题方法
代数解题方法
代数方程求解
总结了代数方程的基本 解法,包括移项、合并 同类项、去括号、解方
程等步骤。
不等式求解
介绍了不等式的基本性 质和解题技巧,包括移 项、合并同类项、去分
母等步骤。
因式分解
总结了因式分解的常用 方法和技巧,包括提公
因式法、公式法等。
分式化简
介绍了分式化简的基本 方法和技巧,包括约分 、通分、分子分母同乘
04
复习易错题解析
代数易错题解析
总结词
代数式运算错误
详细描述
学生在进行代数式运算时,常常因为对运算法则理解不透彻或粗心大意导致运算错误,如括号处理不 当、符号混淆等。

初三数学课件ppt

初三数学课件ppt

包括一元一次不等式的性质和解法, 以及不等式组的性质和解法。
函数
函数的定义和性质
包括函数的定义、函数的表示方法、函数的单调性、奇偶性和周 期性等。
一次函数和反比例函数
包括一次函数和反比例函数的定义、性质和图像,以及它们的实际 应用。
函数的应用
通过实例和问题解决,让学生了解函数在实际生活中的应用,如路 程、速度和时间的关系等。
01
点、线、面的关系
理解点、线、面在三维空间中的关系,如点在面上、线在面上、线与线
相交、线与线平行等。
02
立体图形的分类与性质
了解常见的立体图形,如长方体、正方体、球体、圆柱体等,理解其性
质和特点。
03
立体图形的表面积与体积计算
掌握立体图形的表面积和体积计算公式,理解表面积与体积的关系。
03
概率与统计初步
数据中获取有用的信息。
统计方法
常见的统计方法包括描述性统计 和推断性统计,其中描述性统计 是对数据进行整理和描述,而推 断性统计则是对数据进行推理和
预测。
统计应用
统计在各个领域都有广泛的应用 ,如经济学、社会学、医学等。
数据处理与图表
数据处理
数据处理是指对数据进行清洗、去重、排序、筛选等操作 ,以便更好地利用数据进行分析和预测。

圆的性质
掌握圆的基本性质,如圆上任一点到圆心的距离等于半径,圆心 角与圆周角的关系等。
圆的周长与面积计算
掌握圆的周长和面积计算公式,理解周长与直径、半径的关系,面 积与半径的关系。
圆与三角形、四边形的关系
理解圆与三角形、四边形在面积和周长计算中的关系,如圆内接三 角形、外切三角形等。
立体几何初步

2024版初三数学最新课件

2024版初三数学最新课件
了解相似变换的概念和性质,掌握相似变换在几 何图形中的应用。
05
概率统计初步认识
Chapter
概率基础概念介绍
随机事件与概率
解释随机事件的定义,阐述概率是描述随机事件发生可能 性的数值。
概率的性质
介绍概率的加法公式、乘法公式、全概率公式等基本性质。
条件概率与独立性
阐述条件概率的概念,探讨事件之间的独立性关系。
表示方法
函数可以用解析式、表格、图象等 多种形式表示。
函数三要素
定义域、值域、对应关系是构成函 数的三个基本要素。
一次函数图象和性质
1 2
一次函数图象 一次函数的图象是一条直线。
斜率与截距
直线的斜率和截距决定了一次函数的性质。
3
函数性质 一次函数具有单调性,当斜率大于0时,函数单 调递增;当斜率小于0时,函数单调递减。
二次函数基础知识
二次函数定义 形如y=ax²+bx+c(a、b、c为常数且a≠0)的函数称为 二次函数。
图象特征 二次函数的图象是抛物线,对称轴为x=-b/2a。
函数性质 二次函数的性质与开口方向、顶点坐标和对称轴有关。当 a>0时,抛物线开口向上;当a<0时,抛物线开口向下。 顶点坐标为(-b/2a, c-b²/4a),对称轴为x=-b/2a。
理解垂径定理、切线长定理等圆的性质,掌握点与圆、直线与圆的 位置关系。
圆的证明
了解证明与圆有关问题的基本方法,如利用垂径定理、切线长定理等。
几何变换初步了解
平移变换
了解平移变换的概念和性质,掌握平移变换在几 何图形中的应用。
旋转变换
了解旋转变换的概念和性质,掌握旋转变换在几 何图形中的应用。

