集合间的基本关系知识点
第二讲 集合之间的基本关系及其运算
第二讲 集合之间的基本关系及其运算一.知识盘点知识点一:集合间的基本关系注意:1.A B A B B AA B A B A B A B =⇔⊆⊆⎧⊆⎨⊂⇔⊆≠⎩且且2.涉及集合间关系时,不要忘记空集和集合本身的可能性。
3.集合间基本关系必须熟记的3个结论(1)空集是任意一个集合的子集;是任意一个非空集合的真子集,即,().A B B Φ⊆Φ⊂≠Φ(2)任何一个集合是它自身的子集,空集只有一个子集即本身 (3)含有n 个元素的集合的子集的个数是2n 个,非空子集的个数是21n - ;真子集个数是21n - ,非空真子集个数是22n -。
知识点二:集合的基本运算运算 符号语言 Venn 图 运算性质交集{}|A B x x A =∈∈且x B()(),AB A A B B ⊆⊆ (),AA A AB B A ==A B A A B =⇔⊆ A Φ=Φ并集{}|A B x x A x B =∈∈或()(),A A B B A B ⊆⊆ (),A A A A B B A ==,A B B A B A A =⇔⊆Φ=补集{}|U C A x x U x A =∈∉且,U U C U C U =ΦΦ=()(),U U U C C A A A C A U ==()U AC A =Φ()()()U U U C A B C A C B = ()()()U U U C A B C A C B =二.例题精讲Ep1.下列说法正确的是A. 高一(1)班个子比较高的同学可以组成一个集合B. 集合{}2|,x N x x ∈= 则用列举法表示是{}01,UAC. 如果{}264,2,m m ∈++2, 则实数m 组成的集合是{}-22,D. {}{}(){}222||,|x y xy y x x y y x =====解析:A.与集合的确定性不符;B.对;C.与集合的互异性不符;D 。
{}2|x y x R == ,{}{}2||0y y x y y ==≥ ,(){}2,|x y y x = 是二次函数2y x = 的点集Ep2.已知集合A={}2|1log ,kx N x ∈<< 集合A 中至少有三个元素,则A.K>8B.K ≥ 8C.K>16D.K ≥ 16解析:由题设,集A 至少含有2,3,4三个元素,所以2log 4k> ,所以k>16.Ep3.已知集合M={}{}2|,|,x y x R N x x m m M =∈==∈ ,则集合M 、N 的关系是A.M N ⊂B.N M ⊂C.R M C N ⊆D.R N C M ⊆ 解析:[]1,1M =- ,{}|01N x x =≤≤ ,故选B.Ep4.已知集合M={}0,1 ,则满足M N M = 的集合N 的个数是 A.1 B.2 C.3 D.4 解析:M N M =,故N M ⊆ ,故选D.Ep5已知集合{}{}2|1,|1M x x N x ax ==== ,如果N M ⊆ ,则实数a 的取值集合是{}.1A {}.1,1B - {}.0,1C {}.1,0,1D -解析:{}1,1M =- , N M ⊆,故N 的可能:{}{}{},1,1,1,1Φ-- ,故a 的取值集合{}1,0,1-Ep6.已知集合{}{}2|20180,|lg(3)A x x x B x N y x =-+≥=∈=- ,则集合A B 的子集的个数是解析:{}|02018A x x =≤≤ ,{}{}|3-x>00,1,2B x N =∈= ,故{}0,1,2A B = 故子集个数328=A.4B.7C.8D.16Ep7.已知集合{}{}2|2,|M x x x N x x a =<+=> ,如果M N ⊆ ,则实数a 的取值范围是.(,1]A -∞- .(,2]B -∞ .[2,)C +∞ .[1,)D -+∞解析:{}|12M x x =-<< ,M N ⊆,故1a ≥-Ep8.已知集合{}2|30A x N x x *=∈-< 则满足B A ⊆ 的集合B 的个数是 A.2 B.3 C.4 D.8 解析:{}{}|03=12A x N x *=∈<<, ,故选CEp9.已知集合{}{}|12,|13,M x x N x x M N =-<<=≤≤=则.(1,3]A - B.(1,2]- .[1,2)C D.(2,3]解析:选CEp10.如果集合{}{}(1)2|10,|log 0,x A x x B x -=-≤≤=≤则A B={}.|11A x x -≤< {}.|11B x x -<≤ {}.0C {}.|11D x x -≤≤ 解析:{}10||0111x B x x x x ⎧->⎫⎧==≤<⎨⎨⎬-≤⎩⎩⎭,故选D.Ep11.设集合 {}{}2|11,|,,()R A x x B y y x x A A C B =-<<==∈=则{}.|01A x x ≤< {}.|10.B x x -<< {}|01C x x =<< {}.|11D x x -<<解析:{}|01B y y =≤<,则{}|01R C B y y =<≥或y,(){}{}{}|11|01|10R AC B x x y y y x x =-<<<≥=-<<或 选B.Ep12.已知集合{}{}2|11,|20,A x x B x x x =-<<=--<则 )R C A B =(.(1,0]A - .[1,2)B - .[1,2)C .(1,2]D解析:{}|12B x x =-<< ,{}|11R C A x x x =≤-≥或 (){}|12R C A B x x =≤< ,选C.三.总结提高1.题型归类(1)2个集合之间的关系判断(2)已知2个集合之间的关系,求参数问题 (3)求子集或真子集的个数问题 (4)2个有限集之间的运算(5)1个有限集和1个无限集之间的运算 (6)2个无限集之间的运算(7)已知集合的运算结果,求参数问题 2.方法总结(1)判断集合间关系的方法a.化简集合,从表达式中寻找两个集合之间的关系b.用列举法表示集合,从元素中寻找关系c.利用数轴,在数轴上表示出两个集合(集合为数集),比较端点之间的大小关系,从而确定两个集合之间的关系。
集合间的基本关系ppt课件
A.2
)
B.3
C.4
【解析】集合M满足M ⫋ {1,2},集合{1,2}的元素个数为2,
则满足题意的M的个数为22 − 1 = 3.
D.5
例3-7 已知集合A = {x ∈ | − 2 < x < 3},则集合A的所有非空真子集的个数是
( A
)
A.6
B.7
C.14
D.15
【解析】A = {x ∈ | − 2 < x < 3} = {0,1,2},
图形语言:
符号语言:若A⊆B,且B⊆A,则A=B
例如:A={x|x是两条边相等的三角形}
B={x|x是等腰三角形}
B (A)
2、集合相等
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的
任何一个元素都是集合A的元素,此时集合A与集合B中的元素是一样的,那
么集合A与集合B相等,记作:A=B.
