集合之间的关系

合集下载

第二讲 集合之间的基本关系及其运算

第二讲  集合之间的基本关系及其运算

第二讲 集合之间的基本关系及其运算一.知识盘点知识点一:集合间的基本关系注意:1.A B A B B AA B A B A B A B =⇔⊆⊆⎧⊆⎨⊂⇔⊆≠⎩且且2.涉及集合间关系时,不要忘记空集和集合本身的可能性。

3.集合间基本关系必须熟记的3个结论(1)空集是任意一个集合的子集;是任意一个非空集合的真子集,即,().A B B Φ⊆Φ⊂≠Φ(2)任何一个集合是它自身的子集,空集只有一个子集即本身 (3)含有n 个元素的集合的子集的个数是2n 个,非空子集的个数是21n - ;真子集个数是21n - ,非空真子集个数是22n -。

知识点二:集合的基本运算运算 符号语言 Venn 图 运算性质交集{}|A B x x A =∈∈且x B()(),AB A A B B ⊆⊆ (),AA A AB B A ==A B A A B =⇔⊆ A Φ=Φ并集{}|A B x x A x B =∈∈或()(),A A B B A B ⊆⊆ (),A A A A B B A ==,A B B A B A A =⇔⊆Φ=补集{}|U C A x x U x A =∈∉且,U U C U C U =ΦΦ=()(),U U U C C A A A C A U ==()U AC A =Φ()()()U U U C A B C A C B = ()()()U U U C A B C A C B =二.例题精讲Ep1.下列说法正确的是A. 高一(1)班个子比较高的同学可以组成一个集合B. 集合{}2|,x N x x ∈= 则用列举法表示是{}01,UAC. 如果{}264,2,m m ∈++2, 则实数m 组成的集合是{}-22,D. {}{}(){}222||,|x y xy y x x y y x =====解析:A.与集合的确定性不符;B.对;C.与集合的互异性不符;D 。

{}2|x y x R == ,{}{}2||0y y x y y ==≥ ,(){}2,|x y y x = 是二次函数2y x = 的点集Ep2.已知集合A={}2|1log ,kx N x ∈<< 集合A 中至少有三个元素,则A.K>8B.K ≥ 8C.K>16D.K ≥ 16解析:由题设,集A 至少含有2,3,4三个元素,所以2log 4k> ,所以k>16.Ep3.已知集合M={}{}2|,|,x y x R N x x m m M =∈==∈ ,则集合M 、N 的关系是A.M N ⊂B.N M ⊂C.R M C N ⊆D.R N C M ⊆ 解析:[]1,1M =- ,{}|01N x x =≤≤ ,故选B.Ep4.已知集合M={}0,1 ,则满足M N M = 的集合N 的个数是 A.1 B.2 C.3 D.4 解析:M N M =,故N M ⊆ ,故选D.Ep5已知集合{}{}2|1,|1M x x N x ax ==== ,如果N M ⊆ ,则实数a 的取值集合是{}.1A {}.1,1B - {}.0,1C {}.1,0,1D -解析:{}1,1M =- , N M ⊆,故N 的可能:{}{}{},1,1,1,1Φ-- ,故a 的取值集合{}1,0,1-Ep6.已知集合{}{}2|20180,|lg(3)A x x x B x N y x =-+≥=∈=- ,则集合A B 的子集的个数是解析:{}|02018A x x =≤≤ ,{}{}|3-x>00,1,2B x N =∈= ,故{}0,1,2A B = 故子集个数328=A.4B.7C.8D.16Ep7.已知集合{}{}2|2,|M x x x N x x a =<+=> ,如果M N ⊆ ,则实数a 的取值范围是.(,1]A -∞- .(,2]B -∞ .[2,)C +∞ .[1,)D -+∞解析:{}|12M x x =-<< ,M N ⊆,故1a ≥-Ep8.已知集合{}2|30A x N x x *=∈-< 则满足B A ⊆ 的集合B 的个数是 A.2 B.3 C.4 D.8 解析:{}{}|03=12A x N x *=∈<<, ,故选CEp9.已知集合{}{}|12,|13,M x x N x x M N =-<<=≤≤=则.(1,3]A - B.(1,2]- .[1,2)C D.(2,3]解析:选CEp10.如果集合{}{}(1)2|10,|log 0,x A x x B x -=-≤≤=≤则A B={}.|11A x x -≤< {}.|11B x x -<≤ {}.0C {}.|11D x x -≤≤ 解析:{}10||0111x B x x x x ⎧->⎫⎧==≤<⎨⎨⎬-≤⎩⎩⎭,故选D.Ep11.设集合 {}{}2|11,|,,()R A x x B y y x x A A C B =-<<==∈=则{}.|01A x x ≤< {}.|10.B x x -<< {}|01C x x =<< {}.|11D x x -<<解析:{}|01B y y =≤<,则{}|01R C B y y =<≥或y,(){}{}{}|11|01|10R AC B x x y y y x x =-<<<≥=-<<或 选B.Ep12.已知集合{}{}2|11,|20,A x x B x x x =-<<=--<则 )R C A B =(.(1,0]A - .[1,2)B - .[1,2)C .(1,2]D解析:{}|12B x x =-<< ,{}|11R C A x x x =≤-≥或 (){}|12R C A B x x =≤< ,选C.三.总结提高1.题型归类(1)2个集合之间的关系判断(2)已知2个集合之间的关系,求参数问题 (3)求子集或真子集的个数问题 (4)2个有限集之间的运算(5)1个有限集和1个无限集之间的运算 (6)2个无限集之间的运算(7)已知集合的运算结果,求参数问题 2.方法总结(1)判断集合间关系的方法a.化简集合,从表达式中寻找两个集合之间的关系b.用列举法表示集合,从元素中寻找关系c.利用数轴,在数轴上表示出两个集合(集合为数集),比较端点之间的大小关系,从而确定两个集合之间的关系。

集合的关系及其基本运算

集合的关系及其基本运算

集合的关系及其基本运算知识精要1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。

记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A 注:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合。

