(2)4.1.1 多姿多彩的图形展开图

合集下载

第四章多姿多彩的几何图形4.1.4立体图形的展开图

第四章多姿多彩的几何图形4.1.4立体图形的展开图
展开
长方体
展开
棱柱
展开
圆锥
展开
三 棱 锥
三 棱 柱
练习:
活动二:
用剪刀把正方体纸盒,按任意方式沿棱
展开,你能得到哪些展开图?
第一类: 中间四连方,两侧各一个,共六种。
第二类:
中间三连方,两侧各有一、二个,共三种。
第三类:
中间二连方,两侧各有二个,只有一种。
第四类: 两排各三个,只有一种。
(A〕
(B)
(C)
(D)
如图所示的正方体,如果把它展开, 可以是下列图形中的( D )
小丽制作了一个对面图案均相同的正
方体礼盒(如下图)则这个正方体礼品盒的平 面展开图可能是 ( A )
A
B
C
D
下图是正方形的展开图,如果a
在后面,b在下面,c在左面,试说明
其他各面的位置。
a
b
c
d e f
小壁虎的难题:
下面六个正方形连在一起的图形,经 折叠后能围成正方体的图形有哪几个? (自己动手试试吧)
A
B
C
D
E
F
G
下列图形能折叠成什么立体图形?
圆 柱 圆 锥
棱 柱Байду номын сангаас
棱 柱
由平面展开图得出多面体的唯一性
图中哪些图形经过折叠可以围 成一个多面体?
四棱锥
四棱柱
三棱柱
不能
三棱柱
三棱柱
下边的4个图形中,哪一个是由左 边的盒子展开而成的( C )。
立体图形的展开图
有些立体图形是由一些平面图形围
成的,将立体图形的表面适当剪开,可 以展开成平面图形,这样的平面图形叫 做相应立体图形的展开图. 注意:不是所有的平面图形都能围成 立体图形,也不是所有的立体图形 都能展开成平面图形,例如:球.

七年级上册数学学案设计4.1.1第2课时从不同的方向看立体图形和立体图形的展开图(附模拟试卷含答案)

七年级上册数学学案设计4.1.1第2课时从不同的方向看立体图形和立体图形的展开图(附模拟试卷含答案)

