导线应力弧垂分析(1-6节).
输电线路设计-应力弧垂计算模版课件

02
CHAPTER
输电线路应力弧垂计算基础
应力弧垂计算原理
输电线路的应力弧垂计算是输电线路设计中的重要环节,它涉及到线路的稳定性、 安全性和经济性。
应力弧垂计算原理基于材料力学、弹性力学和气象学等相关学科,通过分析线路在 不同气象条件下的应力和弧垂,确定线路的安全承载能力。
计算原理主要考虑线路的拉力、重力、风力和冰重等因素,通过建立数学模型,求 解出线路的应力和弧垂。
总结词
高标准设计要求
VS
详细描述
由于1000kV特高压输电线路具有更高的 电压等级和输送容量,因此对线路的设计 要求也更高。需要采用先进的材料和技术 ,确保线路的耐压、机械和电气性能达到 高标准要求,同时还需要采取有效的防雷 和绝缘措施,确保线路的安全可靠运行。
案例二:1000kV特高压输电线路设计
优化线路路径选择
路径选择
在输电线路设计过程中,应优先选择地形平坦、地质稳定、避开 不良地质、气象条件良好、建筑物和树木较少的路径。
减少转角和跨越
尽量减少线路中的转角和跨越,以降低施工难度和成本,同时减少 对环境和生态的影响。
避开重要设施
应尽量避开重要的设施,如军事设施、机场、油库等,以减少对现 有设施的干扰和潜在的安全风险。
总结词
环境保护与可持续发展
详细描述
1000kV特高压输电线路设计还需要充分考 虑环境保护和可持续发展,采取一系列环保 措施和技术,减少对环境的影响。例如,采 用高跨度杆塔、优化线路路径、减少土地占 用等措施,以降低对自然生态的影响,实现 能源资源的可持续发展。
案例三:跨越复杂地形的设计方案
总结词
特殊地理环境应对
线路参数包括导线直径、截面形状、单位长度质量、弹 性模量等,这些参数直接影响线路的应力和弧垂。
输电线路设计—应力弧垂计算

电线应力弧垂计算
张鸣
2011年07月08日
1
1、基本概念 2、临界档距计算及判定有效临界档距 3、悬链线方程、弧垂、应力及线长 4、斜抛物线、平抛物线相关公式 5、弧垂公式的选用 6、应力状态方程公式
2
1、基本概念
比载:电线单位长度、单位截面上承受的荷载称为比载。 常用符号g或γ,单位用N/m.mm2 ,或MPa/m。 应力:电线单位截面上承受的张力。 常用符号σ,单位用N/mm2 ,或MPa。 水平档距:水平档距就是某杆两侧档距之 和的算术平均值。它表示有多长导线的水平 荷载作用在某杆塔上。水平档距是用来计算 导线传递给杆塔的水平荷载。常用符号Lh。
x cos 0
2、架空线上任意一点轴向应力的垂直分量等 于该点到弧垂最低点间线长Loc与比载γ之积。
x sin Loc
13
将上两式相比,求得电线任一点的切线斜率为: dy tg Loc dx 0 上式说明:当比值γ/σ0一定时,架空线上任一点处的斜率于该点至弧垂最 低点之间的线长成正比。
36
h 0.15 l
6、应力状态方程公式
一、应力状态方程
ቤተ መጻሕፍቲ ባይዱ
37
二、应力状态方程求解
38
39
40
14
式(1-3)是悬链曲线方程的普遍式。式中的sh、ch分别是双曲线正弦、余 弦函数符号,积分常数C1、C2根据所取坐标原点的位置及边界条件而定。当 绘制弧垂曲线模板时,通常取坐标原点位于原低点处,Y轴与荷载方向相平 行,即x=0时 dy 0 ,代入式(1-2)求得C1=0;由x=0、y=0、及C1=0 代入
dx
式(1- 3)求得 。将C1、C2值代入式(1-3),便可推得, 坐标原点位于曲线最低点的架空线悬链方程为
《输电线路基础》第章-导线应力弧垂分析-第节-导线的状态讲解课件 (二)