(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。

(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。

记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。

注:空集是任何集合的子集。

Φ⊆A空集是任何非空集合的真子集。

Φ A若A ≠Φ,则Φ A任何一个集合是它本身的子集。

A A ⊆易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。

如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。

如Φ⊆{0}。

不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。

3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。

记作A B (读作“A 交B ”),即A B ={x|x ∈A ,且x ∈B }。

集合间的基本关系

集合间的基本关系

集合间的基本关系知识点总结一、子集、真子集、集合相等二、空集1、定义:不含任何元素的集合叫做空集,记作φ.2、性质:空集是任何集合的子集.三、子集个数与元素个数的关系设有限集合A 有n (n 属于*N )个元素,则其子集的个数是n 2,真子集的个数是12-n ,非空子集的个数是12-n ,非空真子集的个数是22-n .一、知识辨析1、} 3 ,2 ,1 {1⊆...........................................( )2、φ和{φ}表示的意义相同...............................( )3、} )1 ,0( {} 0 ,1 {} 1 ,0 {==..................................( )4、任何集合都有子集和真子集.............................( )5、若a ∈A ,则}{a ⫋A.....................................( )6、如果集合A B ⊆,那么若元素a 不属于A ,则必不属于B.....( ) 二、选择1、已知集合} | {是菱形x x A =,} | {是正方形x x B =,} | {是平行四边形x x C =,那么A ,B ,C 之间的关系是 ( )A.C B A ⊆⊆B.C A B ⊆⊆C.A ⫋B ⊆CD.C B A ⊆=2、给出下列四个关系式:①R ∈3;②Z ∈Q ;③0∈φ;④φ⊆} 0 {.其中正确的个数是 ( )A.1B.2C.3D.43、能正确表示集合} 20| {≤≤∈=x R x M 和集合} 0x -| {2=∈=x R x N 关系的Venn 图是 ( )A B C D4、已知集合} ,2| {Z k k x x A ∈==,} ,4| {Z k k x x B ∈==,则A 与B 之间的关系是( ) A.A=B B.B ⊇A C.A ⫋B D.B ⫋A5、已知集合} 03| {*<-∈=x N x A ,则满足条件A B ⊆的集合B 的个数为( ) A.2 B.3 C.4 D.86、已知集合} 2 ,1 ,0 {⊆A ,且集合A 中至少含有一个偶数,则这样的集合A 的个数为 ( ) A.6 B.5 C.4 D.37、集合} , {y x 的子集个数是 ( ) A.1 B.2 C.3 D.48、在下列选项中,能正确表示集合} 2 ,0 ,2 {-=A 和集合} 02| {2=+=x x x B 关系的是 ( ) A.A=B B.B A ⊇ C.B A ⊆ D.B A =φ 9、集合} 1 ,2 {-=A ,} 1 ,m {2--=m B ,且A=B ,则实数m=( ) A.2 B.-1 C.2或-1 D.410、已知集合} 0y ,0y |y)(x, {><x x M +=,} 0y ,0|),( {<<x y x P =,那么 ( ) A.P ⫋M B.M ⫋P C.M=P D.M ≠P11、下列四个关系:①} , {} , {a b b a ⊆;②φ=} 0 {;③} 0 {∈φ;④} 0 {0∈.其中正确的个数为( )A.1B.2C.3D.412、已知φ⫋} 0x | {2=+-a x x ,则实数a 的取值范围是 ( ) A.41<a B.41≤a C.41≥a D.41>a 13、设集合} 1 1, {-=A ,集合} 02| {2=+-=b ax x x B ,若B ≠φ,A B ⊆,则有序实数对(a,b )不能是( )A.(-1,1)B.(-1,0)C.(0,-1)D.(1,1) 三、填空14、已知集合} 3, 1, {m A -=,} 4 3, {=B ,若A B ⊆,则实数m= .15、已知集合} ,02| {2R a a ax ax x A ∈=++=,若集合A 有且仅有2个子集,则a 的取值构成的集合为 .16、设a ,b ∈R ,集合} ,0 {} 1 , {b a a +=,则a b -= . 四、解决问题17、已知集合} 4 1| {>或<x x x A -=,} 3a 2| {+≤≤=x a x B ,若A B ⊆,求实数a 的取值范围.18、已知} 01)1(3| {22=-+++=a x a x x A ,} 0 {=B ,若B A ⊆,求a 的取值范围.19、若集合} 06| {2=-+=x x x M ,} 0))(2(| {=--=a x x x N ,且M N ⊆,求实数a 的值. 提升题 一、选择题1、下面各选项中,两个集合相等的是 ( )A.} ) 2 ,1 ( {=M ,} ) 1 ,2 ( {=NB.} 2 ,1 {=M ,} ) 2 ,1 ( {=NC.M=φ,} {φ=ND.} 012| {2=+-=x x x M ,} 1 {=N 2、下列关系中正确的是( )A .} 1 ,0 {1∈ B.} 1 ,0 {1∉ C.} 1 ,0 {1⊆ D.} 1 ,0 {} 1 {∉ 3、已知集合} 02| {2<-+∈=x x Z x A ,则集合A 的一个真子集为 ( ) A.} 02| {<<x x - B.} 20| {<<x x C.} 0 { D.} {φ 4、集合} 1 ,0 1, {-=A ,A 的子集中含有元素0的子集共有( ) A.2个 B.4个 C.6个 D.8个5、若P M ⊆,Q M ⊆,} 2 1, ,0 {=P ,} 4 2, ,0 {=Q ,则满足上述条件的集合M 的个数是( ) A.1 B.2 C.4 D.86、集合} , 3| {N n x x M n ∈==,集合} , 3| {N n n x x N ∈==,则集合M 与集合N 的关系为( ) A.N M ⊆ B.M N ⊆ C.N M = D.M ⊈N 且N ⊈M7、若A x ∈,A x ∈1,则称A 是伙伴关系集合.集合} 3 ,2 ,31,21 ,0 ,1 {-=M 的所有非空子集中具有伙伴关系的集合的个数是( ) A.31 B.7 C.3 D.18、已知集合} , 0| {N y a y y A ∈≤=<,} , 032| {2N x x x x B ∈≤--=,若A ⫋B ,则满足条件的正整数a 所构成集合的子集的个数为( ) A.2 B.4 C .8 D.16 二、填空9、方程0822=--x x 的解集为A ,方程02=-ax 的解集为B ,若A B ⊆,则实数a 的取值集合为 .10、已知集合} 44 ,4 ,3| {-=m y A ,集合} ,3| {2m y B =,若A B ⊆,则实数m= . 三、解决问题11、已知} 52| {≤≤-=x x A ,} 121| {-≤≤+=m x m x B ,A B ⊆,求m 的取值范围.。

