高等数学(一)复习资料
《高等数学一》复习题及答案
《高等数学〔一〕》一、选择题1、极限lim(x x x )的结果是〔C 〕x2〔A 〕0〔B 〕〔C 〕31〔D 〕不存在22、方程x 3x 1 0在区间(0,1)内〔 B〕〔A 〕无实根〔B 〕有唯一实根〔C 〕有两个实根〔D 〕有三个实根3、f (x )是连续函数, 则f (x )dx 是f (x )的〔 C〕〔A 〕一个原函数;(B) 一个导函数;(C) 全体原函数;(D) 全体导函数;4、由曲线y sin x (0 x )和直线y 0所围的面积是〔C 〕〔A 〕1/2(B)1(C)2(D)5、微分方程y x 满足初始条件y |x 0 2的特解是( D)〔A 〕x〔B 〕3211 x 3〔C 〕x 32〔D 〕x 32336、以下变量中,是无穷小量的为〔A 〕(A)ln x (x 1)(B)ln 7、极限lim(x sin x 01x 2(x 0 )(C) cos x (x 0)(D) 2(x 2)xx 411sin x )的结果是〔 C〕x x〔A 〕0〔B 〕1〔C 〕 1〔D 〕不存在8、函数y e arctan x 在区间 1,1上〔A〕〔A 〕单调增加〔B 〕单调减小〔C 〕无最大值〔D 〕无最小值9、不定积分xxx21dx =〔 D〕22(A)arctan x C (B)ln(x 1) C (C)11arctan x C (D)ln(x 2 1) C 22x10、由曲线y e (0 x 1)和直线y 0所围的面积是〔A〕〔A 〕e 1(B)1(C) 2(D)e11、微分方程dyxy 的通解为〔B〕dx〔A 〕y Ce〔B 〕y Ce2x12x 2Cxx 〔C 〕y e〔D 〕y Ce2212、以下函数中哪一个是微分方程y 3x 0的解( D )〔A 〕yx 〔B 〕y x 〔C 〕y 3x 〔D 〕yx 13、函数y sin x cos x 1是〔C〕(A) 奇函数;(B) 偶函数;(C)非奇非偶函数;(D)既是奇函数又是偶函数. 14、当x 0时,以下是无穷小量的是〔B 〕〔A 〕e x 12323(B)ln(x 1)(C) sin(x 1)(D)x 115、当x 时,以下函数中有极限的是〔A〕〔A 〕x 11cos x (B) (C)(D)arctan xx 21ex 316、方程x px 1 0(p 0)的实根个数是〔B 〕〔A 〕零个〔B 〕一个〔C 〕二个〔D 〕三个11 x 2) dx 〔B 〕11〔A 〕〔B 〕 C 〔C 〕arctan x〔D 〕arctan x c 221 x 1 x17、(18、定积分baf (x )dx 是〔C〕〔A 〕一个函数族〔B 〕f (x )的的一个原函数〔C 〕一个常数〔D 〕一个非负常数19、函数y ln x 〔A 〕奇函数x 2 1是〔A〕〔C 〕非奇非偶函数〔D 〕既是奇函数又是偶函数〔B 〕偶函数20、设函数f x 在区间 0,1 上连续,在开区间 0,1 内可导,且f x 0,则( B ) (A)f 0 0(B)f 1 f 0 (C)f 1 0(D)f 1 f 021、设曲线y21 ex2则以下选项成立的是〔C 〕,(A) 没有渐近线(B)仅有铅直渐近线(C) 既有水平渐近线又有铅直渐近线(D) 仅有水平渐近线22、(cos x sin x )dx ( D )〔A 〕sin x cos x C〔B 〕sin x cos x C〔C 〕sin x cos x C〔D 〕sin x cos x Cn ( 1)n}的极限为〔A 〕23、数列{n〔A 〕1(B) 1(C) 0(D) 不存在24、以下命题中正确的选项是〔B 〕〔A 〕有界量和无穷大量的乘积仍为无穷大量〔B 〕有界量和无穷小量的乘积仍为无穷小量〔C 〕两无穷大量的和仍为无穷大量〔D 〕两无穷大量的差为零25、假设f (x ) g (x ),则以下式子肯定成立的有〔C 〕(A)f (x ) g (x )(B)df (x ) dg (x )(C)(df (x )) (dg (x ))(D)f (x )g (x ) 126、以下曲线有斜渐近线的是( C )(A)y x sin x (B)y x sin x(C)y x sin 二、填空题1、lim 2112(D)y x sinxx1 cos x 12x 0x22x2、假设f (x ) e3、 2,则f '(0) 211(x 3cos x 5x 1)dx 2t 4、e t dxe x C5、微分方程y y 0满足初始条件y |x 0 2的特解为y 2e xx 2 40 6、lim x 2x 3x 2 x 237、极限lim x 2x 2 448、设yx sin x 1,则f () 1 29、11(x cos x 1)dx 2 10、31 x 2dx3arctan x C2211、微分方程ydy xdx 的通解为y x C12、115x 4dx 2x sin 2x1x2213、lim x 14、设y cos x ,则dy2x sin x dx 15、设y x cos x 3,则f ( ) -1 16、不定积分e x de x12xe C 21 2xe C217、微分方程y e2x的通解为y x 18、微分方程ln y x 的通解是y e C19、lim (1 )=e 3xx 2x620、设函数y x x ,则yx x (ln x 1)112n 21、lim (2 2 2)的值是n n 2n nx (x 1)(x 2)1 22、lim 3x 2x x 3223、设函数y x x ,则dyx x (ln x 1)dx2x 23x 124、lim x 0x 425、假设f (x ) e 2x14sin 6,则f '(0)226、a 2 a(1 sin 5x )dx2(a 为任意实数).xe x dx __________.27、设y ln(e 1),则微分dy ______xe 1x 328、(cos x )d x22 1 x 22三、解答题1、〔此题总分值9分〕求函数y解:由题意可得,x 1 62 x 的定义域。
吉林大学《高等数学(一)》复习资料-姜作廉第二版
《高等数学(一)》课程第二版
期末复习资料
《高等数学(一)》课程第二版(PPT)讲稿章节目录:
第1章函数
函数概念
初等函数
第2章极限与连续
数列的极限
习题课1
函数的极限
极限的运算法则
极限的存在准则两个重要极限
无穷小的比较
函数的连续性
习题课2
第3章导数与微分
导数的概念
函数的微分法
高阶导数
隐函数及参量函数的导数
函数的微分
习题课3
第4章微分中值定理及导数的应用
微分中值定理
洛必达法则
函数的单调性与极值
函数的最大值与最小值
曲线的凹凸性与拐点
函数图形的描绘
习题课4
(PPT讲稿文件共有10个。
)
一、客观部分:(单项选择)
(一)、单项选择部分
1.函数arcsin
=为()。
y x
(A)偶函数;(B)周期函数;(C)无界函数;(D)有界函数
★考核知识点: 函数的性质,
参见讲稿章节:
附1.1.1(考核知识点解释及答案):
函数的基本特性:
有界性:设函数f(x)的定义域为D,如果有0
∀,都有
x∈
>
M,使得对D。
成人高等教育《高等数学(一)》复习资料
成人高等教育《高等数学(一)》复习资料知识讲解:(9)若,则(10)设函数,则等于(11)函数处连续是处可导的必要但非充分条件(12)若,则(13)二重积分交换积分次序为(14)若已知级数收敛,是它的前项之和,则此级数的和是(15)二元函数,则(16)积分的值为(17)交换积分次序(18)(19)数量积、向量积及坐标表示(向量的位置关系);(20)柱面,旋转曲面的方程形式及常见曲面画图,平面,直线的方程及其位置关系,平面束;曲面、曲线、实体在坐标平面上的投影(21)偏导数定义及判定一点可导的定义方法;(22)偏导、连续、全微分的关系,方向导数与梯度;(23)极值、条件极值,最值和驻点.及拉格朗日乘数法;(24)七类积分的关系,格林公式、高斯公式;(25)级数的定义,等比级数的和,级数收敛的必要条件,常见级数的敛散性及判定方法。
(26)求极限1)二元函数求极限:代入法、两类特殊极限、无穷小性质等2)极限不存在的判断:取不同的路径(27)求偏导数或全微分1)定义——在某一点可导,常见于分段函数2)一个变量为常数,按一元函数求导法则计算,对于指定点的偏导可以先代入一个变量再求;3)多元复合函数求导——链式法则;4)隐函数(方程与方程组)求导及其高阶导数——不要记公式,理解方法;5)抽象函数求导及其高阶导数——注意符号;6)求(指定点)全微分或判断是否可微——用定义(28)求重积分1)重积分—坐标系以及区域类型的选择【由区域和被积函数特点定】,积分次序的交换;2)三重积分—坐标系以及区域类型的选择【由区域和被积函数特点定】;3)对称性区域上奇、偶函数的积分以及对1积分时的计算。
(29)求曲线、面积分(画图)“一代、二换、三定限”1)代入参数方程或z f x, y;不同的积分换的公式不同;2)定限或定区域的时候注意方向性【第二类】及定限规则3)格林公式、高斯公式的应用——验证条件并灵活使用;4)对称性区域上奇、偶函数的积分以及对1积分时的计算。
专升本理工《高等数学(一)》复习资料
9(. arcsinx)' 1 (1 x 1) 1 x2
10(. arctanx)'
1
1 x2
三、导数
(三)导数的四则运算公式
1(. u v)' u' v'
2(. u.v)' u'.v u.v'
3(. cu)' cu(' c为常数)
4(. u )' v
u'.vv-2u.v(' v
x x0时,函数f(x)的左右极限存在且等于函数值f(x0),即
lim
x x0 -
f(x)
lim
x x0
f(x)
f(x0),则称函数y
f(x)在点x0处连续.
