椭圆及其性质

合集下载

数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结

数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结

数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结
椭圆的焦距与长轴长之比叫做椭圆的离心率。

椭圆的性质:
1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。

2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。

3、焦点:F1(-c,0),F2(c,0)。

4、焦距:。

5、离心率:;
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。

利用椭圆的几何性质解题:
利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。

椭圆中求最值的方法:
求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。

(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.
椭圆中离心率的求法:
在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,高考物理,从而求离心率或离心率的取值范围.。

椭圆的定义与性质

椭圆的定义与性质

椭圆的定义与性质椭圆是数学中的一个重要几何概念,它在几何学、物理学、天文学等领域中都有广泛的应用。

本文将从椭圆的定义、性质以及应用等方面进行探讨。

一、椭圆的定义椭圆是平面上一组点的集合,这组点到两个给定点的距离之和等于常数的情况。

这两个给定点称为焦点,而常数称为离心率。

椭圆的定义可以用数学表达式表示为:对于平面上的点P(x, y),到焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 =2a。

其中,a为椭圆的半长轴。

二、椭圆的性质1. 焦点与半长轴的关系:椭圆的两个焦点到椭圆中心的距离之和等于2a,即F1C + F2C = 2a。

这表明椭圆的中心C位于焦点连线的中垂线上。

2. 离心率与形状的关系:离心率e是椭圆的一个重要参数,它决定了椭圆的形状。

当离心率e=0时,椭圆退化为一个圆;当0<e<1时,椭圆的形状趋近于圆;当e=1时,椭圆退化为一个抛物线;当e>1时,椭圆的形状趋近于双曲线。

3. 半短轴与半长轴的关系:椭圆的半长轴为a,半短轴为b,它们之间的关系可以用离心率e来表示,即e = √(1 - b²/a²)。

通过这个公式,我们可以计算出椭圆的半短轴。

4. 焦点与直径的关系:椭圆的焦点到椭圆上任意一点的距离之和等于椭圆的直径。

这个性质在椭圆的应用中非常重要,例如在天文学中,可以用椭圆的性质来描述行星的轨道。

三、椭圆的应用1. 天文学中的椭圆轨道:行星绕太阳运动的轨道可以近似看作椭圆,根据椭圆的性质,可以计算出行星的轨道参数,如离心率、半长轴等。

2. 椭圆的光学性质:椭圆镜是一种常见的光学元件,它可以将入射光线聚焦到一个点上,用于望远镜、显微镜等光学仪器中。

3. 椭圆的工程应用:在建筑、桥梁等工程设计中,椭圆形状的结构可以提供更好的力学性能和美观效果。

总结:椭圆作为一种重要的数学概念,在几何学和应用数学中都有广泛的应用。

通过对椭圆的定义与性质的探讨,我们可以更好地理解椭圆的形状特征以及其在各个领域中的应用。

椭圆知识点与性质大全

椭圆知识点与性质大全

椭圆与方程【知识梳理】 1、椭圆的定义平面内,到两定点1F 、2F 的距离之和为定长()1222,0a F F a a <>的点的轨迹称为椭圆,其中两定点1F 、2F 称为椭圆的焦点,定长2a 称为椭圆的长轴长,线段12F F 的长称为椭圆的焦距.此定义为椭圆的第一定义. 2、椭圆的简单性质3、焦半径椭圆上任意一点P 到椭圆焦点F 的距离称为焦半径,且[],PF a c a c ∈-+,特别地,若00(,)P x y 为椭圆()222210x y a b a b +=>>上的任意一点,1(,0)F c -,2(,0)F c 为椭圆的左右焦点,则10||PF a ex =+,20||PF a ex =-,其中ce a=. 4、通径过椭圆()222210x y a b a b +=>>焦点F 作垂直于长轴的直线,交椭圆于A 、B 两点,称线段AB 为椭圆的通径,且22b AB a=.P 为椭圆()222210x y a b a b+=>>上的任意一点,1(,0)F c -,2(,0)F c 为椭圆的左右焦点,称12PF F ∆为椭圆的焦点三角形,其周长为:1222F PF C a c ∆=+,若12F PF θ∠=,则焦点三角形的面积为:122tan 2F PF S b θ∆=.6、过焦点三角形直线l 过椭圆()222210x y a b a b+=>>的左焦点1F ,与椭圆交于11(,)A x y 、22(,)B x y 两点,称2ABF ∆为椭圆的过焦点三角形,其周长为:24ABF C a ∆=,面积为212y y c S ABF -=∆.7、点与椭圆的位置关系()00,P x y 为平面内的任意一点,椭圆方程为22221(0)x y a b a b +=>>:若2200221x y a b +=,则P 在椭圆上;若2200221x y a b +>,则P 在椭圆外;若2200221x y a b+<,则P 在椭圆内.8、直线与椭圆的位置关系直线:0l Ax By C ++=,椭圆Γ:22221(0)x y a b a b+=>>,则l 与Γ相交22222a A b B C ⇔+>;l 与Γ相切22222a A b B C ⇔+=;l 与Γ相离22222a A b B C ⇔+<.9、焦点三角形外角平分线的性质(*)点(,)P x y 是椭圆22221(0)x y a b a b+=>>上的动点,12,F F 是椭圆的焦点, M 是12F PF ∠的外角平分线上一点,且【推广2】设直线()110l y k x m m =+≠:交椭圆()222210x y a b a b +=>>于C D 、两点,交直线22l y k x =:于点E .若E 为CD 的中点,则2122b k k a=-.11、中点弦的斜率()()000,0M x y y ≠为椭圆()222210x y a b a b +=>>内的一点,直线l 过M 与椭圆交于,A B 两点,且AM BM =,则直线l 的斜率2020ABb x k a y =-.12、相互垂直的半径倒数的平方和为定值若A 、B 为椭圆C :()222210x y a b a b+=>>上的两个动点,O 为坐标原点,且OA OB ⊥.则2211||||OA OB +=定值2211ab+.【典型例题】例1、直线1y kx =+与椭圆2215x y m+=恒有公共点,则m 的取值范围是__________. 【变式1】已知方程13522-=-+-k y k x 表示椭圆,则k 的取值范围__________. 【变式2】椭圆12222=-++m x m y 的两个焦点坐标分别为__________.【变式1】已知圆()11:221=++y x O ,圆()91:222=+-y x O ,动圆M 分别与圆1O 相外切,与圆2O 相内切.求动圆圆心M 所在的曲线的方程.【变式2】已知ABC ∆的两个顶点坐标为(4,0),(4,0)A B -,ABC ∆的周长为18,则顶点C 的轨迹方程为__________.【变式3】已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆的圆心P 的轨迹方程.例3、若P 是椭圆13422=+y x 上的点,1F 和2F 是焦点,则 (1)21PF PF ⋅的取值范围为__________. (2)12PF PF ⋅的取值范围为__________.(3)2212PF PF +的取值范围为__________.【变式1】点(,)P x y 是椭圆22194x y +=上的一点,12,F F 是椭圆的焦点,M 是1PF 的中点,且12PF =,O 为坐标原点,则OM =_______.【变式2】点(,)P x y 是椭圆22221(0)x y a b a b+=>>上的动点,12,F F 是椭圆的焦点,M 是12F PF ∠的外角平分线上一点,且20F M MP ⋅=,则动点M 的轨迹方程为________.例4、已知椭圆2212516x y +=内有一点()2,1A ,F 为椭圆的左焦点,P 是椭圆上动点,求PA PF +的最大值与最小值__________.【变式】若椭圆171622=+y x 的左、右两个焦点分别为1F 、2F ,过点1F 的直线l 与椭圆相交于A 、B 两点,则B AF 2∆的周长为__________.例5、12,F F 是椭圆221x y +=的焦点,点P 为其上动点,且1260F PF ∠=︒,则12F PF ∆的面积是__________.【变式】焦点在轴x 上的椭圆方程为2221(0)x y a a +=>,1F 、2F 是椭圆的两个焦点,若椭圆上存在点B ,使得122F BF π∠=,那么实数a 的取值范围是________.例6、已知椭圆2212x y +=, (1)求过点1122P ⎛⎫⎪⎝⎭,且被P 平分的弦所在的直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过(21)A ,引椭圆的割线,求截得的弦的中点的轨迹方程.(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.例7、已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.例8、已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.例9、已知定点()2,0A -,动点B 是圆64)2(:22=+-y x F (F 为圆心)上一点,线段AB 的垂直平分线交BF于P .(1)求动点P 的轨迹方程; (2)直线13+=x y 交P 点的轨迹于,M N 两点,若P 点的轨迹上存在点C ,使,OC m ON OM ⋅=+求实数m的值;例10、已知椭圆12222=+b y a x (0>>b a ),过点(),0A a -,()0,B b 的直线倾斜角为6π,原点到该直线的距离为23.(1)求椭圆的方程;(2)斜率大于零的直线过()1,0D -与椭圆交于E ,F 两点,若DF ED 2=,求直线EF 的方程;(3)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点(1,0)D -?若存在,求出k 的值;若不存在,请说明理由.例11、若AB是经过椭圆2212516x y+=中心的一条弦点,12,F F分别为椭圆的左、右焦点,求1F AB∆的面积的最大值.【变式1】已知直线l与椭圆2213xy+=交于A B、两点,坐标原点O到直线l的距离为2,求AOB∆的面积的最大值.【变式3】已知定点)0,(a A 和椭圆8222=+y x 上的动点),(y x P(1)若2=a 且223||=PA ,计算点P 的坐标; (2)若30<<a 且||PA 的最小值为1,求实数a 的值.【变式4】如图,椭圆的中心在原点,()()2,0,0,1A B 是它的两个顶点,直线(0)y kx k =>交线段AB 于点D ,交椭圆于,E F 两点.(1)若6ED DF =,求直线的斜率k ;D(2)求四边形AFBE 的面积S 的最大值.【变式5】椭圆()222104x y b b +=>的一个焦点是()1,0F - (1)求椭圆的方程;(2)已知点P 是椭圆上的任意一点,定点M 为x 轴正半轴上的一点,若PM 的最小值为85,求定点M 的坐标; (3)若过原点O 作互相垂直两条直线,交椭圆分别于,A C 与,B D 两点,求四边形ABCD 面积的取值范围.【变式6】在平面直角坐标系xOy中,动点P到定点()),的距离之和为4,设点P的轨迹为曲线C,直E-,且与曲线C交于,A B两点.线l过点(1,0)(1)求曲线C的方程;(2)以AB为直径的圆能否通过坐标原点?若能通过,求此时直线l的方程,若不能,说明理由.∆的面积是否存在最大值?若存在,求出面积的最大值,以及此时的直线方程,若不存在,请说明理由.(3)AOB例12、已知椭圆2222(0)x y a a +=>的一个顶点和两个焦点构成的三角形的面积为4. (1)求椭圆C 的方程;(2)已知直线)1(-=x k y 与椭圆C 交于A 、B 两点,试问,是否存在x 轴上的点(),0M m ,使得对任意的k R ∈,MA MB ⋅为定值,若存在,求出M 点的坐标,若不存在,说明理由.【变式1】过椭圆22182x y +=长轴上某一点(),0S s (不含端点)作直线l (不与x 轴重合)交椭圆于,M N 两点,若点(),0T t 满足:8OS OT ⋅=,求证:MTS NTS ∠=∠.【变式2】已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为4,且点⎛ ⎝⎭在椭圆C 上. (1)求椭圆C 的方程;(2)设P 是椭圆C 长轴上的一个动点,过P 作方向向量()2,1d =的直线l 交椭圆C 于A 、B 两点,求证:22PA PB +为定值.【变式3】如图,A 为椭圆()2222+10x y a b a b =>>上的一个动点,弦,AB AC.当AC x ⊥轴时,恰好123AF AF =(1)求ca的值 (2)若111AF F B λ=,222AF F C λ=,试判断12λλ+是否为定值?若是,求出定值;若不是,说明理由.【变式4】线段,A B 分别在x 轴,y 轴上滑动,且3AB =,M 为线段AB 上的一点,且1AM =,M 随,A B 的滑动而运动(1)求动点M 的轨迹方程E ;(2)过N 的直线交曲线E 于,C D 两点,交y 轴于P ,1PC CN λ=,2PD DN λ=,试判断12λλ+是否为定值?若是,求出定值;若不是,说明理由.2F 1F【变式5】如图,已知椭圆C :22221x y a b+=,其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G ,AB 的中垂线与x 轴和y轴分别交于,D E 两点,且1AF 、12F F 、2AF 构成等差数列.(1)求椭圆C 的方程;(2)记△1GF D 的面积为1S ,△OED (O 为原点)的面积为2S .试问:是否存在直线AB ,使得12S S =?说明理由.xyO A B1F D GE2F【变式6】已知椭圆C 的方程为22212x y a +=(0)a >,其焦点在x 轴上,点Q 为椭圆上一点. (1)求该椭圆的标准方程;(2)设动点P 00(,)x y 满足2OP OM ON =+,其中M 、N 是椭圆C 上的点,直线OM 与ON的斜率之积为12-,求证:22002x y +为定值; (3)在(2)的条件下探究:是否存在两个定点,A B ,使得PA PB +为定值?若存在,给出证明;若不存在,请说明理由.例13、椭圆的一个顶点(0,1)A -,焦点在x 轴上,右焦点到直线0x y -+的距离为3.(1)求椭圆的方程;(2)设椭圆与直线(0)y kx m k =+≠相交于不同两点,M N ,当AM AN =时,求实数m 的取值范围.【变式1】已知A 、B 、C 是椭圆()222210x y a b a b+=>>上的三点,其中()A ,BC 过椭圆的中心,且0AC BC ⋅=,2BC AC =.(1)求椭圆的方程;(2)过点()0,M t 的直线l (斜率存在时)与椭圆交于两点,P Q ,设D 为椭圆与y 轴负半轴的交点,且DP DQ =.求实数t 的取值范围.。

第一课时 椭圆及其性质

第一课时  椭圆及其性质
典例1 (1)已知△ABC的顶点B,C在椭圆 x2 +y2=1上,顶点A是椭圆的一个焦点,
3
且椭圆的另外一个焦点在BC边上,则△ABC的周长是 ( C ) A.2 3 B.6 C.4 3 D.2
考点突破 栏目索引
(2)已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1内切,和
由椭圆的定义知|BF1|+|BF2|=2a=4x,所以|AF1|=2x. 在△BF1F2中,|BF1|2=|BF2|2+|F1F2|2-2|F2B|·|F1F2|·cos∠BF2F1,即9x2=x2+22-4x· cos∠BF2F1①,
在△AF1F2中,|AF1|2=|AF2|2+|F1F2|2-2|AF2|·|F1F2|cos∠AF2F1, 即4x2=4x2+22+8x·cos∠BF2F1②, 由①②得x= 3 ,所以2a=4x=2 3 ,a= 3 ,所以b2=a2-c2=2.
+
y2 b2
=1(a>b>0)上一点P(x0,y0)(y0≠0)和焦点F1(-c,0),F2(c,0)为顶点
的△PF1F2中,若∠F1PF2=θ,则
(1)|PF1|=a+ex0,|PF2|=a-ex0(焦半径公式,e为椭圆的离心率),|PF1|+|PF2|=2a;
教材研读 栏目索引
(2)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cos θ;
栏目索引
=4a2-4c2=4b2,
∴S
PF1F2
=
1 2
r1r2=b2=9,
∴b=3.
考点突破 栏目索引

