华东师大版九年级下册数学④26.2.2二次函数第1课时
华东师大版九年级下册数学26.1二次函数.
随堂练习
在实践中感悟
1.下列函数中,哪些是二次函数?
怎么(1)y=3((x是-1))²+1
判 (3) s=3-2t ²
断
(是)
1 (2) y x
(不是)x
1 (4) y x2 x
? (5)y=(x+3)²-x² (不是)
(不是)
(6) v=10πr²
(是)
灿若寒星
随堂练习
y=(100+x)(600-5x)=-5x²+100x+60000
在上述问题中,种多少棵橙子树,可以使果园 橙子的总产量最多?
X/棵 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Y/个
你能根据表格中的数据作出猜想 吗
灿若寒星
想一想
行家看“门道”
在种树问题中,种多少棵橙子树,可以使果 园橙子的总产量最多?
则k的值一定是__0_或__3_
如果函数y=(k-3) xk2 +3kkx2+1是二次函
数,则k的值一定是______ 0
灿若寒星
小结 拓展 回 味 Biblioteka 穷定义中应该注意的几个问题:
1.定义:一般地,形如y=ax²+bx+c(a, b,c是常数,a≠0)的函数叫做x的二次函数
. y=ax²+bx+c(a,b,c是常数,a≠0) 的几种不同表示形式: (1)y=ax² --------- (a≠0,b=0,c=0,). (2)y=ax²+c ------ (a≠0,b=0,c≠0). (3)y=ax²+bx ----灿若(寒星a≠0,b≠0,c=0).
二次函数素描述的关系
华师版九年级数学下册26.2.2 第1课时 二次函数y=ax2+k的图象与性质教案与反思
新竹高于旧竹枝,全凭老干为扶持。
出自郑燮的《新竹》前进学校史爱东东宫白庶子,南寺远禅师。
——白居易《远师》枫岭头学校张海泉古之学者必严其师,师严然后道尊。
欧阳修铁山学校何逸春1.会用描点法画出y=ax2+k的图象.(重点)2.掌握形如y=ax2+k的二次函数图象的性质,并会应用.(重难点)3.理解二次函数y=ax2+k与y=ax2之间的联系.(重点)一、情境导入在边长为15cm的正方形铁片中间剪去一个边长为x(cm)的小正方形铁片,剩下的四方框铁片的面积y(cm2)与x(cm)的函数关系式是什么?它的顶点标是什么?二、合作探究探究点一:二次函数y=ax2+k的图象与质【类型一】y=ax2+k的图象与性质的识别若二次函数y=ax2+2的图象经过点(-2,10),则下列说法错误的是( )A.a=2B.当x<0时,y随x的增大而减小C.顶点坐标为(2,0)D.图象有最低点解析:把x=-2,y=10代入y=ax2+2可得1=4a+2,∴a=2,∴y=2x2+2,抛物线开口向上,有最低点当x<0时,y随x的增大而减小,∴A、B、D 均正确而顶点标为(0,2),而不是(2,0).故选C.方法总结:抛线y=ax2+k(a≠0)的顶点坐标为(0,k),对称轴y轴.【类型二】二次函数y=ax2+k增减性判断已知点(x1,y1),(x2,y2)均抛物线y=x2-1上下列说法中正确的是( )A.若y1y2,则x1=x2.若x1=-x2,则y1=-y2C.若0<x1<x2则y1>y2D.若x1<x2<0,则y1>y2解析:如图所示,选项A:若y1=y2,则x1=x2或x1=-x2,∴选项A是错误的;选项B:若x1=-x2,则y1=y2,∴选项B是错误的选项C:若0<x1<x2,在对称轴的右侧,y随x的增大而大,则y1<y2,∴选项C是错误的;选项D:若x1x2<0,在对称轴的左侧,y随x的增大而减小,则y1>y2,故选D.方法总结:讨论二次函数的增减性时,应对自变量分区讨论,通常以对称轴为分界线.【类型三】在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c与二次函数y=ax2+c的图象大致为( )解析:当a>0时,抛物线开口向上,且直线从左向右逐渐上升,当a<0时,抛物线开口向下,且直线从左向右逐渐下降,由此排除选项A,C,D,故选B.方法总结:在解决此类问题时,应分类讨论,逐一排查.【类型四】二次函数y=ax2+k与y=ax2图象之间的关系抛物线y=ax2+c与y=-5x2的形状大小、开口方向都相同,且顶点坐标是(0,3),求抛物线的表达式,它是由抛物线y=-5x2怎样得到的?解析:由于抛物线y=ax2+c与y=-5x2的形状相同,则a=-5,则利用顶点式可写出所求抛物线表达式,然后根据抛物线平移的规律判断抛物线y=-5x2怎样平移得到的抛物线y=-5x2+3.解:∵抛物线y=ax2+c与y=-5x2的形状大小相同,开口方向也相同,∴a=-5.又∵其顶点坐标为(0,3),∴c=3.∴y=-5x2+3.它是由抛物线y =-5x2向上平移3个单位得到的.方法总结:抛物线y=ax2+k与y=ax2开口大小、方向都相同,只是顶点不同,二者可相互平移得到.探究点二:二次函数y=ax2+k的应用【类型一】y=ax2+k的图象与几何图形的综合应用如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是________.解析:二次函数y=ax2+c与y轴的交点为(0,c),因此OA=c,根据正方形对角线互相垂直平分且相等,不难求得B(-c2,c2)、C(c2,c2),因为C(c2,c2)在函数y=ax2+c的图象上,将点C的坐标代入关系式即可求出ac的值.解:∵y=ax2+c与y轴的交点为(0,c),四边形ABOC为正方形,∴C点的坐标为(c2,c2).∵二次函数y=ax2+c经过点C,∴c2=a(c2)2+c,即ac=-2.方法总结:在解决此类问题时,应充分利用抛物线及正方形的对称性.【类型二】二次函数y=ax2+k的实际应用如图,一位篮球运动员投篮,球沿抛物线y=-15x2+72运行,然后准确落入篮筐内,已知篮筐的中心离地面的距离为3.05m.(1)球在空中运行的最大高度为多少?(2)如果该运动员跳起,球出手时离地面的高度为2.25m,要想投入篮筐,则他距离篮筐中心的水平距离是多少?解析:(1)由抛物线的顶点坐标即可得;(2)分别求出y=3.05和y=2.25时x的值即可得出答案.解:(1)∵y=-15x2+72的顶点坐标为(0,3.5),∴球在空中运行的最大高度为3.5m.(2)在y=-15x2+72中,当y=3.05时,3.05=-15x2+72,解得x=±1.5.∵篮筐在第一象限内,∴篮筐中心的横坐标x=1.5.又当y=2.25时,2.25=-1 5x2+72,解得x=±2.5.∵运动员在第二象限内,∴运动员的横坐标x=-2.5.故该运动员距离篮球筐中心的水平距离为1.5-(-2.5)=4(m).方法总结:本题主要考查二次函数的应用,熟练掌握二次函数的性质是解题的关键.三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2+k的图象与性质,体会抛物线y=ax2与y=ax2+k之间联系与区别.1、2019年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。