二、连续
考点2:函数间断点
定义:如果函数 f(x)在点x0处不连续,则称点 x0为f(x)的 一个间断点.由函数在某点连续的定 义可知,如果函数 f(x)
即f(, x0)
lim
x0
f(x0
x) x
f(x0)
f(, x0)
lim
x x0
f(x) f(x0) x x0
f(, x0)
lim
h0
f(x0
h) h
f(x0)
三、导数
(二)基本初等函数的导数公式
1(. c )' 0 2(. x a)' a x a 1
3(. log a x )'
1 (a x lna
lim f (x) (0 或lim f(x) 0)
x x0
x
在微积分中,常用希腊字母,,来表示无穷小量.
2.无穷大量概念
如果当自变量x x(0 或x )时,函数f (x)的绝对值可以 变得充分大(即无限得增大),则称在该变化过程中,f (x)为
高数总复习1
x 1 ctg x
1 x
( a>0 , a≠1 )
(7) lim(1+ ln sin )x x→ 2 x
π
1+3x − 1+ x (8) lim x→ 0 2x
tan x2 (9) lim x→ 0 x 1−cos 2
(ex −1 ctgx ) (10) lim x→ 0 cos x
在 (, 两 线 ) 7. 求曲线 xey + y =1 点 10 处 切 ,
法 的 程 线 方
x = cos(t2) 1 d2 y , cosudu,求 8. 设 , t2 2 dx y = tan x(t ) −∫ 2 u 1
9. 已知 y = f (x
x
[
1 2 x
)] , 其中f为可微正值函数,求 dy
15. 一、填空
定积分的几何意义
1 x
lim lim 1、设f(x)=cosx+ e ,则 x→0 f(x)= 0, x→0+ f(x)= +∞。 1 ⋅ sin x 的水平渐近线为 y = 0 , 2、曲线y = x −1 垂直渐近线为 x =1。
−
n 3、已知 lim b 3 =A(A =A A ≠ 0 ,A A n→ n −(n −1 k ∞ )
ln cos x dx 2. ∫ 2 cos x 1 x dx 3. ∫ 2 1+ x
1 dx 4. ∫ 2 x(1+ ln x) 1 dx 5. ∫ 2 2 (1+ x )
6. ∫ 0 7.
ln2
ex −1 dx
∫
π
2 0
xsin 2 xdx
高等数学1复习资料
高等数学1复习资料高等数学1是大学本科数学一门重要的基础课程。
本篇文章提供一些高等数学1的重要知识点和复习方法,帮助同学们更好地复习和备考。
一、函数与极限函数是高等数学1的重要概念,其余的内容都是建立在函数的基础之上。
在复习函数时,需要掌握函数的定义和一些基本性质(如奇偶性、单调性、周期性等)。
此外,要学习反函数、复合函数和初等函数的定义和性质。
为了理解函数的极限这个概念,需要了解极限的定义和一些基本性质((如唯一性、保号性等)。
在复习时,需要掌握常见函数的极限((如正弦函数、余弦函数、指数函数等),以及利用夹逼准则和L'Hospital法则计算极限的方法。
二、导数与微分导数是函数的重要性质,它刻画了函数在某一点的局部变化率。
在复习导数时,需要掌握导数的定义和计算方法,还需要掌握相关定理和性质(如导数的代数运算法则、中值定理、极值定理等)。
微分是导数的应用,它主要用于计算函数在一点的局部变化量。
在复习微分时,需要了解微分的定义和计算方法,以及相关定理和性质(如微分的线性性、微分的逆运算等)。
三、积分与应用积分是函数的另一种性质,它表示函数在一段区间上的总变化量。
在复习积分时,需要掌握积分的定义和计算方法,还需要掌握相关定理和性质((如积分的线性性、牛顿-莱布尼茨公式、换元积分法等)。
积分的应用非常广泛,如计算面积和体积、求解微分方程、求解曲线的弧长和曲率等。
在复习积分的应用时,需要了解基本概念和计算方法,以及掌握具体的问题求解技巧。
四、矩阵与行列式矩阵和行列式是高等数学1中的代数工具,主要用于向量、线性方程组和本征值问题的求解。
在复习矩阵和行列式时,需要掌握它们的定义和基本性质,以及常见的矩阵变换和行列式计算方法。
五、向量与空间解析几何向量和空间解析几何是高等数学1中的几何工具,主要用于计算平面和空间向量的坐标、距离和夹角,以及平面和空间中的图形方程。
在复习向量和空间解析几何时,需要掌握它们的定义和基本性质,以及常见问题的计算方法和解题技巧。
《高等数学》(专科升本科)复习资料
《高等数学》(专科升本科)复习资料一、复习参考书:全国各类专科起点升本科教材高等数学(一)第3版 本书编写组 高等教育出版社 二、复习内容及方法:第一部分 函数、极限、连续复习内容函数的概念及其基本性质,即单调性、奇偶性、周期性、有界性。
数列的极限与函数的极限概念。
收敛数列的基本性质及函数极限的四则运算法则。
数列极限的存在准则与两个重要的函数极限。
无穷小量与无穷大量的概念及其基本性质。
常见的求极限的方法。
连续函数的概念及基本初等函数的连续性。
函数的间断点及其分类与连续函数的基本运算性质,初等函数的连续性。
闭区间上连续函数的基本性质,即最值定理、介值定理与零点存在定理。
复习要求会求函数的定义域与判断函数的单调性、奇偶性、周期性、有界性。
掌握数列极限的计算方法与理解函数在某一点极限的概念,同时会利用恒等变形、四则运算法则、两个重要极限等常见方法计算函数的极限。
掌握理解无穷小量与无穷大量的概念及相互关系,在求函数极限的时候能使用等价代换。
理解函数连续性的定义,会求给定函数的连续区间及间断点;;能运用闭区间上连续函数的性质证明一些基本的命题。
重要结论1. 两个奇(偶)函数之和仍为奇(偶)函数;两个奇(偶)函数之积必为偶函数;奇函数与偶函数之积必为奇函数;奇(偶)函数的复合必为偶函数; 2. 单调有界数列必有极限;3. 若一个数列收敛,则其任一个子列均收敛,但一个数列的子列收敛,该数列不一定收敛;4. 若一个函数在某点的极限大于零,则一定存在该点的一个邻域,函数在其上也大于零;5. 无穷小(大)量与无穷小(大)量的乘积还是无穷小(大)量,但无穷小量与无穷大量的乘积则有多种可能6. 初等函数在其定义域内都是连续函数;7. 闭区间上的连续函数必能取到最大值与最小值。
重要公式1. 若,)(lim ,)(lim 0B x g A x f x x x x ==→→则AB x g x f x g x f x x x x x x =⋅=⋅→→→)(lim )(lim )]()([lim 0;BA x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000。
成人高考专升本高等数学(一)考试辅导复习资料【全】
成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。
2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。
3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。
4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。
5、掌握性质掌握基本初等函数的简单性质及其图象。
6、掌握概念掌握初等函数的概念。
第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。
函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。
函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。
两个函数只有在它们的定义域和对应法则都相同时,才是相同的。
例:研究函数y=x和y=2是不是表示相同的函数。
解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。
例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。
函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。
《高等数学(一)》期末复习题(答案)
《高等数学(一)》期末复习题一、选择题1. 极限)x x →∞的结果是 ( C ).(A )0 (B ) ∞ (C ) 12(D )不存在 2. 设()xxx f +-=11ln,则)(x f 是 ( A ). (A )奇函数 (B) 偶函数 (C )非奇非偶函数 (D )既奇又偶函数 3. 极限21lim sinx x x→= ( A ) . (A )0 (B) 1 (C )+∞ (D )-∞ 4. 方程3310x x -+=在区间(0,1)内( B ).(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 5. 设()()ln 1f x x =+,g (x )=x ,则当0x →时,()f x 是()g x 的( A ).(A )等价无穷小 (B) 低阶无穷小(C )高阶无穷小 (D) 同阶但非等价无穷小 6. 下列变量中,是无穷小量的为( A ).(A ))1(ln →x x (B ))0(1ln +→x x (C )cos (0)x x → (D ))2(422→--x x x 7. 极限011lim(sinsin )x x x x x→- 的结果是( C ).(A )0 (B ) 1 (C ) 1- (D )不存在8. 下列函数中满足罗尔定理条件的是( D ).(A )()2,[0,1]f x x x =-∈ (B) 3(),[0,1]f x x x =∈ (C )(),[1,1]f x x x =∈- (D)4(),[1,1]f x x x =∈-9. 函数1cos sin ++=x x y 是( C ).(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 10. 当0→x 时, 下列是无穷小量的是( B ).(A )1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x11. 当x →∞时,下列函数中有极限的是( A ).(A )211x x +- (B) cos x (C) 1xe(D)arctan x 12. 方程310(0)x px p ++=>的实根个数是 ( B ).(A )零个 (B )一个 (C )二个 (D )三个 13.21()1dx x '=+⎰( B ).(A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 14. 定积分()f x dx ⎰是( A ).(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数15.函数(ln y x =+是( A ).(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 16. 