椭圆定义及性质整合

椭圆定义及性质整合
4
2
X2
—y21.【解析】解法一:
4
222
P(X,y), MM』),则N(%,yj,因为今11,则y2b2(1得),a ba
y12b2(1
2
X1
ki
k2
y y〔yy1
x x1x x1
22
yy1
22
xx1
b2(1 S) b2(1
2
X1
2
椭圆方程为—
4
1.
解法二:由第三定义知
1一,,一、…
1,且2a 4 ,则则椭圆方程为
[2, 1]所以k1[—,—].
8 4
二、椭圆的性质
焦点三角形
椭圆焦点三角形的边角关系:F1F22c, PF1
PF22a,周长为
2a
2c.设
F1PF2
(1)
当点P处于短轴的顶点处时,顶角 最大;
(3)
(4)
PF1PF2
SPF1F2
PF1F2
推导过程:
2b2
1cos
.2.
b tan —;
2
SB1F1F2
4c2
22
4a24c2
PF1PF2
1cos
1 cos
2 a2
222
2a 2e0x0
1,
最大;
PF1
2b2
1cosmax
PF1
PF24 c2
2 b2
2 n,(当点P为短轴
1 2cos23 1
2
顶点时 取得最大值0,此时cos—
2
代入化简得PF1PF2
2b22
a
1cos
S 1 2b2
⑶由(2)得SPF1F22 r^cos

椭圆及其性质

椭圆及其性质

§8.5椭圆及其性质学习目标1.理解椭圆的定义、几何图形、标准方程.2.掌握椭圆的简单几何性质(范围、对称性、顶点、离心率).3.掌握椭圆的简单应用.知识梳理1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.两个定点F1,F2叫做椭圆的焦点,两焦点间的距离|F1F2|叫做椭圆的焦距.2.椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1 (a>b>0)y2a2+x2b2=1 (a>b>0)范围-a≤x≤a且-b≤y≤b-b≤x≤b且-a≤y≤a顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长短轴长为2b,长轴长为2a焦点F1(-c,0),F2(c,0) F1(0,-c),F2(0,c) 焦距|F1F2|=2c对称性对称轴:x轴和y轴,对称中心:原点离心率e=ca(0<e<1) a,b,c的关系a2=b2+c2常用结论椭圆的焦点三角形椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.如图所示,设∠F 1PF 2=θ.(1)当P 为短轴端点时,θ最大,12F PF S △最大.(2) 12F PF S △=12|PF 1||PF 2|sin θ=b 2tan θ2=c |y 0|.(3)|PF 1|max =a +c ,|PF 1|min =a -c . (4)|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=a 2.(5)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( × ) (2)椭圆是轴对称图形,也是中心对称图形.( √ ) (3)y 2m 2+x 2n 2=1(m ≠n )表示焦点在y 轴上的椭圆.( × ) (4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.( √ ) 教材改编题1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10 答案 D解析 依椭圆的定义知,|PF 1|+|PF 2|=2×5=10.2.若椭圆C :x 24+y 23=1,则该椭圆上的点到焦点距离的最大值为( )A .3B .2+ 3C .2 D.3+1答案 A解析 由题意知a =2,b =3,所以c =1,距离的最大值为a +c =3.3.(2022·深圳模拟)已知椭圆C 的焦点在x 轴上,且离心率为12,则C 的方程可以为________.答案 x 24+y 23=1(答案不唯一)解析 因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b2=1,a >b >0,因为离心率为12,所以c a =12,所以c 2a 2=a 2-b 2a 2=14,则b 2a 2=34.题型一 椭圆的定义及其应用例1 (1)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 答案 B解析 点P 在线段AN 的垂直平分线上,故|P A |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|P A |=|AM |=6>|MN |.由椭圆的定义知,P 的轨迹是椭圆.(2)设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________. 答案433解析 由题意知,c =a 2-4. 又∠F 1PF 2=60°,|F 1P |+|PF 2|=2a , |F 1F 2|=2a 2-4,∴|F 1F 2|2=(|F 1P |+|PF 2|)2-2|F 1P ||PF 2|- 2|F 1P |·|PF 2|cos 60°=4a 2-3|F 1P |·|PF 2|=4a 2-16, ∴|F 1P |·|PF 2|=163,∴12PF F S △=12|F 1P |·|PF 2|sin 60°=12×163×32 =433. 延伸探究 若将本例(2)中“∠F 1PF 2=60°”改成“PF 1⊥PF 2”,求△PF 1F 2的面积. 解 ∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2=4(a 2-4) =4a 2-16, 又|PF 1|+|PF 2|=2a , ∴|PF 1|·|PF 2|=8, ∴12PF F S △=4.教师备选1.△ABC 的两个顶点为A (-3,0),B (3,0),△ABC 周长为16,则顶点C 的轨迹方程为( ) A.x 225+y 216=1(y ≠0) B.y 225+x 216=1(y ≠0) C.x 216+y 29=1(y ≠0) D.y 216+x 29=1(y ≠0) 答案 A解析 由题知点C 到A ,B 两点的距离之和为10,故C 的轨迹为以A (-3,0),B (3,0)为焦点,长轴长为10的椭圆,故2a =10,c =3,b 2=a 2-c 2=16.所以方程为x 225+y 216=1. 又A ,B ,C 三点不能共线, 所以x 225+y 216=1(y ≠0).2.若F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.74 C.72 D.752答案 C解析 由题意得a =3,b =7,c =2, ∴|F 1F 2|=22,|AF 1|+|AF 2|=6.∵|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45° =|AF 1|2+8-4|AF 1|,∴(6-|AF 1|)2=|AF 1|2+8-4|AF 1|, 解得|AF 1|=72.∴△AF 1F 2的面积 S =12×22×72×22=72. 思维升华 椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程、求焦点三角形的周长、面积及求弦长、最值和离心率等.(2)通常将定义和余弦定理结合使用求解关于焦点三角形的周长和面积问题.跟踪训练1 (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程是( ) A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 答案 D解析 设动圆的圆心M (x ,y ),半径为r , 圆M 与圆C 1:(x -4)2+y 2=169内切, 与圆C 2:(x +4)2+y 2=9外切. 所以|MC 1|=13-r ,|MC 2|=3+r . |MC 1|+|MC 2|=16>|C 1C 2|=8,由椭圆的定义,M 的轨迹是以C 1,C 2为焦点,长轴长为16的椭圆. 则a =8,c =4,所以b 2=82-42=48, 动圆的圆心M 的轨迹方程为x 264+y 248=1.(2)(2022·武汉调研)设椭圆x 24+y 23=1的一个焦点为F ,则对于椭圆上两动点A ,B ,△ABF 周长的最大值为( ) A .4+ 5 B .6 C .25+2 D .8 答案 D解析 设F 1为椭圆的另外一个焦点,则由椭圆的定义可得|AF |+|BF |+|AB |=2a -|AF 1|+2a -|BF 1|+|AB |=4a +|AB |-|BF 1|-|AF 1|=8+|AB |-|BF 1|-|AF 1|, 当A ,B ,F 1三点共线时, |AB |-|BF 1|-|AF 1|=0, 当A ,B ,F 1三点不共线时, |AB |-|BF 1|-|AF 1|<0,所以当A ,B ,F 1三点共线时,△ABF 的周长取得最大值8. 题型二 椭圆的标准方程 命题点1 定义法例2 已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 B解析 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由椭圆定义可得|AF 1|+|AB |+|BF 1|=4a . ∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a . 又|AF 2|=2|F 2B |, ∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a . 又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点. 如图,不妨设A (0,b ),又F 2(1,0),AF 2—→=2F 2B —→, ∴B ⎝⎛⎭⎫32,-b 2. 将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1, ∴a 2=3,b 2=a 2-c 2=2. ∴椭圆C 的方程为x 23+y 22=1.命题点2 待定系数法例3 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则该椭圆的方程为________. 答案 x 29+y 23=1解析 设椭圆的方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ). 因为椭圆经过P 1,P 2两点, 所以点P 1,P 2的坐标满足椭圆方程,则⎩⎪⎨⎪⎧6m +n =1,3m +2n =1, 解得⎩⎨⎧m =19,n =13.所以所求椭圆的方程为x 29+y 23=1.教师备选1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,过F 2的直线与椭圆C 交于A ,B 两点,若△F 1AB 的周长为8,则椭圆方程为( ) A.x 24+y 23=1 B.x 216+y 212=1 C.x 22+y 2=1 D.x 24+y 22=1 答案 A 解析 如图,由椭圆的定义可知,△F 1AB 的周长为4a , 所以4a =8,a =2,又离心率为12,所以c =1,b 2=3, 所以椭圆方程为x 24+y 23=1.2.设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点为(2,0),离心率为22,则此椭圆的方程为________.答案 x 28+y 24=1解析 椭圆的右焦点为(2,0), 所以m 2-n 2=4,e =22=2m, 所以m =22,代入m 2-n 2=4,得n 2=4, 所以椭圆方程为x 28+y 24=1.思维升华 根据条件求椭圆方程的主要方法(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义.(2)待定系数法:根据题目所给的条件确定椭圆中的a ,b .当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),不必考虑焦点位置,用待定系数法求出m ,n 的值即可.跟踪训练2 (1)已知椭圆的两个焦点为F 1(-5,0),F 2(5,0),M 是椭圆上一点,若MF 1⊥MF 2,|MF 1|·|MF 2|=8,则该椭圆的方程是( ) A.x 27+y 22=1 B.x 22+y 27=1 C.x 29+y 24=1 D.x 24+y 29=1 答案 C解析 设|MF 1|=m ,|MF 2|=n , 因为MF 1⊥MF 2,|MF 1|·|MF 2|=8, |F 1F 2|=25,所以m 2+n 2=20,mn =8, 所以(m +n )2=36,所以m +n =2a =6,所以a =3. 因为c =5, 所以b =a 2-c 2=2. 所以椭圆的方程是x 29+y 24=1.(2)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 C解析 如图,|AF 2|=12|AB |=32,|F 1F 2|=2,由椭圆定义,得|AF 1|=2a -32.①在Rt △AF 1F 2中,|AF 1|2=|AF 2|2+|F 1F 2|2=⎝⎛⎭⎫322+22.② 由①②得a =2,∴b 2=a 2-c 2=3. ∴椭圆C 的方程为x 24+y 23=1.题型三 椭圆的几何性质 命题点1 离心率例4 (1)(2022·湛江模拟)已知F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点,过椭圆C 的下顶点且斜率为34的直线与以点F 为圆心、半焦距为半径的圆相切,则椭圆C 的离心率为( )A.55B.12C.33D.22答案 A解析 过椭圆C 的下顶点(0,-b )且斜率为34的直线方程为y =34x -b ,即34x -y -b =0,F (c ,0),由点到直线距离公式,得c =⎪⎪⎪⎪34c -b ⎝⎛⎭⎫342+1, 即c 2=-32bc +b 2,即(2c -b )(c +2b )=0,则2c -b =0,b =2c .又a 2=b 2+c 2,即a 2=(2c )2+c 2=5c 2, 解得c a =55.(2)已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率e 的取值范围为( ) A.⎝⎛⎦⎤0,22 B.⎣⎡⎭⎫22,1C.⎝⎛⎦⎤0,32 D.⎣⎡⎭⎫32,1答案 B解析 若椭圆上存在点P ,使得PF 1⊥PF 2,则以原点为圆心,F 1F 2为直径的圆与椭圆必有交点,如图,可得c ≥b ,即c 2≥b 2, 所以2c 2≥a 2,即e 2≥12,又e <1,所以e ∈⎣⎡⎭⎫22,1.思维升华 求椭圆离心率或其范围的方法 (1)直接求出a ,c ,利用离心率公式e =ca 求解.(2)由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解. (3)构造a ,c 的齐次式.可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e . 命题点2 与椭圆有关的范围(最值)例5 (1)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B. 2 C .2 D .2 2 答案 D解析 设a ,b ,c 分别为椭圆的长半轴长、短半轴长、半焦距,依题意知,当三角形的高为b 时,以椭圆上一点和两个焦点为顶点的三角形的面积最大,所以12×2cb =1,故bc =1,故2a =2b 2+c 2≥22bc =22(当且仅当b =c =1时取等号).(2)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1(b >0)的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为________.答案 4解析 由题意知a =2,因为e =c a =12,所以c =1, 所以b 2=a 2-c 2=3,故椭圆的方程为x 24+y 23=1. 设P 点的坐标为(x 0,y 0),所以-2≤x 0≤2,-3≤y 0≤ 3.因为F (-1,0),A (2,0),所以PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0),所以PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2, 所以当x 0=-2时,PF →·P A →取得最大值4.