27.1华师大版九年级下册二次函数第一课时
AB的长x(m) 1 2 3 4 5 6 7 8 9
BC的长(m) 18 16 14 12 10 8
6
42
面积y(m2) 18 32 42 48 50 48 42 32 18
y=x(20-2x) (0﹤x﹤10)
即:y=-2x2+20x
探究问题2
某商店将每商品进价为8元的商品按每10元出售,一天可售出约 100件。该店想通过降低售价、增加销售量的办法来提高利润。 经市场调查,发现这种商品单价每降低0.1元,其销售量可增加约 10件。将这种商品的售价降低多少时,能使销售利润最大?
华东师大版《数学 · 九年级(下)》
§27.1二次函数的概念 第一课时
1
一.知识回顾:
函数
一次函数
正比例函数
y=kx+b (k≠0) y=kx(k≠0)
反比例函数
y=
k x
k
≠
0
一条直线Biblioteka 双曲线下列函数关系式中,分别是什么函数?
(1)y=-x-4
(2)y 5x2 6
(3)
y
3 x
思考: 你判断二次函数的关键是什么?
16
知识运用
例2:m取何值时, 函数y= (m+1)xm2 2m1
+(m-3)x+m 是二次函数?
解:由题意得
m2—2m-1=2 ∴m=3 m+1 ≠0
练习:m取哪些值时,函数y=(m2-m)x2+mx+(m+1)是以x 为自变量的二次函数?
例3 写出下列各函数关系式,并说出是什么函数
试一试:下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1 (是) (2) y = x +
九年级下册数学(华师大版)教案:26.1 二次函数(1)
二次函数[本章知识要点]1.探索具体问题中的数量关系和变化规律.2.结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念.3.会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质.4.会运用配方法确定二次函数图象的顶点、开口方向和对称轴.5.会利用二次函数的图象求一元二次方程(组)的近似解.6.会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.[MM及创新思维](1)正方形边长为a(cm),它的面积s(cm2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.[实践与探索]例1.m取哪些值时,函数是以x为自变量的二次函数?分析若函数是二次函数,须满足的条件是:.解若函数是二次函数,则.解得,且.因此,当,且时,函数是二次函数.回顾与反思形如的函数只有在的条件下才是二次函数.探索若函数是以x为自变量的一次函数,则m取哪些值?例2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.解(1)由题意,得,其中S是a的二次函数;(2)由题意,得,其中y是x的二次函数;(3)由题意,得(x≥0且是正整数),其中y是x的一次函数;(4)由题意,得,其中S是x的二次函数.例3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.解(1);(2)当x=3cm时,(cm2).[当堂课内练习]1.下列函数中,哪些是二次函数?(1)(2)(3)(4)2.当k为何值时,函数为二次函数?3.已知正方形的面积为,周长为x(cm).(1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数.[本课课外作业]A组1.已知函数是二次函数,求m的值.2.已知二次函数,当x=3时,y= -5,当x= -5时,求y的值.3.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x为3,求此时的y.4.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.B组5.对于任意实数m,下列函数一定是二次函数的是()A.B.C.D.6.下列函数关系中,可以看作二次函数()模型的是()A.在一定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与圆的半径之间的关系[本课学习体会]。
新华东师大版九年级数学下册《26章 二次函数 26.2 二次函数的图象与性质 求二次函数的关系式》课件_11
二、探究新知
1.探究: (1)二次函数y=ax2+bx+c的表达式中有几个待定系数? 需要图像上的几个点才能求出来? (2)如果知道抛物线y=ax2+bx+c经过(1,0),(3,-2), (-1,3)三点,能求出这个二次函数的表达式吗?如果 能,求出这个二次函数的表达式. ⑶二次函数y=a(x-h)2+k表达式中有几个待定系数?需 要知道图像上的几个点才能求出来?如果知道图像上
2 .已知二次函数 y ax2 bx ca 0的图象与x轴
交于A、B两点(点A在点B的左边),与y轴交于点C, 其顶点的横坐标为-1,且过点(-2,-3)和(1,4), 求此二次函数的表达式.
四、课堂小结
(1)通过本节课的学习,你有哪些收获? (2)你对本节课有什么疑惑?说给老师或同学听 听.
(2) 根据已知抛物线的顶点坐标,可设函数关系式
为顶点式 y a x h2 k 再根据抛物线过另一点可
求出a值;
(3) 根据抛物线与x轴的两个交点坐标,可设函数关
系式为交点式:y ax x1x x2 ,再根据抛物线与
y轴的交点可求出a值
三、巩固练习
1.求图象为下列抛物线的二次函数的表达式: (1)抛物线经过点(0,-4)、(-2,3)、 (1,6); (2)抛物线顶点坐标为(-1,-3),且抛物线经 过点(2,3); (3)抛物线与x轴交于点(-2,0)、(6,0),且 与y轴交于(0,-1).