初中九年级(初三)数学课件 30度,45度,60度角的三角函数值

初中九年级(初三)数学课件 30度,45度,60度角的三角函数值
八仙过海,尽显才能
2.某商场有一自动扶梯,其倾斜角为300,高为7m, 扶梯的长度是多少?
小结 拓展
回味无穷
驶向胜利
▪ 直角三角形中的边角关系
的彼岸
B
看图说话:
c
直角三角形三边的关系. 直角三角形两锐角的关系. 直角三角形边与角之间的关系. A
a

b
C
特殊角300,450,600角的三角函数
300
(1)sin300等于多少?
(2)cos300等于多少?
450
(3)tan300等于多少?
450 ┌ 600 ┌
做一做P10
3
知识在于积累
(5)sin450,sin600等于多少? (6)cos450,cos600等于多少? (7)tan450,tan600等于多少? (8)cot450,cot600等于多少?
36 tan2 300 3 sin 600 2 cos 450.
2.如图,河岸AD,BC互相平行,桥AB垂 直于两岸.桥长12m,在C处看桥两端 A,B,夹角BCA=600. 求B,C间的距离(结果精确到1m).
A

B
C
驶向胜利 的彼岸
独立
P13 习题1.3 3题 作业
3.如图,身高1.5m的小丽用一个两锐角分别是300和600 的三角尺测量一棵树的高度.已知她与树之间的距离为 5m,那么这棵树大约有多高?
2
4 2 sin 2 300 cos2 600 2 cos2 450.
2
7 便是欣赏P11
真知在实践中诞生
例2 如图:一个小孩荡秋千,秋千链子的长度为 2.5m,当秋千向两边摆动时,摆角恰好为600,且 两边摆动的角度相同,求它摆至最高位置时与其

初中九年级(初三)数学课件 射影定理

初中九年级(初三)数学课件 射影定理

所以:AC2 AB DA
A
DB
同理,得:CDB ∽ ACB CD DB CB CB2 AB DB
AC CB AB
ACD ∽ CBD AC CD AD CD2 BD AD
CB BD CD
直角三角形中的成比例线段
在RtABC中,CD是高,则有
C
AC是AD,AB的比例中项。
BC是BD,AB的比例中项。
原来学好数学,一点 都不难!
教 学





目 标





你知道吗?
直角三角形中的成比例线段
使学生了解射影的概念,掌握射影定理及其应用。
直角三角形中的比例线段定理在证题和实际计算中有较
多的应用。
例2证法有一定的技巧性。
直角三角形中的成比例线段
1.
已学习了相似三角形的判定及直角三角形相似的判定方 法。今天我们进一步学习直角三角形的特性。
CD是BD,AD的比例中项。
A
DB
那么AD与AC,BD与BC是什么关系呢? 这节课,我们先来学习射影的概念。
直角三角形中的成比例线段
1.射影:
(1)太阳光垂直照在A点,留在直线MN
上的影子应是什么?
B
(2)线段留在MN上的影子是什么? M B’
.A A’ N
定义:
B
A
过线段AB的两个端点分别作直线l的垂线, 垂足A’,B’之间的线段A’B’叫做线段AB在
C
分析:利用射影定理和勾股定理
CD2 AD DB 2 6 12,
解:
CD
12 2
3cm;
AD
B
AC2 AD AB 2 2 6 16,

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高

人教版九年级下册数学:正弦、余弦、正切函数的简单应用(共32张PPT)

人教版九年级下册数学:正弦、余弦、正切函数的简单应用(共32张PPT)
A
C 30°
1.5
D
10
B
例 操场有一旗杆,老师让小明去测量旗杆高度.小明站在 离旗杆底部10米的位置,目测旗杆的顶部,视线与水平线的 夹角为30度,并已知目高为1.5米.然后他很快就算出旗杆 的高度了.你知道小明怎样算出的吗?
A
C 30°
1.5
D
10