第四章几何图形初步4.1 几何图形4.1.1 几何图形与平面图形第2课时从不同的方向看立体图形和立体图形的展开图学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.使用要求:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理. 3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列各组图形中都是平面图形的是( )A .三角形、圆、球、圆锥B .点、线段、棱锥、棱柱C .角、三角形、正方形、圆D .点、角、线段、长方体2.如图,甲从A 点出发向北偏东70°走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A.125°B.160°C.85°D.105°3.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为( )A.富B.强C.文D.民4.解方程()4.50.79x x +=,最简便的方法应该首先( )A.去括号B.移项C.方程两边同时乘10D.方程两边同时除以4.55.若方程3x -5=1与方程2102a x --=有相同的解,则a 的值为( ) A.2B.0C.32D.12- 6.方程2395123x x x +--=+去分母得( ) A.3(2x+3)-x=2(9x-5)+6 B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+6 7.下面合并同类项正确的是( )A.23325x x x +=B.2221a b a b -=C.0ab ab --=D.220xy xy -+= 8.下列各式中,与xy 2是同类项的是( )A .-2xy 2B .2x 2yC .xyD .x 2y 29.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A.﹣1009B.﹣1010C.﹣2018D.﹣2020 10.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有 A .1道 B .2道 C .3道 D .4道11.在下列各数: ()2-+, 23-, 413⎛⎫- ⎪⎝⎭, 325⎛⎫- ⎪⎝⎭, ()01-, 3-中,负有理数的个数是( )A .2个 B .3个 C .4个 D .512.﹣1+3的结果是( )A .﹣4B .4C .﹣2D .2二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知AOB 100∠=,BOC 60∠=,OM 平分AOB ∠,ON 平分BOC ∠,那么MON ∠等于______度.15.一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为_____元.16.已知关于x 的一元一次方程1x-3=4x+3b 2017的解为x=4,那么关于y 的一元一次方程1y-1-3=4y-1+3b 2017()()的解y=____. 17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 18.将多项式xy 3-x 2y+2x 3-5y 2按字母x 降幂排列是:______.19.-4的倒数是________,相反数是_______.绝对值是_________.20.﹣(﹣82)=_____;﹣(+3.73)=_____;﹣(﹣27)=_____.三、解答题21.已知:AOD 160∠=,OB ,OM ,ON 是AOD ∠内的射线.()1如图1,若OM 平分AOB ∠,ON 平分BOD.∠当射线OB 绕点O 在AOD ∠内旋转时,MON ∠=______度.()2OC 也是AOD ∠内的射线,如图2,若BOC 20∠=,OM 平分AOC ∠,ON 平分BOD ∠,当BOC ∠绕点O 在AOD ∠内旋转时,求MON ∠的大小. ()3在()2的条件下,若AOB 10∠=,当BOC ∠在AOD ∠绕O 点以每秒2的速度逆时针旋转t 秒,如图3,若AOM ∠:DON 2∠=:3,求t 的值.22.如图,某景区内的环形路是边长为1200米的正方形ABCD ,现有1号、2号两辆游览车分别从出口A 和景点C 同时出发,1号车沿A→B→C→D→A 路线、2号车沿C→B→A→D→C 路线连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为300米/分.(1)如图1,设行驶时间为t 分(0≤t≤8)①1号车、2号车离出口A 的路程分别为_____米,_____米;(用含t 的代数式表示)②当两车相距的路程是600米时,求t 的值;(2)如图2,游客甲在BC 上的一点K (不与点B 、C 重合)处候车,准备乘车到出口A ,设CK=x 米. 情况一:若他刚好错过2号车,则他等候并搭乘即将到来的1号车;情况二:若他刚好错过1号车,则他等候并搭乘即将到来的2号车.请判断游客甲在哪种情况下乘车到出口A 用时较多?(含候车时间)23.在某市一项城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙一起做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)已知甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲、乙两队全程一起做完成该工程省钱?24.某中学七年级一班有44人,某次活动中分为四个组,第一组有a人,第二组比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数(用含a的代数式表示).(2)试判断a=12时,是否满足题意.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE= ;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.26.先化简,再求值(1)求代数式14(4a2-2a-8)-(12a-1),其中a=1;(2)求代数式12x-2(x-13y2)+(-32x+13y2)的值,其中x=23,y=-2.27.已知|x+1|+(y+2)2=0,求x+y的值.28.计算:-3- 2 +(-4)-(-1).【参考答案】***一、选择题1.C2.A3.A4.D5.A6.D7.D8.A9.B10.B11.C12.D二、填空题13.150°14. SKIPIF 1 < 0 或80解析:20或8015.70元16.517.118.2x3-x2y+xy3-5y219.- SKIPIF 1 < 0 , 4, 4;解析:-14, 4, 4;20.﹣3.73 SKIPIF 1 < 0解析:﹣3.73 2 7三、解答题21.(1) 80;(2) 70°;(3)t为21秒.22.2400﹣300t23.(1)90天.(2)由甲乙两队全程合作完成该工程省钱.24.(1)(34-3a)(2)a=12时,第四组的人数为-2,不符合题意25.(1)30;(2)答案见解析;(3)65°或52.5°.26.(1)-1(2)227.﹣3.28.-82019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C ,D 是线段 AB 上两点,若 CB=4cm ,DB=7cm ,且 D 是 AC 的中点,则 AB 的长等于( )A.6cmB.7cmC.10cmD.11cm2.题目文件丢失!3.如图,点C 、D 是线段AB 上的两点,点D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则线段DB 的长等于( )A.2cmB.3cmC.6cmD.7cm4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )A .3×10x=2×16(34﹣x)B .3×16x=2×10(34﹣x)C .2×16x=3×10(34﹣x)D .2×10x=3×16(34﹣x)5.将一个周长为42cm 的长方形的长减少3cm ,宽增加2cm ,能得到一个正方形.若设长方形的长为xcm ,根据题意可列方程为( )A .x+2=(21﹣x )﹣3B .x ﹣3=(21﹣x )﹣2C .x ﹣2=(21﹣x )+3D .x ﹣3=(21﹣x )+26.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元7.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab ba ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A.+2abB.+3abC.+4abD.-ab 8.已知a+b =4,c ﹣d =3,则(b+c )﹣(d ﹣a )的值等( )A .1B .﹣1C .7D .﹣79.单项式4223ab c -的系数与次数分别是( ) A .2,5- B .2,5 C .2,63- D .2,73- 10.下列各式从左到右的变形错误的是( )A .(y ﹣x )2=(x ﹣y )2B .﹣a ﹣b=﹣(a+b )C .(a ﹣b )3=﹣(b ﹣a )3D .﹣m+n=﹣(m+n )11.﹣(﹣2)等于( )A.﹣2B.2C.12D.±212.下列运算结果为正数的是()A.-22 B.(-2)2 C.-23 D.(-2)3二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知x﹣2y+3=8,则整式x﹣2y的值为_____.15.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.16.请写出一个系数含π,次数为3的单项式,它可以是________.17.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①和图②,已知大长方形的长为a,两个大长方形未被覆盖部分,分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是______.(用含a的代数式表示)18.若||2a=,则a=__________.19.比较大小:23⎛⎫-+ ⎪⎝⎭___34--.(选用>、<、=号填写)20.已知∠A=35°10′48″,则∠A的余角是__________.三、解答题21.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.22.如图,O为直线AB上一点,∠AOC=50°20′,OD平分∠AOC,∠DOE=90°.(1)求∠DOB的度数;(2)请你通过计算说明OE是否平分∠COB.23.如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.(1)AC=__cm,BC=__cm;(2)当t为何值时,AP=PQ;(3)当t为何值时,PQ=1cm.24.小明家使用的是分时电表,按平时段(6:00﹣22:00)和谷时段(22:00一次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表)根据上述信息,解答下列问题:(1)计算5月份的用电量和相应电费,将所得结果填入表1中;(2)小明家这5个月的月平均用电量为度;(3)小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4)小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.25.先化简,再求值:[(x ﹣y )2+(x+y )(x ﹣y )]÷2x,其中x =﹣1,y =2.26.先化简,再求值:2(﹣3xy+52x 2)+5(2xy ﹣x 2),其中x =﹣2,y =12. 27.计算:28.(1)计算1114125522-+---();(2)计算()()32112321133⎛⎫-+⨯-⨯-÷- ⎪⎝⎭.【参考答案】***一、选择题1.C2.B3.D4.B5.D6.C7.A8.C9.D10.D11.B12.B二、填空题13.150°14.15.1216.πx3或πr2h 或 SKIPIF 1 < 0πr2h(答案不唯一)解析:πx 3或πr 2h 或13πr 2h(答案不唯一)17. SKIPIF 1 < 0解析:1 a 218. SKIPIF 1 < 0解析:219.>.20.54°49′12″三、解答题21.(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.22.(1) 154°50′;(2)见解析23.824.(1)65+45=110,46.95;(2)99;(3)上升;下降;(4)平时段300度,谷时用200度.25.x-y,-3.26.4xy,-4.27.-128.(1)-2;(2)-14.。