的方程组,求出待定系数a,b,c的值,就可以写
出二次函数的表达式;求抛物线y=a(x-h)2+k的表达
式,只要知道顶点坐标和图像上的异于顶点的另一
点坐标即可;求二次函数
的表达式,
华东师大版九年级数学下册学案:26.2二次函数的图象和性质
§26.2 用函数观点看一元二次方程(第一课时)教学目标(一)知识与技能1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)过程与方法1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神. 2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论.培养大家的合作交流意识.(三)情感态度与价值观1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造.感受数学的严谨性以及数学结论的确定性,2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学过程Ⅰ.创设问题情境,引入新课1.我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数)y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?2.选教材提出的问题,直接引入新课Ⅱ.合作交流解读探究1.二次函数与一元二次方程之间的关系探究:教材问题师生同步完成.观察:教材22页,学生小组交流.归纳:先由学生完成,然后师生评价,最后教师归纳.Ⅲ.应用迁移巩固提高1 .根据二次函数图像看一元二次方程的根同期声2 .抛物线与x轴的交点情况求待定系数的范围.3 .根据一元二次方程根的情况来判断抛物线与x轴的交点情况Ⅳ.总结反思拓展升华本节课学了如下内容:1.经历了探索二次函数与一元:二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根,两个相等的实根和没有实根.3.数学方法:分类讨论和数形结合.反思:在判断抛物线与x 轴的交点情况时,和抛物线中的二次项系数的正负有无关系? 拓展:教案Ⅴ.课后作业P 231.3.526.1 二次函数的图象与性质(1)[本课知识重点]会用描点法画出二次函数2ax y =的图象,概括出图象的特点及函数的性质. [MM 及创新思维]我们已经知道,一次函数12+=x y ,反比例函数xy 3=的图象分别是 、 ,那么二次函数2x y =的图象是什么呢?(1)描点法画函数2x y =的图象前,想一想,列表时如何合理选值?以什么数为中心?当x 取互为相反数的值时,y 的值如何?(2)观察函数2x y =的图象,你能得出什么结论?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22x y = (2)22x y -=x… -3 -2 -1 0 1 2 3 … 22x y =…18 8 2 0 2 8 18 … 22x y -= …-18-8-2-2-8-18…分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图26.2.1.共同点:都以y 轴为对称轴,顶点都在坐标原点.不同点:22x y =的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22x y -=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思 在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接. 例2.已知42)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.解 (1)由题意,得⎩⎨⎧>+=-+02242k k k , 解得k=2.(2)二次函数为24x y =,则顶点坐标为(0,0),对称轴为y 轴.例3.已知正方形周长为Ccm ,面积为S cm 2. (1)求S 和C 之间的函数关系式,并画出图象; (2)根据图象,求出S=1 cm 2时,正方形的周长; (3)根据图象,求出C 取何值时,S ≥4 cm 2.分析 此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C 的取值应在取值范围内. 解 (1)由题意,得)0(1612>=C C S . C24 68 (2)161C S =41 149 4…描点、连线,图象如图26.2.2.(2)根据图象得S=1 cm 2时,正方形的周长是4cm . (3)根据图象得,当C ≥8cm 时,S ≥4 cm 2. 回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C 、S ,不要习惯地写成x 、y . (3)在自变量取值范围内,图象为抛物线的一部分. [当堂课内练习]1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.(1)23x y = (2)23x y -= (3)231x y = 2.(1)函数232x y =的开口 ,对称轴是 ,顶点坐标是 ; (2)函数241x y -=的开口 ,对称轴是 ,顶点坐标是 .3.已知等边三角形的边长为2x ,请将此三角形的面积S 表示成x 的函数,并画出图象的草图.[本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象. (1)24x y -= (2)241x y = 2.填空:(1)抛物线25x y -=,当x= 时,y 有最 值,是 . (2)当m= 时,抛物线mm x m y --=2)1(开口向下.(3)已知函数1222)(--+=k k x k k y 是二次函数,它的图象开口 ,当x 时,y随x 的增大而增大. 3.已知抛物线102-+=k kkx y 中,当0>x 时,y 随x 的增大而增大.(1)求k 的值; (2)作出函数的图象(草图).4.已知抛物线2ax y =经过点(1,3),求当y=9时,x 的值.B 组5.底面是边长为x 的正方形,高为0.5cm 的长方体的体积为ycm 3.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)根据图象,求出y=8 cm 3时底面边长x 的值;(4)根据图象,求出x 取何值时,y ≥4.5 cm 3.6.二次函数2ax y =与直线32-=x y 交于点P (1,b ).(1)求a 、b 的值;(2)写出二次函数的关系式,并指出x 取何值时,该函数的y 随x 的增大而减小. 1. 一个函数的图象是以原点为顶点,y 轴为对称轴的抛物线,且过M (-2,2). (1)求出这个函数的关系式并画出函数图象;(2)写出抛物线上与点M 关于y 轴对称的点N 的坐标,并求出⊿MON 的面积. [本课学习体会]26.2 二次函数的图象与性质(2)[本课知识重点]会画出k ax y +=2这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]同学们还记得一次函数x y 2=与12+=x y 的图象的关系吗? ,你能由此推测二次函数2x y =与12+=x y 的图象之间的关系吗? ,那么2x y =与22-=x y 的图象之间又有何关系? . [实践与探索]例1.在同一直角坐标系中,画出函数22xy=与222+=xy的图象.描点、连线,画出这两个函数的图象,如图26.2.3所示.回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数22xy=与222-=xy的图象之间的关系吗?例2.在同一直角坐标系中,画出函数12+-=xy与12--=xy的图象,并说明,通过怎样的平移,可以由抛物线12+-=xy得到抛物线12--=xy.描点、连线,画出这两个函数的图象,如图26.2.4所示.x …-3 -2 -1 0 1 2 3 …22xy=…18 8 2 0 2 8 18 …222+=xy…20 10 4 2 4 10 20 …x …-3 -2 -1 0 1 2 3 …12+-=xy…-8 -3 0 1 0 -3 -8 …12--=xy…-10 -5 -2 -1 -2 -5 -10 …可以看出,抛物线12--=x y 是由抛物线12+-=x y 向下平移两个单位得到的. 