集合之间的关系—集合的相等与包含

集合之间的关系—集合的相等与包含

集合之间的关系——集合的相等与包含【新课导入】1. 考察下列两组集合,观察它们的元素有何关系.(1) 集合P ={1,2}与集合Q ={}2320x x x -+=;(2) 集合P ={x ︱x 为非负整数}与自然数集N .答:(1) 在第一组集合中,Q ={}2320x x x -+=={1,2},它与集合P 的元素完全相同;(2) 在第二组集合中,因为集合P ={x ︱x 为非负整数}={0,1,2,3,……},它与自然数集的元素也 完全相同.可见,相等是集合之间的一种重要关系.2. 再来看看小亮的家庭,他家的成员有爷爷、奶奶、 爸爸、妈妈、姐姐和小亮. 若姐姐和小亮构成一个集 合P ,全家成员构成一个集合Q , 显然集合P 中的元素都属于集合Q ,那么P 与Q 有怎样的关系呢?很明显,集合P 中的元素也是集合Q 中的元素,也就是集合Q 可以包含集合P .可见,包含也是集合之间的一种重要关系.【双基讲解】1.集合的相等一般地,如果集合A 和集合B 所含的元素完全相同,那么叫做集合A 与集合B 相等,记作A =B ,读作“集合A 等于集合B ”.如果集合A ={1,3,5,7}, 集合B ={3,5,1,7},那么A 与B 相等吗?2.集合的包含------子集一般地,对于两个集合A 和B ,如果集合A 中的任何一个元素都属于集合B ,那么集合A 叫做集合B 的子集,记作A ⊆B 或B ⊇A ,读作“A 包含于B ”或“B 包含A ”.在小亮家庭里,明显可以看出:P ⊆Q .3. 集合的包含------真子集一般地,对于两个集合A 和集合B ,如果A ⊆B 并且B 中至少有一个元素不属于A ,,那么集合A 叫做集合B 的真子集,记作AB , 或B A ,读作“A 真包含于B ”或“B 真包含A ”. 在小亮家庭里,P Q 也是成立的.4.文氏图(Ve nn Di A gr A m )用平面区域来表示集合之间关系的方法叫做集合的图示法,所用图叫做文氏图(Venn diagram.).AB 可以表示为【示范例题】例1 已知集合A ={x|x ≤5,x 是正偶数},集合B ={A ,2},且 A =B ,求A 的值.解 集合A ={x|x ≤5,x 是正偶数}={2,4}.A =B ,∴A = 4 .例2 已知集合S ={2x ,x+y }与集合T ={2,1}相等 , 求x ,y 的值.分析:因为集合中的元素,前后顺序交换,仍是这个集合,所以这里必须列出两个二元一次方程组.解 由S = T ,可知 221x x y =⎧⎨+=⎩ 或 212x x y =⎧⎨+=⎩解方程组,得 10x y =⎧⎨=⎩ 或 1232x y ⎧=⎪⎪⎨⎪=⎪⎩. 【巩固练习】1. 判断下列两个集合是否相等,并说明理由.(1) 集合A ={}2210x x x ++=和集合B ={}210x x -=;(2) 集合A ={1,2,3,4,6,12}和集合B ={x ∣x 为12的因数}.2. 已知集合A ={0,3},集合B ={2x-y ,2y-x },且A =B ,求x ,y 的值.3. 已知集合S ={2x+y ,x-y }与集合T ={3,0}相等,求x ,y 的值.【示范例题】例3 试判断下列各组的两个集合是否具有包含关系,并用符号表示.(1) 集合E ={2,4,6,…}与集合D ={}2,n n k k =∈;(2) 集合A ={…,-4,-2,0,2,4,…}与集合B ={}2,n n k k =∈. 解 (1) 集合E 是正偶数集,而集合D ={}2,n n k k =∈={0,2,4,6,…}是非负偶数集, 0∉E ,但0∈D ,E D ⊆所以.(2) 集合A 是偶数集,对于A 中的任何一个偶数A ,都可以表示成A =21k ,1k ∈Z .可见,必有,a B ∈,所以A B ⊆.对于集合B 中的任何一个元素n ,因为2,n k k =∈,故n 必为偶数,于是B A ⊆.说明:一般地,对于集合A 和B ,如果A B ⊆,同时A B ⊇,那么集合A 和B 是相等的,即A =B .【巩固练习】1. 判断下列结论是否正确,并说明理由.(1)对任何集合A ,必有AA ; (2)若AB ,A A ,则必有A B ; (3)若A B ,BC ,则A C .2. 用符号“⊆”或“⊇”把下列每两个集合连接起来.(1) A ={}21,n n k k =+∈与B ={…,-3,-1,0,1,3,…}(1) C ={}21,n n k k =+∈与B ={…,-3,-1,1,3,…} (3) A 是所有水果组成的集合,B 是油桃、黄桃、蟠桃组成的集合,C 是所有桃子组成的集合.【示范例题】例4 试写出4的正因数的集合A 的所有子集和真子集.解4的正因数是1,2,4 ,∴ A ={1,2,4} .∴A 的子集是 φ, {1},{2},{4},{1,2},{1,4},{2,4},{1,2,4}, ∴A 的子集是 φ, {1},{2},{4},{1,2},{1,4},{2,4} .例5 已知集合A ={1},集合B ={}210x x -=,试用文氏图表示集合A 与B 的关系. 解 210x -=, 1x ∴=± . ∴ B ={1,-1}.A ={1} ,A B .【巩固练习】1. 用真包含符号“”或“”把数集N ,Z ,Q ,R 连接起来.2. 已知区间[1,2] ,(1,2),[1,2),试用符号表示它们之间的包含关系.3. 已知集合A ={}2230x x x --=和集合B ={}10x x +=,试用文氏图表示集合A 与B 的关系. 六 课堂小结1.集合的相等的概念;2.集合的包含 —— 子集的概念;3.集合的包含 —— 真子集的概念;4.文氏图表示集合的关系 .七 布置作业由老师根据学生的具体情况灵活布置八 教学后记根据上课的具体情况,由老师书写教案编制人:。