教师备选1.(多选)嫦娥四号在绕月飞行时是以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3 476公里,则下列选项中正确的有( )A .焦距长约为300公里B .长轴长约为3 988公里C .两焦点坐标约为(±150,0)D .离心率约为75994答案 AD解析 设该椭圆的长半轴长为a ,半焦距长为c .依题意可得月球半径约为12×3 476=1 738, a -c =100+1 738=1 838,a +c =400+1 738=2 138,所以2a =1 838+2 138=3 976,a =1 988,c =2 138-1 988=150,2c =300,椭圆的离心率约为e =c a =1501 988=75994, 可得结论A ,D 正确,B 错误;因为没有给坐标系,焦点坐标不确定,所以C 错误.2.(2022·太原模拟)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8答案 C解析 由椭圆x 24+y 23=1可得F (-1,0), 点O (0,0).设P (x ,y )(-2≤x ≤2).则OP →·FP →=x 2+x +y 2=x 2+x +3⎝⎛⎭⎫1-x 24=14x 2+x +3=14(x +2)2+2,-2≤x ≤2, 当且仅当x =2时,OP →·FP →取得最大值6.思维升华 与椭圆有关的最值或范围问题的求解方法(1)利用数形结合、几何意义,尤其是椭圆的性质;(2)利用函数,尤其是二次函数;(3)利用不等式,尤其是基本不等式.跟踪训练3 (1)(2022·济南质检)设椭圆E 的两焦点分别为F 1,F 2,以F 1为圆心,|F 1F 2|为半径的圆与E 交于P ,Q 两点.若△PF 1F 2为直角三角形,则E 的离心率为( )A.2-1B.5-12C.22D.2+1答案 A解析 不妨设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),如图所示,∵△PF 1F 2为直角三角形,∴PF 1⊥F 1F 2,又|PF 1|=|F 1F 2|=2c ,∴|PF 2|=22c ,∴|PF 1|+|PF 2|=2c +22c =2a ,∴椭圆E 的离心率e =c a=2-1.(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0),上顶点为A (0,b ),直线x =a 2c上存在一点P 满足(FP →+F A →)·AP →=0,则椭圆的离心率的取值范围为( )A.⎣⎡⎭⎫12,1B.⎣⎡⎭⎫22,1C.⎣⎢⎡⎭⎪⎫5-12,1 D.⎝⎛⎦⎤0,22答案 C解析 取AP 的中点Q ,则FQ →=12(FP →+F A →),所以(FP →+F A →)·AP →=2FQ →·AP →=0,所以FQ ⊥AP ,所以△AFP 为等腰三角形,即|F A |=|FP |,且|F A |=b 2+c 2=a .因为点P 在直线x =a 2c 上,所以|FP |≥a 2c -c ,即a ≥a 2c -c ,所以a c ≥a 2c 2-1,所以e 2+e -1≥0,解得e ≥5-12或e ≤-5-12.又0<e <1,故5-12≤e <1.课时精练1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为() A.x 29+y 2=1 B.y 29+x 25=1C.y 29+x 2=1 D.x 29+y 25=1答案 D解析 由题意有6>2+2=4,故点M 的轨迹为焦点在x 轴上的椭圆,则2a =6,c =2,故a 2=9,所以b 2=a 2-c 2=5,故椭圆的方程为x 29+y 25=1.2.若椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A.12B.33C.22D.24答案 C解析 依题意可知,c =b ,又a =b 2+c 2=2c ,∴椭圆的离心率e =c a =22. 3.椭圆x 22+y 2=1的两个焦点分别是F 1,F 2,点P 是椭圆上任意一点,则PF 1—→·PF 2—→的取值范围是( )A .[-1,1]B .[-1,0]C .[0,1]D .[-1,2]答案 C解析 设F 1为左焦点,则由椭圆方程得F 1(-1,0),F 2(1,0),设P (x ,y ),-2≤x ≤2,∴PF 1—→=(-1-x ,-y ),PF 2—→=(1-x ,-y ),则PF 1—→·PF 2—→=x 2+y 2-1=x 22∈[0,1]. 4.设e 是椭圆x 24+y 2k=1的离心率,且e ∈⎝⎛⎭⎫12,1,则实数k 的取值范围是( ) A .(0,3)B.⎝⎛⎭⎫3,163 C .(0,3)∪⎝⎛⎭⎫163,+∞D .(0,2) 答案 C解析 当k >4时,c =k -4, 由条件知14<k -4k<1, 解得k >163; 当0<k <4时,c =4-k , 由条件知14<4-k 4<1,解得0<k <3. 5.(多选)已知椭圆C 的中心为坐标原点,焦点F 1,F 2在y 轴上,短轴长等于2,离心率为63,过焦点F 1作y 轴的垂线交椭圆C 于P ,Q 两点,则下列说法正确的是( )A .椭圆C 的方程为y 23+x 2=1B .椭圆C 的方程为x 23+y 2=1 C .|PQ |=233D .△PF 2Q 的周长为4 3答案 ACD解析 由已知得,2b =2,b =1,c a =63, 又a 2=b 2+c 2,解得a 2=3.∴椭圆方程为x 2+y 23=1, 如图.∴|PQ |=2b 2a =23=233, △PF 2Q 的周长为4a =4 3.6.(多选)(2022·济南模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是( )A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆C 的离心率的取值范围为⎝ ⎛⎭⎪⎫0,5-12 D .若PF 1—→=F 1Q —→,则椭圆C 的长轴长为5+17答案 ACD解析 由题意可知2c =2,则c =1,因为点Q 在椭圆上,所以|QF 1|+|QF 2|=2a ,|QF 1|+|QP |=2a -|QF 2|+|QP |,又-1≤-|QF 2|+|QP |≤1,所以A 正确;因为点P (1,1)在椭圆内部,所以b >1,2b >2,所以B 错误;因为点P (1,1)在椭圆内部,所以1a 2+1b 2<1, 即b 2+a 2-a 2b 2<0,又c =1,b 2=a 2-c 2,所以(a 2-1)+a 2-a 2(a 2-1)<0,化简可得a 4-3a 2+1>0(a >1),解得a 2>3+52或a 2<3-52(舍去), 则椭圆C 的离心率e =c a <13+52=15+12=5-12, 又0<e <1,所以椭圆C 的离心率的取值范围为⎝ ⎛⎭⎪⎫0,5-12, 所以C 正确;由PF 1—→=F 1Q —→可得,F 1为PQ 的中点,而P (1,1),F 1(-1,0),所以Q (-3,-1),|QF 1|+|QF 2|=(-3+1)2+(-1-0)2+(-3-1)2+(-1-0)2=5+17=2a ,所以D 正确. 7.如图是篮球在太阳光照射下的影子,已知篮球的直径为22 cm ,现太阳光与地面的夹角为60°,则此椭圆形影子的离心率为________.答案 12解析 由图可得,椭圆的短轴长2b =22⇒b =11,2a =22sin 60°=2232⇒a =223,∴e =c a =1-⎝⎛⎭⎫b a 2=1-34=12. 8.(2021·全国甲卷)已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,则四边形PF 1QF 2的面积为________.答案 8解析 根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.9.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积. 解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 依题意得⎩⎪⎨⎪⎧2a =10,c =3, 因此a =5,b =4, 所以椭圆的标准方程为x 225+y 216=1. (2)易知|y P |=4,又c =3,所以12F PF S △=12|y P |×2c =12×4×6=12. 10.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0),左顶点为A ,点E 的坐标为(0,c ),A 到直线EF 2的距离为62b . (1)求椭圆C 的离心率;(2)若P 为椭圆C 上的一点,∠F 1PF 2=60°,△PF 1F 2的面积为3,求椭圆C 的方程. 解 (1)由题意得,A (-a ,0),EF 2:x +y =c ,因为A 到直线EF 2的距离为62b , 即|-a -c |12+12=62b , 所以a +c =3b ,即(a +c )2=3b 2,又b 2=a 2-c 2,所以(a +c )2=3(a 2-c 2),所以2c 2+ac -a 2=0,因为离心率e =c a , 所以2e 2+e -1=0,解得e =12或e =-1(舍), 所以椭圆C 的离心率为12. (2)由(1)知离心率e =c a =12,即a =2c ,① 因为∠F 1PF 2=60°,△PF 1F 2的面积为3,则12|PF 1||PF 2|sin 60°=3, 所以|PF 1||PF 2|=4,又⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=(2c )2, 所以a 2-c 2=3,②联立①②得a =2,c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.11.(多选)(2022·大连模拟)已知椭圆C :x 216+y 29=1的左、右焦点分别是F 1,F 2,左、右顶点分别是A 1,A 2,点P 是椭圆C 上异于A 1,A 2的任意一点,则下列说法正确的是( )A .|PF 1|+|PF 2|=4B .存在点P 满足∠F 1PF 2=90°C .直线P A 1与直线P A 2的斜率之积为-916D .若△F 1PF 2的面积为27,则点P 的横坐标为±453答案 CD解析 由椭圆方程知a =4,b =3,c =7,|PF 1|+|PF 2|=2a =8,A 错误;当P 在椭圆上、下顶点时,cos ∠F 1PF 2=2a 2-4c 22a 2=18>0, 即∠F 1PF 2最大值小于π2,B 错误; 若P (x ′,y ′),则1PA k =y ′x ′+4, 2PA k =y ′x ′-4,有12·PA PA k k =y ′2x ′2-16, 而x ′216+y ′29=1, 所以-16y ′2=9(x ′2-16),即有12·PA PA k k =-916,C 正确; 若P (x ′,y ′),△F 1PF 2的面积为27,即2c ·|y ′|2=27, 故y ′=±2,代入椭圆方程得x ′=±453,D 正确. 12.(多选)2021年10月16日,神舟十三号发射圆满成功,人民日报微博发了一条“跨越时空的同一天”,致敬每一代人的拼搏!已知飞船在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即飞船的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论正确的是( )A .飞船向径的取值范围是[a -c ,a +c ]B .飞船在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间C .飞船向径的最小值与最大值的比值越大,椭圆轨道越扁D .飞船运行速度在近地点时最大,在远地点时最小答案 ABD解析 根据椭圆定义知飞船向径的取值范围是[a -c ,a +c ],A 正确;当飞船在左半椭圆弧上运行时,对应的面积更大,根据面积守恒规律,知在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间,B 正确;a -c a +c =1-e 1+e =21+e-1,比值越大,则e 越小,椭圆轨道越圆,C 错误; 根据面积守恒规律,飞船在近地点时向径最小,故速度最大,在远地点时向径最大,故速度最小,D 正确.13.设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎤0,22B.⎝⎛⎦⎤0,33C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1 答案 D解析 设P ⎝⎛⎭⎫a 2c ,m ,F 1(-c ,0),F 2(c ,0),由线段PF 1的中垂线过点F 2得|PF 2|=|F 1F 2|,即⎝⎛⎭⎫a 2c -c 2+m 2=2c , 得m 2=4c 2-⎝⎛⎭⎫a 2c -c 2=-a 4c 2+2a 2+3c 2≥0, 即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13, 又0<e <1,故33≤e <1. 14.(2021·浙江)已知椭圆x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0)(c >0).若过F 1的直线和圆⎝⎛⎭⎫x -12c 2+y 2=c 2相切,与椭圆的第一象限交于点P ,且PF 2⊥x 轴,则该直线的斜率是________,椭圆的离心率是________.答案 255 55解析 设过F 1的直线与圆的切点为M ,圆心A ⎝⎛⎭⎫12c ,0,则|AM |=c ,|AF 1|=32c , 所以|MF 1|=52c , 所以该直线的斜率k =|AM ||MF 1|=c 52c =255.因为PF 2⊥x 轴,所以|PF 2|=b 2a , 又|F 1F 2|=2c ,所以k =255=b 2a 2c =a 2-c 22ac =1-e 22e(0<e <1), 得e =55.15.已知椭圆x 2a 2+y 2b2=1(a >b >0)的短轴长为2,上顶点为A ,左顶点为B ,左、右焦点分别为F 1,F 2,且△F 1AB 的面积为2-32,若点P 为椭圆上的任意一点,则1|PF 1|+1|PF 2|的取值范围是________.答案 [1,4]解析 由已知得2b =2,故b =1.∵△F 1AB 的面积为2-32, ∴12(a -c )b =2-32, ∴a -c =2-3, 又a 2-c 2=(a -c )(a +c )=b 2=1, ∴a =2,c =3,∴1|PF 1|+1|PF 2| =|PF 1|+|PF 2||PF 1||PF 2| =2a |PF 1|(2a -|PF 1|) =4-|PF 1|2+4|PF 1|.又2-3≤|PF 1|≤2+3,∴1≤-|PF 1|2+4|PF 1|≤4,∴1≤1|PF 1|+1|PF 2|≤4, 即1|PF 1|+1|PF 2|的取值范围为[1,4]. 16.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆的离心率的取值范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.(1)解 不妨设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c . 在△F 1PF 2中,由余弦定理得,cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|, 即4a 2-2|PF 1|·|PF 2|-4c 22|PF 1|·|PF 2|=12, 所以|PF 1|·|PF 2|=4a 2-2|PF 1|·|PF 2|-4c 2, 所以3|PF 1|·|PF 2|=4b 2,所以|PF 1|·|PF 2|=4b 23. 又因为|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=a 2, 当且仅当|PF 1|=|PF 2|时等号成立, 所以3a 2≥4(a 2-c 2),所以c a ≥12, 所以e ≥12. 又因为0<e <1,所以所求椭圆的离心率的取值范围是⎣⎡⎭⎫12,1.(2)证明 由(1)可知|PF 1|·|PF 2|=43b 2, 所以12F PF S △=12|PF 1|·|PF 2|sin 60° =12×43b 2×32=33b 2, 所以△F 1PF 2的面积只与椭圆的短轴长有关.。