回顾与反思 抛物线12+-=x y 和抛物线12--=x y 分别是由抛物线2x y -=向上、向下平移一个单位得到的.探索 如果要得到抛物线42+-=x y ,应将抛物线12--=x y 作怎样的平移? 例3.一条抛物线的开口方向、对称轴与221x y =相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.解 由题意可得,所求函数开口向上,对称轴是y 轴,顶点坐标为(0,-2), 因此所求函数关系式可看作)0(22>-=a ax y , 又抛物线经过点(1,1), 所以,2112-⋅=a , 解得3=a . 故所求函数关系式为232-=x y .回顾与反思 k ax y +=2(a 、k 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标归k ax y +=2开口方向对称轴顶点坐标0>a0<a[当堂课内练习]1. 在同一直角坐标系中,画出下列二次函数的图象:221x y =, 2212+=x y , 2212-=x y . 观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线k x y +=221的开口方向及对称轴、顶点的位置吗? 2.抛物线9412-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线241x y =向 平移 个单位得到的. 3.函数332+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= . [本课课外作业]A 组1.已知函数231x y =, 3312+=x y , 2312-=x y . (1)分别画出它们的图象;(2)说出各个图象的开口方向、对称轴、顶点坐标;(3)试说出函数5312+=x y 的图象的开口方向、对称轴、顶点坐标. 2. 不画图象,说出函数3412+-=x y 的开口方向、对称轴和顶点坐标,并说明它是由函数241x y -=通过怎样的平移得到的.3.若二次函数22+=ax y 的图象经过点(-2,10),求a 的值.这个函数有最大还是最小值?是多少?B 组4.在同一直角坐标系中b ax y +=2与)0,0(≠≠+=b a b ax y 的图象的大致位置是( )5.已知二次函数7)1(82-+--=k x k x y ,当k 为何值时,此二次函数以y 轴为对称轴?写出其函数关系式. [本课学习体会]26.2 二次函数的图象与性质(3)[本课知识重点]会画出2)(h x a y -=这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]我们已经了解到,函数k ax y +=2的图象,可以由函数2ax y =的图象上下平移所得,那么函数2)2(21-=x y 的图象,是否也可以由函数221x y =平移而得呢?画图试一试,你能从中发现什么规律吗?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221xy=,2)2(21+=xy,2)2(21-=xy,并指出它们的开口方向、对称轴和顶点坐标.描点、连线,画出这三个函数的图象,如图26.2.5所示.它们的开口方向都向上;对称轴分别是y轴、直线x= -2和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0).x …-3 -2 -1 0 1 2 3 …221xy= (2)92 210 212 29…2)2(21+=xy (2)10 212 2258 225…2)2(21-=xy (2)258 292 210 21…回顾与反思 对于抛物线2)2(21+=x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当x 时,函数取得最 值,最 值y= .探索 抛物线2)2(21+=x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平移两个单位得到的.如果要得到抛物线2)4(21-=x y ,应将抛物线221x y =作怎样的平移?例2.不画出图象,你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗?解 抛物线23x y -=的顶点坐标为(0,0);抛物线2)2(3+-=x y 的顶点坐标为(-2,0). 因此,抛物线23x y -=与2)2(3+-=x y 形状相同,开口方向都向下,对称轴分别是y 轴和直线2-=x .抛物线2)2(3+-=x y 是由23x y -=向左平移2个单位而得的. 回顾与反思 2)(h x a y -=(a 、h 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标[当堂课内练习]1.画图填空:抛物线2)1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2x y =向 平移 个单位得到的. 2.在同一直角坐标系中,画出下列函数的图象.22x y -=,2)3(2--=x y ,2)3(2+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.[本课课外作业]A 组1.已知函数221x y -=,2)1(21+-=x y , 2)1(21--=x y . (1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线221x y -=得到抛物线2)1(21+-=x y 和2)1(21--=x y ?3.函数2)1(3+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .4.不画出图象,请你说明抛物线25x y =与2)4(5-=x y 之间的关系.B 组5.将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点 (1,3),求a 的值. [本课学习体会]26.2 二次函数的图象与性质(4)[本课知识重点]1.掌握把抛物线2ax y =平移至2)(h x a y -=+k 的规律;2.会画出2)(h x a y -=+k 这类函数的图象,通过比较,了解这类函数的性质. [MM 及创新思维]由前面的知识,我们知道,函数22x y =的图象,向上平移2个单位,可以得到函数222+=x y 的图象;函数22x y =的图象,向右平移3个单位,可以得到函数2)3(2-=x y 的图象,那么函数22x y =的图象,如何平移,才能得到函数2)3(22+-=x y 的图象呢? [实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)1(21-=x y ,2)1(212--=x y ,并指出它们的开口方向、对称轴和顶点坐标.x… -3-2 -10 12 3…221x y = (2)9 221 021 229… 2)1(21-=x y … 8 29 2 21 0 21 2 … 2)1(212--=x y …625 023- -223- 0…描点、连线,画出这三个函数的图象,如图26.2.6所示.它们的开口方向都向 ,对称轴分别为 、 、 ,顶点坐标分别为 、 、 .请同学们完成填空,并观察三个图象之间的关系.回顾与反思 二次函数的图象的上下平移,只影响二次函数2)(h x a y -=+k 中k 的值;左右平移,只影响h 的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关.探索 你能说出函数2)(h x a y -=+k (a 、h 、k 是常数,a ≠0)的图象的开口方向、对称例2.把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,求b 、c 的值.分析 抛物线2x y =的顶点为(0,0),只要求出抛物线c bx x y ++=2的顶点,根据顶点坐标的改变,确定平移后的函数关系式,从而求出b 、c 的值. 解 c bx x y ++=2c b b bx x +-++=442224)2(22b c b x -++=. 