【解析】B = {1,2,4,8},可知集合A中的任意一个元素都是集合B中的元素,故
A ⫋ B.用Venn图表示更加直观,如图1.2-8.
图1.2-8
(2)A = {x| − 1 < x < 5},B = {x|0 < x < 5};
【解析】在数轴上表示出集合A,B,如图1.2-9所示,由图可知B ⫋ A.
方法1 (列举法) 满足条件的集合有:{0},{1},{2},{0,1},{0,2},{1,2},共6个.
方法2 (公式法) 集合A的元素个数为3,则集合A的所有非空真子集的个数为
23 − 2 = 6.
高考题型1 集合间关系的判断
例10 指出下列各组集合之间的关系:
(1)A = {1,2,4},B = {x|x是8的正约数};
集合的三种基本关系
集合的三种基本关系集合的三种基本关系是包含关系、相等关系和互斥关系。
在数学中,集合是由一些确定的元素所组成的整体。
而元素则是构成集合的基本单位。
集合的关系是指集合之间的联系和相互作用。
包含关系是指一个集合包含另一个集合的所有元素。
用符号表示为A⊆B,表示集合A是集合B的子集或者等于集合B。
例如,集合A={1,2,3},集合B={1,2,3,4,5},则可以说集合A包含于集合B,即A⊆B。
在包含关系中,集合A的元素是集合B的子集。
相等关系是指两个集合具有完全相同的元素。
用符号表示为A=B,表示集合A和集合B的元素完全一样。
例如,集合A={1,2,3},集合B={1,2,3},则可以说集合A等于集合B,即A=B。
在相等关系中,集合A和集合B的元素完全相同。
互斥关系是指两个集合没有任何共同的元素。
用符号表示为A∩B=∅,表示集合A和集合B没有任何共同的元素。
例如,集合A={1,2,3},集合B={4,5,6},则可以说集合A和集合B互斥,即A∩B=∅。
在互斥关系中,集合A和集合B没有任何共同的元素。
集合的关系可以通过图形表示,如Venn图。
Venn图是一种用来表示集合之间关系的图形工具。
它由一系列的圆或椭圆组成,每个圆代表一个集合,圆内的元素属于该集合,圆之间的重叠部分表示集合之间的关系。
通过Venn图可以清楚地展示集合之间的包含关系、相等关系和互斥关系。
除了这三种基本关系,集合还可以通过运算来产生其他关系。
常见的集合运算有并集、交集和补集。
并集是指将两个或多个集合中的所有元素合并在一起形成一个新的集合。
交集是指两个或多个集合中共有的元素组成的新集合。
补集是指一个集合中不属于另一个集合的元素组成的新集合。
集合的三种基本关系是包含关系、相等关系和互斥关系。
通过这些关系,我们可以描述集合之间的联系和相互作用。
集合的关系可以通过符号表示,也可以通过图形工具如Venn图来展示。
此外,还可以通过集合运算产生其他关系。
集合间的基本关系
【对点练清】
1.[变条件]若本例条件“A={x|-2≤x≤5}”改为“A={x|-2<x<5}”,其他条 件不变,求m的取值范围.
解:①当 B=∅时,由 m+1>2m-1,得 m<2. ②当 B≠∅时,如图所示,
m+1>-2, ∴2m-1<5,
m+1≤2m-1,
m>-3, 解得m<3,
m≥2,
即 2≤m<3.综上可得,m 的取值范围是{m|m<3}.
A.M<N
B.M∈N
C.N⊆M
D.M N
解析:∵集合M中的元素都在集合N中,但是M≠N,∴M N.故选D.
答案:D
3.设a∈R,若集合{2,9}={1-a,9},则a=________.
答案:-1
知识点二 空集
(一)教材梳理填空
定义 记法 规定
特性
[微思考]
我们把 不含任何元素 的集合叫做空集 ∅
含有3个元素:{1,2,3},{1,2,4},{1,2,5}. 含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5}. 含有5个元素:{1,2,3,4,5}. 故 满 足 条 件 的 集 合 M : {1,2,3} , {1,2,4} , {1,2,5} , {1,2,3,4} , {1,2,3,5} , {1,2,4,5},{1,2,3,4,5}. [答案] B
当x=2时,y=2;当x=3,y=-3.
所以{y|y=-x2+6,x,y∈N}={2,5,6},
共3个元素,故其真子集的个数为23-1=7.
答案:C
()
题型二 集合间关系的判断
【学透用活】
(1)在子集的定义中,集合 A 中任意一个元素都是集合 B 中的元素,不能理 解为集合 A 是集合 B 的部分元素所组成的集合.因为集合 A 中也可以不含任何 元素;若 A=B,则集合 A 中含有集合 B 中的所有元素,但此时也可以说集合 A 是集合 B 的子集.