椭圆定义及性质整合

椭圆定义及性质整合

椭圆定义及性质的应用一、椭圆的定义椭圆第一定义第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.★过点1F 作12PF F ∆的P ∠的外角平分线的垂线,垂足为Q ,则Q 的轨迹方程为222x y a +=.推导过程:延长1F Q 交2F P 于M ,连接OQ ,由已知有PQ 为1MF 的中垂线,则1PF PM =,Q 为1F M 中点,212OQ F M ==()1212PF PF +=a ,所以Q 的轨迹方程为 222x y a +=.(椭圆的方程与离心率学案第5题)椭圆第二定义第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆.2PF e d =(d 为点P 到右准线的距离),右准线对应右焦点,其中2PF 称作焦半径,左、右准线公式2a x c=±..椭圆的焦半径公式为:1020,PF a ex PF a ex =+=-.推导过程:2200aPF ed e x a exc⎛⎫==-=-⎪⎝⎭;同理得10PF a ex=+.简记为:左加右减a在前.由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数. (离心率、焦点弦问题)例1:(2010全国卷Ⅱ理数12题)已知椭圆2222:1(0)x yC a ba b+=>>的离心率为3,过右焦点F且斜率为(0)k k>的直线与C相交于,A B两点.若3AF FB=u u u r u u u r,则k=()A.1 D.2B【解析】解法一:1122(,),(,)A x yB x y,∵3AF FB=u u u r u u u r,∴123y y=-,∵2e=,设2,a t c==,b t=,∴222440x y b+-=,直线AB方程为x my=.代入消去x,∴222(4)0m y b++-=,∴2121222,44by y y ym m+=-=-++,则2222222,344by ym m-=--=-++,解得212m=,则k= 0k>.解法二:设直线l为椭圆的右准线,e为离心率,过,A B别作11,AA BB垂直于l,11,A B为垂足,过B作BH垂直于1AA与H,设BF m=,由第二定义得,11,AF BFAA BBe e==,由3AF FB=u u u r u u u r,得13mAAe=,2mAHe=,4AB m=,则21cos42mAH eBAHAB m e∠====,则sin BAH∠=tan BAH∠=,则k=0k>.故选B.(离心率、焦点弦问题)例2:倾斜角为6π的直线过椭圆)0(12222>>=+babyax的左焦点F,交椭圆于,A B 两点,且有3AF BF=,求椭圆的离心率.33【解析】解法一:,AF BF 为左焦点上的焦半径,所以过,A B 两点分别作垂直于准线的直线且和准线交于11,A B 两点,从B 点作1BH AA ⊥.因为3AF BF =,设BF m =,则3AF m =,4AB m =,又因为11AF BF e AA BB ==,则1BF m BB e e ==,13m AA e =,所以2m AH e=,在ABH ∆中,6BAH π∠=,所以32AH AB =,解得33e =. 解法二:如图,设,3BF m AF m ==,则122,23BF a m AF a m =-=-,在12AF F ∆中,由余弦定理得222394(23)cos 62232m c a m m cπ+--==⨯⨯,化简得23326cm b am =-+①,222534(2)cos 6222m c a m m cπ+--=-=⨯⨯,化简得2322cm b am -=-+②,①+②×3化简得,223b m a =,代入①解得3e =. 椭圆第三定义第三定义:在椭圆)0(12222>>=+b a by a x 中,,A B 两点关于原点对称,P 是椭圆上异于,A B 两点的任意一点,若PB PA k k ,存在,则1222-=-=⋅e a b k k PBPA .(反之亦成立).(★焦点在Y 轴上时,椭圆满足22ba k k PB PA -=⋅) 推导过程:设(,)P x y ,11(,)A x y ,则11(,)B x y --.所以12222=+b y a x ①,1221221=+by a x ②;由①-②得22122212b y y a x x --=-,所以22212212a b x x y y -=--,所以222111222111PA PB y y y y y y b k k x x x x x x a -+-⋅=⋅==--+-为定值. 例1:已知椭圆)0(12222>>=+b a by a x 的长轴长为4,若点P 是椭圆上任意一点,过原点的直线l 与椭圆相交与N M ,两点,记直线PN PM ,的斜率分别为21,k k .若4121-=⋅k k ,则椭圆的方程为 . 1422=+y x .【解析】解法一:(,)P x y ,11(,)M x y ,则11(,)N x y --,因为12222=+b y a x ,则)1(2222ax b y -=,)1(221221a x b y -=,则222212222211112222221111(1)(1)14x x b b y y y y y y b a a k k x x x x x x x x a ----+-⋅=⋅===-=--+--.且42=a ,则椭圆方程为1422=+y x .解法二:由第三定义知4122-=-a b ,且42=a ,则则椭圆方程为1422=+y x .例2:已知椭圆)0(13422>>=+b a y x 的左右顶点分别为21,A A ,点P 在椭圆上,且直线2PA 的斜率的取值范围是]1,2[--,那么直线1PA 的斜率的取值范围是 .]43,83[.【解析】设1PA ,2PA 的斜率分别为21,k k ,则432221-=-=⋅a b k k ,又]1,2[2--∈k ,所以]43,83[1∈k . 二、椭圆的性质焦点三角形椭圆焦点三角形的边角关系:122F F c =, 122PF PF a +=,周长为22a c +.设12F PF θ∠=. (1)当点P 处于短轴的顶点处时,顶角θ最大;(2)221221cos b PF PF a θ⋅=≤+,当且仅当12PF PF =时取等号;(3)122tan2PF F S b θ∆=;(4)12112122PF F B F F S S c b bc ∆∆≤=⨯⨯=,当且仅当12PF PF =时取等号. 推导过程:(1)()()()2222222212002222222120004444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---===-⋅-+, 当00x =时,cos θ有最小值2222a c a-,即12F PF θ∠=最大; (2)22212124cos 2PF PF c PF PF θ+-=⋅,()221212122cos 24PF PF PF PF PF PF c θ⋅=+-⋅-则有,21221cos b PF PF θ⋅=+,2221220max 2221cos 1cos 12cos 12b b b PF PF θθθ⋅=≤=+++-,(当点P 为短轴顶点时θ取得最大值0θ,此时0cos 2b a θ=),代入化简得221221cos b PF PF a θ⋅=≤+. (3)由(2)得12222212sin 2sin cos tan21cos 2222cos 2PF F b b S b θθθθθθ∆=⨯⋅=⋅=+. (离心率问题)例1.已知12,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左右焦点,椭圆C 上存在一点P ,使得1290F PF ∠=︒,则椭圆C 的离心率的取值范围是__________.【解析】解法一:在椭圆中,焦点三角形顶角最大时点B 位于短轴的交点处,由题意得145F BO ∠≥︒, 所以1FO OB ≥,即c b ≥,解得e ∈. 解法二:设(,)P x y ,由题意得椭圆C 上存在一点P ,使得12F P F P ⊥u u u r u u u u r,即(,)(,)0x c y x c y +-=,化简,得222x y c +=,与12222=+b y a x 联立,消去y 得2222222a c ab x a b -=-,由椭圆范围知220x a ≤<,即22222220a c a b a a b -≤<-,化简得222b c a ≤<,解得[2e ∈. 变式1:已知12,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左右焦点,椭圆C 上存在一点P ,使得12F PF ∠为钝角,则椭圆C 的离心率的取值范围是__________.【解析】在椭圆中,焦点三角形顶角最大时点B 位于短轴的交点处,12F PF ∠为钝角,所以145F BO ∠>︒,所以1FO OB >,即c b >,解得,1)2e ∈. 变式2:已知12,F F 分别是椭圆)0(1:2222>>=+b a b y a x C 的左右焦点,椭圆C 上存在一点P ,使得1260F PF ∠=︒(变式3:12120F PF ∠=︒),则椭圆C 的离心率的取值范围是__________.1[,1)2【解析】在椭圆中,焦点三角形顶角最大时点B 位于短轴的交点处,由题意得130F BO ∠≥︒,所以11sin sin 302c F BO a ∠=≥︒=,则1[,1)2e ∈.变式3:e ∈.(离心率问题)例2.已知12,F F 是椭圆)0(1:2222>>=+b a b y a x C 的左右焦点,若在直线2a x c=上存在点P ,使得线段1PF 的中垂线过点2F ,则椭圆的离心率的取值范围是________.e ∈【解析】22PF c =,22PF F H ≥,即22a c c c ≥-解得:e ∈. (焦点三角形面积问题)例3.已知椭圆21221925F F y x 、,=+为焦点,点P 为椭圆上一点,123F PF π∠=,求21PF F S ∆.33【解析】解法一:设12,,PF m PF n ==则有10m n +=,在21F PF ∆中由余弦定理得mn n m c -+==222644,则mn mn n m 31003)(642-=-+=,则12=mn ,则333sin 2121==∆πmn S PF F .解法二:122tan9tan26PF F S b θπ∆==⨯=(焦点三角形面积问题)例4.过椭圆)0(1:2222>>=+b a b y a x C 中心的直线与椭圆交于,A B 两点,右焦点为2(c,0)F ,则 2ABF ∆的最大面积为_________.bc 【解析】由题意得,A B 关于原点对称,则有212ABF AF F S S ∆∆=,故当A 位于短轴的顶点处时,面积最大,为bc . (焦点三角形边角问题)例5.已知椭圆22194x y +=的两个焦点分别为12,F F ,点P 在椭圆上,(1)在椭圆上满足12PF PF ⊥的点P 的个数是?(2)12PF PF ⋅的最大值是?(3)12F PF ∠为钝角时,点P 的横坐标的取值范围是?【解析】(1)画图知,所求点的个数即为圆222x y c +=与椭圆的交点个数,由于52c b =>=,故有4个点.(2)解法一:设12,,PF m PF n ==则有6m n +=,212()92m n PF PF mn +⋅=≤=,当且仅当m n =时取等号.解法二:由性质得2221220min 2221cos 1(cos )12cos 12b b b PF PF θθθ⋅=≤=+++-,(当点P 为短轴顶点时取得最大值,此时0cos 2b a θ=),代入化简得221221cos b PF PF a θ⋅=≤+. (3)如图所示,222x y c +=与椭圆有4个交点,假设在第一象限的交点为00(,)P x y ,此时122F PF π∠=,设12,,PF m PF n ==则有6m n +=,222420m n c +==,解得4,2m n ==(或2,4m n ==),由等面积法得0222y c mn ⨯=,则05y =,则由勾股定理得22200()c x y n -+=,解得05x =,则由对称性可知,点P 的横坐标的取值范围是3535(,)-. (焦点三角形中与距离最值有关的问题):注意在三角函数与解析几何中最值问题的一个很重要的用法:(1)三角形两边之和大于第三边,当三点在一条线上时取得最小值; (2)两边之差小于第三边.焦点三角形中的最值问题一般是距离之和的最值,且存在定点,故可以用三角形中的不等式来求; ★若点A 为椭圆内一定点,点P 在椭圆上,则有:111AF PA PF AF -≤-≤.(三角形三边关系)★若点A 为椭圆内一定点,点P 在椭圆上,则有:12122a AF PA PF a AF -≤+≤+.推导过程:连接11,,AP AF PF ,()21122AP PF AP a PF a AP PF +=+-=+-由三角形三边关系得111AF PA PF AF -≤-≤,则有12122a AF PA PF a AF -≤+≤+(椭圆定义的应用,三角形三边关系).焦点弦经过椭圆焦点的弦是焦点弦.(1)焦点弦长可用弦长公式求22212121212211()41()4AB k x x x x y y y y k=++-=++-; *(2)设焦点弦所在的直线的倾斜角为θ,则有22222||=cos ab AB a c θ-. *(3)2211ba BF AF =+(F 为某一焦点). (4)2ABF ∆的周长为4a .(离心率、焦点弦问题)(同第二定义例1)例1:(2010全国卷Ⅱ理数12题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于,A B 两点.若3AF FB =u u u r u u u r ,则k =( )A.1B.2C.3D.2B 【解析】解答题解法:1122(,),(,)A x y B x y ,∵ 3AF FB =u u u r u u u r,∴ 123y y =-, ∵ 3e =,设2,3a t c t ==,b t =,∴ 222440x y b +-=,直线AB 方程为3x my b =+.代入消去x ,∴ 222(4)230m y mby b ++-=,∴ 21212223,4mb b y y y y m +=-=-+,则22222232,34mb b y y m -=--=-+,解得212m =,则2k =,0k >.中点弦AB 是椭圆2222:1(0)x y C a b a b +=>>的任意一弦,P 是AB 中点,则1222-=-=⋅e ab k k OPAB .证明:令()()1122,,,A x y B x y ,()00,P x y则()1202x x x+=,()1202y y y +=,()()()()22112212121212222222221..01x y x x x x y y y y a b a b x y a b ⎫+=⎪+-+-⎪⇒+=⎬⎪+=⎪⎭, ()()()()2121221212y y b x x x x a y y -+⇒=--+,由于()()1212AB y y k x x -=-,00OPy k x =,则 22AB OP b k k a⋅=-. 例1:过点(2,1)M 作一条直线l 交椭圆221169x y +=于点AB ,若点M 恰好是弦AB 的中点,求直线l 的方程.【解析】解答题步骤:解法一(点差法):由题意得直线l 有斜率,设其斜率为k ,1122(,),(,)A x y B x y ,00(,)M x y ,代入椭圆方程,有222211221,1169169x y x y +=+=,两式作差得()()()()12121212..0169x x x x y y y y +-+-+=,()()120120916y y y x x x -⨯=--,即19216k ⨯=-,则98k =-.则直线l 的方程为91(2)8y x -=-⨯-,即98260x y +-=. 解法二(代入法):由题意得直线l 有斜率,设其直线方程为1(2)y k x -=-,得12y kx k =+-,代入221169x y +=得222(916)32(12)16(12)1440k x k k x k ++-+--=,则120232(12)24916k k x x x k -+=-==+,解得98k =-,则直线l 的方程为98260x y +-=.这两种方法都体现了设而不求的思想,这是圆锥曲线解题的常用思想.切线及切点弦切线方程:(1)设),(00y x P 为圆222r y x =+上一点,则过该点的切线方程为:200r y y x x =+;(2)设),(00y x P 为椭圆)0(12222>>=+b a by a x 上一点,则过该点的切线方程为:12020=+b y y a x x .切点弦方程:(1)设),(00y x P 是圆222r y x =+外的一点,过点P 作曲线的两条切线,切点N M 、,则切点弦MN 所在直线方程为200r y y x x =+;(2)设),(00y x P 是椭圆外的一点,过点P 作曲线的两条切线,切点N M 、,则切点弦MN 所在直线方程为1220=+byyaxx.例1:以422=+yx上的点)3,1(P为切点的切线方程为_________.【解析】解法一:由题意得切线有斜率,设切线方程为)1(3-=-xky,则03=-+-kykx,则有2132=+-kk,解得33-=k,则切线方程为043=-+yx.解法二:点)3,1(P为切点,由公式得,切线方程为431=⨯+⨯yx,即043=-+yx.例2:以13422=+yx上的点)23,1(P为切点的切线方程为_________.【解析】解法一:由题意得切线有斜率,设切线方程为)1(23-=-xky,代入13422=+yx,化简得3124)23(4)43(222=--+-++kkxkkxk,则有0)3124)(43(4)23(162222=--+--=∆kkkkk,解得21-=k,则切线方程为042=-+yx.解法二:点)23,1(P为切点,由公式得,切线方程为132341=⨯+⨯yx,即042=-+yx.★过椭圆准线上任一点作椭圆和切线,切点弦AB过该准线对应的焦点.推导过程:设2,aM yc⎛⎫⎪⎝⎭,则AB的方程为2221ax y yca b+=,即021y yxc b+=必过点(),0c.★过椭圆焦点弦的两端点作椭圆的切线,切线交点在准线上.光学性质★椭圆的光学性质:过一焦点的光线经椭圆反射后必过另一焦点.★椭圆上一个点P 的两条焦半径12,PF PF 的夹角12F PF ∠被椭圆在点P 处的法线平分.(入射光线、反射光线、镜面、法线)已知:如图,椭圆C的方程为22221x y a b +=,12,F F 分别是其左、右焦点,l 是过椭圆上一点00(,)P x y 的切线,'l 为垂直于l 且过点P 的椭圆的法线,交x 轴于D ,设21,F PD F PD αβ∠=∠=, 求证:αβ=.证明:在2222:1x y C a b+=上,00(,)P x y C ∈, 则过点P 的切线方程为:00221x x y y a b+=,'l 是通过点 P 且与切线l 垂直的法线,则0000222211':()()()y x l x x y b a b a-=-, ∴法线'l 与x 轴交于20((),0)c D x a, ∴22102022||,||c c F D x c F D c x a a=+=-,∴201220||||a cx F D F D a cx +=-,又由焦半径公式得:1020||,||PF a ex PF a ex =+=-,∴1122||||||||F D PF F D PF =,∴PD 是12F PF ∠的平分线, ∴αβ=,∵90ααββ''+=︒=+,故可得αβαβ''=⇔=.例1. 已知椭圆方程为1162522=+y x ,若有光束自焦点(3,0)A 射出,经二次反射回到A 点,设二次反射点为,B C ,如图所示,则ABC D 的周长为 .20【解析】:∵椭圆方程为1162522=+y x 中,225169c =-=, ∴(3,0)A 为该椭圆的一个焦点,∴自(3,0)A 射出的光线AB 反射后,反射光线BC 定过另一个焦点(3,0)A ¢-,故ABC D 的周长为:''44520AB BA A C CA a +++==⨯=.。

有关椭圆的所有知识点

有关椭圆的所有知识点

有关椭圆的所有知识点
1. 椭圆的定义:椭圆是一种特殊的抛物线,它是二维平面上的曲线,其中两条轴的长度不相等,椭圆的方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
2. 椭圆的性质:
(1)椭圆的对称轴是两个相交的线段,其中一个线段的长度大于另一个,称为长轴,另一个线段称为短轴;
(2)椭圆的中心点是两个对称轴的交点;
(3)椭圆的长轴和短轴的长度分别为a和b,椭圆的面积为S=πab;
(4)椭圆的边界是一个抛物线,称为椭圆弧,可以用参数方程表示:$$x=a\cos t,
y=b\sin t$$
3. 椭圆的标准方程:
(1)椭圆的标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
(2)椭圆的中心在原点时,标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
(3)椭圆的中心在(h,k)处时,标准方程为:$$\frac{(x-h)^2}{a^2}+\frac{(y-
k)^2}{b^2}=1$$
4. 椭圆的对称性:
(1)椭圆是一种具有对称性的曲线,其对称轴是两个相交的线段,其中一个线段的长度大于另一个,称为长轴,另一个线段称为短轴;
(2)椭圆的对称性可以用参数方程表示:$$x=a\cos t,y=b\sin t$$
(3)椭圆的对称性可以用参数方程表示:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
5. 椭圆的离心率:椭圆的离心率是椭圆的一个重要参数,它可以表示椭圆的形状,它的定义是:椭圆的离心率等于椭圆的长轴与短轴之比,即:$$e=\frac{a-b}{a}$$。