1.2集合之间的关系

1.2集合之间的关系
集合A的子集比集合A的真子集多其自身.
典型例题
例1:用适当的符号(,, , 或=)填空.
(1){, , , }
{ , };
(2) { };
(3)N
Z;
(4)0 ;
(5){1} =
{x | x-1=0};
(6){x|-2<x<3}
{ x|x≥-3 };
典型例题
例2:写出集合 = {, , }的所有子集,并指出哪些是它的真子集.
(2)该集合的所有真子集个数是 .
问题:如果一个集合中有 n 个元素,那么它的所有非空子集个数有多少?
它的非空真子集又有多少个?
结论2:如果一个集合中有 n 个元素;
(1)该集合的所有非空子集个数是 − ;
(2)该集合的所有非空真子集个数是 .
集合M={0,1,3}中,子集个数是 8
{, , }; {, , };
{, , , }
∅, {}
∅; {}; {}; {, }

∅;{}; {};
子集个数
真子集个数
2
=21
1 =21-1
4
=22
3 =22-1
8Байду номын сангаас
=23
7 =23-1
16 =24
15 =24-1
结论1:如果一个集合中有 n 个元素;
(1)该集合的所有子集个数是 ;
练习:判断集合是否为集合的真子集,若是打√, 若不是打×.
(1) = {, , }, = {, , , , , }
(

)
(2) = {, , }, = {, , , }
(
×
)
(3) = ∅, = {}.

集合与集合的4种关系

集合与集合的4种关系

集合与集合的4种关系在集合论中,集合之间可以有不同类型的关系。

这些关系可以用来描述集合的交集、并集、补集以及包含关系。

下面将依次介绍这4种关系。

1. 交集(Intersection)两个集合的交集表示它们所共有的元素集合。

用符号表示为A∩B。

例如,A={1,2,3},B={2,3,4},则A∩B={2,3}。

2. 并集(Union)两个集合的并集表示它们所有的元素集合。

用符号表示为A∪B。

例如,A={1,2,3},B={2,3,4},则A∪B={1,2,3,4}。

3. 补集(Complement)对于一个给定的全集U和一个集合A,A在U中的补集表示U中所有不属于A的元素的集合。

用符号表示为Ac。

例如,如果全集为U={1,2,3,4,5},A={2,3},则A的补集为Ac={1,4,5}。

4. 包含关系(Inclusion)集合A包含于集合B表示A中的所有元素都属于B。

用符号表示为AB。

例如,A={1,2},B={1,2,3},则AB。

另外,还有两个有关集合的关系:相等关系和真包含关系。

相等关系(Equality)两个集合A和B相等,当且仅当它们有相同的元素。

用符号表示为A=B。

例如,A={1,2,3},B={3,2,1},则A=B。

真包含关系(Proper Inclusion)集合A真包含于集合B,当且仅当A包含于B并且A不等于B。

用符号表示为AB。

例如,A={1,2},B={1,2,3},则AB。

注意,这里的“”符号不同于“”,它表示的是真包含关系。

在实际应用中,理解和使用集合及其关系是很重要的。

例如,在数据库中,可以使用集合的关系来描述表间的关联;在数据分析中,可以使用交集和并集等集合运算来计算数据的交叉和联合等等。

1.1.2集合之间的基本关系讲义

1.1.2集合之间的基本关系讲义

第二讲 集合之间的基本关系【知识点】1.子集.对于集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就 说这两个集合是包含关系,集合A 为集合B 的子集。

记作()A B B A ⊆⊇或 读作A 含于B2.维恩图.用平面上封闭曲线的内部代表集合,这种图叫做韦恩图3.集合相等.集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即A =B4.真子集.如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.表示记作BA (或A B), 读作“A 真包含B ”(或“B 真包含于A ”). 5.空集.我们把不含任何元素的集合叫作空集.空集是任何集合的子集,且是任何非空集合的真子集.【知识点透析】1.集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。

空集是任何集合的子集,是任何非空集合的真子集。

2.集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。

【例题精讲】1.用符号“⊆”、“⊇”、“∈”或“∉”填空:(1) {},,,a b c d {},a b ;(2) ∅ {}1,2,3;(3) N Q ; (4) 0 R ; (5) d {},,a b c ; (6) {}|35x x << {}|06x x <. 2. 写出集合{a ,b }的所有子集,3. 说出下列每对集合之间的关系.(1)A ={1,2,3,4,},B ={3,4}.(2)P ={x |x 2=1},Q ={-1,1}. AB(3)N ,N*.4.求下列集合之间的关系,并用Venn 图表示.A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}. 判断集合{}2A x x ==与集合{}240B x x =-=的关系.5.判断集合A 与B 是否相等?(1) A ={0},B = ∅;(2) A ={…,-5,-3,-1,1,3,5,…},B ={x| x =2m+1 ,m ∈Z } ;(3) A ={x| x =2m-1 ,m ∈Z },B ={x| x =2m+1 ,m ∈Z }.4.下列各式中,正确的是( )A.}4|{32≤⊆x x B.}4|{32≤∈x x C.}32{⊂≠}3|{≤x x D.}4|{}32{≤∈x x5.已知集合A={x|x2-1=0},B={-1,1},则A、B之间的关系为___________________.6.已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.7.选用适当的符号“”或“”填空: (1){1,3,5}_ _{1,2,3,4,5};(2){2}_ _ {x | |x |=2}; (3){1} _∅.8.设集合{}0,1,2M =,试写出M 的所有子集,和真子集9.已知集合A={x|x2-2x-3=0},B={x|a x-1=0},若B⊂≠A,求a 的值所组成 的集合M.10.已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.11.下列四个集合中,表示空集的是( )A.{0}B.},,|),{(22R y R x x y y x ∈∈-=C.},,5|||{N x Z x x x ∉∈=D.},0232|{2N x x x x ∈=-+12.已知集合,,那么( ) (A )(B ) (C ) (D ) 13.设,,若,则实数的取值范围是( ) (A )(B ) (C ) (D )【课堂练习】(一)集合与集合关系的理解 1.已知集合X 满足{}{}X X 求所有满足条件的集合,5,4,3,2,12,1⊆⊆.2.已知集合,,312,,61⎭⎬⎫⎩⎨⎧∈-==⎭⎬⎫⎩⎨⎧∈+==Z n n x x Z z m m x x M ,612{+==p x x P }Z p ∈,则M,N,P 满足的关系是:3.已知集合{}{},,3,2,1A x x B A ⊆==求集合B.(二)空集的理解4.下列集合中:(1){0};(2{}{};)4(;)3(;,0,12φφR n x n x x ∈<+=(){}0,0)5(,是空集的为:( )(三)由集合之间的基本关系球参数5.若{}02=-a x x {}31<<-x x ,则a 的取值范围是( )6.已知集合{},01=-=ax x A 集合{},0322=--=x x x B 若A B ,求a 的值.(四)证明两集合相等.7.集合{},,12Z n n x x X ∈-=={},,14Z k k y y Y ∈±==试证明:X=Y.(五)集合与函数的综合8.设集合{}{}R x R a a x a x x B R x x x x A ∈∈=-+++=∈=+=,,01)1(2,,04222,若,A B ⊆求实数a的取值范围.9.若集合{}{}01,062=+==-+=mx x B x x x A ,且BA ,求m 的值.(六)提升拓展10.若不等式1<x 成立时,不等式[][]0)4()1(<+-+-a x a x 也成立,求a 的取值范围.【教学反思】。