集合间的基本关系
集合间的基本关系知识点总结一、子集、真子集、集合相等二、空集1、定义:不含任何元素的集合叫做空集,记作φ.2、性质:空集是任何集合的子集.三、子集个数与元素个数的关系设有限集合A 有n (n 属于*N )个元素,则其子集的个数是n 2,真子集的个数是12-n ,非空子集的个数是12-n ,非空真子集的个数是22-n .一、知识辨析1、} 3 ,2 ,1 {1⊆...........................................( )2、φ和{φ}表示的意义相同...............................( )3、} )1 ,0( {} 0 ,1 {} 1 ,0 {==..................................( )4、任何集合都有子集和真子集.............................( )5、若a ∈A ,则}{a ⫋A.....................................( )6、如果集合A B ⊆,那么若元素a 不属于A ,则必不属于B.....( ) 二、选择1、已知集合} | {是菱形x x A =,} | {是正方形x x B =,} | {是平行四边形x x C =,那么A ,B ,C 之间的关系是 ( )A.C B A ⊆⊆B.C A B ⊆⊆C.A ⫋B ⊆CD.C B A ⊆=2、给出下列四个关系式:①R ∈3;②Z ∈Q ;③0∈φ;④φ⊆} 0 {.其中正确的个数是 ( )A.1B.2C.3D.43、能正确表示集合} 20| {≤≤∈=x R x M 和集合} 0x -| {2=∈=x R x N 关系的Venn 图是 ( )A B C D4、已知集合} ,2| {Z k k x x A ∈==,} ,4| {Z k k x x B ∈==,则A 与B 之间的关系是( ) A.A=B B.B ⊇A C.A ⫋B D.B ⫋A5、已知集合} 03| {*<-∈=x N x A ,则满足条件A B ⊆的集合B 的个数为( ) A.2 B.3 C.4 D.86、已知集合} 2 ,1 ,0 {⊆A ,且集合A 中至少含有一个偶数,则这样的集合A 的个数为 ( ) A.6 B.5 C.4 D.37、集合} , {y x 的子集个数是 ( ) A.1 B.2 C.3 D.48、在下列选项中,能正确表示集合} 2 ,0 ,2 {-=A 和集合} 02| {2=+=x x x B 关系的是 ( ) A.A=B B.B A ⊇ C.B A ⊆ D.B A =φ 9、集合} 1 ,2 {-=A ,} 1 ,m {2--=m B ,且A=B ,则实数m=( ) A.2 B.-1 C.2或-1 D.410、已知集合} 0y ,0y |y)(x, {><x x M +=,} 0y ,0|),( {<<x y x P =,那么 ( ) A.P ⫋M B.M ⫋P C.M=P D.M ≠P11、下列四个关系:①} , {} , {a b b a ⊆;②φ=} 0 {;③} 0 {∈φ;④} 0 {0∈.其中正确的个数为( )A.1B.2C.3D.412、已知φ⫋} 0x | {2=+-a x x ,则实数a 的取值范围是 ( ) A.41<a B.41≤a C.41≥a D.41>a 13、设集合} 1 1, {-=A ,集合} 02| {2=+-=b ax x x B ,若B ≠φ,A B ⊆,则有序实数对(a,b )不能是( )A.(-1,1)B.(-1,0)C.(0,-1)D.(1,1) 三、填空14、已知集合} 3, 1, {m A -=,} 4 3, {=B ,若A B ⊆,则实数m= .15、已知集合} ,02| {2R a a ax ax x A ∈=++=,若集合A 有且仅有2个子集,则a 的取值构成的集合为 .16、设a ,b ∈R ,集合} ,0 {} 1 , {b a a +=,则a b -= . 四、解决问题17、已知集合} 4 1| {>或<x x x A -=,} 3a 2| {+≤≤=x a x B ,若A B ⊆,求实数a 的取值范围.18、已知} 01)1(3| {22=-+++=a x a x x A ,} 0 {=B ,若B A ⊆,求a 的取值范围.19、若集合} 06| {2=-+=x x x M ,} 0))(2(| {=--=a x x x N ,且M N ⊆,求实数a 的值. 提升题 一、选择题1、下面各选项中,两个集合相等的是 ( )A.} ) 2 ,1 ( {=M ,} ) 1 ,2 ( {=NB.} 2 ,1 {=M ,} ) 2 ,1 ( {=NC.M=φ,} {φ=ND.} 012| {2=+-=x x x M ,} 1 {=N 2、下列关系中正确的是( )A .} 1 ,0 {1∈ B.} 1 ,0 {1∉ C.} 1 ,0 {1⊆ D.} 1 ,0 {} 1 {∉ 3、已知集合} 02| {2<-+∈=x x Z x A ,则集合A 的一个真子集为 ( ) A.} 02| {<<x x - B.} 20| {<<x x C.} 0 { D.} {φ 4、集合} 1 ,0 1, {-=A ,A 的子集中含有元素0的子集共有( ) A.2个 B.4个 C.6个 D.8个5、若P M ⊆,Q M ⊆,} 2 1, ,0 {=P ,} 4 2, ,0 {=Q ,则满足上述条件的集合M 的个数是( ) A.1 B.2 C.4 D.86、集合} , 3| {N n x x M n ∈==,集合} , 3| {N n n x x N ∈==,则集合M 与集合N 的关系为( ) A.N M ⊆ B.M N ⊆ C.N M = D.M ⊈N 且N ⊈M7、若A x ∈,A x ∈1,则称A 是伙伴关系集合.集合} 3 ,2 ,31,21 ,0 ,1 {-=M 的所有非空子集中具有伙伴关系的集合的个数是( ) A.31 B.7 C.3 D.18、已知集合} , 0| {N y a y y A ∈≤=<,} , 032| {2N x x x x B ∈≤--=,若A ⫋B ,则满足条件的正整数a 所构成集合的子集的个数为( ) A.2 B.4 C .8 D.16 二、填空9、方程0822=--x x 的解集为A ,方程02=-ax 的解集为B ,若A B ⊆,则实数a 的取值集合为 .10、已知集合} 44 ,4 ,3| {-=m y A ,集合} ,3| {2m y B =,若A B ⊆,则实数m= . 三、解决问题11、已知} 52| {≤≤-=x x A ,} 121| {-≤≤+=m x m x B ,A B ⊆,求m 的取值范围.。
高中数学集合的基本关系及运算
集合的基本关系及运算要点一、集合之间的关系1.集合与集合之间的“包含”关系集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;子集:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集.记作:A B(B A)⊆⊇或,当集合A 不包含于集合B 时,记作A B ,用Venn 图表示两个集合间的“包含”关系:A B(B A)⊆⊇或要点诠释:(1)“A 是B 的子集”的含义是:A 的任何一个元素都是B 的元素,即由任意的x A ∈,能推出x B ∈.(2)当A 不是B 的子集时,我们记作“A ⊆B (或B ⊇A )”,读作:“A 不包含于B ”(或“B 不包含A ”).真子集:若集合A B ⊆,存在元素x ∈B 且x A ∉,则称集合A 是集合B 的真子集(proper subset).记作:A B(或B A)规定:空集是任何集合的子集,是任何非空集合的真子集. 2.集合与集合之间的“相等”关系A B B A ⊆⊆且,则A 与B 中的元素是一样的,因此A=B要点诠释:任何一个集合是它本身的子集,记作A A ⊆.要点二、集合的运算 1.并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:A ∪B 读作:“A 并B ”,即:A ∪B={x|x ∈A ,或x ∈B}Venn 图表示:要点诠释:(1)“x ∈A ,或x ∈B ”包含三种情况:“,x A x B ∈∉但”;“,x B x A ∈∉但”;“,x A x B ∈∈且”.(2)两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只出现一次).2.交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集;记作:A ∩B ,读作:“A 交B ”,即A ∩B={x|x ∈A ,且x ∈B};交集的Venn 图表示:要点诠释:(1)并不是任何两个集合都有公共元素,当集合A 与B 没有公共元素时,不能说A 与B 没有交集,而是A B =∅.(2)概念中的“所有”两字的含义是,不仅“A ∩B 中的任意元素都是A 与B 的公共元素”,同时“A 与B 的公共元素都属于A ∩B ”.(3)两个集合求交集,结果还是一个集合,是由集合A 与B 的所有公共元素组成的集合.3.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作:UU A A={x|x U x A}∈∉;即且;补集的Venn 图表示:要点诠释:(1)理解补集概念时,应注意补集U A 是对给定的集合A 和()U A U ⊆相对而言的一个概念,一个确定的集合A ,对于不同的集合U ,补集不同.(2)全集是相对于研究的问题而言的,如我们只在整数范围内研究问题,则Z 为全集;而当问题扩展到实数集时,则R 为全集,这时Z 就不是全集.(3)U A 表示U 为全集时A 的补集,如果全集换成其他集合(如R )时,则记号中“U ”也必须换成相应的集合(即R A ).4.