向上平移2个单位,得到24)2(22+-++=b c b x y , 再向左平移4个单位,得到24)42(22+-+++=b c b x y , 其顶点坐标是)24,42(2+---b c b ,而抛物线2x y =的顶点为(0,0),则⎪⎪⎩⎪⎪⎨⎧=+-=--0240422b c b 解得 ⎩⎨⎧=-=148c b 探索 把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,也就意味着把抛物线2x y =向下平移2个单位,再向右平移4个单位,得到抛物线c bx x y ++=2.那么,本题还可以用更简洁的方法来解,请你试一试.[当堂课内练习]1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y = ( )A .向左平移4个单位,再向上平移1个单位B .向左平移4个单位,再向下平移1个单位C .向右平移4个单位,再向上平移1个单位D .向右平移4个单位,再向下平移1个单位2.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 . 3.抛物线22121x x y -+=可由抛物线221x y -=向 平移 个单位,再向 平移 个单位而得到.[本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象.23x y -=,2)2(3+-=x y ,1)2(32-+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.2.将抛物线522++-=x x y 先向下平移1个单位,再向左平移4个单位,求平移后的抛物线的函数关系式.3.将抛物线23212++-=x x y 如何平移,可得到抛物线32212++-=x x y ? B 组4.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,得到抛物线532+-=x x y ,则有 ( )A .b =3,c=7B .b= -9,c= -15C .b=3,c=3D .b= -9,c=215.抛物线c bx x y ++-=23是由抛物线132+--=bx x y 向上平移3个单位,再向左平移2个单位得到的,求b 、c 的值.6.将抛物线)0(2≠=a ax y 向左平移h 个单位,再向上平移k 个单位,其中h >0,k <0,求所得的抛物线的函数关系式.[本课学习体会]26.2 二次函数的图象与性质(5)[本课知识重点]1.能通过配方把二次函数c bx ax y ++=2化成2)(h x a y -=+k 的形式,从而确定开口方向、对称轴和顶点坐标;2.会利用对称性画出二次函数的图象.[MM 及创新思维]我们已经发现,二次函数1)3(22+-=x y 的图象,可以由函数22x y =的图象先向 平移 个单位,再向 平移 个单位得到,因此,可以直接得出:函数1)3(22+-=x y 的开口 ,对称轴是 ,顶点坐标是 .那么,对于任意一个二次函数,如232-+-=x x y ,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗?[实践与探索]例1.通过配方,确定抛物线6422++-=x x y 的开口方向、对称轴和顶点坐标,再描点画图.解 6422++-=x x y []8)1(261)1(26)112(26)2(22222+--=+---=+-+--=+--=x x x x x x 因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8).x … -2 -1 01 2 3 4 … 6422++-=x x y … -10 06 8 6 0 -10 …描点、连线,如图26.2.7所示.回顾与反思 (1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到,.(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.探索 对于二次函数c bx ax y ++=2,你能用配方法求出它的对称轴和顶点坐标吗?请你完成填空:对称轴 ,顶点坐标 .例2.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,求a 的值.分析 顶点在坐标轴上有两种可能:(1)顶点在x 轴上,则顶点的纵坐标等于0;(2)顶点在y 轴上,则顶点的横坐标等于0. 解 9)2(2++-=x a x y 4)2(9)22(22+-++-=a a x , 则抛物线的顶点坐标是⎥⎦⎤⎢⎣⎡+-+4)2(9,222a a . 当顶点在x 轴上时,有 022=+-a , 解得 2-=a . 当顶点在y 轴上时,有 04)2(92=+-a , 解得 4=a 或8-=a .所以,当抛物线9)2(2++-=x a x y 的顶点在坐标轴上时,a 有三个值,分别是 –2,4,8.[当堂课内练习]1.(1)二次函数x x y 22--=的对称轴是 .(2)二次函数1222--=x x y 的图象的顶点是 ,当x 时,y 随x 的增大而减小.(3)抛物线642--=x ax y 的顶点横坐标是-2,则a = .2.抛物线c x ax y ++=22的顶点是)1,31(-,则a 、c 的值是多少?[本课课外作业]A 组1.已知抛物线253212+-=x x y ,求出它的对称轴和顶点坐标,并画出函数的图象. 2.利用配方法,把下列函数写成2)(h x a y -=+k 的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.(1)162++-=x x y(2)4322+-=x x y (3)nx x y +-=2 (4)q px x y ++=23.已知622)2(-++=k k x k y 是二次函数,且当0>x 时,y 随x 的增大而增大.(1)求k 的值;(2)求开口方向、顶点坐标和对称轴.B 组4.当0<a 时,求抛物线22212a ax x y +++=的顶点所在的象限.5. 已知抛物线h x x y +-=42的顶点A 在直线14--=x y 上,求抛物线的顶点坐标.[本课学习体会]26.2 二次函数的图象与性质(6)[本课知识重点]1.会通过配方求出二次函数)0(2≠++=a c bx ax y 的最大或最小值;2.在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值.[MM 及创新思维]在实际生活中,我们常常会碰到一些带有“最”字的问题,如问题:某商店将每件进价为80元的某种商品按每件100元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,设每件商品降价x 元,该商品每天的利润为y 元,则可得函数关系式为二次函数2000100102++-=x x y .那么,此问题可归结为:自变量x 为何值时函数y 取得最大值?你能解决吗?[实践与探索]例1.求下列函数的最大值或最小值.(1)5322--=x x y ; (2)432+--=x x y .分析 由于函数5322--=x x y 和432+--=x x y 的自变量x 的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值. 解 (1)二次函数5322--=x x y 中的二次项系数2>0,因此抛物线5322--=x x y 有最低点,即函数有最小值.因为5322--=x x y =849)43(22--x , 所以当43=x 时,函数5322--=x x y 有最小值是849-. (2)二次函数432+--=x x y 中的二次项系数-1<0,因此抛物线432+--=x x y 有最高点,即函数有最大值.因为432+--=x x y =425)23(2++-x , 所以当23-=x 时,函数432+--=x x y 有最大值是425. 回顾与反思 最大值或最小值的求法,第一步确定a 的符号,a >0有最小值,a <0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.探索 试一试,当2.5≤x ≤3.5时,求二次函数322--=x x y 的最大值或最小值. 例2.某产品每件成本是120元,试销阶段每件产品的销售价x (元)与产品的日销售量y x (元)130 150 165 y (件) 70 50 35若日销售量y 是销售价x 的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?