数学椭圆知识点总结

数学椭圆知识点总结

数学椭圆知识点总结椭圆,作为数学中的一个重要几何图形,拥有许多有趣的性质和应用。

在本文中,我们将对椭圆的相关知识点进行总结和介绍,旨在帮助读者更好地理解和掌握椭圆的特性。

一、椭圆的定义椭圆可以通过一对焦点和一个到这两个焦点距离之和等于一定值的点的集合来定义。

这个固定值称为椭圆的长轴长度。

而长轴的中点则为椭圆的中心。

椭圆还具有一个短轴,它是与长轴垂直且通过中心的线段。

二、椭圆的性质1. 对称性椭圆具有关于两条轴的对称性。

也就是说,关于长轴或短轴对称的点,其到两个焦点的距离和相等。

这一性质在解决椭圆相关问题时经常被用到。

2. 焦点椭圆的两个焦点是与椭圆定义密切相关的概念。

焦点对于椭圆的形状和特性起着重要的作用。

例如,离椭圆中心较远的焦点,它的位置将决定椭圆的长轴长度。

3. 倾斜椭圆可以有不同的倾斜程度。

当椭圆的长轴与水平线不平行时,我们称之为斜椭圆。

斜椭圆相对于水平椭圆来说,具有更多的特殊性质和难度。

研究斜椭圆可以帮助我们探索椭圆的更多奥秘。

三、椭圆的方程椭圆的方程式是通过数学推导出的表达式,用于表示椭圆的轨迹。

对于以坐标系原点为中心、长轴与x轴平行的标准椭圆来说,其方程可以用以下形式表示:(x/a)^2 + (y/b)^2 = 1 。

其中a和b分别代表长轴和短轴的长度。

同样,当椭圆的中心不在坐标原点处,或者长轴不与x轴平行时,我们可以通过平移和旋转坐标系的方法将其转化为标准椭圆的方程。

四、椭圆的参数方程椭圆也可以通过参数方程的方式进行描述。

参数方程将椭圆上的点的坐标表示为参数t的函数。

对于以坐标系原点为中心的椭圆来说,其参数方程可以表示为:x = a*cos(t),y = b*sin(t)。

参数方程在椭圆的绘制和计算过程中具有一定的优势。

通过改变参数t的取值范围,我们可以绘制出完整的椭圆图形。

五、椭圆的一些应用椭圆在许多领域都有广泛的应用。

以下是一些常见的应用例子:1. 天体轨道分析由于天体运动的规律是椭圆的轨迹,椭圆在行星、卫星以及彗星等天体的轨道分析中具有重要作用。

椭圆及其性质知识点题型总结

椭圆及其性质知识点题型总结

椭圆及其性质知识点题型总结研究必备精品知识点——椭圆椭圆是平面内与两定点F1,F2的距离的和等于定长2a(2a>F1F2)的动点P的轨迹,即点集M={P| |PF1|+|PF2|=2a},其中两定点F1,F2叫焦点,定点间的距离叫焦距。

另一种定义是平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|PF/e< d},其中e为离心率(e=1为抛物线;e>1为双曲线;e<1为椭圆)。

利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线。

椭圆有两种标准方程:(1)焦点在x轴上,中心在原点:x²/a²+y²/b²=1(a>b>0);焦点F1(-c,0),F2(c,0)。

其中c²=a²-b²(一个直角三角形);(2)焦点在y轴上,中心在原点:x²/b²+y²/a²=1(a>b>0);焦点F1(0,-c),F2(0,c)。

其中c²=a²-b²。

注意:①在两种标准方程中,总有a>b>0,c²=a²-b²并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax²+By²=1(A>0,B>0,A≠B),当A<B时,椭圆的焦点在x轴上,A>B时焦点在y轴上。

椭圆的参数方程是:焦点在x轴,x=acosθ,y=bsinθ。

椭圆的一般方程是:Ax+By=1(A>0,B>0)。

椭圆有以下性质:对于焦点在x轴上,中心在原点,x²/a²+y²/b²=1(a>b>0)有以下性质:①范围:|x|≤a,|y|≤b;②对称性:对称轴方程为x=0,y=0,对称中心为O(0,0);③顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b),长轴|A1A2|=2a,短轴|B1B2|=2b(a半长轴长,b半短轴长);④椭圆的准线方程:对于x²/a²+y²/b²=1,左准线过另一个焦点。

椭圆十大性质

椭圆十大性质

椭圆十大性质椭圆十大性质(一)任意相等,(二)中心对称轴是对称中心,(三)面积关系。

这里的“面积”指的是内接正六边形的面积,正六边形是特殊的等腰梯形,所以“正六边形的面积”是中心对称面积。

如果不相等,就违背了性质1:若两个角互补则它们的和大于180°。

(二)中心对称轴是对称中心,即它有一条对称轴。

这就好像“长方体”一样,四条棱的交点叫做中心,所以把中心定为原点。

当然,长方体的中心还有垂直于各条棱的线段与之相连,构成中心对称图形,另外还有中心点。

在同一平面内,若两个图形关于某条直线对称,那么这两个图形也关于这条直线对称,这条直线就是对称轴。

对称轴既不是直线也不是虚线,它是一条线段。

证明:设,,则得到。

这是任意的,当然可以是别的数。

这样就把椭圆的性质1和性质2证明完了。

但要注意,性质3:中心对称面积等于正六边形面积的一半。

在平面内,若两个图形关于某条直线对称,那么这两个图形也关于这条直线对称,这条直线就是对称轴。

椭圆的中心对称图形是由关于一条直线对称的两个部分组成的,其中对称轴是过椭圆两焦点的直线,另一部分是由关于该直线对称的两个椭圆组成的。

(四)单调有界不可能发生在椭圆上,我们先从长方形和正方形的性质来看:首先必须知道正方形面积的公式: s=a^2,而且s^2≥s,另外正方形的性质:正方形的中心是对称中心,关于边中点连线垂直平分对角线的直线垂直平分对角线;边中点连线平行对角线;有三条边平行,则此三角形全等。

根据上面的论述可得:面积≥边长( a=b),长方形面积=长×宽,长方形的中心是对称中心,关于边中点连线垂直平分对角线的直线垂直平分对角线。

我们再从椭圆的性质来看:椭圆面积的公式: s=a^2,已经知道a^2≥s,根据性质3:中心对称面积等于正六边形面积的一半。

所以:1、性质1:,且a=b。

性质2:,且s=a^2;2、性质3:中心对称面积等于正六边形面积的一半;3、若s=s^2,那么面积也应该等于a^2,只不过s^2≥s,因为:,所以s=a^2。

2022年上海高中数学系列3:椭圆及其性质(含答案)

2022年上海高中数学系列3:椭圆及其性质(含答案)

3椭圆及其性质知识点:1.椭圆定义:平面内与两个定点21,F F 的距离之和等于常数2a (122a F F >)的点的轨迹叫作椭圆,这两个定点21,F F 叫做椭圆的焦点,两焦点间的距离||21F F 叫做椭圆的焦距.2.椭圆标准方程及性质:标准方程22221(0)x y a b a b +=>>22221(0)y x a b a b +=>>中心坐标()0,0焦点坐标(,0)c ±(0,)c ±顶点(,0),(0,)a b ±±(,0),(0,)b a ±±范围a x a -≤≤,b y b-≤≤a y a -≤≤,b x b-≤≤长轴长2a 长半轴长a 短轴长2b 短半轴长b对称轴关于x 轴、y 轴成轴对称;关于原点成中心对称离心率c e a=3.椭圆的光学性质;从椭圆的一个焦点发出的光线在到达椭圆上后,被经过到达点的切线反射后必经过椭圆的另一个焦点.4.椭圆焦点三角形:周长为22a c +,面积公式见15题.5.点与椭圆的位置关系:(1)00(,)P x y 在椭圆22221(0)x y a b a b +=>>上2200221x y a b ⇔+=(2)00(,)P x y 在椭圆22221(0)xy a b a b +=>>内2200221x y a b ⇔+<(3)00(,)P x y 在椭圆22221(0)x y a b a b +=>>外2200221x y a b⇔+>6.直线与椭圆的位置关系:(1)消元:由直线方程代入曲线方程,消去一个变量,得到另一变量的二次方程;(2)判别式求解:根据二次方程解的情况判定其交点情况.7.弦长公式:直线y kx b =+和椭圆22221x y a b +=相交于1122( ) ( )P x y Q x y ,,,,则1212PQ x x y y =-=-;8.弦中点等问题:MN 是椭圆22221(0)x y a b a b+=>>的一条弦,Q 是弦MN 的中点,分别用MN OQ k k 、表示相应直线的斜率,则22MN OQ b k k a⋅=-都为定值;9.斜率之积为定值问题:AB 是过椭圆22221(0)x y a b a b+=>>中心的一条弦,P 是椭圆上的一点(异于AB ),分别用 PA PB k k 、表示相应直线的斜率,则22PA PB b k k a⋅=-.练习题:上海高中数学系列1.椭圆221y x k +=的一个焦点为(0,则k =________.32.方程2214x y m +=表示焦点在y轴上的椭圆,其焦点坐标是3.椭圆227321x y +=上一点到两个焦点的距离之和为__________.4.中心在原点,对称轴为坐标轴,且经过点12111()(0 332P P -,、,的椭圆方程为__________22541x y +=.5.设12 F F 、是椭圆:C 22184x y +=的两个焦点,则在椭圆C 上满足12PF PF ⊥的点P 的个数为2.6.椭圆2214x y +=的一个焦点是F ,动点P 是椭圆上的点,以线段PF 为直径的圆始终与一定圆相切,则定圆的方程是____224x y +=.7.已知椭圆22:143x y Γ+=的右焦点为F ,过原点O 的直线与椭圆Γ交于,A B ,则11AF BF +的取值范围为:__________4[1 ]3,.8.椭圆()01342222>=+m my m x 的左焦点为F ,直线(22)x t m t m =-<<与椭圆相交于点A 、B ,则FAB ∆的周长的最大值是8m (用m 表示).9.点P 是椭圆2212516x y +=上一点,12,F F 是椭圆的2个焦点,且12PF F ∆的内切圆半径为1,当P 在第一象限时,点P 的纵坐标为__________.8310.已知圆22:(1)1M x y +-=,圆22:(1)1N x y ++=.直线12,l l 分别过圆心,M N ,且1l 与圆M 相交于A 、B 两点,2l 与圆N 相交于C 、D 两点,点P 是椭圆22194x y +=上任意一点,则PA PB PC PD ⋅+⋅ 的最小值为.811.以椭圆2212516x y +=的两个焦点和短轴两个顶点为四个顶点的椭圆方程是(B )A.221169x y += B.221916x y += C.2212516x y += D.2211625x y +=12.椭圆C :221169x y +=与直线l :(21)(1)74(R)m x m y m m +++=+∈,的交点情况是(C )A.没有交点 B.有一个交点 C.D.由m 的取值而确定13.如图,已知椭圆C 的中心为原点O ,(0)F -为C 的左焦点,P 为C 上一点,满足OP OF =且4PF =,则椭圆C 的方程为(C )A.221255x y += B.2213010x y += C.2213616x y += D.2214525x y +=14.点A 为椭圆()2222:10x y C a b a b +=>>的右顶点,P 为椭圆C 上一点(不与点A 重合),若0PO PA ⋅=(O 是坐标原点),则离心率的取值范围是(B ).A.1( 1)2, B.2 1)2C.3(1)2D.以上说法都不对yxP F O15.若点M 是椭圆22221(0)x y a b a b+=>>上任意一点,12,F F 为两个焦点,12F MF α∠=,(1)求证:12F MF ∆的面积为2tan2b α.(2)若椭圆2221(0)9x y b b +=>上存在一点M ,使12120F MF ∠=︒,求实数b 的取值范围.解:(1)12121||||sin 2F MF S MF MF α∆=222221212121212||||(2)(||||)2||||(2)cos 2||||2||||MF MF c MF MF MF MF c MF MF MF MF α+-+--==221212442||||2||||a c MF MF MF MF --=221242||||2(cos 1)cos 1b b MF MF αα∴==++122212sin tan2cos 12F MF b S b ααα∆∴=⋅⋅=+(2)椭圆上存在一个点M ,使12120F MF ∠=︒,即12max ()120F MF ∠≥︒,12tan tan 602c F MF b ∠∴=≥︒=,即22223,3,93,02c c b b b b ≥≥∴-≥∴<≤16.已知椭圆2222:1x y C a b+=(0a b >>)的长轴长是短轴长的两倍,焦距为(1)求椭圆C 的标准方程;(2)若直线:l y kx m =+(0k ≠且0m ≠)与椭圆C 交于两点11(,)M x y 、22(,)N x y ,且21212y y k x x ⋅=,试求直线l 的斜率k ,并求m 的取值范围.解:(1) 椭圆2222:1x y C a b+=(0a b >>)的长轴长是短轴长的两倍,焦距为⎪⎩⎪⎨⎧+==⨯=∴222322222c b a c b a 解得3,1,2===c b a ∴椭圆C 的标准方程1422=+y x .(2)由题意,得0≠k ,联立⎪⎩⎪⎨⎧=++=1422y x m kx y ,消去y 并整理得:0)1(48)41(222=-+++m kmx x k 设)()(2211y x N y x M ,,,,则221418kkmx x +-=+,222141)1(4k m x x +-=由题意12≠m (否则021=x x ,则21,x x 中至少有一个为0,直线ON OM ,中至少有一个斜率不存在,矛盾)2212122121)())((m x x km x x k m kx m kx y y +++=++=∴,2212212122121)(k x x m x x km x x k x x y y =+++=∴由0≠m 得:412=k 解得21±=k 由0)14(16)1)(41(1664222222>+-=-+-=∆m k m k m k 得21100112<<<<<<--<<-m m m m 或或或.17.已知复数(,,)z x yi x y R i =+∈是虚数单位,且22z z ++-=.⑴求复数z 对应点),(y x Z 的轨迹E 的方程;⑵过点(,0)B m作方向向量为( 1)的直线l 交曲线E 于 C D 、两点,若点(1,0)Q 恰在以线段CD 为直径圆的内部,求实数m 的取值范围.【解析】(1)由22z z ++-=点),(y x Z 在以)0,2(),0,2(-为焦点,622=a 的椭圆上于是:2,2,6222=-===c a b c a 故点),(y x Z 的轨迹E 的方程为:12622=+y x (2)CD 方程为:)(33m x y --=,由⎪⎩⎪⎨⎧=-+--=063)(3322y x m x y 得:062222=-+-m mx x 因直线与椭圆有两交点,于是0>∆解得:3232<<-m 由题意知,0<⋅QD QC ,即0),1(),1(<-⋅-D D C C y x y x 将)(33m x y C C --=,)(33m x y D D --=代入上式整理得:03131)((342<++++-m m x x x x D C D C 将⎪⎩⎪⎨⎧-==+262m x x mx x D C D C 代入上式解得:323<<-m ,综上,323<<-m .18.已知椭圆E 两个焦点12(1,0),(1,0)F F -,并经过点2322⎛⎫⎪ ⎪⎝⎭.(1)求椭圆E 的标准方程;(2)设,M N 为椭圆E 上关于x 轴对称的不同两点,12(,0),(,0)A x B x 为x 轴上两点,且122x x =,证明:直线AM ,NB 的交点P 仍在椭圆E 上;(3)你能否将(2)推广到一般椭圆中?写出你的结论即可.解:(1)设标准方程为22221(0)1x y b b b +=>+,又,22E ⎛∈ ⎝⎭,故221/23/411b b +=+,解得1b =,因此标准方程为22:12x E y +=.(2)方法一(求两直线交点坐标):设0000(,),(,)M x y N x y -,(,)P x y 则联立两直线方程01010202:():()AMBN y l y x x x x y l y x x x x ⎧=-⎪-⎪⎨-⎪=-⎪-⎩,消去y 得0001021201020124()()2y y x x x x x x x x x x x x x x x x -+--=-⇒=----0010202011010120124()22y x x x x y x y x y x x x x x x x x x +--=-=-----()()()()222012021222201201242222x x x y x x x y x x x x x x +-⎡⎤-⎣⎦∴+=+----由于2212002,22x x y x ==-化简得2222200102122220010212888822224444x x x x x x x x y x x x x x x x --+++∴+==--+++2212x y ⇔+=,即交点P 在椭圆上.方法二(解析法):设0000(,),(,)M x y N x y -,则01010202:():()AMBNy l y x x x x y l y x x x x ⎧=-⎪-⎪⎨-⎪=-⎪-⎩,再记(,)P x y ,则P 满足上述两方程,化简后得01000200()()y y x yx xy y y x yx xy -=-⎧⎨+=+⎩,两式相乘得22222201200()y y x x y x x y -=-,再由2212002,22x x x y ==-代入消元化简,得22222022y y y x y +=,2212x y ⇔+=,即交点P 在椭圆上.方法三(解析法):设0000(,),(,)M x y N x y -,则01010202:():()AMBN y l y x x x x y l y x x x x ⎧=-⎪-⎪⎨-⎪=-⎪-⎩,再记(,)P m n ,则P 满足上述两方程,化简后得()()01010202:():()AM BN l n x x y m x l n x x y m x -=-⎧⎪⎨-=--⎪⎩,两边平方,()()2222010122220202()()n x x y m x n x x y m x ⎧-=-⎪⎨-=-⎪⎩观察得12,x x 是方程()()222200nx x y m x -=-的两根,即12,x x 是方程()()22222222200000220n y x myn x x n x y m -+-+-=的两根,222222222200120002222n x y m x x n y n x y m n y -∴==⇒-=--由于220022x y =-,得()2222222200022222n y n y ym m n -=--⇒+=即交点P 在椭圆上.(3)推广:给定椭圆2222:1(0)x y E a b a b+=>>,设,M N 为E 上关于x 轴对称的不同两点,12(,0),(,0)A x B x 为x 轴上两点,且212x x a =,则直线AM ,NB 的交点P 仍在椭圆E 上.。