《输电线路基础》第章-导线应力弧垂分析-第节-导线的状态讲解课件 (二)
1. 导线应力
- 导线在使用过程中会受到拉力的作用,这种拉力会导致导线产生应力。
- 导线应力的大小与导线的材料、直径、长度以及受力情况有关。
- 导线应力的大小对导线的使用寿命和安全性都有着重要的影响。
2. 弧垂分析
- 弧垂是指导线在两个支点之间的下垂程度。
- 弧垂大小与导线的张力、跨距、重量以及环境温度等因素有关。
- 弧垂分析是对导线状态进行评估的重要手段。
3. 导线状态
- 导线状态包括张力状态、弧垂状态、振动状态等。
- 张力状态是指导线受到的拉力大小,它会影响导线的应力和弧垂。
- 弧垂状态是指导线在两个支点之间的下垂程度,它会影响导线的张力和应力。
- 振动状态是指导线在风力等外力作用下的振动情况,它会影响导线的疲劳寿命和安全性。
4. 导线状态的评估
- 导线状态的评估是对导线安全性和使用寿命的重要保障。
- 导线状态的评估需要考虑导线的材料、直径、长度、跨距、环境温
度等因素。
- 导线状态的评估需要借助弧垂分析等手段,对导线的状态进行全面、准确的评估。
5. 导线状态的调整
- 当导线状态不符合要求时,需要采取相应的调整措施。
- 导线状态的调整可以通过调整张力、增加支点、更换导线等方式实现。
- 导线状态的调整需要根据具体情况进行,以保障导线的安全性和使
用寿命。
[架线]导地线各种弧垂的含义及计算方法(附计算表格),彻底弄懂弧垂
![[架线]导地线各种弧垂的含义及计算方法(附计算表格),彻底弄懂弧垂](https://img.taocdn.com/s3/m/d68a65cb185f312b3169a45177232f60ddcce7e5.png)
[架线]导地线各种弧垂的含义及计算方法(附计算表格),彻底弄懂弧垂01-导地线各种弧垂的含义弧垂,又叫弛度,行业外叫“挠度”。
一般定义为:导线悬挂曲线上任意一点到两侧悬挂点连线之间的垂直距离(即任意点弧垂)。
在工程设计、施工、运行中,涉及到观测弧垂、竣工弧垂、平视弧垂(分小平视弧垂和大平视弧垂)、任意点弧垂、最大弧垂、中点弧垂和百米弧垂等诸多术语。
我们施工平时常用的弧垂,有观测弧垂、竣工弧垂、百米弧垂。
为方便初学者使用,将各种弧垂的含义逐一解释如下。
1)观测弧垂,就是某一温度下,现场观测时需要达到的弧垂。
高差不大的情况下,观测弧垂=竣工弧垂,只有连续倾斜地形工况下,才需要区分观测弧垂和竣工弧垂。
施工时,需要根据设计图纸要求,先计算竣工弧垂,然后根据计算出来的竣工弧垂,进一步计算出观测弧垂和线夹安装位置调整值(俗称“爬山值”)。
当导地线弧垂稳定达到观测弧垂时,停止紧线,开始进行附件安装,直线塔附件安装时,需要对线夹安装位置进行调整,也就是说线夹安装的位置不一定是导线与滑车的中心,正常线夹安装完毕,悬垂串应呈竖直状态,各档的弧垂由观测弧垂值变成竣工弧垂值。
观测弧垂、紧线弧垂、施工弧垂,基本上都是同一个意思。
孤立档的观测弧垂,在以前,孤立档或构架档紧线,是一端挂好耐张瓷瓶串,然后在另一端不带瓷瓶串紧线,弧垂紧到设计所规定的紧线弧垂时,再将耐张瓷瓶串挂到导线上,由于瓷瓶串自重比载往往比导线重很多,弧垂会发生变化。
紧线完毕挂耐张串前的弧垂,称之为观测弧垂、紧线弧垂或施工弧垂,两侧瓷瓶串均安装完毕后的弧垂,叫竣工弧垂。
如今的紧线施工工艺,是两端均带瓷瓶串紧线,其中一端事先压接完毕,另一端通过卡线器、钢丝绳短套临时与瓷瓶串金具连接,紧线完毕画印、断线压接,然后过牵引挂到金具上,弧垂直接定型,直接达到竣工弧垂。
2)竣工弧垂,附件安装完毕之后的弧垂值,是与观测弧垂、紧线弧垂、施工弧垂相对而言的。
通过上面观测弧垂的阐述,相信大家已经有了初步的理解。
第二章导线张力应力弧垂分析

第二章 导线张力(应力)弧垂计算第一节 导线和地线的机械物理特性与单位荷载一、导线的机械物理特性导线的机械物理特性,一般指破坏张力、弹性系数、热膨胀系数。
(一) 导线的破坏张力对导线作拉伸试验,将测得瞬时拉断力。
利用多次测量结果,可以建立一组经验公式来计算导线的瞬时拉断力。
考虑到施工和运行中导线接头、修补等因素,设计用导线破坏张力取其实测或计算瞬时拉断力T p 的95%,即 T ps =0.95T p (2-1-1) 式中 T p —导线的瞬时拉断力,N ;T ps —导线的破坏张力,N 。
(二)导线的弹性系数物体的弹性系数也称为弹性模量。
导线的弹性系数是指在弹性限度内,导线受拉力作用时,其应力与相对变形的比例系数,通过试验得出的应力-应变曲线确定,可表示为Tl T E A l A σεε===∆ (2-1-2) 式中 T —导线拉力,N ;l 、Δl —导线的原长和伸长,m ;σ—导线的应力,即单位截面的张力,σ=T/A ,N/mm ²; ε—导线的相对变形,ε=Δl/l ; A —导线的截面积,mm ²; E —导线的弹性系数,N/mm ²。
钢芯铝绞线的弹性系数按下式近似计算1s Al E mE E m+=+ (2-1-3) 式中 E Al 、E s 、E —分别为铝、钢和综合弹性系数,N/mm ²,E s =190000 N/mm ², E Al =55000 N/mm ²;m =A Al /A s —铝对钢的截面比m =A Al /A s 。
(三)导线的热膨胀系数导线温度升高1℃所引起的相对变形,称为导线的热膨胀系数,可表示为 /t αε=∆ (2-1-4)式中 ε—温度变化引起的导线相对变形,ε=Δl/l ;Δt —温度变化量,℃;α—导线的热膨胀系数,1/℃。
钢芯铝绞线的热膨胀系数的计算式为s sAl Al s Al E m E E mE ααα+=+ (2-1-5) 式中 αAl 、αs 、α—分别为铝、钢和综合热膨胀系数,1/℃。
导线应力弧垂分析结果汇报(6节)