集合基本运算的一些结论:A B A A B B A A=A A =A B=B A ⋂⊆⋂⊆⋂⋂∅∅⋂⋂,,,, A A B B A B A A=A A =A A B=B A ⊆⋃⊆⋃⋃⋃∅⋃⋃,,,,U U (A)A=U (A)A=⋃⋂∅, 若A ∩B=A ,则A B ⊆,反之也成立 若A ∪B=B ,则A B ⊆,反之也成立若x ∈(A ∩B),则x ∈A 且x ∈B 若x ∈(A ∪B),则x ∈A ,或x ∈B求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法. 【典型例题】类型一:集合间的关系例1. 请判断①0{0} ;②{}R R ∈;③{}∅∈∅;④∅{}∅;⑤{}0∅=;⑥{}0∈∅;⑦{}0∅∈;⑧∅{}0,正确的有哪些?【变式1】用适当的符号填空:(1) {x||x|≤1} {x|x 2≤1}; (2){y|y=2x 2} {y|y=3x 2-1}; (3){x||x|>1} {x|x>1};(4){(x ,y)|-2≤x ≤2} {(x ,y)|-1<x ≤2}.例2. 写出集合{a ,b ,c}的所有不同的子集.【变式1】已知{},a b A⊆{},,,,a b c d e ,则这样的集合A 有 个.【变式2】同时满足:①{}1,2,3,4,5M ⊆;②a M ∈,则6a M -∈的非空集合M有( )A. 16个B. 15个C. 7个D. 6个【变式3】已知集合A={1,3,a}, B={a 2},并且B 是A 的真子集,求实数a 的取值.例3. 设M={x|x=a 2+1,a ∈N +},N={x|x=b 2-4b+5,b ∈N +},则M 与N 满足( ) A. M=N B. M N C. N M D. M ∩N=∅ 例4.已知},,,0{},,,{y x N y x xy x M =-=若M =N ,则+++2()(x y x )()1001002y x y +++ = .A .-200B .200C .-100D .0【变式1】设a ,b ∈R ,集合b{1,a+b,a}={0,,b}a,则b-a=( )类型二:集合的运算例5. (1)已知集合M={y|y=x 2-4x+3,x ∈R },N={y|y=-x 2+2x+8,x ∈R },则M ∩N 等于( ).A. ∅B. RC. {-1,9}D. {y|-1≤y ≤9} (2)设集合M={3,a},N={x|x 2-2x<0,x ∈Z},M ∩N={1},则M ∪N 为( ). A. {1,2,a} B. {1,2,3,a} C. {1,2,3} D. {1,3} 【变式1】设A 、B 分别是一元二次方程2x 2+px+q=0与6x 2+(2-p)x+5+q=0的解集,且A ∩B={21},求A ∪B.【变式2】设集合A={2,a 2-2a ,6},B={2,2a 2,3a-6},若A ∩B={2,3},求A ∪B.例6. 设全集U={x ∈N +|x ≤8},若A ∩(C u B)={1,8},(C u A)∩B={2,6},(C u A)∩(C u B)={4,7},求集合A ,B.类型三:集合运算综合应用例7.已知全集A={x|-2≤x ≤4}, B={x|x>a}. (1)若A ∩B ≠∅,求实数 a 的取值范围; (2)若A ∩B ≠A ,求实数a 的取值范围;(3)若A ∩B ≠∅且A ∩B ≠A ,求实数a 的取值范围.【变式1】已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是( ) A .(-∞, -1] B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)例8. 设集合{}{}222|40,|2(1)10,A x x x B x x a x a a R =+==+++-=∈. (1)若A B B =,求a 的值; (2)若A B B =,求a 的值.【变式1】已知集合{}{}222,|120A B x x ax a =-=++-=,若A B B =,求实数a 的取值范围.课后练习一、选择题1.设U =R ,{|0}A x x =>,{|1}B x x =>,则UA B =( )A .{|01}x x ≤< B .{|01}x x <≤ C .{|0}x x < D .{|1}x x >2.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )3.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .-1 C .1或-1 D .1或-1或0 4.已知集合,A B 满足A B A =,那么下列各式中一定成立的是( ) A . A B B . B A C . A B B = D . A B A = 5.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个6.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .M NC .N MD .M N =∅二、填空题7.用适当的符号填空:(1)m {},m n ;(2){}m {},m n ;(3)∅ {},m n . 8. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =,则C 的非空子集的个数为 .9.若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =_____________. 10.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 .11.已知{}{}221,21A y y x x B y y x ==-+-==+,则A B =_________. 三、解答题12.已知集合{}{}1,2,1,2,3,4,5A B ==,若A M B ⊆,请写出满足上述条件得集合M .13.已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求m 的取值范围.14.已知集合{}{}22|20,|0A x x px B x x x q =+-==-+=,且{}2,0,1A B =-,求实数,p q 的值.15.设全集U R=,{}2|10M m mx x =--=方程有实数根,{}2|0,N n x x n =-+=方程有实数根()U C M N 求.巩固训练一、选择题1. 设A={(x, y)| |x+1|+(y-2)2=0},B={-1, 2},则必有( ) A 、BA B 、AB C 、A=B D 、A ∩B=∅2. 集合M={y| y=x 2-1, x ∈R}, N={x| y=23x -},则M ∩N 等于( ) A 、{(-2, 1), (2, 1)} B 、{}|03x x ≤≤ C 、{}|13x x -≤≤ D 、∅3.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )4.已知集合,A B 满足A B A =,那么下列各式中一定成立的是( ) A . A B B . B A C . A B B = D . A B A =5.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .-1 C .1或-1 D .1或-1或0 6.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .M NC .N MD .M N =∅二、填空题 7.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或,则___________,__________==b a . 8.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人.9.若{}{}21,4,,1,A x B x ==且A B B =,则x = . 10.若{}|1,I x x x Z =≥-∈,则N C I = .11.设全集{}(,),U x y x y R =∈,集合2(,)12y M x y x ⎧+⎫==⎨⎬-⎩⎭,{}(,)4N x y y x =≠-,那么()()U U C M C N 等于________________.12.设集合{}1,2,3,4,5,6M =,12,,,k S S S ⋅⋅⋅都是M 的含两个元素的子集,且满足:对任意的{},i i i S a b =,{},j j j S a b =({},,1,2,3,,i j i j k ≠∈⋅⋅⋅),都有min ,min ,j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭({}min ,x y 表示两个数,x y 中的较小者)则k 的最大值是 .三、解答题13.设222{|40},{|2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果A B B =,求实数a 的取值范围.14.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若()U C A B =∅,求m 的值.15.设1234,,,a a a a N +∈,集合{}{}222212341234,,,,,,,A a a a a B a a a a ==.满足以下两个条件:(1){}1414,,10;A B a a a a =+=(2)集合A B 中的所有元素的和为124,其中1234a a a a <<<. 求1234,,,a a a a 的值.。
集合间的基本关系
7 个真子集,故选 B.