椭圆的定义与性质探究

椭圆的定义与性质探究

椭圆的定义与性质探究椭圆是数学中一种重要的几何图形,具有独特的定义和性质。

本文将对椭圆进行深入的探究,包括椭圆的定义、性质及其在实际生活中的应用。

一、椭圆的定义椭圆是平面上到两个定点的距离之和等于常数的点的轨迹。

这两个点称为椭圆的焦点,常数称为椭圆的离心率。

椭圆的离心率介于0到1之间,当离心率为0时,椭圆退化成一个点,当离心率为1时,椭圆退化成一条线段。

二、椭圆的性质1. 离心径:椭圆的两个焦点到任意一点的距离之和等于常数,这个常数称为离心径。

椭圆的离心径长度等于长轴的长度。

2. 长轴和短轴:椭圆的两个焦点的连线称为椭圆的长轴,长轴的中点称为椭圆的中心。

长轴的长度为2a,短轴的长度为2b,长轴和短轴的两倍称为椭圆的主轴。

3. 焦半径和引线:椭圆上的任意一点到两个焦点的距离分别称为焦半径,而椭圆上的任意一条直线与焦点的连线相交,且平分焦半径,称为引线。

4. 离心角:椭圆上任意一点的离心角等于该点的切线与长轴之间的夹角。

5. 第一焦点定理:椭圆上任意一点的焦半径之和等于该点到两个焦点的距离。

6. 第二焦点定理:椭圆上的任意一条切线与连结焦点的两条引线之和相等。

三、椭圆的应用椭圆在现实生活中有广泛的应用。

以下是其中的几个例子:1. 天体轨道:行星、卫星等天体的轨道往往呈椭圆形状,椭圆的性质帮助科学家研究天体的运动规律。

2. 抛物线天线:抛物线天线是一种应用了椭圆的特性的天线,其形状使得抛物面成为抛物线,从而实现更强的信号聚集效果。

3. 建筑设计:在建筑设计中,椭圆形状常用于设计建筑物的地面、门廊和窗户,赋予建筑物一种独特的美感。

4. 运动轨迹:体育项目中,例如足球、篮球的运动轨迹在空中表现出的是一个抛物线,而当球员的移动是椭圆的路径时,也能够帮助球员更好地调整位置。

四、总结椭圆是一种具有独特性质的几何图形,其定义、性质及应用都具有广泛的意义和价值。

通过深入了解和探究椭圆,我们可以更好地理解并运用它在各个领域中的特性。

椭圆的定义及性质

椭圆的定义及性质

椭圆的一个顶点,则椭圆的方程为
.
解析:设椭圆的方程为
x2 a2

y2 b2
c

a

3 5
=1(a>b>0),则已知 b 4,
a2 b2
c2,

a 5, 解得 b 4,
c 3,
所以椭圆方程为 x2 y2 =1. 25 16
小结:椭圆的标准方程及其简单几何性质
x2
y2
a 2 b2 1(a b 0)
y2 x2 a2 b2 1(a b 0)
图形
对称性 顶点
范围
焦点 焦距
离心率
曲线关于x轴、 y轴、原点对称 长轴顶点(±a,0) 短轴顶点(0,±b)
a x a, b y b
(-c,0)和(c,0)
曲线关于x轴、 y轴、原点对称 长轴顶点(0,±a) 短轴顶点(±b,0)
椭圆关于x轴、y轴、原点对称.
yy B2
AA11
AA2 2
O O
x

x2 a2

y2 b2
BB11
1中令y=0, 可得x= a
从而:A1(-a,0),A2(a,0)
同理:B1(0, -b),B2(0, b)
y
B2
A1
A2
O
x
B1
线段A1A2叫椭圆的长轴: 长为2a 线段B1B2叫椭圆的短轴: 长为2b
2.当2a=2c时,轨迹是一条线段, 是以 F1、F2为端点的线段. 3.当2a<2c时,无轨迹,图形不存在. 4.当c=0时,轨迹为圆.
二.椭圆的标准方程
(1)焦点在x轴
x2 a2

椭圆的经典知识总结

椭圆的经典知识总结

椭圆的经典知识总结椭圆是一个非常重要的几何形状,广泛应用于数学、物理和工程等领域。

下面将对椭圆的经典知识进行总结,涵盖椭圆的定义、性质以及一些常见的应用。

一、定义和性质:1.椭圆定义:椭圆是平面上到两个给定点(焦点)距离之和等于一定常数(长轴)的点的集合。

2.主要要素:(1)焦点:椭圆的两个焦点是确定椭圆形状的关键要素。

(2)长轴和短轴:椭圆的长轴是连接两个焦点的线段,短轴则是垂直于长轴并通过中心点的线段。

长轴的长度称为椭圆的主轴,短轴的长度则称为次轴。

(3)中心:椭圆的中心是指长轴和短轴的交点。

(4)半焦距:则是焦点到中心的距离。

(5)离心率:椭圆的离心率是一个用来衡量椭圆形状的值,定义为离心距(焦点到中心的距离)与主轴长度之比。

3.离心率和几何性质:(1)离心率的取值范围为0到1之间,当离心率为0时,椭圆退化为一个点;当离心率为1时,椭圆退化为一个抛物线。

(2)在椭圆上的任意一点,到焦点的距离之和等于常数,称为焦散性质。

(3)椭圆的两个焦点到任意一点的距离之差等于长轴的长度。

4.椭圆的方程:椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆中心点的坐标,a和b分别为长轴和短轴的长度,并且a>b。

二、椭圆的性质和应用:1.对称性:(1)椭圆具有对称性,关于中心对称,即中心点是对称中心。

(2)长轴和短轴也是椭圆的对称轴。

2.焦点与直线的关系:(1)焦点到椭圆上的任意一点的距离之和等于该点到椭圆的任意一条切线的长度。

(2)椭圆上的任意一条切线与焦点之间的两条线段的夹角相等。

3.切线和法线:(1)切线是与椭圆一点相切且垂直于切线的直线。

(2)法线是与切线垂直且通过椭圆上切点的直线。

4.面积公式:椭圆的面积为πab,其中a和b分别为长轴和短轴的长度。

5.椭圆的应用:(1)椭圆在天文学中被用来描述行星、彗星和其他天体的轨道。

(2)椭圆也广泛应用于工程学、建筑学和设计中,例如椭圆形的天花板和门窗等。

椭圆的基本概念与性质

椭圆的基本概念与性质

椭圆的基本概念与性质椭圆是一种常见的几何图形,具有一些独特的性质和应用。

本文将介绍椭圆的基本概念以及一些相关的性质。

一、椭圆的定义与特点椭圆可以由一个固定点F(焦点)和到该点距离的总和等于常数2a (长轴)的点P的轨迹组成。

根据定义,椭圆上的任意点到焦点F和焦点到点到点P的距离之和等于常数2a。

椭圆还有一个参数b,称为短轴。

这两个参数构成了椭圆的两个辅助直径。

椭圆的中心是离焦点F和点P等距离的点O。

长轴和短轴的长度分别为2a和2b,其中2a>2b。

两个焦点F与F'关于中心O对称。

椭圆有一些特殊的性质:1. 椭圆上的任意点P到焦点的距离之和等于2a。

2. 椭圆的离心率e是一个介于0和1之间的数,定义为焦点到椭圆的中心的距离与长轴的一半的比值。

离心率决定了椭圆形状的“瘦胖程度”。

当e=0时,椭圆退化成一个点;当e=1时,椭圆退化成一个线段。

3. 椭圆的面积等于πab,其中π是圆周率。

二、椭圆的方程与坐标表示椭圆的方程可以通过焦点和离心率进行表示。

一般形式的椭圆方程为:(x^2/a^2) + (y^2/b^2) = 1其中,a和b分别表示长轴和短轴的长度。

椭圆的中心位于原点(0,0)处。

椭圆还可以通过参数方程进行表示:x = a * cosθy = b * sinθ其中,θ为参数,0 ≤ θ ≤ 2π。

三、椭圆的性质1. 焦点定理:椭圆上的任意点P到焦点F1和F2的距离之和等于2a。

2. 切线性质:椭圆上的任意点P处的切线斜率等于y/x的导数值,即m = (dy/dx) = -b^2 / a^2 * (x / y)。

3. 点到椭圆的距离:点(x1, y1)到椭圆(x^2/a^2) + (y^2/b^2) = 1的距离为d = sqrt[(x1^2/a^2) + (y1^2/b^2) - 1]。