4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)

4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)
4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)
一、教学内容
本节课选自人教版七年级上册数学第4章《几何图形初步》中的4.1.1节“折叠、展开与从不同方向观察立体图形”。教学内容主要包括以下三个方面:
1.折叠:通过实际操作,让学生掌握正方体、长方体等简单立体图形的折叠方法,并理解其展开图形的特征。
此外,在小组讨论环节,学生们表现出了很高的积极性。他们围绕立体图形在实际生活中的应用展开了热烈的讨论,并提出了一些有趣的观点。这表明,学生们能够将所学知识与现实生活联系起来,这对于他们理解抽象的几何概念具有重要意义。
在今后的教学中,我需要关注以下几个方面:
1.对于教学难点,要设计更多的实例和练习,帮助学生巩固所学知识,提高解决问题的能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你们认为这些立体图形的折叠和展开在哪些场合下最有用?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(3)解决实际问题时,难以将所学知识灵活运用。
举例:在计算立体图形的表面积和体积时,部分学生可能会忘记使用正确的公式或方法。
在教学过程中,教师应针对教学难点进行有效指导,通过实际操作、示例讲解、讨论交流等方式,帮助学生突破难点,确保学生能够理解透彻本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
(2)从不同方向观察立体图形,学会用简单的几何语言描述观察到的形状。
举例:从正面、侧面、上面等不同方向观察正方体和长方体,让学生能够用“有几个面、面的形状和大小”等几何语言进行描述。

(2)4.1.1 多姿多彩的图形展开图资料

(2)4.1.1 多姿多彩的图形展开图资料

议练:一个正方体的各个面分别标有数字1、2、 3、4、5、6,根据图中该正方体A、B、C三种状态所显
示的数,推断出“?”处的数字是___6____
小 结:
• 你掌握了哪些立体图形的平面展开图?
• 正方体的展开图你都知道哪些?应注意什么?
下列图形能折叠成什么立体图形?
圆棱 柱柱
圆棱 锥柱
三棱柱 三棱锥
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
观察感悟
第一类,中间四连方,两侧各一个,共六种。 (141型)
第二类,中间三连方,两侧各有一、二个,共三种。 (231型)
第三类,中间二连方,两侧各有二个,只有一种。 (阶梯型)
第四类,两排各三个,只有一种。
试一试
下面六个正方形连在一起的图形,经折叠后能围 成正方体的图形有哪几个?(动手试试)
解:(1)1点会在上面 (2)4点会在上面 (3)6点会在上面
有一个正方体,在它的各个面上分别涂了白、红、黄、兰、
绿、黑六种颜色。甲、乙、丙三位同学从三个不同的角度去观
察此正方体,结果如下图,问这个正方体各个面的对面的颜色
是什么?


绿
红兰
黄红
兰黄



解:黑色对面为黄色;
红色对面为绿色;
兰色对面为白色。

两个n边形,n个长方形
• 3、圆锥的底面、侧面展开图分别是什么平面图形

一个圆,一个扇形
• 4、棱锥的底面、侧面展开图分别是什么平面图形 ? 一个n边形,n个三角形
• 5、球体有平面展开图吗? 没有
活动二
用剪刀把桌上的正方体纸盒按任意方式沿 棱展开,你能得到哪些不同的展开图?比比哪 一小组的展开图更与众不同。

人教版数学七年级上册4.1.1《立体图形的展开图》教学设计

人教版数学七年级上册4.1.1《立体图形的展开图》教学设计

人教版数学七年级上册4.1.1《立体图形的展开图》教学设计一. 教材分析《立体图形的展开图》是人教版数学七年级上册第4章第1节的内容。

本节主要让学生了解并掌握立体图形的展开图的概念,能够将立体图形展开成平面图形,并识别常见的立体图形的展开图。

通过本节的学习,为学生后续学习立体图形的计算和应用打下基础。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和图形认知能力。