设函数在区间上连续,在开区间内可导,且,则( B ).(A) (B) (C) (D) 17. 设曲线221x y e-=-,则下列选项成立的是( C ). (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 18. 设是的一个原函数,则等式( D )成立.(A )(B) (C ) (D)19. 设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ). (A )C x +--32)1(43 (B )C x +--32)1(31 (C )C x +-322)1(43 (D )C x +-322)1(32()f x []0,1()0,1()0f x '>()00f <()()10f f >()10f >()()10f f <F x ()f x ()dd d x f x x F x (())()⎰='=+⎰F x x f x c()()d '=⎰F x x F x ()()d dd d xf x x f x (())()⎰=20. 数列})1({nn n-+的极限为( A ).(A )1(B) 1-(C) 0(D) 不存在21. 下列命题中正确的是( B ).(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 22. 若()()f x g x ''=,则下列式子一定成立的有( C ).(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 23. 下列曲线有斜渐近线的是 ( C ).(A)sin y x x =+ (B)2sin y x x =+ (C)1siny x x =+ (D)21sin y x x=+ 24. 函数)1,0(11)(≠>+-=a a a a x x f x x ( B ).(A )是奇函数 (B )是偶函数(C )既奇函数又是偶函数 (D )是非奇非偶函数 25. 下列函数中满足罗尔定理条件的是( D ).(A )]1,0[,1)(∈-=x x x f (B)]1,0[,)(2∈=x x x f (C )()sin ,[1,1]f x x x =∈- (D)]1,1[,)(2-∈=x x x f26. 若函数221)1(xx x x f +=+,则=)(x f ( B ). (A )2x (B )22-x (C )2)1(-x (D )12-x 27. 设函数,ln )(x x x f =则下面关于)(x f 的说法正确的是( A ).(A )在(0,e 1)内单调递减 (B)在(+∞,1e)内单调递减 (C )在(0,+∞)内单调递减 (D)(0,+∞)在内单调递增28. 设1)(+=x x f ,则)1)((+x f f =( D ).(A )x (B )x + 1 (C )x + 2 (D )x + 329. 已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( C ).(A )1,1==b a , (B )1,1=-=b a (C )1,1-==b a (D )1,1-=-=b a 30. 下列函数在指定的变化过程中,( B )是无穷小量.(A ) (B )(C ) (D )31. 设函数(),2x xe ef x -+=则下面关于)(x f 的说法正确的是( B ) .(A )在(0,)+∞内单调递减 (B)在(,0)-∞内单调递减 (C )在(,0)-∞内单调递增 (D)在(,)-∞+∞内单调递增32. 下列函数中,在给定趋势下是无界变量且为无穷大的函数是( C ).(A ))(1sin∞→=x xx y (B )())(1∞→=-n n y n (C ))0(ln +→=x x y (D ))0(1cos 1→=x xx y33. 设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( B ). (A )连续且可导(B )连续但不可导 (C )不连续但可导(D )既不连续又不可导34. 在下列等式中,正确的是( C ).(A )()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D)[()]()d f x dx f x =⎰ 35. 曲线x x y -=3在点(1,0)处的切线是( A ).(A )22-=x y(B )22+-=x ye 1xx ,()→∞sin ,()xxx →∞ln(),()11+→x x x xx +-→110,()(C )22+=x y(D )22--=x y36. 已知441x y =,则y ''=( B ). (A ) 3x (B )23x (C )x 6 (D ) 6 37. 若x xf =)1(,则=')(x f ( D ).(A )x 1 (B )21x (C )x 1- (D )21x-38. 下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 39. 函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )240. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 41. 设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 42. 设()f x 可微,则0()(2)limh f x f x h h→--=( D ).(A )()f x '- (B)1()2f x ' (C )2()f x '- (D)2()f x '43. 点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 44. 曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线45.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( D ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭46.x x dxe e -+⎰的结果是( A ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++47. 下列各组函数中,是相同函数的是( C ).(A) ()f x x =和()g x =()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =48. 设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( D ).(A) 0 (B) 1 (C) 2 (D)不存在49. 设函数22456x y x x -=-+,则2x =是函数的( A ).(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 50. 设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为( C ). (A) 0 (B)2π(C)锐角 (D)钝角 51. 曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( D ).(A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭52. 函数2x y x e -=及图象在()1,2内是( B ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 53. 以下结论正确的是( C ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.54. 设函数22132x y x x -=-+,则1x =是函数的( A ).(A )可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 55. 设函数()y f x =的一个原函数为12x x e ,则()f x =( A ).(A) ()121x x e - (B)12xx e - (C) ()121x x e + (D) 12xxe56. 若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( D ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+57. 函数21,0e ,0xx x y x ⎧+<=⎨≥⎩在点0x =处( D ).(A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 58. 函数 2)1ln(++-=x x y 的定义域是( C ).(A ) []1,2- (B ) [)1,2- (C )(]1,2- (D )()1,2- 59. 极限x x e ∞→lim 的值是( D ).(A )∞+ (B ) 0 (C )∞- (D )不存在 60. =--→211)1sin(limx x x ( C ).(A )1 (B ) 0 (C )21-(D )2161. 曲线 23-+=x x y 在点)0,1(处的切线方程是( B ).(A ) )1(2-=x y (B ))1(4-=x y (C )14-=x y (D ))1(3-=x y62. 函数, 0,0xx x y e x <⎧=⎨≥⎩在点0x =处( B ). (A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 63. 下列各微分式正确的是( C ).(A ))(2x d xdx = (B ))2(sin 2cos x d xdx = (C ))5(x d dx --= (D )22)()(dx x d = 64. 设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( B ). (A )2sin x (B ) 2sin x - (C )C x +2sin (D )2sin 2x-65. 设()f x 可微,则0(2)()limh f x h f x h→+-=( D ).(A )()f x '- (B)1()2f x ' (C)2()f x '- (D)2()f x ' 66.⎰=+dx x xln 2( B ).(A )Cx x ++-22ln 212 (B )C x ++2)ln 2(21(C )C x ++ln 2ln (D )C xx++-2ln 1 67. 函数)1lg(12+++=x x y 的定义域是( B ).(A )()()+∞--,01,2 (B )()),0(0,1+∞- (C )),0()0,1(+∞- (D )),1(+∞-68. 