H
B
C 30°
1.5
D
10
A
解:由题意可知:DB=10,
你知道小明怎样算出的吗? ∵CD⊥DB,AB⊥DB
三角形
5米.然后他很快就算出旗杆的高度了.
初三的学习既是机遇也是挑战,只有团结一致,相互帮助,互相追赶,才能到达理想的彼岸。
过点C作CH⊥AB于点H
解:由题意可知:DB=10,∠ACH=30°,CD=1.
锐角三 ∴CH=DB=10,HB=CD=1.
解:由题意可知:DB=10,∠ACH=30°,CD=1.
作业布置:课本78页 7、8、9
谢谢聆听!
∠ACH=30°,CD=1.5

H
B
C 30°
1.5
D
10
A
解:由题意可知:DB=10,
∠ACH=30°,CD=1.5
过点C作CH⊥AB于点H

H
B
A
解:由题意可知:DB=10,
解:由题意可知:DB=10,∠ACH=30°,CD=1.
∠ACH=30°,CD=1.5
5米.然后他很快就算出旗杆的高度了.Leabharlann C1.53300°°
D
10
A

H B
解:由题意可知:DB=10, ∠ACH=30°,CD=1.5

初三数学ppt课件

初三数学ppt课件
1.二次函数的图象有着丰富的内涵,解决二次函数 的题目应尽可能地画出大致的抛物线图象,结合图 形,解决问题.利用a、b、c的值可判断二次函数的 大致位置情况;反之,若已知二次函数的大致位 置,也可以判断出一些特殊关系式或字母的取值 范围等. 2.二次函数还与一元二次方程的知识紧密联系.利 用方程根的性质、根的判别式,可判定抛物线与x 轴交点的情况;反之,可以求某些字母的取值范 围. 3.要准确辨析条件,选用适当的形式求二次函 数解析式,即已知任意三点坐标选用一般式; 已知顶点坐标、对称轴或最值常可选用顶点式; 已知抛物线与x轴的两个交点坐标常选用交点式.
C.2a+b>0
D.4a-2b+c<0
a﹥0 b﹤0 c﹤0 X= - b/2a<1 ∴-b<2a ∴2a+b>0
当x=-2时, y=4a-2b+c >0
8
10、若抛物线y=ax2+3x+1与x轴有两
个交点,则a的取值范围是( D)
A.a>0
B.a>- 4/9
C.a> 9/4 D.a<9/4且a≠0
轴交于A、B两点,与y轴交于点C,且OB= 3,
CB=2 3,∠CAO=30°,求抛物线的解析式和它
的顶点坐标.
OC= 3
OA= 3 3
y 1 x2 4 3x 3 33
顶点坐标为( 2 3,1)
13
挑恭 战喜 成你 功
把你的喜悦和大家一起分享, 也请把你的收获告诉你的同桌吧!
14
四、方法小结
2m1时图象过原点另一个交点坐标为103当m1且m3时抛物线的顶点在第四象限轴只有一个交点抛物线与轴总有交点且当抛物线与为何值时无论轴只有一个交点抛物线与轴总有交点且当抛物线与为何值时无论13如图所示已知抛物线yaxcb2cao30求抛物线的解析式和它的顶点坐标

初三数学复习《二次函数》(专题复习)PPT课件

初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上

初三二次函数课件ppt课件

初三二次函数课件ppt课件

02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。

初三九年级数学ppt课件弧长和扇形面积公式

初三九年级数学ppt课件弧长和扇形面积公式

5.方法小结: 问题1:求一个图形的面积,而这个图形是未知图形时,我 们应该把未知图形化为什么图形呢? 问题2:通过以前的学习,我们又是通过什么方式把未知图 形化为已知图形的呢?
活动6 达标检测2
1 . 120°的圆心角所对的弧长是 12π cm , 则此弧所在的圆的半径是
________. 2 . 如图, 在4×4 的方格中 (共有16 个方格 ) , 每个小方格都是边长为 1
活动5 反馈新知
1 . 已知扇形的半径为 3 cm , 面积为 3π cm2 , 则扇形的圆心角是 ________°,扇形的弧长是________cm.(结果保留π)(答案:120,2π) 2.师生共同完成教材第112页例2. 3.完成教材第113页练习第3题. 4.如图,已知扇形的圆心角是直角 ,半径是2,则图中阴影部分的 面积是________.(结果不计算近似值)(答案:π-2)
的正方形. O , A , B 分别是小正方形的顶点 , 则扇形 OAB 的弧长等于
________.(结果保留根号及π)
3.如图,矩形ABCD中,AB=1,AD=,以AD的长为半径的⊙A 交BC边于点E,则图中阴影部分的面积为________.
活动7 课堂小结与作业布置 课堂小结 1.弧长公式是什么?扇形的面积公式呢?是怎样推导出来的? 如何理解这两个公式?这两个公式有什么作用?这两个公式有 什么联系? 2.在解决部分与整体关系的问题时,我们应学会用什么方法 去解决? 3.解决不规则图形的面积问题时,我们应用什么数学思想去 添加辅助线? 作业布置 教材第115页 习题24.4第1题的(1),(2)题,第2~8题.
24.4
弧长和扇形面积
第1课时 弧长和扇形面积公式
1.理解弧长与圆周长的关系 ,能用比例的方法推导弧长公式 , 并能利用弧长公式进行相关计算. 2.类比推导弧长公式的方法推导扇形面积公式 ,并能利用扇形 面积公式进行相关计算.