4. 对称性:椭圆关于x轴和y轴对称。

5. 垂直角性质:椭圆上的任意点P处,直线PF1和PF2的夹角相等于直线PL1和PL2的夹角。

椭圆的定义与性质

椭圆的定义与性质

椭圆的定义与性质1.椭圆的定义(1)第一定义:平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距.(2)第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e(0<e<1)的动点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线l叫做焦点F相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)\f(y2,a2)+\f(x2,b2)=1(a>b>0)图形性质范围-a≤x≤a -b≤y≤b-b≤x≤b-a≤y≤a 顶点A1(-a,0),A2(a,0) A1(0,-a),A2(0,a)B1(0,-b),B2(0,b)B1(-b,0),B2(b,0) 焦点F1(-c,0) F2(c,0) F1(0,-c) F2(0,c)准线l1:x=-错误!l2:x=错误!l1:y=-错误!l2:y=错误!轴长轴A1A2的长为2a 短轴B1B2的长为2b焦距F1F2=2c离心率e=错误!,且e∈(0,1)a,b,c的关系c2=a2-b2对称性对称轴:坐标轴对称中心:原点1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)动点P到两定点A(-2,0),B(2,0)的距离之和为4,则点P的轨迹是椭圆.( )(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).( )(3)椭圆的离心率e越大,椭圆就越圆.( )(4)已知点F 为平面内的一个定点,直线l 为平面内的一条定直线.设d为平面内一动点P到定直线l 的距离,若d =错误!|PF |,则点P 的轨迹为椭圆.( )[解析] (1)错误,|P A |+|PB |=|A B|=4,点P 的轨迹为线段AB ;(2)正确,根据椭圆的第一定义知PF 1+PF2=2a ,F 1F 2=2c ,故△PF 1F2的周长为2a +2c ;(3)错误,椭圆的离心率越大,椭圆越扁.(4)正确,根据椭圆的第二定义.[答案] (1)× (2)√ (3)× (4)√2.(教材习题改编)焦点在x 轴上的椭圆\f(x 2,5)+错误!=1的离心率为错误!,则m =________.[解析] 由题设知a 2=5,b2=m ,c 2=5-m,e2=错误!=错误!=(错误!)2=错误!,∴5-m=2,∴m=3.[答案] 33.椭圆的焦点坐标为(0,-6),(0,6),椭圆上一点P 到两焦点的距离之和为20,则椭圆的标准方程为_____.[解析] 椭圆的焦点在y轴上,且c =6,2a =20,∴a=10,b 2=a2-c 2=64,故椭圆方程为x 264+y 2100=1. [答案] 错误!+错误!=1 4.(2014·无锡质检)椭圆x24+\f(y 2,3)=1的左焦点为F ,直线x =m与椭圆相交于点A,B,当△F AB 的周长最大时,△F AB 的面积是________.[解析] 直线x=m 过右焦点(1,0)时,△F AB 的周长最大,由椭圆定义知,其周长为4a =8, 此时,|AB |=2×b 2a=错误!=3,∴S △F AB =错误!×2×3=3.[答案] 35.(2014·江西高考)过点M (1,1)作斜率为-错误!的直线与椭圆C :错误!+错误!=1(a >b>0)相交于A ,B 两点,若M是线段AB 的中点,则椭圆C的离心率等于________.[解析] 设A (x 1,y 1),B (x 2,y 2),则错误!∴错误!+错误!=0,∴y 1-y 2x1-x 2=-b2a2·\f(x 1+x 2,y1+y 2). ∵y 1-y 2x 1-x2=-\f (1,2),x 1+x 2=2,y1+y 2=2,∴-b 2a2=-错误!, ∴a 2=2b 2.又∵b 2=a 2-c2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴\f (c ,a )=错误!.[答案] 错误!考向1 椭圆的定义与标准方程【典例1】(1)(2014·全国大纲卷改编)已知椭圆C:错误!+错误!=1(a>b>0)的左、右焦点为F1、F2,离心率为\f(3,3),过F2的直线l交C于A、B两点.若△AF1B的周长为4\r(3),则C的方程为________.(2)(2014·苏州质检)椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为________.[解析](1)由条件知△AF1B的周长=4a=4错误!,∴a=错误!.∵e=错误!=错误!,c2+b2=a2,∴c=1,b=错误!.∴椭圆C的方程为错误!+错误!=1.(2)∵椭圆的一条准线为x=-4,∴焦点在x轴上且错误!=4,又2c=4,∴c=2,∴a2=8,b2=4,∴该椭圆方程为错误!+错误!=1.[答案] (1)错误!+错误!=1 (2)错误!+错误!=1,【规律方法】(1)一般地,解决与到焦点的距离有关问题时,首先应考虑用定义来解决.(2)求椭圆的标准方程有两种方法①定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程.②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).【变式训练1】(1)(2013·广东高考改编)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于\f(1,2),则C的方程是________.(2)(2014·苏州质检)已知椭圆的方程是错误!+错误!=1(a>5),它的两个焦点分别为F1,F2,且|F1F2|=8,弦AB(椭圆上任意两点的线段)过点F1,则△ABF2的周长为________.[解析] (1)右焦点F(1,0),则椭圆的焦点在x轴上;c=1.又离心率为ca=\f(1,2),故a=2,b2=a2-c2=4-1=3,故椭圆的方程为x24+\f(y2,3)=1.(2)∵a>5,∴椭圆的焦点在x轴上,∵|F1F2|=8,∴c=4,∴a2=25+c2=41,则a=\r(41). 由椭圆定义,|AF1|+|AF2|=|BF2|+|BF1|=2a,∴△ABF2的周长为4a=441.[答案] (1)错误!+错误!=1(2)4错误!考向2椭圆的几何性质【典例2】(1)(2013·江苏高考)在平面直角坐标系xOy中,椭圆C的标准方程为x2a2+y2b2=1(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B.设原点到直线BF的距离为d1,F到l的距离为d2,若d2=6d1,则椭圆C的离心率为________.(2)(2014·扬州质检)已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|=2|PF2|,∠PF1F2=30°,则椭圆的离心率为________.[解析](1)依题意,d2=错误!-c=错误!.又BF=错误!=a,所以d1=错误!.由已知可得错误!=\r(6)·\f(bc,a),所以\r(6)c2=ab,即6c4=a2(a2-c2),整理可得a2=3c2,所以离心率e=\f(c,a)=\f(3,3).(2)在三角形PF1F2中,由正弦定理得sin∠PF2F1=1,即∠PF2F1=错误!,设|PF2|=1,则|PF1|=2,|F2F1|=3,∴离心率e=错误!=错误!. [答案](1)错误!(2)错误!,【规律方法】1.椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.2.椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:(1)求出a,c,代入公式e=错误!;(2)只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).【变式训练2】(1)(2013·课标全国卷Ⅱ改编)设椭圆C:错误!+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为________.(2)(2014·徐州一中抽测)已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.则椭圆离心率的范围为________.[解析](1)如图,在Rt△PF1F2中,∠PF1F2=30°,∴|PF1|=2|PF2|,且|PF2|=错误!|F1F2|,又|PF1|+|PF2|=2a,∴|PF2|=\f(2,3)a,于是|F1F2|=错误!a,因此离心率e=错误!=错误!=错误!.(2)法一:设椭圆方程为错误!+错误!=1(a>b>0),|PF1|=m,|PF2|=n,则m+n=2a.在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mn cos 60°=(m+n)2-3mn=4a2-3mn≥4a2-3·错误!2=4a2-3a2=a2(当且仅当m=n时取等号).∴错误!≥错误!,即e≥错误!.又0<e<1,∴e的取值范围是错误!.法二:如图所示,设O是椭圆的中心,A 是椭圆短轴上的一个顶点,由于∠F 1PF2=60°,则只需满足60°≤∠F1AF 2即可,又△F 1AF 2是等腰三角形,且|AF1|=|AF 2|,所以0°<∠F 1F2A ≤60°,所以12≤cos ∠F 1F2A <1,又e=c os ∠F 1F2A ,所以e 的取值范围是错误!. [答案] (1)错误! (2)错误! 课堂达标练习 一、填空题1.在平面直角坐标系x Oy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为错误!.过F1的直线l 交C于A ,B 两点,且△AB F2的周长为16,那么椭圆C 的方程为________.[解析] 设椭圆方程为x 2a 2+\f (y2,b 2)=1(a >b >0),由e=错误!知错误!=错误!,故错误!=错误!.由于△AB F2的周长为|AB |+|BF 2|+|AF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =16,故a =4.∴b 2=8. ∴椭圆C的方程为错误!+错误!=1.[答案] 错误!+错误!=12.(2013·四川高考改编)从椭圆错误!+错误!=1(a>b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A是椭圆与x 轴正半轴的交点,B是椭圆与y 轴正半轴的交点,且A B∥O P(O 是坐标原点),则该椭圆的离心率是________.[解析] 设P (-c,y0)代入椭圆方程求得y0,从而求得k OP ,由kOP =k A B及e=\f(c ,a)可得离心率e . 由题意设P(-c ,y 0),将P (-c ,y0)代入\f(x 2,a2)+错误!=1,得错误!+错误!=1,则y错误!=b 2错误!=b 2·错误!=错误!.∴y 0=错误!或y 0=-错误!(舍去),∴P 错误!,∴k OP =-错误!.∵A(a,0),B (0,b),∴k AB =b -00-a=-错误!. 又∵AB ∥OP ,∴kAB =k OP ,∴-错误!=-错误!,∴b=c.∴e =\f(c,a )=\f (c,b 2+c2)=错误!=错误!. [答案] 错误!3.(2014·辽宁高考)已知椭圆C :错误!+错误!=1,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.[解析] 椭圆错误!+错误!=1中,a =3. 如图,设MN 的中点为D ,则|DF 1|+|D F2|=2a =6.∵D ,F1,F 2分别为MN ,AM ,BM 的中点,∴|BN |=2|DF 2|,|AN |=2|D F1|, ∴|AN |+|BN |=2(|DF 1|+|D F2|)=12. [答案] 124.(2014·南京调研)如图,已知过椭圆错误!+错误!=1(a >b >0)的左顶点A (-a ,0)作直线l交y 轴于点P,交椭圆于点Q ,若△AO P是等腰三角形,且错误!=2错误!,则椭圆的离心率为________.[解析] ∵△AO P为等腰三角形,∴O A=O P,故A (-a,0),P(0,a ),又错误!=2错误!,∴Q 错误!,由Q在椭圆上得错误!+错误!=1,解得错误!=错误!. ∴e =错误!=错误!=错误!. [答案] 错误!5.(2014·南京质检)已知焦点在x轴上的椭圆的离心率为错误!,且它的长轴长等于圆C:x 2+y 2-2x -15=0的半径,则椭圆的标准方程是________.[解析] 由x 2+y 2-2x -15=0,知r =4=2a ⇒a =2. 又e =\f(c,a )=\f(1,2),c =1,则b2=a 2-c 2=3.因此椭圆的标准方程为\f (x 2,4)+错误!=1. [答案] 错误!+错误!=16.(2013·辽宁高考改编)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F,椭圆C 与过原点的直线相交于A,B 两点,连接AF ,B F.若|AB |=10,|B F|=8,cos ∠AB F=\f(4,5),则椭圆C的离心率为__________.[解析] 在△ABF 中,由余弦定理得 ,|AF |2=|AB |2+|BF |2-2|A B|·|BF |c os ∠ABF ,∴|AF|2=100+64-128=36,∴|AF |=6,从而|AB |2=|AF |2+|BF |2,则AF ⊥BF . ∴c =|OF |=12|AB |=5,利用椭圆的对称性,设F ′为右焦点,则|BF ′|=|AF |=6, ∴2a=|B F|+|BF ′|=14,a =7. 因此椭圆的离心率e =错误!=错误!. [答案] 错误! 7.已知F 1,F 2是椭圆C :x2a 2+\f(y 2,b 2)=1(a >b >0)的两个焦点,P 为椭圆C上的一点,且\o(PF 1,→)⊥错误!.若△PF 1F 2的面积为9,则b =________.[解析] 由定义,|PF 1|+|PF 2|=2a,且错误!⊥错误!, ∴|P F1|2+|PF 2|2=|F 1F 2|2=4c 2,∴(|PF 1|+|P F2|)2-2|PF 1||PF 2|=4c 2,∴2|PF 1||PF 2|=4a 2-4c 2=4b 2,∴|PF 1||PF 2|=2b 2. ∴S△PF 1F 2=\f (1,2)|PF 1||PF 2|=12×2b 2=9,因此b =3. [答案] 38.(2013·大纲全国卷改编)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x轴的直线交C于A ,B 两点,且|AB |=3,则C 的方程为________.[解析] 依题意,设椭圆C:错误!+错误!=1(a >b>0).过点F 2(1,0)且垂直于x 轴的直线被曲线C 截得弦长|AB |=3, ∴点A错误!必在椭圆上, ∴错误!+错误!=1.① 又由c =1,得1+b 2=a 2.② 由①②联立,得b 2=3,a 2=4.故所求椭圆C 的方程为x24+\f (y 2,3)=1. [答案] \f(x 2,4)+错误!=1二、解答题9.(2014·镇江质检)已知椭圆C 1:错误!+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率. (1)求椭圆C 2的方程;(2)设O为坐标原点,点A,B 分别在椭圆C1和C 2上,错误!=2错误!,求直线AB 的方程.[解] (1)设椭圆C 2的方程为错误!+错误!=1(a >2), 其离心率为错误!, 故错误!=错误!,解得a =4.故椭圆C2的方程为\f(y 2,16)+错误!=1.(2)法一:A ,B 两点的坐标分别记为(x A ,yA ),(x B,yB ),由错误!=2错误!及(1)知,O 、A、B 三点共线且点A 、B 不在y 轴上,因此可设直线A B的方程为y =kx . 将y=kx 代入错误!+y 2=1中,得(1+4k2)x2=4, 所以x错误!=错误!. 将y =kx 代入\f(y 2,16)+错误!=1中,得(4+k 2)x 2=16,所以x 错误!=错误!. 又由错误!=2错误!,得x 错误!=4x 错误!, 即错误!=错误!, 解得k =±1.故直线AB 的方程为y =x 或y =-x. 法二:A ,B两点的坐标分别记为(xA,y A ),(x B ,yB ),由错误!=2错误!及(1)知,O 、A、B三点共线且点A 、B 不在y 轴上,因此可设直线AB 的方程为y =kx . 将y =kx 代入\f(x2,4)+y 2=1中,得(1+4k 2)x 2=4,所以x2,A =41+4k2. 由错误!=2错误!,得x错误!=错误!,y 错误!=错误!.将x2B,y错误!代入错误!+错误!=1中,得错误!=1,即4+k2=1+4k2,解得k=±1.故直线AB的方程为y=x或y=-x.10.(2014·安徽高考)设F1,F2分别是椭圆E:\f(x2,a2)+错误!=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(1)若|AB|=4,△ABF2的周长为16,求|AF2|;(2)若cos∠AF2B=错误!,求椭圆E的离心率.[解](1)由|AF1|=3|F1B|,|AB|=4,得|AF1|=3,|F1B|=1.因为△ABF2的周长为16,所以由椭圆定义可得4a=16,|AF1|+|AF2|=2a=8.故|AF2|=2a-|AF1|=8-3=5.(2)设|F1B|=k,则k>0且|AF1|=3k,|AB|=4k.由椭圆定义可得|AF2|=2a-3k,|BF2|=2a-k.在△ABF2中,由余弦定理可得|AB|2=|AF2|2+|BF2|2-2|AF2|·|BF2|cos∠AF2B,即(4k)2=(2a-3k)2+(2a-k)2-\f(6,5)(2a-3k)·(2a-k),化简可得(a+k)(a-3k)=0.而a+k>0,故a=3k.于是有|AF2|=3k=|AF1|,|BF2|=5k.因此|BF2|2=|F2A|2+|AB|2,可得F1A⊥F2A,故△AF1F2为等腰直角三角形.从而c=\f(\r(2),2)a,所以椭圆E的离心率e=错误!=错误!.椭圆的定义与性质1.椭圆的定义(1)第一定义:平面内与两个定点F1,F2的距离之和等于(大于|F1F2|)的点的轨迹叫做椭圆,这两个叫做椭圆的焦点,两个的距离叫做焦距.(2)第二定义:平面内与一个定点F和一条定直线l的距离的比是常数( <e<)的动点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线l叫做焦点F相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程错误!+错误!=1(a>b>0)错误!+错误!=1(a>b>0)图形性质范围≤x≤≤y≤≤x≤≤y≤顶点A1( ), A2( ) A1(), A2()B1( ),B2( ) B1(),B2()焦点F1() F2() F1()F2()准线l1:x=-a2c l2:x=\f(a2,c) l1:y=-错误!l2:y=错误!轴长轴A1A2的长为短轴B1B2的长为长轴A1A2的长为短轴B1B2的长为焦距F1F2=离心率e=\f(c,a),且e∈a,b,c的关系c2=对称性对称轴:对称中心:1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)动点P到两定点A(-2,0),B(2,0)的距离之和为4,则点P的轨迹是椭圆.()(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(3)椭圆的离心率e越大,椭圆就越圆.()(4)已知点F为平面内的一个定点,直线l为平面内的一条定直线.设d为平面内一动点P到定直线l的距离,若d=错误!|PF|,则点P的轨迹为椭圆.()2.(教材习题改编)焦点在x轴上的椭圆错误!+错误!=1的离心率为错误!,则m=________.3.椭圆的焦点坐标为(0,-6),(0,6),椭圆上一点P到两焦点的距离之和为20,则椭圆的标准方程为_____. 4.(2014·无锡质检)椭圆错误!+错误!=1的左焦点为F,直线x=m与椭圆相交于点A,B,当△F AB的周长最大时,△F AB的面积是________.5.(2014·江西高考)过点M(1,1)作斜率为-12的直线与椭圆C:错误!+错误!=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.考向1 椭圆的定义与标准方程【典例1】(1)(2014·全国大纲卷改编)已知椭圆C:\f(x2,a2)+错误!=1(a>b>0)的左、右焦点为F1、F2,离心率为错误!,过F2的直线l交C于A、B两点.若△AF1B的周长为4错误!,则C的方程为________.(2)(2014·苏州质检)椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为________.【规律方法】(1)一般地,解决与到焦点的距离有关问题时,首先应考虑用定义来解决.(2)求椭圆的标准方程有两种方法①定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程.②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).【变式训练1】(1)(2013·广东高考改编)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于\f(1,2),则C的方程是________.(2)(2014·苏州质检)已知椭圆的方程是错误!+错误!=1(a>5),它的两个焦点分别为F1,F2,且|F1F2|=8,弦AB(椭圆上任意两点的线段)过点F1,则△ABF2的周长为________.考向2椭圆的几何性质【典例2】(1)(2013·江苏高考)在平面直角坐标系xOy中,椭圆C的标准方程为错误!+错误!=1(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B.设原点到直线BF的距离为d1,F到l的距离为d2,若d2=6d1,则椭圆C的离心率为________.(2)(2014·扬州质检)已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|=2|PF2|,∠PF1F2=30°,则椭圆的离心率为________.【规律方法】1.椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.2.椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:(1)求出a,c,代入公式e=错误!;(2)只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).【变式训练2】(1)(2013·课标全国卷Ⅱ改编)设椭圆C:x2a2+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为________.(2)(2014·徐州一中抽测)已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.则椭圆离心率的范围为________.课堂达标练习一、填空题1.在平面直角坐标系x Oy 中,椭圆C的中心为原点,焦点F1,F 2在x轴上,离心率为\f(\r(2),2).过F 1的直线l交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C的方程为________.2.(2013·四川高考改编)从椭圆错误!+错误!=1(a>b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O是坐标原点),则该椭圆的离心率是________.3.(2014·辽宁高考)已知椭圆C :x 29+错误!=1,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C上,则|AN |+|B N|=________.4.(2014·南京调研)如图,已知过椭圆错误!+错误!=1(a >b>0)的左顶点A (-a,0)作直线l交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且错误!=2错误!,则椭圆的离心率为________.5.(2014·南京质检)已知焦点在x 轴上的椭圆的离心率为\f(1,2),且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是________.6.(2013·辽宁高考改编)已知椭圆C:错误!+错误!=1(a >b>0)的左焦点为F,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =错误!,则椭圆C 的离心率为__________.7.已知F 1,F2是椭圆C :错误!+错误!=1(a >b >0)的两个焦点,P为椭圆C上的一点,且错误!⊥错误!.若△P F1F2的面积为9,则b =________.8.(2013·大纲全国卷改编)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x轴的直线交C 于A,B 两点,且|A B|=3,则C 的方程为________.二、解答题9.(2014·镇江质检)已知椭圆C 1:x 24+y 2=1,椭圆C2以C 1的长轴为短轴,且与C 1有相同的离心率. (1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B分别在椭圆C 1和C 2上,错误!=2错误!,求直线AB 的方程.10.(2014·安徽高考)设F1,F2分别是椭圆E:错误!+错误!=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(1)若|AB|=4,△ABF2的周长为16,求|AF2|;(2)若cos∠AF2B=错误!,求椭圆E的离心率.。