返回
(2)由题意可得{1,2}⊆M⊆{1,2,3,4,5},可以确定集合 M 必含 有元素 1,2,且含有元素 3,4,5 中的至少一个,因此依据集合 M 的元素个数分类如下:
含有三个元素:{1,2,3}{1,2,4}{1,2,5}; 含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5}; 含有五个元素:{1,2,3,4,5}. 故满足题意的集合 M 共有 7 个. [答案] (1)B (2)7
返回
注意:∅与{0}的区别 (1)∅是不含任何元素的集合; (2){0}是含有一个元素的集合,∅ {0}.
返回
[例 1] (1)下列各式中,正确的个数是( )
①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅
={0};⑤{0,1}={(0,1)};⑥0={0}
我们称集合 A 是集合 B 的真子集 记法 记作 A B(或 B A)
返回
图示
结论
(1)A B 且 B C,则 A C; (2)A⊆B 且 A≠B,则 A B
返回
4、空集的概念
定义 我们把 不含任何元素 的集合,叫做空集
记法 ∅
规定 空集是任何集合的子集 ,即∅⊆A
特性
(1)空集只有一个子集,即它的本身,∅⊆∅ (2)A≠∅,则∅ A
集合间的基本关系
返回
1、子集的概念
定义
一般地,对于两个集合A,B,如果集合A中 任意一个 元素都是集合B中的元素,我们就说 这两个集合有 包含 关系,称集合A为集合B的子
集 记法与 记作 A⊆B (或 B⊇A ),读作“A含于B”(或“B
读法 包含A”)
返回
集合间的基本关系ppt课件
变式训练1 (1)若{1,2,3}⫋A⊆{1,2,3,4,5},则满足条件的集合A的个数为
( B )
A.2
B.3
C.4D.5解析 满足 Nhomakorabea件的集合A有{1,2,3,4},{1,2,3,5}和{1,2,3,4,5},共3个.
(2)已知集合A⫋{1,2,3},且A中至少含有一个奇数,则满足条件的集合A的个
别为{1},{2}.
思考辨析
1.{0},⌀之间有什么区别与联系?
提示 {0}是含有一个元素0的集合,⌀是不含任何元素的集合,因此⌀⊆{0}.
2.若一个集合只有一个子集,则这个集合有什么特征?
提示 一个集合只有一个子集,则这个集合是空集.
自主诊断
1.下列集合中为空集的是( C )
A.{0}
B.{⌀}
(3)集合A的非空子集的个数为2n-1;
(4)集合A的非空真子集的个数为2n-2.
例如,集合{1,2}的元素个数为2,其子集个数为22=4,子集分别为⌀,{1},{2},
{1,2};真子集个数为22-1=3,真子集分别为⌀,{1},{2};非空子集个数为22-1=
3,非空子集分别为{1},{2},{1,2};非空真子集个数为22-2=2,非空真子集分
【例1】 (1)[2024河南统考模拟预测]已知集合A={x∈N|-2<x<3},则集合A
的所有非空真子集的个数是( D )
A.6
B.7
C.14
D.15
解析 因为A={x∈N|-2<x<3}={0,1,2},所以集合A中的元素个数为3,因此集
合A的所有非空真子集的个数是23-2=6.故选A.
(2)已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},那么这样的集合M的个数为( C )
集合间的基本关系
集合间的基本关系
在集合理论中,有几种基本的关系可以定义在两个集合之间。
这些基本关系包括:
1.相等关系(Equality Relation):两个集合当且仅当它们包含
相同的元素时相等。
表示为A = B。
示例:A = {1, 2, 3},B = {3, 2, 1},因此A = B。
2.包含关系(Subset Relation):如果一个集合的所有元素都是
另一个集合的元素,则称前者是后者的子集。
表示为A ⊆B。
示例:A = {1, 2},B = {1, 2, 3},因此A ⊆ B。
3.真包含关系(Proper Subset Relation):如果一个集合是另一
个集合的子集,并且两个集合不相等,则前者是后者的真子集。
表示为A ⊂ B。
示例:A = {1, 2},B = {1, 2, 3},因此A ⊂B。
4.交集关系(Intersection Relation):两个集合的交集是包含它
们共同元素的集合。
表示为A ∩ B。
示例:A = {1, 2, 3},B = {3, 4, 5},则A ∩ B = {3}。
5.并集关系(Union Relation):两个集合的并集是包含它们所
有元素的集合。
表示为A ∪ B。
示例:A = {1, 2, 3},B = {3, 4, 5},则A ∪ B = {1, 2, 3, 4, 5}。
这些基本关系在集合论中起到了重要的作用,用于描述和操作不同集合之间的关系。
它们是集合论中的基本概念,为进一步探索更高级的集合运算和性质奠定了基础。
集合的基本关系
集合之间的基本关系知识点:1.“包含”关系—子集(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个A⊆(或B⊇A)集合有包含关系,称集合A是集合B的子集。
记作:BA⊆有两种可能(1)A是B的一部分;注意:B(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)或若集合A⊆B,存在x∈B且x A,则称集合A是集合B的真子集。
③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n -1个真子集,2n -1个非空子集,2n -2个非空真子集.一、子集与真子集①包含关系的判断1.对于集合A,B,“A⊆B”不成立的含义是()A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A解:“A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.3.设集合A={x|x2=1},B={x|x是不大于3的自然数},A⊆C,B⊆C,则集合C 中元素最少有()A.2个B.4个C.5个D.6个解:A={-1,1},B={0,1,2,3},∵A⊆C,B⊆C,∴集合C中必含有A与B的所有元素-1,0,1,2,3,故C中至少有5个元素.11.设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A、B、C、D、E之间的关系是________.2.(一星)用适当的符号填空:⑴{1}___2-+={|320}x x x⑵{1,2}___2-+={|320}x x x⑶ {|2,}x x k k =∈N ___{|6,}x x ττ=∈N ⑷ ∅___2{R |20}x x ∈+=答案:(1)⊂;(2)=;(3)⊃;(4)=5.(一星)用适当的符号填空:{}()(){}|2,1,2____,|1x x x y y x =+≤ {|2x x ≤,⑶{}31|,_______|0x x x x x x x⎧⎫=∈-=⎨⎬⎩⎭R3.(一星)用适当的符号填空: ⑴ ___{0}∅ ⑵ 2___{(1,2)}⑶ 0___2{|250}x x x -+= ⑷ {3,5}____2{|8150}x x x -+= ⑸ {3,5}___N⑹ {|21,}___{|41,}x x n n x x k k =+∈=±∈Z Z ⑺ {(2,3)}___{(3,2)}23.,___________.