设0tan 4()lim6sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )1 (B )2 (C )6 (D )24 69. 下列各式中,极限存在的是( A ).(A ) x x cos lim 0→ (B )x x arctan lim ∞→ (C )x x sin lim ∞→ (D )x x 2lim +∞→70. =+∞→xx xx )1(lim ( D ). (A )e (B )2e (C )1 (D )e1 71. 设0sin 4()lim5sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )0 (B )1 (C )5 (D )2572. 曲线x x y ln =的平行于直线01=+-y x 的切线方程是( C ).(A )x y = (B ))1)(1(ln --=x x y (C )1-=x y (D ))1(+-=x y73. 已知x x y 3sin = ,则=dy ( B ).(A )dx x x )3sin 33cos (+- (B )dx x x x )3cos 33(sin + (C )dx x x )3sin 3(cos + (D )dx x x x )3cos 3(sin + 74. 下列等式成立的是( C ).(A )⎰++=-C x dx x 111ααα (B )⎰+=C x a dx a x x ln (C )⎰+=C x xdx sin cos (D )⎰++=C xxdx 211tan 75. 极限01lim sinx x x→= ( A ) . (A ) 0 (B) 1 (C )+∞ (D) -∞ 76. 设()1cos f x x =-,()2g x x =,则当0x →时,()f x 是()g x 的( D ).(A )等价无穷小 (B) 低阶无穷小 (C ) 高阶无穷小 (D) 同阶但非等价无穷小 77. 计算⎰xdx x e x cos sin sin 的结果中正确的是( D ).(A )C e x +sin (B )C x e x +cos sin (C )C x e x +sin sin (D )C x e x +-)1(sin sin78. 5lg 1)(-=x x f 的定义域是( D ).(A )()),5(5,+∞∞- (B )()),6(6,+∞∞-(C )()),4(4,+∞∞- (D )())5,4(4, ∞- ()),6(6,5+∞79. 如果函数f (x )的定义域为[1,2],则函数f (x )+f (x 2)的定义域是( B ).(A )[1,2] (B )[1,2] (C )]2,2[- (D )]2,1[]1,2[ --80. 函数)1lg()1lg(22x x x x y -++++=( D ).(A )是奇函数,非偶函数 (B )是偶函数,非奇函数 (C )既非奇函数,又非偶函数 (D )既是奇函数,又是偶函数 81. 设()sin f x x x =,则)(x f 是( C ).(A )非奇非偶函数 (B) 奇函数 (C)偶函数 (D) 既奇又偶函数 82. 函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ).(A )21x - (B )21x --(C ))01(12≤≤--x x (D ))01(12≤≤---x x 83. 下列数列收敛的是( C ).(A )1)1()(1+-=+n n n f n (B )⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)((C )⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( (D )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f nn n n ,221,221)(84. 设1111.0个n n y =,则当∞→n 时,该数列( C ).(A )收敛于0.1 (B )收敛于0.2 (C )收敛于91(D )发散 85. 下列极限存在的是( A ).(A )2)1(lim x x x x +∞→ (B )121lim -∞→x x (C )x x e 10lim → (D )x x x 1lim 2++∞→ 86. xx xx x x sin 2sin 2lim 22+-+∞→=( A ).(A )21(B )2 (C )0 (D )不存在 87. =--→1)1sin(lim 21x x x ( B ).(A )1 (B )2 (C )21(D )0 88. 下列极限中结果等于e 的是( B ).(A )xx x x x sin 0)sin 1(lim +→ (B )x xx x x sin )sin 1(lim +∞→ (C )xxx xxsin )sin 1(lim -∞→- (D )xxx xxsin 0)sin 1(lim +→89. 函数||ln 1x y =的间断点有( C )个. (A )1 (B )2 (C )3 (D )4 90. 下列结论错误的是( A ).(A )如果函数f (x )在点x =x 0处连续,则f (x )在点x =x 0处可导; (B )如果函数f (x )在点x =x 0处不连续,则f (x )在点x =x 0处不可导; (C )如果函数f (x )在点x =x 0处可导,则f (x )在点x =x 0处连续; (D )如果函数f (x )在点x =x 0处不可导,则f (x )在点x =x 0处也可能连续。
高数(上)期末复习重点
高数〔上册〕期末复习要点第一章:1、极限〔夹逼准则〕2、连续〔学会用定义证明一个函数连续,判断间断点类型〕第二章:1、导数〔学会用定义证明一个函数是否可导〕注:连续不一定可导,可导一定连续2、求导法则〔背〕3、求导公式也可以是微分公式第三章:1、微分中值定理〔一定要熟悉并灵活运用--第一节〕2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值〔高中学过,不需要过多复习〕5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法〔变dx/变前面〕2、分部积分法〔注意加C 〕〔最好都自己推导一遍,好记〕定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线〔两直线的夹角、线面夹角、求直线方程〕 3、空间平面4、空间旋转面〔柱面〕高数解题技巧。
〔高等数学、考研数学通用〕高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,假设被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:假设涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:假设题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE 再说。
大一经典高数复习资料经典经典全面复习
高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<o第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】3x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim ,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性 ○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln limlimlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导 ∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩x (,0)-∞ 0 (0,1)1 (1,2)2 (2,)+∞y ' - 0 + + 0 - y '' + + - - y 1 (1,3) 54.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈o,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈o,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= x1- ()1,1-1 (]1,3()f x ' 0+- ()f x极小值Z极大值]4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b baa f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求40⎰ 【求解示例】()2210,43220,1014,332332311132213111332223522933解:t t x x t x t t dx t t t dt t dt t x t =-====+−−−−−−→+⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求) 第五节 定积分在物理上的应用(暂时不作要求) 第六节 反常积分(不作要求)如:不定积分公式21arctan 1dx x C x =++⎰的证明。
高等数学第一章总复习
参考答案
一、 1、x 0为可去间断点;x =kπ为无穷间断点. 2、f ( x )在x =1连续,连续区间为(-,+). 3、x 1为跳跃型间断点,连续区间为 (-,1)(1,+). 4、x 2为跳跃型间断点,连续区间为 [0,2)(2,+). 二、 1 1、a=0,b=1. 2、n . 3、k 3. 4 1 1 4、a 4, b 1. 5、- . 6、x . 12 2
0 x
是阶无穷小,则k等于多少.
(4)求正常数a与b, 使等式 1 lim x 0 bx sin x 0
x
t
2 2
at
dt 1成立.
1 2 2 x 1 1 x (5)求极限 lim 2 . 2 x 2 x0 (cos x e ) sin x 1 (6)求 lim 2 n n
i 1
n
( nx i ) ( nx i 1) , ( x 0).
三、计算题
1.lim(1 3 x )
x 0 2 sin x 1
; 2.lim(cos x ) ;
x 0
x2
π 2 1 x 3.lim tan( ); 4.lim ; n x 1 ln x 4 n x 5. lim ; 6. lim x ( x 1 x 1); x x 0 1 cos x 1 1 tan x 1 sin x 7.lim(cot x 2 ); 8.lim ; 2 x 0 x 0 x x ln(1 x ) x
第一章:函数与极限
一、讨论下列函数的连续性,如有间 断点说明其类型.