第二章导线应力弧垂分析·导线的比载·导线应力的概念·悬点等高时导线弧垂、线长和应力关系·悬挂点不等高时导线的应力与弧垂·水平档距和垂直档距·导线的状态方程·临界档距·最大弧垂的计算及判断·导线应力、弧垂计算步骤·导线的机械特性曲线[内容提要及要求]本章是全书的重点,主要是系统地介绍导线力学计算原理。
通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。
第一节导线的比载作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。
在导线计算中,常把导线受到的机械荷载用比载表示。
由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。
此外比载同样是矢量,其方向与外力作用方向相同。
所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下:1.自重比载导线本身重量所造成的比载称为自重比载,按下式计算(2-1)式中:g1—导线的自重比载,N/m.mm2;m0一每公里导线的质量,kg/km;S—导线截面积,mm2。
2.冰重比载导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算:(2-2)式中:g2—导线的冰重比载,N/m.mm2;b—覆冰厚度,mm;d—导线直径,mm;S—导线截面积,mm2。
图2-1覆冰的圆柱体设覆冰圆筒体积为:取覆冰密度,则冰重比载为:3.导线自重和冰重总比载导线自重和冰重总比载等于二者之和,即g3=g1+g2(2-3)式中:g3—导线自重和冰重比载总比载,N/m.mm2。
【2019年整理】导线应力弧垂分析

第二章导线应力弧垂分析·导线的比载·导线应力的概念·悬点等高时导线弧垂、线长和应力关系·悬挂点不等高时导线的应力与弧垂·水平档距和垂直档距·导线的状态方程·临界档距·最大弧垂的计算及判断·导线应力、弧垂计算步骤·导线的机械特性曲线[内容提要及要求]本章是全书的重点,主要是系统地介绍导线力学计算原理。
通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。
第一节导线的比载作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。
在导线计算中,常把导线受到的机械荷载用比载表示。
由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。
此外比载同样是矢量,其方向与外力作用方向相同。
所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下:1.自重比载导线本身重量所造成的比载称为自重比载,按下式计算(2-1)式中:g1—导线的自重比载,N/m.mm2;m0一每公里导线的质量,kg/km;S—导线截面积,mm2。
2.冰重比载导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算:(2-2)式中:g2—导线的冰重比载,N/m.mm2;b—覆冰厚度,mm;d—导线直径,mm;S—导线截面积,mm2。
图2-1覆冰的圆柱体设覆冰圆筒体积为:取覆冰密度,则冰重比载为:3.导线自重和冰重总比载导线自重和冰重总比载等于二者之和,即g3=g1+g2(2-3)式中:g3—导线自重和冰重比载总比载,N/m.mm2。
放线张力弧垂表

Lj
1)可能控制条件
代号 状态名称 允许应力 比载
A
最低温
103.3765 0.032777
B
平均温
64.610 0.032777
C
最大风
103.3765 #NAME?
D
覆冰
2)最终控制条件
L≤
代号
状态名称
#NAME?
#NAME? L≥
代号
状态名称
#NAME?
#NAME? L≤
代号
状态名称
#NAME?
30
390 ##### #NAME? #NAME? #NAME? #NAME?
31
400 ##### #NAME? #NAME? #NAME? #NAME?
32
410 ##### #NAME? #NAME? #NAME? #NAME?
33
420 ##### #NAME? #NAME? #NAME? #NAME?
温度系数c (1/℃)
87609.000 1133.000 73000.000 1.96E-05
最低温 0 0
年平均温 15 0
最高温 40 0
最大风速 外过有风 外过无风 内过电压
10
15
15
15
30
10
0
15
2
安装 5 10
#NAME?
#NAME?
导线发热 70 0
4 序号
1 2 3 4 5 6 7 8 9 10
风速不均匀 系数α
#NAME?
#NAME?
#NAME?
空气动力 系数K
#NAME?
#NAME?
#NAME?
N/m 11.111 0.000 11.111 #NAME? #NAME? #NAME? 0.000 #NAME? #NAME? #NAME?
应力弧垂