(1)3{3};(2)2{3};(3){1}{1,2,3}(4){1}{{1},{2},{1,2}}=≠∈∈(一星)以下表述中正确的有;答案:(2)(4)6.(二星)下列说法中,正确的是( ) A .任何一个集合必有两个子集; B .若,A B =∅则,A B 中至少有一个为∅ C .任何集合必有一个真子集; D .若S 为全集,且,A B S =则A B S == 备注:空集、子集概念辨析1.判断下列两个集合之间的关系: (1)=A {}6,3,2,=B {}的约数是12x x ;(2)=A {}1,0,=B {}N y y x x ∈=+,122;(3)=A {}21<<-x x ,=B {}22<<-x x ; (4)=A (){}0,<xy y x ,=B (){}0,0,<>y x y x .2.指出下列各组集合之间的关系:(1)=A {}1,1-,=B ()()()(){}1,1,1,1,1,1,1,1----; (2)=A {}是等边三角形x x ,=B {}是等腰三角形x x ; (3)=M {}*,12N n n x x ∈-=,{}*,12N n n x x N ∈+==.7.{(,)||1||1|0}{(,)|10}_____.A x y x y B x y xy x y (三星)=-+-==--+=集合与集合的包含关系为答案:A B ⊂28.{|12,}{|_________.A x x a a a RB x y ==+-∈==(三星)设集合与集合的包含关系为答案:B A ⊂②空集的概念1.下列四个集合中,是空集的是( )A .{0}B .{x |x >8且x <5}C .{x ∈N |x 2-1=0}D .{x |x >4}4.下列集合中是空集的是( )A .{}332=+x x B .(){}R y x x y y x ∈-=,,,2C .{}02≥-xx D .{}R x x xx ∈=+-,0123.给出下列命题:(1)空集没有子集;(2)任何集合至少有两个子集;(3)空集是任何集合的真子集;(4)若∅ÜA ,则≠A ∅.其中正确的个数是 个.1.(一星)下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集,其中正确的有( )B A .0个B .1个C .2个D .3个4.(二星)若集合{|1}X x x =>-,下列关系式中成立的为( ) A .0X ⊆ B .{}0X ∈ C .X ∅∈ D .{}0X ⊆φφφ∈∈==22.(一星)下列关系中正确的是().0.0{0}.0.{0}A B C D答案:B③找规律判断关系1111.|,,|,,6231|,.26n M x x m m Z N x x n Z p P x x p Z ⎧⎫⎧⎫==+∈==-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==+∈⎨⎬⎩⎭(三星)指出下列集合之间的关系:答案:M N P ⊂=7.设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },求M 和N 关系.二、韦恩图9.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解:由N ={x |x 2+x =0}={-1,0}得,N M ,选B.12.(二星)设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( )A BBA AB A BA .B .C .D .三、已知包含关系求参数范围 ①列举法相关6.集合B ={a ,b ,c },C ={a ,b ,d };集合A 满足A ⊆B ,A ⊆C .则满足条件的集合A 的个数是( )A .8B .2C .4D .1解: ∵A ⊆B ,A ⊆C ,∴集合A 中的元素只能由a 或b 构成.∴这样的集合共有22=4个.即:A =∅,或A ={a },或A ={b }或A ={a ,b }.4.已知=A {}0822=--∈x x R x ,=B {}08222=--+-∈a a ax x R x ,B A ⊆,求实数a 的取值集合.5.已知集合A ={x |ax 2+2x +a =0,a ∈R},若集合A 有且只有2个子集,则a 的取值是( )A .1B .-1C .0,1D .-1,0,14.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满足条件的实数x 的个数是( )A .1B .2C .3D .4解:∵B ⊆A ,∴x 2∈A ,又x 2≠1∴x 2=3或x 2=x ,∴x =±3或x =0.故选C.6.已知集合{}m A ,1,4--=,集合{}5,4-=B ,若A B ⊆,则实数m = .②描述法相关9.(二星)设{|13},{|}A x x B x x a =-<<=>,若A B ,则a 的取值范围是______.17.已知A ={x |x <-1或x >2},B ={x |4x +a <0},当B ⊆A 时,求实数a 的取值范围.解:∵A ={x |x <-1或x >2},B ={x |4x +a <0}={x |x <-a4}, ∵A ⊇B ,∴-a4≤-1,即a ≥4, 所以a 的取值范围是a ≥4.2110.{|||2},{|1},.2x A x x a B x A B a x -=-<=<⊆+(三星)设若,求实数的取值范围 答案:01a ≤≤1.已知集合M={x|﹣1<x <2},N={x|x <a},若M ⊆N ,则实数a 的取值范围是( )BA .(2,+∞)B .[2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣1]2.已知集合=A {}21≤≤x x ,=B {}a x x ≤≤1 (1)若A 是B 的真子集,求a 的取值范围; (2)若B 是A 的子集,求a 的取值范围; (3)若A =B ,求a 的取值范围.③端点的单独验证1.设集合{2135},{322}A x a x a B x x =+≤≤-=≤≤,若集合A 是集合B 的真子集,求实数a 的取值范围。
集合间的基本关系
D.M与N没有相同元素
2、已知集合M { x | x a 2a 4, a R},
2
N { y | y b 4b 6, b R}. 则(
2
) .
A.M N C.M N
B.M N D.M与N没有包含பைடு நூலகம்系
要点二、子集关系的应用 有限集合子集的确定问题,求解关键有三 点:(1)确定所求集合;(2)合理分类,按 照子集所含元素的个数依次写出; (3) 注 意两个特殊的集合,即空集和集合本身.
B且BA, 则A=B; 若A 反之,亦然.
3、真子集
如果集合A B, 但存在元素x B , 且x A, 我们称集合A是集合B的真子集. 记作:A B ( 或B A ).
读作:“A真包含于B”(或“B真包含 A”)
4、空集
不含任何元素的集合叫做空集,记为.
规定:空集是任何集合的子集,即 A.
空集是任何非空集合的真子集. 即: B. ( B )
5、子集的有关性质
(1).任何一个集合是它本身的子集,即A A.
(2).对于集合 A、B、C,如果 A B且B C那么A C.