1 x2 x ,x 1 (1) y (2) f ( x ) 1 x sin 2 x 2, x 1 1 x (3) f ( x ) lim n 1 x 2 n n 2 x (4) f ( x ) lim ( x 0) 2n 2n n 2 x
高数一试题及答案
《 高等数学(一) 》复习资料一、选择题1. 若23lim 53x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim 21x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( )A.22y x =+B.22y x =-+C.23y x =+D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+ 5. 211lim sin x x x→-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( ) A 1 B 2 C 3 D 47. 求函数43242y x x =-+的拐点有( )个。
A 1B 2C 4D 08. 当x →∞时,下列函数中有极限的是( )。
A. sin xB. 1x eC. 211x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3)lim 2h f h f h→--=( ) 。
A. 32 B. 32- C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。
A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定12. [()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C ) A.2222(ln )(ln )f x f x x ' B. 24(ln )f x x ' C. 224(ln )(ln )f x f x x ' D. 222(ln )()f x f x x' 14. ()d f x ⎰=( B) A.'()f x C + B.()f x C.()f x ' D.()f x C + 15. 2ln x dx x =⎰( D ) A.2ln x x C + B.ln x C x + C.2ln x C + D.()2ln x C + 16. 211lim ln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( ) A 1 B 0 C 2- D 218. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A ) A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x -D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求.3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分80⎰7. 计算20cos x xdx π⎰. 8. 求2128dx x x +-⎰.9. 求11. 求2212x xe dx -⎰12. 求3x ⎰13. 求21ln ex dx x⎰14.求⎰三、解答题1. 若(1lim 36x x →∞=,求a 2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间 3. 求函数22()2x x f x x --=-的间断点并确定其类型 4. 设2sin ,.xy xy x e y '+=求5. 求y =6. 求由方程cos sin x a t y b t =⎧⎨=⎩确定的导数x y '.7. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续8. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin yy y xe =+确定的函数,求y ' 12.求证: ln 1,1x x x <->13. 设y 是由方程1yy xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间 15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x-=-的间断点并确定其类型 五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解.4. 求方程3595x y y y xe-'''-+=的通解.高数一复习资料参考答案一、选择题1-5: DABAA6-10:DBCDD11-15: BCCBD16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰ 2.求. 解:13(43ln )(ln )x d x x =+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则21arctan ln(1)2x x x C =-++. 4.求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰2)C =+.5. 求2356x dx x x +-+⎰.解:由上述可知23565623x x x x x +-=+-+--,所以 5ln 26ln 3x x C =--+-+.6.求定积分80⎰ 解t =,即3x t =,则23dx t dt =,且当0x =时,0t =;当8x =时,2t =,于是28222000313ln(1)3ln 312t dt t t t t ⎡⎤==-++=⎢⎥+⎣⎦⎰⎰. 7. 计算20cos x xdx π⎰.解:令2u x =,cos dv xdx =,则2du xdx =,sin v x =,于是22200000cos sin (sin )2sin 2sin x xdx x d x x x x xdx x xdx πππππ==-=-⎰⎰⎰⎰. 再用分部积分公式,得002(cos )sin 2x x x πππ⎡⎤=-=-⎣⎦.8. 求2128dx x x +-⎰.解:221113(1)(1)ln 28(1)963(1)x dx d x C x x x x -+=+=++-+-++⎰⎰ 12ln 64x C x -=++. 9.求解:令u =32x u =-,23dx u du =,从而有 11. 求2212x xe dx -⎰ 解:2222222411112x x x xe dx e dx e e e -----===-⎰⎰ 12.求3x ⎰解:333223(3)(3)3x x x C =--=--+⎰ 13. 求21ln ex dx x⎰ 解:22111ln 111ln (ln )ln ln 333e ee x dx xd x x e x ====⎰⎰ 14.求⎰解:3322222121(3)(3)(3)233x x C x C =--=-⋅-+=--+⎰ 三、解答题1.若(1lim 36x x →∞=,求a解:因为223x =,所以9a =否则极限不存在。
高等数学(数一)知识重点及复习计划
函数的概念,常见的函数〔有界函数、奇函数与偶函数、单调函数、周期函数〕、复合函数、反函数、初等函数具体概念和形式习题 1-1:4,5,8,9,15,16数列极限的定义,数列极限的性质<惟一性、有界性、保号性习题 1-2:1,4,5,6函数极限的定义与基本性质〔极限的保号性、极限的惟一性、函数极限的函数局部有界性,函数极限与数列极限的关系等〕习题 1-3:1,2,4无穷小与无穷大的定义,它们之间的关系,以与与极限的关系习题 1-4:4,6,7极限的运算法则<6 个定理以与一些推论>习题 1-5:1,2,3,4,5两个重要极限〔要牢记在心,要注意极限成立的条件, 不要混淆,应熟悉等价表达式〕 ,函数极限的存在问题〔夹逼定理、单调有界数列必有极限〕 ,利用函数极限求数列极限,利用夹逼准则求极限,求递归数列的极限.习题 1-6:1,2,4无穷小阶的概念〔同阶无穷小、等价无穷小、高阶无1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数与分段函数的概念,了解反函数与隐函数的概念.4.掌握基本初等函数的性质与其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以与函数极限存在与左、右极限之间的关系.6.掌握极限的性质与四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限 , 掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷穷小、 k 阶无穷小〕 ,重要的等价无穷小〔特别重要, 一定要烂熟于心〕以与它们的重要性质和确定方法. 习题 1-7:1,2,3,4函数的连续性,间断点的定义与分类〔第一类间断点与第二类间断点〕 ,判断函数的连续性〔连续性的四则运算法则,复合函数的连续性,反函数的连续性〕和间断点的类型.习题 1-8:2,3,4,5连续函数的运算与初等函数的连续性<包括和,差, 积,商的连续性,反函数与复合函数的连续性,初等函数的连续性>习题 1-9:3,4,5,6理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理<零点定理对于证明根的存在是非常重要的一种方法习题 1-10:1,2,5总复习题一: 1,2,3,4,5,9,10,11,12导数的定义、几何意义,单侧与双侧可导的关系,可导与连续之间的关系〔非常重要,时常会浮现在选择题中〕 ,函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导与其合用的情形,利用导数定义求极限. 会求平面曲线的切线方程和法线方.习题 2-1:6,7,9,11,14,15,16,17,18,19,20复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则, 〔幂、指数函数求导法,反函数求导法〕 ,分段函数求导法. 大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念〔含左连续与右连续〕 ,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质〔有界性、最大值和最小值定理、介值定理〕,并会应用这些性质.1.理解导数和微分的概念, 理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,程习题 2-2:2,3,5,7,8,10,11,14高阶导数求法〔归纳法,分解法,用莱布尼兹法则〕习题 2-3:2,3,10,11,12由参数方程确定的函数的求导法,隐函数的求导法, 相关变化率习题 2-4:,1-11函数微分的定义,微分的几何意义,微分运算法则习题 2-5:2,3,4总复习题二: 1,2,3,5,6,7,8,9,10,11,12,13,14 掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念, 会求简单函数的高阶导数.4.会求分段函数的导数, 会求隐函数和由参数方程所确定的函数以与反函数的导.微分中值定理与其应用〔费马定理与其几何意义,罗尔定理与其几何意义,拉格朗日定理与其几何意义、柯西定理与其几何意义〕习题 3-1:5-12洛比达法则与其应用习题 3-2:1-4泰勒中值定理,麦克劳林展开式习题 3-3:1-7,10求函数的单调性、凹凸性区间、极值点、拐点、渐进习题 3-4:1,2,4,5,8,9, 12,13,14,15函数的极值,<一个必要条件,两个充分条件>,最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题习题 3-5:1,4,5,6,7简单了解利用导数作函数图形〔普通出选择题与判断1.