但是,对于立体图形的展开图,学生可能还比较陌生,需要通过实例和操作活动,让学生逐步理解和掌握。

三. 教学目标1.了解立体图形的展开图的概念,能够将立体图形展开成平面图形。

2.能够识别常见的立体图形的展开图。

3.培养学生的空间想象能力和图形认知能力。

四. 教学重难点1.立体图形的展开图的概念。

2.将立体图形展开成平面图形的方法。

3.识别常见立体图形的展开图。

五. 教学方法采用讲授法、演示法、操作活动法、小组合作法等教学方法,引导学生通过观察、操作、思考、交流等方式,掌握立体图形的展开图的概念和展开方法。

六. 教学准备1.准备立体图形的模型或图片。

2.准备展开图的示例。

3.准备练习题。

七. 教学过程1.导入(5分钟)通过展示一些生活中常见的立体物体,如纸箱、易拉罐等,让学生观察这些立体物体的形状,引发学生对立体图形的兴趣。

然后,教师提出问题:“如果把这些立体物体展开成平面图形,会是什么样子呢?”引导学生思考和讨论。

2.呈现(10分钟)教师通过展示立体图形的模型或图片,以及对应的展开图,向学生介绍立体图形的展开图的概念,并解释如何将立体图形展开成平面图形。

同时,教师进行讲解和演示,让学生直观地理解立体图形的展开过程。

3.操练(10分钟)学生分组进行操作活动,每组选择一个立体图形,尝试将其展开成平面图形。

学生在操作过程中,可以互相交流和讨论,共同完成任务。

教师巡回指导,解答学生的问题,并给予评价和反馈。

4.巩固(10分钟)教师出示一些立体图形的展开图,让学生识别出对应的立体图形。

第四章多姿多彩的几何图形复习课件20131229

第四章多姿多彩的几何图形复习课件20131229
北 北
(B)南偏西60° (C)南偏东30° (D)南偏西30°
B
1 2 A


天 津 的 世 纪 钟
工艺表
十字绣钟表
怀表
护腕表
护士表
腰表
台表
闹钟
日常手表
30 在钟面上,每一大格的度数为____°
6 在钟面上,每一小格的度数为____°
30°
(1)时间为3时整,时针与分针之间 90 的夹角是_________度。 (2)时间为8时整,时针与分针之间 120 的夹角是_________度。 (3)时间为1时整,时针与分针之间 30 的夹角是_________度。
4.1 多姿多彩的图形
---复习课件
柱体

棱柱
圆柱
三棱柱
锥体
四棱柱

五棱柱

棱锥
圆锥
三棱锥 四棱锥
六棱柱

五棱锥
六棱锥
立体图形
画出以下立体图形的三视图
图1
主视图
左视图
俯视图
C
A
正 方 体 展 开 图
友情提示:
1、沿着棱剪 2、展开后是一个完整图形
(5)两点间的距离:连结两点的线段
的长度,叫做这两点间的距离. (6)线段的特点:有两个端点,不能
向任何一方伸展,可以度量, 可以比较长短.
知识点2:射线
(1)射线的概念:把线段向一方无限延伸所形 成的图形叫做射线. (2)射线的表示方法: 可用两个大写字母表示,第一个大写字母表 示它的端点; 也可用一个小写字母表示. (3)射线的特点:只有一个端点,向一方无限延 伸,无法度量,不能比较长短.
如果1与2互余,那么1的余角是2 ,

《多姿多彩的图形》课件

《多姿多彩的图形》课件

By 杜小二
圆 柱
棱 柱
圆 锥
棱 柱
找朋友
By 杜小二
考考你
1、如果“你”在前面,那么谁在后面?
By 杜小二

太 你 们 棒

KEY: 棒
2、“坚”在下,“就”在后,胜利在哪里?
By 杜小二

持 就 胜 利 是
下图是一个正方体的展开图,标注了字母A的 面是正方体的正面,如果正方体的左面与右面所 标注代数式的值相等,求 的值. x
By 杜小二
这是一个工 的立体图,设计 们常常画出从不 方向看它得到的 面图形来表示它
By 杜小二
By 杜小二
从左侧看
By 杜小二
图3 图1
图2
从正面看 从上面看
你能指出这些图形分别从哪个角
By 杜小二
长方体
圆 柱
圆锥
By 杜小二
从上面看
从左边看
长方体
从正面看
从上面看
By 杜小二
从左面看
By 杜小二
-2
3
-4
1
A 3 x- 2
By 杜小二
有一个正方体,在它的各个面上分别涂了白、 红、黄、兰、绿、黑六种颜色。甲、乙、丙三位同 学从三个不同的角度去观察此正方体,结果如下图 问这个正方体各个面的对面的颜色是什么?
黑 红 兰
白 黄

绿


By 杜小二
1、学会了从不同方向观察立体图形。 2、 学会了简单几何体(如棱柱,正方体等) 的平面展开图,知道按不同的方式展开会得到 不同的展开图。 3、学会了动手实践,与同学合作。
五棱柱
圆锥
By 杜小二
圆 柱

《4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图》教案、同步练习(附导学案)

《4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图》教案、同步练习(附导学案)