• 1、小高差档距导线弧垂的计算 • (1)任意一点弧垂计算 • 先求悬点A、B两点的纵坐标
yA
• 高度差为:
g 2 0
x
2 A
yB
g 2 0
2 xB
• 式中
g 2 2 h y A yB x A xB 2 0
X——悬点A、B至导线最低点的水平距离
• 则任意一点弧垂为
A 0 gyA B 0 gyB
• 导线悬点高差为
g 2 2 h y A yB xA xB 2 0
• 导线最低点偏离档距中点的偏移值为
m
0h
gl
2
• 结合以上公式,即得悬点应力计算式
• • 规程规定。悬点的应力可比弧垂最低点高10%,即悬点应力允许 为最低点应力的1.1倍。
叁、导线应力弧垂分析
概述 导线的解析 方程 悬点等高时
导线弧垂应
力及线长的 计算
悬点不等高 时导线弧垂 应力及线长 的计算
架空输配电线路设计、施工、运行中关注的主
要技术指标之一为弧垂,特别是导线长度的微 小变化,会引起弧垂和拉力的很大变化。
档距:相邻杆塔中心线间的水平距离 弧垂:导线上任意点至导线两侧悬挂点的连接线之间的铅锤距离
2
1 g 3 3 L l A lB l l A B 2 2 24 0
gl h Ll 2 24 0 2l
2 3
2
谢
谢
观
赏
f x y A hx y g 2 o l Al B
g 2 0
xB x x A x
• 式中 l——悬点A、B至导线任意点的水平距离 • (2)中点弧垂计算 • 将l/2代入上式,即得悬点不等高时的中点斜弧垂,
导线应力弧垂计算

导线应力弧垂计算导线的应力弧垂计算是为了确定导线的形态以及对导线进行张力设计的重要步骤。
应力弧垂的计算能够保证导线在各种外力的作用下仍能满足导线张力、弧垂和安全等要求。
在导线应力弧垂计算中,需要考虑导线的自重、气候条件(如风速、温度等)以及拉力等因素。
下面将详细介绍导线应力弧垂计算的主要内容。
1.导线自重的计算:导线自重是导线弧垂计算的基础,需要根据导线的材料、截面形状等参数来计算。
常用的导线材料有铝、钢、镀铝钢等,不同材料的密度和弹性模量不同,对导线自重的计算产生影响。
2.外力的计算:外力包括风力、温度应力等。
风力是导线设计中最重要的外力之一,通过风压力和风速来进行计算。
可以使用一些风压公式和根据当地的气象数据来计算风力对导线的作用力。
温度应力是由于导线在高温和低温环境下的膨胀和收缩所引起的。
根据导线的线膨胀系数和温度变化范围,可以计算出温度应力对导线张力和弧垂的影响。
3.导线张力的计算:导线张力是导线应力弧垂计算中即需要考虑的因素。
导线张力通过外力和导线自重的作用来计算。
在计算过程中,需要使用悬链线理论、拉力平衡方程等公式来进行计算。
4.弧垂的计算:导线在张力作用下会形成一定的弧垂,弧垂的大小与导线自重、张力、气象因素等有关。
通过计算张力和弧垂之间的关系,可以确定导线的最佳弧垂,确保导线的安全性和可靠性。
在导线应力弧垂计算中,还要考虑导线的固定方式和绝缘子的位置、串控因素等因素对导线张力和弧垂的影响。
通过综合考虑这些因素,可以得出合理的导线应力弧垂计算结果,从而指导导线的设计、安装和维护工作。
总之,导线应力弧垂计算是非常重要的工程设计环节,直接关系到导线的安全性和可靠性。
合理的导线应力弧垂计算结果可以保证导线在各种外力的作用下保持良好的形态,从而确保电力系统的正常运行和供电质量的稳定。
导线应力弧垂表

比载[×10-3N过 大风 覆冰 平均 水平 0 0 12.791 12.791 28.78 67.952 39.439 0 垂直 33.99 33.99 33.99 33.99 33.99 33.99 130.536 33.99 综合 33.99 33.99 36.317 36.317 44.537 75.978 136.364 33.99
计算条件
线规 截面(mm²) 56.29 单位质量 0.2 (kg/m) 最大使用应力(Mpa) 平均运行应力(Mpa) LGJ-35 外径(mm) 拉断力(kN) 85.63 安全系数 53.95 取用系数 9.6 16.87 3.5 18%
气象条件
气象 高温 低温 安装 外过 内过 大风 覆冰 平均 气温(℃) 40 -20 -10 15 10 -5 -5 10 风速(m/s) 0 0 10 10 15 25 10 0 冰厚(mm) 0 0 0 0 0 0 10 0
覆冰 -5 10 10 72.895 0.21 75.51 0.277 78.185 0.349 80.888 0.427 83.595 0.51 85.628 0.602 85.628 0.717 85.628 0.841 85.628 0.975 85.628 1.12 85.628 1.274 85.628 1.438 85.628 1.612 85.628 1.797 85.628 1.991 85.628 2.195 85.628 2.409 85.628 2.633 85.628 2.867
架线气象组合 0 10 20 0 0 0 0 0 0 56.072 41.849 28.902 0.068 0.091 0.132 56.285 42.326 29.861 0.092 0.123 0.174 56.525 42.846 30.84 0.12 0.159 0.22 56.788 43.399 31.825 0.152 0.198 0.27 57.072 43.98 32.808 0.186 0.242 0.324 56.442 43.751 33.132 0.228 0.294 0.388 52.919 41.061 31.58 0.289 0.372 0.484 49.398 38.541 30.224 0.363 0.466 0.594 45.989 36.261 29.062 0.453 0.574 0.716 42.802 34.261 28.079 0.558 0.698 0.851 39.925 32.545 27.251 0.681 0.836 0.998 37.406 31.095 26.555 0.821 0.987 1.156 35.252 29.879 25.967 0.976 1.152 1.325 33.438 28.86 25.47 1.147 1.329 1.505 31.922 28.004 25.046 1.331 1.517 1.696 30.657 27.283 24.683 1.528 1.717 1.898 29.598 26.671 24.37 1.737 1.928 2.109 28.707 26.148 24.099 1.957 2.149 2.332 27.953 25.699 23.863 2.189 2.381 2.564
第二章导线应力弧垂分析