理解并会用罗尔<Rolle> 定理、拉格朗日 <Lagrange> 中值定理和泰勒 <Taylor>定理,了解并会用柯西<Cauchy> 中值定理.2.掌握用洛必达法则求未定式极限的方法.3.理解函数的极值概念, 掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法与其应用.4.会用导数判断函数图形的凹凸性,会求函数图形的数.图形题〕 ,对其中的渐进线和间断点要熟练掌握.习题 3-6:2,4弧微分,曲率的概念,曲率圆与曲率半径习题 3-7:1-5总复习题三: 1,2,4,6,7,8,10,11,12,20原函数与不定积分的概念与基本性质〔它们各自的定义,之间的关系,求不定积分与求微分或者导数的关系〕 ,基本的积分公式,原函数的存在性习题 4-1:1,7换元积分法习题 4-2 全部分部积分法习题 4-3 全部有理函数的积分习题 4-4 全部积分表的使用总习题四全部定积分的概念与性质<可积累在定理><定积分的7 个性质习题5-1:4,10,13微积分的基本公式积分上限函数与其导数牛顿-莱布尼兹公式习题5-2:1-12定积分的换元法与分部积分法习题5-3:1,2,3,4,6,7反常积分无界函数反常积分与无穷限反常积分拐点以与水平、铅直和斜渐近线,会描绘函数的图形.5.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.1.理解原函数的概念 , 理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质与定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.1.理解定积分的概念.2.掌握定积分的基本公式 , 掌握定积分的性质与定积分中值定理,3.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.4.掌握换元积分法与分部积分法..习题:5-4:1-3反常积分的审敛法总复习题五:1,3,4,5,6,7,10,13定积分元素法定积分的几何应用〔求平面曲线的弧长 ,求平面图形的面积,求旋转体的体积 ,求平行截面为已知的立体体积,求旋转曲面的面积〕习题 6-2:1,2,3,4,5,6,7,8,9,11,12,13,15,16,21,22定积分在物理学上的应用〔变力沿直线所做的功 ,水压力,引力〕习题 6-3:1-12总复习题六: 1-6微分方程的基本概念〔微分方程与其阶、解、通解、初始条件和特解〕习题 7-1:1,2,3,4,5可分离变量的微分方程<可分离变量的微分方程的概念与其解法 >习题 7-2:1,2齐次方程〔一阶齐次微分方程的形式与其解法〕习题 7-3:1,2一阶线性微分方程,伯努利方程习题 7—4:1,2可降阶的高阶微分方程习题1,2高阶线性微分方程〔微分方程的特解、通解〕习题 7-6:1-4常系数齐次线性微分方程〔特征方程,微分方程通解5.了解广义反常积分的概念, 会计算广义反常积分.会用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积与侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等1.了解微分方程与其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程与一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会解二阶可降解的微分方程.5.理解线性微分方程解.中对应项〕习题 7-7:1,2常系数非齐次线性微分方程〔会解自由项为多项式、指数函数、正弦函数、余弦函数以与它们的和与积的二阶常系数非齐次线性微分方程〕的性质与解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.习题 7-8:1,27.会解自由项为多项式、欧拉方程习题 7-9指数函数、正弦函数、余弦函数以与它们的和与积的二阶常系数非齐次线性微分方程.总复习题七: 3,4,5,7,10 8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.向量与其线性运算习题 8-1: 1-19数量积、向量积、混合积习题 8-2:1,2,3,6,7,9曲面与其方程习题 8-3:1-11空间曲线与其方程习题 8-41-8平面与其方程习题 8-51-9 1.理解空间直角坐标系,理解向量的概念与其表示.2.掌握向量的运算〔线性运算、数量积、向量积、混合积〕,了解两个向量垂直、平行的条.3.理解单位向量、方向数与方向余弦、向量的坐标表达式, 掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程与其求法.5.会求平面与平面、平面与件直线、直线与直线之间的夹角,并会利用平面、直线的相空间直线与其方程习题 8-61-15总习题八: 1-21 互关系〔平行、垂直、相交等〕解决有关问题.6.会求点到直线以与点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程与其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和普通方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.多元函数的基本概念〔二元函数的极限、连续性、有界性与最大值最小值定理、介值定理〕习题 9— 1:5,6,7,8偏导数<偏导数的概念,二阶偏导数的求解 >,习题 9—2:1,2,3,4,6,7,8,9全微分〔全微分的定义,可微分的必要条件和充分条件〕 ,习题 9—3:1,2,3,5多元复合函数的求导法则〔多元复合函数求导,全微分形式的不变性〕习题 9—4:1—12隐函数的求导公式〔隐函数存在的 3 个定理〕习题 9—5:1—101.理解多元函数的概念, 理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以与有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念 ,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度多元函数微分学的几何应用〔空间曲线的切线与法平面,曲面的切平面与法线〕习题 9—6:4—12方向导数与梯度习题 9—7:1-8,10多元函数的极值与其求法〔多元函数极值与最值的概念,二元函数极值存在的必要条件和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值〕习题 9—8:1—12总复习题九: 1-18二重积分的概念与性质〔二重积分的定义与 6 个性,习题 10-1:1,4,5二重积分的计算法〔会利用直角坐标计算二重积分, 会利用极坐标计算二重积分〕 ,习题 10-2:1,2, 4,6,7,8,11,12,13,14,15三重积分的概念,三重积分的计算〔会利用直角坐标计算三重积分,会利用柱面坐标计算三重积分,会利用球面坐标计算三重积分〕的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理, 会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面与曲面的切平面和法线的概念 ,会求它们的方.8.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值 ,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.1.理解二重积分、三重积分的概念,了解重积分的性质, 了解二重积分的中值定.2.掌握二重积分的计算方法〔直角坐标、极坐标〕 , 会计算三重积分〔直角坐标、柱面坐标、球面坐标〕 .理程质〕习题 10-3:4-11 3.会用重积分求一些几何量与物理量〔平面图形的面积、重积分的应用〔会计算曲面的面积,质心,转动惯量,体积、曲面面积、弧长、质量、引力〕质心、形心、转动惯量、引力、习题 10-4:1,2,3,4,5,6,9,10,11,12,13,14功等〕 .对弧长的曲线积分〔对弧长的曲线积分的概念与性质,对弧长的曲线积分的计算〕习题 11-1:3对坐标的曲线积分〔对坐标的曲线积分的概念与性质,对坐标的曲线积分的计算,两类曲线积分之间的联系〕习题 11-2:3,4,7,8格林公式与其应用〔格林公式,平面上曲线积分与路径无关的条件,二元函数的全微分求积,全微分方程〕习题 11-3:1-6对面积的曲面积分〔对面积的曲面积分的概念与性质,对面积的曲面积分的计算,〕习题 11-4:4-8 对坐标的曲面积分〔对坐标的曲面积分的概念与性质,对坐标的曲面积分计算,两类曲面积分之间的联系〕习题 11-5:3,4高斯公式〔会用高斯公式,会计算通量与散度〕习题 11-6:1,2,3斯托克斯公式〔会用斯托克斯公式,会计算环流量与旋度〕习题 11-7:2,31.理解两类曲线积分的概念,了解两类曲线积分的性质与两类曲线积分的关系.2.掌握计算两类曲线积分的方法.3.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.4.了解两类曲面积分的概念、性质与两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.5.了解散度与旋度的概念,并会计算.总习题十一: 1-5.常数项级数的概念和性质〔常数项级数的概念,收敛级数的基本性质〕习题 12-1:1-4常数项级数的审敛法〔正项级数与其审敛法,交织级数与其审敛法,绝对收敛与条件收敛〕习题 12-2:1-5幂级数〔幂级数与其收敛性,幂级数的运算〕习题 12-3:1.2.傅里叶级数〔函数展开成傅里叶级数,正弦级数,余弦级数〕习题 12-7:1-6 1.理解常数项级数收敛、发散以与收敛级数的和的概念, 掌握级数的基本性质与收敛的必要条件.2.掌握几何级数与P-级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交织级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以与绝对收敛与收敛的关系.6.了解函数项级数的收敛域与和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半.普通周期函数的傅里叶级数〔周期为 2L 的周期函数的傅里叶级数〕习题 12-7:1,2总习题十二: 1-12 径、收敛区间与收敛域的求法.8.了解幂级数在其收敛区间内的基本性质〔和函数的连续性、逐项求导和逐项积分〕, 会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x ,sin x ,cos x ,ln(1+ x) 与(1+ x)a 的麦克劳林〔Maclaurin〕展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[一l, l] 上的函数展开为傅里叶级数,会将定义在[0,l] 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.11 / 11。
成人高考专升本《高等数学(一)》考点汇总