4.1.1 立体图形与平面图形《第2课时从不同的方向看立体图形和立体图形的展开图》教案【教学目标】:1.能直观认识立体图形和展开图,了解研究立体图形的方法.2.会由展开图联想对应的立体图形形状.【教学重点】:1.识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的立体图形.2.正确判断哪些平面图形可以折叠为立体图形、某个立体图形的展开图可以是哪些平面图形.【教学难点】:了解基本几何体与其展开图之间的关系,体会一个立体图形按照不同方式展开可得到不同的平面展开图.【教学过程】:一、从不同方向看立体图形1.学生阅读课本P117,图4.1-6及以上相关内容,理解从不同方向看立体图形的意义和用途.2.练习:课本P121第4题.3.小结:从三个不同方向看立体图形的方法.4.小组合作探究P117图4.1-7.问题:(1)从正面看,有几层?每一层分别有几个正方形?(2)从上面看,有几个正方形,这些正方形是怎样排列的?(3)从左面看,有几列?每一列有几个正方形?(4)画出从三个不同方向看该立体图形所得到的平面图形.5.能力提升练习:(1)由相同的小正方体搭成的几何体从正面看和从上面看得到的平面图形如图:画出从左面看该几何体得到的平面图形.(2)由相同小立方块搭成的几何体从正面看和从上面看得到的平面图形如图所示:搭成这个几何体最多要多少个小立方块?最少呢?二、立体图形的展开图1.学生阅读课本P117图4.1-8及相关内容.2.动手操作:将一个长方体墨水瓶盒按不同的棱剪开铺平,并画下其形状观察长方体墨水瓶盒展开图中有哪些平面图形,这些平面图形之间大小形状有什么关系?3.课本P118探究:(1)先由平面图形想象立体图形的形状.(2)实际操作:将这些平面展开图画在纸上,看能否围成想象的立体图形.4.小组合作探究:正方体的平面展开图共有哪些形状?5.交流总结:正方体的平面展开图形状:141型:(共6个).231型:(共3个).33型:(1个).222型:(1个).6.练习(1)课本P118第2题.(2)如图所示,经过折叠可以围成一个棱柱的是( )(3)课本P123第12题.三、课时小结学生谈:我知道了什么?我学会了什么?我发现了什么?四、课堂作业1.课本P122第6题、第7题.2.下图是一个立方体纸盒的展开图,其中三格已经分别填入一个数,请在其余三个正方形内填入所有可能的数,使得折成立方体后相对面上的两个数绝对值相等,则填入正方形间A,B,C内的数依次为.4.1.1 几何图形与平面图形《第2课时从不同的方向看立体图形和立体图形的展开图》同步练习一、选择题1.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( ).2.如图所示的四种物体中,哪种物体最接近于圆柱( ).3.如图是一正方体纸盒的展开图,每个面上都标注了字母或数字,则面a 在展开前所对的面上的数字是( ).A.2 B.3 C.4 D.54.按如图所示的图形中的虚线折叠可以围成一个棱柱的是( ).5.如图所示,下列图形绕着虚线旋转一周得到圆锥体的是 ( )6.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为()A. B. C. D.二、填空题7.五棱柱有________个顶点,________条棱,________个面.8.柱体包括________和________,锥体包括________和________.9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.10.(内蒙古赤峰)如图所示是一个几何体的三视图,则这个几何体是________.11.圆锥的底面是__________形,侧面是__________的面,侧面展开图是__________形.12.当笔尖在纸上移动时,形成_______,这说明:_____;表针旋转时,形成了一个,这说明:;长方形纸片绕它的一边旋转,形成的几何图形就是,这说明: .三、解答题13.如图所示是一个长方体的展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果面A在多面体的上面,那么哪一面会在下面?(2)如果面F在多面体的后面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面A,从上面看是面E,那么哪一面会在前面?14.如图所示是一个机器零件从正面看和从上面看所得到的图形,求该零件底面积×高).的体积(π取3.14,单位:mm)(提示:V=圆柱15. 如图所示的一张硬纸片,它能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.参考答案一、选择题1.B;2.A;3.B;【解析】要求面a在展开前所对的面上的数字,我们可以把正方体的展开图折叠起来,则面a、2、3、4按照第一、三个对应,第二、四个对应,于是面a在展开前所对的面上的数字为3.4. C ;【解析】A、D中两个底面不能放在同一侧,B中侧面个数与底面边数不等,故选C.5. D ;【解析】选项A、B、C、D中的图形旋转一周分别形成圆台、球、圆柱和圆锥,故选D.6. C;【解析】由正方体的表面展开图的特点再结合实际操作,便可得解.二、填空题7. 10, 15, 7 ;【解析】五棱柱上底面有5个顶点,下底面有5个顶点,共10个顶点;上、下底面各有5条棱,竖直有5条棱,共15条棱;7个面,其中5个侧面,2个底面.8. 圆柱,棱柱;圆锥,棱锥9. 自;【解析】要弄清立体图形与其平面展开图各部分间的关系,需要较强的空间想象能力,这种能力是建立在动手操作、认真观察与善于思考的基础上.10.三棱柱(或填正三棱柱) ;【解析】考查空间想象能力.11.圆,曲,扇;【解析】动手操作或空间想象,便得答案.12.一条线,点动成线;圆面,线动成面;圆柱体,面动成体三、解答题13.解:(1)如果面A在多面体的上面,那么面C会在下面.(2)如果面,在多面体的后面,从左面看是面C,那么向外折时面C会在上面,向里折时面A会在上面.(3)从右面看是面A,从上面看是面E,那么向外折时从前面看是面B,向里折时从前面看是面D.14.解:22032302540400482π⎛⎫⨯⨯+⨯⨯=⎪⎝⎭(mm3),即该零件的体积为40048 mm3.提示:由该零件从正面看和从上面看所得到的图形可以确定该零件是由上、下两部分组成的,上面是一个高为32 mm,底面直径为20 mm的圆柱;下面是一个长为30 mm,宽为25 mm,高为40 mm的长方体,零件的体积是圆柱与长方体体积之和.15. 【解析】解:能折成一个长方体盒子,因为符合长方体的平面展开图的所有条件,该几何体的立体图形如图所示.此长方体的长为5m,宽为2m,高为3m,所以它的体积为:5×2×3=30(m3).4.1.1 几何图形与平面图形《第2课时从不同的方向看立体图形和立体图形的展开图》导学案【学习目标】:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.【学习重点】:识别并会画出从不同方向看简单几何体所得到的平面图形.【学习难点】:识别并会画出从不同方向看简单组合体所得到的平面图形.【使用要求】:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.【学习过程】一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理.3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)。