集合间的关系

集合间的关系

集合间的关系什么是集合间的关系?集合间的关系指的是两个或多个集合之间的关系。

在数学中,集合间的关系是一种可以描述不同集合之间联系的方式。

它可以用来表示集合间的相互影响,或者说集合间的特征性质的抽象概念。

一般来说,集合间的关系可以有四种:包含关系、相等关系、并集关系和交集关系。

1、包含关系(Containment Relationship)是指一个集合A包含另一个集合B时就形成了包含关系,即A⊂B。

如果A=B,则称两个集合相等。

此外,如果A⊂B,而B⊂A,则A=B。

2、相等关系(Equality Relationship),当两个集合的元素完全相同时,则这两个集合就成为相等关系。

即A=B。

3、并集关系(Union Relationship),当两个集合中的元素都可以找到时,则称两个集合形成并集关系,即A∪B。

4、交集关系(Intersection Relationship),当两个集合中的元素都具有相同的特征时,则称两个集合形成交集关系,即A∩B。

上述四种关系是集合间关系的基本形式,但实际上,集合间的关系可以根据不同情况而发生变化。

例如,可以把集合A看作是集合B的子集,此时A⊆B,也就是A的元素都可以在B中找到。

也可以把集合A看作是集合B的超集,此时A⊇B,也就是B的元素都可以在A中找到。

此外,集合间的关系还可以根据不同的集合进行划分,例如有序集合、无序集合、离散集合、连续集合等。

最后,除了上述四种基本关系外,还有一些更复杂的关系,如偏序关系、拓扑关系、伴随关系、概率关系等。

它们可以用来描述两个或多个集合之间的更复杂的关系。

综上所述,集合间的关系可以用来描述不同集合之间的相互影响,或者说集合间的特征性质的抽象概念。

它可以有四种基本关系:包含关系、相等关系、并集关系和交集关系。

此外,还有一些更复杂的关系,如偏序关系、拓扑关系、伴随关系、概率关系等。

集合间的关系

集合间的关系
练习5:
已知集合 A={m,m+d,m+2d},B={m,mq,mq2},其中 m≠0,且 A= B,求 q 的值.
小试牛刀
练习5:
已知集合 A={m,m+d,m+2d},B={m,mq,mq2},其中 m≠0,且 A=
B,求 q 的值.
[解] 由 A=B 可知,
m+d=mq,
m+d=mq2,
(1)
已知集合 A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0,x∈R},若 A∩B=Ø, 则 a 的取值范围是__________.
典例探究
例5:已知集合 A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0,x∈R},若 A∩B=Ø,
则 a 的取值范围是__________.
[答案] (-∞,-2]
典例探究
例4:
已知集合 A={t2+s2|t,s∈Z},且 x∈A,y∈A,则下列结论正确的是( )
A.x+y∈A
B.x-y∈A
C.xy∈A
x D. ∈A
y
典例探究
例4:
已知集合 A={t2+s2|t,s∈Z},且 x∈A,y∈A,则下列结论正确的是( )
A.x+y∈A
B.x-y∈A
x
又 ∉ A,故 D“ ∈A”不成立.故选 C.
2
y
[答案] C
小试牛刀
练习4:
已知集合 A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若 B⊆A,则实数 m 的 取值范围是________.
小试牛刀
练习4:已知集合 A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若 B⊆A,则实数 m 的
此时集合 A 中有重复元素 3,

高一数学集合间的基本关系

高一数学集合间的基本关系
空集是任何非空集合的真子集.
4.集合之间的基本关系.
(1)任何一个集合是它本身的子集,即 A A (2)对于集合A、B、C,如果A B,B C,那么 A C.
例3、写出集合{a, b}的所有子集,并指出哪些是它 的真子集.
5.反馈演练
1、下列命题:(1)空集没有子集;(2)任何集合至少有两个 子休;(3)空集是任何集合的真子集;(4)若 A,则A .其中正确的有( ) A.0个 B.1个 C.2个 D.3个
1.子集的概念
一般地,对于两个集合A、B, 如果集合A中任
意一个元素都是集合B中的元素,我们就说这两个
集合有包含关系,称集合A为集合B的子集.
记作
A B (或B A)
读作 “A含于B”(或“B包含A”)
BA
2.集合相等与真子集的概念
如果集合A是集合B的子集(A B),且集合B是 集合A的子集(B A),此时,集合A与集合B中 的元素是一样,因此,集合A与集合B相 等, 记作 A=B
2.设x, y R,A {(x,y) | y - 3 x - 2},B {(x,y) | y - 3 1}, x-2
则A,B的关系是______.
3.已知A {x | 2 x 5}, B {x | a 1 x 2a 1}, B A, 求实数a的取值范围.
本节小结
子集、真子集的定义 集合之间的关系 空集是任何集合的子集,是任何非空集合的
真子集
;/ 三体小说 ;
快一个小时了他们还没到.作为一名老实巴交の纳税人,我有权利知道自己供养の是人民公仆还是吃饱等死の猪,连个入村路口都找了一个多小时,到时让媒体过来一起见识见识.”最后一句像从牙缝里蹦出来の,这种效率,足够让报警人死几百次了.原本有些忧

集合的基本关系

集合的基本关系

集合之间的基本关系知识点:1.“包含”关系—子集(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个A⊆(或B⊇A)集合有包含关系,称集合A是集合B的子集。

记作:BA⊆有两种可能(1)A是B的一部分;注意:B(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)或若集合A⊆B,存在x∈B且x A,则称集合A是集合B的真子集。