分析 日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量. 解 由表可知x+y=200,因此,所求的一次函数的关系式为200+-=x y .设每日销售利润为s 元,则有 1600)160()120(2+--=-=x x y s .因为0120,0200≥-≥+-x x ,所以200120≤≤x .所以,当每件产品的销售价定为160元时,销售利润最大,最大销售利润为1600元. 回顾与反思 解决实际问题时,应先分析问题中的数量关系,列出函数关系式,再研究所得的函数,得出结果.例3.如图26.2.8,在Rt ⊿ABC 中,∠C=90°,BC=4,AC=8,点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE=x ,DF=y .(1)用含y 的代数式表示AE ;(2)求y 与x 之间的函数关系式,并求出x 的取值范围;(3)设四边形DECF 的面积为S ,求S 与x 之间的函数关系,并求出S 的最大值.解 (1)由题意可知,四边形DECF 为矩形,因此y DF AC AE -=-=8.(2)由DE ∥BC ,得AC AE BC DE =,即884y x -=, 所以,x y 28-=,x 的取值范围是40<<x .(3)8)2(282)28(22+--=+-=-==x x x x x xy S ,所以,当x=2时,S 有最大值8.[当堂课内练习]1.对于二次函数m x x y +-=22,当x= 时,y 有最小值.2.已知二次函数b x a y +-=2)1(有最小值 –1,则a 与b 之间的大小关系是 ( )A .a <bB .a=bC .a >bD .不能确定3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经过市场调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?[本课课外作业]A 组1.求下列函数的最大值或最小值.(1)x x y 22--=; (2)1222+-=x x y .2.已知二次函数m x x y +-=62的最小值为1,求m 的值.,3.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满足函数关系:)300(436.21.02≤≤++-=x x x y .y 值越大,表示接受能力越强.(1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低?(2)第10分时,学生的接受能力是多少?(3)第几分时,学生的接受能力最强?B 组4.不论自变量x 取什么数,二次函数m x x y +-=622的函数值总是正值,求m 的取值范围.5.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x m ,面积为Sm 2.(1)求S 与x 的函数关系式;(2)如果要围成面积为45 m 2的花圃,AB 的长是多少米?(3)能围成面积比45 m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.6.如图,矩形ABCD 中,AB=3,BC=4,线段EF 在对角线AC上,EG ⊥AD ,FH ⊥BC ,垂足分别是G 、H ,且EG+FH=EF .(1)求线段EF 的长;(2)设EG=x ,⊿AGE 与⊿CFH 的面积和为S ,写出S 关于x 的函数关系式及自变量x 的取值范围,并求出S 的最小值.[本课学习体会]26 . 2 二次函数的图象与性质(7)[本课知识重点]会根据不同的条件,利用待定系数法求二次函数的函数关系式.[MM 及创新思维]一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数)0(≠+=k b kx y 的关系式时,通常需要两个独立的条件:确定反比例函数)0(≠=k x k y 的关系式时,通常只需要一个条件:如果要确定二次函数)0(2≠++=a c bx ax y 的关系式,又需要几个条件呢?[实践与探索]例1.某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?分析 如图,以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x 轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y 轴,开口向下,所以可设它的函数关系式是)0(2<=a ax y .此时只需抛物线上的一个点就能求出抛物线的函数关系式.解 由题意,得点B 的坐标为(0.8,-2.4),又因为点B 在抛物线上,将它的坐标代入)0(2<=a ax y ,得 28.04.2⨯=-a所以 415-=a . 因此,函数关系式是2415x y -=. 例2.根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A (0,-1)、B (1,0)、C (-1,2);(2)已知抛物线的顶点为(1,-3),且与y 轴交于点(0,1);(3)已知抛物线与x 轴交于点M (-3,0)、(5,0),且与y 轴交于点(0,-3);(4)已知抛物线的顶点为(3,-2),且与x 轴两交点间的距离为4.分析 (1)根据二次函数的图象经过三个已知点,可设函数关系式为c bx ax y ++=2的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为3)1(2--=x a y ,再根据抛物线与y 轴的交点可求出a 的值;(3)根据抛物线与x 轴的两个交点的坐标,可设函数关系式为)5)(3(-+=x x a y ,再根据抛物线与y 轴的交点可求出a 的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为2)3(2--=x a y ,同时可知抛物线的对称轴为x=3,再由与x 轴两交点间的距离为4,可得抛物线与x 轴的两个交点为(1,0)和(5,0),任选一个代入2)3(2--=x a y ,即可求出a 的值.解 (1)设二次函数关系式为c bx ax y ++=2,由已知,这个函数的图象过(0,-1),可以得到c= -1.又由于其图象过点(1,0)、(-1,2)两点,可以得到 ⎩⎨⎧=-=+31b a b a 解这个方程组,得a=2,b= -1.所以,所求二次函数的关系式是1222--=x x y .(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为3)1(2--=x a y , 又由于抛物线与y 轴交于点(0,1),可以得到 3)10(12--=a解得 4=a .所以,所求二次函数的关系式是1843)1(422+-=--=x x x y .(3)因为抛物线与x 轴交于点M (-3,0)、(5,0),所以设二此函数的关系式为)5)(3(-+=x x a y .又由于抛物线与y 轴交于点(0,3),可以得到)50)(30(3-+=-a .解得 51=a . 所以,所求二次函数的关系式是35251)5)(3(512--=-+=x x x x y . (4)根据前面的分析,本题已转化为与(2)相同的题型,请同学们自己完成.回顾与反思 确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:(1)一般式:)0(2≠++=a c bx ax y ,给出三点坐标可利用此式来求.(2)顶点式:)0()(2≠+-=a k h x a y ,给出两点,且其中一点为顶点时可利用此式来求.(3)交点式:)0)()((21≠--=a x x x x a y ,给出三点,其中两点为与x 轴的两个交点)0,(1x 、)0,(2x 时可利用此式来求.[当堂课内练习]1.根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);(2)已知抛物线的顶点为(-1,2),且过点(2,1);。
九年级数学下册 26.2 二次函数的图象与性质(第1课时)课件 (新版)华东师大版
1.抛物线y=ax2的顶点 y x2 (dǐngdiǎn)是原点,对称轴是y
轴.