4.1.1(3)--展开图

4.1.1(3)--展开图

4.1.1(3)--展开图一.【知识要点】1.常见例题图形的展开图2.正方体的展开图(11种:“141、231、222、33”型)3.“隔一法”求对面(隔一行、隔一列)4.带图案展开图判断二.【经典例题】2.如图是由棱长为1的正方体搭成的积木从正面、左面、上面看到的图形,则图中棱长为1的正方体的个数是.3.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A. 0B. 2C. 数D. 学4.如图所示是一个完全相同的正方体的三种不同放置方式,下底面依次是___________.三.【题库】【A】1.如图是一个小立方块几何体的平面展开图,哪个不正确()2.下列各图中,可以是一个正方体的平面展开图的是( )DCBA3.下列图形不是正方体展开图的是( )【B】1.如图是一个正方体的展开图,如果正方体相对的面上标注的值相等,那么x=_______ ,y=__________.2.下面图形经过折叠不能围成棱柱的是()3. 下列图形中,哪一个是正方体的展开图()4.圆锥由_______面组成,其中一个是_______面 ,另一个是_______面.A B C D【C 】 1.图能折叠成的长方体是( )2.要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x =____,y =______;3.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A .美B .丽C .云D .南4.一个正方体的表面展开图如图所示,每一个面上都写有一个数,并且相对两个面上所写的两个数之和都相等,那么=a ,=b .【D】1.如图所示一只蚂蚁在A处,想到C处的最短路线是请画出简图,并说明理由。

立体图形的展开图(课件)

立体图形的展开图(课件)
第四章 几何图形初步
4.1.3 立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
1.了解立体图形可由平面图形围成,立体图形可 展开为平面图形;
2.掌握正方体的展开图,熟悉圆柱、圆锥、棱柱、 棱锥的表面展开图,能根据展开图判断立体图 形的形状.
立体图形的展开图





立体图形的展开图

第二类: "1-3-2"型





立体图形的展开图

第三类: "2-2-2"型




第四类: "3-3"型

立体图形的展开图
将正方体相对的面涂上颜色,你会发现什么?
对 面 相

不 相 连

?

立体图形的展开图
正 方 体 展 开 图
-
立体图形的展开图
自主反思:
立体图形的展开图 做个巧手活 看个妙东西 当个小帮手
立体图形的展开图
做个巧手活
1、折叠下列图形,看能不能折叠成一个立 体图形?
(1)
(2)
(3)
→经过动手折叠发现( 1 )( 3 )
可以折叠成一个( 三棱锥 )
立体图形的展开图
立体图形是平面图形围成的,把这些立 体图形的表面适当剪开,得到的平面图形称 为相应图形的展开图.
1.立体图形和平面图形之间的关系?
展开
有些立体图形
有些平面图形 折叠
平面图形 立体图形
2.常见的一些立体图形的展开图是 什么样的?正方体展开图中不能

多姿多彩的图形-几何图形

多姿多彩的图形-几何图形

图1
图2
图3
棱柱和棱锥
四棱柱
五棱柱
六棱柱
四棱锥
五棱锥
六棱锥
圆柱

柱体
三棱柱
棱柱
四棱柱 五棱柱

六棱柱
圆锥

锥体
三棱锥
棱锥
四棱锥 五棱锥
六棱锥
常见的平面图形
三角形
长方形
五边形
圆形
正方形
六边形
找一找:有哪些熟悉的平面图形?
从上面看
从左边看
长方体
从正面看
从上面看
从左面看
给我最大快乐的, 不是已懂的知识, 而是不断的学习.
----高斯
天坛祈年殿—中国
国家体育馆—中国
金字塔—埃及
泰姬陵—印度
圆形斗兽场—意大利
白宫—美国
巴台农神庙—希腊
大英博物馆—英国
地球—我们的家
4.1.1 几何图形
长方体
正方形
长方形
线段

我们把从实物中抽象出的各种 图形统称为几何图形。
从正面看
从左面看
从上面看 从正面看
从上面看 从左面看
从正面看
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
利用骰子,摆成下面的图形,分别从正面、 左面、上面观察这个图形,各能得到什么平 面图形?
从正面看
从上面看
从左面看
你有收获吗?
立体图形:长方体、正方体、球、圆柱、圆锥、棱柱、棱锥等 平面图形:长方形、正方形、三角形、圆、五边形、六边形等 从正面看、从左面看、从上面看
你是这样想的吗?
足球能得到球体.