③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n -1个真子集,2n -1个非空子集,2n -2个非空真子集.一、子集与真子集①包含关系的判断1.对于集合A,B,“A⊆B”不成立的含义是()A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A解:“A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.3.设集合A={x|x2=1},B={x|x是不大于3的自然数},A⊆C,B⊆C,则集合C 中元素最少有()A.2个B.4个C.5个D.6个解:A={-1,1},B={0,1,2,3},∵A⊆C,B⊆C,∴集合C中必含有A与B的所有元素-1,0,1,2,3,故C中至少有5个元素.11.设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A、B、C、D、E之间的关系是________.2.(一星)用适当的符号填空:⑴{1}___2-+={|320}x x x⑵{1,2}___2-+={|320}x x x⑶ {|2,}x x k k =∈N ___{|6,}x x ττ=∈N ⑷ ∅___2{R |20}x x ∈+=答案:(1)⊂;(2)=;(3)⊃;(4)=5.(一星)用适当的符号填空:{}()(){}|2,1,2____,|1x x x y y x =+≤ {|2x x ≤,⑶{}31|,_______|0x x x x x x x⎧⎫=∈-=⎨⎬⎩⎭R3.(一星)用适当的符号填空: ⑴ ___{0}∅ ⑵ 2___{(1,2)}⑶ 0___2{|250}x x x -+= ⑷ {3,5}____2{|8150}x x x -+= ⑸ {3,5}___N⑹ {|21,}___{|41,}x x n n x x k k =+∈=±∈Z Z ⑺ {(2,3)}___{(3,2)}23.,___________.(1)3{3};(2)2{3};(3){1}{1,2,3}(4){1}{{1},{2},{1,2}}=≠∈∈(一星)以下表述中正确的有;答案:(2)(4)6.(二星)下列说法中,正确的是( ) A .任何一个集合必有两个子集; B .若,A B =∅则,A B 中至少有一个为∅ C .任何集合必有一个真子集; D .若S 为全集,且,A B S =则A B S == 备注:空集、子集概念辨析1.判断下列两个集合之间的关系: (1)=A {}6,3,2,=B {}的约数是12x x ;(2)=A {}1,0,=B {}N y y x x ∈=+,122;(3)=A {}21<<-x x ,=B {}22<<-x x ; (4)=A (){}0,<xy y x ,=B (){}0,0,<>y x y x .2.指出下列各组集合之间的关系:(1)=A {}1,1-,=B ()()()(){}1,1,1,1,1,1,1,1----; (2)=A {}是等边三角形x x ,=B {}是等腰三角形x x ; (3)=M {}*,12N n n x x ∈-=,{}*,12N n n x x N ∈+==.7.{(,)||1||1|0}{(,)|10}_____.A x y x y B x y xy x y (三星)=-+-==--+=集合与集合的包含关系为答案:A B ⊂28.{|12,}{|_________.A x x a a a RB x y ==+-∈==(三星)设集合与集合的包含关系为答案:B A ⊂②空集的概念1.下列四个集合中,是空集的是( )A .{0}B .{x |x >8且x <5}C .{x ∈N |x 2-1=0}D .{x |x >4}4.下列集合中是空集的是( )A .{}332=+x x B .(){}R y x x y y x ∈-=,,,2C .{}02≥-xx D .{}R x x xx ∈=+-,0123.给出下列命题:(1)空集没有子集;(2)任何集合至少有两个子集;(3)空集是任何集合的真子集;(4)若∅ÜA ,则≠A ∅.其中正确的个数是 个.1.(一星)下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集,其中正确的有( )B A .0个B .1个C .2个D .3个4.(二星)若集合{|1}X x x =>-,下列关系式中成立的为( ) A .0X ⊆ B .{}0X ∈ C .X ∅∈ D .{}0X ⊆φφφ∈∈==22.(一星)下列关系中正确的是().0.0{0}.0.{0}A B C D答案:B③找规律判断关系1111.|,,|,,6231|,.26n M x x m m Z N x x n Z p P x x p Z ⎧⎫⎧⎫==+∈==-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==+∈⎨⎬⎩⎭(三星)指出下列集合之间的关系:答案:M N P ⊂=7.设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },求M 和N 关系.二、韦恩图9.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解:由N ={x |x 2+x =0}={-1,0}得,N M ,选B.12.(二星)设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( )A BBA AB A BA .B .C .D .三、已知包含关系求参数范围 ①列举法相关6.集合B ={a ,b ,c },C ={a ,b ,d };集合A 满足A ⊆B ,A ⊆C .则满足条件的集合A 的个数是( )A .8B .2C .4D .1解: ∵A ⊆B ,A ⊆C ,∴集合A 中的元素只能由a 或b 构成.∴这样的集合共有22=4个.即:A =∅,或A ={a },或A ={b }或A ={a ,b }.4.已知=A {}0822=--∈x x R x ,=B {}08222=--+-∈a a ax x R x ,B A ⊆,求实数a 的取值集合.5.已知集合A ={x |ax 2+2x +a =0,a ∈R},若集合A 有且只有2个子集,则a 的取值是( )A .1B .-1C .0,1D .-1,0,14.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满足条件的实数x 的个数是( )A .1B .2C .3D .4解:∵B ⊆A ,∴x 2∈A ,又x 2≠1∴x 2=3或x 2=x ,∴x =±3或x =0.故选C.6.已知集合{}m A ,1,4--=,集合{}5,4-=B ,若A B ⊆,则实数m = .②描述法相关9.(二星)设{|13},{|}A x x B x x a =-<<=>,若A B ,则a 的取值范围是______.17.已知A ={x |x <-1或x >2},B ={x |4x +a <0},当B ⊆A 时,求实数a 的取值范围.解:∵A ={x |x <-1或x >2},B ={x |4x +a <0}={x |x <-a4}, ∵A ⊇B ,∴-a4≤-1,即a ≥4, 所以a 的取值范围是a ≥4.2110.{|||2},{|1},.2x A x x a B x A B a x -=-<=<⊆+(三星)设若,求实数的取值范围 答案:01a ≤≤1.已知集合M={x|﹣1<x <2},N={x|x <a},若M ⊆N ,则实数a 的取值范围是( )BA .(2,+∞)B .[2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣1]2.已知集合=A {}21≤≤x x ,=B {}a x x ≤≤1 (1)若A 是B 的真子集,求a 的取值范围; (2)若B 是A 的子集,求a 的取值范围; (3)若A =B ,求a 的取值范围.③端点的单独验证1.设集合{2135},{322}A x a x a B x x =+≤≤-=≤≤,若集合A 是集合B 的真子集,求实数a 的取值范围。