第二章导线应力弧垂分析第四节悬挂点不等高时导线的应力与弧垂字体大小小中大一、导线的斜抛物线方程导线悬垂曲线的悬链线方程是假定荷载沿导线曲线孤长的均匀分布导出的,是精确的计算方法。
工程计算中,在满足计算精度要求的情况下,可以采用较简单的近似计算方法。
前述的平抛抛物方程是简化计算形式之一,但它用于悬挂点不等高且高差较大的情况进行计算可能会造成较大误差。
为此,又引出了悬垂曲线的斜抛物线方程式,用于悬挂点不等高时的近似计算公式。
斜抛物线方程的假设条件为:作用在导线上的荷载沿悬挂点连线AB均匀分布,即用斜线代替弧长,如图2-8所示。
这一假设与荷载沿弧长均匀分布有些差别,但实际上一档内导线弧长与线段AB的长度相差很小,因此这样的假设可以符合精度要求。
图2-8 悬挂点不等高示意图,图中诸多符号的含义后边另作说明。
在上述假设下,导线OD段的受力情况如图2-9所示。
此时垂直荷重的弧长L换成了x/cos,这相当于把水平距离x折算到斜线上。
x图2-9 OD段的受力图根据静力学平衡条件,y轴向受力代数和为又对上式进行积分,并根据所选的坐标系确定积分常数为零,可得到导线悬垂曲线的斜抛物线方程为:(2-33)式中—高差角;其他符号意义同前。
实际上,式(2-33)与式(2-17)相比差个关系,但相对于式(2-13)在应用于计算中仍然简明得多。
据弧长微分式,将的关系代入可得斜抛物线方程下的弧长方程为(取前两项)二、导线最低点到悬挂点的距离此时是在讨论悬挂点不等高情况下的导线力学及几何关系。
为此我们通过分析导线最低点到悬挂点之间的两种距离,即水平距离和垂直距离的几何关系,来导出使用斜抛物线方程下的导线应力、孤垂及线长的计算公式。
如图2-8所示,将坐标原点选在导线最低点,显然,随着坐标原点的不同,方程的表达式也有所不同。
1.水平距离用斜抛物线方程计算时,由式(2-33)可知导线最低点到悬挂点之间的水平距离和垂直距离的关系为(2-34)(2-35)式中—最低点到悬挂点的垂直距离,m; 、—最低点到悬挂点的水平距离,m; 其他符号意义同前。
导线应力弧垂分析

导线应力弧垂分析
第二章导线应力弧垂分析
第五节水平档距和垂直档距字体大小小中大一、水平档距和水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载 ,如图2-10所示:则为承担。
,由AB两杆塔平均承担;AC档导线上的风压荷载为
,由AC两杆塔平均
图2-10 水平档距和垂直档距
如上图所示:此时对A杆塔来说,所要承担的总风压荷载为
(2-47)
令。
《输电线路基础》第2章-导线应力弧垂分析-第六节-导线的状态讲解

2 3 gm l Lm l 2 24 m 2 3 gn l Ln l 2 24 n
将该式代人式(2-6-1),则 2 3 2 3 2 3 gn l gm l gm l 1 l l t n t m n m l 2 2 2 E 24 n 24 m 24 m 因上式中
A 428
gm=gn=g1=30.268×l0-3(N/m· mm2)
附录D中的表2查得 热膨胀系数 α=20.9×10-6(l/℃) 弹性系数 E=63000MPa 其次,计算耐张段的代表档距
l0
l l
3 i i
5003 3503 4003 4803 444.92(m) 500 350 400 480
24 m
代入(2-6-2)得:
B n
A
2 n
或 n n B A
2
该三次方程的系数A恒为正,B可正可负,根据苗卡儿关于方程系 数符号法规则和导线力学的物理概念可知,方程只有一个正实数根, 就是σn的有效解。 求σn有效解的方法可用计算机求解,也可用计算尺试探求解。但 目前计算尺已被计算器取代,在此介绍一种借助于计算器能运算余 弦函数和双曲函数的功能,求解方程准确解的方法。 导线状态方程: 判别式:
再利用式(2-6-3)求解最高气温时导线应力,此时最低气温为已知 条件,最高气温为待求条件
2 2 Egn l 63000 30.248 103 444.922 A 475429 .9025 24 24
2 2 Egm l B m E t n t m 2 24 m
13.5 A 13.5 475429.902 5 C 1 271.4418717 1 3 3 |B| 28.73748624
应力、弧垂分析方法