初三反比例函数ppt课件ppt课件

初三反比例函数ppt课件ppt课件

反比例函数是具有极限的函数,当x趋 近于无穷大或无穷小时,y的值趋近于 0。
反比例函数的图像是关于原点对称的 。
02CHBiblioteka PTER反比例函数的应用生活中的反比例现象
总结词
生活中常见的反比例现象
详细描述
在日常生活中,许多现象可以用反比例函数来描述。例如,当两个量之间的比例保持恒定时,其中一个量增加, 另一个量会相应减少,形成反比例关系。这种现象在很多场合都可以观察到,如物体的质量和体积、电路中的电 流和电阻等。
提高练习题解析
总结词
提升解题能力
详细描述
提高练习题相对于基础练习题难度有所增加,题目设计更加灵活,需要学生具备一定的数学思维和解 题技巧。这些题目通常涉及到反比例函数与其他数学知识的综合运用,如与一次函数、二次函数等知 识的结合。
竞赛练习题解析
总结词
挑战高难度
详细描述
竞赛练习题是针对数学竞赛和数学特长生设计的题目,难度较大,题目设计更加复杂和 综合。这些题目不仅要求学生掌握反比例函数的知识,还需要具备较高的数学素养和解 题能力。通过解答这些题目,学生可以挑战自己的数学思维和解题能力,提升数学学习
对未来学习的展望
学生可以在反比例函数的基础上,进一 步学习其他类型的函数,如幂函数、对 数函数等,以拓展数学知识的广度和深
度。
学生可以尝试将反比例函数与其他学科 的知识点进行结合,例如与物理中的电 流、电压等概念进行联系,加深对相关
概念的理解。
学生可以通过参加数学竞赛、科研项目 等活动,进一步提高自己的数学素养和 解决问题的能力,为未来的学习和职业
总结词
掌握实际应用题的解题技巧是提高解 题效率的关键。
详细描述
在解决反比例函数实际应用题时,需 要将问题转化为数学模型,并运用适 当的解题技巧,如排除法、比较法等 ,以简化问题并快速找到答案。

初三数学ppt课件

初三数学ppt课件
详细描述:立体几何是研究空间几何形状和物体位置关系的学科,涉及平面、直线、体积等概念和定 理,如平行线、垂直线、勾股定理等,需要培养学生的空间思维和想象力。
04 专题部分
运动问题
总结词:掌握运动问题的解题思路和数学模型,了解物理 运动和数学运动的概念和关系。
详细描述
1. 定义运动的概念和分类。
2. 分析匀速运动和变速运动的特征和公式。
一元二次方程
定义
一元二次方程是一个整式方程,它的一般形式是ax^2 + bx + c = 0,其中a、b、c是常数且a≠0 。
解法
配方法、公式法、因式分解法
应用
解决实际问题,如计算面积、体积等
函数与图像
定义
函数是数学表达式的集合,它的 一般形式是y = f(x),其中x是自 变量,y是因变量。图像是函数的
日常生活应用
初三数学中的许多概念和原理在日常生活中都有广泛的应用 。
初三数学的学习方法
01
制定学习计划
合理安排时间,设
定学习目标,保持
02
一定的学习节奏。
多做练习
通过大量的练习, 加深对知识点的理
解和记忆。
04
及时总结
定期对所学内容进
03
行总结和回顾,查
漏补缺。
积极思考
主动思考和解决问 题,不依赖他人,
不逃避困难。
初三数学的教学目标
掌握初中数学基础知识
确保学生掌握初中数学的基本概念、 原理和算法。
提高应用能力
为学生进入高中后的数学学习打下坚 实的基础。
培养数学思维
通过解决问题和分析案例,培养学生 的逻辑思维和分析能力。
为高中数学打下基础