集合间的基本关系知识点总结

集合间的基本关系知识点总结

集合间的基本关系知识点总结嘿,朋友们!今天咱来聊聊集合间的基本关系,这可有意思啦!你想想啊,集合就像是一个个小团体。

有的集合呢,就像一个大家庭,里面的元素都整整齐齐的。

比如说,一个集合里全是偶数,那这些偶数就相亲相爱地待在一块儿,多和谐呀!那集合之间的关系呢,就好像不同的小团体之间的相处模式。

有一种关系叫子集,这就好比一个小团体完全被包含在另一个大团体里。

比如说班级是个大集合,那某个兴趣小组不就是班级这个集合的子集嘛!小团体在大团体的庇护下茁壮成长,多温暖呀!那反过来说,大团体包含着小团体,这多自然呀!还有一种叫真子集的关系呢,就像是大团体里除了小团体,还有其他一些特别的元素。

就好比班级里除了某个兴趣小组的同学,还有其他有不同特点的同学呢。

然后呢,还有相等的集合。

这就像是两个一模一样的小团体,里面的元素一个不差!你说神奇不神奇?这就好比两个双胞胎班级,啥都一样!咱再打个比方,一个集合里都是红色的东西,另一个集合里也都是红色的东西,那不就相等了嘛!这多简单易懂呀!集合间的关系是不是特别有趣呀?就像我们生活中的各种群体和关系一样。

我们在不同的群体里扮演着不同的角色,有时候是子集,有时候又是真子集,有时候还能找到和自己相等的小伙伴呢!大家想想,在我们的生活中是不是也经常能看到这样的集合关系呀?比如我们的家庭是一个集合,社区是一个更大的集合,城市又是一个更大的集合。

我们在这些集合中找到自己的位置,感受着不同的关系。

所以说呀,集合间的基本关系可不是什么枯燥的数学概念,它就在我们的生活中无处不在呢!我们要善于发现这些关系,理解这些关系,让我们的生活更加丰富多彩!集合间的基本关系,真的是太奇妙啦!让我们继续在数学的世界里探索,发现更多有趣的东西吧!。

集合之间的关系教案

集合之间的关系教案

集合之间的关系教案一、教学目标1. 理解集合之间的基本关系,包括子集、真子集、非子集、相等集合、不相等集合等。

2. 学会使用Venn图表示集合之间的关系。

3. 能够运用集合之间的关系解决实际问题。

二、教学重点与难点1. 教学重点:集合之间的基本关系,Venn图的绘制与运用。

2. 教学难点:理解真子集与非子集的概念,以及集合之间相等与不相等的判断。

三、教学方法1. 采用讲授法,讲解集合之间的基本关系和Venn图的绘制方法。

2. 利用案例分析法,分析实际问题,引导学生运用集合之间的关系进行解决。

3. 运用互动教学法,鼓励学生提问、讨论,提高学生的参与度。

四、教学准备1. 教案、PPT、黑板。

2. 教学素材:案例题、练习题。

3. 教学工具:投影仪、计算机。

五、教学过程1. 导入新课利用PPT展示集合之间的基本关系,引导学生思考集合之间的关系有哪些。

2. 讲解集合之间的关系讲解子集、真子集、非子集、相等集合、不相等集合的定义与判断方法。

3. 绘制Venn图讲解Venn图的绘制方法,示例绘制不同集合之间的关系图。

4. 案例分析给出案例题,让学生运用集合之间的关系和Venn图进行分析。

5. 课堂练习发放练习题,让学生独立完成,巩固所学知识。

6. 总结与拓展总结本节课所学内容,提出拓展问题,激发学生的学习兴趣。

7. 作业布置布置作业,让学生巩固所学知识,提高运用能力。

8. 课后反思对课堂教学进行反思,总结优点和不足,为下一步教学做好准备。

六、教学活动设计1. 小组讨论:让学生分组讨论集合之间的各种关系,并尝试用Venn图表示出来。

2. 小组竞赛:设置关于集合关系的问题,进行小组竞赛,看哪个小组回答得又快又准确。

3. 角色扮演:让学生扮演数学家的角色,解释集合关系的概念,并通过对话形式展示给其他同学。

4. 案例研究:让学生研究一些现实生活中的集合关系问题,如图书馆藏书分类、水果店水果分类等。

七、评价方式1. 课堂问答:通过提问的方式,检查学生对集合关系的理解和运用。

1.2 集合之间的关系

1.2 集合之间的关系

【例题精解】
【例1】 用适当的符号(∈,∉,⊆,⊇,⊈,⫋,⫌,=)填空:
(1)2
{2,4,6,8}
(2){a}
{a,b,c,d}
(3){1,3,7}
{1,7}
(4)∅
{0}
(5){矩形}
{平行四边形}
(6)∅
{0,1,2}
(7){4,5,6}
{6,5,4}
(8)∅
{x|x2+1=0,x∈R}
【点评】 正确理解∈,∉,⊆,⊇,⊈,⫋的涵义:元素与集合的关
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/122021/9/122021/9/122021/9/129/12/2021
•14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月12日星期日2021/9/122021/9/122021/9/12
系是“从属关系”:“属于”或“不属于”,集合与集合的关系是
“包含关系”:“包含”或“不包含”;正确区分子集与真子集.
【例2】 (1)集合A={-2,2},B={-2,0,2},则 (
A.A⊈B
B.A⫋BC.A=B)Fra bibliotekD.A∈B
【点评】 由真子集、集合相等的概念,集合与集合的关系
很快排除A、C、D.
(2)已知集合M={x|x2=4}与集合N={-2,2},则下列关系正确的是
D.(1,2)∉{(x,y)|x+y=3,x∈N+,y∈N+}
【答案】B
5.下列关系正确的是 (
A.0⊆{0}
C.(1,2)⊆{(1,2)}