总结前述应力、弧垂分析方法,导线的应力、弧垂计算步骤以下面例题作进一步说明:[例2-5]某35KV输电线路,导线为LGJ-95/20型,全国第Ⅱ气象区,安全系数K=2.5,采用防振锤防振,其中年平均运行应力为σpcal=0.25σcal,在线路中有一耐张段布置如图2-19所示,试求以下内容:(1)第二档中交叉跨越通信线的垂直距离能否满足要求?(2)#4杆塔的最大、最小垂直档距以及最大上拔力是多少?图2-19某耐张段布置图解:该题中并未告知计算气象条件及应力。
通过计算分析可明确本章各节内容的相互联系及应用方法,计算时可按如下步骤:1.计算临界档距并判别控制区;2.计算代表档距,确定本耐张段的控制条件;3.确定计算气象条件并计算各计算气象条件时的应力;4.进行各具体项目的计算。
(1)计算临界档距并判别控制条件导线物理特性参数如下:弹性系数E=7600MPa;截面积S=113.9mm2;热膨胀系数α=18.5×10-61/℃;外径d=13.87mm;计算拉断力T cal=37200N。
则瞬时破坏应力最大使用应力年平均运行应力将有关计算数据列于下表2-6中。
将有关数据代入临界档距计算式,可计算得各临界档距值如表2-7所示。
=虚数CBC=500.30 CCD=298.87CAB=126.11 CBD=362.35CAC=203.63CAD有效临界档距判别结果见图2-20所示,图2-20有效临界档距判别结果即有:当,控制条件为年平均气温,年平均运行应力;当,控制条件为最大风速,最大使用应力。
(2)计算代表档距=245.06(m)结合有效临界档距判别结果可知,该耐张段应力计算控制气象条件为年平均气温,控制应力。
(3)交叉跨越校验和垂直档距计算1)交叉跨越校验交叉跨越校验应按最大垂直弧垂气象条件进行。
首先应用状态方程式求出高温时或最大垂直比载时的应力。
然后进行最大垂直弧垂判别,最后计算弧垂。
具体参见书56页计算过程。
第二章导线张力(应力)弧垂分析(1)