(3).对于集合A、B、C,如果 A B 且 B C 那么 A C. (4).对于集合A、B、C,如果 A B且B C那么A C .
2 2
n
1 例2、集合A { x | x (2k 1), k Z }, 9 4 1 B { x | x k , k Z }. 则( 9 9 A.A B B.A B C.C D D.A B ) .
k 1 练习:1、集合M { x | x , k Z }, 2 4 k 1 N { x | x , k Z }. 则( 4 2 A.M N B.M N C.M N ) .
集合间的基本关系
跟踪训练3 已知集合A={x|-1<x<4},B={x|x<5},则
A.A∈B
B.A B
C.B A
D.B⊆A
解析 由数轴易知A中元素都属于B,B中至少有一个元素如-2∉A, 故有A B.
解析 答案
类型三 由集合间的关系求参数(或参数范围) 例4 已知集合A={x|x2-x=0},B={x|ax=1},且A⊇B,求实数a的值. 解 A={x|x2-x=0}={0,1}. (1)当a=0时,B=∅⊆A,符合题意. (2)当 a≠0 时,B={x|ax=1}={1a}, ∵1a≠0,要使 A⊇B,只有1a=1,即 a=1. 综上,a=0或a=1.
第一章 §1.1 集合
1.1.2 集合间的基本关系
学习目标
1.理解子集、真子集、空集的概念. 2.能用符号和Venn图表达集合间的关系. 3.掌握列举有限集的所有子集的方法.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 子集
思考
如果把“马”和“白马”视为两个集合,则这两个集合中的元 素有什么关系? 答案 所有的白马都是马,马不一定是白马.
a-2≤2,
这样的实数 a 不存在.
综上,实数a的取值范围是{a|a≥1}.
解答
当堂训练
1.下列集合中,结果是空集的是 A.{x∈R|x2-1=0} B.{x|x>6或x<1} C.{(x,y)|x2+y2=0}
√D.{x|x>6且x<1}
12345
答案
2.集合P={x|x2-1=0},T={-1,0,1},则P与T的关系为
2.集合子集的个数 求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合 要求的子集. 集合的子集、真子集个数的规律为:含n个元素的集合有2n个子集,有2n-1 个真子集,有2n-2个非空真子集.写集合的子集时,空集和集合本身易漏掉. 3.由集合间的关系求参数问题的注意点及常用方法 (1)注意点:①不能忽视集合为∅的情形; ②当集合中含有字母参数时,一般需要分类讨论. (2)常用方法:对于用不等式给出的集合,已知集合的包含关系求相关参数 的范围(值)时,常采用数形结合的思想,借助数轴解答.
完整版)集合间的基本关系知识点
完整版)集合间的基本关系知识点
集合间的基本关系
1.“包含”关系-子集
集合A是集合B的子集,有两种可能:一是A是B的一
部分,二是A与B是同一集合。
如果集合A不包含于集合B,或集合B不包含集合A,则记作A⊊B或B⊊A。
2.“相等”关系:A=B
如果两个集合A和B的元素相同,则称这两个集合相等。
即任何一个集合是它本身的子集。
例如,如果A={x|x-1=0},
B={-1,1},则A=B。
以下是集合间的基本关系:
①真子集:如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊊B(或B⊋A)。
②传递性:如果A⊆B,B⊆C,则A⊆C。
③相等:如果A⊆B同时B⊆A,则A=B。
3.空集
不含任何元素的集合叫做空集,记为Φ。
规定空集是任何集合的子集,空集是任何非空集合的真子集。
对于一个有n(n≥1)个元素的集合A,它有2n个子集,其中有2n-1个真子集,2n-1个非空子集,以及一个空集。
名称记号意义
① A⊆B A中的任一元素都属于B。
②∅⊆A 空集是任何非空子集的真子集。
③若___且B⊆C,则A⊆C。
④若___且B⊆A,则A=B。
第一章-1.2-集合的基本关系高中数学必修第一册北师大版
2
1
6
∈ }, = {| = + , ∈ },则,,满足的关系是( B
A. = ⫋
B. ⫋ =
)
C. ⫋ ⫋
D. ⫋ ⫋
【解析】方法1 简单地列举出各集合中的元素. = {⋯
1 7 13 19
, , , , ,⋯ },
66 6 6
27
或ቐ2 − 1 ≤ 5,
D.4
方法帮|关键能力构建
题型1 判断集合之间的关系
例9 指出下列各组中两个集合之间的关系:
(1) = {| = 2 − 1, ∈ }, = {| = 2 + 1, ∈ };
【解析】,都表示奇数集,故 = .
(2) = {| − 1 < < 4}, = {| − 5 < 0}.
(【易错点】解题时易忽略空集这种情形,从而致错)和 ≠ ⌀ 两种情况讨论.
(1)当 = ⌀ 时, − 2 = 0无解,可得 = 0.
(2)当 ≠ ⌀ 时, = {−1}或 = {3}.
①当 = {−1}时,由 × −1 − 2 = 0,可得 = −2;
2
3
②当 = {3}时,由 × 3 − 2 = 0,可得 = .
【解析】集合 = {| < 5},用数轴表示集合,,如图1-1.2-6所示,由图可知 ⫋ .