集合间的基本关系

集合间的基本关系

子集:
对于两个集合A,B,如果 集合A中任意一个元素,都是集合B 中的我元们素就,说这两个集合有包含关 系,称集合A为集合B的子集.
记作:A ⊆ B (或 B ⊇ A)
01 LOREM IPSUM DOLOR
A Venn图
B
A⊆B
判断下列两个集合之间的关系.
(1)、 A={1,3,5,7}, B={1,2,3,4,5,6,7,} ; (2)、A={1,5,7}, B={1,2,3,5,7};
(3)、A={2,4,6,8}, B={2,4,6,8};
(4)、A={1,4,5,6}, B={1,2,3,4,5};
(3)、A={2,4,6,8}, B={2,4,6,8};
若A ⊆B,B ⊆A,则A=B
一个集合是它本身的子集.
判断下列两个集合之间的关系.
(1)、 A={1,3,5,7}, B={1,2,3,4,5,6,7,} ; (2)、A={1,5,7}, B={1,2,3,5,7};
(4)、A={1,4,5,6}, B={1,2,3,4,5};
判断下列两个集合之间的关系.
(1)、 A={1,3,5,7}, B={1,2,3,4,5,6,7,} ; (2)、A={1,5,7}, B={1,2,3,5,7};
(3)、A={2,4,6,8}, B={2,4,6,8};
(4)、A={1,4,5,6}, B={1,2,3,4,5};
例 写出集合{a,b}的所有子集,
并指出其中哪些是它的真子集.
ห้องสมุดไป่ตู้
课堂练习:P7,1,2
补充练习:
1、已知{1,2} ⊆A ⊆{1,2,3,4},写出所有 满足条件的集合A.
2、已知集合P={xN|x=|x|,x<2}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地,设

如果命题 " p( x) q( x)" 和命题 " q( x) p( x)"
都是正确的命题,可表示为: 读作:等价于
" p( x) q( x)"
若p( x) q( x),则A B, 反之, 如果A B,则p( x) q( x).
例3判断下列集合A与B的关系 (1)A={x|x是12 的约数} B={x|x是36的约数} (2)A={|x›3} B={x|x›5} (3)A={x|x是矩形} B={x|x是有一个角为直角的平行四边形} 解: (1)x是12 的约数 x是36的约数 A B. (2)因为 (3)因为x是矩形 x是有一个角为直角的平行四边形
A B.
课本P13练习A、练习B
概念:
一般地,如果两个集合的元素完全 相同,那么就说这两个集合相等.
表示:
集合A等于集合B,记作A=B.
图示法:
B
A
知识拓展
若 A B 且 B A ,则 A=B. 反之:
若A=B,习
例4 判断集合A={x||x|=2}与集合B x | x 2 4 0 的关系 . 解:因为 A={x||x|=2}={-2,2}
解:在同一个数轴上作出这两个集合,观察图形
可知集合B是集合A的真子集,即 B A.
A
B
-1 0 1 2 3 4
5 6 7
*创设情景 兴趣导入
问题:
设集合A={x|x2-1=0},B ={-1,1},请观察 这两个集合,并说说这两个集合有什么关 系呢?
集合A与集合B的 元素完全相同
集合的相等
图示法:可用两个封闭曲线的内部表示集
合B是集合A的子集关系。
A
B
维(Venn)恩图
B
A
知识拓展:
由子集的定义可知,
任意一个集合A都是它本身的子集,即 A A .
规定:空集是任意一个集合的子集,即
例1 用符号“ ”、“ ”、“ ”、 “ ”填空。
{a,b} (1){a,b,c,d} _______ {1,2,3} _______ (2)
分析: 集合 M中有3个元素,可以分别列出空集、含1个 元素的集合、含2个元素的集合、含3个元素的集合.
解: M的所有子集为
除集合
外,所有集合都是集合
的真子集.
写集合的子集 一定遵守”不 重不漏“原则
练: 写出A={1,2,3}的所有 子集和真子集。
*巩固知识 典型例题 例3 设集合A={x|x>0},B={x|1≤x≤5},指出 集合A与集合B之间的关系.
第一章 集合
§1.2.1 集合之间的关系
*复习回顾
1.集合 由某些确定的对象组成的整体. 元素 组成集合的对象. 2.元素与集合之间有属于或不属于的关系. 3.常用数集以及字母表示 4.集合的表示法 (1)列举法:一一列举,写在花括号内,逗号隔开. (2)描述法:花括号,竖线,集合的代表元素,元 素的取值范围,元素所具有的特征性质.
Q (3)N_______ (4)0_______R (5)d_______{a,b,c} {x|0≤x<6} (6){x|3<x<5} _______
分析:“ 而“
”和“ ”是用来表示元素与集合之间关系的符号.首先要
”和“ ”是用来表示集合与集合之间关系的符号;
分清楚对象,然后再根据关系,正确选用符号.
*动脑思考 探索新知
观察集合B={1,2,3,4,5}和集合 A={1,2,3},请问集合A和集合B之间有什 么关系?
集合A的元素都是集合B的元素,所以 A B ;然而
集合B的元素不都是集合A的元素,例如,4和5是
集合B的元素,但都不是集合A的元素。
真子集
如果集合A是集合B的子集,并且集合B中至 少有一个元素不属于集合A,那么把集合A叫做
集合B的真子集.记作A B ( 或 B A), 读作 A
真包含于B (或“B真包含A”)
图示法:
A B
知识拓展:
♦ 空集是任何非空集合的真子集.
♦对于集合A、B、C,如果A B,B C, 则 A C.
*巩固知识 典型例题
"填空. 例2选用适当的符号“ " 或“
*创设情景 兴趣导入
1.设B表示我班全体学生的集合,A表示我
班全体男学生的集合,那么,集合A与集合B
之间存在什么关系呢? 2.自然数集N与整数集Z之间存在什么关系
呢?
子集
定义:一般地,如果集合A的元素都是集
合B的元素,那么把集合A叫做集合B的子集, 记作 A B 或B A ,读作“A包含于B” (或B包含A)
(1){1,3,5}_ _{1,2,3,4,5}; (2){2}_ _ {x| |x|=2}; 真子集符号是用来表 (3){1} _. 示集合与集合之间关
系的符号,前边还有 哪些符号也是用来表 示集合与集合之间关 系的呢?
*巩固知识 典型例题
例3 设集合 ,试写出M的所有子集, 并指出其中真子集.
2


B x | x 4 0={-2,2}
所以 A=B.
*创设情景 兴趣导入
已知
提问:(1)Q和R什么关系? (2)Q和R的特征性质有什么关系?


(1) Q R (2) “如果
x 是有理数,则 x 是实数” 是真命题 x 是有理数 x是实数
读作:“推出”
集合关系与其特征性质之间的关系
相关文档
最新文档