第二章 导线张力(应力)弧垂计算第一节 导线和地线的机械物理特性与单位荷载一、导线的机械物理特性导线的机械物理特性,一般指破坏张力、弹性系数、热膨胀系数。
(一) 导线的破坏张力对导线作拉伸试验,将测得瞬时拉断力。
利用多次测量结果,可以建立一组经验公式来计算导线的瞬时拉断力。
考虑到施工和运行中导线接头、修补等因素,设计用导线破坏张力取其实测或计算瞬时拉断力T p 的95%,即 T ps =0.95T p (2-1-1) 式中 T p —导线的瞬时拉断力,N ;T ps —导线的破坏张力,N 。
(二)导线的弹性系数物体的弹性系数也称为弹性模量。
导线的弹性系数是指在弹性限度内,导线受拉力作用时,其应力与相对变形的比例系数,通过试验得出的应力-应变曲线确定,可表示为Tl T E A l A σεε===∆ (2-1-2)式中 T —导线拉力,N ;l 、Δl —导线的原长和伸长,m ;σ—导线的应力,即单位截面的张力,σ=T/A ,N/mm ²; ε—导线的相对变形,ε=Δl/l ; A —导线的截面积,mm ²; E —导线的弹性系数,N/mm ²。
钢芯铝绞线的弹性系数按下式近似计算1s Al E mE E m+=+ (2-1-3)式中 E Al 、E s 、E —分别为铝、钢和综合弹性系数,N/mm ²,E s =190000 N/mm ², E Al =55000 N/mm ²;m =A Al /A s —铝对钢的截面比m =A Al /A s 。
(三)导线的热膨胀系数导线温度升高1℃所引起的相对变形,称为导线的热膨胀系数,可表示为 /t αε=∆ (2-1-4) 式中 ε—温度变化引起的导线相对变形,ε=Δl/l ;Δt —温度变化量,℃;α—导线的热膨胀系数,1/℃。
钢芯铝绞线的热膨胀系数的计算式为s s Al Al s Al E m E E mE ααα+=+ (2-1-5)式中 αAl 、αs 、α—分别为铝、钢和综合热膨胀系数,1/℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章导线应力弧垂分析·导线的比载·导线应力的概念·悬点等高时导线弧垂、线长和应力关系·悬挂点不等高时导线的应力与弧垂·水平档距和垂直档距·导线的状态方程·临界档距·最大弧垂的计算及判断·导线应力、弧垂计算步骤·导线的机械特性曲线[内容提要及要求]本章是全书的重点,主要是系统地介绍导线力学计算原理。
通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。
第一节导线的比载作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。
在导线计算中,常把导线受到的机械荷载用比载表示。
由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。
此外比载同样是矢量,其方向与外力作用方向相同。
所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下:1.自重比载导线本身重量所造成的比载称为自重比载,按下式计算(2-1)式中:g1—导线的自重比载,N/m.mm2;m0一每公里导线的质量,kg/km;S—导线截面积,mm2。
2.冰重比载导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算:(2-2)式中:g2—导线的冰重比载,N/m.mm2;b—覆冰厚度,mm;d—导线直径,mm;S—导线截面积,mm2。
图2-1覆冰的圆柱体设覆冰圆筒体积为:取覆冰密度,则冰重比载为:3.导线自重和冰重总比载导线自重和冰重总比载等于二者之和,即g3=g1+g2(2-3)式中:g3—导线自重和冰重比载总比载,N/m.mm2。
4.无冰时风压比载无冰时作用在导线上每平方毫米的风压荷载称为无冰时风压比载,可按下式计算:(2-3)式中:g4—无冰时风压比载,N/m.mm2;C—风载体系数,当导线直径d< 17mm时,C=1.2;当导线直径d≥17mm 时,C=1.1;v—设计风速,m/s;d—导线直径,mm;S—导线截面积,mm2;a—风速不均匀系数,采用表2-1所列数值。
表2-1各种风速下的风速不均匀系数a设计风速(m/s)20以下20-30 30-35 35以上a 1.0 0.85 0.75 0.70作用在导线上的风压(风荷载)是由空气运动所引起的,表现为气流的动能所决定,这个动能的大小除与风速大小有关外还与空气的容重和重力加速度有关。
由物理学中证明,每立方米的空气动能(又称速度头)表示关系为:,其中q —速度头(N/m2),v—风速(m/s),m—空气质量(kg/m3),当考虑一般情况下,假定在标准大气压、平均气温、干燥空气等环境条件下,则每立方米的空气动能为实际上速度头还只是个理论风压,而作用在导线或避雷线上的横方向的风压力要用下式计算:式中:P h—迎风面承受的横向风荷载(N)。
式中引出几个系数是考虑线路受到风压的实际可能情况,如已说明的风速不均匀系数α和风载体型系数C等。
另外,K表示风压高度变化系数,若考虑杆塔平均高度为15m时则取1;θ表示风向与线路方向的夹角,若假定风向与导线轴向垂直时,则θ=90°;F表示受风的平面面积(m2),设导线直径为d(mm),导线长度为L(m),则F=dL×10-3。
由此分析则导线的风压计算式为:相应无冰时风压比载为:5.覆冰时的风压比载覆冰导线每平方毫米的风压荷载称为覆冰风压比载,此时受风面增大,有效直径为(d+2b),可按下式计算:(2-5)式中:g5—覆冰风压比载,N/m.mm2;C—风载体型系数,取C=1.2;6.无冰有风时的综合比载无冰有风时,导线上作用着垂直方向的比载为g1和水平方向的比载为g4,按向量合成可得综合比载为g6,如图2-2所示:图2-2无冰有风综合比载则g6称为无冰有风时的综合比载,可按下式计算:(2-6)式中,g6—无冰有风时的综合比载,N/m.mm2。