椭圆性质总结

椭圆性质总结

椭圆性质总结椭圆是数学中的一种曲线,具有许多重要的性质。

下面是对椭圆性质的总结,总计约1000字:一、椭圆的定义与图形特征椭圆是平面上的一条闭合曲线,它的定义是到两个定点的距离之和等于常数的点的集合。

这两个定点称为焦点,而常数称为离心率,其取值范围为大于0小于1。

椭圆的图形特征有以下几点:首先,在坐标平面上,椭圆呈现出对称性,两个焦点在椭圆的长轴上,而且离心率小于1。

其次,椭圆的图形呈现出两个尖端,这两个尖端称为椭圆的顶点,对应椭圆的长轴的两个端点。

最后,椭圆的长轴是两个焦点的距离,并且通过椭圆的中心,椭圆的短轴是长轴的垂直平分线。

二、椭圆的数学性质1. 方程形式:椭圆的标准方程一般为(x-h)^2/a^2 + (y-k)^2/b^2 = 1(|h|<a,|k|<b)或(x-h)^2/b^2 + (y-k)^2/a^2 = 1(|h|<b, |k|<a),其中(h,k)为椭圆中心坐标,a、b为半长轴和半短轴的长度。

2. 定焦性质:对于椭圆上的任意一点P,其到两个焦点F1和F2的距离之和始终等于椭圆的长轴的长度。

即PF1 + PF2 = 2a。

3. 对称性质:椭圆具有关于两个坐标轴对称的性质。

即椭圆关于x轴和y轴分别对称。

4. 焦点的性质:椭圆的两个焦点F1和F2在椭圆的长轴上,并且离圆心的距离分别为a和-b,即√(a^2 - b^2)。

5. 离心率的性质:椭圆的离心率公式为e = √(1 - b^2/a^2),其中e为离心率,a为半长轴的长度,b为半短轴的长度。

离心率为0时,椭圆退化为一个圆;离心率为1时,椭圆退化为一个抛物线。

6. 面积和周长:椭圆的面积公式为πab,其中π为圆周率,a和b分别为半长轴和半短轴的长度。

椭圆的周长公式为4aE(√(1 - b^2/a^2)),其中E为第二类完全椭圆积分。

7. 与轴的交点:椭圆与x轴的交点为(-a, 0)和(a, 0),与y轴的交点为(0, -b)和(0, b)。

椭圆的定义与性质

椭圆的定义与性质

椭圆的定义与性质椭圆是一种常见的几何图形,具有特定的定义和性质。

本文将对椭圆的定义以及与其相关的性质进行探讨。

一、椭圆的定义椭圆可以用两个焦点和到两个焦点距离之和等于定值的点的集合来定义。

更准确地说,椭圆是平面上满足到焦点F1和F2的距离之和等于常数2a的点的集合,其中a是椭圆的半长轴。

椭圆还具有两个确定其形状和大小的参数:离心率e和焦点间的距离2c。

二、椭圆的特点椭圆具有以下几个重要的性质:1. 对称性:椭圆具有两条互相垂直的对称轴,即长轴和短轴。

这两条对称轴的交点称为椭圆的中心。

2. 焦点性质:对于椭圆上的任意一点P,到焦点F1和F2的距离之和等于2a。

即PF1 + PF2 = 2a。

3. 定义性质:椭圆上的任意一点P到焦点F1和F2的距离之和等于2a,这是椭圆的定义。

4. 离心率性质:椭圆的离心率e满足0 < e < 1,离心率越小,椭圆越扁平。

5. 半焦参数性质:椭圆的半焦参数c满足c = a * e,其中c表示焦点到中心的距离。

6. 弦性质:椭圆上任意一条弦的长度等于半长轴的长度。

三、椭圆与其他几何图形的关系椭圆与圆、抛物线和双曲线都是常见的二次曲线。

与圆相比,椭圆的两个焦点在中心的两侧,而圆的焦点和中心重合;与抛物线相比,椭圆是有界曲线,而抛物线则是无界曲线;与双曲线相比,椭圆是闭合曲线,而双曲线则是非闭合曲线。

四、椭圆的应用椭圆由于其独特的几何性质,在现实生活中有着广泛的应用。

以下列举几个常见的应用场景:1. 太阳系的行星轨道:行星围绕太阳运动的轨道是个近似椭圆形,其中太阳位于椭圆的一个焦点处。

2. 圆形的近似:在一些工程设计中,可以使用椭圆作为近似圆形来进行计算和设计,便于操作和运算。

3. 电子轨道运动:根据玻尔模型,电子在原子中的运动轨迹近似为椭圆形。

总结:椭圆是一种具有独特几何性质的几何图形,其定义和性质经过了仔细的研究与推导。

我们了解到,椭圆具有对称性、焦点性质和离心率性质等重要特征,并且与其他几何图形有所区别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编辑Apollonius 所著的八册《圆锥曲线论》(Conics)集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。

今日大家熟知的ellipse(椭圆)、parabola(抛物线)、hyperbola(双曲线)这些名词,都是Apollonius所发明的。

当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。

此事一直到十六、十七世纪之交,开普勒(Kepler)行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。

开普勒三定律乃是近代科学开天辟地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。

由此可见,圆锥截线不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。

2定义编辑第一定义平面内与两定点、的距离的和等于常数()的动点P的轨迹叫做椭圆。

椭圆定义说明即:其中两定点、叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

为椭圆的动点。

椭圆截与两焦点连线重合的直线所得的弦为长轴,长为椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为可变为第二定义平面内到定点(c,0)的距离和定直线:(不在上)的距离之比为常数(即离心率,0<e<1)的点的轨迹是椭圆。

其中定点为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是(焦点在x轴上),或(焦点在y轴上))。

其他定义根据椭圆的一条重要性质:椭圆上的点与椭圆长轴两端点连线的斜率之积是定值,定值为,可以得出:在坐标轴内,动点()到两定点()()的斜率乘积等于常数m(-1<m<0)注意:考虑到斜率为零时不满足乘积为常数,所以无法取到,即该定义仅为去掉两个点的椭圆。

[2]椭圆也可看做圆按一定方向作压缩或拉伸一定比例所得图形。

3方程编辑高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。

F点在X轴椭圆的标准方程有两种,取决于焦点所在的坐标轴:1)焦点在X轴时,标准方程为:x²/a²+y²/b²=1 (a>b>0)2)焦点在Y轴时,标准方程为:y²/a²+x²/b²=1 (a>b>0)椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。

而公式中的b²=a²-c²。

b 是为了书写方便设定的参数。

[3]又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n)。

即F点在Y轴标准方程的统一形式。

椭圆的面积是πab。

椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsin θ标准形式的椭圆在(x0,y0)点的切线就是:xx0/a²+yy0/b²=1。

椭圆切线的斜率是:-b²x0/a ²y0,这个可以通过很复杂的代数计算得到。

一般方程圆:Ax²+Bxy+Cy²+Dx+Ey+1=0(A>0,B>0,且A≠B)。

参数方程x=acosθ,y=bsinθ。

求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解x=a×cosβ,y=b×sinβa为长轴长的一半极坐标(一个焦点在极坐标系原点,另一个在θ=0的正方向上)r=a(1-e²)/(1-ecosθ)(e为椭圆的离心率=c/a)4几何性质编辑基本性质1、范围:焦点在轴上,;焦点在轴上,2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

3、顶点:(a,0)(-a,0)(0,b)(0,-b)4、离心率:e=c/a 或e=√1-b^2/a²5、离心率范围0<e<16、离心率越大椭圆就越扁,越小则越接近于圆7、焦点(当中心为原点时)(-c,0),(c,0)或(0,c),(0,-c)8、x²/a²+y²/b²=1 (a>b>0)与x²/(ma)²+y²/(mb)²=1 (a>b>0,m为实数)为离心率相同的椭圆9、P为椭圆上的一点,PF1(或PF2)<a+c切线法线定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。

若直线AB切椭圆C于点P,且A和B在直线上位于P的两侧,则∠APF1=∠BPF2。

定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。

若直线AB为C在P点的法线,则AB平分∠F1PF2。

上述两定理的证明可以查看参考资料。

[4]5光学性质编辑椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其内表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。

6相关公式编辑面积公式(其中分别是椭圆的长半轴、短半轴的长),或(其中分别是椭圆的长轴,短轴的长)。

周长公式椭圆周长没有公式,有积分式或无限项展开式。

周长为:或者。

椭圆周长(L)的精确计算要用到积分或无穷级数的求和。

离心率椭圆离心率的定义为椭圆上焦距与长轴的比值,(范围:0<X<1)e=c/a(0<e<1),因为2a>2c。

离心率越大,椭圆越扁平;离心率越小,椭圆越接近于圆形。

椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/c) 的距离为b^2/c 离心率与的关系:焦半径焦点在x轴上:|PF1|=a+ex |PF2|=a-ex(F1,F2分别为左右焦点)椭圆过右焦点的半径r=a-ex过左焦点的半径r=a+ex焦点在y轴上:|PF1|=a+ey |PF2|=a-ey(F2,F1分别为上下焦点)椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,即|AB|=2*b^2/a斜率公式过椭圆上x²/a²+y²/b²=1上一点(x,y)的切线斜率为-b²X/a²y三角面积若有一三角形两个顶点在椭圆的两个焦点上,且第三个顶点在椭圆上那么若∠F1PF2=θ,则S=b²tan(θ/2)。

曲率公式K=ab/[(b²-a²)(cosθ)2+a²]3/2准线方程(焦点在x轴上)(焦点在y轴上)准圆方程准圆为从准圆上任一点向椭圆引两条切线,这两条切线垂直。

通径l=2b^2/a圆锥曲线(除圆外)中,过焦点并垂直于轴的弦椭圆中的通径是通过焦点最短的弦7几何关系编辑点与椭圆点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1点在圆内:x02/a2+y02/b2<1点在圆上:x02/a2+y02/b2=1点在圆外:x02/a2+y02/b2>1跟圆与直线的位置关系一样的相交相离相切直线与椭圆y=kx+m ①x2/a2+y2/b2=1 ②由①②可推出x2a2+(kx+m)2/b2=1相切△=0相离△<0无交点相交△>0 可利用弦长公式:设A(x1,y1)B(x2,y2)求中点坐标根据韦达定理x1+x2=-b/a,x1x2=c/a带入直线方程可求出(y1+y2)/2=可求出中点坐标。

|AB|=d = √(1+k2)[(x1+x2)2-4x1*x2] = √(1+1/k2)[(y1+y2)2-4y1y2]8应用编辑例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。

设两点为F1、F2对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2由定义1知:截面是一个椭圆,且以F1、F2为焦点用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆例:已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3.1.求椭圆C的方程.2.直线l:y=x+1与椭圆交于A,B两点,P为椭圆上一点,求△PAB面积的最大值. 3.在⑵的基础上求△AOB的面积.一分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c=√2,b=√(a^2-c^2)=1,方程是x^2/3+y^2/1=1,二要求面积,显然以ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=-0.5.利用弦长公式有√(1+k^2))[x2-x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大,过p做弦的平行线,可以发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求得m=2,-2.结合图形得m=-2.x=1.5,y=-0.5,p (1.5,-0.5),三直线方程x-y+1=0,利用点到直线的距离公式求得√2/2,面积1/2*√2/2*3√2/2=3/4,9手工画法编辑手绘法一画长轴AB,短轴CD,AB和CD互垂平分于O点。

⑵:连接AC。

⑶:以O为圆心,OA 为半径作圆弧交OC延长线于E点。

⑷:以C为圆心,CE为半径作圆弧与AC交于F点。

⑸:作AF的垂直平分线交CD延长线于G点,交AB于H点。

⑹:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴原心,分别以GC、G‘D为半径作圆。

用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者大头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点,此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,直接画出椭圆:)使用细铜丝最好,因为线的弹性较大画出来不一定准确!手绘法二椭圆的焦距│FF'│(Z)定义,为已知椭圆所构成的长轴X(ab)与短轴Y(cd)则以长轴一端A为圆心短轴Y为半径画弧,从长轴另一段点B引出与弧相切的线段则为该椭圆焦距,求证公式为2√{(Z/2)^2+(Y/2)^2}+Z=X+Z(平面内与两定点F、F'的距离的和等于常数2a(2a>|FF'|)的动点P的轨迹叫做椭圆),可演变为z=√x^2-y^2(x>y>0)。

相关文档
最新文档