图1-1.2-6
2
1
4
4
1
2
例10 (2024·江西省南昌一中期中)设集合 = {| = + , ∈ }, = {| = + ,
∈ },则它们之间的关系是( B
)
A. =
方法2(证明两集合互为子集)
集合间的基本关系
§1.2 集合间的基本关系学习目标 1.理解子集、真子集、集合相等、空集的概念.2.能用符号和Venn 图表达集合间的关系.3.掌握列举有限集的所有子集的方法.知识点一 子集、真子集、集合相等 1.子集、真子集、集合相等的相关概念定义符号表示 图形表示子集如果集合A 中的任意一个元素都是集合B 中的元素,就称集合A 是集合B 的子集A ⊆B (或B ⊇A )真子集如果集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,就称集合A是集合B的真子集AB (或B A )集合相等如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等A =B2.Venn 图用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 3.子集的性质(1)任何一个集合是它本身的子集,即A ⊆A .(2)对于集合A ,B ,C ,如果A ⊆B ,且B ⊆C ,那么A ⊆C . 思考1 任何两个集合之间是否有包含关系?答案 不一定.如集合A ={0,1,2},B ={-1,0,1},这两个集合就没有包含关系. 思考2 符号“∈”与“⊆”有何不同?答案符号“∈”表示元素与集合间的关系;而“⊆”表示集合与集合之间的关系.知识点二空集1.定义:不含任何元素的集合叫做空集,记为∅.2.规定:空集是任何集合的子集.思考{0}与∅相同吗?答案不同.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.1.已知集合M={x|x是菱形},N={x|x是正方形},则集合M与集合N的关系为________.答案N M解析因为正方形是菱形,所以N M.2.用“⊆”或“∈”填空:{0,2}________{2,1,0},2________{2,1,0}.答案⊆∈3.设a∈R,若集合{2,9}={1-a,9},则a=________.答案-1解析1-a=2,解得a=-1.4.集合{0,1}的子集有________个.答案 4解析集合{0,1}的子集有∅,{0},{1},{0,1},共4个.一、集合间关系的判断例1指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|-1<x<4},B={x|x-5<0};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解(1)集合A的元素是数,集合B的元素是有序实数对,故A与B之间无包含关系.(2)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(3)由列举法知M={1,3,5,7,…},N={3,5,7,9,…},故N M.反思感悟判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.跟踪训练1(1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是() A.A⊆B B.A=BC.A B D.B A(1)答案 C解析解方程x2-3x+2=0得x=2或x=1,则M={1,2},因为1∈M且1∈N,2∈M 且2∈N,所以M⊆N.又因为0∈N但0∉M,所以M N.(2)答案 D解析因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.二、确定集合的子集、真子集例2设A={x|(x2-16)(x2+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集.解由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1或x=4.故集合A={-4,-1,4}.由0个元素构成的子集为∅;由1个元素构成的子集为{-4},{-1},{4};由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};由3个元素构成的子集为{-4,-1,4}.因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{-4,-1,4}.真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.反思感悟 求集合子集、真子集的3个步骤跟踪训练2 满足{1,2} M ⊆{1,2,3,4,5}的集合M 有________个. 答案 7解析 由题意可得{1,2} M ⊆{1,2,3,4,5},可以确定集合M 必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M 的元素个数分类如下: 含有三个元素:{1,2,3},{1,2,4},{1,2,5}; 含有四个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5}; 含有五个元素:{1,2,3,4,5}. 故满足题意的集合M 共有7个.三、由集合间的关系求参数例3 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B A ,求实数m 的取值范围.解 (1)当B ≠∅时,如图所示.∴m +1≥-2,2m -1<5,2m -1≥m +1或m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3.(2)当B =∅时,由m +1>2m -1,得m <2.综上可得,m 的取值范围是{m |m ≤3}.延伸探究1.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.解 (1)当B =∅时,由m +1>2m -1,得m <2.(2)当B ≠∅时,如图所示.∴m +1>-2,2m -1<5,m +1≤2m -1,解得m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.2.若本例条件“B A ”改为“A ⊆B ”,其他条件不变,求m 的取值范围. 解 当A ⊆B 时,如图所示,此时B ≠∅.∴2m -1>m +1,m +1≤-2,2m -1≥5,即m >2,m ≤-3,m ≥3,∴m 不存在.即不存在实数m 使A ⊆B .反思感悟 利用集合关系求参数的关注点(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误.一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还要注意“空集”的情况,因为空集是任何集合的子集.跟踪训练3 已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3},若B ⊆A ,求实数a 的取值范围.解 (1)当B =∅时,2a >a +3,即a >3.显然满足题意.(2)当B ≠∅时,根据题意作出如图所示的数轴,可得a +3≥2a ,a +3<-1或a +3≥2a ,2a >4,解得a <-4或2<a ≤3. 综上可得,实数a 的取值范围为{a |a <-4或a >2}.1.下列六个关系式:①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.其中正确的个数是()A.1 B.3 C.4 D.62.集合{1,2}的子集有()A.4个 B.3个 C.2个 D.1个3.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()4.已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.5.已知集合A={x|x≥1或x≤-2},B={x|x≥a},若B A,则实数a的取值范围是________.【答案与解析】1、答案 C解析①正确,集合中元素具有无序性;②正确,任何集合是自身的子集;③错误,∅表示空集,而{∅}表示的是含∅这个元素的集合,是元素与集合的关系,应改为∅∈{∅};④错误,∅表示空集,而{0}表示含有一个元素0的集合,并非空集,应改为∅ {0};⑤正确,空集是任何非空集合的真子集;⑥正确,是元素与集合的关系.2、答案 A解析集合{1,2}的子集有∅,{1},{2},{1,2},共4个.3、答案 B解析x2-x=0得x=1或x=0,故N={0,1},易得N是M的真子集,其对应的Venn图如选项B所示.4、答案 4解析∵B⊆A,B={3,4},A={-1,3,m},∴4∈A,∴m=4.5、答案a≥1解析∵B A,∴a≥1.1.知识清单:(1)子集、真子集、空集、集合相等的概念及集合间关系的判断.(2)求子集、真子集的个数问题.(3)由集合间的关系求参数的值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:忽略对集合是否为空集的讨论,忽视是否能够取到端点.。
集合间的基本关系
方法规律
一般地,若集合A含有n个元素,则A的子集共有2n
重要结论
• 结论:含n个元素的集合: • 所有子集的个数是2n, • 所有真子集的个数是2n-1, 非空真子集数为2n-2.
例2
已知 A x x 2 2 x 3 0 ,
B x ax 1 0 ,若B A, 求实数a的值.
( )
×
( )
×
( )
√
【即时训练】
2.已知A={0,1,2},则下列各式正确的是 A.0⊆A C.{0,1,2}⊆A B.{0,1}∈A D.{0,1,2}∈A
(
)
【解析】选C.根据子集的概念,只有C正确.
注 意
与 的区别:前者表示集合与集合之间的关
系;后者表示元素与集合之间的关系.
思考2
(2)对于集合A,B,C,
①若A⊆B,且B⊆C,则A⊆C;
②若A
B,B
C,则A
C.
B.
(3)若A⊆B,A≠B,则A
例1
写出集合{a,b}的所有子集,并指出哪些
是它的真子集.
解:集合{a,b}的所有子集为: ,{a},{b},{a, b}. 真子集为: ,{a},{b}.
【总结提升】写集合子集的一般方法: 先写 ,然后按照集合元素从少到多的顺序写出来,一直到集合本身. 写集合真子集时除集合本身外其余的子集都是它的真子集.
所以 a 1, b 0.
【易错点拨】
1.包含关系 a A 与属于关系 a A 有什么区别? 前者为集合与集合之间的关系,后者为元素与集 合之间的关系. 2.集合 A Ü B 与集合 A B 有什么区别?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合间的基本关系
1.“包含”关系—子集
注意:B A ⊆有两种可能(1)A 是B 的一部分,(2)A 与B 是 同一集合。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊆
/B 或B ⊇
/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。
A ⊆A
②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)
③如果 A ⊆B, B ⊆C ,那么 A ⊆C
④ 如果A ⊆B 同时 B ⊆A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
已知集合
A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.。