2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的 开口向上,并且向上无限伸展(shēnzhǎn);
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开 口向下,并且向下无限伸展(shēnzhǎn).
26.2 二次函数的图象(tú xiànɡ)与性质
(第1课时 (kèshí))
第一页,共21页。
什么(shén me)叫二次函数?
函数y=ax²+bx+c (a,b,c是常 数(chángshù),a≠ 0) 叫做x 的二次函数.
我们学过用什么方法画函数 的图象?主要(zhǔyào)有哪些步骤
第二页,共21页。
方(
除顶点外).
第十九页,共21页。
(2)抛物线 y 2 x在2 x轴的 下 方(除
顶点外),
3
当x___<_0_时,y随着x的增大(zēnɡ dà)而
增大(z>ē0nɡ dà);
当x_____时,y随着x的,增大(zēnɡ dà0)而
减小
当x=0时,函数y的值最大,最大值是
第二十页,共21页。
第十四页,共21页。
抛物线
y=x2
y= -x2
顶点(dǐngdiǎn)坐标(0,0)
对称轴
y轴
位置(wè在i zxh轴i)的上方(除顶点外)
开口(kāi kǒu)方向 向上
(0,0) y轴
在x轴的下方( 除顶点外)
向下
增减性
在对称轴的左侧,y随着x的增大而减小. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减
数学九年级下华东师大版27[1]2二次函数的图象与性质(1)(华师大版九年级下)PPT课件
x>0 x y
x<0 x y
8
y 2x2
练习: 根据左边已画好的函数图象填空:
(1)抛物线y=2x2的顶点坐标是(0,0),
对称轴是 y轴 ,在 对称轴的右 侧,
y Байду номын сангаас 2 x2 3
y随着x的增大而增大;在对称轴的左 侧, y随着x的增大而减小,当x= 0 时, 函数y的值最小,最小值是 0 ,抛物
He is quick and eager to learn. Learning is learni ng and asking.
10
添加
添加
添加 标题
标题
标题
添加
标题
此处结束语
点击此处添加段落文本 . 您的内容打在这里,或通过 复制您的文本后在此框中选择粘贴并选择只保留文字
11
谢谢您的观看与聆听
4
二次函数y=ax2的图象形如物体抛射时
所经过的路线,我们把它叫做抛物线。
y x2
这条抛物线关于y轴 对称,y轴就是它的 对称轴。
对称轴与抛物线的交点 叫做抛物线的顶点
y x2
y 2x2 y 2x2
5
(-2,4) (-1,1)
(2,4) (1,1)
y x2
y 2x2
a0图象在横轴的上方,开口向上,
线y=2x2在x轴的 上 方(除顶点外)。
(2)抛物线 y 2 x2在x轴的下 方(除顶点外),在对称轴的 3
左侧,y随着x的 增大而增大 ;在对称轴的右侧,y随着x的
增大而减小 ,当x=0时,函数y的值最大,最大值是 0 ,
当x ≠ 0时,y<0.
9
Q&A问答环节
九年级数学下册 第26章 二次函数 26.1 二次函数教案 (新版)华东师大版-(新版)华东师大版初
与拓展
1.下列函数,哪些是二次函数?
(1)
(2)
(3)
(4)
2.当k为何值时,函数 为二次函数?
3.已知正方形的面积为 ,周长为x(cm)。
(1)请写出y与x的函数关系式。
(2)判断y是否为x的二次函数。
正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子。
2、数的表达式,给出常数a,b,c的取值X围,强调 。
4、结合“情境”中的三个二次函数的表达式,说说它们的自变量的取值X围。
实践与
探索1
例1.m取哪些值时,函数 是以x为自变量的二次函数?
分析:若函数 是以x为自变量的二次函数,需满足的条件是 。
解:若函数 是以x为自变量的二次函数,则 ,解得 ,且 。因此,当 ,且 时,函数 是以x为自变量的二次函数。
(2)一个正方形的边长为a(cm),它的面积S(cm2)是多少?
(3)一个矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,那么面积增加y平方厘米,试写出y与x的关系式。
请观察上面列出的两个式子,它们是不是函数?为什么?如果是,它是我们学过的函数吗?