7.有冰有风时的综合比载导线覆冰有风时,综合比载g7为垂直比载g3和覆冰风压比载g5向量和,如图2-3所示,图2-3覆冰有风综合比载可按下式计算:(2-6)式中g7一有冰有风时的综合比载,N/m.mm2。
以上讲了7种比载,它们各代表了不同的含义,而这个不同是针对不同气象条件而言的,在以后导线力学计算时则必须明确这些比载的下标数字的意义。
[例2-1] 有一条架空线路通过Ⅳ类气象区,所用导线为LGJ一120/20型,试计算导线的各种比载。
解:首先由书中附录查出导线LGJ一120/20型的规格参数为:计算直径d=15.07mm,铝、钢两部分组成的总截面积S=134.49mm2,单位长度导线质量m0=466.8kg/km。
由表1-8查出Ⅳ类气象区的气象条件为:覆冰厚度为b=5mm,覆冰时风速V=10m/s,最大风速V=25m/s,雷电过电压风速V=10m/s,内过电压时风速V=15m/s。
下面分别计算各种比载。
(1)自重比载g1:g1=9.80665 ×m0/S ×10-3=9.80665×466.8/134.49×10-3=34.04×10-3[N/m.mm2](2)覆冰比载g2:g2(5)=27.728×b(d+b) /S ×10-3=27.728×5(15.07+5)/134.49 ×10-3=20.69×10-3[N/m.mm2](3)垂直比载g3:g3(5)=g1+g2(5)=54.73×10-3[N/m.mm2](4)无冰时风压比载g4:由表2-1查出当风速为20~30m/s时,α=0.85,当风速为20m/s以下时,α=1.0,风载体形系数C=1.2,由公式计算g4(10)=0.6128×1.0×1.2×102/134.49×15.07×10-3 =8.24×10-3[N/m.mm2]g4(15)=0.6128×1.0×1.2×152/134.49×15.07×10-3=18.54×10-3[N/m.mm2]g4(25)=0.6128×1.0×1.2×252/134.49×15.07×10-3=43.77×10-3[N/m.mm2](5)覆冰时风压比载g5:由表1-2查出α=1.0,已知C=1.2,则g5(5,10)=0.6128×1.0×1.2(15.07+2×5)×102/S×10-3=13.71×10-3[N/m.mm2](6)无冰时综合比载g6:几种风速下的比载由公式计算,分别为(7)覆冰时综合比载g7:当重力加速度采用9.8值计算时,其结果只是微小差别。
第二节导线应力的概念悬挂于两基杆塔之间的一档导线,在导线自重、冰重和风压等荷载作用下,任一横截面上均有一内力存在。
根据材料力学中应力的定义可知,导线应力是指导线单位横截面积上的内力。
因导线上作用的荷载是沿导线长度均匀分布的,所以一档导线中各点的应力是不相等的,且导线上某点应力的方向与导线悬挂曲线该点的切线方向相同,从而可知,一档导线中其导线最低点应力的方向是水平的。
所以,在导线应力、弧垂分析中,除特别指明外,导线应力都是指档内导线最低点的水平应力,常用σ0表示。
关于悬挂于两基杆塔之间的一档导线,其弧垂与应力的关系,我们知道:弧垂越大,则导线的应力越小;反之,弧垂越小,应力越大。
因此,从导线强度安全角度考虑,应加大导线弧垂,从而减小应力,以提高安全系数。
但是,若片面地强调增大弧垂,则为保证带电线的对地安全距离,在档距相同的条件下,则必须增加杆高,或在相同杆高条件下缩小档距,结果使线路基建投资成倍增加。
同时,在线间距离不变的条件下,增大弧垂也就增加了运行中发生混线事故的机会。
实际上安全和经济是一对矛盾的关系,为此我们的处理方法是:在导线机械强度允许的范围内,尽量减小弧垂,从而既可以最大限度地利用导线的机械强度,又降低了杆塔高度。
导线的机械强度允许的最大应力称为最大允许应力,用σmax表示。
架空送电线路设计技术规程规定,导线和避雷线的设计安全系数不应小于2.5。
所以,导线的最大允许应力为:(2-8)式中[σmax]—导线最低点的最大允许应力,MPa;T cal—导线的计算拉断力,N;S—导线的计算面积,,σcal—导线的计算破坏应力,MPa;2.5—导线最小允许安全系数。
在一条线路的设计、施工过程中,一般说我们应考虑导线在各种气象条件中,当出现最大应力时的应力恰好等于导线的最大允许应力,即可以满足技术要求。
但是由于地形或孤立档等条件限制,有时必须把最大应力控制在比最大允许应力小的某一水平上以确保线路运行的安全性,即安全系数K>2.5。
因此,我们把设计时所取定的最大应力气象条件时导线应力的最大使用值称最大使用应力,用σmax表示,则:(2-9)式中σmax—导线最低点的最大使用应力,MPa;K—导线强度安全系数。
由此可知,当K=2.5时,有σmax=[σmax],这时,我们称导线按正常应力架设;当K>2.5时,则,这时σmax<[σmax],我们称导线按松弛应力架设。
导线的最大使用应力是导线的控制应力之一,后边还要进行讨论。
工程中,一般导线安全系数均取2.5,但变电所进出线档的导线最大使用应力常是受变电所进出线构架的最大允许应力控制的;对档距较小的其他孤立档,导线最大使用应力则往往是受紧线施工时的允许过牵引长度控制;对个别地形高差很大的耐张段,导线最大使用应力又受导线悬挂点应力控制。
这些情况下,导线安全系数均大于2.5的,为松弛应力架设。
导线的应力是随气象条件变化的,导线最低点在最大应力气象条件时的应力为最大使用应力,则其他气象条件时应力必小于最大使用应力。
第三节悬点等高时导线弧垂、线长和应力关系二、平抛物线方程平抛物线方程是悬链线方程的简化形式之一。
它是假设作用在导线弧长上的荷载沿导线在x轴上的投影均匀分布而推出的,在这一假设下,图2-6中导线所受垂直荷载变成即用直线代替弧长,从而使积分简化,由此导出平面抛物方程为(2-17)相应导线的弧长方程式为:(2-18)实际上式(2-17)是式(2-14)取前一项的结果,式(2-18)是式(2-16)取前两项的结果,这恰说明它是悬链线方程的近似表达式。