七年级数学上册 4.1.1多姿多彩的图形同步练习 人教新课标版

七年级数学上册 4.1.1多姿多彩的图形同步练习 人教新课标版

导学图(1)§4.1.1多姿多彩的图形同步练习1.把下列立体图形与对应的名称用线连起来。

圆柱圆锥正方体长方体棱柱球2.下面图形中叫圆柱的是()3.长方体共有()个面.A.8 B.6 C.5 D.44.六棱柱共有()条棱.A.16 B.17 C.18 D.205.下列说法,不正确的是()A.圆锥和圆柱的底面都是圆. B.棱锥底面边数与侧棱数相等.C.棱柱的上、下底面是形状、大小相同的多边形.D.长方体是四棱柱,四棱柱是长方体.6.正方体有个面,个顶点,经过每个顶点有条棱.这些棱的长度(填相同或不同).棱长为acm的正方体的表面积为 cm2.7.五棱柱是由个面围成的,它有个顶点,有条棱.8.从一个七边形的一个顶点出发,连结其余各顶点,将这个七边形分割成个三角形。

9.从一个边数为n的内部一点出发,连结这点与各顶点,将该多边形分割成个三角形。

10.如图,小强拿一张正方形的纸,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线剪去一个角,再打开后的形状是()11.在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?12.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.导学图(2)§4.1.多姿多彩的图形(2) 同步练习1.某物体的三视图是如图所示的3个图形,那么该物体形状是。

2.物体的形状如图所示,则此物体的俯视图是()3.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边;B.丙在乙的对面,丙的左边是甲,右边是乙;C.甲在乙的对面,甲的右边是丙,左边是丁;D.甲在丁的对面,乙在甲的右边,丙在丁的右边。

人教版数学七年级上册教案-4.1.1立体图形与平面图形正方体展开图

人教版数学七年级上册教案-4.1.1立体图形与平面图形正方体展开图
-实际问题的解决:应用正方体展开图解决表面积、体积等计算问题。
举例:通过展示不同类型的正方体展开图,让学生观察并总结出正方体的特征,强调在解决问题时如何利用这些特征。
2.教学难点
-空间观念的培养:学生对立体图形的空间想象能力较弱,难以在脑海中形成清晰的空间图像。
-展开图的分类与归纳:学生对展开图的类型较多,难以进行有效的分类和归纳。
五、教学反思
在今天的教学中,我发现学生们对正方体展开图的学习有着浓厚的兴趣。通过导入环节的提问,他们能够很快地将新知识与日常生活联系起来,这为后续的学习打下了良好的基础。在理论讲授环节,我尽量用简单明了的语言解释正方体的特征和展开图的折叠方法,学生们也表现出了积极的听讲态度。
然而,我也注意到在实践活动中,部分学生在折叠正方体展开图时遇到了困难。这说明空间观念的培养并非一蹴而就,需要我们在今后的教学中多加关注和引导。在小组讨论环节,学生们能够围绕主题展开热烈的讨论,提出自己的观点和想法,这让我感到非常欣慰。但同时,我也注意到有些学生还不够自信,不敢大胆地表达自己,这需要我们在课堂上多给予鼓励和支持。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正方体的基本概念、正方体展开图的识别和折叠方法,以及它们在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版七年级数学上册:4.1.1《立体图形与平面图形——立体图形的表面展开图》说课稿2

人教版七年级数学上册:4.1.1《立体图形与平面图形——立体图形的表面展开图》说课稿2

人教版七年级数学上册:4.1.1 《立体图形与平面图形——立体图形的表面展开图》说课稿2一. 教材分析《立体图形与平面图形——立体图形的表面展开图》这一节是人教版七年级数学上册第四章第一节的内容。

本节主要让学生了解立体图形的表面展开图的概念,学会如何将立体图形展开成平面图形,并能够识别常见的立体图形的表面展开图。

内容主要包括长方体、正方体、圆柱体和圆锥体的表面展开图。

二. 学情分析七年级的学生已经学习了平面图形的知识,对图形的性质和特征有一定的了解。

但是,对于立体图形的表面展开图,学生可能比较陌生。

因此,在教学过程中,我需要引导学生从平面图形的角度去理解和认识立体图形的表面展开图。

三. 说教学目标1.知识与技能目标:学生能够理解立体图形的表面展开图的概念,学会如何将立体图形展开成平面图形,并能够识别常见的立体图形的表面展开图。

2.过程与方法目标:通过观察、操作、思考等活动,学生能够培养空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,自主学习,培养合作意识和团队精神。

四. 说教学重难点1.教学重点:立体图形的表面展开图的概念,常见立体图形的表面展开图。

2.教学难点:如何将立体图形展开成平面图形,理解立体图形和平面图形之间的关系。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等。