学习攻略—收藏助考锦囊系统复习资料汇编考试复习重点推荐资料百炼成金模拟考试汇编阶段复习重点难点梳理适应性全真模拟考试卷考前高效率过关手册集高效率刷题好资料分享学霸上岸重点笔记总结注:下载前请仔细阅读资料,以实际预览内容为准助:逢考必胜高分稳过成人高考专升本《高等数学(一)》考点汇总一、函数、极限和连续(一)函数1.知识范围(1)函数的概念函数的定义函数的表示法分段函数隐函数(2)函数的性质单调性奇偶性有界性周期性(3)反函数反函数的定义反函数的图像(4)基本初等函数幂函数指数函数对数函数三角函数反三角函数(5)函数的四则运算与复合运算(6)初等函数2.要求(1)理解函数的概念。
会求函数的表达式、定义域及函数值。
会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
(二)极限1.知识范围(1)数列极限的概念数列数列极限的定义(2)数列极限的性质唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义(4)函数极限的性质唯一性四则运算法则夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶(6)两个重要极限2.要求(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
(完整版)高等数学基本知识点大全大一复习,考研必备
大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
高数复习知识点
高等数学上册知识点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;(重点)函数)(x f 在0x 连续)()(lim 00x f x f xx =→第一类:左右极限均存在.间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理(重点)、介值定理及其推论.(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若lim 0α=则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:(重点)a) 1sin lim 0=→x x x b) e xx xx xx =+=++∞→→)11(lim )1(lim 15) 无穷小代换:(0→x )(重点)a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c)x e x ~1- (a x a x ln ~1-)d) x x ~)1ln(+ (axx a ln ~)1(log +)e)x x αα~1)1(-+二、 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、 可导与连续的关系:4、 求导的方法1) 导数定义;(重点) 2) 基本公式; 3) 四则运算;4) 复合函数求导(链式法则);(重点) 5) 隐函数求导数;(重点) 6) 参数方程求导;(重点)7) 对数求导法. (重点) 5、 高阶导数1) 定义:⎪⎭⎫⎝⎛=dx dy dx d dx y d 22 2)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关.2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 定理:(重点)若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使.2、 Lagrange 中值定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使.3、 Cauchy 中值定理:若函数)(),(x F x f 满足:1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠'则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则(重点) (三) T aylor 公式(不考) (四) 单调性及极值1、 单调性判别法:(重点)],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:(重点))(x f 在0x 的邻域内可导,且0)(0='x f ,c) 则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.d) 第二充分条件:(重点))(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,e) 则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2(,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2( ,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的.2)判定定理(重点):)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的;b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、 利用函数单调性;(重点)3、 利用极值(最值). (六) 方程根的讨论1、 连续函数的介值定理;2、 Rolle 定理;3、 函数的单调性;4、 极值、最值;5、 凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线; 2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线; 3、 斜渐近线:k xx f x =∞→)(lim b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜 渐近线.(八) 图形描绘四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数. (重点)2、 不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);(重点)4、 性质(线性性).(二) 换元积分法(重点)1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv (重点)(四) 有理函数积分 1、“拆”;2、变量代换(三角代换、倒代换、根式代换等).五、 定积分 (一) 概念与性质:1、 定义:∑⎰=→∆=ni i i bax f dx x f 1)(lim )(ξλ2、 性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ (平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式)(重点)1、 变上限积分:设⎰=Φxadt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dx d x x ααβββα'-'=⎰ 2、 N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分(重点)1、 换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)(2、 分部积分法:[]⎰⎰-=babab a vdu uv udv (四) 反常积分1、 无穷积分:⎰⎰+∞→+∞=tat a dx x f dx x f )(lim )( ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、 瑕积分:⎰⎰+→=btat ba dx x f dx x f )(lim )((a 为瑕点) ⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1 ,11,d 1p p a p x x p a p 2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q q a b x b x a x x qb a q b a q六、 定积分的应用 (一) 平面图形的面积1、 直角坐标:⎰-=badx x f x fA )]()([12(重点)2、 极坐标:⎰-=βαθθϕθϕd A )]()([212122(二) 体积1、 旋转体体积:(重点)a)曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=bax dx x f V )(2πb)曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=bay dx x xf V )(2π (柱壳法)2、 平行截面面积已知的立体:⎰=badx x A V )((三) 弧长1、 直角坐标:[]⎰'+=badx x f s 2)(12、 参数方程:[][]⎰'+'=βαφϕdt t t s 22)()(3、 极坐标:[][]⎰'+=βαθθρθρd s 22)()(七、 微分方程 (一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同. 特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程(重点)dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设x y u =,则dxdu x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dydv y v dy dx += (四) 一阶线性微分方程(重点))()(x Q y x P dxdy =+ 用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()( (五) 可降阶的高阶微分方程1、)()(x f y n =,两边积分n 次;2、),(y x f y '=''(不显含有y ),令p y =',则p y '='';3、),(y y f y '=''(不显含有x ),令p y =',则dy dp p y =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程(重点)二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程)(x f qy y p y =+'+''1、)()(x P e x f m x λ=(重点)设特解)(*x Q e x y m x k λ=,其中 ⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]x x R x x R e x y m m x k ωωλsin )(cos )()2()1(*+=,其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。
高等数学(Ⅰ)复习题
高等数学(上)复习题1、A、B、C、D、2、A、B、C、D、3、A、B、C、D、4、A、B、C、D、5、A、1B、C、2D、6、A、1B、C、0D、7、由心形线所围成图形的面积(). A、B、C、D、8、A、B、C、D、9、A、B、C、D、10、A、B、C、D、11、A、2B、C、D、0E、-212、A、0,2B、-1,-1C、-1,1D、0,-313、A、B、C、D、14、A、B、唯一的C、任意的D、15、A、B、C、D、16、A、B、C、D、无法确定正负17、A、B、C、D、0E、18、A、奇函数B、偶函数C、非奇非偶函数D、奇偶性决定于a的值19、下列叙述正确的是()。