探究新知
1、请你结合学习一次函数概念的经验,给以上三个函数下个定义。
(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;
(2)当小正方形边长为3cm时,求盒子的表面积。
小结
与作业
回顾与反思
形如 的函数只有在 的条件下才是二次函数。
课堂作业
习题26.1 1~3
教学后记:
二次函数
教学内容
本节共需1课时
本课为第1课时
主备人
华师版九年级数学下册_26.2.2 二次函数y=ax2+bx+c的图象与性质
(h,k)
(h,0) (0,k) (0,0)
直线x=h
y轴
感悟新知
特别解读
知4-讲
1. 抛物线y=ax2,y=ax2+k,y=a(x-h)2,y=a(x-h)2+k中a
的值相等,所以这四条抛物线的形状、开口方向完全
一样,故它们之间可通过互相平移得到.
2. 抛物线的平移规律是“左加右减,上加下减”,不同的
而减小. 其中正确结论有__①__③__④__.
解题秘方:紧扣二次函数y=a(x-h)2+k 的图象和 性质逐一判断.
感悟新知
知3-练
解:∵ a=-1<0,∴抛物线的开口向下,故①正确; 对称轴为直线x=-1,故②错误;顶点坐标为 (-1,3),故③正确;当x>1 时,y 随x 的增大 而减小,故④正确.
y轴
当x<0 时,y随x的 当x<0 时,y 随x 的
增大而减小;当x> 增大而增大;当x>
0 时,y随x的增大而 0 时,y 随x的增大
增大
而减小
当x=0 时,y最小值=k 当x=0 时,y最大值=k
感悟新知
知1-讲
3. 二次函数y=ax2+k 的图象的画法 (1)描点法:即按列表→描点→连线的顺序作图. (2)平移法:将二次函数y=ax2 的图象,向上(k > 0)或向 下(k < 0)平移|k| 个单位,即可得到二次函数y=ax2+k 的图象.
解:由图象知,对于一切x的值,总有y ≤ 2.
感悟新知
知4-练
4-1. [中考·湖州] 将抛物线y=x2 向上平移3 个单位,所得抛 物线的表达式是( A ) A. y=x2+3 B. y=x2-3 C. y=(x+3)2 D. y=(x-3)2
华东师大版九年级数学下册 26.2.1 二次函数y=ax2的图象与性质【名校课件+集体备课】
在对称轴左侧递增 在对称轴右侧递减
新课进行时
典例精析
例1 已知二次函数y=x2. (1)判断点A(2,4)在二次函数图象上吗? (2)请分别写出点A关于x轴的对称点B的坐标,关 于y轴的对称点C的坐标,关于原点O的对称点D的 坐标; (3)点B、C、D在二次函数y=x2的图象上吗?在二 次函数y=-x2的图象上吗?
6
课后作业
课后作业
1、完成教材本课时对应习题; 2、完成同步练习册本课时的习题。
文本
文本
文本
文本
谢谢欣赏
THANK YOU FOR LISTENING
3.图象关于y轴对称;
4.顶点( 0 ,0 ); 5.图象有最低点.
o
x
新课进行时
说说二次函数y=-x2的图象有哪些性质,与同伴交流。
1.y=-x2是一条抛物线; 2.图象开口向下; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最高点.
y
o
x
y=-x2
新课进行时
知识要点
二次函数y=ax2 的图象性质: 1. 顶点都在原点; 2. 图像关于y轴对称; 3.当a>0时,开口向上; 当a<0时,开口向下.
们的对称轴, ∴OA=OB, ∴在长方形ABCD内,左边阴影部分面积等于右
边空白部分面积,∴S阴影部分面积之和=2×8=16.
新课进行时
方法总结
二次函数y=ax2的图象关于y轴对称,因此左右 两部分折叠可以重合,在二次函数比较大小中,我 们根据图象中点具有的对称性转变到同一变化区域 中(全部为升或全部为降),根据图象中函数值高低去 比较;对于求不规则的图形面积,采用等面积割补 法,将不规则图形转化为规则图形以方便求解。
华东师大版九年级数学下册26.求二次函数的表达式课件
用一般式法:y=ax2+bx+c
②已知顶点坐标 或对称轴或最值
用顶点法:y=a(x-h)2+k
③已知抛物线与 x轴的两个交点
用交点法:y=a(x-x1)(x-x2) (x1,x2为交点的横坐标)
作业与课外学习任务
1.作业:课本P24 习题26.2 4,5
2.课外学习任务: 预习课本P26-29 26.3 实践与探索
解:(1)把点A(-4,-3)代入y=x2+bx+c 得:16-4b+c=-3, ∴ c-4b=-19. ∵对称轴是x=-3, ∴b=6, ∴c=5,
∴ 抛物线的表达式是y=x2+6x+5.
(2)若和x轴平行的直线与抛物线交于C,D两点,
点C在对称轴左侧,且CD=8,求△BCD的面积.
(2)∵CD∥x轴,
即 y=x2-2x-15.
随堂练习
已知抛物线与x轴相交于点A(-1, 0),B(1, 0), 且过点M(0,1),求此函数的表达式.
解:∵点A(-1,0),B(1,0)是图象与x轴的交点, ∴ 设二次函数的表达式为y=a(x+1)(x-1).
又∵抛物线过点M(0,1), ∴1=a(0+1)(0-1),
例题精析 例5 已知抛物线与x轴交于点A(-3,0)、B(5,0), 且与y轴交于点C(0, -15),求抛物线的解析式. 解:设所求抛物线的解析式是y=a(x+3)(x-5),
把点(0, -3)代入上式得: a(0+3)(0-5)=-15,
解得:a= 1 , ∴ 所求抛物线的表达式为y=(x+3)(x-5),
教学反馈: 作业存在的主要问题:
学习新知 交点法求二次函数的表达式的步骤
知道抛物线与x轴的交点,求抛物线的表达式 的方法叫做交点法. 其步骤是: ①设函数的表达式是y=a(x-x1)(x-x2) (其中x1、x2 为抛物线与x轴交点的横坐标; ②先把两交点的横坐标x1,x2代入到表达式中,得到 关于a的一元一次方程; ③将已知的另一个条件代入方程求出a的值; ④a用数值换掉,写出函数表达式.