初三数学第一课PPT1

初三数学第一课PPT1

进入全面的中考复习
三、九年级数学学习的重要性:
与以往课程相比,九年级数学不但增 加知识量,而且有质的飞跃———要求同 学在深刻理解概念的基础上,掌握数学思 想方法,能综合运用学到的知识来解决问 题。因此,新九年级的同学现在就要学会 用更好的优化方式学习数学,才能顺利挑 起新的学习重任。
四、九年级数学学习方法:
九年级数学第一课
一、九年级数学内容
上册: 第一章 一元二次方程 第二章 二次函数 第三章 旋转 第四章 圆 第五章 概率初步
下册:
第一章 反比例函数 第二章 相似 第三章 锐角三角函数 第四章 投影与视图
二、九年级教学内容的初步安排:
九年级上学期 期中考试前:完成九年级上册书的教学
期中考试后:完成九年级下册书的教学 九年级下学期
对新九年级学生来说,学好数学,首先 要抱着浓厚的兴趣去学习数学,积极展开思 维的翅膀,主动地参与教学全过程,充分发 挥自己的主观能动性,愉快有效地学习数学。
1、编织知识网络
我们学过不少知识点,做了不少题目,但是 脑子里的印象却往往是模糊、孤立的,必须经过 比较和整理,找出其中的联系和区别,把知识编 织成网络,解题时就能胸有成竹,运用自如,形 成解决问题的能力。 例如,怎样的四边形可以判定它是平行四边 形、矩形、菱形、正方形?分别有几条可以考虑 的思路?它们的边、角、对角线各有什么性质? 对称性怎样?不妨总结一下。
第四个易出现的问题:
作息不当,效率不高。

要劳逸结合,保证睡眠,合理利用时间, 注重学习效率
第五个易出现的问题:
不知如何应对家长的压力

1、要学会理解父母,变对立为合力。 2、要学会与父母沟通,变压力为动力。 3、要学会调整期望,挖潜力为实力。

初三数学ppt课件

初三数学ppt课件

分式方程
理解分式方程的概念,掌 握分式方程的解法,了解 分式方程的应用。
函数与图像
函数的概念
理解函数的概念,掌握函数的表 示方法,了解函数的性质。
一次函数
掌握一次函数的标准形式,理解一 次函数的图像和性质,了解一次函 数的应用。
二次函数
了解二次函数的一般形式,理解二 次函数的图像和性质,掌握求二次 函数的顶点和对称轴的方法。
DATE
ANALYSIS
SUMMAR Y
04
概率与统计
概率初步
概率定义
概率是描述随机事件发生可能性的数 学量,其值在0到1之间,其中0表示 事件不可能发生,1表示事件一定发 生。
概率计算
独立事件与互斥事件
独立事件的发生不受其他事件的影响 ,互斥事件则不能同时发生。
通过长期实验或观察,可以计算随机 事件的概率。例如,投掷一枚硬币正 面朝上的概率是0.5。
代数方程
理解代数方程的概念,掌 握一元一次方程的解法, 了解一元二次方程的解法 。
代数运算
掌握代数运算的基本法则 ,如加法、减法、乘法、 除法等,以及运算律如交 换律、结合律等。
代数方程
一元一次方程
掌握一元一次方程的标准 形式,理解方程的解的概 念,掌握解一元一次方程 的方法。
一元二次方程
了解一元二次方程的一般 形式,理解方程的根的概 念,掌握求一元二次方程 实数根的方法。
一题多解
展示同一道习题的不同解题方 法,开拓学生思路。
易错点提醒
指出习题中的易错点,避免学 生犯同样的错误。
举一反三
给出与原题相关的变式题目, 帮助学生巩固知识点。
学习反馈
课堂互动
通过提问、小组讨论等方式, 鼓励学生参与课堂互动,提高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档