A、有界数列一定有极限B、无界数列一定是极限值为无穷大C、极限值为无穷大数列必为无界数列D、无界数列未必发散20、A、B、C、0D、21、A、充分条件,但不是必要条件B、充分必要条件C、必要条件,但不是充分条件D、既非充分也非必要条件22、A、1B、0C、2D、323、A、1B、3C、2D、424、A、B、C、25、A、B、C、D、626、A、B、C、D、27、A、B、C、D、28、下列等式成立的是()。
A、B、C、D、29、曲线与直线x=4、y=0所围图形绕y轴旋转一周所形成的旋转体的体积()A、B、C、D、30、A、B、C、D、有界,但非无穷小量31、A、B、C、D、32、由双曲线xy=1与直线y=x及y=2围成的平面图形的面积()A、B、C、D、33、A、B、C、D、34、A、B、C、D、35、B、C、D、36、A、120B、-120C、0D、-24037、A、1B、2C、0D、-1E、-238、A、B、C、39、A、-1B、1C、2D、-2E、040、A、B、1C、D、041、A、一个很小的函数B、任意给定的正的常数C、很小的与n有关的函数D、是n的函数42、A、无界变量B、无穷大量C、无穷小量D、有界,但非无穷小量43、A、连续但不可导B、可导C、左可导而右不可导D、右可导而左不可导44、A、6B、1C、-6D、-1E、045、A、B、C、D、046、A、左连续,右不连续B、连续C、右连续,左不连续D、左右都不连续47、A、B、C、D、48、下列极限中不正确的是. A、B、C、D、49、A、-9B、9C、D、50、A、B、C、不一定收敛D、不收敛51、A、B、C、D、52、A、B、C、D、53、A、B、C、D、54、A、B、C、D、55、A、B、C、D、A、0B、1C、D、57、A、B、D、58、A、B、C、D、59、A、B、C、D、60、A、20B、2C、12D、-2E、061、曲线y=lnx,y=lna,y=lnb,(0<a<b)及y轴所围图形面积(). A、B、C、D、62、A、B、C、D、63、A、B、C、D、164、A、1B、2C、0D、-165、A、有界函数B、单调函数C、周期函数D、无界函数66、A、偶函数B、奇函数C、D、非奇非偶67、A、1B、-1C、0D、E、68、A、B、C、D、69、A、a=1,b=1B、C、D、70、A、B、C、D、71、A、B、C、D、72、A、B、C、D、[a,b]73、A、甲、乙都不成立B、甲成立,乙不成立C、甲不成立,乙成立D、甲、乙都成立74、A、B、100C、0D、20075、A、B、C、D、76、A、B、C、D、77、A、B、2C、D、78、A、B、C、D、79、下列各对函数中,是同一函数的原函数的是(). A、B、C、D、80、A、0个B、至少有1个C、无数多个D、无法确定81、A、B、C、D、82、A、1B、C、D、83、A、2B、1C、D、0E、-184、下列函数中,在[1,e]上满足拉格朗日中值定理条件的是(). A、B、C、D、85、A、1B、4C、3D、E、086、A、充分条件B、必要条件C、充要条件D、既非充分又非必要条件87、A、2B、-2C、4D、-488、A、B、C、D、89、B、2C、D、E、490、A、B、C、D、91、下列等式中,正确的结果是(). A、B、C、D、92、A、C、D、93、A、2B、C、1D、094、A、甲、乙都正确B、甲正确,乙不正确C、甲、乙都不正确D、甲不正确,乙正确95、A、-7B、7C、1D、-1E、096、A、2B、1C、0D、E、397、A、B、C、D、98、A、连续,可导B、连续,但不可导C、不连续,但可导D、不连续,必不可导99、A、2B、C、D、不存在100、A、0B、1C、6D、2E、3101、下列关于实数列的命题正确的为().A、其他各项结论均不成立B、C、D、102、A、B、C、0D、1103、A、2B、-2C、3D、-3104、A、0B、1C、2D、3105、A、充分条件B、必要条件C、既非必要又非充分条件D、必要充分条件106、A、-2B、1107、A、1B、C、D、2 108、A、B、C、D、3E、0 109、A、0B、C、1D、-1 110、A、D、E、111、A、B、C、D、112、A、同阶无穷小,但不是等价无穷小B、等价无穷小C、低阶无穷小D、高阶无穷小113、A、f’(x)B、C、D、很小的量114、计算曲线一段的弧长(). A、B、C、D、115、A、1B、-1C、-2D、2E、0 116、A、B、C、1D、2 117、A、1B、0C、D、不存在118、A、B、C、D、119、A、连续是可微的充分条件B、可导是可微的充分必要条件C、可微不是连续的充分条件D、连续是可导的充分必要条件120、A、B、C、D、121、A、-1B、1C、2D、-2E、0122、A、B、C、D、123、A、B、C、D、124、A、B、C、1D、2125、A、必要条件B、充分必要条件C、充分条件D、既非充分又非必要条件126、A、B、C、D、127、A、B、C、D、128、A、B、C、D、129、下列函数中在[-1,1]上满足罗尔定理的函数是(). A、B、C、D、130、A、必要条件B、既非必要又非充分条件C、充分必要条件D、充分条件131、A、1B、2C、3D、6E、0132、A、B、C、可能收敛,可能发散D、都发散133、A、0B、C、1D、2134、A、B、C、D、135、A、B、C、D、136、A、B、C、D、137、A、B、C、D、138、下列极限中,不正确的是(). A、B、C、D、139、A、B、C、D、140、A、有界变量B、无界,但非无穷大量C、无穷大量D、无穷小量141、抛物线及直线绕x轴旋转一周得一旋转体的体积(). A、B、C、D、142、A、B、C、D、143、A、0B、C、1D、不存在144、A、B、C、D、145、A、B、C、D、146、A、-1B、1C、0D、2147、A、0B、1C、2D、-1148、A、在[a,b]上,f(x)=0B、C、D、149、A、B、C、D、E、150、A、B、C、D、151、A、B、C、D、-2ln2 152、A、B、C、D、153、A、B、C、D、154、A、1B、2C、0D、3 155、A、B、C、D、A、B、C、D、157、下列函数中为奇函数的是(). A、B、C、D、158、A、B、C、D、A、B、C、D、160、A、2·6!B、4·6!C、6!D、3·6!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(一)复习资料
一.选择题 1. =--→1
)1sin(lim 21x x x ( ) (A) 1; (B) 0; (C) 2; (D) 2
1 2.若)(x f 的一个原函数为)(x F ,则dx e f e x x )(⎰--为( )
(A) c e F x +)(; (B) c e F x +--)(;
(C) c e F x
+-)(; (D )c x e F x +-)( 3.下列广义积分中 ( )是收敛的.
(A)⎰+∞∞
-xdx sin ; (B)dx x ⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x 。
4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( B )
(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;
(C) )(x f 可积(常义),则)(x f 一定有界;
(D) 函数)(x f 连续,则⎰x
a dt t f )(在[]
b a ,上一定可导。
5. 设函数=)(x f n
n x x 211lim
++∞→ ,则下列结论正确的为( D ) (A) 不存在间断点; (B) 存在间断点1=x ;
(C) 存在间断点0=x ; (D) 存在间断点1-=x
6、当∞→x 时,下列函数为无穷小量的是( B ) (A )x Cosx x - (B )x Sinx (C )1
21-x (D )x x )11(+ 7.函数)(x f 在点0x 处连续是函数在该点可导的( A )
(A )必要条件 (B )充分条件
(C )充要条件 (D )既非充分也非必要条件
8.设)(x f 在),(b a 内单增,则)(x f 在),(b a 内( C )
(A )无驻点 (B )无拐点
(C )无极值点 (D )0)(>'x f
9.设)(x f 在][b a ,内连续,且0)()(<⋅b f a f ,则至少存在一点),(b a ∈ξ使( A )成立。
(A )0=)(ξf (B )0=')(ξf
(C )0='')(ξf (D )
)()()()(a b f a f b f -⋅'=-ξ 10.广义积分)0(>⎰∞+a dx a x p 当( A )时收敛。
(A )1>p (B)1<p (C)1≥p (D)1≤p
11. ()=-→x
x x 101lim ( B ) (A) e ; (B) 1-e ; (C) 1 ; (D) ∞
12. 0=x 是函数=)(x f ⎪⎩⎪⎨⎧≥+<0101sin x e x x
x x 的( C )
(A) 连续点 ; (B)可去间断点 ; (C)跳跃间断点 ; (D )无穷间断点
13. 设)(x f 、)(x g 在0=x 的某邻域内连续,
且当0→x 时)(x f 是较)(x g 高阶的无穷小,则当0→x 时⎰x tdt t f 0sin )(是较⎰x
dt t tg 0)(( B )无穷小. (A) 低阶; (B) 高阶; (C) 同阶非等价; (D)等价。
14. 下列求导正确的是( D )
(A) ()x x x cos 2sin 2='; (B) [])()(00x f x f '=';
(C) ()x x e e cos cos =' ; (D) ()x
x 15ln =' 15. 极限=⎪⎪⎭⎫ ⎝
⎛-++⨯+⨯∞→n n n )1(1321211lim ( A ) (A) 1; (B) 2
1; (C) 0; (D) ∞ 二.填空题
1、sin lim x x x
→∞= ; 2、221lim 21
x x x x →∞---= . 3、 函数2()f x e =,则()f x '=0
4、曲线1
y x =在点1
,22⎛⎫ ⎪⎝⎭处的切线方程为:44y x =-+
5、函数2
01)y t dt =+,则dy
dx =
三.判断题
1. 罗尔中值定理中的条件是充分的,但非必要条件.( )
2. x x
y +-=11ln 是奇函数. ( )
3. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小
值.( × )
4. 函数1
f(x)=(0,1)1x
x a a a a +>≠- 是非奇非偶函数. ( × )
5. 方程2cos (0,)x x π
=在内至少有一实根. ( × )
6. 0)(=''x f 对应的点不一定是曲线的拐点( √ )
7. 若)(lim 0x f x x →不存在,则0
2lim ()x x f x →也一定不存在. ( × ) 8. 0sin 2xdx π
=⎰. ( √ )
9. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( × )
10. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( × )
四.解答题
1.已知21ln arctan x x x y +-=,求dy .
2.设函数)(x f y =由方程1=-y xe y 确定,求0
22=x dx y
d
解:方程两边关于x 求导:0=-'-'y y e y xe y
两边再求一次导:02='-''-'-'-''y e y xe y xe y e y y y y y 20
220021e dx y d e y y x x x =∴='∴====
3.已知函数)(x f y =由参数方程⎪⎩⎪⎨⎧==t
y t x 22sin cos 确定,求dx dy . 解:22sin 22sin sin 2cos sin 2t
t t t t t t dt
dx dt dy
dx dy -=-==。