2.教学手段:多媒体课件、实物模型、展开图卡片等。

六. 说教学过程1.导入新课:通过展示一些日常生活中的立体物体,如纸箱、易拉罐等,引导学生思考这些物体的表面展开图是什么样子。

2.探究新知:(1)教师展示长方体和正方体的实物模型,引导学生观察其表面展开图的特点。

(2)学生分组讨论圆柱体和圆锥体的表面展开图,教师进行指导。

(3)各小组汇报讨论结果,教师点评并总结。

3.巩固练习:学生独立完成一些立体图形的表面展开图的练习题,教师进行讲解和指导。

4.课堂小结:教师引导学生总结本节课所学内容,巩固立体图形的表面展开图的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个n边形,n个三角形 没有
活动二
用剪刀把桌上的正方体纸盒按任意方式沿 棱展开,你能得到哪些不同的展开图?比比哪 一小组的展开图更与众不同。
观察感悟
第一类,中间四连方,两侧各一个,共六种。
(141型)
第二类,中间三连方,两侧各有一、二个,共三种。
(231型)
第三类,中间二连方,两侧各有二个,只有一种。
下列图形能折叠成什么立体图形?
圆 柱
圆 锥
棱 柱 棱 柱
三棱柱
三棱锥
1、学会了简单几何体(如棱柱,正方体等)的平 面展开图,知道按不同的方式展开会得到不同的 展开图。 2、学会了动手实践,与同学合作。 3、友情提醒:不是所有立体图形都有平面展开图,
比如球体。
练 习:
教材P118练习 1、2、3
黑 红 兰 白 绿
黄 乙





解:黑色对面为黄色; 红色对面为绿色; 兰色对面为白色。
议练:一个正方体的各个面分别标有数字1、2、
3、4、5、6,根据图中该正方体A、B、C三种状态所显
示的数,推断出“?”处的数字是_______ 6
小 结:
• 你掌握了哪些立体图形的平面展开图?
• 正方体的展开图你都知道哪些?应注意什么?
作 业:
教材P122习题4.1 第6、7、10、11、12 、13、14题。
立体图形的展开图
学习目标:
1、能直观认识立体图形和展开图,了解利 用立体图形的展开图是研究立体图形的一 种重要方法。 2、通过观察和动手操作,经历和体验平面 图形和立体图形相互转换的过程,培养动 手操作能力。 3、体验数学与日常生活是密切相关的。

小壁虎的难题: 如图:一只圆桶的下方有一只壁虎,上方有一 只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径?
(1)如果6点在多面体的底部,那么哪一点会在上面?
(2)如果1点在前面,从左面看是2点,那么哪一点会在上面? (3)如果从右面看是4点,5点在后面,那么哪一点会在上面?
解:(1)1点会在上面
(2)4点会在上面
(3)6点会在上面
有一个正方体,在它的各个面上分别涂了白、红、黄、兰、
绿、黑六种颜色。甲、乙、丙三位同学从三个不同的角度去观 察此正方体,结果如下图,问这个正方体各个面的对面的颜色 是什么?
而成的。
(A〕
(B)
(C)

(D)
把左图中长方体的表面展开图,折叠成一个长 方体,那么与字母J重合的点是哪几个?
E F
A
B
C D
G
N与H
N M L K I H
注意:
J
有“田字型”,“凹字型”,“7字型”的平 面展开图不能围成正方体。
把下面的正三角形沿虚线折叠后的几何体是什么?
下图是一个正方体的展开图,标注了字 母A的面是正方体的正面,如果正方体的左 面 与 右 面 所 标 注 代 数 式 的 值 相 等 , 求x 的 值.

蚊子
你有何高招?
Байду номын сангаас

壁虎

蚊子
壁虎

蚊子


壁虎
活动一
把你所做的立体图形展开,看它的平面展
开图是什么。
圆 柱
展开
长方体
展开
棱柱
展开
圆锥
展开
练习:
立体图形的平面展开图的含义
将一些立体图形沿表面轮廓线适当剪开后, 展开所得到的平面图形叫做这个立体图形的平 面展开图。
说明:(1)一个立体图形可以有不同的平面展开图。 (2)不是所有立体图形都有平面展图。
归纳、比较:
• 1、圆柱的底面、侧面展开图分别是什么平面图形?
两个圆,一个长方形 • 2、棱柱的底面、侧面展开图分别是什么平面图形?
• 3、圆锥的底面、侧面展开图分别是什么平面图形?
两个n边形,n个长方形 • 4、棱锥的底面、侧面展开图分别是什么平面图形?
• 5、球体有平面展开图吗?
一个圆,一个扇形
(阶梯型)
第四类,两排各三个,只有一种。
试一试
下面六个正方形连在一起的图形,经折叠后能围 成正方体的图形有哪几个?(动手试试)

A
B
×
F
C
× √
G

D
×
E
×
×
H
下图需再添上一个面,折叠后才能围成一个正
方体,下面是四位同学补画的情况(图中阴影部
分),其中正确的是(
B )
A.
B.
C.
D.

下边的4个图形中,哪一个是由左边的盒子展开
折叠后,左面为-4,右 面为3x-2
-2 3
所以:3x-2=-4
-4
1 A 3x-2
2 x 3
如图是一个正方体纸盒的展开图,请在图中的6 个正方形中分别填入1、2、3、-1、-2、-3,时 展开图沿虚线折叠成正方体后相对面上的两个 数互为相反数。 3 1 2
-1 -2
-3
例2:下图是一个自制骰子的展开图,请根据要求回答问题:
相关文档
最新文档